Browsing by Author "Hsu, Nai-Jen"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemOpen AccessThe expression and functional analysis of neurite outgrowth inhibitors in the nervous system of Xenopus laevis(2007) Hsu, Nai-Jen; Lang, Dirk MGenerally, the factors contributing to success or failure of axon regeneration lie in the intrinsic properties of the injured neurons, as well as the surrounding microenvironment of the transected axon. Mammalian neurons may lack the intrinsic ability to survive after trauma, or to re-express genes required for axonal regrowth. Moreover, several proteins inhibitory to neurite growth, such as Tenascin-R (TN-R) and Nogo-A, have been identified in mammals. These proteins are associated with oligodendrocytes and myelin and are considered major inhibitory components of the CNS environment.
- ItemOpen AccessInvestigation of neuron T cell interaction in central nervous system tuberculosis(2017) Choshi, Phuti Sophia; Jacobs, Muazzam; Hsu, Nai-JenTuberculosis of the central nervous system (CNS TB) is the severest form of tuberculosis. It is classified as extra-pulmonary tuberculosis due to dissemination of Mycobacterium tuberculosis (Mtb) bacilli from the lung to the brain. It affects mostly children and immune suppressed individuals and high incidents of death occur as a result of missed diagnosis and delayed treatment. Therefore, the is a need for improved therapeutic strategy and a better understanding of the CNS immunity; investigate cells targeted for infection, their respective response to infection and interaction with different cell types to the overall protection of the CNS - as accumulating evidence indicates a dynamic neuronal lymphocyte interplay that defines outcomes of diseases. A novel observation was previously made, that neurons are infected by Mtb during in vitro and in vivo infection. The aim of this study was to further characterize neural responses induced by mycobacteria using hippocampal primary neuron cultures, infected with H37RV and BCG. Secondly, this study investigated the importance of interaction between neurons and immune cells in immunity against mycobacterial challenge using an optimised neuron T cell co-culture model. Investigation included identifying the production levels of neuronal cell surface markers and cytokines induced by Mtb. In flowcytometry and ELISA analyses, infection exhibited a robust inflammatory response with increased neuronal production of cytokines such as IL1β, IL6, TNF and regulatory cytokine IL10 in vitro and in vivo. Neuronal MHC class I expression was upregulated by infection, suggesting possible antigen dependent interactions between neuron and CD8+ T cells. In co-cultures, neurons induced expression of Tbet, RorγT and Gata3 T cell transcription factors through direct contact with T cells. These data highlighted the likelihood of neurons activating T cells upon mycobacterial stimulations. It may potentially be utilised to broaden the understanding of CNS immunity under pathological conditions and possibly lead to identification of novel immunomodulatory targets that could be exploited for new rapid sensitive diagnostics and early opportune intervention against CNS TB – reducing morbidity and mortality associated with the disease.
- ItemOpen AccessReactivation of M. tuberculosis infection in trans-membrane tumour necrosis factor mice(Public Library of Science, 2011) Dambuza, Ivy; Keeton, Roanne; Allie, Nasiema; Hsu, Nai-Jen; Randall, Philippa; Sebesho, Boipelo; Fick, Lizette; Quesniaux, Valerie J F; Jacobs, MuazzamOf those individuals who are infected with M. tuberculosis , 90% do not develop active disease and represents a large reservoir of M. tuberculosis with the potential for reactivation of infection. Sustained TNF expression is required for containment of persistent infection and TNF neutralization leads to tuberculosis reactivation. In this study, we investigated the contribution of soluble TNF (solTNF) and transmembrane TNF (Tm-TNF) in immune responses generated against reactivating tuberculosis. In a chemotherapy induced tuberculosis reactivation model, mice were challenged by aerosol inhalation infection with low dose M. tuberculosis for three weeks to establish infection followed chemotherapeutic treatment for six weeks, after which therapy was terminated and tuberculosis reactivation investigated. We demonstrate that complete absence of TNF results in host susceptibility to M. tuberculosis reactivation in the presence of established mycobacteria-specific adaptive immunity with mice displaying unrestricted bacilli growth and diffused granuloma structures compared to WT control mice. Interestingly, bacterial re-emergence is contained in Tm-TNF mice during the initial phases of tuberculosis reactivation, indicating that Tm-TNF sustains immune pressure as in WT mice. However, Tm-TNF mice show susceptibility to long term M. tuberculosis reactivation associated with uncontrolled influx of leukocytes in the lungs and reduced IL-12p70, IFNγ and IL-10, enlarged granuloma structures, and failure to contain mycobacterial replication relative to WT mice. In conclusion, we demonstrate that both solTNF and Tm-TNF are required for maintaining immune pressure to contain reactivating M. tuberculosis bacilli even after mycobacteria-specific immunity has been established.
- ItemOpen AccessTNF-dependent regulation and activation of innate immune cells are essential for host protection against cerebral tuberculosis(BioMed Central Ltd, 2015) Francisco, Ngiambudulu; Hsu, Nai-Jen; Keeton, Roanne; Randall, Philippa; Sebesho, Boipelo; Allie, Nasiema; Govender, Dhirendra; Quesniaux, Valerie; Ryffel, Bernhard; Kellaway, Lauriston; Jacobs, MuazzamBACKGROUND: Tuberculosis (TB) affects one third of the global population, and TB of the central nervous system (CNS-TB) is the most severe form of tuberculosis which often associates with high mortality. The pro-inflammatory cytokine tumour necrosis factor (TNF) plays a critical role in the initial and long-term host immune protection against Mycobacterium tuberculosis (M. tuberculosis) which involves the activation of innate immune cells and structure maintenance of granulomas. However, the contribution of TNF, in particular neuron-derived TNF, in the control of cerebral M. tuberculosis infection and its protective immune responses in the CNS were not clear. METHODS: We generated neuron-specific TNF-deficient (NsTNF / ) mice and compared outcomes of disease against TNF f/f control and global TNF / mice. Mycobacterial burden in brains, lungs and spleens were compared, and cerebral pathology and cellular contributions analysed by microscopy and flow cytometry after M. tuberculosis infection. Activation of innate immune cells was measured by flow cytometry and cell function assessed by cytokine and chemokine quantification using enzyme-linked immunosorbent assay (ELISA). RESULTS: Intracerebral M. tuberculosis infection of TNF / mice rendered animals highly susceptible, accompanied by uncontrolled bacilli replication and eventual mortality. In contrast, NsTNF / mice were resistant to infection and presented with a phenotype similar to that in TNF f/f control mice. Impaired immunity in TNF / mice was associated with altered cytokine and chemokine synthesis in the brain and characterised by a reduced number of activated innate immune cells. Brain pathology reflected enhanced inflammation dominated by neutrophil influx. CONCLUSION: Our data show that neuron-derived TNF has a limited role in immune responses, but overall TNF production is necessary for protective immunity against CNS-TB.