Browsing by Author "Chapman, Ros"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
- ItemOpen AccessAssessment of an LSDV-Vectored Vaccine for Heterologous Prime-Boost Immunizations against HIV(2021-11-05) Chapman, Ros; van Diepen, Michiel; Douglass, Nicola; Galant, Shireen; Jaffer, Mohamed; Margolin, Emmanuel; Ximba, Phindile; Hermanus, Tandile; Moore, Penny L; Williamson, Anna-LiseThe modest protective effects of the RV144 HIV-1 vaccine trial have prompted the further exploration of improved poxvirus vector systems that can yield better immune responses and protection. In this study, a recombinant lumpy skin disease virus (LSDV) expressing HIV-1 CAP256.SU gp150 (Env) and a subtype C mosaic Gag was constructed (LSDVGC5) and compared to the equivalent recombinant modified vaccinia Ankara (MVAGC5). In vitro characterization confirmed that cells infected with recombinant LSDV produced Gag virus-like particles containing Env, and that Env expressed on the surface of the cells infected with LSDV was in a native-like conformation. This candidate HIV-1 vaccine (L) was tested in a rabbit model using different heterologous vaccination regimens, in combination with DNA (D) and MVA (M) vectors expressing the equivalent HIV-1 antigens. The four different vaccination regimens (DDMMLL, DDMLML, DDLMLM, and DDLLMM) all elicited high titers of binding and Tier 1A neutralizing antibodies (NAbs), and some regimens induced Tier 1B NAbs. Furthermore, two rabbits in the DDLMLM group developed low levels of autologous Tier 2 NAbs. The humoral immune responses elicited against HIV-1 Env by the recombinant LSDVGC5 were comparable to those induced by MVAGC5.
- ItemOpen AccessCharacterization of a Novel Chimeric Theileria parva p67 Antigen Which Incorporates into Virus-like Particles and Is Highly Immunogenic in Mice(2022-01-28) Whittle, Leah; Chapman, Ros; van Diepen, Michiel; Rybicki, Edward P; Williamson, Anna-LiseThe current method to protect cattle against East Coast Fever (ECF) involves the use of live Theileria parva sporozoites. Although this provides immunity, using live parasites has many disadvantages, such as contributing to the spread of ECF. Subunit vaccines based on the sporozoite surface protein p67 have been investigated as a replacement for the current method. In this study, two DNA vaccines expressing recombinant forms of p67 designed to display on retrovirus-like particles were constructed with the aim of improving immunogenicity. The native leader sequence was replaced with the human tissue plasminogen activator leader in both vaccines. The full-length p67 gene was included in the first DNA vaccine (p67); in the second, the transmembrane domain and cytoplasmic tail were replaced with those of an influenza A virus hemagglutinin 5 (p67HA). Immunofluorescent staining of fixed and live transfected mammalian cells showed that both p67 and p67HA were successfully expressed, and p67HA localised on the cell surface. Furthermore, p67HA was displayed on the surface of both bovine leukaemia virus (BLV) Gag and HIV-1 Gag virus-like particles (VLPs) made in the same cells. Mice vaccinated with DNA vaccines expressing p67 and p67HA alone, or p67HA with BLV or HIV-1 Gag, developed high titres of p67 and BLV Gag-binding antibodies. Here we show that it is possible to integrate a form of p67 containing all known antigenic domains into VLPs. This p67HA–VLP combination has the potential to be incorporated into a vaccine against ECF, as a DNA vaccine or as other vaccine platforms.
- ItemOpen AccessConstruction and evaluation of three candidate vaccines expressing HIV-1 subtype-C mosaic Gag(2015) Jongwe, Tsungai Ivai; Chapman, Ros; Williamson, Anna-Lise; Douglass, Niki; Chege, GeraldOf the 35 million people living with HIV-1 globally, approximately 71.4% are in the resource-limited sub-Saharan Africa. The immense sequence diversity of HIV-1, even within subtypes, makes it challenging to develop effective vaccines that target a wide range of HIV subtypes. Mosaic immunogens have been computationally designed to specifically overcome this hurdle by maximizing the inclusion of common T cell epitopes. When compared to consensus immunogens, polyvalent mosaic immunogens of HIV-1 group M have shown increased breadth and depth of antigen-specific T-cell responses. More than 90% of HIV positive individuals in sub-Saharan Africa are infected with HIV-1 subtype C (HIV-1C). We therefore designed, constructed, and evaluated candidate vaccines expressing HIV-1C mosaic Gag (GagM) in a proof of concept study. Gag was chosen as the most appropriate target for a T cell-based vaccine as there are many studies correlating control of HIV viral load with T cell responses to Gag. The immunogen was designed by Fischer et al., 2007 (1). Three different vaccine platforms were chosen based on their different strengths to be used in prime-boost regimens to determine the immunogenicity of HIV-1C GagM in mice. The first was a pantothenic auxotroph of the tuberculosis vaccine Mycobacterium bovis Bacille Calmette Guérin (BCG). The second was a DNA vaccine vector with enhanced expression of transgenes due to a novel enhancer element from porcine circovirus type 1, which has been demonstrated to increase gene expression. The third vaccine vector selected was the well characterised poxvirus modified vaccinia Ankara (MVA).
