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Abstract

Low frequency electromechanical oscillations in interconnected power networks have existed
over the past 40 years. These oscillations, whose frequencies range from 0.2 to 2.0 Hz, occur in
very heavy loading power systems. They also occur in systems having synchronous generators of
different inertia constants and interconnected by weak transmission lines. If they are not
sufficiently damped within a short period, they can cause a loss in synchronism of generators,
and even the breakdown of the entire system. The only practical way of eradicating or reducing
low frequency oscillations without resorting to costly operating resirictions is to use

supplementary excitation controls known as power system stabilizers (PSSs).

Power system networks are non-linear with operating conditions that change from time to time.
The big challenge with the design of power system stabilizers is its effectiveness over a wide
range of operating conditions. The conventional power system stabilizers (CPSSs), firstly
proposed by DeMello and Concordia, are designed based on the linearized system model at one
operating condition using classical approaches such as root locus and pole placement. CPSSs
designed base on these technique are unable to guarantee the overall system stability under

varying operating conditions.

To cope with the lack of robustness of the above-mentioned methods, various techniques such as
robust control based PSS, adaptive control based PSS and intelligent control based PSS were
developed. These techniques work quite well over a wide range of operating conditions, but they
also have some weaknesses. For example, robust control and adaptive technique use complex

algorithms, which makes the on-line implementation of the controller more complicated.

In recent years, to deal with the weakness of the above methods, an optimization technique using
genetic algorithm (GA) was proposed. GA is an optimization technique that uses models based
on natural biological evolution. GA provides a very good adaptive search mechanism, but the

technique is limited by the fact that the large memory to solve complex problems.

Another optimization tool similar to GA developed by the Central Research Institute of Electrical

Power Industry (CRIEPI), called CRIEPI’'s Power System Analysis Tools (CPAT) was also
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developed. CPAT is a software tool based on FORTRAN which was developed to optimize the
parameters of a power system controller such as PSSs, SVCs, etc. The optimization of the PSS

parameters was achieved using peak and night load conditions.

The above optimization tool would have been very useful for us to optimize the parameters of
PSS using several critically operating conditions. Unfortunately, due to the lack of complete
information from the user manual and poor assistance from the vendor, it was decided to develop
a simpler optimization program, which is based on MATLAB. The most simple optimization
technique, the steepest descent method based on eigenvalue sensitivity was adopted. The

objective function used is similar to that used in CPAT.

This dissertation is concerned with the optimal design of the power system stabilizer (PSS)
parameters using multi-power flow conditions. The main focus of this dissertation can be

summarized as follow:
1. The optimization of the power system stabilizer for one operating condition using CPAT

2. The development of a simple tool based on MATLAB for the optimization of the PSS

parameters using multi-power flow conditions

3. Investigation of the effect of varying the values of the weighting factor (ky), weighting

coefficients (C;) on the convergence of the program.
The overall conclusions are:

1. Eigenvalue analysis and time domain simulation results show that for the local
mode oscillations, the optimized PSS (OPSS) performs better than the

conventional PSS (CPSS) for the operating conditions considered.

2. It was found that the choices of both ki and Cj play a crucial role on the

convergence of the program and for determining the values of the PSS parameters.

3. Even though CPAT was only used for the optimization of PSS using one

operating condition, the results obtained thus far are satisfactory.
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Chapter 1

Introduction

1.1 Introduction

With the exponential increase of the consumption of electric power, synchronous generators have
been required to operate near the limit of their maximum capacity for long periods of time [1]-[3].
Moreover, since consumers are very far from generating power stations, power must be
transferred through long transmission lines. With the growing of interconnections in power
systems, there is a possibility of inherent low frequency electromechanical oscillations. These
oscillations raging from 0.2 to 2.0 Hz occur in very heavy loading power systems, or in systems
having synchronous generators of different inertia constants and interconnected by weak
transmission lines [1]. Nowadays, most power system interconnections are made through
alternating current (ac) transmission lines. Interconnected synchronous generators must be in
parallel (phase voltage must be the same) and operate at the same speed (generator must operate at
the same frequency). Two types of controllers that are crucial with these two scenarios (phase
voltage and speed) are the automatic voltage regulator (AVR) and the speed governor (GOV.) [4],
[5]. The former keeps the generator voltage constant whereas the latter maintains rotor speed’s
constant. High-response, high gain AVR can increase the synchronising torque coefficient,
however at the same time, the AVR introduces a negative damping component for high values of
external system reactance and a high power output of generator. Low frequency oscillations are
therefore the result of the system loading and strength of the transmission line on the system.
These oscillations reduce the maximum power transfer to the grid. If they are not sufficiently
damped within a short period, they can cause loss of synchronism of generators, and even the

breakdown of the entire system [1}], [2].

The above mentioned oscillations can be attenuated or eliminated by using supplementary control
known as Power System Stabilizers (PSSs) [6] to provide supplementary damping to inherent
electrometrical oscillations in the power system. PSSs are the most cost effective devices for
improving the stability of power systems. Conventional power system stabilizers (CPSSs) have

been used for many years by power industries to provide damping to the low frequency

1



oscillations. Generally, the design of CPSSs is done around the nominal operating condition and
is based on the linear model of the power system. CPSSs perform well around the nominal
operating conditions in a single machine infinite bus (SMIB) system, and in a multimachine
system. Nevertheless, since the actual power network is non-linear, and the operating conditions

change from time to time, the performance of the CPSS may deteriorate [1], [6].

To improve the performance of conventional PSS, some design approaches such as root locus {7]
and pole placement {8] have been proposed. PSSs designed based on these methods were still
inappropriate. These methods are based on the linearized system models; it means that they can
only be effective near the nominal condition. Therefore, the system stability over a wide range of
operating conditions still poses a challenge. In other words, robustness was not achieved with the

design of PSSs.

To cope with the lack of robustness of the above-mentioned methods, various techniques such as
robust control based PSS [9], [10], and adaptive control based PSS [11], [12] were developed.
These techniques work quite well over a wide range of operating conditions, but they also have
some weaknesses. For instance, due to the complexity of the algorithm needed to design robust

control and adaptive techniques, they are time-consuming methods.

In recent years, the weakness of the above methods had been addressed by using an optimization
technique called genetic algorithm (GA) [13]-[17]. Optimization methods are ways to find the
values of a set of parameters, which maximize or minimize some objective function of interest.
The objective function is a function, which determines how good a solution is. The limitation of

this technique is the large memory to solve complex problems.

New alternative methods to GA were introduced in Ref [18],[19] for the simplification of PSS
optimization. The authors developed a software tool based on FORTRAN called CPAT
(CRIEPI’s Power System and Analysis Tool) to optimize the parameters of power system
controllers such as PSSs, SVCs, etc. The optimization of the PSS parameters was achieved using

peak and night load conditions.

Originally, the aim of this research was to use CPAT for the optimization of the PSS parameters.
However, it could not be used adequately for the purpose of this investigation due to two main
reasons: Firstly, the lack of cooperation from the tool vendor. Secondly, the user manual is

compiled with incomplete information.



It was therefore decided that a similar optimization program based on MATLAB be developed to
optimize the parameters of the PSSs using multi-power flow conditions. The steepest descent

optimization [20]-[22]} method was adopted as in CPAT.

This dissertation is concerned with the optimal design of the power system stabilizer (PSS)
parameters using multi-power flow conditions. Investigations that have been carried out in this

dissertation are:

1. Firstly, we started with investigation of the optimization of the PSS parameters for one
operating condition using CPAT. The result obtained was satisfactory. As I have
mentioned earlier, we could not proceed with the optimization using multi-operating
conditions. To meet our target, an optimization program similar to CPAT was developed,

but in this case it is based on MATLAB [18].

2. Our second investigation focused on the effect of different values of the weighting factor
(kp) and weighting coefficients (C;) on the convergence and the divergence of the program,

the damping ratio ({), and the parameters of the PSS (G, T}, T»).
1.2 Scope and Limitations of the Research

In this the research, the investigations are done only on small signal stability with focus on local
mode oscillations. Simulation results using small disturbance are done only on a single machine
infinite bus (SMIB) system. Nevertheless, large disturbance are also considered to check whether
the optimized PSS may also improve transient stability. The work done for the optimization of the

PSS parameters using one operating condition is briefly highlighted in Appendix G.
1.3 Outline of the Dissertation

The rest of the dissertation is organized as follow:
Chapter 2 deals with low frequency electro-mechanical oscillation phenomenon.

Chapter 3 presents analytical techniques and a power system model for low-frequency

oscillations.

Chapter 4 constitutes the core of this dissertation. Here, the optimization technique used to



optimize the parameters of the PSS is described.
Chapter 5 is mainly concerned with the system model used in our investigation.

Chapter 6 presents eigenvalue analysis, time domain simulation results and discussion. Small and
large disturbance are used to illustrate the effectiveness of the optimized power system stabilizer.
Also are presented the simulation results showing the effect of the weighting factor (kr) on the
convergence of the program, the divergence of the program, the damping ratio and the parameters
of the PSS. The results for the optimization of PSS for one operating using condition using CPAT

1s shown in Appendix G.

Chapter 7 briefly discusses about the conclusions and drawn the recommendations for future

work.



Chapter 2

Electromechanical Oscillations and
Supplementary Excitation Control

2.1 Introduction

With the increase of load in the world, there was a need to interconnect synchronous machines to
meet the demand. Due to heavy loading, and weak transmission line interconnecting generating
stations and load units, low frequency oscillations in order of several cycles per minute started in
power systems. The stability of the system was therefore in danger because oscillations of
growing amplitude could cause system separation. In order to reduce or eliminate these
oscillations, power engineers designed a controller known as a power system stabilizer (PSS) [1],
[6]. The PSS designed using classical method was called the conventional power system stabilizer

(CPSS). With time, the CPSS has been improved using several techniques.
2.2 Low Frequency Oscillation Phenomenon

With the increase of the load, synchronous generators have been required to operate near the limit
of their maximum capacity for long periods of time [1], [2]. Moreover, since consumers are very
far from generating power stations, power must be transferred through long transmission lines.
Large rotor angles occur if the interconnected synchronous generators are very far from each
other. To maintain synchronism, generators must rely on their excitation system. Fast acting, high
gain automatic voltage regulators can enhance transient instability by increasing the synchronizing
torque [23]. However, in some cases, for instance heavy loading and high transmission line
reactance, the AVR reduces the damping of the electromechanical mode. This effect is the origin
of low frequency oscillations in a power system [1], [6]. The rotor angle of the synchronous
generator can oscillate following a large or a small disturbance. When there is a fault, a sudden
application or removal of loads, a sudden outage of the line, or a loss of generation, the
disturbance is said to be large [24]. If some or all generators lose synchronism, the system is in
the state of transient instability. When there are a gradual power changes, the disturbance is said
to be small [24]. In this case, the system is in synchronism, but the rotor angle oscillates. If the

system is dynamically unstable, theses oscillations may increase exponentially to cause the
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breakdown of the entire system unless some security measures are taken in time [1], [2], [24].

Two modes of low frequency oscillations are encountered. Firstly, the inter-area oscillation mode
that occurs when a group of generators in one area oscillates against a group of generators in
another area. Secondly, the local oscillation mode which takes place when an individual generator
oscillates against the rest of system. The frequency range of the inter-area oscillation mode is
between 0.1 Hz to 0.7 Hz, and the frequency range of the local area oscillation mode varies from

0.8 to 2.0 Hz. Low frequency oscillations in a power system are detrimental for many reasons [4]:
e They can wear the shaft of the synchronous generator.
e They can reduce the maximum power transfer to the grid.
e They can cause loss of synchronism of generators.

The effective way to reduce or eliminate low frequency oscillations is to alter the inherent system
characteristic, which causes them. A controller known as a power system stabilizers (PSSs) was
found by researchers to be the most economical device, which can be helpful to attenuate low

frequency oscillations [1], [6].

