Browsing by Author "Mbiyavanga, Mamana"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemRestrictedancGWAS: a post genome-wide association study method for interaction, pathway and ancestry analysis in homogeneous and admixed populations(Oxford University Press, 27) Chimusa, Emile R; Mbiyavanga, Mamana; Mazandu, Gaston K; Mulder, Nicola JDespite numerous successful Genome-wide Association Studies (GWAS), detecting variants that have low disease risk still poses a challenge. GWAS may miss disease genes with weak genetic effects or strong epistatic effects due to the single-marker testing approach commonly used. GWAS may thus generate false negative or inconclusive results, suggesting the need for novel methods to combine effects of single nucleotide polymorphisms within a gene to increase the likelihood of fully characterizing the susceptibility gene. Results: We developed ancGWAS, an algebraic graph-based centrality measure that accounts for linkage disequilibrium in identifying significant disease sub-networks by integrating the association signal from GWAS data sets into the human protein–protein interaction (PPI) network. We validated ancGWAS using an association study result from a breast cancer data set and the simulation of interactive disease loci in the simulation of a complex admixed population, as well as pathway-based GWAS simulation. This new approach holds promise for deconvoluting the interactions between genes underlying the pathogenesis of complex diseases. Results obtained yield a novel central breast cancer sub-network of the human interactome implicated in the proteoglycan syndecan-mediated signaling events pathway which is known to play a major role in mesenchymal tumor cell proliferation, thus providing further insights into breast cancer pathogenesis.
- ItemOpen Access"Broadband" bioinformatics skills transfer with the Knowledge Transfer Programme (KTP): educational model for upliftment and sustainable development(Public Library of Science, 2015) Chimusa, Emile R; Mbiyavanga, Mamana; Masilela, Velaphi; Kumuthini, JuditA shortage of practical skills and relevant expertise is possibly the primary obstacle to social upliftment and sustainable development in Africa. The "omics" fields, especially genomics, are increasingly dependent on the effective interpretation of large and complex sets of data. Despite abundant natural resources and population sizes comparable with many first-world countries from which talent could be drawn, countries in Africa still lag far behind the rest of the world in terms of specialized skills development. Moreover, there are serious concerns about disparities between countries within the continent. The multidisciplinary nature of the bioinformatics field, coupled with rare and depleting expertise, is a critical problem for the advancement of bioinformatics in Africa. We propose a formalized matchmaking system, which is aimed at reversing this trend, by introducing the Knowledge Transfer Programme (KTP). Instead of individual researchers travelling to other labs to learn, researchers with desirable skills are invited to join African research groups for six weeks to six months. Visiting researchers or trainers will pass on their expertise to multiple people simultaneously in their local environments, thus increasing the efficiency of knowledge transference. In return, visiting researchers have the opportunity to develop professional contacts, gain industry work experience, work with novel datasets, and strengthen and support their ongoing research. The KTP develops a network with a centralized hub through which groups and individuals are put into contact with one another and exchanges are facilitated by connecting both parties with potential funding sources. This is part of the PLOS Computational Biology Education collection.
