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SYNOPSIS 

Cobalt is the preferred catalyst metal for the production of clean burning, high cetane 

number diesel fuel from synthesis gas using the Fischer-Tropsch synthesis. Hence, 

increasing C5+ selectivity of cobalt catalysts is one of the hot topics in Fischer-Tropsch 

synthesis. Internal mass transport limitation may affect C5+ selectivity. It was 

concluded that mild transport limitation is required for maximum C5+ selectivity. Mild 

transport limitation also increases the catalyst activity, since the reported Fischer-

Tropsch rate of reaction has a negative dependency on CO partial pressure. The metal 

distribution within catalyst pellets may modify product selectivity by changing the 

local metal density and the diffusion path length. However, current catalyst 

preparation methods limit metal distribution in transition metal catalysts. 

The aim of this study is to explore a possible catalyst synthesis route for egg-shell, 

egg-yolk and egg-white type of cobalt catalyst pellets. The establishment of the non-

uniform cobalt catalyst synthesis method will provide an observational evaluation 

technique for the investigation of the effect of intra-pellet metal distribution on the 

activity and product selectivity of the Fischer-Tropsch synthesis. 

The non-uniform catalyst synthesis method utilises the hydrophobic nature of the 

silica pellet. Egg-shell, egg-yolk and egg-white type of cobalt catalyst with sharp metal 

enriched boundary were synthesized. The intra-pellet cobalt distribution, metal 

particle size, metal loading, metal surface area and catalyst reducibility were 

characterised. The performance of these non-uniform catalysts was tested in a 

modified slurry type reactor. Catalyst pellets were kept in mesh-wire baskets which 

were mounted inside a slurry reactor, and tested in the absence of external mass 

transport limitation. The Fischer-Tropsch activity was recorded and modelled using a 

reaction-diffusion pellet inside a continuous stirred tank reactor model. The product 

selectivity were analysed with an offline GC. 

The Fischer-Tropsch activity is strongly dependent on the intra-pellet metal 

distribution. The egg-shell type of catalyst outperforms the uniform, egg-yolk and egg-

white type of catalyst, in terms of activity, under the influence of internal mass 

transport limitation. The intra-pellet distribution alters the reactant concentration in 

the pellet as well as intra-pellet H2/CO ratio. The reaction-diffusion path length was 

identified to be a suitable parameter for product selectivity. An increase in the 

reaction-diffusion path results in an increase in �-olefins re-adsorption, a decrease in 

olefin content and an increase branched product compounds. Secondary chain growth 

is not favoured under internal mass transport limitation. 
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LIST OF SYMBOLS 

Symbol Description Units 

A  Arrhenius constant [s-1] 

FID,iA  FID peak area of compound i [µV s] 

FID,refA  FID peak area of reference compound [µV s] 

ijA  Surface area between phase i and j [cm2] 

mA  Chemisorption active metal area [m2/gcatalyst] 

sA  Specific cobalt surface area [atoms/nm2] 

TCD,iA  TCD peak area of compound i [V s] 

2TCD,NA  TCD peak area of N2 [V s] 

adsC  Concentration of adsorbed gas [mol/mℓ] 

COC  Concentration of CO [mmol/cm3] 

CO,SC  Concentration of CO at the surface of catalyst pellet [mmol/cm3] 

2HC  Concentration of H2 [mmol/cm3] 

2H ,SC  Concentration of H2 at the surface of catalyst pellet [mmol/cm3] 

TC  Molar concentration of liquid phase [mol/m3] 

C(0)  Concentration of inlet gas at time 0 [mol/ℓ] 

C(t) Concentration of exit gas at time t [mol/ℓ] 

ABD  Mutual diffusivity at infinite dilution of A in B [m2/s] 

COD  Diffusivity of CO in wax [m2/s][cm2/s] 

effD  Effective diffusivity [m2/s] 

2HD  Diffusivity of H2 in wax [cm2/s] 

d  XRD particle diameter [nm] 

cored  
Cobalt free silica core diameter / cobalt enriched 
silica core diameter 

[mm] 

pelletd  Pellet diameter [mm] 
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Symbol Description Units 

pored  Pore diameter [nm] 

(r)d  Intra-pellet cobalt distribution function [-] 

volumed  Average volume based metal particle diameter [nm] 

whited  
Diameter of the outer cobalt enriched boundary of 
egg-white type of catalyst [mm] 

wired  Wire diameter [mm] 

aE  Activation energy [mmol/s] 

COF  Flow rate of CO [mmol/s] 

sF  Chemisorption stoichiometry number [-] 

TCD,if  TCD response factor of the inorganic compound i [-] 

FID,if  FID response factor of compound i [-] 

FID,reff  FID response factor of the reference compound [-] 

sG  Gibbs surface free energy [J] 

s,ijG  Gibbs surface free energy of phase i and j [J] 

s,1G  Gibbs surface free energy of wetting scenario 1 [J] 

s,2G  Gibbs surface free energy of wetting scenario 2 [J] 

s,1-2∆G  Gibbs surface free energy difference between 
wetting scenario 1 and 2 [J] 

COH  Henry’s constant of CO [bar] 

orxn, 170 C
-∆H  Heat of reaction at 170°C [kJ/mol] 

orxn, 250 C
-∆H  Heat of reaction at 250°C [kJ/mol] 

adsK  Dimensionless CO adsorption constant [-] 

k  XRD shape factor [-] 

adsk  CO adsorption constant [cm3/mmol] 

ck  Mass transfer coefficient [m/s] 

(r)k  Cobalt metal surface based rate constant as 
function of radius position 
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Symbol Description Units 

0k  Intrinsic rate constant 
 
 
 

6

2

cm

s m  mmol
 

L  Pore length [nm] 

o
COL  Cobalt loading of the catalyst [%] 

pelletl  Pellet length [cm] 

AM  Molar mass of A [g/mol] 

BM  Molar mass of B [g/mol] 

catalystM  Mass of catalyst [g] 

COM  Molar mass of CO [g/mol] 

CoM  Mass of cobalt [g] 

2HM  Molar mass of H2 [g/mol] 

sgM  Molar mass of syngas [g/mol] 

AN  Avogadro’s number [atoms/mol] 

c,iN  Number of carbon atoms of compound i [-] 

c,refN  Number of carbon atoms of reference compound [-] 

sN  Chemisorption accessible active sites [-] 

CO,innɺ  Inlet molar flow rate of CO [mmol/min] 

CO,outnɺ  Outlet molar flow rate of CO [mmol/min] 

inɺ  Molar flow rate of compound i [mmol/min] 

2Nnɺ  Molar flow rate of N2 [mmol/min] 

refnɺ  Molar flow rate of reference compound [mmol/min] 

P  Pressure [bar] 

COP  Partial pressure of CO [bar] 

gP  Probability of chain growth [-] 

2HP  Partial pressure of H2 [bar] 
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Symbol Description Units 

2H OP  Partial pressure of H2O [bar] 

satP  Condensation pressure [bar] 

sgP  Syngas pressure [bar] 

TP  Operating pressure [bar] 

Q  Energy flux [W/cm3] 

R  Ideal gas constant [Pa m3/mol/K] 

Re  Reynolds number [-] 

oR  Degree of reduction [%] 

*
COR  Reference rate of CO consumption [mol m2/s] 

volumeR  Rate of reaction per unit volume of catalyst [mmol/s/cm3] 

CO-rate  Rate of CO consumption [mol/s/gcatalyst] 

drate  Rate of desorption [mol/s] 

grate  Rate of chain growth [mol/s] 

r  Catalyst pellet radius [cm] 

active,ir  Radius of the inner boundary of the cobalt enriched 
region [mm] 

active, jr  Radius of the outer boundary of the cobalt enriched 
region [mm] 

cr  
Radius of cobalt free silica core / cobalt enriched 
core 

[mm] 

olefin,primaryr  Primary olefin formation rate [mmol/s/g] 

olefin,re-adsorbr  Olefin re-adsorption rate [mmol/s/g] 

pr  Radius of pellet [mm] 

paraffinr  Paraffin formation rate [mmol/s/g] 

pelletr  Radius of pellet [m] 

porer  Radius of pore [m] 

wr  
Radius of outer boundary of cobalt enriched region 
of egg-white type of catalysts [mm] 
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Symbol Description Units 

Sc  Schmidt number [-] 

C5+S  C5+ selectivity [-] 

C,iS  Product selectivity of product i on carbon basis [-] 

CO*S  
Unit active cobalt metal surface area per silica 
support [m2/gsilica] 

BETS  BET surface area [m2/g] 

Sh  Sherwood number [-] 

T  Temperature [K] 

HuttigT ɺɺ  Hüttig temperature [K] 

meltingT  Melting temperature [K] 

TammanT  Tamman temperature [K] 

ST  Temperature at the catalyst surface [K] 

t  Statistical thickness of adsorbed film [-] 

t  Thickness of organic layer [cm] 

t  Time [s] 

U  Liner gas velocity [cm/s] 

AV  Molar volume of A [cm3/mol] 

adsV  Volume of physically adsorbed gas [mℓ/g] 

CoV  Volume of cobalt [mℓ] 

coreV  Volume of cobalt free silica core [mℓ/gsilica] 

molV  Molar volume [mℓ/mol] 

monoV  Chemisorbed monolayer [mℓ/g] 

organicV  Volume of organics in the silica pellet [mℓ/gsilica] 

pelletV  Pellet volume [mℓ/gsilica] 

poreV  Pore volume [mℓ/gsilica] 
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Symbol Description Units 

COW  Mass flux of CO [mmol/s/cm2] 

COX  CO conversion [%] 

NX  Mole fraction of product with N carbon atoms [-] 

ss,220X  Steady-state CO conversion at 220°C [%] 

wX  Fraction of pore volume occupied by water [-] 

4τX  CO conversion at 4 times space time [%] 

Greek symbols 

β  
XRD line broadening of full width at half maximum 
intensity 

[radian] 

β  Prater number [-] 

χ  Structural parameter [m-1] 

ε  
Characteristic energy of interaction between 
molecules 

[-] 

ε  Porosity (fraction of void) [-] 

ABε  Lennard-Jones parameter [-] 

Φ  Thiele Modulus [-] 

Γ  Dimensionless temperature [-] 

ϕB  Association factor of solvent B [-] 

aγ  Arrhenius number [-] 

ijγ  Surface tension between phase i and j [dyn/cm2] 

ovγ  Surface tension between organic and air [dyn/cm2] 

soγ  Surface tension between silica and organic [dyn/cm2] 

svγ  Surface tension between silica and air [dyn/cm2] 

swγ  Surface tension between silica and water [dyn/cm2] 

woγ  Surface tension between water and organics [dyn/cm2] 

wvγ  Surface tension between water and air [dyn/cm2] 
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Symbol Description Units 

η  Effectiveness factor [-] 

′η  Experimentally determined effectiveness factor [-] 

′220η  
Experimentally determined effectiveness factor at 
220°C [-] 

′230η  
Experimentally determined effectiveness factor at 
230°C [-] 

′240η  
Experimentally determined effectiveness factor at 
240°C 

[-] 

κ  Boltzmann constant [K-1] 

tκ  Thermal conductivity [W/m/K] 

λ  XRD X-ray wavelength [nm] 

λ  Dimensionless catalyst radius [-] 

µ  Viscosity [g/cm/s] 

Bµ  Viscosity of B [g/cm/s] 

COρ  Density of CO [g/mℓ] 

Coρ  Density of cobalt [g/mℓ] 

CO*ρ  Average metal surface density of active cobalt [m2/cm3] 

2Hρ  Density of H2 [g/mℓ] 

mρ  Catalyst metal density [atoms/m2] 

sgρ  Density of syngas [g/mℓ] 

silicaρ  Unit volume of silica support [mℓ/g] 

totalρ  Total metal density of catalyst [g/mℓ] 

θ  XRD diffraction angle [°] 

oθ  Contact angle of organic on silica [°] 

wθ  Contact angle of water on silica [°] 

σ  Characteristic diameter of gas molecule [Å] 

ABσ  Lennard-Jones parameter [-] 
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Symbol Description Units 

egg-shellσ  Metal density function of egg-shell type of catalysts [-] 

egg-whiteσ  Metal density function of egg-white type of catalysts [-] 

egg-yolkσ  Metal density function of egg-yolk type of catalysts [-] 

structureσ  Structure specific metal density function [-] 

uniformσ  Metal density function of uniform catalysts [-] 

τ  Space time [s] 

τ  Tortuosity [-] 

υ  Kinematic viscosity [s/cm2] 

ψ  Diffusivity reactive parameter [m] 

COψ  Dimensionless CO concentration [-] 

2Hψ  Dimensionless H2 concentration [-] 

µΩ  Coefficient of viscosity [-] 
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1 INTRODUCTION 

Mankind is continuously striving for better energy sources and improved conversion 

processes to sustain growth and bringing higher order to the state of living. 

Hydrocarbons are currently the main energy source contributing 87.9% towards the 

global primary energy consumption (BP, 2007). They can be found in the form of coal, 

natural gas and crude oil. Crude oil contributes 35.8% towards the global primary 

energy consumption. It has a higher energy density than natural gas (37000kJ/gcrude oil 

versus 54kJ/gnatrual gas (EIA, 2008)), and is easier to combust than coal, making it the 

preferred fuel for transport vehicles. However, crude oil reserves are not equally 

distributed and are concentrated in the Middle East. As a result, the rest of the world 

relies on oil imports. This dependency can be reduced by processes converting natural 

gas, coal or other carbon-containing materials into liquid fuels. These technologies 

would be attractive to countries which are largely dependent on oil imports. 
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Figure  1.1: Distribution of proven crude oil reserve as at 1 Janurary 2008 [%] (left) ; 

Percentage of crude oil consumption from oil imports (right), (CIA, 2008) 

There are various technologies for the production of liquid fuels, for example 

� liquefying natural gas (Cook, 2005) 

� hydrogenation of coal - Bergius process (Bergius, 1932) 

� carbonization of coal - Karrick process (Karrick, 1942) 

� indirect liquefaction of coal, natural gas and biomass via Fischer-Tropsch 

process 

� trans-estification of vegetable oil or animal fat - biodiesel (Huber et al., 2006) 

The Fischer-Tropsch process is the only commercially applied process which is 

economically viable for the production of high purity liquid fuel on a large scale. The 

oldest, still operating Fischer-Tropsch plant (Sasol I) using coal as a feedstock was 

commercialised in South Africa in 1955. It served as a tool for liquid fuel 

independency for the country, during the economical sanctions of apartheid era (1948-

1990) in South Africa.  Sasol I demonstrated to the world the economical feasibility of 
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this process at crude oil price greater than 20$ per barrel (Rostrup-Nielsen, 1994; 

Jager, 1998; Vosloo, 2001), during the years of oil crisis (1973-1986). It spurred a 

tremendous growth in process and catalyst development for the Fischer-Tropsch 

process. Furthermore, the crude oil price hike (Figure  1.2) during the past decade has 

encouraged the commercial developments in countries with large natural gas or coal 

reserves. The unstable crude oil prices are driving more countries to focus on 

alternative liquid fuels. China, for example, is prepared to invest more than 40 billion 

US$ in CTL (Wu, 2006) as part of their national energy strategy. Currently, there are 3 

operating commercial GTL plants and 2 under construction (see Figure  1.3) and 2 

existing commercially operating CTL plants, viz. Sasol I (Sasolburg, South Africa; and 

Sasol II-III (Secunda, South Africa))  (see Figure  1.4) worldwide that are based on 

Fischer-Tropsch synthesis (see Appendix A. 1). However, more commercially operating 

GTL-CTL plants are in the design phase, although the realisation might be retarded in 

the current economic environment. It can nevertheless be concluded that the Fischer-

Tropsch process will play a major role in the production of liquid fuels until the end of 

the carbon based energy paradigm. 
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Figure  1.2: Nominal Crude Oil Price for the past 15 years [US$/barrel], (IMF, 2008) 
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Figure  1.3: Geographical location of commercial GTL plants represented by its company logo 

on GTL potential index map (existing plant in bold, future plant in timid, planned 

plant in italic), plant size in [bpd], (WERGY, 2005) 

Note: The Shell plant in Qatar and Sasol-Chevron plant in Nigeria are still under 

construction. 
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Figure  1.4: Geographical location of commercial CTL plants represented by its company logo 

on CTL potential index map (existing plant in bold, planned plant in italic), plant 

size in [bpd] (* Bergius-pier process), (WERGY, 2005) 

The Fischer-Tropsch process consists of three major steps (see Figure  1.5), viz. 

synthesis gas generation, Fischer-Tropsch synthesis, and product work-up and 

separation (Dry, 2004a). In the synthesis gas production stage, carbon-containing raw 

materials are converted into a mixture of H2 and CO (synthesis gas) via partial 

oxidation, steam reforming or gasification. This mixture of syngas is then converted to 

a wide range of hydrocarbons in the Fischer-Tropsch synthesis. The product mixture 

is subsequently converted into fuels (e.g. using hydrocracking for diesel production). 
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Solids
(Coal; Biomass)

Liquids
(Oil Residues; Oil Sands)

Gases
(Natural Gas; Biogas)

Synthesis Gas Production
(H2 & CO)

Fischer-Tropsch Synthesis

Product Work-up and Separation

Fuel Gas
(C1-C2)

LPG
(C3-C4)

Gasoline
(C5-C12)

Naphtha
(C8-C12)

Jet Fuel
(C11-C13)

Diesel
(C13-C17)

Wax
(C19-)

Chemicals
(Olefins, Oxygenates) 

Figure  1.5: Overview of liquefaction process via Fischer-Tropsch synthesis 

The Fischer-Tropsch synthesis will always produce a mixture of products ranging from 

C1 to C100+, due to the polymerization nature of the reaction. At ambient conditions, 

products with carbon number greater than 5 (C5+) are in liquid phase. Hence the C5+ 

product selectivity of the Fischer-Tropsch synthesis needs to be maximised to increase 

the process efficiency in terms of liquefaction. Thus the aim of this thesis is to 

contribute to the knowledge of tuning the Fischer-Tropsch product selectivity by 

modifying the structure of the catalyst. 
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2 LITERATURE REVIEW 

2.1 Fischer-Tropsch Synthesis 

The Fischer-Tropsch synthesis is an exothermic polymerisation reaction occurring on 

a metallic catalyst, which can be represented as 

→ o2 2 2 rxn, 250 C
CO+ 2H -CH -+H O -∆H =140~215[kJ/mol] 

The heat of reaction depends on product distribution obtained (Claeys and van Steen, 

2005). The Fischer-Tropsch synthesis yields predominately linear n-paraffins and n-

olefins-(1), and smaller amounts of oxygenates such as alcohols and aldehydes. A 

minor quantity of methyl-branched products is also formed in the Fischer-Tropsch 

synthesis. 

Methanation is thermodynamically the most favoured reaction (Schulz and Cronjé, 

1977; Anderson, 1984). The formation of other products is less preferred. The broad 

product spectrum obtained in the Fischer-Tropsch synthesis shows that the reaction 

is kinetically controlled. 

→ o2 4 2 rxn, 250 C
CO+ 3H CH + H O -∆H = 215[kJ/mol] 

Hydrogen and carbon monoxide are utilised in the Fischer-Tropsch synthesis in a 

molar ratio of approximately 2 to 1. Hence the commercial operation which typically 

includes recycle would require a feed composition to the Fischer-Tropsch synthesis 

with a H2/CO ratio equals 2 (Espinoza et al., 2004). Furthermore, an increase in 

H2/CO ratio would favour methane formation and increase primary paraffin selectivity 

(Claeys et al., 2004), hence reducing the selectivity for C5+. A lower H2/CO feed ratio 

may favour coke formation and increase primary olefin selectivity. 

The water-gas-shift reaction takes place simultaneously on iron-based catalysts, while 

cobalt-based catalysts show negligible water-gas-shift activity. This allows iron-based 

catalysts to be used for H2/CO feed ratio lower than 2 (Govender et al., 2006), such as 

feed gas originating from coal. 

→ o2 2 2 rxn, 250 C
CO+ H O CO +H -∆H = 39.7 [kJ/mol]  

Another reaction that can take place under Fischer-Tropsch conditions is the 

Boudouard reaction, which causes catalyst deactivation through deposition of carbon. 

→ o2 rxn, 170 C
2CO C +CO -∆H =175[kJ/mol] 
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2.2 General Overview of Reactors 

2.2.1 Fixed-bed Reactor 

The easiest and by far the most common way to carry out any heterogeneously 

catalysed reaction (such as the Fischer-Tropsch synthesis) is by passing a fluid over a 

fixed catalyst bed, a fixed-bed reactor. A typical fixed-bed reactor is filled with catalyst 

pellets having sizes in the range of 1-3mm (Davis, 2005). The catalyst pellets are 

packed to minimise the pressure drop over the catalyst bed and the variation of gas 

flow along the radius of the reactor. Typical pellet shapes are spheres, cylinders, rings, 

flat disc pellets or crushed material of a certain sieve fraction. 

An example of a commercial fixed-bed reactor is the ARGE fixed-bed reactor for 

Fischer-Tropsch synthesis commissioned at Sasol in 1955 by the Ruhrchemie and 

Lurgi Company. The reactor consists of 2050 vertical tubes of 2inch×12m, which are 

filled with pellets of iron-based catalysts (Dry, 1996). 