There are two options whereby the stabilizing signals can be introduced into the system. Firstly,
through the governor system. Secondly, through the excitation system. In this dissertation, only
the control through the excitation system is considered. The effect of the governor is assumed

negligible [11], [25].
2.3 Supplementary Excitation Controls

2.3.1 The Conventional PSS

The most common way to eliminate low frequency oscillations is to use supplementary excitation
control by means of power system stabilizers (PSSs). The concept behind the design of PSS is to
compensate the phase lag between the exciter input and the electrical torque. In this way, a
damping torque component which is in phase with the change of the speed of the rotor, is

generated to provide enough damping to the system to enhance stability [4].

Demello and Concordia [1] first investigate the effectiveness of a conventional PSS in damping

low frequency oscillations. In their work, they use shaft speed as input to the PSS. Subsequent to
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this work, many other scientists investigate other means of input signal such as ac bus frequency,
accelerating power, and electrical power. Various PSS designed based on single machine infinite
bus are found in literature [26]-[28]. The structure of a speed input CPSS consists of a washout
(i.e., high past filter), a gain, one or more phase compensations block, and an output limiter. [6].
The washout only allows the CPSS to respond during perturbation. The gain determines the
amount of damping produced by the stabilizer. The phase compensation block is represented by a
cascade of one or more first order lead-lag transfer functions used to compensate the phase lag
between the exciter and the electrical torque of the synchronous machine. The output limiter
limits the CPSS output signal at a specified range [5]. The advantage of the PSS is its simplicity
for designing and implementation. The standard transfer function, which is used as the

fundamental structure for the speed-input PSS, is given in equation (2.1).

sT, 1+sT, 1+ 5T, 1+sT,
14+sT 14T, 1+sT, 1+5T,

n+l

T(s)=G

(2.1)

where G is the gain, T,, is the washout time constant, T; and T4, are time constants for the lead-
lag circuit. These parameters are tuned based on conventional technique. For the sake of

simplification, it is assumed that the lead-lag blocks are identical with a known time constant

(I< —— < 10). From experience the washout time constant value can be fixed

n+l
(1sec < Tw < 20sec) [28]. The number of lead-lag block is chosen based on the phase to be
compensated. Generally one or two blocks are sufficient. CPSS can only perform well in the
operating condition it was designed for. The need to develop other techniques to improve its

performance over a wide range of operating conditions was indispensable.
2.3.2 New Design Techniques of PSS

Conventional PSSs have been utilized in power simply because they are easily designed and they
perform quite well in damping low frequency oscillations. However, they also have many weak
points. Due to the nonlinear nature of the power system and the continuous changes in system
conditions, conventional PSSs designed based only on linearized system models, cannot guarantee

the system stability under varying operating conditions [6].

To overcome the drawback of the conventional PSS, many efforts have been made to improve the

performance of PSSs. New techniques such as robust control, adaptive control and intelligence
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control have been proposed.

Some of the main approaches to robust control are Hoo, p-synthesis and linear quadratic gaussian
[LQG]. [9], [10], [11]. Linear quadratic gaussian (LQG) control design is a well-known method of
state feedback design, which combines linear quadratic (LQ) control theory to compute an optimal
gain vector and Kalman filter theory to generate state estimates. Hoo can be used to optimize the
PSSs parameters. Hoo deals with robust stabilization and disturbance attenuation problems.
However, the standard Hoo control theory does not assure robust performance under the presence
of all uncertainties in the system. With Hoo optimization control theory, some considerations like
performance, robustness, practical constraints such as limitation of control input signal, and noise
sensitivity reduction are taking into account. For p-synthesis design based PSS [12]; the
uncertainty in the system is modelled using the linear model of system. The main advantage of
robust control technique is that, it presents a natural tool for successfully modelling plant
uncertainties. It is therefore less sensitive to changes in operating conditions than conventional
controllers. The damping of oscillations is guaranteed over a wide range of power systems. The
shortcoming of the robust controller is the complexity of the algorithm, not only that but also the

higher order of controller.

Adaptive control [29] involves adjusting the control law used by a controller to cope with the fact
that parameters of the system under control are slowly time varying. The power system can be
continually scrutinized and the controller parameters can be updated in real time to sustain
specified restriction regardless of system parameter changes, variation in operation conditions and
with different small disturbances. Methods used for designing are self-tuning adaptive control
(STAC) and model reference adaptive control (MRAC). In STAC method, the system parameters
are on line identified using an algorithm called recursive least square method or maximum
likelihood estimator. The parameters are then incorporated in the control policy [30]. In MRAC
scheme, a reference model exhibiting the desired system response is included in the control
strategy. The error between the output of the actual system and that of the reference model is used
to update the controller parameter with the objective of the system output converging to the model
output [30]. Adaptive controllers are the solution to system parameters changes, variation of
operating conditions and small perturbations. Tuning is no longer necessary because it is
controlled by the algorithm. The weak point is the larger computational requirement. It makes the
design and the implementation of the controller complex. With the progress of computer

technology, new method like optimization contributed to chose better values of the PSS
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parameters.

For years, scientists have used optimization techniques to solve mathematical problems.
Optimizations techniques are iterative procedures which consist of adjusting parameters so as to
get the best set of values which can solve a desired problem. New control techniques based on
mathematical programming with the purpose to minimize or maximise a real function is called
optimization [31], [32]. In recent years, optimization has been applied to find optimum parameters
of PSS. There is multitude of optimizations techniques. The few popular methods are the genetic

algorithm (GA), the Newton-method and the steepest descent optimization technique.

The optimization of PSS parameter using a genetic algorithm (GA) has received increasing
attention. GA is an adaptive method search algorithm premised on the evolutionary idea of natural
selection and genetic. The search is done in the random manner within a defined search space. GA
algorithm technique is independent of the complexity of the parameters owing to the fact that it is
efficient when the search space is large, complex or poorly understood. It is only necessary to
state the objective and to place fixed limits on the optimized parameters. Introduction of GA helps
to obtain an optimal tuning for all PSS parameters simultaneously, which thereby takes care of
interaction between different PSSs. A large number of techniques of tuning using genetic
algorithms have been reported in present-day literature. Komsan, Yasunori, and Kiichiro [15]
have applied GA to tune multimachine power based on minimum phase control loop method.
Manisha and Pankaj [16] have presented a systematic approach for the design of a power system
stabilizer using genetic algorithm. The robustness of GA based PSS was also investigated.
Andreoiu and Bhattacharya [17] have proposed Lyapunov’s method based genetic algorithm for
robust PSS design. GAs are very useful if the objective function is undefined, however, if the
objective function is differentiable or continuous, other optimization techniques are more efficient

than GA. Some of the well known are:

Newton's method [20]-[22] is an efficient algorithm for finding approximations to the zeros of a
real-valued function. As such, it is an example of a root-finding algorithm. It can also be used to
find a minimum or maximum of such a function, by finding a zero in the function's first
derivative. Newton's method as an optimization algorithm converges faster towards a local
maximum or minimum than gradient descent. An accurate initial estimate is required to guarantee
the convergence. If necessary, a robust method for estimating a good starting point for the

Newton-Raphson method is the method of steepest descent.



The method of steepest descent [20]-[22] is simple, easy to apply. It is also very stable, if the
minimum points exist, the method is guaranteed to locate them after several number of iterations.
However, even with all these positive characteristics, the method has one very important
drawback; it generally has slow convergence. For badly scaled systems; i.e. if the eigenvalues of
the Hessian matrix at the solution point are different by several orders of magnitude, the method
could end up spending several number of iterations before locating a minimum point. It starts out

with a reasonable convergence, but the progress slows down as the minimum is approached.

The choice of the optimization technique depends also on the function to be is minimized, and the
expected result. In our investigations, the aim is to have good damping of the electromechanical
mode with simple optimization algorithm. Damping ratios of 0.15 and above are considered
satisfactory. Note that steepest descent optimization technique is the simplest of all optimization
techniques and it is less sensitive to the initial value. In this dissertation, the steepest descent

optimization technique has been chosen .[33].
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CHAPTER 3

Analytical Technique and Linearized System
Model

3.1 Introduction

Mathematical modeling and analytical techniques are crucial for the stability studies of power
systems. The model and method of analysis used to describe the behavior of the system must take
into consideration enough information that can describe the dynamics of the system. Power
system networks are always subjected to disturbances. The power system behavior subsequent to
such disturbances depends on the impact or the shock of the disturbance, its nature, its location,
and also the system operating conditions. Mathematical model relating non linear equations
(shown in Appendix A) are used to describe or analyze the stability of the system [25] . For large
disturbances such as faults, and major load change, non linear equations are used to describe the
system behavior. Non linear models represent a realistic representation, but the mathematic used
for the model is too complex. For small disturbances such as slow change in load, a linearized
model of the system is used for the purpose of simplifying the complexity of the mathematic.
Linearized equations has been useful to construct the A matrices, also called the plant matrix.

Eigenvalues obtained from the matrix, provide information for system stability [34].
3.2 Analytical Techniques

3.2.1 State-Space Representation

The system dynamic of a power system can be described using a system of first order non-linear

differential equations in as shown in equation (3.1)[2]:

x= f(x,ut) (3.1
where:

x is the column state vector of dimension n, u the column input vector of dimension r, ¢ is the

time, and fis a vector of non-linear function.
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The output variable that is observed on the system is expressed in the following form
y=g(x,u) (3.2)
where

y is the m x 1 output vector, and g is the m x I vector of nonlinear function relating state and input

variable to output variable [4]
3.2.2 Linearization Procedure

For a small disturbance, the differential equations describing the system response to the
disturbance may be linearized [2], [36]. By linearizing equation (3.1) near an equilibrium point

with the state variable x, and input u,, since the system is in equilibrium, we can obtain:

x= f(xy,uy) =0 (3.3)

By perturbing the system, both the state and the input variable deviate from the equilibrium point

by an amount Ax and Au . The new state must satisfy equation (3.1). Therefore

X=X+ Ax = fl(x, +AY), (uy +Au)] (3.4)

Since the perturbation is assumed to be very small, equation (3.4) can be expressed in terms of
Taylor’s series expression [2], [36]. By using the first order term only, the approximation for the

™ state variable x; is given by:

Xi=x0+Axi = f.[(x, +Ax), (g + Au)]

afo+ +%Ax +iA L+ +af" Au, 3.5

= filreta) + ox, ox, ou, ou,

Since xi0 = f;(x,,u,), we can have

YingvorZine + Loy ¢ 0 e

Ax; = A 3.6
ox, ox, ou, ou, o (5:0)
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Using the same procedure, the linearization of equation (3.2) yields

dg . dg .
J Au, +--+ £ Au (3.7)

og g ;
,:_g_/Axl+...+ g] a a ,
U, u

A
’ ox, ox

Ax, +

n r

The linearized forms of equations (3.6) and (3.7) are

Ax = AAx + BAu
(3.8)

Ay = CAx + DAu

where

A is the n x n plant matrix, B is the n x r input matrix, C is the m x n output matrix, D is the m x r

feed-forward matrix, Ax is the state vector , Ay is the output vector , Au is the input vector

The elements of the matrices are partial derivatives of the differential equations expressed as in

(3.9), evaluated at the equilibrium point.

- o o]
axl axn aul aur
A=| o o .. B=| - . ..
ox, ox, ou, ou,
(3.9)
(98, . 98] (08, 98 |
a'x] a'xn aul aur
C=| .- D=| ...
ox, ox, o, ou,

System stability is deduced by obtaining the eigenvalues of the state matrix A (shown in
Appendix D). Matrices B, C, and D play an important role for the mode of controllability [2],
[37].

3.2.3 Eigenvalues and Stability

Eigenvalues A4 of the state matrix can be obtained by solving the following equation:
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Au= Au (3.10)
foru#0

where u represents a column vector. From equation (3.10), we can have:
(A-ADu =0 (3.11)

The eigenvalues of the state matrix are obtained by solving for the roots of the characteristic

equation (3.12).
det (A-AI) =0 (3.12)
The eigenvalues may take two possible forms: real or complex.