- ItemOpen AccessConstruction, stability and immunogenicity of recombinant BCG expressing HIV-1 subtype C gag under the control of MtrA promoter, with or without the leader sequences(2011) Lebeko, Maribanyana R; Chapman, Ros; Williamson, Anna-LiseThis study aimed to compare recombinant mycobacteria expressing HIV-1 gag under the control of different promoters and leader sequences. This was done to determine whether the genetic stability of the recombinant mycobacteria could be improved by modification of these vector features and to gain insight into what types of immune responses may be elicited in mice.
- ItemOpen AccessEvaluation of a reverse tetracycline inducible system in recombinant BCG to improve stability and immunogenicity(2011) Mbele, Prisca; Chapman, Ros; Williamson, Anna-LiseThe aim of this study is to utilise the tetracycline dependent gene regulation system to down-regulate recombinant antigen expression in BCG during the expansion of seed stocks and up-regulate expression prior to or post vaccination.
- ItemOpen AccessGeneration and characterization of HIV-1 subtype C candidate vaccines that will induce high titre antibody responses to HIV-1 envelope glycoprotein(2020) van Diepen, Michiel Theodoor; Williamson, Anna-Lise; Chapman, Ros; Rybicki, EdDespite huge strides being made towards decreasing the number of individuals getting newly infected with HIV-1, and in reducing AIDS-related deaths, unfortunately current predictions are that the 2020 UNAIDS goals (90-90-90 targets, where 90% of people living which HIV-1 are diagnosed as such, from which 90% will will receive sustained antiretroviral therapy, resulting in viral suppression in 90% of these individuals by 2020) are out of reach. This of course means that the numbers of newly infected indivuals and AIDS-related deaths will be above the target derived from the 2020 UNAIDS goals. The development of an effective HIV vaccine could therefore be an important step towards realising these objectives. In work done for this thesis, a heterologous HIV-1 vaccine platform regimen was developed using antigen sequences from the predominant circulating HIV-1 subtype (subtype C) in South Africa. Specifically, this involved use of the envelope glycoprotein sequence of the CAP256 superinfecting virus (CAP256_SU) from the CAPRISA 002 cohort, and a mosaic Gag sequence which resulted in robust autologous Tier 2 neutralisation of CAP256_SU pseudovirions. The envelope glycoprotein sequence was modified so as to replace the native leader sequence with the tissue plasminogen activator leader, the furin cleavage site with a glycine rich flexible linker, and to introduce an I559P mutation. DNA and modified vaccinia virus Ankara (MVA) vaccines were generated where Env was truncated to gp150, thereby retaining the transmembrane domain and a partial cytoplasmic tail (Env). The Env sequence for the protein vaccine was further trimmed by removal of the transmembrane domain to give gp140, leading to a soluble, secreted protein (soluble Env). This allowed for the latter vaccine to be affinity purified using lectin (soluble Env (GNL)), and after generating stable cell lines, soluble Env yields were high enough to enable size exclusion chromatography which allowed isolation of the trimeric fraction of Env as determined by molecular weight (soluble trimeric Env). A Cterminal His-tagged version of soluble Env was generated as well. Surprisingly, the folding of Env-His was inferior to soluble Env, with a switch in profile from mainly trimeric Env to mainly monomeric Env. Nevertheless, soluble Env-His (GNL) and soluble trimeric Env-His were assessed for the presence of Env broadly neutralising antibody (bnAb) epitopes in an ELISA assay. The V3-glycan supersite (binding of bnAbs PGT128 and PGT135), the CD4-binding site (VRC01) and the V2-glycan site (PG9) were detected for both Env-His (GNL) and soluble trimeric proteins, whereas low signals for PG16, PGT145 and CAP256-VRC26.08, bnAbs which specifically recognise Env trimers in a native-like conformation, were only detectable for soluble trimeric Env-His. Soluble Env (GNL) was subsequently used as a protein vaccine in rabbits to test the immunomodulatory effects of the two adjuvants AlhydroGel (similar to alum) or the MF59-like squalene-based oil-in-water nano-emulsion AddaVax. Soluble Env (GNL) adjuvanted in AlhydroGel resulted in improved immune response in rabbits, with significantly higher serum binding antibodies to soluble Env (GNL) and scaffolded CAP256 V1V2-loop in comparison to AddaVax and unadjuvanted protein. Furthermore, significantly higher