Browsing by Author "Lefeuvre, Pierre"
Now showing 1 - 13 of 13
Results Per Page
Sort Options
- ItemOpen AccessAdaptive evolution by recombination is not associated with increased mutation rates in Maize streak virus(BioMed Central Ltd, 2012) Monjane, Aderito; Pande, Daniel; Lakay, Francisco; Shepherd, Dionne; van der Walt, Eric; Lefeuvre, Pierre; Lett, Jean-Michel; Varsani, Arvind; Rybicki, Edward; Martin, DarrenBACKGROUND: Single-stranded (ss) DNA viruses in the family Geminiviridae are proving to be very useful in real-time evolution studies. The high mutation rate of geminiviruses and other ssDNA viruses is somewhat mysterious in that their DNA genomes are replicated in host nuclei by high fidelity host polymerases. Although strand specific mutation biases observed in virus species from the geminivirus genus Mastrevirus indicate that the high mutation rates in viruses in this genus may be due to mutational processes that operate specifically on ssDNA, it is currently unknown whether viruses from other genera display similar strand specific mutation biases. Also, geminivirus genomes frequently recombine with one another and an alternative cause of their high mutation rates could be that the recombination process is either directly mutagenic or produces a selective environment in which the survival of mutants is favoured. To investigate whether there is an association between recombination and increased basal mutation rates or increased degrees of selection favoring the survival of mutations, we compared the mutation dynamics of the MSV-MatA and MSV-VW field isolates of Maize streak virus (MSV; Mastrevirus), with both a laboratory constructed MSV recombinant, and MSV recombinants closely resembling MSV-MatA. To determine whether strand specific mutation biases are a general characteristic of geminivirus evolution we compared mutation spectra arising during these MSV experiments with those arising during similar experiments involving the geminivirus Tomato yellow leaf curl virus (Begomovirus genus). RESULTS: Although both the genomic distribution of mutations and the occurrence of various convergent mutations at specific genomic sites indicated that either mutation hotspots or selection for adaptive mutations might elevate observed mutation rates in MSV, we found no association between recombination and mutation rates. Importantly, when comparing the mutation spectra of MSV and TYLCV we observed similar strand specific mutation biases arising predominantly from imbalances in the complementary mutations G->T: C->A. CONCLUSIONS: While our results suggest that recombination does not strongly influence mutation rates in MSV, they indicate that high geminivirus mutation rates are at least partially attributable to increased susceptibility of all geminivirus genomes to oxidative damage while in a single stranded state.
- ItemOpen AccessAvoidance of Protein Fold Disruption in Natural Virus Recombinants(Public Library of Science, 2007) Lefeuvre, Pierre; Lett, Jean-Michel; Reynaud, Bernard; Martin, Darren PAuthor Summary The exchange of genetic material between different virus species, called inter-species recombination, has the potential to generate, within a single genome replication cycle, an almost unimaginable number of genetically distinct virus strains, including many that might cause deadly new human, animal, or plant diseases. Many fear that inter-species recombination could provide viruses with quick access to evolutionary innovations such as broader host ranges, altered tissue tropisms, or increased severities. However, mounting evidence suggests that recombination is not an unconstrained process and that most inter-species recombinants that occur in nature are probably defective. It is suspected that networks of coevolved interactions between different parts of virus genomes and their encoded proteins must be kept intact for newly formed inter-species recombinants to have any chance of out-competing their parents. One category of coevolved interaction is that between contacting amino acids within the 3-D structures of folded proteins. Here we examine the distributions of recombination events across the genomes of a group of rampantly recombining plant viruses and find very good evidence that this class of interaction tends to be preserved amongst recombinant sequences sampled from nature. This indicates that selection against misfolded proteins strongly influences the survival of natural recombinants.
