Browsing by Author "Kim, Jerome H"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemOpen AccessFeatures of recently transmitted HIV-1 clade C viruses that impact antibody recognition: implications for active and passive immunization(Public Library of Science, 2016) Rademeyer, Cecilia; Korber, Bette; Seaman, Michael S; Giorgi, Elena E; Thebus, Ruwayhida; Robles, Alexander; Sheward, Daniel J; Wagh, Kshitij; Garrity, Jetta; Carey, Brittany R; Gao, Hongmei; Greene, Kelli M; Tang, Haili; Bandawe, Gama P; Marais, Jinny C; Diphoko, Thabo E; Hraber, Peter; Tumba, Nancy; Moore, Penny L; Gray, Glenda E; Kublin, James; McElrath, M Juliana; Vermeulen, Marion; Middelkoop, Keren; Bekker, Linda-Gail; Hoelscher, Michael; Maboko, Leonard; Makhema, Joseph; Robb, Merlin L; Karim, Salim Abdool; Karim, Quarraisha Abdool; Kim, Jerome H; Hahn, Beatrice H; Gao, Feng; Swanstrom, Ronald; Morris, Lynn; Montefiori, David C; Williamson, CarolynAuthor Summary: Vaccine and passive immunization prophylactic trials that rely on antibody-mediated protection are planned for HIV-1 clade C epidemic regions of southern Africa, which have amongst the highest HIV-1 incidences globally. This includes a phase 2b trial of passively administered monoclonal antibody, VRC01; as well as a phase 3 trial using the clade C modified version of the partially efficacious RV144 vaccine. The extraordinary diversity of HIV-1 poses a major obstacle to these interventions, and our study aimed to determine the implications of viral diversity on antibody recognition. Investigations using our panel of very early viruses augment current knowledge of vulnerable targets on transmitted viruses for vaccine design and passive immunization studies. Evidence of antigenic drift with viruses becoming more resistant over time suggests that these prevention modalities will need to be updated over time and that combinations of antibodies will be necessary to achieve coverage in passive immunization studies. We further show that it may be more difficult to obtain protection in the genetically diverse clade C epidemic compared to RV144 where the epidemic is less diverse, although it should be noted that the correlates of infection risk are yet to be defined in the clade C setting.