The advantages of using the fixed-bed reactor are 

� Ease of operation (Dry, 1996) 

� Ease of catalyst-product separation (Espinoza et al., 1999) 

� Suitability for operation in the low and high temperature mode (Schulz, 1999) 

The disadvantages of fixed-bed reactor are 

� High-pressure drop over the reactor 

� High temperature gradient (compared to other types of reactors) 

� Tediousness of the replacement of spent catalyst (Dry, 1996) 

 

Figure  2.1: Schematic representation of an industrial fixed-bed reactor 
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2.2.2 Fluidised-bed Reactor 

In the fluidized-bed reactor the catalyst particles are suspended by the fluid stream.  

The weight of the catalyst particle is balanced by the force of the upward stream of gas 

or liquid. In many respects, the fluidized bed behaves as a liquid. This is an 

advantageous feature of the fluidised bed reactor, as there is excellent gas-solid 

contact in the bed, good gas-solid heat and mass transfer, and high bed-wall and bed-

internals heat-transfer coefficients (Werther, 2008). There are two types of fluidised-

bed reactors used in the Fischer-Tropsch synthesis (Steynberg et al., 1999), namely 

circulating fluidised-bed reactor and fixed fluidised-bed reactor. In the circulating 

fluidised-bed, the catalysts particles (40-150µm) are carried by the high velocity 

synthesis gas flowing upward the reactor tube (Sie and Krishna, 1999). The catalyst 

re-enters the hopper with the gas and it is separated by means of cyclones (Steynberg 

et al., 1999). The heat of reaction is removed from the reactor by cooling coils 

generating steam. The linear gas velocity in the circulating fluidised-bed is three to 

four times higher than in fixed fluidised-bed (Dry, 2004b). 

 

Figure  2.2: Schematic representation of an industrial circulating fluidised-bed reactor 

The catalyst in the fixed fluidised-bed reactor is not transported in the system (unlike 

the circulating fluidised-bed reactor). The high flow rate of the synthesis gas entering 

the reactor keeps the catalyst particles suspended. Cyclones are used to separate the 

catalyst fines from the gaseous product stream (Steynberg et al., 1999). 
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The fixed fluidised-bed reactor has many advantages over the circulating fluidised-bed 

reactor (Sie and Krishna, 1999) 

� Physically smaller with the same production capacity 

� Less costly to construct 

� Easier to scale-up 

� Simpler to operate 

 

Figure  2.3: Schematic representation of an industrial fluidised-bed reactor 

Fluidised bed reactors are only utilised for high temperature mode Fischer-Tropsch 

synthesis (Steynberg et al., 1999), since the formation of a liquid phase under 

operation conditions must be avoided to maintain a fluidized bed. The types of 

operating temperature mode of Fischer-Tropsch synthesis will be discussed further in 

section  2.8. 



Univ
ers

ity
 of

 C
ap

e T
ow

n

LITERATURE REVIEW  |  37 

2.2.3 Slurry-bed Reactor 

An intense and intimate contact between gas phase, liquid phase, and the finely 

dispersed catalyst particles is achieved in slurry reactors. The catalyst is suspended in 

the liquid medium by either mechanical or gas induced agitation. A high catalyst 

loading is used in industrial practice, and the liquid phase is usually an organic liquid 

(Werther, 2008). The liquid medium can either be an inert medium or the product. 

Particle size is typically between 50 and 170µm (Malherbe, 2006). The use of finer 

catalyst particles with diameters in the range of 2 to 50µm would allow the particles to 

be suspended in the liquid phase without re-circulating the liquid flow, but these fine 

particles are difficult to separate from the liquid products. 

Sasol developed a slurry reactor for the Fischer-Tropsch synthesis with iron-based or 

cobalt-based catalyst, in which fine catalyst powder is suspended in wax. Synthesis 

gas is distributed at the bottom and rises through the slurry, providing agitation to 

keep the catalyst in suspension. A special technique for the slurry reactor of catalysts-

wax separation was developed for slurry reactor (Davis, 2002). Currently, the slurry-

bed reactor operating in the low temperature mode is regarded as the most efficient 

reactor for the Fischer-Tropsch synthesis (Schulz, 1999). 

Some of the advantages of slurry reactors over the fixed-bed reactor are 

� Efficient catalyst utilisation (due to the absence of mass transfer limitation) 

� Easier control of reaction temperature 

� Easier catalyst replacement 

Suspension

Synthesis 
Gas

Water Steam

Product 
Stream

Wax

 

Figure  2.4: Schematic representation of an industrial slurry reactor 
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2.3 Catalysts for the Fischer-Tropsch Synthesis 

2.3.1 Metal Type 

All group VIII metals have the ability to catalyse the Fischer-Tropsch synthesis. 

Amongst them, ruthenium, iron, nickel and cobalt are the most active transition 

metals (Vannice, 1975b). The ability of these metals to adsorb CO dissociatively makes 

them suitable for Fischer-Tropsch synthesis (Vannice, 1975a). 

Ruthenium is the most active amongst the studied transition metals. The Fischer-

Tropsch synthesis can take place over ruthenium at temperature as low as 150°C. 

However, the high price and the scarce availability limit the use of ruthenium to 

academic studies. 

Fischer-Tropsch synthesis using nickel is highly selective towards methane. Nickel is 

therefore not commercially applied. 

Iron and cobalt are the only metals used for industrial application. Iron is cheaper 

than cobalt, although the life time of iron catalyst in industrial application is about 8 

weeks (Dry, 1981). Iron-based catalyst show water-gas-shift activity and can therefore 

can handle H2/CO feed ratio less than 2 (Govender et al., 2006), making it the 

preferred metal for synthesis gas generated from coal. The Fischer-Tropsch product 

obtained over iron-based catalyst contains larger amounts of olefins and oxygenates, 

which can be used as chemicals or solvents. 

Cobalt-based catalyst are more active than iron-based catalyst (Li et al., 2002) and 

have a life time of 5 years (Schulz, 1999), but they are more expensive than iron-based 

catalyst (Dry, 1990). A long catalyst life is required to compensate for the high cost of 

cobalt.  Hence catalyst stability is an important feature in cobalt catalyst design and 

operation of cobalt-based Fischer-Tropsch reactors. Cobalt does not show any 

significant activity for the water-gas-shift reaction. It is therefore suitable for hydrogen 

rich feed such as ones derived from natural gas. The Fischer-Tropsch synthesis over 

cobalt-based catalysts is not inhibited by water (Yates and Satterfield, 1991) in 

contrast to the Fischer-Tropsch synthesis over iron-based catalysts (Huff and 

Satterfield, 1984). Thus, a high conversion per pass can be achieved in the Fischer-

Tropsch synthesis over cobalt-based catalysts (van Berge, 1997). Cobalt is also known 

for its high affinity for olefins (Schulz and Claeys, 1999b), which increases �-olefin re-

adsorption on to active site. The re-adsorbed �-olefin may act as a chain growth 

initiator and grows further, which may result in an enhanced C5+ selectivity.  
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2.3.2 Promoters 

Various types of promoters can be added to the catalyst to enhance its structural 

integrity, surface area, thermal and chemical stability. However, interaction between 

support and metal may occur and may reduce the activation of the catalyst precursor 

(Tauster et al., 1978; Ioannides and Verykios, 1993). 

In contrast to the iron-based catalyst, cobalt contains fewer promoters. For example, 

potassium promotion of cobalt-based catalyst results in a decrease in the Fischer-

Tropsch activity (Kazansky et al., 1988; Liu, 1992; Blekkan et al., 1993). 

Alumina and silica are examples of structural promoters/support materials. All 

commercial cobalt catalysts utilise a structural support to maximise its use required 

due to the high price of cobalt. 

Platinum, palladium and ruthenium may be used as reduction promoters. They 

facilitate the reduction via hydrogen spill-over (Haggin, 1991). 
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2.4 Preparation of Catalysts 

There are two major groups of catalysts, namely unsupported catalyst and supported 

catalyst. The catalyst preparation methods for unsupported catalysts include fusion, 

sol-gel, micro-emulsion and precipitation. The catalyst preparation methods for 

supported catalysts include deposition-precipitation, impregnation, ion-exchange and 

grafting. Cobalt-based Fischer-Tropsch catalysts are typically prepared using 

impregnation. 

Impregnation method can be classified as wet impregnation (diffusional) and dry 

impregnation (capillary or incipient wetness). The wet impregnation involves wetting of 

a pre-shaped support pellet/powder with a solvent prior to impregnation. Usually, the 

pore volume of the support is filled with the same solvent as the impregnation solution. 

The precursor salt migrates progressively from the solution into the centre of the 

support. The driving force at all times is the concentration gradient between the extra-

pellet solution and the advancement front of the soluble precursor in the intra-pellet 

solution. The migration time depends on the diffusivity of the precursor salt in wetting 

solvent. After the migration is completed, the impregnated support is then dried to 

remove the moisture in the support, leaving the metal as a metal salt. This catalyst 

precursor then exposed to elevated temperatures to convert the metal salt into the 

metal oxides; this process is referred as calcination. The activation of calcined catalyst 

involves reduction of the metal oxide to the metal. 

The difference between the dry impregnation method and wet impregnation is that the 

pore volume of the support contains only ambient air at the start of the impregnation 

process. Usually, the amount of impregnation solution used in the dry impregnation 

method matches the pore volume of the pre-shaped support material. The replacement 

of the solid-gas interface by a solid-liquid interface generally causes a considerable 

decrease in the free enthalpy of the system, which causes a release of heat (Che et al., 

1997). As soon as the support is placed in contact with the solution, the solution 

penetrates the pores. Part of the air present in the pore volume will be imprisoned and 

compressed under the effect of capillary forces. The pressure developed inside the 

imprisoned gas bubbles depends on the radii of the curve of the liquid-gas menisci. 

Considerable forces will thus be exerted on the pore walls in contact with these 

bubbles. The walls that are not strong enough will break down, causing a degradation 

of the mechanical properties, sometimes even bursting of catalyst pellets. 

The dry impregnation method is suitable for controlling metal loading onto the support 

material, while the pH of the impregnation solution can be varied using the wet 
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impregnation method. High metal loading with uniform dispersion of metal on support 

can be achieved with this method (Dry, 1981; Anderson, 1984; Adesina, 1996). 

Ion exchange is a process which may occur during impregnation (van Steen et al., 

1996). The principle of ion exchange is an electrostatic interaction of the charge of the 

surface of the support with the ionic species in the solution. Equilibrium will be 

established between the ions in the solution and the support surface (Che et al., 1997). 

The position of this equilibrium will be dependent on the nature of the support and on 

the pH of the impregnation solution. 
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2.5 Intrinsic Activity of the Fischer-Tropsch Synthesis 

The kinetics of the Fischer-Tropsch synthesis depends on the catalyst metal and 

promoters and support. For example, the performance of iron catalysts is very 

dependent on the extent of alkali promotion. Not only product selectivity is strongly 

dependent on the amount of alkali promoter present, it also has an effect on the 

overall rate of the reaction (Dry, 2004a). Various kinetic expressions have been 

proposed to describe the rate of the Fischer-Tropsch reactions over iron-based catalyst: 

2 2

0.6 0.4 0.5 0.5
CO H CO H O-rate =aP P -b P  Anderson and Karn, 1960 

2

2

CO H
CO

CO H O

aP P
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2

2 2

2
CO H

CO
CO H H O
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 Huff and Satterfield, 1984 
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2 2
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CO H O CO

aP P
-rate =

(P +bP +cP )
 Ledakowicz et al., 1985 

The proposed kinetic expressions illustrate the negative effect of water on the rate of 

the Fischer-Tropsch synthesis over iron-based catalysts. This effect is probably due to 

the fact that iron is sensitive to oxidation by water vapor. Thus, a higher H2O partial 

pressure will lead to a higher occupancy of surface iron sites by oxygen species. This 

lowers the amount of active sites available for the Fischer-Tropsch synthesis. 

Contrary to the kinetic expressions for the Fischer-Tropsch synthesis over iron-based 

catalysts, water does not seem to inhibit the rate of the Fischer-Tropsch synthesis over 

cobalt-based catalyst: 
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2

2

CO H
CO

CO H O

aP P
-rate =

(P +bP )
 van der Laan and Beenackers, 

1999 

Metallic cobalt is much more resistant to oxidation than iron. Therefore the metal 

surface coverage by oxygen/water will be comparatively lower with cobalt than with 

iron. This might be the reason for the absence of water partial pressure in the reaction 

expression. The rate expression proposed by Yates and Satterfield (1991) is often cited 

as a suitable rate expression for cobalt-based Fischer-Tropsch synthesis. 
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2.6 Mechanism of the Fischer-Tropsch Synthesis 

Although the mechanism of the Fischer-Tropsch synthesis is still debatable, it is 

widely accepted that the following key steps are essential for product formation (Claeys 

et al., 2004). 

� (Dissociative) adsorption of reactant gases 

� Generation of chain growth monomer 

� Generation of chain initiator 

� Chain growth through propagation 

� Chain growth termination through desorption 

The most accepted reaction mechanisms for Fischer-Tropsch synthesis are discussed 

below. The Fischer-Tropsch synthesis is most likely to occur via various mechanisms 

operating in parallel. 

2.6.1 Alkyl Mechanism 

Fischer and Tropsch (1926) proposed the carbide mechanism based on the 

observation of carbide formation with iron-based catalysts. This mechanism was 

adapted many researchers (Ponec and van Barneveld, 1979; Brady and Pettit, 1980; 

Brady and Pettit, 1981; van Barneveld and Ponec, 1984; Zheng et al., 1988; De Koster 

and van Santen, 1991; Ciobîcă et al., 2002) to become the widely accepted alkyl 

mechanism. This mechanism starts with the dissociative chemisorption of CO on the 

metal surface, from which surface carbon and surface oxygen are formed. The surface 

oxygen can either be removed as water by reacting with adsorbed surface hydrogen, or 

be removed as CO2 by reacting with an adsorbed CO. Surface carbon may undergo 

sequential hydrogenation to form a surface methylidene (CH), surface methylene (CH2) 

and surface methyl (CH3) species. The surface methylene (CH2) species is regarded as 

the monomer in the Fischer-Tropsch synthesis. The surface methyl (CH3) surface 

specie is regarded as the chain initiator, which can react with surface hydrogen to 

yield methane or react with a monomer to initiate chain growth. Chain growth 

termination may occur through β-hydrogen elimination yielding �-olefins or 

hydrogenation yielding n-paraffins as primary product compounds. This mechanism 

may describe the primary formation of alcohols through the involvement of surface 

hydroxyl species (Johnson et al., 1991).  
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Figure  2.5: Schematic representation of the alkyl mechanism 
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2.6.2 Alkenyl Mechanism 

Maitlis et al. (1999) proposed an alternative reaction pathway to describe primary 

formation of olefins in the Fischer-Tropsch synthesis. The monomer in this 

mechanism is the same as in the alkyl mechanism, viz. a surface methylene (CH2) 

species. The monomer reacts with a surface methylidene (CH) species forming a C-C 

bond. This results in the formation of a surface vinyl (CH=CH2) species, which is 

considered to be the chain initiator. Chain propagation is thought to be the reaction of 

the monomer with the chain initiator yielding a surface allyl species, which isomerises 

to yield a surface vinyl or alkenyl species. Chain termination may occur via 

hydrogenation of a surface alkenyl species yielding �-olefins. This mechanism can not 

explain the primary formation of n-paraffins nor oxygenates. 

 

Figure  2.6: Schematic representation of the alkenyl mechanism 
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2.6.3 Enol Mechanism 

Storch et al. (1951) proposed the enol mechanism, in which an enol species (M=CHOH) 

plays the role as the chain initiator and the main monomeric species. The generation 

of the monomer involves the reaction of chemisorbed CO with surface hydrogen. The 

propagation of chain growth takes place through condensation of two neighbouring 

enol species. The addition of surface hydrogen to the enol species leads to chain 

termination as oxygenates or �-olefins. Formation of n-paraffins in this mechanism is 

described as a secondary reaction by hydrogenation of primarily formed olefins. 

 

Figure  2.7: Schematic representation of the enol mechanism 
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2.6.4 CO-Insertion Mechanism 

The CO-insertion mechanism was originally proposed by Sternberg and Wender (1959), 

and subsequently further refined by Pichler and Schulz (1970). This mechanism is 

often believed to be the main reaction pathway leading to the formation of oxygenates 

in Fischer-Tropsch synthesis (Hindermann et al., 1993). Chemisorbed CO is 

considered as the monomeric species, while surface alkyl species is considered as the 

chain initiator. The propagation of chain growth takes place through CO-insertion in a 

methyl-alkyl bond leading to a surface acyl species. Hydrogen assisted cleavage of the 

carbon-oxygen bond leads to longer chain alkyl species. Termination of chain growth 

may happen in various ways. Desorption of these species as proposed in the alkyl 

mechanism leads to the formation of �-olefins or n-paraffins. Formation of aldehydes 

and alcohols may occur by similar desorption pathways of oxygen containing surface 

species. 

 

Figure  2.8: Schematic representation of the CO insertion mechanism 
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2.7 Fischer-Tropsch Product Distribution 

The Fischer-Tropsch synthesis is very similar to a polymerisation reaction (Shultz et 

al., 1962), since the selectivity patterns as a function of the carbon number suggests a 

strict kinetic basis of surface polymerisation with stepwise addition of C1 monomer 

species. This ideal polymerisation can be described by considering the formation of a 

single product (Herington, 1946). The co-adsorption of CO and H2 on the surface leads 

to the formation of the monomeric species and a chain initiator, Sp1. This surface 

species with a single carbon atom (Sp1) can either desorb to form a product molecule 

(Pr1) with single carbon atom (e.g. methane) or grow further to a surface species with 2 

carbon atoms (Sp2). This surface specie (Sp2) can either desorb yielding a product 

molecule (Pr2) or grow further. This process can be repeated indefinitely yielding 

surface species with N carbon atoms (SpN) and product molecules with N carbon 

atoms (PrN). The probability of chain growth (Pg) can be defined as the rate of 

desorption over the combined rate of desorption and chain growth. 

g
g

g d

rate
P =

rate +rate
 

A mass balance around surface species with N carbon atoms (SpN) at steady state 

yields 

( ) g
N g

g

(1-P )
log X =Nlog(P )+ log

P
 

where XN is the mole fraction of products with N carbon atoms in the fraction of 

organic product compounds, and N is the carbon number. This is commonly referred 

as the Anderson-Schulz-Flory kinetics (Schulz, 1930; Flory, 1936). The polymerisation 

character of the Fischer-Tropsch synthesis implies that this reaction is not selective 

towards any product. 

The experimentally determined Fischer-Tropsch synthesis product distributions 

deviate from the theoretical Anderson-Schulz-Flory model. Typically, a higher than 

expected methane selectivity is observed, which might be caused by methane 

formation through hydrogenation of CO on different catalytically site (Schulz et al., 

1995). A lower than expected selectivity for C2 is observed. This is thought to originate 

from the high reactivity of ethene leading to incorporation of ethene into grown chains 

(Schulz et al., 1999). Other �-olefins may also re-adsorb on the surface of the catalyst 

and initiate secondary chain growth, in other words acting as a chain growth initiator 

(Claeys et al., 2004). 

Secondary chain growth initiated by re-adsorbed olefins would result in a shift of the 

Fischer-Tropsch product selectivity towards longer chain hydrocarbons. Thus an 
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increase in the probability of chain growth with increasing carbon number is often 

observed (Puskas and Hurlbut, 2003). Hydrogenation of re-adsorbed yielding a 

paraffin with the same carbon number or double-bond isomerisation to an olefin with 

an internal double bond will not result in a change of the probability of chain growth. 

Secondary chain growth of re-adsorbed �-olefins may result in the formation of 

branched product molecules. However, this reaction is thought to be sterically 

hindered and suppressed (Schulz and Claeys, 1999b). Jordan and Bell (1987) 

investigated the co-feeding of 1-butene in the hydrogenation of CO. It was found that 

the adsorbed �-olefin is likely to act as a chain growth initiator rather to be inserted 

into a growing chain. They concluded that the efficiency of the olefin in producing 

chain growth initiator decreases with increase in carbon number (i.e. C2H4 > C3H6 > 

C4H8). However, the likelihood for re-adsorption is believed to increase with increasing 

carbon number due to an increase in the solubility (Schulz and Claeys, 1999a) and/or 

a decrease in diffusivity (Iglesia et al., 1993) of olefins with increasing carbon number. 
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Figure  2.9: Comparison between Anderson-Schultz-Flory product distribution and 

experimental product distribution for a chain growth probability of 0.7 
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2.8 Fischer-Tropsch Product Selectivity 

2.8.1 Effect of Temperature 

An increase in reaction temperature results in a shift in product selectivity towards 

lower carbon number products and to more hydrogenated products, irrespective of 

catalyst metal (Dry, 2002). Therefore the Fischer-Tropsch synthesis can be classified 

into two operation mode in terms of reaction temperature. The low temperature mode 

(220°C-250°C) minimise overall gaseous product selectivity and maximise high carbon 

number products. These high carbon number products are hydrocracked to medium 

carbon number liquid products (Dry, 1996). The drawback of this operation mode is 

that the main product will be in diesel range fraction (Eilers et al., 1990; Sie et al., 

1991). Fixed-bed and slurry reactor are typically used for this mode of operation 

(Espinoza et al., 1999). However, liquid product formed inside the pores of the catalyst 

pellet in the fixed-bed reactor may promote catalyst sintering (Dry, 2004b). 

