Browsing by Author "Findlay, Ken P"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemRestrictedDiscovery of a blue whale feeding and nursing ground in southern Chile(The Royal Society, 2004) Hucke-Gaetel, Rodrigo; Osman, Layla P; Moreno, Carlos A; Findlay, Ken P; Ljungblad, Don KAfter the extensive exploitation that reduced the Southern Hemisphere blue whale (Balaenoptera musculus) populations to less than 3% of its original numbers, studies on its recovery have been compounded by the inaccessibility of most populations and the extensive migrations between low and high latitudes, thus ensuring that knowledge about blue whale ecology and status remains limited. We report the recent discovery of, arguably, the most important blue whale feeding and nursing ground known to date in the Southern Hemisphere, which is located near the fjords off southern Chile. Through aerial and marine surveys (n = 7) 47 groups, comprising 153 blue whales including at least 11 mother-calf pairs, were sighted during the austral summer and early autumn of 2003. The implications of this discovery on the biological understanding and conservation of this endangered species are discussed.
- ItemOpen AccessExploring South Africa’s southern frontier: A 20-year vision for polar research through the South African National Antarctic Programme(CrossMark, 2017-06) Ansorge, Isabelle J; Skelton, Paul; Bekker, Annie; de Bruyn, P J Nico; Butterworth, Doug S; Cilliers, Pierre; Cooper, John; Cowan, Don A; Dorrington, Rosemary; Fawcett, Sarah; Fietz, Susanne; Findlay, Ken P; Froneman, P William; Grantham, Geoff H; Greve, Michelle; Hedding, David; Hofmeyr, G J Greg; Kosch, Michael; le Roux, Peter; Lucas, Mike; MacHutcho, Keith; Meiklejohn, Ian; Nel, Werner; Pistorius, Pierre; Ryan, Peter; Stander, Johan; Swart, Sebastiaan; Treasure, Anne; Vichi, Marcello; Jansen van Vuuren, BettineAntarctica, the sub-Antarctic islands and surrounding Southern Ocean are regarded as one of the planet’s last remaining wildernesses, ‘insulated from threat by [their] remoteness and protection under the Antarctic Treaty System’1 . Antarctica encompasses some of the coldest, windiest and driest habitats on earth. Within the Southern Ocean, sub-Antarctic islands are found between the Sub-Antarctic Front to the north and the Polar Front to the south. Lying in a transition zone between warmer subtropical and cooler Antarctic waters, these islands are important sentinels from which to study climate change.2 A growing body of evidence3,4 now suggests that climatically driven changes in the latitudinal boundaries of these two fronts define the islands’ short- and long-term atmospheric and oceanic circulation patterns. Consequently, sub-Antarctic islands and their associated terrestrial and marine ecosystems offer ideal natural laboratories for studying ecosystem response to change.5 For example, a recent study6 indicates that the shift in the geographical position of the oceanic fronts has disrupted inshore marine ecosystems, with a possible impact on top predators. Importantly, biotic responses are variable as indicated by different population trends of these top predators.7,8 When studied collectively, these variations in species’ demographic patterns point to complex spatial and temporal changes within the broader sub-Antarctic ecosystem, and invite further examination of the interplay between extrinsic and intrinsic drivers.
- ItemOpen AccessPopulation structure of humpback whales from their breeding grounds in the South Atlantic and Indian Oceans(Public Library of Science, 2009) Rosenbaum, Howard C; Pomilla, Cristina; Mendez, Martin; Leslie, Matthew S; Best, Peter B; Findlay, Ken P; Minton, Gianna; Ersts, Peter J; Collins, Timothy; Engel, Marcia HAlthough humpback whales are among the best-studied of the large whales, population boundaries in the Southern Hemisphere (SH) have remained largely untested. We assess population structure of SH humpback whales using 1,527 samples collected from whales at fourteen sampling sites within the Southwestern and Southeastern Atlantic, the Southwestern Indian Ocean, and Northern Indian Ocean (Breeding Stocks A, B, C and X, respectively). Evaluation of mtDNA population structure and migration rates was carried out under different statistical frameworks. Using all genetic evidence, the results suggest significant degrees of population structure between all ocean basins, with the Southwestern and Northern Indian Ocean most differentiated from each other. Effective migration rates were highest between the Southeastern Atlantic and the Southwestern Indian Ocean, followed by rates within the Southeastern Atlantic, and the lowest between the Southwestern and Northern Indian Ocean. At finer scales, very low gene flow was detected between the two neighbouring sub-regions in the Southeastern Atlantic, compared to high gene flow for whales within the Southwestern Indian Ocean. Our genetic results support the current management designations proposed by the International Whaling Commission of Breeding Stocks A, B, C, and X as four strongly structured populations. The population structure patterns found in this study are likely to have been influenced by a combination of long-term maternally directed fidelity of migratory destinations, along with other ecological and oceanographic features in the region.