- ItemOpen AccessComparative analysis of Panicum streak virus and Maize streak virus diversity, recombination patterns and phylogeography(BioMed Central Ltd, 2009) Varsani, Arvind; Monjane, Aderito; Donaldson, Lara; Oluwafemi, Sunday; Zinga, Innocent; Komba, Ephrem; Plakoutene, Didier; Mandakombo, Noella; Mboukoulida, Joseph; Semballa, Silla; Briddon, Rob; Markham, Peter; Lett, Jean-Michel; Lefeuvre, Pierre; RyBACKGROUND: Panicum streak virus (PanSV; Family Geminiviridae; Genus Mastrevirus) is a close relative of Maize streak virus (MSV), the most serious viral threat to maize production in Africa. PanSV and MSV have the same leafhopper vector species, largely overlapping natural host ranges and similar geographical distributions across Africa and its associated Indian Ocean Islands. Unlike MSV, however, PanSV has no known economic relevance. RESULTS: Here we report on 16 new PanSV full genome sequences sampled throughout Africa and use these together with others in public databases to reveal that PanSV and MSV populations in general share very similar patterns of genetic exchange and geographically structured diversity. A potentially important difference between the species, however, is that the movement of MSV strains throughout Africa is apparently less constrained than that of PanSV strains. Interestingly the MSV-A strain which causes maize streak disease is apparently the most mobile of all the PanSV and MSV strains investigated. CONCLUSION: We therefore hypothesize that the generally increased mobility of MSV relative to other closely related species such as PanSV, may have been an important evolutionary step in the eventual emergence of MSV-A as a serious agricultural pathogen.The GenBank accession numbers for the sequences reported in this paper are GQ415386-GQ415401
- ItemOpen AccessComplex recombination patterns arising during geminivirus coinfections preserve and demarcate biologically important intra-genome interaction networks(Public Library of Science, 2011) Martin, Darren P; Lefeuvre, Pierre; Varsani, Arvind; Hoareau, Murielle; Semegni, Jean-Yves; Dijoux, Betty; Vincent, Claire; Reynaud, Bernard; Lett, Jean-MichelAuthor Summary Genetic recombination between viruses is a form of parasexual reproduction during which two parental viruses each contribute genetic information to an offspring, or recombinant, virus. Unlike with sexual reproduction, however, recombination in viruses can even involve the transfer of sequences between the members of distantly related species. When parental genomes are very distantly related, it is anticipated that recombination between them runs the risk of producing defective offspring. The reason for this is that the interactions between different parts of genomes and the proteins they encode (such as between different viral proteins or between viral proteins and the virus genomic DNA or RNA) often depend on particular co-evolved binding sites that recognize one another. When in a recombinant genome the partners in a binding site pair are each inherited from different parents there is a possibility that they will not interact with one another properly. Here we examine recombinant genomes arising during experimental mixed infections of two distantly related viruses to detect evidence that intra-genome interaction networks are broadly preserved in these genomes. We show this preservation is so strict that patterns of recombination in these viruses can even be used to identify the interacting regions within their genomes.
