Browsing by Author "Bleach, Gordon Phillip"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemOpen AccessAcceleration waves in constrained thermoelastic materials(1989) Bleach, Gordon Phillip; Reddy, DayaWe study the propagation and growth of acceleration waves in isotropic thermoelastic media subject to a broad class of thermomechanical constraints. The work is based on an existing thermodynamic theory of constrained thermoelastic materials presented by Reddy (1984) for both definite and non- conductors, but we differ by adopting a new definition of a constrained non-conductor and by investigating the consequences of isotropy. The set of constraints considered is not arbitrary but is large enough to include most constraints commonly found in practice. We also extend Reddy's (1984) work by including consideration of sets of constraints for which a set of vectors associated with the constraints is linearly dependent. These vectors play a significant role in the propagation conditions and in the growth equations described below. Propagation conditions (of Fresnel-Hadamard type) are derived for both homothermal and homentropic waves, and solutions for longitudinal and transverse principal waves are discussed. The derivations involve the determination of jumps in the time derivative of constraint multipliers which are required in the solution of the corresponding growth equations, and it is found that these multipliers cannot be separately determined if the set of constraint vectors mentioned above is linearly dependent. This difficulty forces us to restrict the constraint set for which the growth equations for homothermal and homentropic waves can be derived. The growth of plane, cylindrical and spherical waves is considered and solutions are discussed, concentrating on the influence of the constraints on the results.
- ItemOpen AccessThe interaction of periodic surface gravity waves with slowly varying water currents(1982) Bleach, Gordon Phillip; Brundrit, GeoffThe governing equations for interactions between surface gravity wavetrains and slowly-varying water currents are derived and the incorporation of Vocoidal water wave theory into this framework is discussed. The emphasis throughout is on the derivation of the general form of the governing equations plus a detailed discussion of the qualitative physical behaviour implied by the equations. Particular solutions are usually given only where they serve to clarify the general method or some physical feature of the analysis. The thesis proper is introduced by a derivation of wave kinematics on still water. A review of the kinematics and dynamics of an inviscid and irrotational fluid follows. The wave and fluid properties are then combined via the definition of wave integral properties. A derivation of the Airy and Stokes O(a2) wave theories is given and used to illustrate a number of points. Water currents (following or opposing the waves) are introduced via their influence on the wave-kinematics. The wave/current dynamics are then presented in two ways: firstly using a wave energy approach and secondly by introducing the wave action concept. Wave action is more convenient because it is a conserved quantity unlike wave energy. The general equations for two dimensional wave/current interactions are derived and discussed. At this point three topics are reconsidered: group velocity, momentum density in wave motion and Lagrangian mean forms of averaging. The general equations for wave/current interaction are shown to be compatible with the Vocoidal water wave theory and applications of the theory to wave/current problems are discussed.