Browsing by Author "Dzobo, Kevin"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemOpen AccessCharacterization of polyphenols in leaves of four desiccation tolerant plant families(2005) Dzobo, Kevin; Lindsey, George G; Farrant, Jill M; De Wet, JacquesPolyphenols in plants are known to act as antioxidants, antimicrobials, antifungal, photoreceptors, visual attractors and as light screens. In this study polyphenols in angiosperms found in southern Africa and called resurrection (desiccation tolerant) plants were studied. These plants are Myrothamnus flabellifolius, Xerophyta viscosa, Xerophyta humilis, Xerophyta schlecterii, Xerophyta villosa. Craterostigma wilmsii, Craterostigma plantagineum, Craterostigma pumilum and Eragrostis nindensis. These plants are able to tolerate water stress without undergoing permanent damage. During drying these plants are subjected to different stresses and one such stress is oxidative stress. It has been suggested that polyphenols function as stress protectants in plant cells by scavenging reactive oxygen species (ROS) produced during a period of oxidative stress. In this study the total phenolic content and the related antioxidant capacity of the plants leaf extracts were analysed.
- ItemOpen AccessEffect of selenium on cadmium-induced oxidative stress and esterase activity in rat organs(2013) Dzobo, Kevin; Naik, Yogeshkumar VMetal toxicity is a threat mainly in the industrialised world where industry discharges many toxic metals into the environment. We investigated the effects of two metals - cadmium and selenium - on the cytosolic antioxidant enzymes and esterases in the liver, kidneys and testes of rats. Male Sprague-Dawley rats( N =28) were divided equally into four groups: control, cadmium, selenium and cadmium/selenium. Salts of the metals were administered intraperitoneally for 15 days. In the liver, cadmium treatment (1.67 mg/kg per day) resulted in a decrease in catalase activity and an increase superoxide dismutase (SOD) activity. Selenium treatment (0.23 mg/kg per day) resulted in increases in glutathione s-transferase, catalase and DT-diaphorase activities. Treatment with both cadmium and selenium resulted in an increase in glutathione peroxidase (GPx) activity. Esterase activities were significantly lower in the presence of cadmium. In the kidney, cadmium treatment caused a decrease in catalase, DT-diaphorase, and SOD activities and selenium supplementation reversed the cadmium-induced decrease in these enzyme activities. Selenium treatment increased catalase and SOD activities in the kidney. In the testis, cadmium treatment decreased GPx and SOD activities, but at the same time increased catalase and DT-diaphorase activities. Esterase activities increased in the presence of selenium in both the kidney and testis. These results suggest that selenium might be toxic to the liver while at the same time play a protective role against cadmium-induced oxidative stress and toxicity in the kidney and testis.
- ItemOpen AccessMatrix-mediated regulation of type 1 collagen synthesis and degradation in cultured fibroblasts(2009) Dzobo, Kevin; Parker, IqbalStromal cells and the extracellular matrix (ECM) components provide the microenvironment that is pivotal for cell growth, motility, attachment and differentiation. Fibroblasts are some of the cells responsible for the synthesis of most of the extracellular matrix proteins. Type I collagen is the most abundant extracellular matrix protein in the human body and is found in tissues requiring high tensile strength. In this study we investigated the effect of a pre-formed fibroblast-derived extracellular matrix on the expression of type I collagen and associated matrix metalloproteinases in fibroblasts.
- ItemOpen AccessThe garlic compound ajoene covalently binds vimentin, disrupts the vimentin network and exerts anti-metastatic activity in cancer cells(2019-03-20) Kaschula, Catherine H; Tuveri, Rosanna; Ngarande, Ellen; Dzobo, Kevin; Barnett, Christopher; Kusza, Daniel A; Graham, Lisa M; Katz, Arieh A; Rafudeen, Mohamed S; Parker, M Iqba; Hunter, Roger; Schäfer, GeorgiaBackground Garlic has been used for centuries for its flavour and health promoting properties that include protection against cancer. The vinyl disulfide-sulfoxide ajoene is one of the phytochemicals found in crushed cloves, hypothesised to act by S-thiolating reactive cysteines in target proteins. Methods Using our fluorescently labelled ajoene analogue called dansyl-ajoene, ajoene’s protein targets in MDA-MB-231 breast cancer cells were tagged and separated by 2D electrophoresis. A predominant band was identified by MALDI-TOF MS/MS to be vimentin. Target validation experiments were performed using pure recombinant vimentin protein. Computational modelling of vimentin bound to ajoene was performed using Schrödinger and pKa calculations by Epik software. Cytotoxicity of ajoene in MDA-MB-231 and HeLa cells was measured by the MTT assay. The vimentin filament network was visualised in ajoene-treated and non-treated cells by immunofluorescence and vimentin protein expression was determined by immunoblot. The invasion and migration activity was measured by wound healing and transwell assays using wildtype cells and cells in which the vimentin protein had been transiently knocked down by siRNA or overexpressed. Results The dominant protein tagged by dansyl-ajoene was identified to be the 57 kDa protein vimentin. The vimentin target was validated to reveal that ajoene and dansyl-ajoene covalently bind to recombinant vimentin via a disulfide linkage at Cys-328. Computational modelling showed Cys-328 to be exposed at the termini of the vimentin tetramer. Treatment of MDA-MB-231 or HeLa cells with a non-cytotoxic concentration of ajoene caused the vimentin filament network to condense; and to increase vimentin protein expression. Ajoene inhibited the invasion and migration of both cancer cell lines which was found to be dependent on the presence of vimentin. Vimentin overexpression caused cells to become more migratory, an effect that was completely rescued by ajoene. Conclusions The garlic-derived phytochemical ajoene targets and covalently modifies vimentin in cancer cells by S-thiolating Cys-328. This interaction results in the disruption of the vimentin filament network and contributes to the anti-metastatic activity of ajoene in cancer cells.
