Browsing by Author "Griffiths, M J"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemOpen AccessAdvantages and challenges of microalgae as a source of oil for biodiesel(InTechOpen, 2011) Griffiths, M J; Dicks, R G; Richardson, C; Harrison, S T L; Margarita Stoytcheva; Gisela MonteroMicroalgal oil is currently being considered as a promising alternative feedstock for biodiesel. The present demand for oil for biofuel production greatly exceeds the supply, hence alternative sources of biomass are required. Microalgae have several advantages over land-based crops in terms of oil production. Their simple unicellular structure and high photosynthetic efficiency allow for a potentially higher oil yield per area than that of the best oilseed crops. Algae can be grown on marginal land using brackish or salt water and hence do not compete for resources with conventional agriculture. They do not require herbicides or pesticides and their cultivation could be coupled with the uptake of CO2 from industrial waste streams, and the removal of excess nutrients from wastewater (Hodaifa et al., 2008; An et al., 2003). In addition to oil production, potentially valuable co-products such as pigments, antioxidants, nutraceuticals, fertilizer or feeds could be produced (Mata et al., 2010; Rodolfi et al., 2009).
- ItemRestrictedAnaerobic digestion of Spirulina sp. and Scenedesmus sp.: a comparison and investigation of the impact of mechanical pre-treatment(Springer, 2015) Inglesby, A E; Griffiths, M J; Harrison, S T L; van Hille, R PAnaerobic digestion (AD) is a unit process that integrates beneficially and sustainably into many bioprocesses. This study assesses and compares the production of methane from the biomass of the microalga Scenedesmus sp. and the cyanobacterium Spirulina sp. in batch anaerobic digesters. Anaerobic digestion of whole cell Spirulina resulted in a substantially higher methane productivity (0.18 L CH4 Lreactor−1 day−1) and methane yield (0.113 L CH4 g−1 volatile solids (VS)) compared to the digestion of whole cell Scenedesmus (0.12 L CH4 Lreactor−1 day−1 and 0.054 L CH4 g VS−1). Spirulina, possibly due to a combination of osmotic shock, the filamentous nature of the cells and lower mechanical strength of the non-cellulosic cell wall, was more readily degraded by hydrolytic and acidogenic microorganisms, resulting in the generation of a greater amount of acetic acid. This in turn provided greater substrate for methanogens and hence higher methane yields. In addition, Spirulina cells could be disrupted mechanically more quickly (1 h) than Scenedesmus cells (4 h) in a bead mill. Mechanical pre-treatment improved the final methane yields (L CH4 g VS−1) obtained from digestion of both substrates; however, the improvement was greater for Scenedesmus. Mechanical pre-treatment resulted in a 47 % increase in methane production for Spirulina compared to 76 % increase for Scenedesmus fed digesters. The more substantial increase observed for Scenedesmus was due to the relatively inefficient digestion of the whole, unruptured cells.
- ItemOpen AccessAnaerobic digestion of Spirulina sp. and Scenedesmus sp.: a comparison and investigation of the impact of mechanical pre-treatment(Springer, 2015-05) Inglesby, A E; Griffiths, M J; Harrison, S T L; Van Hille, R PAAnaerobic digestion (AD) is a unit process that integrates beneficially and sustainably into many bioprocesses. This study assesses and compares the production of methane from the biomass of the microalga Scenedesmus sp. and the cyanobacterium Spirulina sp. in batch anaerobic digesters. Anaerobic digestion of whole cell Spirulina resulted in a substantially higher methane productivity (0.18 L CH4 Lreactor −1 day−1) and methane yield (0.113 L CH4 g−1 volatile solids (VS)) compared to the digestion of whole cell Scenedesmus (0.12 L CH4 Lreactor −1 day−1 and 0.054 L CH4 g VS−1). Spirulina, possibly due to a combination of osmotic shock, the filamentous nature of the cells and lower mechanical strength of the non-cellulosic cell wall, was more readily degraded by hydrolytic and acidogenic microorganisms, resulting in the generation of a greater amount of acetic acid. This in turn provided greater substrate for methanogens and hence higher methane yields. In addition, Spirulina cells could be disrupted mechanically more quickly (1 h) than Scenedesmus cells (4 h) in a bead mill. Mechanical pre-treatment improved the final methane yields (L CH4 g VS−1) obtained from digestion of both substrates; however, the improvement was greater for Scenedesmus. Mechanical pre-treatment resulted in a 47 % increase in methane production for Spirulina compared to 76 % increase for Scenedesmus fed digesters. The more substantial increase observed for Scenedesmus was due to the relatively inefficient digestion of the whole, unruptured cells.
- ItemRestrictedSelection of direct transesterification as the preferred method for assay of fatty acid content of microalgae(Springer Verlag, 2010) Griffiths, M J; van Hille, R P; Harrison, S T LAssays for total lipid content in microalgae are usually based on the Folch or the Bligh and Dyer methods of solvent extraction followed by quantification either gravimetrically or by chromatography. Direct transesteri- fication (DT) is a method of converting saponifiable lipids in situ directly to fatty acid methyl esters which can be quantified by gas chromatography (GC). This eliminates the extraction step and results in a rapid, one-step procedure applicable to small samples. This study compared the effectiveness of DT in quantifying the total fatty acid content in three species of microalgae to extraction using the Folch, the Bligh and Dyer and the Smedes and Askland methods, followed by transesterification and GC. The use of two catalysts in sequence, as well as the effect of reaction water content on the efficiency of DT were investigated. The Folch method was the most effective of the extraction methods tested, but comparison with DT illustrated that all extraction methods were incomplete. Higher levels of fatty acid in the cells were obtained with DT in comparison with the extraction-transesterification methods. A combination of acidic and basic transesterifi- cation catalysts was more effective than each individually when the sample contained water. The two-catalyst reaction was insensitive to water up to 10% of total reaction volume. DT proved a convenient and more accurate method than the extraction techniques for quantifying total fatty acid content in microalgae.