- ItemOpen AccessEast African cassava mosaic-like viruses from Africa to Indian ocean islands: molecular diversity, evolutionary history and geographical dissemination of a bipartite begomovirus(BioMed Central Ltd, 2012) De Bruyn, Alexandre; Villemot, Julie; Lefeuvre, Pierre; Villar, Emilie; Hoareau, Murielle; Harimalala, Mireille; Abdoul-Karime, Anli; Abdou-Chakour, Chadhouliati; Reynaud, Bernard; Harkins, Gordon; Varsani, Arvind; Martin, Darren; Lett, Jean-MichelBACKGROUND: Cassava (Manihot esculenta) is a major food source for over 200 million sub-Saharan Africans. Unfortunately, its cultivation is severely hampered by cassava mosaic disease (CMD). Caused by a complex of bipartite cassava mosaic geminiviruses (CMG) species (Family: Geminivirideae; Genus: Begomovirus) CMD has been widely described throughout Africa and it is apparent that CMG's are expanding their geographical distribution. Determining where and when CMG movements have occurred could help curtail its spread and reveal the ecological and anthropic factors associated with similar viral invasions. We applied Bayesian phylogeographic inference and recombination analyses to available and newly described CMG sequences to reconstruct a plausible history of CMG diversification and migration between Africa and South West Indian Ocean (SWIO) islands. RESULTS: The isolation and analysis of 114 DNA-A and 41 DNA-B sequences demonstrated the presence of three CMG species circulating in the Comoros and Seychelles archipelagos (East African cassava mosaic virus, EACMV; East African cassava mosaic Kenya virus, EACMKV; and East African cassava mosaic Cameroon virus, EACMCV). Phylogeographic analyses suggest that CMG's presence on these SWIO islands is probably the result of at least four independent introduction events from mainland Africa occurring between 1988 and 2009. Amongst the islands of the Comoros archipelago, two major migration pathways were inferred: One from Grande Comore to Moheli and the second from Mayotte to Anjouan. While only two recombination events characteristic of SWIO islands isolates were identified, numerous re-assortments events were detected between EACMV and EACMKV, which seem to almost freely interchange their genome components. CONCLUSIONS: Rapid and extensive virus spread within the SWIO islands was demonstrated for three CMG complex species. Strong evolutionary or ecological interaction between CMG species may explain both their propensity to exchange components and the absence of recombination with non-CMG begomoviruses. Our results suggest an important role of anthropic factors in CMGs spread as the principal axes of viral migration correspond with major routes of human movement and commercial trade. Finer-scale temporal analyses of CMGs to precisely scale the relative contributions of human and insect transmission to their movement dynamics will require further extensive sampling in the SWIO region.
- ItemOpen AccessEvolutionary time-scale of the begomoviruses: evidence from integrated sequences in the Nicotiana genome(Public Library of Science, 2011) Lefeuvre, Pierre; Harkins, Gordon W; Lett, Jean-Michel; Briddon, Rob W; Chase, Mark W; Moury, Benoit; Martin, Darren PDespite having single stranded DNA genomes that are replicated by host DNA polymerases, viruses in the family Geminiviridae are apparently evolving as rapidly as some RNA viruses. The observed substitution rates of geminiviruses in the genera Begomovirus and Mastrevirus are so high that the entire family could conceivably have originated less than a million years ago (MYA). However, the existence of geminivirus related DNA (GRD) integrated within the genomes of various Nicotiana species suggests that the geminiviruses probably originated >10 MYA. Some have even suggested that a distinct New-World (NW) lineage of begomoviruses may have arisen following the separation by continental drift of African and American proto-begomoviruses ∼110 MYA. We evaluate these various geminivirus origin hypotheses using Bayesian coalescent-based approaches to date firstly the Nicotiana GRD integration events, and then the divergence of the NW and Old-World (OW) begomoviruses. Besides rejecting the possibility of a<2 MYA OW-NW begomovirus split, we could also discount that it may have occurred concomitantly with the breakup of Gondwanaland 110 MYA. Although we could only confidently narrow the date of the split down to between 2 and 80 MYA, the most plausible (and best supported) date for the split is between 20 and 30 MYA - a time when global cooling ended the dispersal of temperate species between Asia and North America via the Beringian land bridge.