neutralisation titres to Tier 1A subtype C virus (MW965.26), in combination with an improved breadth to subtype C Tier 1A and 1B viruses, were observed in the AlhydroGel group. However, no neutralisation of Tier 2 viruses was detected. Nonetheless, AlhydroGel was selected as the best protein adjuvant for all further rabbit immunogenicity studies. Furthermore, in all subsequent experiments, soluble trimeric Env was used as a protein vaccine. DNA and recombinant MVA vaccines were generated using a membrane anchored gp150 (Env) with the aim that co-expression with mosaic Gag (GagM) would lead to the incorporation of Env into Gag virus-like particles (VLPs). Electron microscopy of cells expressing Env+GagM from DNA and recombinant MVA vaccines verified VLP formation from these constructs, and the presence of Env was observed in VLPs purified using a two-step OptiPrep gradient centrifugation protocol. The presence of Env bnAb epitopes in cellular membrane-bound Env was verified by qualitative immunofluorescent microscopy of live-cell stainings and a quantitative FACS assay. The same bnAb epitopes as for the Env protein vaccine were detectable, including bnAbs recognising only native-like Env trimers (PG16, PGT145 and CAP256-VRC26_08). However, expression levels of native-like Env trimers were lower, at approximately 20% when normalised to VRC01. These HIV-1 DNA, rMVA and soluble trimeric Env protein vaccines were tested in different heterologous vaccine platform immunogenicity studies in rabbits. These consisted of either priming with two recombinant MVA vaccines and boosting with three protein vaccines (MMPPP), or priming with DNA vaccines followed by two MVA vaccines, followed by two protein vaccines (DDMMPP). Furthermore, the inclusion of GagM into the DNA and MVA vaccines was compared to use of Env alone. Both vaccine regimens resulted in binding antibodies to soluble trimeric Env and a scaffolded CAP256 V1V2-loop; however, these were induced by MVA and protein vaccines, but not by DNA vaccines. Despite the lack of Env binding antibodies after DNA vaccination, better neutralisation was observed for the DDMMPP regimen compared to MMPPP, resulting in higher sera neutralisation titres towards vaccinematched, autologous Tier 2 CAP256_SU virus. Most encouragingly, when compared to Env alone, the inclusion of Gag (Env+GagM) into DNA and MVA vaccines improved the immunogenicity of the DDMMPP regimen even further. For Env+GagM DDMMPP, more animals developed Tier 2 neutralising antibodies, and improved titres, whereas Tier 2 neutralisation in general started to develop after fewer vaccinations, as for most rabbits this was observed after the second MVA inoculation. In an attempt to improve the spike density of Env on VLPs and the plasma membrane, two Env chimaeras were made replacing parts of gp41 with the corresponding elements of influenza A H5 haemagglutinin (HA2) (Env:HA2 chimaeras). Increased Env spike density was observed in a previous study using this strategy for the gp41 transmembrane domain and cytoplasmic tail (gp140HA2tr). A similar construct was generated here for CAP256_SU and a second chimaera was included replacing the whole of gp41 with HA2 (gp120HA2). Surprisingly, in experiments where VLPs were purified from OptiPrep gradients or the whole-cell bnAb FACS assay conducted with these Env:HA2 chimaeras, there was no evidence of increased spike density on VLPs or the plasma membrane as compared to Env. Furthermore, the folding of Env was severely impacted, especially regarding gp120HA2 where no binding of PG16, PGT145 and CAP256 VRC26.08 - bnAbs recognising native-like Env trimers - was observed. Although results for gp140HA2tr was improved over gp120HA2, in general the data for gp150 (Env) was superior in both the bnAb live-cell staining and FACS assay. Consequently, when both Env:HA2 chimaeras in combination with GagM were tested in the DDMMPP regimen, no improvement was observed with regard to autologous Tier 2 neutralisation. For rabbits receiving gp120HA2, no animals developed Tier 2 nAbs, whereas for gp140HA2tr, Tier 2 neutralisation in general developed later and to lower titres compared to Env+GagM. In conclusion, different HIV-1 DNA, recombinant MVA and protein vaccines were generated and characterised both in vitro and in vivo, leading to a vaccination regimen that induced both high titre Env binding and vaccine-matched Tier 2 neutralising antibodies in rabbits. Furthermore, a new Env sequence, the first from the South African CAPRISA cohort, has been added to the small list of Env sequences that can induce Tier 2 neutralisation.