The high temperature mode (320°C-350°C) is aimed at the production of gasoline, light 

olefins and oxygen containing chemicals. Fluidized-bed reactor is typically used for 

this operation mode (Steynberg et al., 1999). 

An increase in the reaction temperature from 170°C to 210°C for cobalt catalysts 

decreases the olefin content due to secondary hydrogenation (Schulz and Claeys, 

1999b). The relative rate of branched product in C5 fraction seems to pass through a 

minimum in cobalt based catalysts (Claeys et al., 2004). In iron catalysts, the degree of 

branching increases and the amount of secondary products formed such as ketones 

and aromatics also increases with increasing reaction temperature (Dry, 2004b). 

2.8.2 Effect of Pressure 

The typical operating pressure of Fischer-Tropsch synthesis is between 15 to 40bar 

(Dry, 2004b). Drastic changes in product selectivity can be affected by increasing the 

operating pressure for cobalt-based catalysts (van Berge, 1997). An increase in 

operating pressure would increase the monomer concentration on the catalyst surface 

and would therefore increase reaction rate, irrespective of the reaction mechanism. An 

increase in reaction pressure increases the formation of oxygenates (Dry, 1990). 
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2.8.3 Effect of Gas Composition 

The partial pressure of the kinetically relevant compounds such as reactants (CO and 

H2), intermediate products (�-olefins), and the main products (water) near the active 

site will affect the activity and selectivity of the Fischer-Tropsch synthesis. The relative 

importance of the partial pressure of these compounds is related to the adsorption 

strength of these compounds on the active site. CO chemisorption is generally much 

stronger than H2 chemisorption (Toyoshima and Somorjai, 1979 ; Snel, 1987). 

It is arguable that a higher CO partial pressure will result in a higher catalyst surface 

coverage of monomers, irrespective of what the chemical composition of these 

monomer is (Dry, 2004b). A higher coverage with monomers will result in a higher 

chain growth probability. However, when the catalyst surface is only covered with CO, 

no chain growth will take place. Thus, the catalytic activity is expected to pass a 

maximum with an increasing partial pressure of CO (van Steen and Schulz, 1999). 

The probability of chain termination by hydrogenation is expected to increase with an 

increase in H2 partial pressure. Therefore a higher H2/CO ratio increases the product 

selectivity towards methane, lower carbon number hydrocarbons and paraffin 

products as observed by Vannice (1975a). 

Water as one of the main products of Fischer-Tropsch synthesis competes with CO 

and H2 for vacant sites on the catalyst surface. Water may decrease the carbon surface 

coverage as observed by Claeys and van Steen (2002). Therefore, increasing the H2O 

partial pressure may lead to an increase in the Fischer-Tropsch activity due to an 

increase in the number of vacant sites (Kim, 1989; Claeys and van Steen, 2002). A 

decrease in methane selectivity and an increase in C5+ selectivity over cobalt-based 

catalyst (Kim, 1989; Krishnamoorthy et al., 2002) and a ruthenium-based catalyst 

(Claeys and van Steen, 2002) with increasing water partial pressure have been 

observed. On the other hand, Schulz et al. (1997) observed no change in the methane 

selectivity with an increase in water partial pressure over a cobalt-based catalyst. 

Furthermore, the selectivity for olefins and especially �-olefins increases with 

increasing water partial pressure (Kim, 1989; Claeys and van Steen, 2002; 

Krishnamoorthy et al., 2002). This is attributed to the inhibition of the secondary 

hydrogenation of primarily formed �-olefins by water (Iglesia et al., 1993). 

The influence of the partial pressure of the intermediate product (�-olefins) on Fischer-

Tropsch product selectivity is typically investigated by co-feeding to the reactor. Schulz 

and Claeys (1999b) performed Fischer-Tropsch synthesis with a cobalt catalyst in a 
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slurry reactor and co-fed 1-octene into the reactor. They observed an increase in the 

double-bond isomerisation of 1-octene to 2-octene. The product selectivity towards 

isomerisation for the added 1-octene increases with increasing CO partial pressure 

(Schulz and Claeys, 1999b). Therefore, CO inhibits olefin hydrogenation (Iglesia et al., 

1993; Schulz and Claeys, 1999b). Furthermore, the co-feeding of �-olefins had almost 

no influence on methane selectivity (Schulz and Claeys, 1999b). Thus, the 

hydrogenolysis of olefins leading to methane is negligible in Fischer-Tropsch synthesis. 

Schulz and Claeys (1999b) found that 75% of the co-fed 1-octene was hydrogenated, 

15% was isomerized and only 10% was re-incorporated. Therefore hydrogenation 

seems to be the dominant reaction of re-adsorbed �-olefins. However, a decrease in 

methane selectivity was observed upon co-feeding ethene (Kim and Hills, 1985; Iglesia 

and Madon, 1987; Schulz and Claeys, 1999b), and a concurrent increase in the C5+ 

selectivity. Therefore, re-adsorption of reactive �-olefins and re-initiation in the chain 

growth process may lead to a decrease in methane selectivity and an increase in the 

C5+ selectivity. 
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2.8.4 Effect of Catalyst Metal Particle Size 

The Fischer-Tropsch synthesis is structure sensitive (Bezemer et al., 2006; Iglesia et 

al., 1992) and the activity and product selectivity are dependent on the metal 

crystallite size in the catalyst for metal cobalt crystallite sizes less than 5-6nm. The 

structure sensitivity might be ascribed to the arrangement of the surface atoms for 

crystallites smaller than 5nm (van Hardeveld and Hartog, 1969) originating from a 

combination of electronic and structural effect. Alternatively, the structure sensitivity 

might originate from a phase transition of small metal particles at particular H2/H2O 

ratios in the Fischer-Tropsch synthesis (van Steen et al., 2005). It should be realised 

that the crystallite size dependency of the Fischer-Tropsch synthesis has been 

observed with iron (Mabaso, 2005), cobalt (Bezemer et al., 2006) and ruthenium 

(Welker, 2007). The product selectivity towards methane and lower carbon number 

product compounds increases generally with decreasing metal crystallite size. 

Furthermore, an increase in paraffin product selectivity was obtained with smaller 

metal crystallites (Bezemer et al., 2006). There is a minimum metal crystallite size 

above which the Fischer-Tropsch synthesis becomes structure insensitive (e.g. 6nm 

for cobalt according to Bezemer et al., 2006). Iglesia et al. (1992) studied cobalt and 

ruthenium catalysts with metal particles ranging from 2.2 to 14.8nm, and found that 

C5+ selectivity is favoured when Fischer-Tropsch synthesis becomes structure 

insensitive. This was ascribed to a possibility of a rate limiting step that does not 

depend on local surface structure. 

2.8.5 Effect of Catalyst Pore Size 

The catalyst pore size is believed to have an effect on intra-pellet reactant and product 

diffusion, thus affecting internal mass transport of reactant and product compounds. 

Espinoza et al. (1998) stated that the pore size for a cobalt catalyst should be at least 

12nm for optimum wax selectivity. Saib et al. (2002) investigated the C5+ and 

methane selectivity over a series of Co/SiO2 catalysts. They found the C5+ selectivity 

pass through a maximum while methane selectivity passed through a minimum 

respectively at a pore size of 10nm for cobalt catalyst supported on silica. 
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2.8.6 Effect of Catalyst Pellet Size 

The catalyst pellet size has an influence on the internal mass transport of reactant 

and products. When internal mass transport is limited, the concentration of the 

reactants will be higher at the pore mouth of the catalyst pellet and lower towards the 

middle of the catalyst pellet. The product selectivity in the Fischer-Tropsch synthesis 

is strongly affected by the reaction conditions near the active site. Therefore, the 

Fischer-Tropsch product selectivity can be altered, if the reaction takes place under 

internal mass transport limitation (Iglesia et al., 1993). When Fischer-Tropsch is 

performed in slurry reactor or the catalyst pores are filled with liquid product and the 

reaction is close to isothermal. Thus, the observed rate of the Fischer-Tropsch 

synthesis is expected to decreases, if internal mass transport limitation is present. 

The significance of internal mass transport of reactant and products was confirmed by 

de Deugd et al. (2003) and Kapteijn et al. (2005) using monolithic catalyst. Monolithic 

cobalt catalysts were prepared by wash coating cordierite monoliths with cobalt on γ-

alumina powder, the thickness of coating was varied. It was found that methane 

selectivity and C5+ selectivity were affected when the thickness of the coating is larger 

than 50µm. 

Comparing the two reactant of Fischer-Tropsch synthesis (CO and H2), diffusion of H2 

is faster than CO for all diffusion regimes. Thus, diffusion limited reactants arrival at 

an active site which is deep inside the catalyst pores will lead to a higher local H2/CO 

ratio. The high intra-pellet H2/CO ratio will lead to the primary formation of shorter 

hydrocarbons and thus a decrease in C5+ selectivity. 

Diffusion limited removal of intermediate products (�-olefins) increases their chance of 

re-adsorption (Iglesia et al., 1993). This may lead to olefin re-incorporation, thus 

increasing C5+ selectivity (Iglesia, 1997a). This may also lead to secondary 

hydrogenation of olefins resulting in higher paraffin product selectivity (Schulz and 

Claeys, 1999b). However, diffusion limited removal of H2O may increase the H2O 

partial pressure in the catalyst pores, and thus resulting in an increase in olefin 

product selectivity (Iglesia et al., 1993). 

The severity of internal mass transport limitation is typically described by using the 

Thiele modulus (Φ), which is a dimensionless parameter derived from the mass 

balance of the reactant species under the influence of diffusion. The Thiele modulus is 

an indication of the ratio of reaction rate over the diffusion rate. Iglesia et al. (1995) 

proposed to split the Thiele modulus into two components. The diffusivity reactive 
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parameter (ψ) describes the properties of the reaction conditions, and structural 

parameter (χ) which describes the properties of the catalyst pellet. 

χ
2*
pellet m2 CO CO

T T CO pore

r ερ2H R
Φ =ψ× =( )×( )

C P D r
 

The diffusivity reactive parameter (ψ) depends on the solubility of CO (HCO), the 

reactivity of CO ( *
COR ), the total reactant concentration (CT), the operating pressure (PT), 

and the CO diffusivity (DCO). The structural parameter (χ) depends on the pellet radius 

(rpellet), the catalyst porosity (ε), the catalyst metal density (ρm), and the pore radius 

(rpore). 

The influence of the structural parameter (χ) on Fischer-Tropsch product selectivity 

was investigated by Iglesia et al. (1995, 1997a, and 1997b). The structural parameter 

was varied by changing catalyst pellet size.  At low χ values, the C5+ selectivity is low 

with corresponding high methane selectivity. The C5+ selectivity increases with 

increasing value for the structural parameter (χ). This was attributed to increased 

product removal limitations resulting in higher intra-pellet �-olefin concentrations and 

longer intra-pellet residence times. This would increase the probability of �-olefin re-

adsorption, which increases the probability of further chain growth of the re-adsorbed 

olefin to longer chain products. Thus, this will lead to an increase in the C5+ product 

selectivity. At higher values of structural parameter (χ), the C5+ product selectivity 

decreases and correspondingly the methane selectivity increases. This can be 

explained by severe CO transport limitation leading to high average H2/CO ratio inside 

the catalyst pellet. This high H2/CO ratio increases the probability of chain 

termination (Dry, 2004a), thus increasing the product selectivity of low carbon 

number products. A maximum C5+ product selectivity and minimum methane 

selectivity was observed at intermediate values of the structural parameter (χ). This 

has been attributed to a limitation in olefin removal while the intra-pellet H2/CO ratio 

is not severely altered (see Figure  2.10). 
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Figure  2.10: Effect of the structural parameter on C5+ product selectivity (adopted from Iglesia 

et al. 1997a, [○] dispersion/support effect, [●] egg-shell thickness effect, [▲] pellet 

size variation) 

However, the product selectivity towards paraffin, branched hydrocarbons and 

internal olefins was not investigated to support this explanation by Iglesia et al. (1995; 

1997a and 1997b). According to Schulz and Claeys (1999b), most of the re-adsorbed 

�-olefins would be hydrogenated (75%). Even with slight increase in internal mass 

transport, the increased intra-pellet H2/CO ratio would increase the probability of 

hydrogenation of re-adsorbed �-olefins. Therefore, an investigation of Fischer-Tropsch 

product selectivity under internal mass transport limitation is needed. 

2.8.7 Effect of Catalyst Structure 

The size of a catalyst pellet is not the only parameter by which the internal mass 

transport limitation can be changed. Iglesia et al. (1995) synthesized one type of 

cobalt-based structured catalyst, viz. the egg-shell type, for the Fischer-Tropsch 

synthesis. The structured catalyst is discussed in more detail in the following section 

(Section  2.9). By using structured catalysts, the effect of internal mass transport 

limitations can be tailored for a fixed pellet size. Iglesia et al. (1995) observed that the 

performance of egg-shell type of catalyst was superior to that of the uniform catalyst 

pellets in terms of C5+ selectivity. Other types of structured cobalt-based catalysts 

(egg-yolk type and egg-white type) have never been utilized for Fischer-Tropsch 

synthesis. 
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2.9 Structured Catalysts 

2.9.1 Type of Structured Catalysts 

Structured catalysts are catalyst with active ingredient structured in a specific way 

within the catalyst pellet. The catalytically active ingredients can be distributed in 

different ways leading to four major types of distributions. Cross sectional view of four 

types of structured catalysts are shown in Figure  2.11. The shaded parts represent the 

active ingredient deposited on parts of the support. In uniform catalysts, the 

catalytically active ingredient is distributed uniformly the pellet. The catalytically 

active ingredients are concentrated towards the outer surface of the pellet in egg-shell 

type of catalysts. Egg-yolk type of catalysts are characterised by the active ingredients 

concentrated in the core of the catalyst pellet, while egg-white type of catalysts by a 

ring containing the catalytically active ingredient. 

Uniform Egg-Shell Egg-Yolk Egg-White  

Figure  2.11: Cross-sectional view of different type of structured catalyst 

2.9.2 Influence of Catalyst Structure on Product Selectivity 

The superiority of non-uniform catalysts was demonstrated by Mars and Gorgels 

(1964), Michalko (1966) and Kasaoka and Sakata (1968). Kasaoka and Sakata (1968) 

solved the effect of non-uniform catalyst on reaction and diffusion rate gradients 

numerically in an infinite slab for a first order reaction with dimensionless parameters. 

They derived analytical expressions for the effectiveness factor for an isothermal, first 

order reaction with various catalyst activity distributions. They showed that egg-shell 

type has a higher effectiveness factors. 

Pellets with larger catalyst activity in the interior than on the surface (egg-yolk type) 

may have a higher effectiveness factors if the reaction have a negative order for the 

reactant, e.g. the bimolecular Langmuir-Hinshelwood kinetics (Villadsen, 1976; Becker 

and Wei, 1977a). 

Structured catalyst may also be applied in order to minimise catalyst deactivation. 

Michalko (1966) used egg-white type of Pt/Al2O3 catalyst and found they exhibited 

better long-term stability than surface-impregnated (uniform and egg-shell type) 

pellets. They attributed the improved long time performance of the egg-white catalyst 

to a reduced loss in the active metal due to attrition. Thus, catalyst pellets with an 
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outer protective layer of support (egg-yolk type and egg-white type) are beneficial in 

applications where attrition due to abrasion or vibration occurs, since initially only the 

inert and inexpensive support is worn off and the precious active materials are 

retained. 

Catalyst deactivation of structured catalyst has been studied by a number of 

investigators (DeLancey, 1973; Becker and Wei, 1977b; Hegedus and McCabe, 1984). 

If deactivation occurs by sintering, it is minimized by decreasing the local catalyst 

concentration, i.e., uniform catalyst offers the best resistance to sintering (Komiyama 

and Muraki, 1990). 

Shadman-Yazdi and Petersen (1972) and Corbett and Luss (1974) studied an 

irreversible isothermal first order consecutive reaction system → →(A B C)  for a variety 

of catalytically active site distributions. The selectivity for the formation of species C is 

enhanced by distributing the catalytic active ingredient in such a way that activity 

increases towards the centre of the pellet (egg-yolk type). The selectivity for species B 

is significantly higher when the catalytic active ingredient is distributed close to the 

surface of the catalyst pellet (egg-shell type). 

Using the analogy derived from Shadman-Yazdi and Petersen (1972), the catalyst 

metal distribution can be used to optimise the internal mass transport limitation in 

Fischer-Tropsch catalyst to maximise C5+ product selectivity as suggested by Iglesia et 

al. (1995). The Fischer-Tropsch synthesis can be viewed as a consecutive reaction. CO 

and H2 (A) reacts to form �-olefins (B), which re-adsorb on the catalyst surface and 

initiate further chain growth, leading to the formation of higher carbon number 

products (C). The egg-shell type of catalyst would decrease the extent of internal mass 

transport limitation. Hence, the residence time of species B is decreased, and an 

increase in the product selectivity towards species B should be obtained. More severe 

internal mass transport limitation would be obtained by using egg-yolk type of catalyst. 

This would result in an increase in the residence time of species B. Thus, an increase 

in product selectivity towards species C would be obtained. 
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2.10 Synthesis of Structured Catalysts 

2.10.1 Diffusion-Adsorption 

The conventional synthesis method for non-uniform catalysts is through a multi-

component impregnation technique. This method is based on an intermediate 

interaction between the catalyst precursor and support such that the catalyst 

precursor can adsorb on the support, but can desorb when another competing 

adsorbing species is introduced. Depending on the interaction between the competitive 

adsorption and diffusion of the various species in the porous support, a variety of non-

uniform distribution of the catalytic active components can be obtained. It is common 

to first establish the distribution of the adsorbed catalyst precursor during 

conventional impregnation process. An egg-shell type of catalyst is formed, if the 

adsorption rate of the catalyst precursor is faster than convective flow of impregnation 

solution (dry impregnation) or faster than diffusion rate of catalyst precursor in the 

porous support (wet impregnation) (Maatman and Prater, 1957; Lee and Aris, 1985). 

The pH and the ionic strength of the impregnation solution have an indirect but 

significant effect on adsorption characteristics of the precursor. By altering the pH in 

the direction which favours adsorption of the impregnation species, sharper egg-shell 

type distributions can be obtained (Goula et al., 1992). Egg-shell, egg-yolk, and egg-

white type of catalyst can be synthesized using multi-component co-impregnation 

technique. Hepburn et al. (1989) prepared Rh/γ-Al2O3 egg-white type of catalysts 

using hydrofluoric acid, hydrochloric acid, citric acid, and their sodium salts as co-

impregnants. It was shown that rhodium can be driven toward the centre of the 

catalyst pellet more effectively by using co-impregnants with a low degree of 

dissociation in aqueous solution. In co-impregnation, impregnation time and 

competitor concentration are the two key parameters for controlling the intra-pellet 

metal distribution. It is observed that by increasing impregnation time, the catalyst 

layer of an egg-white type of catalyst is pushed deeper inward, yielding egg-yolk type 

distribution. At long impregnation times, these subsurface cores can be washed out by 

back diffusion, producing uniform distribution with lower local loading (Shyr and 

Ernst, 1980; Papageorgiou et al., 1996). The effect of increasing competitor 

concentration is similar to that of increasing impregnation time: the catalyst layer is 

pushed deeper inside the pellet (Papageorgiou et al., 1996). However, by introducing 

an acid will change the pH during impregnation step. 

The reducibility of transition metal catalyst depends on the pH during impregnation 

step (van Steen et al., 1996), therefore this non-uniform synthesis method will affect 

the reducibility of the catalyst. 
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2.10.2 Deposition-Precipitation 

The deposition-precipitation involves deposition inside pellets of insoluble compounds, 

such as hydroxides which are formed by a precipitation reaction. Precipitation can be 

induced by a change of solution pH. After the pellet support is filled with a solution 

containing the precursor to the catalytically active ingredient. A pH profile develops 

inside the pellet, which depends on the initial solution pH and the iso-electric point of 

the carrier. Since precipitation depends on pH, the distribution of the precipitate 

reflects the pH gradient. Therefore, by appropriate choice of the impregnation 

conditions, precipitation may occur in inner (egg-yolk type) or the outer (egg-shell type) 

region of the pellet. The preparation of the egg-shell type of catalyst using this method 

may lead to the precipitation of the precursor to the catalytically active ingredient 

outside the pellets. Therefore this method is especially suited for preparation of egg-

yolk distributions (De Jong, 1991). 

2.10.3 Granulation 

This synthesis method involves premixing catalyst powder with a binder, follow by 

deposition gradually on moist seeds of catalyst support (typically 0.5-2mm), and 

finally providing layered spherical particles. This can be achieved by a two-stage 

fluidized bed (Scheuch et al., 1996). This method can be extended for preparation of 

egg-white type of catalyst by using the corresponding egg-shell type of catalyst as seed 

granules and depositing inert powder. Similarly, egg-yolk catalysts could be produced 

using uniform spherical catalyst particles as seed granules. Egg-shell, egg-yolk and 

egg-white type of transition metal catalysts were synthesized by van Hardeveld et al. 