A real eigenvalue can be either positive or negative. It corresponds to a non-oscillatory mode. A
negative real eigenvalue represents a decaying mode. A positive real eigenvalue represents

aperiodic instability {2].

A complex eigenvalue is always in conjugate pair. It corresponds to an oscillatory mode. The real
part of the eigenvalues gives the damping, and the imaginary part gives the frequency of
oscillations. A negative real part represents a damped oscillation, while the positive real part

represents oscillation of increasing amplitude [2]. For a given pair of eigenvalues noted as A :
A=07F jw (3.13)

The frequency of oscillation in Hz can be written
f=— (3.14)

The damping ratio is given by

g:i (3.15)

¢ determines the rate of decay of the amplitude of the oscillation. The higher the rate value, the

faster the oscillations are damped [2].

For large power systems, computation of eigenvalues using the characteristic equation is no
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longer applicable. Other methods such as QR algorithm are used [2]. Eigenvector play an

important role when dealing with sensitivity analysis.
3.2.4 Right and Left Eigenvectors

For every eigenvalue 4, , there is a corresponding right and left eigenvector u; and v; that satisfied

equations (3.16) and (3.17) for the right and left eigenvector respectively.

Au, =Au, fori=1,2, .. ,n (3.16)
vA=Av fori=1,2...n (3.17)

Each right eigenvector is a column vector with the length equal to the number of the state
variable; also each left eigenvector is a row vector with the length equal to the number of the state
variable. Right and left eigenvectors are not unique and they remain a valid eigenvector when

multiplied by a scalar [2].

The right eigenvector describes the activity of the state variables in a mode, while the left
eigenvector describes the contribution of the activity of a state variable to the mode. Right and left
eigenvectors corresponding to different eigenvalues are orthogonal, meanwhile if they are

corresponding to the same eigenvalues, the product of their respective vector is a constant [2}.
3.2.5 Eigenvalue Sensitivity

Sensitivity analysis is a useful tool in the design, control and measurement of many engineering
systems. It indicates whether the system is sensitive or not to some changes in the system’s
parameters. Here we will study only eigenvalue sensitivity of a matrix to changes in the matrix

elements. Each eigenvalue is a function of the power system variables [37], {38].

Consider a state matrix A of order n, where it is required to calculate a variation of A with
respect to a parameter & of a power system that has undergone a small change. Eigenvalue
sensitivity to the parameter & can be defined as in (3.18).
0A ou, ou, oA,
= u

—u, +A—=1—+

i i - “y (318)
Ja Jo Jda Jd«

by pre-multiplying both sides of (3.18) by the i"™ left eigenvector, we have equation (3.19)
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0A ou, ou, 04,

v, — U, + v, A— = v A —+v, —u, (3.19)
ox ox ox ox
By rearranging equation (3.19), we have equation (3.20)
ou, 04,
b A v a-anoy 4y, (3.20)
ox ox oo
where, / is the identity matrix
From the definition of the left eigenvector, we have equation (3.21)
A
via—Aui :viLui (3.21)
oo ox
From equation (3.21) we can obtain the sensitivity in equation (3.22) as:
1% aA U
oA N
o0& (3.22)
Ja v,

where

u, is the right eigenvector of A corresponding to A, and v, is the left eigenvector corresponding

to 4,.

3.2.6 Participation Factors

The sensitivity of the i™ eigenvalue to a change in the diagonal elemente,, of the state matrix

can be expressed as:

oA _ Vol (3.23)
aakk

Equation (3.23) is defined as the participation factor of the k™ state in the i™ mode. The
participation factor indicates the relative of the respective state in the corresponding mode. It is

very useful as a monitor for the location of power system stabilizer [37].
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3.3 Linearized System Model

Mathematical models involving a set of non-linear equations are used for the transient stability
analysis. For small oscillation instability, it is allowed to obtain a linearized model of the system.
The system represented by a generator using the 6™ order model consists of a field winding, one
damper winding on the d-axis, and two damper windings on the g-axis. By neglecting the effect of

the saturation, and by including the effect of the exciter, the linearized equations are as follows

[2]:

' wORfd wORfd
Ay, = I3 AW, — I3 Ay, +wyAe
fd fd
- W, R W, R
Ay, = Z ldAl//ad_ zlld Ay,
1d d
) _wORl
Al/llq = —L—q(AWIq —AV/aq)
lq
~ -w,R
AV/?_I/ = ——u-(AWZq _Al//aq) (324)
L,

' 1
Aw= '2_'1_;[ATm - K\, - Ky, - Ky, — Ky, —(K5 + KD)Aa)_ K6A5}

AS = w,Aw
AE, =KAo + KeAV/fd + Ko, Ay, +K62V/1q + Ks}‘/’m,

The constants K (given in Appendix C) depend on the network and the operating conditions.

17



Chapter 4

The Steepest Descent Optimization Technique

4.1 Introduction

Parameters of the PSS were optimized using the well known method called steepest descent
optimization technique. The steepest descent optimization method was adopted with an objective

function, which is based on eigenvalue sensitivity [38].

4.2 Steepest Descent

The steepest descent method can be described as follows: If a function F(X) is defined and

differentiable in a neighborhood of a point 4, then F(X) decreases fastest if one goes from f in
the direction of the negative gradient of F at #, -VF(f). It follows that, if in equation (4.1) we

have
0=p6-1nVF(f) @.1)

For 7> 0, and small number, then F (#) > F (). From this observation, we can start with a

guess Xg for a local minimum of F, and consider the sequence Xo, X, X»,...X, such that,
Xon1=Xo-17, VF(X,) 4.2)
where n > 0, V denotes the gradient of F(X,)

We have
F(Xy) 2 F(X;) =2 F(X5) = (4.3)

X, might converge to the local minimum. The value of the step size 77is allowed to change at
every iteration. In our study we will set 77 constant over the whole process to simplify the

algorithm. Figure 4.1 shows steps used in the steepest descent method [40].
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The flow chart shown in Figure 4.1 can be summarized as: The initial value must be guessed; it is
represented by the first block. In the second block, for the purpose of simplifying the algorithm,
the step size is set constant during the whole iteration process. The third block is taking care of the
calculation of the gradient of F (the gradient of F is the first derivative of F with respect to a
variable or a vector). From the decision block (fourth block), the norm of the gradient is
computed, if the norm is less than the predefined tolerance, the minimum point is reached,

otherwise the equation is upgraded in the fifth block, and new gradient values are calculated.

Initial guess X©

A 4

(k)

Chose '’ =1 = const.

Compute VF(X*))

Y

Stop, X® is the

minimum

4

[VFx®)| <e Yes

No

y

X(kH) — X(k) —ﬂVF(X(k))

Fig. 4.1 Flow Chart Showing Steps for the Steepest Descent Method
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4.3 Objective Function

An objective function is a function associated with an optimization problem which determines
how good a solution is. The computational problem in which the object is to find the best of all
possible solutions is called the optimization problem. If the best solution is the biggest value
obtained among the set of all possible solutions, it is referred as the maximum of the objective
function. However if it is the smallest value, it will be referred to as the minimum of the objective

function [41], [42].

In this investigation, we have adopted the same objective function F as in equation (4.4) as given
in [18], [19]. F evaluates power oscillation damping using eigenvalue which is obtained under
several operating conditions. F should be minimised, because if a power system is unstable or
poorly damped, the objective function F is large since the real part of the eigenvalue is also large

[18], [19], [43].

F= icj[ie*f‘kv} 4.4)

where

F is the objective function

m is the number of the j” power flow condition

n is the number of eigenvalue in i power flow condition

ks is a positive weighting factor

C; is the weighting coefficient for the j'h power flow condition

Arij is the i" real part of the eigenvalue under the j” power flow condition.
4.4 Procedure of Optimization

To stabilize a power system under different conditions, the objective function F in (4.4) must be
minimized using the eigenvalue sensitivity [38], [43]. The method used for this study is the

steepest descent method [21]-[23]. Eigenvalue sensitivity is used here for the minimization of F.
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From equation (4.4), we can obtain the gradient associated with parameter ¢ as indicated in (4.5).

m n al .
VF =).C, [z k, ——L et } (4.5)
= izl o
where
G
a=|T, | G,T;and T, are parameters of the PSS to be optimized
T?.

Note that, it was found that only one block of lead-lag circuit was sufficient in this investigation.

Ay
— is the eigenvalue sensitivity with respect to the elements of &

From equation (4.5), the eigenvalue sensitivity —

is calculated based on equation (3.22).

Equation (4.6) shows the relationship between eigenvalue sensitivity, the state matrix, and the

eigenvector.
0A j
oA, Vyj Uy
5| O (4.6)
Jo VU
where

A is the state matrix of ™ operating condition
u;j is the i"™ right eigenvalue of j"™ operating condition
vjj 1s the i left eigenvalue of ™ operating condition

VF can be regarded as a vector of three elements composed of three classes of eigenvalue

sensivities with respect to G, T and T, The vector components are as shown in (4.7)
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or |
oG
oF
JT,
or
o7, |

VF

The components of VF are seen as in equations (4.8).

A,

aF m n i koA
—=>C,| Yk, —Let
Xk

a_Fz y Cj|: y k a/lRij ekfﬂku}
1 i

= =

e[Sk, Lo g

a7, = d o7,
where

oF is the gradient of F with respect to the gain G

oF . : . .
—— is the gradient of F with respect to the time constant 7

1

oF . . : .
—— is the gradient of F with respect to the time constant 7>

2

4.7)

(4.8)

The equation of eigenvalue sensitivities with respect to G, T, and T5 as appearing in equation (4.8)

can also be obtained based on equation (3.22). Their relationships with respect to the state matrix

and eigenvector are shown in (4.9).
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o ]
oA, Vi 5 Wi
—2 — real part of 1 9G_©
oG Vil
o
V.. Uu..
aﬂ - /) T y
RV = real part of _on
a7, Vil
L J
]
V., —~U..
a/'{ - i T y
—2 = real part of 9o ~
a7, Vil
L i

(4.9)

The norm or the absolute value as in (4.10) can be used to determine the end of iteration for a

fixed value of the tolerance €. The tolerance is the permissible deviation from the ideal value of

the norm. Ideally, the minimum point is reached when the norm of the objective function is equal

to zero. In reality, it is not possible. Therefore, a positive tolerance close to zero is always set for

ending the iterations. The typical value of the tolerance is: 0.01< ¢ <0.005.

IVF|= \/VFGZ +VF,? +VF,*
where

“VF || is the norm of the gradient of F

VF, :—af-, VF,, :95, VF,, _9F
oG dT, a7,

(4.10)

The parameters of the PSS are updated as in equations (4.11). The iteration ends when the norm is

less or equal to the tolerance.
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G = Gg® _77VFG
7" =1, -nVF, (4.11)
7, =1, —nVF,

where
n is a step size value. The typical value used forhis 0.0/ <# <0.2
(k+1) and (k) indicate the number of iterations

Figure 4.2a and Figure 4.2b show the optimization procedure of the PSS parameters using the

steepest descent method based on eigenvalue sensitivity.

In Figure 4.2a, from the first block, the initial values of the OPSS is set. From the second block,
the parameters Pj, Qj, xej, Etj (j denotes the number of operating conditions) are obtained from
power flow analysis using CPAT. From the third block, the developed program calculates the
initial steady state of system variable (refer to Appendix B). The fourth block shows the
calculation of the K constants. With the results obtained so far, the program can compute the state

matrix of each condition in the fifth block.

From the first block of figure 4.2b, right and left eigenvectors are calculated. From the second
block, the eigenvalue sensitivity is computed with respect to each of the parameters to be
optimized. Only the first order derivative is applied. The third block consists of the calculation of
the objective function F where three sets of gradients are obtained. These are based on the three
parameters that should be optimized under each operating condition. From the fourth block, the

absolute value or the norm of each of the gradient with respect to the G, T}, and T, are calculated.

