Browsing by Author "Moore, Penny L"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- ItemOpen AccessAssessment of an LSDV-Vectored Vaccine for Heterologous Prime-Boost Immunizations against HIV(2021-11-05) Chapman, Ros; van Diepen, Michiel; Douglass, Nicola; Galant, Shireen; Jaffer, Mohamed; Margolin, Emmanuel; Ximba, Phindile; Hermanus, Tandile; Moore, Penny L; Williamson, Anna-LiseThe modest protective effects of the RV144 HIV-1 vaccine trial have prompted the further exploration of improved poxvirus vector systems that can yield better immune responses and protection. In this study, a recombinant lumpy skin disease virus (LSDV) expressing HIV-1 CAP256.SU gp150 (Env) and a subtype C mosaic Gag was constructed (LSDVGC5) and compared to the equivalent recombinant modified vaccinia Ankara (MVAGC5). In vitro characterization confirmed that cells infected with recombinant LSDV produced Gag virus-like particles containing Env, and that Env expressed on the surface of the cells infected with LSDV was in a native-like conformation. This candidate HIV-1 vaccine (L) was tested in a rabbit model using different heterologous vaccination regimens, in combination with DNA (D) and MVA (M) vectors expressing the equivalent HIV-1 antigens. The four different vaccination regimens (DDMMLL, DDMLML, DDLMLM, and DDLLMM) all elicited high titers of binding and Tier 1A neutralizing antibodies (NAbs), and some regimens induced Tier 1B NAbs. Furthermore, two rabbits in the DDLMLM group developed low levels of autologous Tier 2 NAbs. The humoral immune responses elicited against HIV-1 Env by the recombinant LSDVGC5 were comparable to those induced by MVAGC5.
- ItemOpen AccessCase report: mechanisms of HIV elite control in two African women(BioMed Central, 2018-01-25) Moosa, Yumna; Tanko, Ramla F; Ramsuran, Veron; Singh, Ravesh; Madzivhandila, Mashudu; Yende-Zuma, Nonhlanhla; Abrahams, Melissa-Rose; Selhorst, Philippe; Gounder, Kamini; Moore, Penny L; Williamson, Carolyn; Abdool Karim, Salim S; Garrett, Nigel J; Burgers, Wendy ABackground: The majority of people living with HIV require antiretroviral therapy (ART) for controlling viral replication, however there are rare HIV controllers who spontaneously and durably control HIV in the absence of treatment. Understanding what mediates viral control in these individuals has provided us with insights into the immune mechanisms that may be important to induce for a vaccine or functional cure for HIV. To date, few African elite controllers from high incidence settings have been described. We identified virological controllers from the CAPRISA 002 cohort of HIV-1 subtype C infected women in KwaZulu Natal, South Africa, two (1%) of whom were elite controllers. We examined the genetic, clinical, immunological and virological characteristics of these two elite HIV controllers in detail, to determine whether they exhibit features of putative viral control similar to those described for elite controllers reported in the literature. Case presentation: In this case report, we present clinical features, CD4+ T cell and viral load trajectories for two African women over 7 years of HIV infection. Viral load became undetectable 10 months after HIV infection in Elite Controller 1 (EC1), and after 6 weeks in Elite Controller 2 (EC2), and remained undetectable for the duration of follow-up, in the absence of ART. Both elite controllers expressed multiple HLA Class I and II haplotypes previously associated with slower disease progression (HLA-A*74:01, HLA-B*44:03, HLA-B*81:01, HLA-B*57:03, HLA-DRB1*13). Fitness assays revealed that both women were infected with replication competent viruses, and both expressed higher mRNA levels of p21, a host restriction factor associated with viral control. HIV-specific T cell responses were examined using flow cytometry. EC1 mounted high frequency HIV-specific CD8+ T cell responses, including a B*81: 01-restricted Gag TL9 response. Unusually, EC2 had evidence of pre-infection HIV-specific CD4+ T cell responses. Conclusion: We identified some features typical of elite controllers, including high magnitude HIV-specific responses and beneficial HLA. In addition, we made the atypical finding of pre-infection HIV-specific immunity in one elite controller, that may have contributed to very early viral control. This report highlights the importance of studying HIV controllers in high incidence settings.
- ItemRestrictedChinks in the armor of the HIV-1 Envelope glycan shield: implications for immune escape from anti-glycan broadly neutralizing antibodies(Elsevier, 2017-01-15) Moyo, Thandeka; Ferreira, Roux-cil; Davids, Reyaaz; Sonday, Zarinah; Moore, Penny L; Travers, Simon A; Wood, Natasha T; Dorfman, Jeffrey RobertGlycans on HIV-1 Envelope serve multiple functions including blocking epitopes from antibodies. We show that removal of glycan 301, a major target of anti-V3/glycan antibodies, has substantially different effects in two viruses. While glycan 301 on Du156.12 blocks epitopes commonly recognized by sera from chronically HIV-1-infected individuals, it does not do so on CAP45.G3, suggesting that removing the 301 glycan has a smaller effect on the integrity of the glycan shield in CAP45.G3. Changes in sensitivity to broadly neutralizing monoclonal antibodies suggest that the interaction between glycan 301 and the CD4 binding site differ substantially between these 2 viruses. Molecular modeling suggests that removal of glycan 301 likely exposes a greater surface area of the V3 and C4 regions in Du156.12. Our data indicate that the contribution of the 301 glycan to resistance to common neutralizing antibodies varies between viruses, allowing for easier selection for its loss in some viruses.
