Browsing by Author "Basitere, Moses"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- ItemOpen AccessAssessment of an Integrated and Sustainable Multistage System for the Treatment of Poultry Slaughterhouse Wastewater(2021-07-30) Dyosile, Phumeza Akhona; Mdladla, Cebisa; Njoya, Mahomet; Basitere, Moses; Ntwampe, Seteno Karabo Obed; Kaskote, EphraimThis paper assesses the performance of an integrated multistage laboratory-scale plant, for the treatment of poultry slaughterhouse wastewater (PSW). The system was comprised of an eco-flush dosed bio-physico pre-treatment unit for fats, oil, and grease (FOG) hydrolysis prior to the PSW being fed to a down-flow expanded granular bed reactor (DEGBR), coupled to a membrane bioreactor (DEGBR-MBR). The system’s configuration strategy was developed to achieve optimal PSW treatment by introducing the enzymatic pre-treatment unit for the lipid-rich influent (PSW) in order to treat FOG including odour causing constituents such as H2S known to sour anaerobic digestion (AD) such that the PSW pollutant load is alleviated prior to AD treatment. This was conducted to aid the reduction in clogging and sludge washout in the DEGBR-MBR systems and to achieve the optimum reactor and membrane system performance. A performance for the treatment of PSW after lipid reduction was conducted through a qualitative analysis by assessing the pre- and post-pre-treatment units’ chemical oxygen demand (COD), total suspended solids (TSS), and FOG concentrations across all other units and, in particular, the membrane units. Furthermore, a similar set-up and operating conditions in a comparative study was also performed. The pre-treatment unit’s biodelipidation abilities were characterised by a mean FOG removal of 80% and the TSS and COD removal reached 38 and 56%, respectively. The final acquired removal results on the DEGBR, at an OLR of ~18–45 g COD/L.d, was 87, 93, and 90% for COD, TSS, and FOG, respectively. The total removal efficiency across the pre-treatment-DEGBR-MBR units was 99% for COD, TSS, and FOG. Even at a high OLR, the pre-treatment-DEGBR-MBR train seemed a robust treatment strategy and achieved the effluent quality set requirements for effluent discharge in most countries.
- ItemOpen AccessBiodefoamer-Supported Activated Sludge System for the Treatment of Poultry Slaughterhouse Wastewater(Multidisciplinary Digital Publishing Institute, 2023-08-14) Dlangamandla, Cynthia; Ntwampe, Seteno K. O.; Basitere, Moses; Chidi, Boredi S.; Okeleye, Benjamin I.Poultry slaughterhouse wastewater (PSW) is laden with fats, oil, and grease (FOG), as well as proteins. As such, PSW promotes the proliferation of filamentous organisms, which cause foam formation. In this study, the production of biological defoamers (biodefoamers) uses a consortium with antagonistic properties, i.e., 1.39 L of wastewater/mL defoamers, as reported in our previous study, toward foam formers and their application in the treatment of PSW using a bench-scale activated sludge (AS)-supported treatment system consisting of an aeration and clarification tank. The foam produced was slimy, brown, and thick, suggesting the presence of Nocardia, Microthrix, and Type 1863 species in the PSW/AS wastewater treatment system. The bio (Bio-AS) and synthetic-defoamers (Syn-AS, positive control) supplementation, i.e., at 4% in the PSW/AS primary treatment stage (aeration tank) operated over ten days, resulted in 94% and 98% FOG and protein removal for the biodefoamers, respectively, when compared to 50% and 92% for a synthetic defoamer, respectively. Similarly, the Bio-AS treatment achieved 85.4% COD removal, while a lowly 51% was observed for the Syn-AS PSW treatment regime. Overall, the biodefoamers performed vehemently compared to synthetic defoamers, improving the PSW/AS system’s performance. It was prudent to hypothesize that the biodefoamers might have had FOG solubilization attributes, an assertion that needs further research in future studies. It was concluded that Bio-AS was more efficient in the removal of FOG, proteins, TSS, and COD in comparison to Syn-AS and negative control without supplementation (CAS).
- ItemOpen AccessPoultry Slaughterhouse Wastewater Remediation Using a Bio-Delipidation Pre-Treatment Unit Coupled with an Expanded Granular Sludge Bed Reactor(2021-10-29) Mdladla, Cebisa Thabo; Dyosile, Phumeza Akhona; Njoya, Mahomet; Basitere, Moses; Ntwampe, Seteno Karabo Obed; Kaskote, EphraimThe treatment of poultry slaughterhouse wastewater (PSW) with an Expanded Granular Sludge-Bed Bioreactor (EGSB) is hindered by the washout of activated sludge, and difficulties associated with the operation of the three-phase separator and the determination of the optimum up-flow velocity for sludge-bed fluidization. This results in a poor reactor functionality, and thus a poor performance due to pollutants such as fats, oil and grease (FOG) in the PSW being treated. Hydrolyzing the FOG content with a bio-delipidation, enzyme-based agent in a pre-treatment unit would significantly improve the effectiveness of the primary PSW treating system, i.e., the EGSB. In this study, PSW was pre-treated for 48 h with a biological mixture containing bioflocculants and bio-delipidation constituents. The pre-treated PSW was further treated in an EGSB. The PSW FOG, total chemical oxygen demand (tCOD) and total suspended solids (TSS) content were determined to assess the effectiveness of the pre-treatment process as well as to observe the remedial action of the combined pre-treatment-EGSB system. An increased treatment efficacy was noted for the combined PSW treatment system, whereby the tCOD, FOG and TSS removal averaged 76%, 88% and 87%, respectively. The process developed is intended for micro, small and medium poultry slaughterhouses.