(2002). However, this synthesis method is prone to loss of catalyst surface due to 

attrition under extreme reaction condition. 

2.10.4 Imbibition 

This method is an extension of the diffusion-adsorption method. In the diffusion-

adsorption method, diffusion and adsorption rates are the counteracting parameters 

that determine the intra-pellet metal distribution of the non-uniform catalyst. Iglesia 

et al. (1995) used viscosity of the impregnation solution as an alternative counter-

acting parameter to catalyst precursor adsorption rate in synthesising egg-shell type of 

cobalt catalyst. Egg-shell type of catalyst with sharp boundaries can be synthesised 

with this method. However, only egg-shell type of catalyst can be synthesised. 
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2.11 Catalysts Deactivation 

Loss of catalyst activity during reaction is one of the major problems in catalysed 

reaction. Deactivation can be caused under the influence of chemical, physical or 

thermal interactions. In general most catalyst deactivation is irreversible and must be 

prevented. 

2.11.1 Poisoning 

Strong irreversible adsorption of reactant or products on the surface of catalyst metal 

and hence permanently occupying the active site is defined as poisoning. Sulphur, 

COS, H2S, NH3 and metal carbonyls are the most common contaminates for Fischer-

Tropsch catalysts (Bartholomew, 1987; Rostrup-Nielsen, 1991; Bromfield and Coville, 

1999). These contaminants are usually found in the raw material, for example coal as 

Fischer-Tropsch contains a significant amount of sulphur. Sulphur concentration in 

the parts per billion range can cause a significant loss in activity of the catalyst 

(Shultz et al., 1962, Dry, 1981, Anderson, 1984, Duvenhage et al., 1994; Bromfield 

and Coville, 1999) 

2.11.2 Fouling 

Fouling is defined as the physical deposition of species from liquid phase onto the 

catalyst surface either mechanically blocking the active site or blocking catalyst pores. 

In the case of Fischer-Tropsch synthesis, carbon or carbonaceous species can cover 

up metal crystals or plugging catalyst pores. (Rostrup-Nielsen, 1974; Trimm, 1983; 

Bartholomew, 1987; Menon, 1990; Bartholomew, 2001) 

2.11.3 Sintering 

Sintering is the loss of active surface area caused by thermal degradation (Wanke and 

Flynn, 1975; Ruckenstein and Dadyburjor, 1983; Bartholomew, 2001). At high 

temperatures, metal particle becomes mobile resulting in an increase in the likelihood 

for crystal growth. The mobility of metal particle is related to melting temperature of 

the metal, which can be correlated using Hüttig temperature defined as 

Hüttig meltingT =0.3T  

Atoms become mobile at temperature higher than Hüttig temperature. 

Tamman temperature is the minimum temperature at which atoms from bulk will 

exhibit mobility. 

Tamman meltingT =0.5T  
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Metal particles exposed to reaction temperature greater than Tamman temperature 

will show some degree of sintering. The Tamman temperature and Hüttig temperature 

of typical Fischer-Tropsch catalyst metals is tabulated in Table  2-1. Metal crystal 

growth can also be encouraged by the presence of water during Fischer-Tropsch 

synthesis (Dry, 1981; Forzatti and Lietti, 1999; Bartholomew, 2001; Moulijn et al., 

2001). 

Table  2-1: Tmelt, THüttig and TTamman of typical Fischer-Tropsch catalyst metals 

TMelting THüttig TTamman 
Metal 

[°C] [°C] [°C] 
Ru 2250 568 988 
Fe 1538 331 632 
Co 1495 316 611 
Ni 1453 302 590 

 

2.11.4 Gas-Solid and Solid-Solid Interactions 

Gas-solid and solid-solid chemical interactions may also cause catalyst deactivation 

(Bartholomew, 2001). In the case of gas-solid interaction, loss of metal may occur via 

the formation of volatile compounds such as metal carbonyls. In the case of solid-solid 

interaction, loss of metal can occur via the formation of metal oxides. Transformation 

of iron or iron carbide to inactive magnetite Fe3O4 in the presence of CO2 and H2O is 

well-known in the deactivation of iron-based catalysts for the Fischer-Tropsch 

synthesis (Dry, 1981; Anderson, 1984; Jager and Espinoza, 1995; Dry, 2004b). 

Although direct oxidation cobalt is not feasible under Fischer-Tropsch conditions 

(Anderson, 1956b), cobalt oxide may form in the presence of water as a by-product of 

Fischer-Tropsch synthesis (Iglesia, 1997b). Thermodynamic analysis on the oxidation 

of small cobalt particles by van Steen et al. (2005) confirmed that cobalt particles less 

than 4nm may oxidize under typical Fischer-Tropsch conditions due to surface energy 

contribution. 
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3 SCOPE OF THIS STUDY 

The Fischer-Tropsch synthesis can be regarded as a polymerisation reaction occuring 

on transition metal catalyst. One of the intermediate products, �-olefins may re-adsorb 

on the catalyst surface and initiate further chain growth; this affects the selectivity of 

the desired product (C5+ selectivity). Internal mass transport limitation was 

demonstrated as a parameter that affecting C5+ selectivity. Maximum C5+ product 

selectivity might be achieved at moderate internal mass transport limitation which has 

been ascribed to enhanced �-olefins re-adsorption with minimal increase in intra-

pellet H2/CO ratio. However the re-adsorbed �-olefin is more likely to be hydrogenated, 

therefore a simultaneous increase in re-adsorption of �-olefin and increase in intra-

pellet H2/CO ratio due to increase in internal mass transport limitation may not result 

in an optimum in C5+ selectivity. 

The scope of this study is to investigate the product selectivity (methane, C5+, 

paraffins, olefins, �-olefins, branched hydrocarbon, and oxygenates) in the absence of 

external mass transport limitations and under the influence of internal mass transport 

limitation. The product selectivity will provide insight to the key aspect in internal 

mass transport limitation which affects intra-pellet reactant and product 

concentration. 

Structured catalyst can be used to vary the extent of internal mass transport 

limitation without vary the catalyst pellet size. However synthesis of egg-yolk and egg-

white type of distribution has never been synthesized using transition metal based 

catalyst. Therefore, the scope of this study includes the synthesis, characterisation as 

well as testing of the non-uniform cobalt-based catalyst for Fischer-Tropsch synthesis. 



Univ
ers

ity
 of

 C
ap

e T
ow

n



Univ
ers

ity
 of

 C
ap

e T
ow

n

EXPERIMENTAL METHODOLOGY  |  67 

4 EXPERIMENTAL METHODOLOGY 

4.1 Catalyst Preparation 

Four types of structured catalyst pellets were synthesised by a method developed for 

the purposes of this study (Zhuang et al., 2006). Catalysts with a uniform distribution 

of the active metal were denoted with the letter U, egg-shell type of catalysts were 

denoted with the letter S, egg-yolk type of catalysts were denoted with the letter Y, and 

egg-white type of catalysts were denoted with the letter W. 

4.1.1 Preparation of Uniform Catalysts 

The base case of uniform catalyst pellets (U1) was prepared by incipient wetness 

technique. Cylindrical-shaped silica pellets (Degussa†, Aerolyst 3038, dpellet: 2.5mm, 

lpellet: 4.5mm, SBET: 270m2/g, dpore: 16nm) were used as catalyst support. The 

impregnation solution was made by dissolving 0.485g/gsilica Co(NO3)2·6H2O (Aldrich, 

98%) in 0.92mℓ/gsilica de-ionized water. The catalyst precursor was aged at room 

temperature for 20 minutes followed by drying in a ventilated oven at 120°C for 2 

hours. Subsequently, the dried precursor was calcined in air using a flow rate of 

90mℓ(STP)/min/gsilica in a fluidized bed reactor at 350°C for 16 hours (heating rate: 

5°C/min). 

Uniform powder catalyst (U1C) was made by crushing the calcined uniform catalyst 

pellets (U1) to obtain a 100% passing through of a 125µm sieve. 

A uniform catalyst (U2) with a higher cobalt loading than catalyst U1 was prepared by 

repeating the incipient wetness impregnation step once on the calcined catalyst pellet. 

This precursor was then aged at room temperature for 20 minutes followed by drying 

in a ventilated oven at 120°C for 2 hours. Subsequently, the dried precursor was 

calcined in air using a flow rate of 90mℓ(STP)/min/gsilica in a fluidized bed reactor at 

350°C for 16 hours (heating rate: 5°C/min). 

                                                 
† now Evonik 
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4.1.2 Preparation of Egg-shell Type of Catalysts 

The synthesis procedure of egg-shell type of catalysts consists of two stages, viz. 

protection of the inner core of the silica support against penetration with the cobalt 

nitrate solution, and impregnation of outer shell of the silica support. The protection 

was achieved by soaking the silica support in an organic solvent† for 20 minutes to 

ensure its pores were completely filled. The support soaked with the organic solvent 

was subsequently heated in an oven at 120°C to evaporate some of the organic solvent 

in the pores. The silica supports were stirred every 30 seconds during the partial 

evaporation process to ensure even evaporation. The amount of organic solvent 

remained in the pellets was determined gravimetrically. 

Subsequently, the silica supports which were partially covered with the organic 

solvent were impregnated using the incipient wetness technique with an aqueous 

cobalt nitrate solution. The amount of cobalt nitrate in the impregnation solution was 

fixed at 0.485g/gsilica, while the amount of de-ionized water was varied proportional to 

the amount of partially evaporated organic solvent on the basis of total pore volume of 

0.92mℓ/gsilica (see Table  4-1). 

Vorganic solvent + Vwater = Vpore = 0.92mℓ/gsilica 

The catalyst precursor was then aged at room temperature for 20 minutes followed by 

drying in a ventilated oven at 120°C for 2 hours. Subsequently, the dried precursor 

was calcined in air using a flow rate of 90mℓ(STP)/min/gsilica in a fluidized bed reactor 

at 350°C for 16 hours (heating rate: 5°C/min). 

Table  4-1: Amount of organic solvent and de-ionized water used in the synthesis of egg-shell 

type of catalysts 

Catalyst Organic Solvent† H2O 

Code [g/gsilica] [mℓ/gsilica] 
S1 0.584 0.131 
S2 0.486 0.263 
S3 0.389 0.394 
S4 0.292 0.526 
S5 0.195 0.657 
S6 0.097 0.789 

 

                                                 
† n-undecane (Merck, 99.9%) 
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4.1.3 Preparation of Egg-yolk Type of Catalysts 

The synthesis of egg-yolk type of catalysts consists of three stages, viz. preparation of 

a uniform precursor; protection of the inner core of the precursor, and leaching of 

cobalt on the outer shell. 

To obtain uniform catalysts with various cobalt loadings, a series of uniform pellets as 

precursor for the synthesis of egg-yolk type of catalyst was prepared using the multi-

step incipient wetness technique as previously described (Section  4.1.1). Impregnation 

solution used in each impregnation step was made up of 1g/gsilica cobalt nitrate and 

0.92mℓ/gsilica of de-ionized water. The uniform pellet precursors were aged at room 

temperature for 20 minutes followed by drying in a ventilated oven at 120°C for 2 

hours. Subsequently, the dried precursor was calcined in air using a flow rate of 

90mℓ(STP)/min/gsilica in a fluidized bed reactor at 350°C for 16 hours (heating rate: 

5°C/min). The uniform pellet precursors were aged, dried, and calcined after each 

impregnation step. These uniform pellet precursors were reduced in hydrogen using a 

flow rate of 90mℓ(STP)/min/gsilica in a fluidized bed reactor at 350°C for 16 hours 

(heating rate: 5°C/min). 

The reduced uniform pellet precursor was soaked in the organic solvent for 20 

minutes to ensure all catalyst pores were filled. The soaked precursors were then 

evenly dried in oven to partially evaporate the organic solvent (see Table  4-2). 

Subsequently, the catalysts, which were partially covered with the organic solvent, 

were contacted with 200mℓ of diluted nitric acid (1wt% in de-ionized water) for 30 

minutes. The leached precursors were washed 5 times, each time with 100mℓ of de-

ionized water. The pellets were subsequently dried in a ventilated oven at 120°C for 2 

hours and  calcined in air using a flow rate of 90mℓ(STP)/min/gsilica in a fluidized bed 

reactor at 350°C for 16 hours (heating rate: 5°C/min). 

Table  4-2: Number of impregnation steps used for uniform precursor and amount of organics 

left inside the precursor in the synthesis of egg-yolk type of catalyst 

Catalyst Impregnation Organics 

Code Steps [g/gsilica] 
Y1 1 0.643† 
Y2 1 0.596† 
Y3 2 0.165† 
Y4 4 0.102† 
Y5 1 0.660‡ 
Y6 1 0.802‡ 
Y7 2 0.861‡ 

                                                 
† n-undecane (Merck, 99.9%) 
‡ n-tetradecane (Merck, 99%) 
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4.1.4 Preparation of Egg-white Type of Catalysts 

The synthesis of egg-white type of catalysts involves a procedure identical to the 

synthesis of egg-yolk type of catalysts; except for the use of egg-shell type of pellet as a 

precursor rather than a uniform catalyst pellet. Four samples of egg-shell type of pellet 

precursors with varying egg-shell thickness were prepared using various amounts of 

organic solvent and impregnation solution as tabulated in Table  4-3. 

These precursors were reduced and subsequently soaked in organic solvent for 20 

minutes and heated at 120°C to partially evaporate the organic solvent ensuring the 

metal-free core of the pellet. A part of the metal-containing shell of the pellet remained 

covered with organic solvent. These pellets were subsequently contacted for 30 

minutes with 200mℓ of diluted nitric acid (1wt% in de-ionized water) at room 

temperature. The leached pellets were washed 5 times, each time with 100mℓ of de-

ionized water. Catalyst pellets were then dried in a ventilated oven at 120°C for 2 

hours, and subsequently calcined in air using a flow rate of 90mℓ(STP)/min/gsilica in a 

fluidized bed reactor at 350°C for 16 hours (heating rate: 5°C/min). 

Table  4-3: Details of impregnation solution and organic solvent used for preparation of egg-

shell type of precursor and amount of organic solvent left inside the precursor in 

the synthesis of egg-white type of catalysts 

Egg-Shell Precursor Leaching 

Organic Solvent(a) Co(NO3)2·6H2O H2O Organic Solvent (b) 
Catalyst 

Code 
[g/gsilica] [g/gsilica] [g/gsilica] [g/gsilica] 

W1 0.466 0.602 0.340 0.597 
W2 0.280 0.801 0.499 0.689 
W3 0.199 1.000 0.539 0.270 
W4 0.107 1.200 0.659 0.203 

(a) used in synthesis of egg-shell type of precursor 

(b) used to prevent the leaching solution entering the core of the catalyst 
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4.2 Catalyst Characterisation 

4.2.1 Atomic Absorption Spectroscopy (AAS) 

The cobalt content of the catalysts was determined by using an Atomic Absorption 

Spectrophotometer Varian 3.0. Calcined pellet samples were crushed to fine powder in 

the presence of acetone to minimise loss of silica during crushing. All crushed samples 

were dried at 120°C overnight to eliminate moisture prior the analysis. Subsequently, 

the samples were weighted and dissolved in aqua-regia with the addition of 

hydrofluoric acid and perchloric acid (see Appendix B.1). The aqueous samples were 

made up to a known volume, and subsequently filtered. The cobalt concentration was 

measured by using AAS. 

4.2.2 Optical Microscopy 

Catalyst pellets were cut parallel to their cross-sectional area to examine the metal 

distribution inside the pellet. Images of 10 pellets per catalyst were taken at 30× 

magnification under a dissecting microscope (Wild M400) which was attached to a 

digital camera (Zeiss Axiocam). Images were processed and scaled using Zeiss 

AxioVision image software. Sample average and standard deviation were estimated 

from these images. 

4.2.3 Scanning Electron Microscopy (SEM) 

A scanning electron microscope (LEO† S440 SEM, La:Ka) equipped with a Four 

Quadrant Back Scatter Detector and an energy dispersive Fissions Kevex X-ray 

spectrometer (ECXA) operating at 20 kV was used to investigate the macroscopic 

distribution of cobalt oxide in the calcined catalyst pellets. Catalyst pellets were placed 

individually in a plastic vial which was then filled with liquid resin. Soaked pellets 

were left to solidify in an oven at 60°C for 24 hours. Thereafter, the pellets were cut 

and polished to show its cross-sectional area (see Appendix B.2). Back-scatted images 

and EDX analysis of 4 pellets per sample were taken, from which the sample average 

and standard deviation were estimated. 

                                                 
† now Zeiss 
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4.2.4 Transmission Electron Microscopy (TEM) 

The cobalt oxide particle size in the calcined catalysts and in the spent catalysts was 

determined by using a LEO 912 Transmission Electron Microscope operating at 120 

kV. Catalyst pellets were crushed to fine powder and subsequently suspended in 

methanol. A drop of each sample was transferred onto a carbon coated copper grid. 

Four digital images of each catalyst sample were taken and analyzed by using IMAGE 

J (see Appendix B.3). A minimum of 2000 particles and 20 clusters were measured per 

catalyst sample to determine the average particle size and the cluster size. 

4.2.5 X-Ray Diffraction Spectroscopy (XRD) 

X-ray diffraction was used to identify the cobalt oxide phase present in the calcined 

catalyst pellets and to estimated the average crystallite size prior to reduction. The 

pellets were crushed to fine powder prior to the analysis. Diffraction spectra were 

obtained by using a Phillips X-Ray Generator with Cu-K� radiation of wavelength 

0.154nm. The generator voltage was adjusted to 40kV and the current to 25mA. The 

spectra were scanned in the 2θ range from 3° to 120° at a rate of 3°/min with a step 

size of 0.05°. Volume-weighted particle sizes were estimated from the peak width at 

half height using the Debye-Scherre equation (See Appendix B.4) 

kλ
d =

βcosθ
 

where d is the particle diameter [nm], k is the shape factor (0.9), λ is the X-ray 

wavelength [nm], β is the line broadening of full width at half maximum intensity 

[radian] and θ is the diffraction angle. 

4.2.6 Physisorption 

Physisorption was performed on a Tristar 3000 Micrometrics analyser on calcined 

catalyst pellets to determined surface area and pore diameter. The pellet samples were 

evacuated for at least 8 hours at 250°C before analysis. Nitrogen was used as the 

adsorbate at its liquefaction temperature (77.35K). The isotherms were obtained at a 

constant temperature at a range of relative pressures between 0 and 1. Brunauer-

Emmet-Teller (BET) method was applied to evaluate the total surface area. Pore 

volume and average pore diameter of the catalysts were estimated using the Barrett-

Joyner-Halenda (BJH) method (see Appendix B.5). 
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4.2.7 Chemisorption 

Static volumetric chemisorption was performed on an ASAP 2020 Micromeritics 

analyser using CO. Catalyst pellets were reduced in-situ at 350°C for 16 hours with a 

heating rate of 5°C/min and a hydrogen flow rate of 18mℓ (STP)/min/ silicag . Samples 

were evacuated at the reduction temperature for two hours to eliminate any 

chemisorbed hydrogen, and subsequently cooled down to chemisorption temperature 

(40°C). The adsorption isotherm was recorded between 50 to 550mbar. Chemisorption 

results were analysed based on the assumption that strongly physisorption of CO at 

the analysis temperature is negligible. The volume of the chemisorbed monolayer on 

the active surface was determined by extending a line tangent to the plateau of the 

isotherm to the y-axis, as illustrated in Figure  4.1. Assuming a stoichiometry number 

Fs of 1, the number of accessible active sites (Ns) on the surface was determined 

mono A s
s

mol

V N F
N =

V
 

where NA is Avogadro’s number and Vmol the molar volume of CO at STP. 

The active metal area Am was calculated from 

m s sA = N A  

where As is the specific cobalt surface area (15.2 fcc atoms/nm2 according to Bergeret 

and Gallezot, 2008). Average cobalt particle size was determined from active metal 

area assuming particles to be spherical (see Appendix B.6). 
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Figure  4.1: An example showing determination of monolayer from chemisorption isotherm 

(Catalyst U1) 
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4.2.8 Temperature Programmed Reduction and Oxidation (TPR-TPO) 

Temperature programmed reduction and oxidation (TPR-TPO) was used to verify metal 

loading and to determine the degree of reduction of the catalysts (Sewell, 1996). A 

Micromeritics AutoChem 2910 (Micromeritics Instrument Corp., USA) with quartz 

reactor was used for TPO-TPR analysis. Calcined samples were reduced in-situ with 

hydrogen flow rate of 90mℓ(STP)/min/gsilica at 350°C for 16 hours with heating rate of 

5°C/min, and cooled down in argon prior TPR-TPO. TPR of the reduced sample was 

conducted using 50mℓ(STP)/min of 5% hydrogen in argon stream. Samples were 

heated to 1000°C using a linear temperature ramp of 10°C/min with a holding time of 

60 minutes. TPO was conducted after TPR using 5.1% oxygen in helium with a flow 

rate of 50mℓ(STP)/min using the same temperature program as for the TPR. Hydrogen 

and oxygen consumption was measured with a thermal conductivity detector (TCD). 

The instrument was calibrated at regular intervals using standards of pure NiO (see 

Appendix B.7). 