- ItemOpen AccessFeatures of recently transmitted HIV-1 clade C viruses that impact antibody recognition: implications for active and passive immunization(Public Library of Science, 2016) Rademeyer, Cecilia; Korber, Bette; Seaman, Michael S; Giorgi, Elena E; Thebus, Ruwayhida; Robles, Alexander; Sheward, Daniel J; Wagh, Kshitij; Garrity, Jetta; Carey, Brittany R; Gao, Hongmei; Greene, Kelli M; Tang, Haili; Bandawe, Gama P; Marais, Jinny C; Diphoko, Thabo E; Hraber, Peter; Tumba, Nancy; Moore, Penny L; Gray, Glenda E; Kublin, James; McElrath, M Juliana; Vermeulen, Marion; Middelkoop, Keren; Bekker, Linda-Gail; Hoelscher, Michael; Maboko, Leonard; Makhema, Joseph; Robb, Merlin L; Karim, Salim Abdool; Karim, Quarraisha Abdool; Kim, Jerome H; Hahn, Beatrice H; Gao, Feng; Swanstrom, Ronald; Morris, Lynn; Montefiori, David C; Williamson, CarolynAuthor Summary: Vaccine and passive immunization prophylactic trials that rely on antibody-mediated protection are planned for HIV-1 clade C epidemic regions of southern Africa, which have amongst the highest HIV-1 incidences globally. This includes a phase 2b trial of passively administered monoclonal antibody, VRC01; as well as a phase 3 trial using the clade C modified version of the partially efficacious RV144 vaccine. The extraordinary diversity of HIV-1 poses a major obstacle to these interventions, and our study aimed to determine the implications of viral diversity on antibody recognition. Investigations using our panel of very early viruses augment current knowledge of vulnerable targets on transmitted viruses for vaccine design and passive immunization studies. Evidence of antigenic drift with viruses becoming more resistant over time suggests that these prevention modalities will need to be updated over time and that combinations of antibodies will be necessary to achieve coverage in passive immunization studies. We further show that it may be more difficult to obtain protection in the genetically diverse clade C epidemic compared to RV144 where the epidemic is less diverse, although it should be noted that the correlates of infection risk are yet to be defined in the clade C setting.
- ItemOpen AccessLimited neutralizing antibody specificities drive neutralization escape in early HIV-1 subtype C infection(Public Library of Science, 2009) Moore, Penny L; Ranchobe, Nthabeleng; Lambson, Bronwen E; Gray, Elin S; Cave, Eleanor; Abrahams, Melissa-Rose; Bandawe, Gama; Mlisana, Koleka; Karim, Salim S Abdool; Williamson, CarolynAuthor Summary Most HIV-1 infected individuals develop neutralizing antibodies against their own virus, termed an autologous neutralizing response. It is known that this response exerts pressure on the envelope of HIV, the target of such antibodies, resulting in neutralization escape. Here we have identified the targets of these antibodies and the precise genetic basis of neutralization escape in 4 individuals infected with HIV-1 subtype C. We show that V1V2 is commonly involved in escape, and that the C3 region is also a target in some cases. The latter observation confirms this region is exposed in subtype C, unlike subtype B. We show that neutralization escape is conferred by a few amino acid mutations, some of which are outside the antibody target site. Moreover, escape from these limited specificities even within a single individual occurs via a variety of different pathways involving substitutions, indels and glycan shifts. The finding in 2 individuals that an anti-C3 response developed first, followed by an anti-V1V2 response, suggests there may be specific regions of envelope particularly vulnerable to antibody neutralization. Overall, we propose a mechanistic explanation for how HIV-1 epitopes drive sequential waves of neutralization escape in early subtype C infection.
