• English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  • Communities & Collections
  • Browse OpenUCT
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  1. Home
  2. Browse by Author

Browsing by Author "Lokanga, Rachel"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Open Access
    A MutSβ-Dependent Contribution of MutSα to Repeat Expansions in Fragile X Premutation Mice?
    (Public Library of Science, 2016) Zhao, Xiao-Nan; Lokanga, Rachel; Allette, Kimaada; Gazy, Inbal; Wu, Di; Usdin, Karen
    Author Summary: The repeat expansion diseases are a group of human genetic disorders that are caused by expansion of a specific microsatellite in a single affected gene. How this expansion occurs is unknown, but previous work in various models for different diseases in the group, including the fragile X-related disorders (FXDs), has implicated the mismatch repair complex MutSβ in the process. With the exception of somatic expansion in Friedreich ataxia, MutSα has not been reported to contribute to generation of expansions in other disease models. Here we show that MutSα does in fact play a role in both germ line and somatic expansions in a mouse model of the FXDs since the expansion frequency is significantly reduced in Msh6 -/- mice. However, since we have previously shown that loss of MutSβ eliminates almost all expansions, MutSα is apparently not able to fully substitute for MutSβ in the expansion process. We also show here that MutSα increases the stability of the structures formed by the fragile X repeats that are thought to be the substrates for expansion and promotes binding of MutSβ to the repeats. This, together with our genetic data, suggests possible models for how MutSα and MutSβ, could co-operate to generate repeat expansions in the FXDs.
UCT Libraries logo

Contact us

Jill Claassen

Manager: Scholarly Communication & Publishing

Email: openuct@uct.ac.za

+27 (0)21 650 1263

  • Open Access @ UCT

    • OpenUCT LibGuide
    • Open Access Policy
    • Open Scholarship at UCT
    • OpenUCT FAQs
  • UCT Publishing Platforms

    • UCT Open Access Journals
    • UCT Open Access Monographs
    • UCT Press Open Access Books
    • Zivahub - Open Data UCT
  • Site Usage

    • Cookie settings
    • Privacy policy
    • End User Agreement
    • Send Feedback

DSpace software copyright © 2002-2025 LYRASIS