Browsing by Author "Maphutha, Malebelo"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemOpen AccessHydrothermal Sintering and Oxidation of an Alumina-Supported Nickel Methanation Catalyst Studied Using In Situ Magnetometry(2021-05-16) Maphutha, Malebelo; de Oliveira, Dominic; Nyathi, Thulani M; Fadlalla, Mohamed I; Henkel, Robert; Fischer, Nico; Claeys, MichaelThe presented study investigated the effects of temperature (350–650 ◦C) and gas environment (pure Ar versus a H2O/H2 partial pressure ratio (PH2O/PH2) of 5) on the extent of sintering and oxidation of Al2O3 -supported Ni0 nanoparticles (≈4 nm). We note that a PH2O/PH2 of 5 corresponds to a simulated CO conversion of 94% during methanation. Sintering and oxidation were studied using in situ magnetometry, while ex situ TEM analyses confirmed the particle sizes before and after the magnetometry-based experiments. It was found that increasing the temperature from 350 to 650 ◦C in Ar at atmospheric pressure causes a negligible change to the average size and degree of reduction (DOR) of the starting Ni0 nanoparticles. However, studying the same temperature window under hydrothermal conditions at 10 bar causes significant particle growth (≈9 nm) and the development of a bimodal distribution. Furthermore, the presence of steam decreases the DOR of Ni0 from 86.2% after initial activation to 22.2% due to oxidation. In summary, this study reports on the expected sintering and oxidation of Ni-based catalysts under high CO conversion conditions at elevated temperatures during methanation. Importantly, we were able to demonstrate how magnetometry-based analyses can provide similar size information (and changes thereof) as those observed with TEM but with the added advantage that this information can be obtained in situ.
- ItemOpen AccessIn situ sintering study of model nickel catalysts(2014) Maphutha, Malebelo; Claeys, MichaelLipid catabolism plays a significant role in the survival of M.tb inside the host. The development of analytical techniques such as gas chromatography mass spectroscopy (GCMS) and liquid chromatography mass spectroscopy (LC-MS) has become popular as metabolomics tools in the study of such catabolic pathways. The development of biomarkers and internal standards to perform quantitative and qualitative analysis of metabolites in the catabolic pathway would be an attractive tool. Thus, cholesterol derivatives were synthesized as thia-, fluoro- and deuterium labeled analogs. Sulfur was incorporated into cholesterol at positions, C3 as well as C23. The 3â-mercaptocholest-5-ene was synthesized to block the initial stage of cholesterol catabolism and evaluate whether side chain degradation can still occur. Fluorine was integrated into the cholesterol backbone at C3 to evaluate the side-chain degradation in the absence of cholesterol oxidase activity. Steroids with fluorine at C6 are known to have good biological activity and were for this reason also synthesized. Deuterium labeled compounds were synthesized and used as internal standards for GC-MS analysis. As an alternative to cholesterol catabolism, fatty acids like stearic acid are important in producing building blocks for long chain mycolic acids which provides protection to the mycobacterium. For this reason thiastearic acid derivatives were synthesized and evaluated as biomarkers.