The cobalt loading of the catalyst is calculated base on the assumption that all cobalt 

are reduced to metallic form after TPR analysis; and the assumed sequential oxidation 

steps during TPO are 

→

→

→

1
2 2

1
2 2 3 4

1
23 4 2

Co+ O CoO

3CoO+ O Co O

Co O 3CoO+ O

 

TPO spectrum of all catalysts showed an oxygen consumption peak between 50°C and 

700°C, which corresponds to the oxidation of metallic cobalt first to CoO and 

subsequently to Co3O4. TPO spectrum showed an oxygen generation peak between 

700°C to 1000°C, which correspond to decomposition of Co3O4 to CoO. The cobalt 

content was calculated by the assumption that all cobalt existed as Co3O4 prior to the 

decomposition at 700°C and they were completely decomposed to CoO at 1000°C. 

Thus, the amount of cobalt can be determined from the amount of oxygen released 

during the decomposition of Co3O4. The degree of reduction was calculated according 

to hydrogen consumption peak from TPR analysis by assuming unreduced cobalt 

exists as Co3O4, and all cobalt is reduced after TPR. An example of TPR and TPO 

spectrum is shown in Figure  4.2 and Figure  4.3 respectively. 
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Figure  4.2: Example of TPR spectrum of reduced catalyst (U1C) prior TPO analysis 
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Figure  4.3: Example of TPO spectrum of catalyst (U1C) after TPR analysis 
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4.3 Fischer-Tropsch Synthesis Test 

4.3.1 Modified Slurry Reactor Set-up 

Fischer-Tropsch performance of crushed uniform catalyst (U1C) and structured 

catalyst pellets were tested in a slurry reactor set-up (see Figure  4.4). Similar to the 

fixed bed reactor set-up, CO (Afrox, 99.97%) and H2 (Air Liquide, 99.999%) were fed to 

the reactor at a head pressure of 40bar. Their flow was controlled individually. The 

streams were mixed before entering the reactor. The composition of the feed gas was 

determined by leading the gas mixture over the reactor-by-pass through two 3-way 

valves to the online gas chromatograph equipped with a thermal conductivity detector. 

A H2/CO ratio of 2 was ensured before the start of each reaction test. The two 3-way 

valves were switched to feed gas allowing it to flow through the reactor at the start of 

the reaction. Argon was added under reaction conditions to the product stream to 

maintain a reaction pressure of 20bar. A known amount of cyclohexane (0.15%) 

premixed with N2 was added to the product effluent stream as an internal standard for 

quantitative data analysis.  

The slurry reactor is a modified 600mℓ pressure vessel (Parr), with a motor stirrer 

attached to the lid of the reactor (see Figure  4.5). The gas feed pipe dips down below 

the tip of the stirrer blade to ensure adequate bubble breaking and dispersing. The 

catalyst pellets were divided equally over two stainless steel mesh-wire baskets (mesh: 

Haver & Boecker, aperture: 0.8mm, dwire: 0.315mm, open area: 64%; dimension of 

baskets: 55×19×6mm) which were mounted on the reactor lid. The mesh-wire baskets 

were mounted opposite to each other on both sides of the stirrer shaft. A stainless 

steel inline filter (Swagelok, pored : 2µm) was mounted above the mesh-wire basket to 

ensure only volatile and liquid products leaves the reactor at reaction temperature. 

Liquid products were separated from the gas stream in the wax trap operated at 180°C 

and the water was separated from the gas stream in the cold trap at room temperature. 

Gas lines from the reactor effluent to the ampoule breaker, in which samples of the 

effluent were taken, were heated at 180°C to prevent condensation. 
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Figure  4.4: Flow diagram of the slurry reactor set-up used in this study 

syngas

mesh-wired
baskets

 

Figure  4.5: Schematic representation of the modified slurry reactor showing mesh-wired 

baskets 

The catalyst (ca. 5g, pellet or powder) was reduced ex-situ in a fluidised bed reactor 

with the standard reduction condition employed in this study (hydrogen flow rate of 

90mℓ(STP)/min/gsilica in a fluidized bed reactor at 350°C for 16 hours with a heating 

rate of 5°C/min). The crushed uniform catalyst (UC1) was transferred under argon 

into 60g of wax (Sasol). This mixture of wax and the reduced catalyst was solidified 

and transferred into the reactor with additional 220g of molten wax. The catalyst 
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pellets were reduced in the same way and transferred under argon into 30mℓ of 

squalene which protects the reduced catalyst pellet from oxidation during the packing 

of catalyst into the mesh-wire baskets. The reactor was filled with 280g of molten wax 

for all pellet catalyst experiments to ensure all catalyst pellets were immersed in liquid 

phase. The existence of vortex on the surface of the liquid was determined by fitting 

the reactor lid on a transparent plastic beaker with identical dimension to the reactor 

vessel filled with water. A vortex did not form on the surface of the liquid phase in the 

reactor even at the highest stirring speed (860rpm) due to large internal fittings in the 

reactor. The reactor lid with reduced catalyst pellets in mesh-wire baskets was 

mounted at 160°C to the reactor which is filled with molten wax. Subsequently, the 

temperature in the reactor was slowly raised up to 220°C and pressurised to 20bar 

with stirrer operated at 500rpm. 

The synthesis gas mixture at flow rate of 13.9mℓ(STP)/min/gcatalyst with a H2/CO ratio 

of 2 was introduced into the reactor at the start of the reaction. The reaction 

temperature as kept at 220°C for the first 48 hours, subsequently the reaction 

temperature was increased to 230°C. After 24 hours of operation at 230°C, the 

temperature was decreased to 220°C and held for 12 hours to test for deactivation. 

Subsequently, temperature was increased to 240°C and held for 48 hours, followed by 

deactivation test 220°C for the last 12 hours on stream. Samples were taken 

periodically during the 120 hours of operation. The variation of reaction condition is 

depicted in Figure  4.6. 

0 20 40 60 80 100 120

20

40

60

80

100

C
H

4
 s

el
ec

ti
vi

ty
 [
C

%
] 
( 
 )
 /

 C
O

 c
on

ve
rs

io
n

 [
m

ol
%

] 
( 
 )

TOS [hrs]

32±2%

21±1%

45±3%

26±1%

52±3%

31±1%

220℃ 230℃ 220℃ 240℃ 220℃

 

Figure  4.6: Example of sequential change of reaction condition for Fischer-Tropsch synthesis 
tests (Y1) 
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4.3.2 Post-run Catalyst Characterization 

The spent catalyst pellets were transferred into a Soxhlet extraction set-up (Figure  4.7), 

in which the wax inside catalyst pores were extracted with xylene under argon for 24 

hours. Pellets put in cellulose thimble was placed inside a 1ℓ soxhlet extractor (Lasec), 

which was attached to a 1ℓ two-necked round bottom flask filled with xylene (Merck, 

mixture of isomers) and a reflux condenser. Xylene was boiled in an oil bath which 

was kept at 170°C. Argon was fed to the round bottom flask at 50mℓ(STP)/min in 

order to prevent the contact of spent catalyst with air. After 24 hours of extraction, 

pellets were passivated by replacing argon gas feed with CO2 at a flow rate of 

50mℓ(STP)/min for 30 minutes prior post-reaction analysis under optical microscope 

and TEM. 

xylene

spent catalysts in 
cellulose thimbles

Ar/CO2

 

Figure  4.7: Soxhlet extraction set-up used for wax extraction of spent catalysts 
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4.4 Analytical Procedures 

4.4.1 On-line Analysis of Inorganic Gases and Methane 

The inorganic gases (Ar, H2, N2, CO, CO2) and methane were analysed on a multi-

column Varian CP4900 Micro Gas Chromatograph (GC) equipped with a thermal 

conductivity detector (TCD). The GC was connected directly to the reactor effluent 

enabling on-line analysis. Helium was used as the carrier gas with a head pressure of 

2bar which was further reduced in different columns. Gases were separated 

isothermally at 170°C in three columns operating in parallel. An example of TCD 

spectrum is shown in Appendix B.8. 

Table  4-4: Operation condition of the columns used in GC 

Column Type 20m 5Å Molsieve 10m Pora Plot Q 10m 5Å Molsieve 
Gases separated Ar, N2, CO, CH4 CH4, CO2 H2, N2 
Temperature [°C] 80 60 80 

Pressure [bar] 1.5 1.0 1.5 

 

4.4.2 Sampling of Volatile Organic Gases 

The gas sampling technique used in this study was developed by Schulz et al. (1984). 

Glass ampoules were prepared by reshaping Pasteur pipettes (Lasec) under an O2/LPG 

flame. The capillary of the reshaped pipettes is 120mm in length and has a diameter of 

about 1.5mm. Reshaped pipettes were evacuated and sealed to obtain an internal 

volume of approximately 2mℓ. The capillary end was inserted through an airtight 

septum into a heated sampling device (ampoule breaker) during sampling as described 

by Mabaso (2005). Volatile compounds were drawn into the evacuated ampoule when 

the capillary was broken and was sealed immediately with a butane flame. Samples 

were stored and analyzed using a Varian 3800 GC equipped with flame ionization 

detectors (FID). 

4.4.3 Analysis of Volatile Organic Gases 

The organic product compounds which are volatile at reaction conditions were 

analyzed on a Varian 3800 GC equipped with FID. The operating conditions of the gas 

chromatographic and an example of a typical FID chromatogram with peak 

identification is illustrated in Appendix B.9. Ampoule samples were crushed in a 

breaking device described by Mabaso (2005). The volatile organic compounds were 

released in nitrogen and introduced into the injector of the GC. Hydrogen was used as 

a carrier gas for the separation of the organic products in a 60m OV-1 type capillary 

column. 
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4.5 Data Analysis 

The quantitative analysis of reaction data was based on known amounts of reference 

gas mixture (0.15vol% cyclohexane in N2) which was blended with the exit stream from 

the reactor. Nitrogen was used as the basis to quantify the flow rates of the inorganic 

compounds and methane from TCD data. The molar flow rate of compound i is then 

 
 
 
 

2

2

TCD,i
i TCD,i N

TCD,N

A
n = f n

A
ɺ ɺ  

where fTCD,i is the TCD response factor of the inorganic compound i, ATCD the area 

under the TCD peak, and 
2Nnɺ the molar flow rate of nitrogen. The TCD response 

factors (fTCD) of all compounds relative to nitrogen were calibrated using a mixture of 

gas with known composition (24.8% Ar, 14.7% H2, 15.2% N2, 15.5% CO, 15.1% CO2 

and 14.7% CH4). Cyclohexane is not a typical Fischer-Tropsch product, and was 

therefore used as the basis to quantify the flow rates of the volatile organic products 

from FID data. The molar flow rate of the volatile organic compound i is then 

FID,i FID,i c,ref
i ref

FID,ref FID,ref c,i

f A N
n = n

f A N
ɺ ɺ  

where AFID is the area under the FID peak, Nc is number of carbon atoms, refnɺ is the 

molar flow rate of cyclohexane, and fFID is the compound specific response factor 

which was taken from Kaiser (1969). Conversion of CO was calculated from TCD data 

and is defined as 

CO,in CO,out
CO

CO,in

n -n
X =

n

ɺ ɺ

ɺ
 

Selectivity of product j on a carbon basis calculated from FID data is defined as 

i
C,i

CO,in CO

n
S =

n X

ɺ

ɺ
 

C5+ selectivity was calculated by subtracting carbon yield of C4- from amount of CO 

converted. 

∑
∑
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5 RESULTS AND DISCUSSION 

5.1 Characterisation of Structured Cobalt Catalysts 

5.1.1 Intra-pellet Cobalt Distribution in Uniform Catalyst 

A SEM-EDX scan was used to determine the intra-pellet cobalt distribution in each 

type of structured catalyst. Catalysts synthesized by incipient wetness may have intra-

pellet cobalt distribution gradient. During the drying process, cobalt nitrate 

crystallises out via super-saturation. If the rate of cobalt nitrate diffusion in water is 

faster than the rate of evaporation, the concentration of cobalt nitrate will be uniform 

throughout the catalyst pore resulting in a uniform distribution of cobalt in the 

catalyst. 

According to the back-scatted SEM image and EDX processed images, the uniform 

catalyst pellet (U1) synthesized by single-step incipient wetness method has a uniform 

cobalt distribution along the radius of the support pellet (Figure  5.1). This suggests 

that drying in a ventilated oven at 120°C is adequate to obtain a uniform cobalt 

distribution in the catalyst pellet. 

(a) (b) (c)
 

Figure  5.1: Back-scatted SEM of catalyst pellet U1 image (a) EDX processed image showing 

cobalt enriched region (b) outline showing cobalt boundary (c) 

There is a limit in the cobalt loading which can be achieved by the incipient wetness 

synthesis. The maximum concentration in the impregnation solution is the saturation 

concentration in the solvent (H2O). The amount of impregnation solution used in 

incipient wetness synthesis method is limited by the pore volume of the catalyst. 

Therefore, there is a limited amount of cobalt nitrate that can be loaded on support 

per single step of impregnation. In this study, the maximum achieved concentration of 

cobalt nitrate (Co(NO3)2·6H2O) in water, was 1.08g/mℓ. Hence, pellets with a high 

cobalt loading can only be synthesised by multiple impregnation steps. 

The subsequent impregnation can be done either after drying of the precursor from 

the previous impregnation step, or after calcination of precursor from the previous 

impregnation step. The back-scatted SEM image and EDX scan over the catalyst pellet 
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synthesized by 2-steps impregnation without intermediate calcination showed a cobalt 

distribution gradient towards the support surface (see Figure  5.2). The cobalt in the 

catalyst precursor prior calcination is in the form of a nitrate after drying, which only 

starts to decompose at 150°C (Girardon et al., 2005). During the second impregnation 

step, crystallised cobalt nitrate in the pores from the first impregnation step, re-

dissolves in the newly introduced impregnation solution. This re-dissolution process 

increases the liquid volume introduced to the pellets in the second impregnation step, 

resulting an excess of impregnation solution on the surface of the pellet. The saturated 

impregnation solution in the pores moves towards the pore mouth when the pellet 

precursor is dried for the second time. Hence a gradient in the cobalt distribution in 

the catalyst pellets prepared without intermediate calcination was observed. 

The back-scatted SEM image and EDX scan over the high loading catalyst pellet (U2) 

synthesized by the 2-step impregnation with intermediate calcination showed a 

uniform distribution of cobalt along the pellet radius (see Figure  5.2). During 

intermediate calcination, cobalt nitrate is converted to insoluble cobalt oxide (Co3O4). 

This prevents the re-dissolution of cobalt nitrate to the impregnation solution 

introduced during the second impregnation step. This shows that the intra-pellet 

cobalt distribution gradient can be minimised by calcination of the catalyst precursor 

after each impregnation step. 

(a) (b) (c) (d)
 

Figure  5.2: Back-scatted SEM image of catalyst without intermediate calcination (a) EDX 

processed image showing cobalt distribution variation (b) Back-scatted SEM image 

of catalyst U2 with intermediate calcination (c) EDX processed image showing 

uniform cobalt distribution in catalyst U2 (d) 
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5.1.2 Intra-pellet Cobalt Distribution of Egg-shell Type of Catalysts 

The optical microscopy images of calcined egg-shell type of catalyst showed a distinct 

boundary between the cobalt enriched region and cobalt free silica (see Figure  5.3). 

The back-scatted SEM image and EXD scan on the egg-shell type of catalyst confirms 

the distinct boundary, and shows the cobalt distribution inside the cobalt enriched 

region is uniform (see Figure  5.4). Images from optical microscopy and SEM show that 

the distinct boundary was irregular in shape, which was not expected if the boundary 

was due to the separation of organic and aqueous phase in the catalyst pores. It 

should be noted, that SEM images show the presence of cracks in silica pellets going 

from the pellet surface towards the centre of the pellet. The cobalt enriched shell layer 

folds along the cracks in the pellet. This suggests that organics used in the synthesis 

of egg-shell catalyst adequately inhibited impregnation solution from wetting the 

centre of the pellet, and the variations in cobalt enriched shell thickness and irregular 

shape of the boundary is due to the cracks in the silica support. 

Optical microscopy images were taken of spent catalysts. A distinct boundary between 

cobalt enriched region and cobalt free silica was still present after exposure to the 

Fischer-Tropsch synthesis condition for 120 hours (see Figure  5.3). 

The average value and the standard deviation of cobalt free silica core size to pellet 

size (dcore/dpellet) were calculated from optical microscopy and SEM images. The 

absolute standard deviation is between 0.02 to 0.05, which can be attributed to the 

degree of even evaporation and cracks inside the various pellets. The average relative 

core size of calcined catalyst and spent catalyst are within the standard deviation each 

other, therefore it can be concluded that they are statistically the same. This means 

the cobalt particle did not move across the boundary of cobalt enriched region and 

cobalt free silica core. 

Calcined

Post-Run

dcore/dpellet 0.18 ±0.03

0.20 ±0.02

0.41 ±0.03 0.49 ±0.03 0.57 ±0.02 0.76 ±0.03 0.89 ±0.02

0.46 ±0.05 0.90 ±0.020.73 ±0.020.57 ±0.030.42 ±0.03

S1 S2 S3 S4 S5 S6

dcore/dpellet  
Figure  5.3: Optical microscopy images of egg-shell type of catalysts 
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(a) (b) (c)
 

Figure  5.4: Example of Back-Scatted SEM images of egg-shell catalyst (S6) (a) EDX processed 

image highlighting cobalt rich region (b) Outlined image showing cobalt enriched 

boundary (c) 

The feasibility of the developed synthesis method and the choice of organic solution 

depend on the surface wetting scenario in the pores. Two surface wetting scenarios 

can be proposed. In the first scenario, the hydrophobicity of the silica surface is 

insufficient:  the organic solvent does not completely wets the pore surface, and 

therefore the interface between the organic solvent and aqueous phase is some what 

perpendicular to the walls of the pore. In the second scenario, the surface is very 

hydrophobic: the organic solvent wets the silica surface completely so that the 

interface between the organic solvent and aqueous phase are almost parallel to the 

walls of the pore. The counterpart of these wetting scenarios, where aqueous phase 

completely wet the surface is not possible due to the hydrophobic nature of the silica 

surface. The proposed surface wetting scenarios are illustrated in Figure  5.5. Sharp 

boundary between cobalt enriched region and cobalt free silica support will only exist 

if the interface between the organic solvent and aqueous is some what perpendicular 

to the walls of the pore. In other words, when wetting scenario I is favoured over 

wetting scenario II in the pores. 

Scenario I Scenario II

organicaqueous aqueous
organic

L

d
p
or

e

t

silica
 

Figure  5.5: Proposed possible wetting scenarios in the pores 

The preference of Scenario I over Scenario II was determined by comparing the Gibbs 

surface free energy (Gs) of each scenario. A sharp boundary will occur, if Gs of Scenario 

I is less than the Gs of Scenario II. The Gibbs surface free energy (Gs) of the defined 

systems was determined by taking the sum of Gs,ij between the phases exists in the 

system. Gs,phase is defined as 
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s,ij ij ijG = γ A  

where ijγ  is the surface tension between phase i and j, and Aij is the surface area 

between the two phases. 

The relationship between the thickness of organic layer (t) and the fraction of pore 

volume occupied by water (Xw) is 

2
pore

w 2
pore

(d -2t) (L - t)
X =

d L
 

The Gs of Scenario I and Scenario II can then be written as 

� �

2 2
pore pore

water,air water,organic water,silica organic,silica

πd πd
s,1 wv wo sw pore w so pore w4 4

Area Area Area Area

G = γ + γ + γ πd LX + γ πd L(1- X )
����� �������

 

( )
2 2

pore pore pore

organic,airwater,air organic,silica
water,organic

d t (d -2t) d2 2π
s,2 wv pore ov wo pore so pore4 2 4 4

AreaArea Area
Area

G = γ (d -2t) + γ π( - t )+ γ π (d -2t)(L - t)+ + γ π(d L + )
������������ ��������������������

 

The physical properties of n-undecane were approximated with n-hexane. The surface 

tension of air-water, air-organic and organic-water can be found in literature (Weast, 

1983; Overbury et al., 1975). The surface tension of silica-water and silica-hexane was 

determined by using the three-phase equilibrium defined by Young’s equation 

sw sv wv w

so sv ov o

γ = γ + γ cosθ

γ = γ + γ cosθ
 

where svγ is the surface tension of silica-air (605dyn/cm2; Overbury et al., 1975); wvγ is 

the surface tension of water-air (71.97dyn/cm2; Weast, 1983); ovγ is the surface 

tension between n-hexane and air (18.43dyn/cm2; Weast, 1983); θw and θo is the 

contact angle of silica-water and silica-hexane respectively. Silica disks (diameter: 

15mm, thickness 2mm) with smooth surface were used to determine contact angles, 

which was made by pressing 2g of crushed silica pellets in a hydraulic press (Specac, 

Manual 15) with 15ton load. A drop of liquid was placed on top of the silica disk and 

the contact angle was determined using a goniometer (Ramé-Hart, Model A-100). The 

contact angle was stable during the measurement of contact angle; measurements 

were repeated 5 times, each time with a new disk. The measured contact angle of 

silica-water is 150°±1° and silica-hexane is 6°±1°. The surface tension of silica-water 

and silica-hexane calculated based on contact angle are 542dyn/cm2 and 623dyn/cm2 

respectively. 
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Air

Liquid

Solid

γl,v

γs,l

γs,v

θ

 

Figure  5.6: Illustration of three-phase equilibrium described by Young's equation 

The difference of Gs between Scenario I and Scenario II (∆Gs,1-2) as a function of water 

fraction was calculated based on the assumption that the pore length is identical to 

the pore diameter (16nm). ∆Gs,1-2 is -8.3×10-17J at a water fraction of 0.0002 and 

decreases with increasing water fraction (see Figure  5.7). This suggests that the 

Scenario I is more stable than Scenario II at these conditions, and this stability 

increases with an increase in the water to organic ratio in the pores (see Appendix C.1 

for Scilab code). 

