Browsing by Author "Ho, Wei Hua"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemOpen AccessEffect of Pulsatility on the Transport of Thrombin in an Idealized Cerebral Aneurysm Geometry(2022-01-11) Hume, Struan; Tshimanga, Jean-Marc Ilunga; Geoghegan, Patrick; Malan, Arnaud G; Ho, Wei Hua; Ngoepe, Malebogo NComputational models of cerebral aneurysm thrombosis are designed for use in research and clinical applications. A steady flow assumption is applied in many of these models. To explore the accuracy of this assumption a pulsatile-flow thrombin-transport computational fluid dynamics (CFD) model, which uses a symmetrical idealized aneurysm geometry, was developed. First, a steady-flow computational model was developed and validated using data from an in vitro experiment, based on particle image velocimetry (PIV). The experimental data revealed an asymmetric flow pattern in the aneurysm. The validated computational model was subsequently altered to incorporate pulsatility, by applying a data-derived flow function at the inlet boundary. For both the steady and pulsatile computational models, a scalar function simulating thrombin generation was applied at the aneurysm wall. To determine the influence of pulsatility on thrombin transport, the outputs of the steady model were compared to the outputs of the pulsatile model. The comparison revealed that in the pulsatile case, an average of 10.2% less thrombin accumulates within the aneurysm than the steady case for any given time, due to periodic losses of a significant amount of thrombin-concentrated blood from the aneurysm into the parent vessel’s bloodstream. These findings demonstrate that pulsatility may change clotting outcomes in cerebral aneurysms.
- ItemOpen AccessPulsatile Flow in Computational Modelling of Thrombosis in Cerebral Aneurysms(2019) Hume, Struan; Ngoepe, Malebogo; Ho, Wei HuaNgoepe and Ventikos have developed one of a growing number of computational models of thrombosis of cerebral aneurysms designed with consideration towards clinical use and research. Their model, amongst many others, utilizes computationally inexpensive steady flow conditions. However, pulsatile flow better characterizes blood flow in-vivo. Steady flow is an acceptable approximation of pulsatile flow from a fluid dynamics perspective, but there is no prior evidence suggesting whether it is an acceptable approximation when considering clot formation within a flowing environment. To this end a pulsatile flow model has been created in ANSYS® Fluent, and a function from Ngoepe and Ventikos’s computational model that simulates the release of thrombin, a chemical responsible for clotting activation, has been implemented. The output of this simulation is compared to the output of an otherwise identical simulation utilizing Particle-Image-Velocimetry (PIV) validated steady flow conditions, to determine whether clotting outcome of Ngoepe and Ventikos’s model, amongst others, differs with pulsatile flow This experiment revealed that the concentration of thrombin required for clotting activation is generated in nearly half the time when utilizing pulsatile flow over steady flow. Pulsatile flow creates unsteady flow patterns within the aneurysm, which create an environment where less thrombin is carried out of the aneurysm and into the regular bloodstream. This indicates that steady flow approximations for realistic clotting in computational models of thrombosis of cerebral aneurysms without strong consideration for the effects of pulsatile flow are inaccurate.