- ItemOpen AccessDeveloping reproducible bioinformatics analysis workflows for heterogeneous computing environments to support African genomics(BioMed Central, 2018-11-29) Baichoo, Shakuntala; Souilmi, Yassine; Panji, Sumir; Botha, Gerrit; Meintjes, Ayton; Hazelhurst, Scott; Bendou, Hocine; Beste, Eugene d; Mpangase, Phelelani T; Souiai, Oussema; Alghali, Mustafa; Yi, Long; O’Connor, Brian D; Crusoe, Michael; Armstrong, Don; Aron, Shaun; Joubert, Fourie; Ahmed, Azza E; Mbiyavanga, Mamana; Heusden, Peter v; Magosi, Lerato E; Zermeno, Jennie; Mainzer, Liudmila S; Fadlelmola, Faisal M; Jongeneel, C. V; Mulder, NicolaAbstract Background The Pan-African bioinformatics network, H3ABioNet, comprises 27 research institutions in 17 African countries. H3ABioNet is part of the Human Health and Heredity in Africa program (H3Africa), an African-led research consortium funded by the US National Institutes of Health and the UK Wellcome Trust, aimed at using genomics to study and improve the health of Africans. A key role of H3ABioNet is to support H3Africa projects by building bioinformatics infrastructure such as portable and reproducible bioinformatics workflows for use on heterogeneous African computing environments. Processing and analysis of genomic data is an example of a big data application requiring complex interdependent data analysis workflows. Such bioinformatics workflows take the primary and secondary input data through several computationally-intensive processing steps using different software packages, where some of the outputs form inputs for other steps. Implementing scalable, reproducible, portable and easy-to-use workflows is particularly challenging. Results H3ABioNet has built four workflows to support (1) the calling of variants from high-throughput sequencing data; (2) the analysis of microbial populations from 16S rDNA sequence data; (3) genotyping and genome-wide association studies; and (4) single nucleotide polymorphism imputation. A week-long hackathon was organized in August 2016 with participants from six African bioinformatics groups, and US and European collaborators. Two of the workflows are built using the Common Workflow Language framework (CWL) and two using Nextflow. All the workflows are containerized for improved portability and reproducibility using Docker, and are publicly available for use by members of the H3Africa consortium and the international research community. Conclusion The H3ABioNet workflows have been implemented in view of offering ease of use for the end user and high levels of reproducibility and portability, all while following modern state of the art bioinformatics data processing protocols. The H3ABioNet workflows will service the H3Africa consortium projects and are currently in use. All four workflows are also publicly available for research scientists worldwide to use and adapt for their respective needs. The H3ABioNet workflows will help develop bioinformatics capacity and assist genomics research within Africa and serve to increase the scientific output of H3Africa and its Pan-African Bioinformatics Network.
- ItemOpen AccessNetwork-based approach for post genome-wide association study analysis in admixed populations(2014) Mbiyavanga, Mamana; Mulder, NicolaIn this project, we review some existing pathway-based approaches for GWA study analyses, by exploring different implemented methods for combining effects of multiple modest genetic variants at gene and pathway levels. We then propose a graph-based method, ancGWAS, that incorporates the signal from GWA study, and the locus-specific ancestry into the human protein-protein interaction (PPI) network to identify significant sub-networks or pathways associated with the trait of interest. This network-based method applies centrality measures within linkage disequilibrium (LD) on the network to search for pathways and applies a scoring summary statistic on the resulting pathways to identify the most enriched pathways associated with complex diseases.
- ItemOpen AccessThe H3ABioNet helpdesk: an online bioinformatics resource, enhancing Africa’s capacity for genomics research(2019-12-30) Kumuthini, Judit; Zass, Lyndon; Panji, Sumir; Salifu, Samson P; Kayondo, Jonathan K; Nembaware, Victoria; Mbiyavanga, Mamana; Olabode, Ajayi; Kishk, Ali; Wells, Gordon; Mulder, Nicola JAbstract Background Currently, formal mechanisms for bioinformatics support are limited. The H3Africa Bioinformatics Network has implemented a public and freely available Helpdesk (HD), which provides generic bioinformatics support to researchers through an online ticketing platform. The following article reports on the H3ABioNet HD (H3A-HD)‘s development, outlining its design, management, usage and evaluation framework, as well as the lessons learned through implementation. Results The H3A-HD evaluated using automatically generated usage logs, user feedback and qualitative ticket evaluation. Evaluation revealed that communication methods, ticketing strategies and the technical platforms used are some of the primary factors which may influence the effectivity of HD. Conclusion To continuously improve the H3A-HD services, the resource should be regularly monitored and evaluated. The H3A-HD design, implementation and evaluation framework could be easily adapted for use by interested stakeholders within the Bioinformatics community and beyond.