- ItemOpen AccessIdentification of the Begomoviruses Squash Leaf Curl Virus and Watermelon Chlorotic Stunt Virus in Various Plant Samples in North America(2021-04-30) Fontenele, Rafaela S; Bhaskara, Amulya; Cobb, Ilaria N; Majure, Lucas C; Salywon, Andrew M; Avalos-Calleros, Jesús A; Argüello-Astorga, Gerardo R; Schmidlin, Kara; Roumagnac, Philippe; Ribeiro, Simone G; Kraberger, Simona; Martin, Darren P; Lefeuvre, Pierre; Varsani, ArvindGeminiviruses are a group of plant-infecting viruses with single-stranded DNA genomes. Within this family, viruses in the genus Begomovirus are known to have a worldwide distribution causing a range of severe diseases in a multitude of dicotyledonous plant species. Begomoviruses are transmitted by the whitefly Bemisia tabaci, and their ssDNA genomes can be either monopartite or bipartite. As part of a viral survey, various plants including those in the families Alliaceae, Amaranthaceae, Apiaceae, Asteraceae, Brassicaceae, Cactaceae, Cucurbitaceae, Lamiaceae, Lauraceae, Malvaceae, Oleaceae and Solanaceae were sampled and screened for begomoviruses using both a high-throughput sequencing and a begomovirus-specific primer pair approach. Based on the sequences derived using these approaches, the full-length genome of various begomoviruses were amplified from plants using abutting primers. Squash leaf curl virus (SLCV) and watermelon chlorotic stunt virus (WCSV) were identified in Cactaceae (n = 25), Solanaceae (n = 7), Cucurbitaceae (n = 2) and Lamiaceae (n = 1) samples. WCSV is an Old World bipartite begomovirus that has only recently been discovered infecting watermelons in the Americas. Our discovery of WCSV in the USA is the first indication that it has reached this country and indicates that this virus might be widespread throughout North America. Phylogenetic analysis suggests WCSV was introduced to the New World twice. The detection of begomoviruses in cactus plants suggests possible spillover events from agricultural areas into native vegetation. Since WCSV and SLCV have previously been found in mixed infections, pseudo-recombination infection experiments were conducted. We demonstrate that WCSV DNA-B is successfully trans-replicated by SLCV DNA-A despite very low degree of similarity between the replication-associated iterative sequences present in their common region, an essential feature for binding of the replication associated protein. This study highlights the importance of viral surveys for the detection of spillover events into native vegetation, but also suggests the need for more surveillance of WCSV in the USA, as this virus is a serious threat to watermelon cultivation in the Middle East.
- ItemOpen AccessMolecular mechanisms of recombination restriction in the envelope gene of the human immunodeficiency virus(Public Library of Science, 2009) Simon-Loriere, Etienne; Galetto, Roman; Hamoudi, Meriem; Archer, John; Lefeuvre, Pierre; Martin, Darren P; Robertson, David L; Negroni, MatteoAuthor Summary Recombination allows mixing portions of genomes of different origins, generating chimeric genes and genomes. With respect to the random generation of new mutations, it can lead to the simultaneous insertion of several substitutions, introducing more drastic changes in the genome. Furthermore, recombination is expected to yield a higher proportion of functional products since it combines variants that already exist in the population and that are therefore compatible with the survival of the organism. However, when recombination involves genetically distant strains, it can be constrained by the necessity to retain the functionality of the resulting products. In pathogens, which are subjected to strong selective pressures, recombination is particularly important, and several viruses, such as the human immunodeficiency virus (HIV), readily recombine. Here, we demonstrate the existence of preferential regions for recombination in the HIV-1 envelope gene when crossing sequences representative of strains observed to recombine in vivo. Furthermore, some recombinants give a decreased proportion of functional products. When considering these factors, one can retrace the history of most natural HIV recombinants. Recombination in HIV appears not so unpredictable, therefore, and the existence of recombinants that frequently generate nonfunctional products highlights previously unappreciated limits of the genetic flexibility of HIV.