If the norm is more than the predefined tolerance, the initial set of parameters of OPSS must be
upgraded, and new matrices have to be obtained until the norm becomes less than the tolerance.
The program will automatically stop; the optimised values are therefore reached. In Appendix F,

the complete program can be found in a memory disk.
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OPSS initial values

A 4

Multi-Power Flow Conditions input

(Pij Xej Efj )
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Fig. 4.2a Flow Chart Showing the Optimization Procedure
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Left and Right Eigenvalue

calculation (uij Vi )

A 4

Eigenvalue Sensitivity Calculation

Wy Ay, Oy
3G o1, oT,

Y

Gradient Calculation

Update Parameter oF JF OF ).
3G or oT, )
(k=k+1 ! 4
A
A 4
Absolute Value Calculation
2 2 2
VF = [a_F) + a_F + a_F
oG o7, o7,
No

Fig. 4.2b Flow Chart showing the Optimization Procedure (cont’)



4.5 Choice of Weighting Coefficient (C;), Weighting Factor (ki),
Tolerance (¢), and Step Size (n)

The weighting coefficient (C;), the weighting factor (ky), the step size (n) and the tolerance (g) are
real constant numbers. Their choices have a huge impact when running the optimization program.
They must be properly chosen for the program to run and to get optimum parameters of the PSS.
At the moment, there is no standard way to chose them. Four weighting coefficients were chosen

by trial and error to converge the program.
4.5.1 Weighting Coefficient (C;)

Weighting coefficient can be defined in this context as a multiplicative factor to the basic
exponential function. Each operating condition is assigned a fixed normalized constant. The
choices of the weighting coefficients have an impact on the convergence of the program and the
absolute value of the gradient. Larger values of C;j reduce the number of iteration and increase the
absolute value of the gradient of F; smaller values of C; increase the number of iteration and
reduce the absolute value of the gradient of F. The damping ratio is also affected with the change
of weighting coefficients and factor. Larger weights were assigned to the most needed operating
conditions (i.e., less stable operating condition). The selected weighting coefficients are found in

the table 4.1

4.5.2 Weighting Factor (ki)

Weighting factor is a constant that is a multiplication factor to the real part of the eigenvalue Ag;
used as a variable in the objective function. The choice of the weighting factor is critical for the
convergence of the optimization program. k¢ is unique for all the selected operating conditions.
For each set of operating conditions, there might be a specific weighting factor over which the
program converges. Divergence will occur when an improper weighting factor is chosen. In our

investigation, we will choose the weighting factor 10 as in [18].
4.5.3 Step Size (y)

The step size n is very essential when using the gradient descent method. It also has a huge
control on the convergence of the program. When the step size is too large, there is divergence,

and when it is too small, the convergence is very slow. For an efficient iteration where the

27



convergence rate is fast, the optimal steepest descent step size must be determined for each
iteration. In general, it is time consuming and it needs more complex calculation by doing so.
Choosing a constant step size for all iteration simplifies the complexity of the algorithm. By
choosing a small value for the step size, the objective function converges, but it is slow. From
experience during our investigation, the choice of the constant step size during the whole iteration

process is chosen to be 0.01.
4.5.4 Tolerance (g)

The tolerance & in our program is a predefined constant which has the main purpose to end the
number of iterations. For values of € less than 0.004, the convergence rate becomes slow.
Therefore during our investigation £ =0.004 was set as the tolerance. The summary of other

constants are shown in Table 4.2

Table 4.1 Selected Weighting Coefficients

Weighting coefficient (C;) Weighting coefficient values
Cj:case 2 0.25
Cj:.case 3 0.25
Cycase 4 1.00
Cs:case 5 1.00

Table 4.2 Summary of Other Constants (kg, 1, €)

Other constants( k¢, 1, €) Constant values
Weighting factor (k) 10.00
Step size (n) 0.010
Tolerance (g) 0.004
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4.6 The Effect of the Weighting Factor (k;) and the Weighting
Coefficient (c;)

The choice of kf and C; are very crucial for the convergence of the program. The damping ratio
(), the eigenvalue (L) and the norm ||AF || are also influenced by the different real values assigned
to to kr and C;. The aim of our investigation is to locate the convergence domain that is the set of
real numbers where our program can converge. Also the divergence or even the static domain will

be located. Static here means that the program is not running at all because the matrix is singular.

From the domain (real numbers of k; or C;) where our program can converge, further

investigations will be done to observe the effect of krand Cjon A, C, G, T}, T; and "VF || )

Four scenarios were considered in our investigation: The first is the effect of ks on 2, (, and”VF || .

The second consist of the effect of kron G, T}, and T>, the third scenario is the effect of Cj on A, {,

and ||VF|| . The fourth is a case study with C; = 0.4 and k= 10 or k= 11.

4.6.1 Scenario 1: Effect of k¢ on A, {, and |VF|

In scenario 1, the real values assigned to k¢ are chosen randomly, based on the work already done
with the default value ( k¢ = 10), the search domain for k¢ is chosen such that 1 < ks <13. The

method consists of running the program by varying the values of k.
4.6.2 Scenario 2: Effect of k;on G, T}, and T,

In scenario 2, the same condition as in scenario 1 is applied. The real values assigned to ky are
chosen randomly, based on the work already done with the default value ( k¢ = 10), the search
domain for k¢ is chosen such that 7 < kr < 13. The methods consist of running the program by

varying the values of k¢

4.6.3 Scenario 3: Effect of C;on 2, {, and |VF|

The weighting coefficients are normalized; they are therefore defined in the set of real numbers
from O to 1. The real values assigned to C; are chosen randomly. The search domain for C; is
chosen such that 0 < C; < 1. The method consists of running the program by varying the values of

C;
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4.6.4 Scenario 4: Case Study for C; using ky=10 and k; =11

A case study will be used with C; = 0.4 for j = 2, 3, 4, and 5 with two different values of k; (10

and 11). This study illustrates the effect of kron the convergence of the program.
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Chapter 5

System Model

5.1 Introduction

A single machine connected to an infinite bus (SMIB) system is used in this investigation. The
closed-loop system is composed of a SMIB, and the power system stabilizer (PSS) that is
connected to the automatic voltage regulator (AVR). Multi-power flow conditions considered in

this investigation will also be analyzed in the open-loop condition.

5.2 System Model of SMIB

Et EB

P

Fig. 5.1 SMIB System Configuration

The system considered in this dissertation is a single machine connected to an infinite bus (SMIB)
as shown in Figure 5.1. Non linear equations are used to describe the dynamic of the power
system. For the purpose of the PSS design, these equations are linearized around the nominal
operating condition [1], [6], [24]. In this investigation, we will use the third order system that is a
simplified model (effects of damper windings are neglected). Appendix E shows the data for the
system model. The linearized equations are valid near the operating points and are given in

equation 5.1.
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& (A, - k.80)

Aw,. =
Vi 1+ T,

‘ 1
Aw= —IAT, —AT — K, Aw
w 2H( m e D )

AS = w,Aw (5.1)
AE, = KA+ KAy,
AT, =K AS+K,Ay,

Equations (5.1) are basic simplified equations used for the representation of the linear model of
the power system. K; to K¢ are Philips-Heffron constants; they depend on the network parameters
and the operating conditions. Figure 5.2 shows the linear model of a single machine connected to

an infinite bus with the Philips-Heffron constants [1], [2], [3], and [5].

=, AS
1 - 2rnf >
K,+s2H s
§ ¥
K4 Ks
K,
a vy —
K, Z K, Vref
Al//fu 1+ 5T, AEfd 1+sT,

\ 4

Fig. 5.2 A Power System Linear Model

5.3 Excitation System Model
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The excitation system is a source of direct current to the synchronous machine field winding. The
excitation system also controls the field current and the field voltage [2]. The core components of
the excitation system are the exciter and the regulator. The PSS controls the output of the exciter
via the regulator. Figure 5.3 shows the most commonly simplified version of AC Exciter type

ACA4A [4], [3].

The first block of Figure 5.3 represents the terminal voltage transducer, the second block is the

exciter.

A%
ref EFMAX

1 Vi K
1+sT, 1+T,

Et ——— Efd

Ermin

Fig. 5.3 Thyristor Excitation System with AVR
5.4 CPSS Design and Optimized Power System Stabilizer Structure

5.4.1 CPSS Design

The conventional power system stabilizer is designed by phase compensation at the nominal
condition. Table 5.1 shows the parameters of the nominal condition. Note that the generic
equation of the CPSS as seen in equation (2.1) consists of a of multi lead-lag network. Based on
the phase lag angle between the AVR and the electrical torque, a certain number of blocks will be

used. If 6, is the phase lag angle, generally, one block is used when 6, < -60°, two blocks are used

when -61° < 6, <-120° and more than two blocks are used for 6, > -120°[4], [6].
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Table 5.1 Parameters of the Nominal condition

Nominal Condition Values

Py Qo Xe | Of

0.4 pu 0.15 pu 0.25 pu 1.0267 pu

The following steps will lead us through the design of the CPSS by phase compensation [3].

(a) Calculation of the Electromechanical Mode Frequency Obtained at the Nominal

Condition.

From the program developed in this investigation, and from the open-loop, the eigenvalue for the
electromechanical mode is obtained as: A = 0.1736 * j8.0542. The natural frequency w, =
8.0542. Since the real part of A is too small compared to the imaginary part, we can approximate A

= s =]8.0542
(b) Calculation of the Phase Lag between A Vs and Ay s of the Electrical Loop.

The transfer function obtained between the AVR and the electrical torque is as shown in (5.2)

AlIIfd — KBKA
AV, sT,+1+K,K K,

G, = (5.2)

The phase lag of £6,; is obtained by substituting in equation (5.2) the value of s = j8.0542

Since Ka =200, K5 =0.2468, Kg = 0.3469, T; = —L (the values of K3 and K¢ are obtained from
A3y

the program developed in this work)

We have in polar coordinate, Gg = 2.1133 £~39.1099°, with the phase lag £, = -39.1099°
(c) Design of a Phase Lead Compensation 26, for £,

The ideal compensation is obtained when the summation of the phase lead angle and the phase lag
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angle is zero, as shown in equation (5.3).

L8, + 20, =0 (53)

Because £6;_is less than 60°, the transfer function of the phase lead network is only composed

of one block as in (5.4).

1+ 5T,
1+ T,

c=

5.4)

To get a positive angle value close to £6,; , a short program based on MATLAB (see Appendix

F) was written for this purpose. The iterative method is used because it is more convenient to
select the phase angle to be compensated and the time constant T, that corresponds.T; was set for
0.8, and the initial value for T, was set for 0.1, the step size, At was set to 0.0002. The flowchart

in Figure 5.4 gives all the steps.

A 4

\ 4

R T,
f T =038 ; G = !
1+ s(T," + Ar)

A

/ T, = 0.1

A

/
/s = j8.0542 /

No
A

/ Counter, k=0 / Yes

Fig. 5.4 Flowchart Showing Steps to Obtain a Phase Lead Compensation

k=k+1

From the simulation obtained after 100 iterations, the 76™ iteration was selected and we have the

following results:
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o Gc=3.7505+j2.9695

. £6, =383713°

e T,=0.115sec
(d) Design of the Gain, Gcpss
The equation for the gain is obtained as in equation (5.5)

2¢0,M
K,|Go ()G (s)]

Gcepss = (5.5)

By setting { = 0.3, and substituting all the other values (M= 7, K, = 0.7925, w, = 8.0542,

|G (s)| = 4.7837, |G, (s)| = 2.1133). We found Gcpss = 4.22. The CPSS parameters are listed in

table 5.2.

Table 5.2 CPSS Parameters

CPSS Parameters Values
Gepss 4.220
T, 0.800
T, 0.115

5.4.2 The Optimized PSS Structure

The block diagram of the optimized PSS that is used in this investigation is shown in Figure 5.5.
Results obtained from the CPSS design with a phase lag of less than 60°. It shows that only one
block lead-lag circuit for the structure of the OPSS is sufficient. The first block is the gain, the
second block is the washout circuit, and the third block represents the lead-lag block circuit. All
the blocks in the OPSS structure have the same function as in the CPSS structure. It is described

in section 2.3.1. Ao is the speed deviation which is used as input. The Vopss is the output voltage
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of the OPSS, Vpnax and Vpyin are the maximum and minimum voltage respectively [2].

