Browsing by Author "Caron, Alexandre"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemOpen AccessBridge hosts, a missing link for disease ecology in multi-host systems(Springer, 2015) Caron, Alexandre; Cappelle, Julien; Cumming, Graeme; de Garine-Wichatitsky, Michel; Gaidet, NicolasIn ecology, the grouping of species into functional groups has played a valuable role in simplifying ecological complexity. In epidemiology, further clarifications of epidemiological functions are needed: while host roles may be defined, they are often used loosely, partly because of a lack of clarity on the relationships between a host's function and its epidemiological role. Here we focus on the definition of bridge hosts and their epidemiological consequences. Bridge hosts provide a link through which pathogens can be transmitted from maintenance host populations or communities to receptive populations that people want to protect (i.e., target hosts). A bridge host should (1) be competent for the pathogen or able to mechanically transmit it; and (2) come into direct contact or share habitat with both maintenance and target populations. Demonstration of bridging requires an operational framework that integrates ecological and epidemiological approaches. We illustrate this framework using the example of the transmission of Avian Influenza Viruses across wild bird/poultry interfaces in Africa and discuss a range of other examples that demonstrate the usefulness of our definition for other multi-host systems. Bridge hosts can be particularly important for understanding and managing infectious disease dynamics in multi-host systems at wildlife/domestic/human interfaces, including emerging infections.
- ItemOpen AccessInvestigating avian influenza infection hotspots in old-world shorebirds(Public Library of Science, 2012) Gaidet, Nicolas; Mamy, Ahmed B Ould El; Cappelle, Julien; Caron, Alexandre; Cumming, Graeme S; Grosbois, Vladimir; Gil, Patricia; Hammoumi, Saliha; de Almeida, Renata Servan; Fereidouni, Sasan RHeterogeneity in the transmission rates of pathogens across hosts or environments may produce disease hotspots, which are defined as specific sites, times or species associations in which the infection rate is consistently elevated. Hotspots for avian influenza virus (AIV) in wild birds are largely unstudied and poorly understood. A striking feature is the existence of a unique but consistent AIV hotspot in shorebirds (Charadriiformes) associated with a single species at a specific location and time (ruddy turnstone Arenaria interpres at Delaware Bay, USA, in May). This unique case, though a valuable reference, limits our capacity to explore and understand the general properties of AIV hotspots in shorebirds. Unfortunately, relatively few shorebirds have been sampled outside Delaware Bay and they belong to only a few shorebird families; there also has been a lack of consistent oropharyngeal sampling as a complement to cloacal sampling. In this study we looked for AIV hotspots associated with other shorebird species and/or with some of the larger congregation sites of shorebirds in the old world. We assembled and analysed a regionally extensive dataset of AIV prevalence from 69 shorebird species sampled in 25 countries across Africa and Western Eurasia. Despite this diverse and extensive coverage we did not detect any new shorebird AIV hotspots. Neither large shorebird congregation sites nor the ruddy turnstone were consistently associated with AIV hotspots. We did, however, find a low but widespread circulation of AIV in shorebirds that contrast with the absence of AIV previously reported in shorebirds in Europe. A very high AIV antibody prevalence coupled to a low infection rate was found in both first-year and adult birds of two migratory sandpiper species, suggesting the potential existence of an AIV hotspot along their migratory flyway that is yet to be discovered.
- ItemOpen AccessLinking avian communities and avian influenza ecology in southern Africa using epidemiological functional groups(BioMed Central, 2012-10-26) Caron, Alexandre; de Garine-Wichatitsky, Michel; Ndlovu, Mduduzi; Cumming, Graeme SThe ecology of pathogens, and particularly their emergence in multi-host systems, is complex. New approaches are needed to reduce superficial complexities to a level that still allows scientists to analyse underlying and more fundamental processes. One promising approach for simplification is to use an epidemiological-function classification to describe ecological diversity in a way that relates directly to pathogen dynamics. In this article, we develop and apply the epidemiological functional group (EFG) concept to explore the relationships between wild bird communities and avian influenza virus (AIV) in three ecosystems in southern Africa. Using a two year dataset that combined bird counts and bimonthly sampling for AIV, we allocated each bird species to a set of EFGs that captured two overarching epidemiological functions: the capacity of species to maintain AIV in the system, and their potential to introduce the virus. Comparing AIV prevalence between EFGs suggested that the hypothesis that anseriforms (ducks) and charadriiforms (waders) drive AIV epidemiology cannot entirely explain the high prevalence observed in some EFGs. If anseriforms do play an important role in AIV dynamics in each of the three ecosystems, the role of other species in the local maintenance of AIV cannot be ruled out. The EFG concept thus helped us to identify gaps in knowledge and to highlight understudied bird groups that might play a role in AIV epidemiology. In general, the use of EFGs has potential for generating a range of valuable insights in epidemiology, just as functional group approaches have done in ecology.