• English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  • Communities & Collections
  • Browse OpenUCT
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  1. Home
  2. Browse by Author

Browsing by Author "Briddon, Rob W"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Evolutionary time-scale of the begomoviruses: evidence from integrated sequences in the Nicotiana genome
    (Public Library of Science, 2011) Lefeuvre, Pierre; Harkins, Gordon W; Lett, Jean-Michel; Briddon, Rob W; Chase, Mark W; Moury, Benoit; Martin, Darren P
    Despite having single stranded DNA genomes that are replicated by host DNA polymerases, viruses in the family Geminiviridae are apparently evolving as rapidly as some RNA viruses. The observed substitution rates of geminiviruses in the genera Begomovirus and Mastrevirus are so high that the entire family could conceivably have originated less than a million years ago (MYA). However, the existence of geminivirus related DNA (GRD) integrated within the genomes of various Nicotiana species suggests that the geminiviruses probably originated >10 MYA. Some have even suggested that a distinct New-World (NW) lineage of begomoviruses may have arisen following the separation by continental drift of African and American proto-begomoviruses ∼110 MYA. We evaluate these various geminivirus origin hypotheses using Bayesian coalescent-based approaches to date firstly the Nicotiana GRD integration events, and then the divergence of the NW and Old-World (OW) begomoviruses. Besides rejecting the possibility of a<2 MYA OW-NW begomovirus split, we could also discount that it may have occurred concomitantly with the breakup of Gondwanaland 110 MYA. Although we could only confidently narrow the date of the split down to between 2 and 80 MYA, the most plausible (and best supported) date for the split is between 20 and 30 MYA - a time when global cooling ended the dispersal of temperate species between Asia and North America via the Beringian land bridge.
  • Loading...
    Thumbnail Image
    Item
    Restricted
    A novel species of mastrevirus (family Geminiviridae) isolated from Digitaria didactyla grass from Australia
    (Springer Verlag, 2010) Briddon, Rob W; Martin, Darren P; Owor, Betty E; Donaldson, Lara; Markham, Peter G; Varsani, Arvind; Greber, Ray S
    Mastreviruses (family Geminiviridae) that infect monocotyledonous plants occur throughout the temperate and tropical regions of Asia, Africa, Europe and Australia. Despite the identification of a very diverse array of mastrevirus species whose members infect African monocots, few such species have been discovered in other parts of the world. For example, the sequence of only a single monocot-infecting mastrevirus, Chloris striate mosaic virus (CSMV), has been reported so far from Australia, even though earlier biological and serological studies suggested that other distinct mastreviruses were present. Here, we have obtained the complete nucleotide sequence of a virus from the grass Digitaria didactyla originating from Australia. Analysis of the sequence shows the virus to be a typical mastrevirus, with four open reading frames, two in each orientation, separated by two noncoding intergenic regions. Although it showed the highest levels of sequence identity to CSMV (68.7%), their sequences are sufficiently diverse for the virus to be considered a member of a new species in the genus Mastrevirus, based on the present species demarcation criteria. We propose that the name first used during the 1980s be used for this species, Digitaria didactyla striate mosaic virus (DDSMV).
  • Loading...
    Thumbnail Image
    Item
    Restricted
    Recombination, decreased host specificity and increased mobility may have driven the emergence of maize streak virus as an agricultural pathogen.
    (Microbiology Society, 2008) Varsani, Arvind; Shepherd, Dionne N; Monjane, Ade´rito L; Owor, Betty E; Erdmann, Julia B; Rybicki, Edward P; Peterschmitt, Michel; Briddon, Rob W; Markham, Peter G; Oluwafemi, Sunday; Windram, Oliver P; Lefeuvre, Pierre; Lett, Jean-Michel; Martin, Darren P
    Maize streak virus (MSV; family Geminiviridae, genus Mastrevirus), the causal agent of maize streak disease, ranks amongst the most serious biological threats to food security in subSaharan Africa. Although five distinct MSV strains have been currently described, only one of these – MSV-A – causes severe disease in maize. Due primarily to their not being an obvious threat to agriculture, very little is known about the ‘grass-adapted’ MSV strains, MSV-B, -C, -D and -E. Since comparing the genetic diversities, geographical distributions and natural host ranges of MSV-A with the other MSV strains could provide valuable information on the epidemiology, evolution and emergence of MSV-A, we carried out a phylogeographical analysis of MSVs found in uncultivated indigenous African grasses. Amongst the 83 new MSV genomes presented here, we report the discovery of six new MSV strains (MSV-F to -K). The non-random recombination breakpoint distributions detectable with these and other available mastrevirus sequences partially mirror those seen in begomoviruses, implying that the forces shaping these breakpoint patterns have been largely conserved since the earliest geminivirus ancestors. We present evidence that the ancestor of all MSV-A variants was the recombinant progeny of ancestral MSV-B and MSV-G/-F variants. While it remains unknown whether recombination influenced the emergence of MSV-A in maize, our discovery that MSV-A variants may both move between and become established in different regions of Africa with greater ease, and infect more grass species than other MSV strains, goes some way towards explaining why MSV-A is such a successful maize pathogen.
  • Loading...
    Thumbnail Image
    Item
    Restricted
    Turnip curly top virus, a highly divergent geminivirus infecting turnip in Iran
    (Elsevier, 2010) Briddon, Rob W; Heydarnejad, Jahangir; Khosrowfar, Fakhrosadat; Massumi, Hossain; Martin, Darren P; Varsani, Arvin
    From 2006 onwards turnip crops in Fars province, Iran, have been noted with unusual leaf curling and vein swelling symptoms which are characteristic of the leafhopper-transmitted viruses of the genus Curtovirus (family Geminiviridae). Rolling circle amplification was used to clone viruses from five turnip isolates exhibiting leaf curl symptoms. Analysis of the sequences showed them to have >93% sequence identity and to be distinct from all other geminiviruses previously characterised. Analysis of the sequence of this virus, for which we propose the name Turnip curly top virus (TCTV), showed it to have a genome arrangement in the complementary-sense similar to that of curtoviruses (consisting of four overlapping genes) but only two open reading frames in the virion-sense (the curtoviruses encode three). The complementarysense genes are homologous to those of curtoviruses but show little sequence identity to their curtovirus homologs, with the exception of the product of the C4 open reading frame (ORF) which shows ∼70.6% amino acid sequence identity to the C4 of the North American curtoviruses, Pepper curly top virus and Beet mild curly top virus. For curtoviruses the C4 protein is a symptom determinant, which likely explains the similarity of TCTV symptoms to those of curtoviruses. In the virion-sense the predicted product of the V2 ORF of TCTV shows no significant similarity with any proteins in the databases whereas the product of the V1 ORF (encoding the coat protein [CP] of geminiviruses) shows low levels of sequence identity to the CPs of curtoviruses. These findings show TCTV to be a highly divergent geminivirus with similarities to viruses of the genus curtovirus. The significance of these findings, particularly the taxonomic implications are discussed.
UCT Libraries logo

Contact us

Jill Claassen

Manager: Scholarly Communication & Publishing

Email: openuct@uct.ac.za

+27 (0)21 650 1263

  • Open Access @ UCT

    • OpenUCT LibGuide
    • Open Access Policy
    • Open Scholarship at UCT
    • OpenUCT FAQs
  • UCT Publishing Platforms

    • UCT Open Access Journals
    • UCT Open Access Monographs
    • UCT Press Open Access Books
    • Zivahub - Open Data UCT
  • Site Usage

    • Cookie settings
    • Privacy policy
    • End User Agreement
    • Send Feedback

DSpace software copyright © 2002-2025 LYRASIS