VPmax
sT,
rw —s) Gopss " — 1+ 57, >
1+ sT, Voss
VPmin

Figure 5.5 OPSS Structure

5.4.3 OPSS Initial Values

In optimization or numerical analysis, the results obtained depend also on the choice of the initial
parameters. Depending on the optimization technique, the program might diverge or incorrect
results might be obtained when improper initialization is set. The sensitivity to initial guess value
differs from one optimization technique to another. The closer the initial value to the actual value,
the more accurate the result. But unfortunately, there is no rule to help guess a closer value. Based
on experience and since that steepest descent technique is less sensitive to the initial value, in this
investigation, we found by trial and error that the initial values in table 5.3 are suitable for our

optimization code.

Table 5.3 OPSS Initial Values

OPSS Initial Parameters Initial Guess Values
G%opss 0.001

T, 0.070 sec

TV, 0.014 sec
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5.5 Selected Operating Conditions

The objective in the thesis is to optimize the parameters of the PSS such that the controller can
simultaneously stabilize the family of system models known as multi-operating conditions. The
system models are obtained by varying the system’s parameters such as the transmission line xe,
the active and the reactive power P, and Q.. In this design, several operating conditions are
considered: The nominal condition (case 1) and the four most critical operating conditions (cases

2-5) are listed in Table 5.4,

The system is poorly damped for the nominal operating condition (case 1) as highlighted in Table
1. For case 2, the transmission line reactance was increased by 200% of the nominal value and the
real power was increased by 100 %, of the nominal power. For both case 3 and case 4, the real
power outputs are the same as in case 2, but the transmission line reactance were increased by
220% and 300% of the nominal value for case 3 and case 4, respectively. Compared to case 2,
case 5 can be considered to be heavily loaded, with an increase of about 160 % in real power and
300% in reactive power. It can be observed from Table 1 that as the transmission line x, increases,
the frequency f of the local oscillation mode decreases. For all the cases except the nominal case,

the system is unstable (negative damping).

Table 5.4 Open-Loop Operating Conditions

System x,(pu) P.[ pu] Q. [ pu] flHz] ¢ 1%]
Case 1 0.25 04 0.15 1.2819 2.15
Case 2 0.75 0.8 0.3 1.0860 -4.79
Case 3 0.8 0.8 0.3 1.0419 -5.63
Case 4 1.0 0.8 0.45 0.9357 -4.57
Case 5 0.8 1.04 0.6 1.0180 -8.10

f: frequency; ¢ : damping ratio
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Chapter 6

Simulation Results and Discussions

6.1 Introduction

The result obtained for the first investigation in this dissertation was done in three steps: Firstly,
the optimization program had to run and converge for the purpose of obtaining optimized
parameters of PSS (OPSS). Secondly, the closed-loop eigenvalue analysis of both the optimized
PSS and the conventional PSS were obtained. Thirdly, the time domain simulations for cases one
to five were done and compared using the OPSS and the CPSS under steady state stability and
transient stability. Also, the simulation results for optimization of the PSS parameters for one
operation using CPAT was highlighted in Appendix G. In this part of the dissertation, simulation
tools such as CPAT, MATLAB, and PSCAD utilized in this investigation are also discussed.

6.2 Software Tools Used in the Simulations

CPAT is used for this research. It is an optimization software tool for power system analysis and
assessment of bulk power systems developed by the Institute of Electric Power Industry (CRIEPI)
[19]. CPAT provides the user the possibility to run load flow under single and multi-operating
conditions, transient analysis, eigenvalues calculation and optimization under single and multi-
operating conditions. The maximum number of operating conditions is limited to five [19]. The
PSS parameters optimization method is based on eigenvalue sensitivities analysis. Sensitivity
analysis involves the study of the effect of parameter changes on the dynamics of the system. Each
eigenvalue is a function of the power system parameter [38]. CPAT comprises three modules,
which are L-Method, Y-Method and S-Method. The first module runs the power flow
computational program, the second one runs the transient stability calculation program, and the
last module runs the eigenvalue analysis and optimization program [19]. In CPAT, data are input
through cards that are segmented in eight columns. Each column gives instructions for the data to
be used [41]. In our investigation, CPAT was used for the calculation of power flow, and for the

optimization of the PSS using only one operating condition, which simulation result is found in
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appendix G.

The second tool used is MATLAB. “MATLAB developed by Maths Works Inc., is a software
package for high performance numerical computational and visualization” [44]. The most
important feature of the tool is its programming capability, which we have utilized in our research
work. The core work in our investigation was the optimization programs developed to optimize

the PSS parameters for several operating conditions using MATLAB [25], [44].

“PSCAD is the professional's simulation tool for analyzing power systems transients. It is also
known as PSCAD/EMTDC. EMTDC is the simulation engine, which is now the integral part of
PSCAD. PSCAD is most suitable for simulating the time domain instantaneous responses, also
popularly known as electromagnetic transients of electrical systems. The PSCAD Graphical
Interface greatly enhances the power and efficiency of your simulation. It allows the user to
schematically construct a circuit, run a simulation, analyze the results, and manage the data in a
completely integrated graphical environment” [45]. In this investigation, we have used PSCAD
to evaluate the effect of the optimized PSS (OPSS) and the conventional PSS when the power

system is subjected to transient stability.
6.3 Characteristic of PSSs

For comparison purposes, the CPSS was designed by a phase compensation method near the

nominal condition (see section 5.4.1). The parameters of the optimized PSS were obtained after

3404 iterations. The absolute value of the gradient ||VF || was equal 0.004. The parameters of the

OPSS are shown in Table 6.1. The bode’s plot of the CPSS and OPSS are shown in Appendix H.

Table 6.1 OPSS Parameters

Parameters of OPSS Value
Gopss 3.6180
Tiopss) 1.2422
Taopss) 0.2299
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6.4 Simulation results: Optimization for Multi-Operating Conditions

6.4.1 Eigenvalue Analysis

The eigenvalue obtained of the closed-loop system using the CPSS and the OPSS are listed in
table 6.2 and 6.3 respectively. It can be seen that for all cases, the optimised PSS provides a very
good damping for the local oscillation modes compared to the conventional PSS. Although the
CPSS was able to stabilize the set of all critical conditions, it provides less damping than the
OPSS. Some investigations have shown that the damping can be improved by increasing the gain,
but by doing so, the transient stability will be negatively affected. It is observed that the weak
transmission line provides the least damping (case 4), it means that the damping provided by the

PSSs is also limited by oscillation frequency.

Table 6.2 Closed-Loop System Eigenvalue (CPSS)

System Conventional PSS (CPSS)

A g
Case 1 —2.2883 % j5.7301 0.3709
Case 2 —0.9352 + j5.9326 0.1557
Case 3 -0.8234 + j5.7210 0.1425
Case 4 —0.5793 + j5.257 0.1095
Case 5 —-0.6467 £ j5.6338 0.1140

¢ : damping ratio, A :eigenvalue
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Table 6.3 Closed-loop System Eigenvalue (OPSS)

System Optimized PSS ( OPSS)

A g
Case 1 —4.2294 + j8.8146 0.4326
Case 2 —1.4741+% j5.9947 0.2388
Case 3 —1.2754 + j5.7370 0.2170
Case 4 - 0.8150 *+ j5.2204 0.1542
Case 5 —1.0228 £ j5.6578 0.1779

¢ : damping ratio, A :eigenvalue

6.4.2 Time Domain Simulation

6.4.2.1 Small Disturbance

The time domain simulations are performed to evaluate the performance of the system under
small disturbance. In the following simulation results, we will consider a small change in rotor
angle AJ of 5 degrees [6]. Figures 6.1 to 6.6 show the time domain response of the OPSS and

the CPSS for different operating conditions.

The system is operating at the nominal condition (case 1). It can be seen from Fig. 6.1 that all the
PSSs stabilize the system. OPSS and CPSS have almost the same overshoot. The settling time of
OPSS is slightly better than the settling time of CPSS. It is understandable in view of the fact that

the CPSS was designed at the operating condition of case 1.

Fig. 6.2 shows the time responses of the system when the transmission line reactance was
increased from 0.25 to 0.75 and the real power was increased from 0.4 to 0.8 (case 2). Although
the open-loop system without PSS was unstable, OPSS and CPSS have stabilized the system.
CPSS has an overshoot of about 4.5x10"4, a settling time of about 4 seconds, OPSS has an

overshoot of about 3x10™* and a settling time of about 2.5 seconds.
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[rom 0.25 o 0.8, und the power lrom 0.4 Lo 0.8 {casc 3). CPSS has an overshool of aboul Sx 107,
and a settling iime of abowt 4.5 seconds. OPSS has an overshoot of about 33107 and a seltling

time ol about 3 seconds. Case 3 has become a shehilly worse 1In terms of overshoot compare to
Lhkiy

casc 2.

Fig. 6.4 shows the time response of the system when the trunsmassion line has been inereased to
.0 (ease 4). It can be wbserved that the performance of the CPSS degrades with larger overshoot,
(PSS has an overshoot of aboul $x107, and a settling time of about 6 scconds, and OPSS has an

overshoot of about 2x 107, and a settling time of about 4 seconds,

Fig. 6.3 shows the ime response of the system when the power has been incrcased 1o 1.04 (case3).
It can be noticed that the performance of the CPSS in terms of overshoot degrades, as in case 3
with the weak line. ©rss has an overshoot of ubout 5x107, and a settling time of about 6.5

scconds. OPSS has an overshoot of about 1x 107, and o settling lime of ahout 4 seconds,
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6.4.2.2 Large Disturbhance

The time domain simulations were also performed to cvaluate the performance of the system
under large disturbances, In the fellowing simulations, we will consider for case 1. a three-phase
short circuit [ault at pomt P ol Figure 3.1 on fransmission line xg for a period of 300 ms,
followed by the disconnection of the line. The simulations for Case 2 to 4 is achicved by a shart
circuit fault at point P of Figure 5.1 on transnussion line x., tor a period of 100 ms without line

discomnection. The short circult for Case 5 lasted for a period of 70 ms,

1t is noteworthy that the period mentivned above is the [aull time beyond which the stabilily of the
system cannet be recovered. Under nominal conditions, the system can withstand a longer period
because the load angle is low {about 27 depree). For cuses 2 to 4 they are very crtical, owing to
the faet that their load angles are very high (above 60 degree), For case 5. the faull time is shorter

than case 2 to 4, because the load angle 15 high and the sysiem 1s heavaly loaded.

Figures 6.6 1o 6,20 show the time domain respenses of the OPSS and the CPSS for ditferent

operating conditions.

Using the nominal condition {case 1). the large perlurbation was obtained by applying a three
phase shart circuit at the terminal on (ransrission line xg al time | = 2 seconds. The fault lasted
for a period of (0.5 scconds. The line was disconneeted aflerwands. Figure 6.6 shows the system’s
response of the speed deviation under large disturbance. Tt cam be seen that CPSS and the OPSS
have the same overshoot and almost the same settling time. At nominal conditions, the
performance of the OPSS is the same as the CPSS because the CPSS was designed to perform

well al the nominal condition.
The real power response of [gure 6.7 shows that the OPSS is slightly better than the CPSS.

From Figure 6.8, the terninal voltage response shows that the perlormance of OPSS und CPSS
are almost identical. The performance difference between CPSS and OPSS is almost negligible

beeause the CPSS was designed at the nomunal condition,

Fig. 6.9 shows the lime response of speed deviation of the system when the transmission ling
reactance was increased from 0.23 w 0.75 and the real power were increased (rom 0.4 10 0.8 {case
2}. The three-phase fault was applied on transmission lne xe2 for a period of 100 ms without line

disconnection. The OPSS and CPSS have the same overshoot, QPSS has a scttling tinie of about 6
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sceonds, and CPSS has a scttling time of more than 6 seconds.