- ItemOpen AccessThe role of the tumour microenvironment components in cancer cell behaviour and drug response(2022) Senthebane, Dimakatso Alice; Parker, Mohamed Iqbal; Dzobo, KevinCancer is a public health burden which continues to cause many deaths and an economic burden worldwide. New and improved ways of thinking about anti-cancer drug design and development are needed now and in future. Recent reports demonstrate the key role played by the tumour microenvironment (TME) in tumour progression and the development of drug resistance. This study investigated the interactions between cancer cells and the stroma within the TME, specifically fibroblasts, mesenchymal stem cells (MSC), cancer stem cells (CSCs) as well as the extracellular matrix (ECM), with the goal to develop an in vitro model that mimics solid tumours in terms of cellular characteristics and drug response. Mesenchymal stem cells were investigated as potential sources of cancer-associated fibroblasts (CAFs) in solid tumours. The expression of CAFs markers, α-SMA and vimentin, increased significantly in MSCs co-cultured with oesophageal and breast cancer cells indicating conversion of MSCs into cell-like CAFs. WHCO1 (oesophageal) and MDA MB 231 (breast) cancer cells co-cultured with MSCs survived paclitaxel and cisplatin treatments better than cancer cells alone. To assess the prognostic value of CSCs, the expression and malignant behaviour of CSC markers were also examined in clinicopathologically-confirmed oesophageal cancer biopsies and in vitro. Oesophageal cancer biopsies stained strongly for the cancer stem cell markers, CD44 and ALDH1A1, demonstrating the presence of CSCs in these tumours. FACS-isolated side population cells exhibited high levels of cancer stem cell markers, self-renewal markers and drug resistance proteins and were associated with increased drug resistance versus cancer cells. In order to measure how ECM proteins affect oesophageal cancer cell response to chemotherapeutic drugs, 3D cell-derived ECMs was used as a model. The analysis of ECM proteins using qRT-PCR in oesophageal cancer biopsies showed that collagens, fibronectin, and laminins were overexpressed in tumour tissue compared with adjacent normal tissues. The culture of cancer cells on decellularised ECMs reduced the effect of drugs on cancer cells compared to those plated on plastic (control). The reduction of the effects of drugs was associated with significant activation of survival signalling pathways. Knockdown of collagen and fibronectin with siRNA combined with drugs resulted in increased sensitivity of cancer cells to drugs and lower colony formation and cancer cell migration. Lastly, this study utilized multi-cell tumour spheroids (MCTS) from WHCO1 and MDA MB 231 cells co-cultured with WI38 and CT1 fibroblasts to mimic tumour cell-stromal cell interactions as observed within the in vivo tumour microenvironment. The data show that spheroids were more resistant to drugs than monolayer cultures of the same cells. MCTS displayed characteristics similar to in vivo tumours in terms of response to drugs. Associated with these findings were increased levels of CSCs in MCTS compared to monolayer. This study demonstrated that MSCs are a possible source of ‘CAFs' in vivo and can support cancer cell growth. This study also demonstrated the presence of CSCs in tumours and that the targeting of these cells can shrink tumours and prevent potential metastasis and relapse of tumours. This study revealed that ECM proteins play major roles in the response of cancer cells to chemotherapy and suggest that targeting ECM proteins, especially type I collagen and fibronectin, can be an effective therapeutic strategy against chemoresistant tumours. MCTS, as shown in this study, is a valuable tool for the evaluation of the therapeutic effect of drugs. Overall, this study demonstrates the critical role played by the tumour microenvironment in tumour growth and metastasis and provides new insights into cancer treatment.