0.2 0.4 0.6 0.8 1.0
-1.6x10-16

-1.4x10-16

-1.2x10-16

-1.0x10-16

-8.0x10-17

∆
G

s,
1
-2
 [
J
]

X
water  

Figure  5.7: Preference of wetting scenario I over scenario II in terms of Gibb’s surface energy 

for pore diameter and pore length of 16nm 

The change in the stability of wetting Scenario I (Gs,1-2) with respect to pore diameter 

can be described by differentiating Gs,1-Gs,2 with respect to the pore diameter. 

  
       

2 3
pores,1-2

wo ov so sw2 2
pore pore porestructural

structual structural

dd(∆G ) t 4t L 4t
=π(2t -L)γ - π γ +π t + - -L - (γ - γ )

d(d ) 2 2d d�����
��� ���������������

 

The change of stability with respect to the pore diameter is a function of inter-phase 

surface tension with its respective structural factor. The structural factor (π(2t-L)) of 

inter-phase surface tension between the water and the organic (γwo) is negative 
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because the pore length is the dominant factor. The structural factor of so sw(γ - γ )  is 

negative, due to the dominance of the pore length and the pore diameter. This means 

the derivative of the stability function with respect to the pore diameter will always be 

negative if γso is larger than γsw. Thus, as long as the contact angle between the organic 

and silica is less than 90°, the preferred wetting scenario (Scenario I) will occur 

irrespective of the size of the pore diameter. 

The derivative of stability function with respect to pore length is 

 
  
 

2
s,1-2

pore wo pore so sw
pore

structural
structural

d(∆G ) 4t
=π(2t -d )γ +π 4t - -d (γ - γ )

dL d�������
���������

 

Due to the dominance of pore diameter over the thickness of organic phase (t), the 

derivative of stability function will always be negative if γso is larger than γsw. Similar 

conclusion can be drawn that when contact angle between the organic and silica is 

less than 90°, the preferred wetting scenario (Scenario I) will always occur irrespective 

of the pore length. Janssen et al. (2006) reviewed the experimentally determined static 

contact angle between various solutions on silica; they showed that the contact angle 

of most organic solvent is less than 10°. Therefore, a sharp boundary between cobalt 

enriched shell and cobalt free silica will always occur irrespective of the size of the 

pore diameter or pore length. Any organic solvents can adequately cover the inner core 

of the silica pellet since the contact angle is less than 10°. In this study the choice of 

n-undecane as the organic solvent was based on its boiling point of 194.5°C, which 

allowed a slow evaporation rate and thus ensuring an even partial evaporation. 

Li et al. (2008) modified this proposed synthesis method for structured catalyst based 

on hydrophobicity, by increasing the hydrophobicity of the silica pellet with a surface 

treatment with trimethyl-chlorolsilane. The hydrophobicity of the silica pellet was 

increased to an extent that the inhibition of impregnation solution can be done by the 

air trapped inside the pellet during wet impregnation. This further confirms the 

reasoning for the sharp phase boundary due to the hydrophobic property of silica. 

Assuming the porosity of the pellet is uniform throughout the pellet, the size of the 

cobalt free silica core of the egg-shell type catalyst should be proportional to the 

fraction of pore volume occupied by organics in the following way 

2π
organic core pellet pellet core4core

2π
pore pellet pellet pellet4

V d (l -(d -d ))V ε
= =

V V ε d l
 

The ratio of pellet length to pellet diameter is 1.8, therefore, the above relation can be 

simplified to 
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2
organic core core

2
pore pelletpellet

V d d
= 0.8+

V d1.8d
 

The relative silica core size (dcore/dpellet) of egg-shell type of catalyst was measured by 

using optical microscopy and SEM images, which were in good agreement. The 

fraction of pore volume occupied by organics were calculated from the amount of 

organics left inside the support after partial evaporation relative to the maximum 

amount of organics that can be filled in the pores (see Appendix C.2 for determination 

of organic volume required for complete pore filling). The measured relationship 

between the relative silica core size and the fraction of pore volume occupied by 

organics is lower than the expected value (see Figure  5.8). This might be attributed to 

the existence of cracks on the silica support, which increased the apparent cobalt 

enriched shell thickness and therefore decreased the cobalt free silica core. Another 

possible explanation is that there is a pore size limit where impregnation solution can 

not flow through due to capillary pressure, as a result, the impregnation solution 

would move further into the centre of the pellet, making the observed silica core size 

less than expected. 
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Figure  5.8: Cobalt free silica core size of egg-shell type of catalysts as function of organics 

filled in the pore. 
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5.1.3 Intra-pellet Cobalt Distribution of Egg-yolk Type of Catalysts 

The optical images of calcined egg-yolk type of catalysts show the existence of a sharp 

boundary between the apparent cobalt free silica shell and cobalt enriched core (see 

Figure  5.9). SEM-EDX scan of the calcined catalysts confirms the sharp decrease of 

cobalt content across the boundary and that the cobalt distribution inside the cobalt 

enriched core is uniform (see Figure  5.10). This shows that during the leaching stage 

of egg-yolk type of catalyst synthesis, the organic solvent effectively protected the 

cobalt metal in the centre of catalyst from contact with the diluted nitric acid. The 

optical images of spent egg-yolk type of catalysts showed a stable sharp boundary 

after the exposure to Fischer-Tropsch synthesis conditions for 120 hours. The average 

value of relative cobalt enriched core size (dcore/dpellet) measured from optical and SEM 

images of the egg-yolk type of catalysts were within the standard deviation of each 

other. 

0.80 ±0.02 0.80 ±0.020.78 ±0.03 0.73 ±0.02 0.62 ±0.03 0.44 ±0.04

Calcined

Post-Run

0.75 ±0.03

0.74 ±0.03 0.78 ±0.020.74 ±0.020.81 ±0.04 0.76 ±0.02 0.66 ±0.06 0.38 ±0.03

Y6 Y7Y1 Y2 Y3 Y4 Y5

dcore/dpellet

dcore/dpellet  

Figure  5.9: Optical microscopy images of egg-yolk type of catalysts 

(a) (b) (c)  

Figure  5.10: Back-Scatted SEM image of Y4 pellet (a) EDX processed image showing 

concentrated cobalt core (b) Outline image showing the cobalt enriched boundary 

(c) 

During the leaching stage of the synthesis of some of the egg-yolk type of catalysts, 

catalyst Y1, Y5, Y6 and Y7, the catalyst precursor was brought into contact with 

diluted acid when the surface of the pellet was still covered by organic solvent (volume 

of organic solvent used was more than total pore volume). However, their average 

dcore/dpellet value of 0.8 falls within standard deviation of each other (see Figure  5.11). 

This suggests that they have identical relative cobalt enriched core size. It was 
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observed that the organic solvent on the surface of the pellet was removed as soon as 

the pellet was introduced into the diluted acid, leaving some of the organic solvent 

floating on top of the diluted acid. This leads to the suspicion that in this organic, 

diluted acid and pellet surface system, organic is preferred to be on top of the bulk 

diluted acid rather than on pellet surface. Some of the organic solvent with in the 

pores may have been displaced by the diluted acid. As a result, the maximum relative 

cobalt enriched core size of egg-yolk type of catalyst is limited when the surface of the 

precursor pellet is covered with organics. However, there is no related information that 

can be found in literature to support this reasoning. 
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Figure  5.11: Cobalt enriched core size of egg-yolk type of catalysts as function of organics filled 

in the pore. 
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5.1.4 Intra-pellet Cobalt Distribution of Egg-white Type of Catalysts 

The optical microscopy images of the calcined egg-white type of catalysts show a sharp 

boundary between the apparent cobalt free silica and inner cobalt enriched ring (see 

Figure  5.12). The size and the location of the inner cobalt ring of the spent egg-white 

type of catalysts are statistically the same as those of calcined egg-white type of 

catalysts. Hence, the egg-white boundary is stable after 120 hours of exposure to the 

Fischer-Tropsch synthesis conditions (see Figure  5.12). SEM-EDX scan over the 

calcined egg-white type of catalysts confirms the sharp decrease of cobalt content 

across the boundaries between cobalt free silica and cobalt enriched region. The 

distribution of cobalt inside the egg-white boundary is uniform (see Figure  5.13). 

The cobalt free core in the egg-white type of catalyst (dcore) was formed during the 

synthesis of egg-shell type of precursor for the synthesis of egg-white type of catalysts. 

The relationship between the relative size of the cobalt free silica core (dcore/dpellet) and 

the amount of organic solvent used is identical to those of egg-shell type of catalyst: a 

linear relationship between the relative silica core size of egg-shell and egg-white type 

of catalysts with amount of pore volume occupied by organic solvent, is observed. The 

location of the boundary between the cobalt free silica shell and inner cobalt enriched 

ring in the egg-white type of catalyst (dwhite) also displayed a linear relationship with 

the amount of n-undecane used, as shown in Figure  5.14. 

Calcined

Post-Run

dwhite/dpellet 0.86 ±0.02 0.78 ±0.08 0.69 ±0.04 0.65 ±0.02

0.63 ±0.02 0.45 ±0.06 0.33 ±0.02 0.23 ±0.04

0.83 ±0.03

0.68 ±0.02

0.77 ±0.03

0.41 ±0.04

0.73 ±0.06

0.35 ±0.08

0.67 ±0.06

0.29 ±0.04

W1 W2 W3 W4

dcore/dpellet

dwhite/dpellet

dcore/dpellet  

Figure  5.12: Optical microscopy images of egg-white type of catalysts 
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(a) (b) (c)
 

Figure  5.13: Back-Scatted SEM image of W3 pellet (a) EDX processed SEM image showing 

concentrated cobalt ring (b) Outline image showing the cobalt enriched boundary 

(c) 
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Figure  5.14: Cobalt free yolk size and cobalt enriched white size achieved in egg-white type of 

catalysts 
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5.1.5 Cobalt Loading 

The cobalt loading of the structured catalysts obtained from AAS and TPR-TPO results 

is given in Table  5-1. The expected cobalt loading of catalyst synthesised by incipient 

wetness technique can be calculated from the amount of impregnation solution used 

per mass of silica, and concentration of cobalt in the impregnation solution. The 

expected cobalt loading of uniform and egg-shell type of catalyst is 9.1wt.-%. The 

cobalt loading according to AAS is somewhat lower than the expected value. AAS 

samples were completely converted to aqueous phase during acid digestion (no residue 

were found after filter dissolved AAS samples through a filter paper). Therefore, 

incomplete dissolution of Co3O4 is unlikely to be the cause. Cobalt nitrate can absorb 

moisture in air, thus overestimating the amount of cobalt in the impregnation solution, 

this can be the reason for lower than expected cobalt loadings. Cobalt loading 

calculated from TPR-TPO is somewhat higher than the expected value; this can be 

attributed to poor baseline separation between the oxygen consumption and release 

peak during TPO. Nevertheless, both results showed that egg-shell type of catalysts 

with different silica shell thickness and an approximate constant cobalt loading can be 

synthesised with the developed method. Furthermore, egg-yolk type of catalysts (Y1-Y4) 

with different cobalt enriched yolk size can be synthesised with an approximate 

constant cobalt loading. Egg-yolk type of catalysts (Y5-Y7) with constant yolk size with 

different cobalt loading can also be synthesised. Egg-white type of catalyst (W1-W4) 

with different inner cobalt enriched ring thickness and approximate constant cobalt 

loading is achievable. The AAS cobalt loading was used in further calculations. 

Table  5-1: Cobalt metal content of structured catalyst determined from AAS and TPR-TPO 

results 

Catalyst AAS TPR-TPO Catalyst AAS TPR-TPO 

Code 
core

pellet

d
d

† 
[wt%] [wt%] Code 

core

pellet

d
d

† white

pellet

d
d

† 
[wt%] [wt%] 

U1 - 8.3 11.8 Y1 0.78 - 8.7 9.9 
U2 - 29.0 27.5 Y2 0.73 - 10.0 11.2 
S1 0.18 8.2 11.2 Y3 0.62 - 13.7 15.0 
S2 0.41 7.9 10.7 Y4 0.44 - 10.8 11.1 
S3 0.49 8.1 11.0 Y5 0.77 - 7.8 8.6 
S4 0.57 8.0 11.3 Y6 0.79 - 12.5 14.3 
S5 0.76 7.9 9.6 Y7 0.80 - 22.0 19.5 
S6 0.89 7.7 10.5 W1 0.63 0.86 6.6 7.2 

    W2 0.45 0.83 7.0 9.5 
    W3 0.33 0.69 7.9 10.5 
    W4 0.23 0.67 10.2 11.7 

 

                                                 
† according to optical microscopy 
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5.1.6 Catalyst Surface Area and Pore Size 

The average pore diameter of structured catalyst was determined by nitrogen 

physisorption (see Table  5-2). All structured catalysts show negligible deviation much 

from the pore diameter of the pure silica pellet. This suggests that the integrity of the 

structure of the silica pellet was not affected by the synthesis method, not even by the 

acid treatment and hydrogen gas formation during leaching stage of structured 

catalyst synthesis procedure. 

The active metal surface area was calculated according to CO chemisorption. The 

results show some variation in active metal area. The active metal surface area of the 

uniform catalyst (U1) is lower than that of the structured catalyst (S1-S6; Y1-Y4; W1-

W4), although the cobalt loading was kept approximately constant for all structured 

catalysts. This may suggest that catalyst pellets experienced mass transport limitation 

during the reduction process resulting in a decrease in the extent of reduction and 

hence resulting in a decrease in metal surface, which is discussed further in section 

 5.1.9. 

Table  5-2: Metal surface area and catalyst pore diameter determined from CO chemisorption 

and N2 physisorption 

Catalyst Am dpore Catalyst Am dpore 

Code [m2/g] [nm] Code [m2/g] [nm] 
U1 1.41 15.23 Y1 1.81 15.52 
U2 3.83 15.24 Y2 2.34 14.39 
S1 2.25 15.65 Y3 3.92 14.28 
S2 1.98 15.79 Y4 2.20 15.36 
S3 1.88 15.59 Y5 1.31 18.31 
S4 1.70 16.11 Y6 2.01 12.69 
S5 2.04 15.96 Y7 3.61 13.80 
S6 2.30 15.21 W1 1.47 15.82 

Silica - 15.98 W2 1.12 15.41 
   W3 1.65 15.38 
   W4 1.99 13.98 
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5.1.7 Cobalt Oxide Phase of Calcined Catalysts 

The XRD spectrum of the structured catalysts (see Figure  5.15) shows the 

characteristic peaks of the bulk cobalt oxide Co3O4 superimposed on characteristic 

diffraction pattern for silica which decreased with increase in cobalt loading (U2 & Y7). 
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Figure  5.15: XRD spectrum of pure silica support and calcined structured cobalt on silica 

catalyst 
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5.1.8 Cobalt Oxide Crystallite and Cluster Sizes 

The average cobalt crystallite sizes in the structured catalysts were determined using 

TEM, XRD and CO-chemisorption (see Table  5-3). The different techniques agree well 

with each other. Uniform catalysts (U1 and U2) showed an increase in cobalt 

crystallite size with increase in cobalt loading as previously reported by Iglesia et al. 

(1993) and Ernst et al. (1999). Cobalt crystallise size estimation using CO 

chemisorption shows that all catalyst have cobalt crystallite size are larger than 6nm. 

The Fischer-Tropsch synthesis becomes structure insensitive above this crystallite 

diameter according to Bezemer et al. (2006). 

Table  5-3: Experimentally determined cobalt crystallite size of structured catalysts 

Catalyst TEM XRD Chemisorp Catalyst TEM XRD Chemisorp 

Code [nm] [nm] [nm] Code [nm] [nm] [nm] 
U1 10.9 11.8 9.2 Y1 7.4 6.6 7.0 
U2 15.3 17.0 14.9 Y2 7.4 6.5 7.8 
S1 11.3 10.8 9.1 Y3 7.7 5.5 6.5 
S2 9.4 11.4 11.3 Y4 8.9 6.9 7.1 
S3 9.5 10.8 9.5 Y5 7.9 9.3 10.9 
S4 9.4 10.3 10.9 Y6 7.6 5.9 10.8 
S5 11.7 10.2 10.8 Y7 6.6 5.8 9.3 
S6 10.0 13.3 9.3 W1 9.0 7.3 8.0 

    W2 8.5 7.1 10.9 
    W3 6.9 7.4 8.9 
    W4 8.4 7.7 9.2 

 

TEM images show that cobalt crystallites are found in clusters with a size range of 

100nm to 120nm. This is commonly observed in supported cobalt catalyst prepared 

from cobalt nitrate solutions (Feller et al., 1999). No obvious trend was observed in 

cluster size with cobalt loading (see example in Figure  5.16) and catalyst structure. 

200nm

 

Figure  5.16: An example of TEM images showing cobalt clusters in catalysts (S2) 
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5.1.9 Reducibility of Structured Catalysts 

The degree of reduction was calculated from TPR-TPO analysis performed on reduced 

catalyst which showed variation among the structured catalysts. This suggests that 

the interaction between the surface cobalt species and silica support is different in 

structured catalysts (Table  5-4). 

Table  5-4: Degree of reduction determined from TPR-TPO 

Catalyst oR † Catalyst oR † 
Code [%] Code [%] 
U1C 73.0 Y1 63.0 
U1 65.9 Y2 50.1 
U2 81.4 Y3 57.3 
S1 70.3 Y4 62.6 
S2 75.6 Y5 38.5 
S3 74.8 Y6 32.5 
S4 79.7 Y7 42.6 
S5 80.2 W1 51.3 
S6 79.9 W2 52.2 

  W3 48.1 
  W4 43.3 

 

The reduction of pure cobalt oxide has been shown to be a two step process (Brown et 

al., 1982; van't Blik and Prins, 1986; Viswanathan and Gopalakrishnan, 1986). The 

sequential reduction is described as the conversion of Co3O4 to divalent cobalt (CoO) at 

about 300°C, followed by the reduction of divalent cobalt to metallic cobalt at 400°C 

(Sexton et al., 1986; Kraum and Baerns, 1999; Borg et al., 2007). 

→

→

3 4 2 2

2 2

Co O +H 3CoO+H O

CoO+H Co +H O
 

Silica supported catalyst may show reduction peaks at higher temperatures due to the 

reduction of cobalt (hydro)silicates (van Steen et al., 1996). 

To investigate the influence of mass transfer limitation during the reduction, TPR 

analyses were performed on calcined uniform powder (U1C) and pellet (U1). Both 

spectrums show a reduction profile with three maxima at 200°C, 300°C and 400°C, 

tailing off at 900°C. The three maxima correspond to the reduction of undecomposed 

cobalt nitrate (Kogelbauer et al., 1996), the reduction of Co3O4 to CoO, and the 

reduction of trivalent cobalt to divalent cobalt to metallic cobalt. The hydrogen 

consumption attributed to the decomposition of cobalt nitrate is less for the catalyst 

pellet (U1) compared to the crushed catalyst pellet (U1C). Cobalt nitrate can 

decompose both thermally and under the influence of hydrogen. The thermal nitrate 

                                                 
† degree of reduction 
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decomposition may dominate over the hydrogen assisted decomposition in the catalyst 

pellet due to mass transfer limitation resulting in a lower observed hydrogen 

consumption. Furthermore, it can be observed the peak maxima obtained with the 

catalyst pellet are shifted towards higher temperatures, which might be ascribed to 

mass transfer limitation during temperature programmed reduction. The amount of 

hydrogen attributed to the reduction of cobalt hydrosilicate (hydrogen consumption 

between 600°C-900°C) seems to be unaffected by the size of the catalyst 

pellets/powder. This implies that the cobalt hydrosilicate are not formed during the 

reduction process but either during the calcination process or during synthesis of the 

catalyst. The formation of hydrosilicate during catalyst synthesis can be explained by 

the electrostatic interaction between the polarised surfaces during adsorption of 

cobalt-nitrate on silica, which is a function of pH. 
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Figure  5.17: TPR spectrum of calcined uniform powder (U1C) and pellet (U1) catalysts 

The TPR spectrums of reduced catalyst were used to evaluate the degree of reduction. 