The real power response of ligure 6.10 shows that the system regains its stabality at the initiagl

power with OPSS performing better than CPSS.

The terminal voltage response ol Figure 6.11 shows that the OPSS performs slightly better than

the CPSS, Overall, the three simulations show that the QPSS 15 beller than the CPSS,

Fig. 6.12 shows the time responsc of speed deviation of the sysien when the transmission line has
been increased 1o from 0.25 1o 0.8, and the veal power from 0.4 to 0.8 (case 3). The three-phase
fault was applied on transmission line xe2 at P for a period of 100 ms withowt line disconnection,
The OPSS and CPSS have the same overshoot. Tt can be scen that the settling time of the OPSS s

better than the settling tine of the CPSS, but it takes a longer peniod in case 3 as compare 0 case

o

The power responsce of tigure 613 also conlirms a slow settling time, For example, for case 3, at &
seconds. both the CPSS and the OPSS are still oscillating, whereas in case 2. at 6 seconds, both

the PSS and the QPSS are about to settle down.

The terminal voltage of figure 6.14 shows that both the QPSS performs slightly better than the

PSS, In the overall performance, the OPSS enhance the sysiem beiter than the CPSS.

Lig. 6.15 shows the tme response ol speed deviation of the system when the transmission hine has
been increased to 1.0 (case 4). The three-phase Fault was applied on transmission line xe2 at P for
a period of 100 ms without line disconnection, The OPSS and CPSS have the same overshoot, It
can be observed that the performance of the CPSS and the OPSS degrade with larger seltling time
as the line reactance increases, From the Figure. it can be seen that the settling time of the OPSS
is better than the setiling time of the CPSS, Tlere, the seltling tine is much bigeer compare to case

2, and casc 3.

From Figwe 6.16, the response of the real power also confirms the result obtained with the specd

deviation.

In Figure 6.17, abserving the response for the lerminal voltage, we can now confirm that the
performance of the QPSS s slightly better than the CPSS as compared 1o case 1 10 case 3 where,

QPSS and CPSS were equally pertorming. Also i this case, the QPSS iy better than the CPSS in
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increased to 1.04 (case3). The three-phase faull was applied on transmission fine xe2 ai P for a
period of 70 ms withowt line disconnection. The QPSS and CPSS have the same overshoot. It can
be observed that although the fault time is shorter, the performance of the UPSS and the OPSS
deuvrade more and more with larger settling nime as compared o case 2 to 4. 1t can be seen that the

settiing ime of the OPSS s better than the setthng time of the CPSS,

Figure 6.19 shows that the power vesponse of case 5 is similar to case 4 with OPSS performing

better than CPSS,

The voltage response from Figure 6.20) detenorates, also showing that OPSS 15 performing well

compare to the CPSS.

In overall conclusion, 11 can be seen that as the line reaclance or the power mcrease. vollage is
affected by the large disturbance as in case 4 and 5. The OPSS is also shghily improving the

voltage stability of the system,

speed deviation [rads)
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Fig. 6.6 Speed Deviation responses for Case |
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6.5 Simulation results: Effect of the Weighting Factor (k;) and the
Weighting Coefficient (c;)

The simulation results obtained for different scenarios are presented here. Random real numbers
were assigned to kr and C; in order to locate the convergence domain of the program. The program
behavior will be studied based only on random numerical values chosen. In this investigation, the
program was set to run for 25 iterations. The results shown here are solely based on the 25h

iteration.
6.5.1 Scenario 1: Effect of the Weighting Factor (kj) on A, {, and || VF ||

Table 6.4 to Table 6.6 show the simulation results obtained under 25 iterations for values of k¢
equal to 1, 2, and 3. It can be seen that the real part of eigenvalue converges, but the absolute

value of the gradient and the damping ratio have increase as k¢ increases.

Table 6.7 shows the status of the program for values of ke (4,8). The program in this case does

not converge due to the singularity of matrices. The absolute value of the gradient is infinite.

Table 6.8 to Table 6.14 show the simulation results obtained under 25 iterations for values of k¢
equal to 9, 10, 11, 11.7, 12, 12.1, and 12.2. It can be seen that the program converges and the
value of the absolute gradient decreases. The damping ratio decreases for values of ks equal 10
and 11, and start to increase for values of k¢ equal to 11.7, 12.1 and 12.2. For the value of k¢ equal

to 12.2, the best damping ratio is obtained.

Table 6.15 shows that, for values of ks greater than 12.2, the matrices become singular, and the

absolute value of the gradient F is infinite. The program cannot therefore run.

Figure 6.21 to 6.23 clearly indicate that the program converges for 1 < k; < 4 with increasing
norm. For 4 < k¢ <8, and for ky > 12.2, the program is static (singular matrix), and will not even
run. For 9 <k;<12.2, the program converges with a decreasing value of the norm. More iterations

need to be done to know whether the program will convergence or not.

56



Table 6.4 Simulation for Scenario 1: (ke=1)

k=1 A g IVE|
Case 2 0.3100 = j6.8202 -0.0454 0.6166
Case 3 0.3526 * j6.5436 -0.0538 0.6166
Case 4 0.2569 = j5.8759 -0.0437 0.6166
Case 5 0.5038 * j6.3940 -0.0785 0.6166

Table 6.5 Simulation for Scenario 1: (k= 2)

k=2 M ¢ I VF
Case 2 0.2496 = 6.7880 -0.0368 2.5409
Case 3 0.2965 £j6.5128 -0.0455 2.5409
Case 4 0.2194 +j5.8496 -0.0375 2.5409
Case 5 0.4497 +j6.3654 -0.0705 2.5409

Table 6.6 Simulation for Scenario 1: (ky=3)

k=3 A ¢ | VF
Case 2 0.0647 % j6.6741 -0.0097 4.6405
Case 3 0.1266 + j6.4023 -0.0198 4.6405
Case 4 0.1094 = j5.7539 -0.0190 4.6405
Case S 0.2880 = j6.2617 -0.0460 4.6405




Table 6.7 Simulation for Scenario 1: (4 < kf < 8)

4 <kf <8 Status of the program | || VF ||
Case2to4 Not running (Singular | Infinite

Matrices)
Table 6.8 Simulation for Scenario 1: (k;=9)
ke=9 M ¢ I VF
Case 2 -0.9941 +j6.6317 0.1482 0.2712
Case 3 -0.8744 £ j6.3248 0.1369 0.2712
Case 4 -0.6038 +j5.5998 0.1072 0.2712
Case 5 -0.6565 + j6.1787 0.1057 0.2712
Table 6.9 Simulation for Scenario 1: ( ks =10)
k=10 A ¢ I VE|
Case 2 -0.9145 £ j6.2950 0.1438 0.1717
Case 3 -0.7761 £ j6.0301 0.1277 0.1717
Case 4 -0.5003 +j5.4358 0.0917 0.1717
Case 5 -0.5648 +j5.9205 0.0950 0.1717
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Table 6.10 Simulation for Scenario 1: (k= 11)

ke =11 ) g I VF
Case 2 -0.8251 + 6.3999i 0.1279 0.2607
Case 3 -0.7062 + 6.1422i 0.1142 0.2607
Case 4 -0.4775 + 5.53571 0.0859 0.2607
Case 5 -0.5108 + 6.0271i 0.0845 0.2607
Table 6.11 Simulation for Scenario 1: (k¢ = 11.7)

ke =117 M ¢ I VF
Case 2 -0.8648 + j6.5956 0.1300 0.0881
Case 3 -0.7645 +j6.3297 0.1199 0.0881
Case 4 -0.5595 +£j5.6710 0.0982 0.0881
Case 5 -0.5776 + j6.1993 0.0928 0.0881
Table 6.12 Simulation for Scenario 1: ( k¢ = 12)

ke =12 3 ¢ I VF
Case 2 -0.9922 +j6.3478 0.1544 0.0431
Case 3 -0.8913 +j6.1018 0.1445 0.0431
Case 4 -0.6569 + j5.5135 0.1183 0.0431
Case 5 -0.7085 +j5.9843 0.1176 0.0431
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Table 6.13 Simulation for Scenario 1: ( k= 12.1)

k= 12.1 M 4 I VF
Case 2 -1.0312 £36.2474 0.1629 0.0317
Case 3 -0.9308 £ j6.0085 0.1531 0.0317
Case 4 -0.6884 +j5.4480 0.1254 0.0317
Case 5 -0.7501 +j5.8960 0.1262 0.0317
Table 6.14 Simulation for Scenario 1: ( k¢ = 12.2)

ke=12.2 M ¢ I VE
Case 2 -1.0700 £ j6.1500 0.1717 0.0218
Case 3 -0.9700 £ j5.9200 0.1621 0.0218
Case 4 -0.7200 = j5.3800 0.1329 0.0218
Case 5 -0.7900 + j5.8100 0.1353 0.0218

Table 6.15 Simulation for Scenario 1: ( k¢ >12.2)

ke>12.2

Status of the program

IVE|

Case2to4

Not running (Singular

Matrices)

Infinite
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6.5.2 Scenario 2: Effect of the Weighting Factor (k¢) on G, T; and T,

The weighting factor also affects the gain G of the PSS. The gain provides a reasonable amount of

damping. By increasing the value of k¢, the gain can be controlled. For example for k; = 10, at the

second iteration, the gain G = 3.5221. After 3404 iterations, the gain obtained is 3.6122. Table

6.16 and Figure 6.24 show different values of the gain for different values of k. Note that for k¢

€ (4,8), there is no gain due to the singularity of matrices, also the same for k; greater than 12.2.

It is also seen that, the lead lag time constants ratio (T/T5) decrease for values of k=1 to 2 and

increase again for k¢ = 2 to about 4. Also for kf =9 to 11.7, T1/T, decreases and start to increase

again for k¢ = 11.7 to 12.2. Figure 6.25 can clearly show that ky = 2 and ky = 11.7 are the local

minimum.

This case is helpful because a constraint is always set on the lead-lag time constant (1 < T/T;

<10) to prevent the amplification of high frequency noise.

Table 6.16 Scenario 2: (1 <k;<12.2)

ks G T T, Ti/T,

1 0.1413 0.0966 0.0128 7.5468

2 0.3687 0.3295 0.0623 5.2889

3 0.5309 1.0111 0.1071 9.440

4 <kf<8 Singular Matrix Singular Matrix | Singular Matrix Singular Matrix
9 2.2522 1.8780 0.3378 5.5595

10 3.6082 0.7564 0.1735 4.3590

11 6.3610 0.2932 0.1042 2.8100

11.7 9.5674 0.1098 0.0881 1.2460

12 11.3980 0.1046 0.0159 6.5786
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12.1 12.0826 0.1069 0.0102 10.4800
12.2 12.8079 0.1095 0.0059 18.5500
ke>12.2 Singular Matrix Singular Matrix | Singular Matrix Singular Matrix
15 T T T 1 T I
< 10+ 8
‘©
o
w
%
o gl ]
0 ——t——— 1 I | ! |
0 2 4 6 8 10 12 14
kf
Fig. 6.24 Effect of k; on the PSS Gain
20 T li T T T T
15+ .
Al
l_
~ 10+ 2
" \/
5r A
0 ! I | 1 L I
0 2 4 6 8 10 12 14
kf

Fig. 6.25 Effect of k¢ on the Time Constants
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6.5.3 Scenario 3: Effect of the Weighting Coefficient (C;) on A, {, and || VF ||

The weighting coefficients also play a crucial role for the convergence of the program. A proper

choice of the weighting coefficients can make the program converge. This investigation shows

that appropriate combination values of weighting coefficients and the weighting factor lead to the

convergence of the program. Only C, is used as a variable in this investigation, where 0.25 < C, <