- ItemOpen AccessNeutralizing antibody responses in HIV dual infection: lessons for vaccine design(2022) Sheward, Daniel James; Williamson, Carolyn; Moore, Penny LThe development of a safe, effective prophylactic HIV vaccine remains a major global health priority. Stabilized, soluble trimers that mimic the native functional HIV trimer have been developed that elicit strain-specific neutralizing HIV antibodies in animal models, and are currently being evaluated in several human clinical trials. Identifying whether multiple immunogens could be administered to facilitate the broadening of responses represents a pivotal challenge. In this thesis, we characterized the antibody response in individuals infected with multiple HIV strains to inform the development of polyvalent and sequential HIV vaccine regimens. We found that conventional approaches to detect HIV co- and superinfection are confounded by recombination. Therefore, we developed an automated, Bayesian approach to detect superinfection explicitly accounting for recombination. Using simulated and real sequence data, we demonstrated that this approach is sensitive, highly specific, and robust to recombination. Furthermore, analyzing previously published sequence datasets, we identified cases of superinfection that previously went undetected, indicating that superinfection occurs more frequently than previously estimated. We characterized the development of antibodies in five superinfected individuals identified in the CAPRISA 002 acute infection cohort. Specifically, we evaluated whether superinfection re-engaged cross-reactive memory B cells, promoting the development of cross-neutralizing antibodies. By comparing the breadth of the neutralizing antibody response in superinfected individuals to those that typically develop in singly infected individuals, we showed that HIV superinfection was not sufficient to broaden responses. By characterizing the kinetics and specificity of autologous neutralizing antibody responses, we show that responses to the superinfecting viruses failed to efficiently recruit neutralizing memory B cells. Instead, the secondary infection elicited strain-specific, de novo responses. This occurred even though the superinfecting viruses were relatively closely related (from the same subtype). To determine whether the co-exposure to diverse Env antigens favours the development of cross-neutralizing antibodies better than sequential exposure, we characterized the development of neutralizing antibodies in HIV co-infected individuals where several divergent viruses were transmitted prior to seroconversion. We identified three cases of co-infection that encompassed immunological exposure to: (i) two diverse, unlinked Envs, (ii) two related Envs with diversity uniformly distributed over the trimer, and (iii) two diverse but recombined Envs such that clusters of high homology were preserved in the presence of high diversity elsewhere. We found that, like superinfection, co-infection was not sufficient to broaden neutralizing antibody responses. Co-exposure to two HIV Env antigens did not necessarily produce additive or cross-neutralizing antibody responses, and in some cases was subject to immunological interference. This was most evident in the case of co-infection with two related Envs where diversity was uniformly distributed across the Env trimer; in this case neutralizing antibody responses to one variant arose to the near exclusion of responses to the other. However, in the case of co-exposure to diverse Envs but where the trimer apex was conserved in both variants through recombination, potent neutralization of both variants was evident. This was the co-infected participant who developed the broadest neutralizing antibody response, and we show that cross-neutralization was mediated, in part, by trimer apextargeting neutralizing antibodies. In conclusion, we find that HIV superinfection fails to efficiently recruit neutralizing memory B cells and, at best, results in additive nAb responses rather than a synergistic effect leading to cross-neutralization; a distinction that is highly relevant for vaccine design. While sequential immunizations with heterologous Env immunogens may be able to improve the potency of elicited responses, alone, they are unlikely to promote the development of bnAbs. Our observations from cases of co-infection suggests that cocktails of divergent stabilized Env trimers are unlikely to drive the development of cross-neutralizing antibodies, and may be subject to interference. However, the rational design of more similar immunogen cocktails where conserved epitopes are preserved across immunogens may be able to facilitate neutralizing antibodies to these targets, as seen in one individual. Thus, the use of related, stabilized Env trimers with diversity introduced in key regions together with strategies to reduce the immunogenicity of immunodominant, strain-specific epitopes may represent one path to a cross-neutralizing antibody response to multiple Envs within a cocktail.
- ItemOpen AccessViral escape from HIV-1 neutralizing antibodies drives increased plasma neutralization breadth through sequential recognition of multiple epitopes and immunotypes(Public Library of Science, 2013) Wibmer, Constantinos Kurt; Bhiman, Jinal N; Gray, Elin S; Tumba, Nancy; Karim, Salim S Abdool; Williamson, Carolyn; Morris, Lynn; Moore, Penny LIdentifying the targets of broadly neutralizing antibodies to HIV-1 and understanding how these antibodies develop remain important goals in the quest to rationally develop an HIV-1 vaccine. We previously identified a participant in the CAPRISA Acute Infection Cohort (CAP257) whose plasma neutralized 84% of heterologous viruses. In this study we showed that breadth in CAP257 was largely due to the sequential, transient appearance of three distinct broadly neutralizing antibody specificities spanning the first 4.5 years of infection. The first specificity targeted an epitope in the V2 region of gp120 that was also recognized by strain-specific antibodies 7 weeks earlier. Specificity for the autologous virus was determined largely by a rare N167 antigenic variant of V2, with viral escape to the more common D167 immunotype coinciding with the development of the first wave of broadly neutralizing antibodies. Escape from these broadly neutralizing V2 antibodies through deletion of the glycan at N160 was associated with exposure of an epitope in the CD4 binding site that became the target for a second wave of broadly neutralizing antibodies. Neutralization by these CD4 binding site antibodies was almost entirely dependent on the glycan at position N276. Early viral escape mutations in the CD4 binding site drove an increase in wave two neutralization breadth, as this second wave of heterologous neutralization matured to recognize multiple immunotypes within this site. The third wave targeted a quaternary epitope that did not overlap any of the four known sites of vulnerability on the HIV-1 envelope and remains undefined. Altogether this study showed that the human immune system is capable of generating multiple broadly neutralizing antibodies in response to a constantly evolving viral population that exposes new targets as a consequence of escape from earlier neutralizing antibodies.