Calcined samples were reduced in-situ in the TPR-TPO unit, with hydrogen flow rate of 

90mℓ(STP)/min/gsilica at 350°C for 16 hours with heating rate of 5°C/min, and cooled 

down in argon prior TPR. The TPR spectrum of reduced uniform catalyst in powder 

form (U1C) is shown in Figure  5.18 with hydrogen consumption rate [mmol/min] per 

gram of cobalt. The TPR spectrum shows a broad peak between 400°C to 700°C, which 

can be attributed to the reduction of at least two species with maxima at ca. 500°C 

and ca. 650°C. The maxima can be ascribed to the reduction of residual cobalt oxide 

(CoO) and cobalt hydrosilicates (van Steen et al., 1996). 
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Figure  5.18: TPR spectrum of reduced uniform powder catalyst (U1C) 

TPR spectrum of the reduced uniform catalyst in its pellet form (U1) shows broad peak 

from 400°C to 950°C with two maxima at 500°C and 800°C. The maximum at 800°C 

can be attributed to the reduction of cobalt silicate (Maruri, 2003). The second 

maxima of the broad peak shifted from 650°C for the reduced U1C to 800°C. This 

might be attributed to mass transfer limitations in the reduction process. Water may 

build-up within the catalyst pore as a result of mass transport limitation which 

encourages silicate formation (Puskas et al., 2006). These results suggests that the 

cobalt hydrosilicate formed during reduction of catalyst will convert to stronger 

bonded cobalt silicate when the reduction is performed under mass transport 

limitation, since the degree of reduction of uniform pellet (65.9%) is similar to uniform 

powder (63.9%). 

The TPR analysis of the reduced high loading uniform pellets (U2) shows a lower H2 

consumption per cobalt than that of U1 has recorded (see Figure  5.19). This implies a 

higher degree of reduction for the catalyst with a higher cobalt loading. This is might 

be attributed to the larger cobalt crystallite in catalyst U2 (14.9nm) than in catalyst 

U1 (9.2nm). This higher degree of reduction might also be related to the increase in 

cobalt density, the reduced cobalt crystallites may supply activated hydrogen to non-

reduced cobalt crystallites, and thus enhancing the degree of reduction. 
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Figure  5.19: TPR spectrum of reduced uniform catalysts (U1C, U1, U2) 

The TPR spectrums of reduced egg-shell type of catalysts show a broad peak between 

400°C and 950°C, which consists of two maxima at 600°C and ca. 800°C (see Figure 

 5.20). The second peak maximum shifts towards 900°C as thickness of the cobalt 

enriched shell of the egg-shell type of catalyst increases. This suggests that internal 

mass transport limitation during reduction favours the formation of stronger bonded 

cobalt silicate. It might be concluded that the reduction of uniform and egg-shell type 

of catalyst is limited by the existence of cobalt silicate formed during reduction. 
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Figure  5.20: TPR spectrums of reduced egg-shell type of catalysts 
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The TPR spectrums of the reduced egg-yolk type of catalysts with increasing cobalt 

free silica shell thickness (Y1, Y2, Y3, and Y4) show the same trend as the egg-shell 

type of catalysts with increasing cobalt enriched shell thickness (see Figure  5.21). This 

confirms that the formation of stronger bonded cobalt silicate is preferred when mass 

transport limitation occurs during reduction. However, the degree of reduction of egg-

yolk type of catalyst is significantly lower than of the egg-shell type of catalysts (Table 

 5-4); therefore mass transport limitation during reduction is not the only factor in egg-

yolk type of catalyst. The syntheses of egg-yolk type of catalyst involved an acid leach 

step which didn’t occur in the synthesis of egg-shell type of catalysts. In this step most 

of the cobalt in the outer layer of the pellet was dissolved and washed out of the pores. 

Some of the cobalt may still be adsorbed on the surface of silica or may have been ion 

exchanged during the acid leach step. This strongly adsorbed cobalt is most likely to 

exist as cobalt silicate. 

The amount of strongly bonded cobalt silicate per gram of cobalt remains 

approximately constant for the reduced egg-yolk type of catalysts with identical cobalt 

free silica shell thickness and increasing cobalt loadings (Y5, Y6, and Y7). The 

catalysts with a higher loading show a shift in the reduction of some of the strongly 

bonded cobalt silicate to lower temperatures. This might be attributed to the larger 

cobalt particles of the high loading catalyst which has low cobalt dispersion. It can be 

concluded that the reduction of egg-yolk type of catalyst is limited by the formation of 

cobalt silicate during reduction and possibly during the leaching stage of synthesis. 
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Figure  5.21: TPR spectrums of reduced egg-yolk type of catalysts 

The TPR spectrums of the reduced egg-white type of catalysts also show the existence 

of cobalt silicate (see Figure  5.22). The amount of cobalt silicate increases with 

decreasing size of the inner cobalt enriched ring of the egg-white type of catalysts. The 

degree of reduction of egg-white type of catalyst is also significantly lower than the 

degree of reduction of egg-shell type of catalysts. The synthesis of egg-white type of 

catalysts involved exposure to diluted nitric acid, which may have resulted in the 

formation of cobalt silicate. 
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Figure  5.22: TPR spectrums of reduced egg-white type of catalysts 
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5.2 Fischer-Tropsch Activity of Structured Catalysts 

5.2.1 External Mass Transport Tests in Slurry Phase Set-up 

To ensure that the observed reaction rate is not limited by the rate of external mass 

transfer in the slurry reactor, the reduced uniform powder (U1C) was tested at the 

lowest gas velocity and highest CO consumption rate in this study (22.5mℓ(STP)/min, 

240°C). The stirring speed was incrementally decreased from 860rpm to 280rpm and 

then re-tested at 860rpm. The CO conversion started from 90% at a stirring speed of 

860rpm and decreased to 80% at a stirring speed of 280rpm. However, when the 

stirring speed was re-adjusted to 860rpm, the CO conversion remained at 80% (see 

Figure  5.23). Therefore, the initial drop in catalyst activity was due to catalyst 

deactivation. It can be concluded that there is no change in the CO consumption rate 

due to the stirring speed between 280rpm to 860rpm. Hence the reaction rate is not 

limited by external mass transport at a rate of CO consumption rate less than 

22.5mℓ(STP)/min with stirring speeds between 280-860rpm using powdered catalysts. 
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Figure  5.23: Effect of stirring speed on CO consumption and CH4 selectivity of catalyst U1C at 

240°C and 14.1mℓ/min/gcatalyst (STP) 

A hypothetical film of wax surrounding the catalyst pellet due to the fixation of 

catalyst pellet in a mesh-wire basket may act as a mass transport boundary layer and 

may introduce external mass transport limitations in the testing of catalyst pellets in 

the slurry reactor. The existence of such an external mass transport boundary layer 

was tested using the uniform catalyst pellet (U1) by incrementally varying the stirring 

speed between 148-835rpm. The stirring speed was incrementally decreased from 

408rpm to 148rpm and subsequently increased to 835rpm and then returned to 
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408rpm. When the stirring speed was decreased to below 408rpm, a decrease in the 

CO conversion and an increase in the CH4 selectivity was observed. No changes in the 

CO conversion or in CH4 selectivity was observed with stirring speeds between 408rpm 

to 835rpm (see Figure  5.24). Thus, a stirring speed higher than 408rpm can effectively 

remove this external mass transport boundary layer. Hence, the testing of structured 

catalyst pellets was performed at stirring speed of 500rpm in the modified slurry 

reactor. 
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Figure  5.24: Effect of stirring speed on CO consumption and CH4 selectivity of catalyst U1 

(220°C and 13.8mℓ/min/gcatalyst (STP)) 
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5.2.2 Catalyst Deactivation 

The activity of all catalyst declines with time on stream. It takes approximately 10-15 

hours before a constant conversion level is achieved (see Figure  5.25). The catalysts 

are relatively stable after the initial deactivation. No significant further deactivation 

was observed up to the end of 120 hours testing period. 
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Figure  5.25: Deactivation of the uniform powder catalyst U1C as a function of time on stream 

The gases in a slurry reactor are well mixed and, as a result, the extent of catalyst 

deactivation is difficult to assess. The exit gas concentration in an ideal continuous-

stirred tank reactor (Fogler, 1999) can be described as 

-t τC(t)=C(0)e  

where C(t) is the concentration of the exit gas, C(0) is the inlet gas concentration, and τ 

is the space time. 

This means that the exit concentration should approach 98.2% of the real steady-state 

system when t is 4 times greater than space time. The catalyst activity at steady-state 

was compared to the activity after 4 times the residence time of the gas within the 

reactor (see Table  5-5), as an indication of the extent of deactivation. 
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Table  5-5: Initial deactivation of structured catalyst operating at 220°C by comparing the CO 

conversion at steady-state (24hrs online) and the CO conversion at 4 times the 

space time 

Catalyst 
Syngas 
Feed† 

Mcatalyst 

[g] 
X4τ 

[%] 
Xss,220 

[%] 
Activity 
Loss‡ 

U1C 14.1 5.54 35 26 26 
U1 13.8 5.44 37 26 30 
U2 55.7 1.85 25 14 46 
S1 13.8 5.59 64 48 25 
S2 13.8 5.82 57 41 28 
S3 13.7 5.94 54 40 26 
S4 13.8 5.64 56 34 39 
S5 13.8 5.59 63 40 37 
S6 13.8 5.83 76 56 26 
Y1 15.1 5.02 44 21 52 
Y2 17.4 4.91 41 19 54 
Y3 23.8 4.62 36 12 67 
Y4 18.8 4.90 35 10 71 
Y5 13.9 6.02 30 17 43 
Y6 13.9 5.90 34 11 68 
Y7 13.9 6.18 80 23 71 
W1 11.6 5.21 49 27 45 
W2 12.2 5.34 30 11 63 
W3 13.6 4.87 51 25 51 
W4 17.7 4.75 31 10 68 

† mℓ/min/gcatalyst (STP); ‡ Xss,220/X4τ [%] 
 

The extent of catalyst deactivation estimated in this manner is thus a conservative 

estimate, since the real extent of catalyst deactivation will be larger. According to the 

CO conversion data, it can be stated that the catalysts lose at least 25% of their 

activity between 4 times the residence time of the gas and 24 hours on stream. This 

extent of catalyst deactivation might be ascribed to an effective reduction in the 

available metal surface area either due to sintering or coking (Saib et al., 2006; 

Moodley et al., 2009). The extent of deactivation is slightly affected by the size of the 

catalyst pellet, since the extent of catalyst deactivation for the catalyst U1 in powder 

form is less than the decline in activity observed for the same catalyst as a pellet. This 

implies that mass transport limitation may aggravate the extent of catalyst 

deactivation. Mass transfer limitations results in an increase in the local concentration 

of the product compound water. Water is known to enhance sintering (Dry, 1981; 

Forzatti and Lietti, 1999; Bartholomew, 2001; Moulijn et al., 2001). Hence, it might be 

speculated that the increase in the local water concentration enhanced the catalyst 

deactivation. Furthermore, it is clear that the extent of deactivation increases with 

increasing metal loading (catalyst U2 versus catalyst U1). It might be postulated that 
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the increase metal density will result in higher likelihood for sintering due to the closer 

proximity of metal crystallites. 

The egg-shell type of catalysts seems to be relatively less affected by catalyst 

deactivation, with the exception of the egg-shell type of catalysts with a relative 

diameter of the cobalt-free core between 0.6 and 0.8 (S4 and S5), which lose up to 

40% of their activity. The local metal density increases with increasing diameter of the 

cobalt-free core (or with decreasing shell-thickness), which would result in an increase 

in the extent of catalyst deactivation. However, the extent of internal mass transport 

limitation is expected to be reduced with decreasing shell-thickness. 

The extent of catalyst deactivation is severe for the egg-yolk type of catalysts and 

becomes more severe with a decrease in the cobalt-enriched core size in egg-yolk type 

of catalyst with similar cobalt loading (Y1-Y4). The extent of catalysts deactivation is 

also more severe in egg-yolk type of catalyst with similar cobalt-enriched core size (Y5-

Y7), but with an increase in cobalt loading. This indicates that the local metal density 

is an important variable in the early-stage catalyst deactivation of cobalt-based 

catalyst in the Fischer-Tropsch synthesis. 

In the case of egg-white type of catalysts, the extent of catalyst deactivation seems to 

increase with a decrease in unit volume of cobalt-enriched region inside the catalyst 

pellet at constant cobalt loading, again suggesting that catalyst deactivation is 

enhanced when cobalt particles are closer to each other. 

The difference in the extent of deactivation of the various catalysts needs to be taken 

into consideration when evaluating the behaviour of the structured catalyst. 
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5.2.3 Internal Mass Transport in Slurry Phase Set-up 

The structural parameter (χ) can be interpreted as the ratio of reactivity against pore 

radius of catalyst pellet. Therefore, it can be seen as the inherited internal mass 

transport property of a catalyst pellet. The experimental data of Iglesia et al. (1995) 

showed the C5+ selectivity peaked between structural values of 100-1000 (×10-16 m-1). 

The structural parameter of the tested structured catalyst was determined by 

incorporating the definition of Iglesia et al. (1995) with structure specific metal density 

function (σstructure). The structure parameter ranged from 47 to 1775 (×10-16 m-1). 

uniformσ =1; 
2

p
egg-shell 2 2

p c

r
σ =

r - r
; 

 
 
 

2
p

egg-yolk
c

r
σ =

r
; 

2
p

egg-white 2 2
w c

r
σ =

r - r
 

The experimental effectiveness factor ( ′η ) of structure catalyst was estimated by 

assuming the CO consumption rate of the uniform crushed catalyst (U1C) is the 

consumption rate in the absence of internal mass transport limitation. These values 

ranged from 0.22 to 1.18 which indicates the presence of internal mass transport 

limitation albeit the mixing effect of the modified CSTR was not taken into 

consideration. 

Table  5-6: Structural parameter of synthesized catalyst and their effectiveness factors at 

various reaction temperatures 

Catalyst 
χ 

[×10-16 m-1] 

′220η  

[-] 

′230η  

[-] 

′240η  

[-] 

U1C 47 1.00 1.00 1.00 
U1 296 0.98 0.93 0.83 
U2 926 0.69 0.59 0.54 
S1 270 1.03 0.95 0.76 
S2 302 1.00 0.88 0.80 
S3 339 1.02 0.86 0.79 
S4 377 0.97 0.92 0.78 
S5 595 0.95 0.87 0.75 
S6 595 1.18 1.03 0.83 
Y1 455 0.61 0.52 0.43 
Y2 597 0.57 0.47 0.40 
Y3 1134 0.48 0.41 0.33 
Y4 1775 0.33 0.25 0.22 
Y5 441 0.63 0.58 - 
Y6 622 0.27 0.28 - 
Y7 1094 0.31 0.25 0.22 
W1 613 0.57 0.46 0.40 
W2 605 0.42 0.42 0.38 
W3 741 0.60 0.49 0.41 
W4 820 0.31 - - 
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A reaction-diffusion pellet model inside a CSTR model was derived to confirm the 

observed internal mass transport limitation in structured catalysts. The internal heat 

transfer limitation in the catalyst pore was neglected. The Prater number, which is 

defined as the maximum temperature difference in the pores with respect to the pellet 

surface temperature, was calculated for a heat of reaction of 215kJ/mol (U1C), CO 

diffusivity of 17.4×10-9 m2/s (Erkey et al., 1990), thermal conductivity (кt) of 

0.2W/m/K (Sasol Fischer-Tropsch wax; Reynhardt, 1985). 

rxn CO CO,S

t S

-3

-∆H D C
β=

κ T

=1.35×10

 

This means that at the surface temperature of 493K, the maximum temperature 

difference in the pores is only 0.7K. The thermal conductivity of silica at 500K is 

1.7W/m/K (Liley et al., 2001), therefore the calculated Prater number is the worst case 

scenario. 

The reaction-diffusion model was derived by assuming a steady-state condition inside 

an open-ended cylinder with a vertical orientation (see Figure  5.26). The CO mass 

balance is then 

Mass In Mass Out Generation

CO pellet CO pellet volume pelletr r+∆r
W ×l ×2πr   -  W ×l ×2πr   +  R ×l ×2πr×∆r  =  0
��������	 ����������	 ����������	

 

where WCO is mass flux of CO and Rvolume is rate of reaction per unit volume of catalyst. 

lpellet

rp

rc∆r rw

 

Figure  5.26: Differential volume element considered 

By taking the limit of the above equation as ∆r approaches 0, realising that the mass 

flux is concentration driven (WCO=-DCO(dCCO/dr)), and using intrinsic reaction rate 

expression as suggested by Yates and Satterfield (1991) in a metal surface based form; 

the mass balance is then 
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( )
2

2
(r) CO HCO CO co* structured

2 2
COads CO

k C Cd C dC ρ σ1
=- +

r dr Ddr 1+k C
 

where DCO is diffusivity of CO; k(r) is position dependent, cobalt metal surface based 

rate constant; ρco* is the average metal surface density of active cobalt in [m2/cm3] to 

account for the difference in cobalt loading and reducibility due to internal mass 

transport limitation during reduction, which is defined as 

( )

2 2
CO* catalyst CO* catalystco*

co* o
pellet pellet silica catalyst silica co

[m ] [g ] [m ] [g ]S
ρ = = =

V V [g g ] ρ 1-L
 

where silicaρ  is the unit volume of silica support, o
coL is the cobalt loading according to 

AAS. 

The metal density function (σstructured) is catalyst structure type specific, and defined 

below. It converts the average metal density of the pellet to the metal density within 

the cobalt enriched region in each structured catalyst type. 

uniformσ =1; 
2

p
egg-shell 2 2

p c

r
σ =

r - r
; 

 
 
 

2
p

egg-yolk
c

r
σ =

r
; 

2
p

egg-white 2 2
w c

r
σ =

r - r
 

Rate of reaction is only greater than 0 in the cobalt enriched region in structured 

catalyst. Thus, the rate constant is a function of pellet radius. 

The boundary conditions for the mass balance are 

CO

p

dC
CO CO,S drr=r r=0

C =C  ; = 0  

The H2/CO usage ratio was assumed to be the average experimental value of 2.2±0.2. 

The mass balance of H2 is then 

( )
2 2 2

2

2
H H (r) CO H co* structured
2 2

Hads CO

d C dC k C C ρ σ1
=- +2.2

r dr Ddr 1+k C
 

with the following boundary condition 

H2

2 2
p

dC
H H ,S drr=r r=0

C =C  ; = 0  

The intrinsic Fischer-Tropsch rate constant was determined by using the experimental 

data of uniform powder catalyst (U1C) at steady state. The CO inhibition constant was 

taken to be the values proposed by Yates and Satterfield (22.26MPa-1 at 220°C and 

11.61MPa-1 at 240°C).  
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Table  5-7: Summary of rate constants of uniform powder catalyst in modified slurry reactor 

Reaction 
Temperature 

k(r) 
[

6

2 2
mmol cm
s m mmol

] 
kads 

[cm3/mmol] 

220°C 127 423 
230°C 112 322 
240°C 76 221 

 

The rate constant (k(r)) decreases with increasing temperature. This implies that the 

activation energy for the intrinsic Fischer-Tropsch reaction is negative with respect to 

gas phase carbon monoxide. This has been predicted for stepped CO{101 2 } and 

CO{1124} surfaces (Ge and Neurock, 2006). It should however be noted that the heat 

of adsorption in the Yates and Satterfield expression was proposed to be -68kJ/mol, 

which is lower than the DFT-predicted heat of adsorption for CO. The activation 

energy of the observed rate of reaction is positive (ca. 64kJ/mol), due to the strong 

influence of the inhibition term in the Yates and Satterfield equation. 

Typically, the activity performance of the pellet can be evaluated by comparing the 

effectiveness factor which is defined as 

( )

( ) ( )( )
( )

CO

p

2

dC
p pellet CO dr r=r

22
p pellet co* (r) CO,S H ,S ads CO,S

2

ads CO,SCO

p co*

overall rate within structured catalyst
η=

rate of reaction at catalyst surface (absence of transport limitation)

2πr l D
=
πr l ρ k C C 1+k C

1+k C2D
=

r ρ
2 p

CO

(r) CO,S H ,S r=r

dC
k C C dr

 

In order to compare the derived reaction-diffusion model with a similar model 

proposed by Iglesia et al. (1995), the mass balances was made dimensionless by 

introducing the following dimensionless parameters 

2

2

2

HCO
CO H

CO,S H ,S p

CC r
ψ =   ;  ψ =   ;  λ =

C C r
 

Substituting the above parameters and introducing Thiele modulus and adsorption 

constant 

2(r) H ,S co* structured
p

CO

k C ρ σ
Φ= r

D
 

ads ads CO,SK = k C  
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Dimensionless mass balance for CO and H2 is now written as (Appendix C.5) 

( )
2

2
CO H2CO CO

2 2
ads CO

ψ ψd ψ dψ1
=- +Φ

λ dλdλ 1+K ψ
   BC: COdψ

CO dλλ=1 λ=0
ψ =1 ; = 0  

( )
2 2 2

2

2
H H CO H2 CO
2 2

H ads CO

d ψ dψ ψ ψD1
=- +2.2Φ

λ dλ Ddλ 1+K ψ
  BC: H2

2

dψ
H dλλ=1 λ=0

ψ =1 ; = 0  

The effectiveness factor was solved as a function of the Thiele modulus. The observed 

trend is similar to Iglesia et al. (1995). However, the Thiele modulus of the derived 

reaction diffusion model appears to be larger than those proposed by Iglesia et al. 