1. The remaining weighting coefficients are constant (C3= 0.25,C4 =Cs =1)

Tables 6.17 to 6.20 and Figures 6.26 to 6.28 show the effect of C, used as a variable, while the

remaining weighting coefficients are fixed. We observed a decrease in the damping ratio, an

increase in the norm value, and a decrease in the real part of the eigenvalue when C, increases

from 0.25t0 1.0

Table 6.17 Scenario 3: C, =0.25

C,;=0.25 A £ || VF ||
Case 2 -0.9145 £ j6.2950 0.1438 0.1717
Case 3 -0.7761 +j6.0301 0.1277 0.1717
Case 4 -0.5003 +j5.4358 0.0917 0.1717
Case 5 -0.5648 +j5.9205 0.0950 0.1717
Table 6.18 Scenario 3: C; =0.50

C,=0.50 M g | VF Il
Case 2 -0.9063 +j6.2894 0.1426 0.1827
Case 3 -0.7686 + j6.0262 0.1265 0.1827
Case 4 -0.4956 + j5.4350 0.0908 0.1827
Case 5 -0.5585 £j5.9173 0.0940 0.1827

64




Table 6.19 Scenario 3: C, =0.75

C,=0.75 M ¢ I VF
Case 2 -0.8994 + j6.2848 0.1417 0.1944
Case 3 -0.7624 +j6.0231 0.1256 0.1944
Case 4 -0.4918 = 5.4347 0.0901 0.1944
Case 5 -0.5533 +j5.9148 0.0931 0.1944
Table 6.20 Scenario 3: C,=1.00

C,=1.00 M g I VF
Case 2 -0.8947 +36.2805 0.1410 0.2047
Case 3 -0.7583 +j6.0201 0.1250 0.2047
Case 4 -0.4894 +35.4341 0.0897 0.2047
Case 5 -0.5501 +£j5.9123 0.0926 0.2047
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6.5.4 Scenario 4: Effect of C; with k; = 10 and k; =11

Table 6.21 shows simulation results for values of C; = 0.4 for j = 2,..5 when k¢ = 10. Table 6.22

shows simulation results of C; = 0.4 for j = 2,..5 when k¢ = 11. It is seen from the first simulation

that the program is blocked, however, when k¢ is changed to 11, the program successfully

converges

Table 6.21 Scenario 4:

C2= C3= C4= C5=0.4 and kf= 10

C,=C3=C4=Cs=04

Status of the program | || VF ||

with k¢ = 10
Case2to 5 No running (singular | infinite

matrices)
Table 6.22 Scenario 4: C;=C3=C4=C5=0.4 and k¢ =11
C=C3=Cy=C5=04 | A € | VF|
with ke =11
Case 2 -0.7114 + 6.3383i 0.1115 0.2115
Case 3 -0.5897 + 6.07691 0.0966 0.2115
Case 4 -0.3752 + 5.4802i 0.0683 0.2115
Case 5 -0.3918 + 5.96311i 0.0656 0.2115
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6.5.5 Conclusion

The results of the effect of the weighting coefficient (C;) and the weighting factor (kf) have been
able to determine the convergence domains. Both C; and k; have a great influence on the
convergence of the program. In this investigation, only 25 iterations were used to study the
program behavior due to small changes in k; and C; values. More iteration need to be considered,
the program might converges for 25 iterations and diverges beyond 25 iterations. There is no
analytical method to select the optimum weighting coefficients and weighting factor. By
experience, good sampling of real numbers can lead to finding the convergence domain of the

program. It is time consuming and tedious exercise to move from one number to the next.
6.6 Simulation Results: Optimization for One Operating condition

Investigations done for the optimization of one operating condition using CPAT was the first step
in our research toward the optimization of multi-operating conditions. The results obtained were
very satisfactory. A brief procedure and results obtained ‘in this investigation are shown in
Appendix G. Also, further work such as power flow, eigenvalue analysis and transient analysis are

also discussed.
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CHAPTER 7

Conclusion and Recommendation

7.1 Conclusion

In this work, an effort has been made to develop a simple software tool based on MATLAB for
the optimization of PSS parameters using several critically operating conditions. In the
optimization process, the emphasis was to achieve a minimum closed loop performance over
multi-operating and system conditions. The optimized parameters of the PSS have been obtained

using the steepest descent optimization technique based on eigenvalue sensitivity.

Extensive simulation results based on a single machine infinite bus (SMIB) system have been
presented for specified number of operating and system conditions to establish the effectiveness
of the proposed optimization technique. Eigenvalue analyses of the open-loop system for all the
operating condition were unstable, except for the nominal condition that was poorly stable.
Eigenvalue analysis shows that the closed-loop system for all cases became stable. The time
domain simulations also confirm the superiority of the optimized PSS over the conventional PSS

for the local mode oscillations under small and large disturbances.

The effect of the weighting factor (kf) and the weighting coefficient (C;) have been studied.
Simulation results obtained showed that the convergence and the divergence of the program are
very sensitive to the choice of k; and C;. For proper choices of kf and Cj, the search for the
convergence domain must be done using little iteration (about 25). Later up to 2000 iterations can

be completed to obtain accurate or optimum convergence domain.

The attractive feature of the propose optimization tool is because of the little memory used.

furthermore it is very simple compare to other optimization techniques.
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7.2 Recommendation

The optimized PSS using the simplest optimization technique based on eigenvalue, sensitivity has
been successful for damping the four most critically operating conditions. However there are

several issues that need to be addressed in future studies.

The choice of the weighting factor (ky) and the weighting coefficient (C;) were selected by trial
and error to enable to convergence of the program. It has not been very effective in terms of time
utilization. By carefully studying the effect of k; and C; on the convergence, optimum weightings

factor and coefficients can be chosen in the right manner.

Only four most critical operating conditions have been selected in this investigation. The greater
the selected number of operating conditions, the more difficult it is to get kf and C; to converge
the program. By carefully studying the effect of ki and Cj, it is possible to investigate the

possibility to use more than four selected conditions for optimal design of the PSS.

Most of the conclusions in this investigation come from the application of the OPSS to a single
machine infinite bus system. The application of the OPSS to multi-machine systems should be

pursued in future.

In addition, we have relied on computer simulation for the testing of the controller. Nowadays,
there exists equipment called real time digital simulators (RTDS), where the controller can be
physically connected and tested as if in a real power network. I propose that the optimized PSS

should be evaluated using the RTDS.

More requests should be addressed to the research institute where CPAT was developed. Sensitive
information must be given to the students involved in research. Poor communication between the

software vendor and the academic institution is really a hindrance to the advancement of research.
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Appendices

Appendix A

Nonlinear Equation of Power Systems

The mathematical model of the synchronous generator is obtained using Park’s Transformation
[2]. Electrical quantities such as voltages, currents, and flux-linkages are represented from the
stator three phase reference frames. Theses electrical quantities are mathematically transformed
using Park’s Transformation into new quantities which are obtained from the projection of the
actual variables on three axes: one along the direct axis of the rotor field winding, called direct
axis (d-axis); a second along the neutral axis of the field winding, called the quadrature axis (g-
axis), and the third on a stationary axis called a zero sequence system. The rotor circuit is
composed of the field winding on the d-axis and one or more fictitious circuits on either the d-axis

or the g-axis.

(a) Voltage equations in pu

d .
€, Zd—tq"d _\an)r _Rald
_dy, .
eq—E q+\Pda)r—Ralq
d .
€ :;[\PO —Ralo (Al)

(b) Rotor voltage equation in pu

d

eu =" +Ryiy, (A.2)

(c) Stator flux linkage equations in pu
VY, =—(L,+L)i, + Ladi/’d
VY, =—(L, +L)i +L,i

aqlfd

74



¥, =-Li,
(d) Rotor flux linkage equations in pu
VY, =Lgyiy —Lyui,
(e) Air gap torque and power equations in pu

T, =%, -¥i,

€
P, =e,i, —e,

(f) Rotor equation in pu

d 1
— :M(Y—;n —Te _TD)

TD = KD(a)r _1)

(g) Automatic Voltage Regulator and Exciter equation in pu

d 1
;Efd =T_[KA(VREF _Et)_Efd]
A

(A.3)

(A4)

(A.5)

(A.6)

(A7)
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Appendix B

Initial Steady-State Values of System Variables

The initial steady-state values of system variables [2] are calculated when the following steady-
state operating conditions, machine parameters and network parameters are given: P, Q, E;, Rg,
Xg, Lg, Lg, Li, Ra, L, Red, Agar, Bsa, P'11. On the other hand, Eg may be specified instead of Q, or
E.

1. Compute the terminal current I; and the power factor angle 6

RZ +Qt2
k= ==
EI

P
0=cos" (— .
cos (IE ) (B.1)

7t

2. Compute the internal rotor angle 6;

X, I, cos@—-R,1 sinf
8;=tan-1 « . (B.2)
E +R,I cos@+X I sinb
3. Compute the dq components of stator voltage and current

€do = Etsinéi

€q0 = Eicoso;

idO = I[Sil’l(Si + 8)

iq() = I(COS(Si +8) (B.3)

4. Compute the dq component of infinite bus voltage

Epdo = €40 — Relgo + Xgiqo
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Egqo = €40 — Reigo — XElao (B.4)

5. Compute the initial load angle 8o, the infinite bus and field voltage Ep, and Egp, the field

current iggo

Ep = \IEZBdo + E%p0

Etdgo = Ladultao

€, +Ralq0 +L,1,
LadA\'

Ifa0 = (B.5)
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Appendix C

Phillips-Hiffron Constant Calculations

K, is the change in electrical torque for a small change in rotor angle at constant d-axis flux

linkage.

A
K, = 2L
A§ E’g=const.
EBEq() . EBqu ’ .
=5 (R, sino, + X, cos )+ D (Xq—Xd)X,, sind, ~ R, cos &) (C.1)

K, is the change in electrical torque for a small change in d-axis flux linkage at constant rotor

angle

AT,

’

q

L . R X, X =X/
K, = = [—1qu+{———“’( : d>+1jiq0} (C.2)

L +Lﬂ,

S=const. ads

K3 is the impedance factor that takes into account the loading effect of external impedance
ATe | _ Lad.\' + Lft] 1

AS| L XTq
D

K; =

(C.3)
adu 14

(X d X :1 )
K4 is the change in internal voltage of the armature for small change in rotor angle at constant d-
axis flux linkage.

AY, L s

E
K,= —& =L, ——“ 8 (X_sind,—R, cosd, C.4
AS “ Loy + Ly D( Ta o T o) €4

E' g=const

Ks is the change in terminal voltage for a small change in rotor angle at constant d-axis flux

linkage.
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A,
A

e
Ks = :fﬂ)—[— Raml +L,n1 +Laqsn1]+EL0[— Ranl _lel _Lf,ld.\'ml] (C'S)

E'q 10 10

K is the change in terminal voltage for a small change in the d-axis flux linkage.

AV,

Ko= 9

e , 1
= edo [_ Raml +Lln2 +Laqxn2]+—zo— _RanZ —leZ +Lad,\' (__m2 (C6)
E E L

t0 t0 fd

H s
Ks1, Koz, Ke3 can be developed based on information from reference [2]}

where

D= R’+(X, + X, )*(XE+ X))
Rr = R, +Rg

X1q = Xg+ (Lags + L) = Xg + Xgs
X1 = Xg + (L'as + L) = Xg + X'gs

EB(XTq sind, — R, cos J, )

m) =

D
my = XT‘I Lad.\'
D (Lad.\‘ + Lfd )
I E4(R, sing, + X, cosJ,)
| =

D

— R T Lad.\'

n = B
) (L +L,)
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Appendix D

Complete System State Matrix including the excitation system and

the PSS

The state matrix obtained has the following form:

Aw| fa, a, a; 0 0 0] [Ao]
A'5 a, O 0 O 0 O Ao
A'W _ 0 ay, ay a, 0 a _ Ay D.1)
Av, 0 a, a5 a, O 0 Av,
A'v7 as;, ds; as; 0 a0 Av,
_A'vx | | 361 Qg dg3 0 ag Qe | _AV.\- i
where
K K K a)ORfd ’
all = —5;10_ ,ap = -5—1_1-1‘ a3 = -ﬁ , a1 = o= 2xfy, azp =- L, m L,

@R L w,R @, R K K

_ Jd s ’ - 0" fd 0" fd 5 6

a33 = - ) — +m2Lw,X , 34 = - KA,a36= KA,a42=—,a43:—
fd fd adu adu TR

1 1 T
as =-—, as; = Gay), asy = Gay, as3 = Gays, ass = -—, a1 = —-ds,
R TW TZ
20 = “Lay,, agy = g + 1
2 —a57_’ 32—053,365=—a55 —, 66 =~ ——
T, T, T, 2 2
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Appendix E

Data for the SMIB [2]

Table E.1 System data

Rated MV A of Generator 2220 MVA

Rated RMS line-to-line voltage 24 kV

Base frequency 60 Hz

Infinite Bus voltage, Eg 0.995 pu

Table E.2 Generator data

X4 1.81 pu R, 0.003 pu
X4 0.30 pu T 40 8.0s
X4 0.23 pu T 4o 0.03s
X4 1.76 pu T 40 1.0s
X7 0.65 pu T 0 0.07s
X 0.25 pu H 3.50s
Ay 0.031 Bat 6.93
Table E.3 Exciter data

Ka 200




Tr

0.002 s

Appendix F

Developed Software Tools

Refer to the memory disk at the back cover.

