Browsing by Author "Bredell, Helba"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemOpen AccessHIV type 1 subtype C gag and nef diversity in Southern Africa.(Mary Ann Liebert, 2007) Bredell, Helba; Martin, Darren P; Van Harmelen Joanne; Varsani, Arvind; Sheppard, Haynes W; Donovan, R; Gray, C; HIVNET028 Study Team; Williamson, CSeveral HIV-1 subtype C-specific gag- and/or nef-based vaccines are currently intended for clinical trial in southern Africa. Here we provide sequences of 64 gag and 45 nef genes sampled in Malawi, Zambia, Zimbabwe, and South Africa and assess the degree of southern African HIV-1 diversity that will confront these vaccines. Whereas reasonable phylogenetic evidence exists for geographical clustering of subtype C gag and nef sequences from various other parts of the world, there is little evidence of similar population founder effects in the southern African epidemic. The entire breadth of subtype C diversity is represented in the southern African genes suggesting there may be no advantage in producing region- or country-specific subtype C vaccines. We do not, however, find much evidence of intersubtype recombination in the Southern African genes, implying that the likelihood of vaccine failure due to the emergence of intersubtype recombinants is probably low.
- ItemOpen AccessIntra-and inter-clade cross-reactivity by HIV-1 Gag specific T-cells reveals exclusive and commonly targeted regions: implications for current vaccine trials(Public Library of Science, 2011) Zembe, Lycias; Burgers, Wendy A; Jaspan, Heather B; Bekker, Linda-Gail; Bredell, Helba; Stevens, Gwynneth; Gilmour, Jill; Cox, Josephine H; Fast, Patricia; Hayes, PeterThe genetic diversity of HIV-1 across the globe is a major challenge for developing an HIV vaccine. To facilitate immunogen design, it is important to characterize clusters of commonly targeted T-cell epitopes across different HIV clades. To address this, we examined 39 HIV-1 clade C infected individuals for IFN-γ Gag-specific T-cell responses using five sets of overlapping peptides, two sets matching clade C vaccine candidates derived from strains from South Africa and China, and three peptide sets corresponding to consensus clades A, B, and D sequences. The magnitude and breadth of T-cell responses against the two clade C peptide sets did not differ, however clade C peptides were preferentially recognized compared to the other peptide sets. A total of 84 peptides were recognized, of which 19 were exclusively from clade C, 8 exclusively from clade B, one peptide each from A and D and 17 were commonly recognized by clade A, B, C and D. The entropy of the exclusively recognized peptides was significantly higher than that of commonly recognized peptides (p = 0.0128) and the median peptide processing scores were significantly higher for the peptide variants recognized versus those not recognized (p = 0.0001). Consistent with these results, the predicted Major Histocompatibility Complex Class I IC 50 values were significantly lower for the recognized peptide variants compared to those not recognized in the ELISPOT assay (p<0.0001), suggesting that peptide variation between clades, resulting in lack of cross-clade recognition, has been shaped by host immune selection pressure. Overall, our study shows that clade C infected individuals recognize clade C peptides with greater frequency and higher magnitude than other clades, and that a selection of highly conserved epitope regions within Gag are commonly recognized and give rise to cross-clade reactivities.