• English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  • Communities & Collections
  • Browse OpenUCT
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  1. Home
  2. Browse by Author

Browsing by Author "Gertzen, Jonathan"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Open Access
    DFT Study of MAX Phase Surfaces for Electrocatalyst Support Materials in Hydrogen Fuel Cells
    (2020-12-25) Gertzen, Jonathan; Levecque, Pieter; Rampai, Tokoloho; van Heerden, Tracey
    In moving towards a greener global energy supply, hydrogen fuel cells are expected to play an increasingly significant role. New catalyst support materials are being sought with increased durability. MAX phases show promise as support materials due to their unique properties. The layered structure gives rise to various potential (001) surfaces. DFT is used to determine the most stable (001) surface terminations of Ti2AlC, Ti3AlC2 and Ti3SiC2. The electrical resistivities calculated using BoltzTraP2 show good agreement with the experimental values, with resistivities of 0.460 µΩ m for Ti2AlC, 0.370 µΩ m for Ti3AlC2 and 0.268 µΩ m for Ti3SiC2. Surfaces with Al or Si at the surface and the corresponding Ti surface show the lowest cleavage energy of the different (001) surfaces. MAX phases could therefore be used as electrocatalyst support materials, with Ti3SiC2 showing the greatest potential.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    MAX phases as an electrocatalyst support material: a DFT study
    (2019) Gertzen, Jonathan; Rampai, Tokoloho; Van Heerden, Tracey; Levecque, Pieter
    The insatiable global demand for energy cannot be sustained by fossil fuels without irreparable damage to the environment. Various alternative energy sources are being investigated to provide renewable clean energy. One promising technology is the hydrogen fuel cell, which uses hydrogen and oxygen to produce electricity. However, the currently used catalyst support material, carbon black, corrodes in the low pH and oxidative environment. Therefore, new catalyst support materials are being sought. A new class of material, called MAX phases, shows potential because some possess a combination of properties of metals and ceramics. Three of them, Ti2AlC, Ti3AlC2, and Ti3SiC2, show good electrical conductivity and oxidation resistance. These MAX phases have been investigated using density functional theory (DFT) in this thesis to determine their properties. The density of states show that they are electrically conductive, with a continuous band over the Fermi level primarily from the Ti d orbital. Calculating the Boltzmann transport properties, yielded electrical resistivity values of 0.460 µΩ m for Ti2AlC, 0.370 µΩ m for Ti3AlC2, and 0.268 µΩ m for Ti3SiC2 at 300 K. Therefore, Ti3SiC2 should be the most electrically conductive of the three. The vacancy formation energy of an A group atom was investigated using a 2 x 2 x 2 supercell. The vacancy formation energies were calculated to be 2.882 eV for Ti2AlC, 2.812 eV for Ti3AlC2, and 2.167 eV for Ti3SiC2. The formation of a vacancy increases the electrical resistivity of the bulk MAX phases. As a catalyst support material, a MAX phase particle will have surfaces present. Due to the layered structure of the MAX phases, multiple terminations of (0 0 0 1) surfaces could be possible, which were investigated. It was shown that terminations where the Ti-C cage structure remained intact produced the lowest cleavage energies. For Ti2AlC, the two low cleavage energy surfaces are Al(Ti) and Ti(C), for Ti3AlC2, Al(Ti2) and Ti2(C), and for Ti3SiC2, Si(Ti2) and Ti2(C). The surfaces with the lowest cleavage energy should be more stable than other surfaces and would therefore be expected to be present on a MAX phase particle. Vacancies were also formed in the surface systems. The surfaces with the vacancy in the surface layer had the lowest vacancy formation energy, with that of Si(Ti2) being positive. The surface slabs generally showed a higher electrical resistivity than the bulk systems, while the formation of a vacancy generally increased the resistivity, in agreement with the bulk vacancy trend. These MAX phases are electrically conductive, however a quantifiable oxidation resistance was not able to be calculated. They do however show signs of being good electrocatalyst support materials.
UCT Libraries logo

Contact us

Jill Claassen

Manager: Scholarly Communication & Publishing

Email: openuct@uct.ac.za

+27 (0)21 650 1263

  • Open Access @ UCT

    • OpenUCT LibGuide
    • Open Access Policy
    • Open Scholarship at UCT
    • OpenUCT FAQs
  • UCT Publishing Platforms

    • UCT Open Access Journals
    • UCT Open Access Monographs
    • UCT Press Open Access Books
    • Zivahub - Open Data UCT
  • Site Usage

    • Cookie settings
    • Privacy policy
    • End User Agreement
    • Send Feedback

DSpace software copyright © 2002-2025 LYRASIS