Appendix G

Simulation results for the optimization of PSS for one operating

condition

G.1 Power System Model and PSS Structure in CPAT

The power system model considered is baptized as MODELA. It is a single machine infinite bus

system (SMIB) as shown in Fig.G.1. In Fig.G.1, G is the generator, T is the transformer, X7-X4

are transmission line reactances. A load is also attached to bus 40. The frequency of operation is

50 Hz, and the system’s base is 1000 MVA [].

20 30
10
X1 40 50
T
X2 _l
P+ jO

Fig. G.1 System Model

Infinite

Bus
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Fig. G.2 shows the structure of the PSS to be optimised. It is a speed input PSS, with a washout
(or reset) block with time constant Ty,  a lead-lag network (compensation block) with time
constants 72and 73and a gain G8;. The role of the reset block is to remove d.c. signals, whereas
T2and T3 are used to adjust the frequency characteristics of the PSS so as to fully compensate for
the phase lag between the AVR reference and the electrical torque [1]. Vpss is the output of the
PSS that will be used as a supplementary control to the AVR . Vpssmax and Vpssmin are the

maximum and minimum limits of the PSS.

VPmax

G8 ISTWT 1+ sT2
+ sk, 1+ sT3

AW wmep

Vpss

Vemin
Fig. G.2 PSS Structure
G.2 Simulation Results L, S, and Y METHOD
(a) Power flow (L-Method).

The program for power flow consists of two sets of programs: The master data file, and the
control data file programs. The master data file as in Table G.1 contains all the parameters of the

machines, and the control data as shown in Table G.2 indicates the slack.

The load flow results (Table G.3) show that the generator G is supplying a complex power of S =
2470.4261 p.u to the load, while the infinite bus is supplying the bulk of the power needed by the

system.
(b) Eigenvalue analysis program (S-METHOD)

For the S-method, the master data, the control data and the dynamic data cards are used. The
master and the control data cards are the same as the ones used for power flow. The dynamic data

card for the S-method control data is shown in Appendix B (the switching event is ignored during
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the simulation).

From the eigenvalue results shown in Table G.5, it can be seen that the system equipped with the
non-optimised PSS (Conventional PSS) is stable. The eigenvalue associated with the local

oscillation mode (1.11578 Hz) has a negative real part which is -0.19124.
(¢) Transient Stability Analysis (Y-METHOD)

The disturbance considered is a switching event. The transmission line X, is opened and re-
closed again after 5 seconds. The same three programs used for the S-methods are used for Y-

method (the master, control and the dynamic).

Figs. G.1 and G.2 show the generator internal angle and slip, respectively. It can be seen from Fig.
G.1 that after the line was opened, the internal angle of the generator increases, and the rotor angle
oscillates. The value of the rotor angle in the first swing was about 45 deg. After the line was re-
closed, the oscillations started to decrease and the rotor angle eventually settles at the nominal
value. After the fault, the generator slip also oscillates around the stead-state value and eventually
settles down at the nominal value after the line was closed. This confirms the findings of the

eigenvalue analysis that the system is stable.

KIHON ENSYU1 1CCT 3L0-C +PSS (CICRIEPI

¥1 —t— GEN4P$S
10 AG

45 00

3500

GEN. INTERNAL ANGLE (DEG)
2600

AG

T T T T T T T 1
&0 600 790 300 500 1000
Time (sec)

T
000 100 200 00 400

Fig. G.1 Generator internal angle
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KIHON ENSYU1 1CCT 3LO-C +PSS (C)CRIEPI

S . : ; ’ . #1 —4— GEN4PSS
10 §G

000

GEN. SLIP (%)

SG
£ 50

T T T T T T

T T T T T
6§00 700 300 800

T T T T T T
0400 100 290 300 400 500
Time [sec)

1
1000

Fig. G.2 Generator slip
G.4 PSS Parameter Optimization (for a single operating condition)

To optimise the parameters of the PSS, the same data cards employed for the S-method (master
data, control data and dynamic data) are used. The difference is that the card for the optimization
must be added at the beginning of the S-Method program as shown in G.6. The card for
optimisation should specify the number of operating conditions considered as well as the initial
values of the parameters of the PSS. For the simulations results shown below, only one operating
condition was considered and the initial values of the parameters of the PSS were purposely
chosen randomly (in order to cause instability ) to be:

72=0.24 sec, T3= 0.05 sec and the gain G8 = 9. T,, was not optimised and was set to:
Tw =10 sec.

The results (Table G.7:only the 1%, 2™ and 7" iterations results are given) show that the initial
values of the PSS could not stabilize the system. However, after 7 iterations, the optimized
parameters were found, and the system was stabilized. This shows that even if the initial setting
of the parameters is not correct, this does not prevent the software from finding the suitable time
parameters of the PSSs.
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G.5 Conclusion

In this investigation, we have discussed how the CRIEPI's power system analysis tool can be
used for the optimisation of the Power System Stabilizer (PSS) parameter. Up to this level, we
have been successful to optimize the PSS parameters using only one operating condition. It is
shown that even if the initial setting of the parameters is not correct, this does not prevent the

software from finding the suitable time parameters of the PSSs.

Table G.1 Master data file for power flow

DATA
@---+----1----+----2---——+----3~—--4----b--m-t-—--5-— - - ——-T————+----8
MODELA 1000.0  50.0 HEADR
@g---+---—-1----+----2----4----3-—--4----4--—--4----5---o - -+~ -T--——+-——-8
T 102 20 30 0.009330 0.2136  0.10550 1-200KM
T 103 20 30 0.009330 0.2136  0.10550 1-200KM
T 104 30 40 0.0123
T 105 40 50 0.0060
TEND
e S T T S Y:
X 201 10 20 0.0675 1.05 GEN.-TR
XEND
e---+----1-- - -+----2---——-+----3-——-—--4----4----+-—--5--—-—-4-—---6-——--+-——-T————+----8
N 10 1.0 2.0 GEN
N 40 1.0 25.0 LOSS
N 50 1.0 MUGENDAT
NEND
DEND
GCON
GSAT
R T ST T
Gl 10 5 2 2222.2 2000.0 8.0 GEN. +PSS
G2 101 101 1 0
Gl 50 4 6 50000.2  45000.0 8.0 MUGENDAT
G2 1 0 1 0 0
GEND
e T S T
A 101101 1.0 0.0 1.0 0.2100.0-100.100.0 2.0 4.0 0.0 0.1 0.5
0.0 5.0 0.14 2.0 0.0 0.0 0.0 0.0 5.0 0.02 0.1 -0.1 0.0
AEND
PEND
SEND
MEND
REND
LEND
FEND
ZEND
STOP
Table G.2 Control data file for power flow.
@--—4----1--———4--—--2-——-4-—--3---—t-mlmmr =St =T - —+--—-8
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MODELA
TEND
XEND
NEND
DEND

Table G.3 load flow solution

NO. NODE SYS ABSV ANGLE PG QG PL QL QC
1 10 1 1.0000 12.36 2.0000 0.4261 0.0000 0.0000 0.0000
2 20 1 1.0307 520 0.0000 0.0000 0.0000 0.0000 0.0000
3 30 1 1.0021 -6.54 0.0000 0.0000 0.0000 0.0000 0.0000
4 40 1 1.0000 -7.94 0.0000 0.0000 25.0000 -1.4527 0.0000
5 50 1 1.0000 0.00 23.0180 1.5971 0.0000 0.0000 0.0000

Table G.4 S and Y control data program

@--—4----1-———-4----2--—--4+-—--3-———4----b---npe BT ————+-——-8

RUN MODELA 1

DEND

GCHK 1

GCON

GSAT

GEND

AEND

PEND

SEND

MEND

REND

LEND

FEND

ZEND

g e -

KIHON ENSYUl 1CCT 3LO-C +PSS

Q 10.0 300.0 50

---+----1- - - —+--—--2-———+--——--3-——--+-—--4-———-4+-——-5--e -7 --——+----8

Q 0 ABC 103 s 1100 0.1

Q C ABC 103 s 1100 5.1

QEND

OGA

OAA

oPA

ONA

OBA

OANG

OGEA

OAEA

OPEA

ONEA

OBEA
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Table G.5 Eigenvalue results

NO. -DAMPING FREQUENCY COMMENT ITERATION

(1/SEC) (HZ)
1 -0.19124 1.11578 00 2
2 -0.40014 0.16465 000 2
3 -0.29957 0.11163 00 2
4 -0.12593 0.00408 00 2

Table G.6 Dyn file for the optimization program.

G 10-99.0+99.0-99.0+99.0-99.0+99.0-99.0+99.0-99.0+99.0
L el B e s e Y bt R ey B s
RUN MODELA 1

(R il B e s il B B s B R el e e EER AP o1
***MODELA OPTIMIZATION***

QEND

0oGA

OAA

OPA

ONA

OBA

OANG

OGEA

OAEA

OPEA

ONEA

OBEA

OEND

STOP



Table G.7 PSS Parameter optimisation results

***MODELA OPTIMIZATION*** (1% iteration)

NO. -DAMPING FREQUENCY COMMENT ITERATION
(1/SEC) (HZ)

1 1.98557 1.87022 XXX 2

2 -0.25028 0.10474 00 2

3 -0.12089 0.00548 00 2

T2(OLD) T3(OLD) G8(OLD) T2(NEW) T3 (NEW) G8 (NEW)

0.2400 0.0500 9.0000 --> 0.2169 0.0490 7.4333

***MODELA OPTIMIZATION*** (2" iteration)

NO. -DAMPING FREQUENCY COMMENT ITERATION

(1/SEC) (H2)
1 1.50918 1.77137 XXX 2
2 -0.25014 0.10616 00 2
3 -0.12551 0.00477 00 2

T2(OLD) T3(OLD) G8(OLD) T2 (NEW) T3(NEW) G8 (NEW)

0.2169 0.0490 7.4333 -->  0.1987 0.0476 6.1009



***MODELA OPTIMIZATION*** (3" iteration)

NO. -DAMPING FREQUENCY COMMENT ITERATION

(1/SEC) (HZ)
1 -0.02369 1.44730 O 2
2 -50.43209 0.00000 000 2
3 -0.47113 0.14746 000 2
4 -0.25547 0.11302 00 2
5 -0.16683 0.00000 00 2
6 -0.11899 0.00000 00 2

T2 (OLD) T3(OLD) G8(OLD) T2(NEW) T3 (NEW) G8 (NEW)

0.1674 0.0384 2.6637 --> 0.1686 0.0356 2.1683



Appendix H
Bode’s plot of the CPSS and the OPSS

Figure H.l shows the hode’s plot of the CPSS and the OPSS. 1L can be seen that the OPSS
perform skightly better than CPSS in the frequency of interest and is not affecting the high

frequency region.

Phase (deg)

Frequaney |(radissec)

Fig. H.1 Bode's plot of CPSS and OPSS
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