- ItemOpen AccessNew World Cactaceae Plants Harbor Diverse Geminiviruses(2021-04-16) Fontenele, Rafaela S; Salywon, Andrew M; Majure, Lucas C; Cobb, Ilaria N; Bhaskara, Amulya; Avalos-Calleros, Jesús A; Argüello-Astorga, Gerardo R; Schmidlin, Kara; Khalifeh, Anthony; Smith, Kendal; Schreck, Joshua; Lund, Michael C; Köhler, Matias; Wojciechowski, Martin F; Hodgson, Wendy C; Puente-Martinez, Raul; Van Doorslaer, Koenraad; Kumari, Safaa; Oyeniran, Kehinde A; Vernière, Christian; Filloux, Denis; Roumagnac, Philippe; Lefeuvre, Pierre; Ribeiro, Simone G; Kraberger, Simona P; Martin, Darren P; Varsani, ArvindThe family Cactaceae comprises a diverse group of typically succulent plants that are native to the American continent but have been introduced to nearly all other continents, predominantly for ornamental purposes. Despite their economic, cultural, and ecological importance, very little research has been conducted on the viral community that infects them. We previously identified a highly divergent geminivirus that is the first known to infect cacti. Recent research efforts in non-cultivated and asymptomatic plants have shown that the diversity of this viral family has been under-sampled. As a consequence, little is known about the effects and interactions of geminiviruses in many plants, such as cacti. With the objective to expand knowledge on the diversity of geminiviruses infecting cacti, we used previously acquired high-throughput sequencing results to search for viral sequences using BLASTx against a viral RefSeq protein database. We identified two additional sequences with similarity to geminiviruses, for which we designed abutting primers and recovered full-length genomes. From 42 cacti and five scale insects, we derived 42 complete genome sequences of a novel geminivirus species that we have tentatively named Opuntia virus 2 (OpV2) and 32 genomes of an Opuntia-infecting becurtovirus (which is a new strain of the spinach curly top Arizona virus species). Interspecies recombination analysis of the OpV2 group revealed several recombinant regions, in some cases spanning half of the genome. Phylogenetic analysis demonstrated that OpV2 is a novel geminivirus more closely related to viruses of the genus Curtovirus, which was further supported by the detection of three recombination events between curtoviruses and OpV2. Both OpV2 and Opuntia becurtoviruses were identified in mixed infections, which also included the previously characterized Opuntia virus 1. Viral quantification of the co-infected cactus plants compared with single infections did not show any clear trend in viral dynamics that might be associated with the mixed infections. Using experimental Rhizobium-mediated inoculations, we found that the initial accumulation of OpV2 is facilitated by co-infection with OpV1. This study shows that the diversity of geminiviruses that infect cacti is under-sampled and that cacti harbor diverse geminiviruses. The detection of the Opuntia becurtoviruses suggests spill-over events between viruses of cultivated species and native vegetation. The threat this poses to cacti needs to be further investigated.
- ItemRestrictedNovel sugarcane streak and sugarcane streak Reunion mastreviruses from southern Africa and La Réunion.(Springer Verlag, 2008) Shepherd, Dionne N; Varsani, Arvind; Windram, Oliver P; Lefeuvre, Pierre; Monjane, Ade´rito L; Owor, Betty E; Martin, Darren PThe sugarcane infecting streak viruses (SISVs) are mastreviruses (Family Geminiviridae) belonging to a group of ‘‘African streak viruses’’ (AfSVs) that includes the economically devastating Maize streak virus (MSV). Although there are three currently described SISV species (Sugarcane streak virus [SSV], Sugarcane streak Egypt virus [SSEV] and Sugarcane streak Re´union virus [SSRV]), only one strain variant has been fully sequenced for each of these species and as a result very little is known about the diversity and evolutionary origins of the SCISVs. Here we present annotated full genome sequences of four new SISV isolates, including a new strain of both SSRV and SSV, and one potentially new SISV species, sampled from wild grasses in La Re´union and Zimbabwe. For the first time, we report the finding of SSRV isolates in Zimbabwe and SSV isolates on the island of La Re´union. Phylogenetic and recombination analyses indicate continent-wide SSRV strain diversity and that our isolate potentially representing a new SISV species is a recombinant.
- ItemRestrictedA protocol for the rapid isolation of full geminivirus genomes from dried plant tissue(Elsevier, 2008) Shepherd, Dionne N; Martin, Darren P; Lefeuvre, Pierre; Monjane, Aderito L; Owor, Betty E; Rybicki, Edward P; Varsani, ArvindA high-throughput method of isolating and cloning geminivirus genomes from dried plant material, by combining an Extract-n-AmpTM-based DNA isolation technique with rolling circle amplification (RCA) of viral DNA, is presented. Using this method an attempt was made to isolate and clone full geminivirus genomes/genome components from 102 plant samples, including dried leaves stored at room temperature for between 6 months and 10 years, with an average hands-on-time to RCA-ready DNA of 15 min per 20 samples. While storage of dried leaves for up to 6 months did not appreciably decrease cloning success rates relative to those achieved with fresh samples, efficiency of the method decreased with increasing storage time. However, it was still possible to clone virus genomes from 47% of 10-year-old samples. To illustrate the utility of this simple method for high-throughput geminivirus diversity studies, six Maize streak virus genomes, an Abutilon mosaic virus DNA-B component and the DNA-A component of a previously unidentified New Word begomovirus species were fully sequenced. Genomic clones of the 69 other viruses were verified as such by end sequencing. This method should be extremely useful for the study of any circular DNA plant viruses with genome component lengths smaller than the maximum size amplifiable by RCA.
