• English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  • Communities & Collections
  • Browse OpenUCT
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  1. Home
  2. Browse by Author

Browsing by Author "Geldenhuys, Stefan"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Investigating the use of sodium metasilicate to improve the flotation performance of altered PGE ores
    (2021) Molifie, Andrea; Mcfadzean, Belinda; Becker Megan; Geldenhuys, Stefan
    Mineral hydration is known to result in low flotation recoveries and grades within primary platinum group element ores worldwide. This is because the phyllosilicate minerals derived from hydration reactions of silicate minerals (i) form electrostatic coatings on valuable minerals that in turn hinders collector adsorption, (ii) alter the viscosity of the slurry leading to poor gas dispersion and (iii) decrease the concentrate grade due to naturally-floating gangue. Sodium metasilicate was investigated because its dispersant, rheology modifying, and depressant properties could prove promising in combating the problems associated with these ore types. Quantitative evaluation by scanning electron microscopy (QEMSCAN) analysis revealed large quantities of serpentine and talc present within the ore sample used in this study, which led to a poor flotation response, as indicated by batch flotation tests. Using sodium metasilicate improved the recoveries and grades at high dosages (>1000 g/t). A suite of techniques was chosen to decouple sodium metasilicates' effects to answer why an improved flotation performance occurred. The zeta potential experiments indicate that improved recoveries are, in part, as a result of the reversal of serpentines surface charge, creating electrostatic repulsion between serpentine and valuable minerals which prevents the coating of valuable minerals by serpentine slimes. This corresponded with improved recoveries of a PGM proxy in the presence of serpentine slimes and a high sodium metasilicate dosage. Ore dilution and rheology tests indicate that decreased viscosity at high dosages also improved recoveries. This was supported by slower particle settling rates at high sodium metasilicate dosages during particle settling measurements. Talc micro-flotation tests revealed that the depression of talc occurred at higher sodium metasilicate dosages, which improved concentrate grade. This was supported by a QEMSCAN concentrate analysis of the sodium metasilicate batch flotation concentrates, which confirmed that talc, and other associated silicate minerals, were depressed at high sodium metasilicate dosages. The processing of near-surface altered ores is becoming an increasing problem worldwide and the use of sodium metasilicate proved valuable in mitigating the problems associated with the altered ore investigated in this study.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Process Evaluation of an Iron Ore Operation Using the Floatability Component Model
    (2021-05-31) Geldenhuys, Stefan; Pinto, Thiago Souza; Filho, Laurindo Leal; Deglon, David
    The Brucutu iron ore mine (Minas Gerais, Brazil) is Vale‘s largest iron producing operation achieving around 21 million tons per annum. Evaluation of flotation performance is of high importance as even small gains can lead to large monetary benefits. Cell-by-cell samples of the froth products, selected feed and pulp-products were analyzed for flow rate, particle size distribution and chemical composition. In addition, certain samples were analyzed on an assay-by-size basis and hydrodynamic measurements of certain flotation cells were also performed. This detailed experimental dataset was then used to calibrate a floatability component model of the process. Longer mainline residence time resulted in significant Fe2O3 losses while yielding little benefit in terms of SiO2 product grade. Scavenger 2 has twice the residence time of scavenger 1 while having to treat only 10% of the SiO2, resulting in high Fe2O3 recoveries to the froth and poor separation. In addition, it is shown that the Fe2O3 exhibits true flotation behavior resulting in increased Fe2O3 losses. Simulations using the floatability component model identified avenues of process improvement to address the identified behavior. The insight provided by the simulations into the dynamics of the flotation process is invaluable for process engineers.
UCT Libraries logo

Contact us

Jill Claassen

Manager: Scholarly Communication & Publishing

Email: openuct@uct.ac.za

+27 (0)21 650 1263

  • Open Access @ UCT

    • OpenUCT LibGuide
    • Open Access Policy
    • Open Scholarship at UCT
    • OpenUCT FAQs
  • UCT Publishing Platforms

    • UCT Open Access Journals
    • UCT Open Access Monographs
    • UCT Press Open Access Books
    • Zivahub - Open Data UCT
  • Site Usage

    • Cookie settings
    • Privacy policy
    • End User Agreement
    • Send Feedback

DSpace software copyright © 2002-2025 LYRASIS