- ItemOpen AccessPoultry Slaughterhouse Wastewater Treatment Using an Integrated Biological and Electrocoagulation Treatment System: Process Optimisation Using Response Surface Methodology(Multidisciplinary Digital Publishing Institute, 2022-08-03) Ngobeni, Philadelphia Vutivi; Gutu, Larryngeai; Basitere, Moses; Harding, Theo; Ikumi, DavidThe feasibility of a biological (EcoflushTM) and/or electrocoagulation (EC) treatment system in removing chemical oxygen demand (COD) and fats, oils, and grease (FOG) from poultry slaughterhouse wastewater (PSW) were studied. The response surface methodology (RSM) was used to identify the optimum operating condition for EC and its integration with EcoflushTM as a pre-treatment for the removal of lipids. The optimum operating conditions were obtained at a pH of 3.05, a current density of 66.9 A/m2, 74-min of treatment time, and without Ecoflush™. These conditions produced a high-quality clarified effluent after 92.4% COD reduction and 99% FOG reduction. The treatment with EcoflushTM only resulted in 85–99% FOG reduction, 20–50% COD reduction, and odourless effluent. However, the combination of both processes (EcoflushTM and EC) did not yield a significant difference (F test, p > 0.05) when compared to the performance of EC alone. Despite the low removal percentages of nitrogen and phosphorus, the present study proved that EC is an effective method for the removal of COD and FOG, rendering an effluent that meets the permissible discharge standards for the City of Cape Town. The novel Ecoflush™ also proved to be very efficient in the removal of FOG from PSW.
- ItemOpen AccessProximate, Physicochemical, Techno-Functional and Antioxidant Properties of Three Edible Insect (Gonimbrasia belina, Hermetia illucens and Macrotermes subhylanus) Flours(Multidisciplinary Digital Publishing Institute, 2022-03-28) Vanqa, Nthabeleng; Mshayisa, Vusi Vincent; Basitere, MosesIn this study, edible insect flours from Gonimbrasia belina (Mashonzha), Hermetia illucens (black soldier fly larvae) and Macrotermes subhylanus (Madzhulu) were prepared and assessed in terms of proximal, physicochemical, techno-functional and antioxidant properties. The crude protein of the edible insect flours varied between 34.90–52.74%. The crude fat of the insect flours differed significantly (p < 0.05), with H. illucens (27.93%) having the highest crude fat. G. belina was lighter (L*) and yellower (+b*) compared to H. illucens and M. subhylanus, and there was no significant difference (p > 0.05) in the redness (+a*) of the edible insect flours. There were no significant differences (p > 0.05) in foam capacity and foam stability of all three edible insect flours. Moreover, the antioxidant activity against the DPPH radical was low for H. illucens (3.63%), with M. subhylanus (55.37%) exhibiting the highest DPPH radical. Principal component analysis (PCA) was applied to the techno-functional properties and antioxidant indices of the edible insect flours. PC1 accounted for 51.39% of the total variability, while component 2 accounted for 24.71%. In terms of PC1, the FS, OBC and FC were responsible for the major differences in the edible insect flours. The findings revealed that edible insect flours are a good source of antioxidants and can be used as an alternative protein source and a potential novel food additive due to their techno-functional qualities.
- ItemOpen AccessTreatment of Poultry Slaughterhouse Wastewater (PSW) Using a Pretreatment Stage, an Expanded Granular Sludge Bed Reactor (EGSB), and a Membrane Bioreactor (MBR)(2021-05-08) Meyo, Honeil Basile; Njoya, Mahomet; Basitere, Moses; Ntwampe, Seteno Karabo Obed; Kaskote, EphraimThis study presents the biological treatment of poultry slaughterhouse wastewater (PSW) using a combination of a biological pretreatment stage, an expanded granular sludge bed reactor (EGSB), and a membrane bioreactor (MBR) to treat PSW. This PSW treatment was geared toward reducing the concentration of contaminants present in the PSW to meet the City of Cape Town (CoCT) discharge standards and evaluate an alternative means of treating medium- to high-strength wastewater at low cost. The EGSB used in this study was operated under mesophilic conditions and at an organic loading rate (OLR) of 69 to 456 mg COD/L·h. The pretreatment stage of this laboratory-scale (lab-scale) plant played an important role in the pretreatment of the PSW, with removal percentages varying between 20% and 50% for total suspended solids (TSS), 20% and 70% for chemical oxygen demand (COD), and 50% and 83% for fats, oil, and grease (FOG). The EGSB further reduced the concentration of these contaminants to between 25% and 90% for TSS, 20% and 80% for COD, and 20% and >95% for FOG. The last stage of this process, i.e., the membrane bioreactor (MBR), contributed to a further decrease in the concentration of these contaminants with a peak removal performance of >95% for TSS and COD and 80% for the FOG. Overall, the system (pretreatment–EGSB–MBR) exceeded 97% for TSS and COD removal and 97.5% for FOG removal. These results culminated in a product (treated wastewater) meeting the discharge standards.