- ItemRestrictedRecombination, decreased host specificity and increased mobility may have driven the emergence of maize streak virus as an agricultural pathogen.(Microbiology Society, 2008) Varsani, Arvind; Shepherd, Dionne N; Monjane, Ade´rito L; Owor, Betty E; Erdmann, Julia B; Rybicki, Edward P; Peterschmitt, Michel; Briddon, Rob W; Markham, Peter G; Oluwafemi, Sunday; Windram, Oliver P; Lefeuvre, Pierre; Lett, Jean-Michel; Martin, Darren PMaize streak virus (MSV; family Geminiviridae, genus Mastrevirus), the causal agent of maize streak disease, ranks amongst the most serious biological threats to food security in subSaharan Africa. Although five distinct MSV strains have been currently described, only one of these – MSV-A – causes severe disease in maize. Due primarily to their not being an obvious threat to agriculture, very little is known about the ‘grass-adapted’ MSV strains, MSV-B, -C, -D and -E. Since comparing the genetic diversities, geographical distributions and natural host ranges of MSV-A with the other MSV strains could provide valuable information on the epidemiology, evolution and emergence of MSV-A, we carried out a phylogeographical analysis of MSVs found in uncultivated indigenous African grasses. Amongst the 83 new MSV genomes presented here, we report the discovery of six new MSV strains (MSV-F to -K). The non-random recombination breakpoint distributions detectable with these and other available mastrevirus sequences partially mirror those seen in begomoviruses, implying that the forces shaping these breakpoint patterns have been largely conserved since the earliest geminivirus ancestors. We present evidence that the ancestor of all MSV-A variants was the recombinant progeny of ancestral MSV-B and MSV-G/-F variants. While it remains unknown whether recombination influenced the emergence of MSV-A in maize, our discovery that MSV-A variants may both move between and become established in different regions of Africa with greater ease, and infect more grass species than other MSV strains, goes some way towards explaining why MSV-A is such a successful maize pathogen.
- ItemOpen AccessThe spread of Tomato yellow leaf curl virus from the Middle East to the world(Public Library of Science, 2010) Lefeuvre, Pierre; Martin, Darren P; Harkins, Gordon; Lemey, Philippe; Gray, Alistair J A; Meredith, Sandra; Lakay, Francisco; Monjane, Adérito; Lett, Jean-Michel; Varsani, ArvindAuthor Summary Tomato yellow leaf curl virus (TYLCV) poses a serious threat to tomato production throughout the temperate regions of the world. Our analysis, using a suite of bioinformatic tools applied to all publically available TYLCV genome sequences, suggests that the virus probably arose somewhere in the Middle East between the 1930s and 1950s and that its global spread only began in the 1980s after the emergence of two strains - TYLCV-Mld and -IL. In agreement with others, we also find that the highly invasive TYLCV-IL strain has jumped at least twice to the Americas - once from the Mediterranean basin in the early 1990s and once from Asia in the early 2000s. Although our results corroborate historical accounts of TYLCV-like symptoms in tomato crops in the Jordan Valley in the late 1920s, they indicate that the region around Iran is both the current center of TYLCV diversity and is the site where the most intensive ongoing TYLCV evolution is taking place. However, our analysis indicates that this region is epidemiologically isolated suggesting that novel TYLCV variants found there are probably not direct global threats. Moreover, we identify the Mediterranean basin as the main launch-pad of global TYLCV movements.