- ItemOpen AccessHIV-1 subtype C mosaic Gag expressed by BCG and MVA elicits persistent effector t cell responses in a prime-boost regimen in mice(Public Library of Science, 2016) Jongwe, Tsungai Ivai; Chapman, Ros; Douglass, Nicola; Chetty, Shivan; Chege, Gerald; Williamson, Anna-LiseOver 90% of HIV/AIDS positive individuals in sub-Saharan Africa are infected with highly heterogeneous HIV-1 subtype C (HIV-1C) viruses. One of the best ways to reduce the burden of this disease is the development of an affordable and effective prophylactic vaccine. Mosaic immunogens are computationally designed to overcome the hurdle of HIV diversity by maximizing the expression of potential T cell epitopes. Mycobacterium bovis BCG Δ panCD auxotroph and modified vaccinia Ankara (MVA) vaccines expressing HIV-1C mosaic Gag (Gag M ) were tested in a prime-boost regimen to demonstrate immunogenicity in a mouse study. The BCG-Gag M vaccine was stable and persisted 11.5 weeks post vaccination in BALB/c mice. Priming with BCG-Gag M and boosting with MVA-Gag M elicited higher Gag-specific IFN-γ ELISPOT responses than the BCG-Gag M only and MVA-Gag M only homologous vaccination regimens. The heterologous vaccination also generated a more balanced and persistent CD4 + and CD8 + T cell Gag-specific IFN-γ ELISPOT response with a predominant effector memory phenotype. A Th1 bias was induced by the vaccines as determined by the predominant secretion of IFN-γ, TNF-α, and IL-2. This study shows that a low dose of MVA (10 4 pfu) can effectively boost a BCG prime expressing the same mosaic immunogen, generating strong, cellular immune responses against Gag in mice. Our data warrants further evaluation in non-human primates. A low dose vaccine would be an advantage in the resource limited countries of sub-Saharan Africa and India (where the predominating virus is HIV-1 subtype C).
- ItemOpen AccessImproved DNA Vaccine Delivery with Needle-Free Injection Systems(2023-01-28) Ledesma-Feliciano, Carmen; Chapman, Ros; Hooper, Jay W.; Elma, Kira; Zehrung, Darin; Brennan, Miles B.; Spiegel, Erin K.DNA vaccines have inherent advantages compared to other vaccine types, including safety, rapid design and construction, ease and speed to manufacture, and thermostability. However, a major drawback of candidate DNA vaccines delivered by needle and syringe is the poor immunogenicity associated with inefficient cellular uptake of the DNA. This uptake is essential because the target vaccine antigen is produced within cells and then presented to the immune system. Multiple techniques have been employed to boost the immunogenicity and protective efficacy of DNA vaccines, including physical delivery methods, molecular and traditional adjuvants, and genetic sequence enhancements. Needle-free injection systems (NFIS) are an attractive alternative due to the induction of potent immunogenicity, enhanced protective efficacy, and elimination of needles. These advantages led to a milestone achievement in the field with the approval for Restricted Use in Emergency Situation of a DNA vaccine against COVID-19, delivered exclusively with NFIS. In this review, we discuss physical delivery methods for DNA vaccines with an emphasis on commercially available NFIS and their resulting safety, immunogenic effectiveness, and protective efficacy. As is discussed, prophylactic DNA vaccines delivered by NFIS tend to induce non-inferior immunogenicity to electroporation and enhanced responses compared to needle and syringe.
- ItemOpen AccessAn investigation into improved HIV-1 subtype C envelope based vaccine design(2014) Margolin, Emmanuel Aubrey; Williamson, Anna-Lise; Rybicki, Ed; Chapman, Ros; Meyers, AnnIncludes abstract. Includes bibliographical references.