(1995) (see Figure  5.27). The main difference between the derived model and model 

proposed by Iglesia et al. (1995) is that a single phase (wax) was assumed to be inside 

the pores of the catalysts in the slurry phase reactor, where as vapour-liquid 

equilibrium was assumed by Iglesia et al. (1995) for catalyst pellets in a fixed-bed 

reactor. As a consequence, the diffusion mechanism of the derived model is assumed 

to be liquid diffusion while Iglesia et al. (1995) assumed Knudsen type diffusion 

(function of pore radius). The Knudsen type diffusion is faster than liquid diffusion for 

catalyst pellets used here. Thus, the corresponding Thiele modulus of Iglesia et al. 

(1995) is smaller than Thiele modulus in the derived model. 
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Figure  5.27: Comparison of effectiveness factor as function of Thiele modulus (left: derived in 

this study; right: Iglesia et al. (1995)) 

Step functions were introduced to describe the various cobalt distributions inside the 

structured catalysts. In the case of the egg-shell type of catalyst, step function from 

the boundary of the cobalt-free core to the outer surface of the catalyst was used to 

describe the boundary of the cobalt-enriched shell. The rate of reaction is set to be 

zero when the integration falls outside the step function (see Figure  5.28). 
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Figure  5.28: Modelled intra-pellet reactant concentration profile of an egg-shell type of catalyst 

(rc/rp=0.9; dpellet=2.5mm) 

The effectiveness factor of egg-shell type of catalysts was solved as a function of 

catalyst pellet size. The behaviour of the egg-shell type of catalyst depends on the 

severity of internal mass transport limitation. Internal mass transport limitation is 

severe when effectiveness factor of the uniform pellets drops below 1 due to starvation 

of reactant. Under such conditions, the severity of mass transport limitations is 

reduced in egg-shell type of catalysts with equal amount of cobalt loading compared to 

uniform catalysts by shortening the diffusion-reaction pathway. When internal mass 

transport limitation is not severe, i.e. no drop in effectiveness factor of uniform 

catalyst, the egg-shell type of catalyst will behave similar to uniform catalyst (see 

Figure  5.29). 

The experimentally observed ratio of CO consumption rate between the egg-shell type 

of catalyst and the crushed uniform catalyst indicates slight change of activity (see 

Table  5-6). This suggests the extent of the internal mass transport limitation in the 

egg-shell type of catalyst is moderate if not insubstantial. The model supports the 

experimental observation for catalyst pellet size less than 3mm in diameter. 
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Figure  5.29: Model predicted effectiveness factor of egg-shell type of catalysts pellets with 10% 

cobalt loading under reaction temperature of 220°C 

Intra-pellet reactant concentration profile was solved for egg-yolk type of catalyst by 

using step function to describe the distribution of cobalt inside the pellet (see Figure 

 5.30). The egg-yolk type of catalysts behaves contrary to egg-shell type of catalyst. It 

has cobalt-free-silica-shell as an additional diffusion pathway for the reactant, thus 

increasing the severity of internal mass transport limitation. Since the diffusivity of H2 

is higher than CO in any diffusion region, an increase in diffusion pathway would 

increase the intra-pellet H2/CO ratio. In the region of the cobalt-free shell, the rate of 

reaction is zero; therefore the rate of CO consumption at the boundary of the cobalt-

enriched core is the same as the CO mass flow at the surface of the pellet. The intra-

pellet CO mass flux is expected to increase with decreasing radius due to the 

decreasing unit volume with decreasing radius in a cylindrical geometry. The predicted 

intra-pellet CO concentration profile agrees with this reasoning. 
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Figure  5.30: Modelled intra-pellet reactant concentration profile of an egg-yolk type of catalyst 

(rc/rp=0.5; dpellet=2.5mm) 

Generally, the Fischer-Tropsch rate is inhibited by CO coverage on the metal surface. 

Therefore an increase in H2/CO ratio increases the reaction rate. The extra diffusion 

length of the egg-yolk type of catalyst increases H2/CO ratio, thus at intermediate 

internal mass transport limitation, this feature may increases the effectiveness factor. 

However, at severe internal mass transport limitation, a further increase in H2/CO 

ratio would starve the cobalt-enriched core from reactants, and thus lowering the 

effectiveness factor (see Figure  5.31). According to the model, egg-yolk type of catalyst 

with pellet diameter of 2.5mm will experience intermediate internal mass transport 

limitation. Therefore, the effectiveness factor of egg-yolk type of catalysts decreases 

with decreasing cobalt-enriched core; egg-yolk type of catalyst with thin cobalt-free 

silica shell may have effectiveness factor greater than 1. 
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Figure  5.31: Model predicted effectiveness factor of egg-yolk type of catalysts pellets with 10% 

cobalt loading under reaction temperature of 220°C 

The intra-pellet cobalt distribution of egg-white type of catalysts was described using a 

modified arccot and a modified arctan functions for the easiness of numerical 

calculation. By locating the mid-point (mid) of the cobalt-enriched ring inside the egg-

white type with respect, the distribution of cobalt with respect to pellet radius was 

defined piece wisely (see Figure  5.32). The intra-pellet CO mass flux modelled using 

the piecewise distribution function shows sharp turns at the cobalt enriched 

boundaries. Thus the use of the piecewise function is adequate in describing the intra-

pellet cobalt distribution (see Figure  5.33). 

≥
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Figure  5.32: Modelled intra-pellet cobalt density of an egg-white type of catalyst (rc/rp=0.5; 

rw/rp=0.75;dpellet=2.5mm) 

The egg-white type of catalyst behaves as a combination of egg-shell and egg-yolk type 

of catalysts. The cobalt-free silica shell of the egg-white catalysts provides additional 

diffusion path for the reactant and hence increases the intra-pellet H2/CO ratio. This 

feature increases the internal mass transport limitation. The counterpart feature of 

egg-white catalysts is the cobalt-free silica core, which minimises the starvation of 

reactants experienced by the cobalt closer to the centre of the pellet. These features 

allow the egg-white catalyst to alter degree of internal mass transport limitation 

without severely affecting the intra-pellet H2/CO ratio (see Figure  5.34). 
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Figure  5.33: Modelled intra-pellet reactant concentration profile in an egg-white type of catalyst 

(rc/rp=0.5; rw/rp=0.75;dpellet=2.5mm) 
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Figure  5.34: Comparison of model predicted effectiveness factor of uniform, egg-shell egg-yolk 

type of catalysts pellets with 10% cobalt loading under reaction temperature of 

220°C 

The derived reaction-diffusion pellet model alone can not describe the experimentally 

determined performance of the structured catalysts, because the Fischer-Tropsch 

performance test was conducted in a CSTR type reactor, in which the reactant 

concentration is identical to the exit reactant concentration. The performance of the 

structured catalyst pellets in a CSTR was modelled by using a calculation loop. This 

loop calculation is initialised by assuming the reactant concentration is the bulk 

reactant concentration. The overall conversion of CO is calculated by the following 

equation 

( )
COCO CO catalystX = -rate ×M ×η F  

where -rateCO is the CO consumption rate in the absence of internal mass transport 

limitation, Mcatalyst is the amount of catalyst loaded, and FCO is the flow rate of CO. 

The reactant partial pressure in the reactor is then updated based on the calculated 

CO conversion assuming an average carbon number of 3 in the product. Thus, the 

partial pressure of CO and H2 is 

2

CO
CO T

CO

CO
H T

CO

(1- X )
P = ×P

3-(2.2-1 3)X

(2-2.2X )
P = ×P

3-(2.2-1 3)X

 

The variation in the extent of catalyst deactivation was accounted by decrease the 

metal surface area of the freshly reduced catalysts (metal surface area according to CO 
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chemisorption) used in the model, relative to the decrease in conversion at steady 

state compared to conversion at 4 times the space time. 

The reactant concentration in the liquid phase was correlated by using the Chou and 

Chao (1992) correlation. Then a new overall conversion is calculated based on the 

updated reactant concentration. This calculation loop is terminated when the 

difference between the newly calculated CO conversion and previously calculated CO 

conversion is less than 0.1%. The diffusivities of H2 and CO in wax were used from 

experimental values over a temperature range of 203°C to 263°C determined by Erkey 

et al. (1990). However, the CSTR model could not predict the experimental conversion 

within 10% error. 

Taking a closer look at the diffusivity experimental data of Erkey et al. (1990), the 

diffusivity of CO is 1.74×10-8 m2/s at 231°C. Chang and Wilke (1955) proposed a 

correlation for dilute, binary mixtures of non-electrolytes in liquids. 

-8 1 2
B B

AB 0.6
B A

7.4×10 (φ M ) T
D =

µ V
 

where DAB is the mutual diffusivity at infinite dilution of A in B, φB is an association 

factor of solvent B that accounts for hydrogen bonding (1 for wax), MB is the molar 

mass of B, µB is viscosity of B at temperature T, and VA is the molar volume of A. 

The molar volume of CO is 32.1cm3/mol (Prausnitz and Shair, 1961). The viscosity of 

a middle cut wax produced using cobalt catalyst is 0.555 (Marano and Holder, 1997). 

According to Chang and Wilke (1955), the CO diffusivity in wax with an average 

carbon number of 28 at 231°C is 1.71×10-8 m2/s. The experimentally determined CO 

diffusivity (Erkey et al., 1990) is in good agreement with the most widely used Wilke-

Chang correlation. However, the diffusivity ratio of H2 over CO in wax, determined by 

Erkey et al. (1990) is 2.4-2.7 over a temperature range of 203°C to 263°C. The molar 

volume of H2 is 28cm3/mol (Crozier and Yamamoto, 1974), therefore according to the 

Wilke-Chang correlation, the diffusivity ratio of H2 over CO in Fischer-Tropsch wax 

should be about 1.1. This discrepancy might originate from an experimental artefact 

in the determination of the diffusivity of hydrogen, i.e. the reaction of hydrogen in the 

used diffusion tube (Erkey et al., 1990). 

Due to the lack of reliable experimental data for the diffusivity of H2 in the Fischer-

Tropsch wax, the diffusivity of H2 in wax was used as the variable parameter in the 

developed kinetic model. The diffusivity of H2 in wax was varied until the relative 

difference between the predicted and the experimental conversion is less than 1%. The 



Univ
ers

ity
 of

 C
ap

e T
ow

n

RESULTS AND DISCUSSION  |  123 

regressed diffusivity ratio of H2 over CO in wax is 1.15±0.10 at 220°C, 1.31±0.14 at 

230°C, and 1.51±0.24 at 240°C (see Table  5-8). 

Table  5-8: Ratio of diffusivity of H2 over CO in wax that satisfies the kinetic model criteria 

Catalyst 220°C 230°C 240°C 

U1 1.09 1.46 1.99 
U2 1.36 1.38 1.67 
S1 1.35 1.55 1.60 
S2 1.14 1.28 1.35 
S3 1.05 1.10 1.16 
S4 1.30 1.50 1.80 
S5 1.20 1.50 1.60 
S6 1.10 1.30 1.50 
Y1 1.27 1.34 1.45 
Y2 1.19 1.22 1.37 
Y3 1.16 1.22 1.25 
Y4 1.04 1.11 1.24 
Y5 1.10 1.28 - 
Y6 1.07 1.34 - 
Y7 1.04 1.06 1.36 
W1 1.09 1.30 1.57 
W2 1.09 1.29 1.89 
W3 1.20 1.37 1.43 
W4 1.04 - - 

 

The variation in the H2 and CO diffusivity ratio from the model correlation may be due 

to the infinite cylinder catalyst geometry assumption in the model. The actual pellet 

volume occupied by cobalt in the catalyst is much smaller than the infinite cylinder in 

the model. This overestimation of reactive volume in the catalyst pellet underestimates 

the cobalt concentration in the reactive volume and therefore under estimates the 

severity of internal mass transport limitation in structured (see Figure  5.35). 
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Figure  5.35: Comparison of the open-ended cylinder egg-yolk type of catalyst geometry to 

actual egg-yolk type of catalyst geometry 

It should be noted that this derived kinetic model uses the experimentally measured 

bulk diffusivity of CO and H2 in wax (Erkey et al., 1990) in the place of effective 

diffusivity. The effective diffusivity accounts for the hindrance by the pore walls on 

bulk diffusivity, which is a function of tortuosity (τ) and void fraction (εpellet) of porous 

material.  

AB
eff

εD
D =

τ
 

Typically, the normal range of tortuosities for silica gel, alumina, and other porous 

solids is ≤ ≤2 τ 6 (Knudsen et al., 2001). This means that the effective diffusivity can be 

an order of magnitude lower than the bulk diffusivity. The values of tortuosities are 

usually derived for a known frame of pore structure (e.g. zeolites), or determined 

experimentally by comparing experimental results with bulk diffusion. In this study, 

the bulk diffusivity value was decreased step wise until the conversion predicted by 

the model is exceeds 10% error of the experimental values. Generally, the ratio of the 

minimum CO diffusivity compare to the literature value is 0.25 at 220°C, 0.4 at 230°C 

and 0.9 at 240°C. According to the supplier information on the silica support, the 

pellet void fraction is 0.7. This means, the tortuosity of the pellet is 2.8 (220°C), which 

is in agreement with literature (Knudsen et al., 2001). The large tortuosities difference 

at different reaction temperature (1.75 at 230°C, 0.78 at 240°C) could be due to the 

assumption that the CO adsorption constant in the kinetic expression is constant with 

respect to temperature. 
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5.3 Product Selectivity of Structured Catalysts 

The Fischer-Tropsch synthesis product is a complex, but regular mixture of organic 

product compounds. Many selectivity parameters, such as methane selectivity, C5+ 

selectivity, olefin content, etc. can be used to describe a certain aspects of the product 

selectivity, and can give insight into the behaviour of the catalyst under reaction 

conditions. The methane selectivity (in C-%) and the C5+ selectivity are of great 

industrial importance, since cobalt-based Fischer-Tropsch synthesis is aimed at 

maximizing the liquid fuel selectivity. These selectivities are linked, and might be 

influenced by the extent of olefin reincorporation. Hence, the effect of internal mass 

transport limitation on �-olefins re-adsorption must be explored before looking at the 

methane and C5+ selectivity of the product. 

In literature, the extent of internal mass transport limitation is often presented in 

terms of the structural parameter (χ) as proposed by Iglesia et al. (1995). The 

structural parameter is a part of the Thiele modulus depending only on the structural 

properties of the catalysts. In this study, the general definition of the structural 

parameter would be 

χ

χ

20 H ,S2 2
pellet co* structured (r)

CO

2
pellet co* structured (r)

k C
Φ =ψ× = ×(r ρ σ d )

D

= r ρ σ d

 

where k0 is the intrinsic rate constant and d(r) is the intra-pellet cobalt distribution 

function of the structured catalysts. To be able to compare structural parameters of all 

types of structural parameter, the intra-pellet cobalt distribution (d(r)) must be 

incorporated into the structural parameter. This means that the structural parameter 

is then a function of position in the pellet. Therefore, it is not possible to describe the 

extent of the internal mass transport limitation of different types of structured 

catalysts with a single number. Thus, the Fischer-Tropsch product selectivity is 

compared among individual types of structured catalysts in terms of reaction-diffusion 

path length. The reaction-diffusion path length of the structured catalyst is defined as 

the distance the reactant has to travel within the cobalt-enriched-region of the catalyst 

pellet. 
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5.3.1 Secondary Reactions of Ethene 

The fraction of C2 hydrocarbons consists only of an olefin, ethene and a paraffin, 

ethane. Thus, the C2 olefin content in C2 linear hydrocarbons can be used as an 

indication of the extent of C2 �-olefin re-adsorption leading either to ethane or to re-

incorporation of ethene. Under the influence of internal mass transport limitation, the 

residence time of �-olefin within the pellet increases which might affect the rate of 

olefin re-adsorption. The distance of the reactive region of structured catalyst from the 

outer boundary towards the centre of the pellet can be defined as the reaction-

diffusion path length, of which its value is proportional to the residence time of the 

reactant or reactive intermediate product. The residence time of the reactive olefins is 

expected to increase with increasing length of the diffusion path length. Hence, the 

olefin content is expected to be a function of reaction-diffusion path length. 

 

Figure  5.36: Cross-sectional view of different type of structured catalyst showing reaction-

diffusion path length 

The C2 olefin content as a function of reaction-diffusion path length of structured 

catalyst pellets with similar cobalt loading is compared with uniform catalyst powder 

(U1C) (see Figure  5.37).  At a reaction temperature of 220°C, a clear decrease in C2 

olefin content with increasing reaction-diffusion path length is observed with the egg-

shell type of catalysts together with uniform pellet. This might be explained by the 

increased residence time of the �-olefins with increasing reaction-diffusion path length 

in the catalyst pellet. As reaction temperature increases, the C2 olefin content of the 

egg-shell type of catalysts seems to be almost independent of the reaction-diffusion 

path length (230°C, see Figure  5.38) or passing through a minimum (240°C, see 

Figure  5.39). The olefin content is given by the rate of primary olefin formation rate 

minus the rate of olefin re-adsorption over the rate of total product formation. 

olefin,primary olefin,re-adsorb

paraffin paraffin

olefin,primary olefin,re-adsorb

olefin,primary olefin,re-adsorb paraffin
r r

r r

r - r 1
Olefin Content = =

1(r - r )+r 1+
-

 

The olefin content will decrease if ( )olefin,primary olefin,re-adsorb

paraffin paraffin

r r
r r-  decreases, i.e. when the 

rate of primary olefin formation becomes smaller in comparison to the rate of paraffin 
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formation and/or the difference between the rate of primary olefin formation and rate 

of olefin re-adsorption is smaller. The ratio of the diffusivity of H2 to the diffusivity of 

CO in wax increases with increasing temperature (Chou and Chao, 1992). As a result, 

the average intra-pellet H2/CO ratio will increase with an increase in reaction 

temperature. This may result in a lowering of the rate of primary olefin formation 

relative to the rate of paraffin formation at higher reaction temperature. The rate of 

olefin re-adsorption is expected to be dependent on the intra-pellet olefin 

concentration (Schulz and Claeys, 1999); the olefin concentration is lowered when the 

primary olefin formation rate is decreased. This means that the difference between the 

olefin primary formation rate and olefin re-adsorption rate may increase when the 

olefin concentration is low. This might explain the observed independency of C2 olefin 

with reaction-diffusion path length at 230°C and passing a minimum at 240°C. Thus, 

at 220°C, the effect of increased �-olefin residence time is observed, while the effect of 

diminished olefin formation is observed at higher reaction temperatures. 

The C2 olefin content obtained with the egg-yolk type of catalyst is lower than the C2 

olefin content obtained with egg-shell type of catalysts at the tested reaction 

temperature. The C2 olefin content of the egg-yolk catalysts shows a more clear 

indication of a minimum as a function of reaction-diffusion path length. The 

additional diffusion path length introduced by the cobalt-free shell of the egg-yolk type 

of catalysts increases the local intra-pellet H2/CO ratio. The measured olefin content 

will decrease when the rate of primary olefin formation becomes smaller in comparison 

to the rate of paraffin formation and/or the difference between the rate of primary 

olefin formation and rate of olefin re-adsorption is smaller. The increased local intra-

pellet H2/CO ratio decreases the primary olefin selectivity, and therefore decreases the 

olefin content. The decreased primary olefin rate formation also lowers the difference 

between primary olefin formation and rate of olefin re-adsorption. Thus, a minimum in 

C2 olefin content in the egg-yolk type of catalysts is observed. 

The C2 olefin content obtained with egg-white type of catalysts is somewhat between 

C2 olefin content obtained with the egg-shell and the egg-yolk type of catalysts. The 

egg-white type of catalyst was ordered with increasing reaction-diffusion path length 

(W1<W2<W3<W4). In this study, the cobalt-enriched region of the egg-white catalyst 

was made closer to the core of the pellet with increasing reaction-diffusion path length. 

Thus, the egg-white type of catalyst is physically similar to the egg-yolk type of 

catalyst as its reaction-diffusion path length increases. Therefore, the C2 olefin 

content of the egg-yolk type of catalyst is somewhat between the egg-shell and the egg-

yolk type of catalyst. 
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Figure  5.37: C2 olefin content as a function of reaction-diffusion path length at 220°C 
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Figure  5.38: C2 olefin content as a function of reaction-diffusion path length at 230°C 
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Figure  5.39: C2 olefin content as a function of reaction-diffusion path length at 240°C 
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5.3.2 Product Selectivity in the C5 Fraction 

The olefin content in the fraction of linear C5 hydrocarbons of the structured catalyst 

shows a distinct decrease with an increase in reaction-diffusion path length at tested 

reaction temperature (see Figure  5.40-46). This may be explained by the increased 

average intra-pellet H2/CO ratio with increasing reaction-diffusion path length. The C5 

olefin trend did not change with a change in reaction temperature as was observed 

with the C2 olefin content over the structured catalysts. The C5 olefin fraction consists 

of �-olefin and internal olefins (trans-2-petene and cis-2-pentene), unlike the C2 olefin 

which only contains the �-olefin. Double-bond isomerisation is a result of secondary 

olefin re-adsorption (van Steen and Claeys, 2004). It results in an effective decrease in 

the concentration of the most reactive olefin, viz. 1-pentene (Schulz and Claeys, 1999b) 

without decreasing the olefin content. When double-bond isomerisation of the re-

adsorbed �-olefin is the dominant secondary reaction, the C5 olefin content in C5 

linear hydrocarbon can not distinctively represent the extent of olefin re-adsorption. 
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Figure  5.40: C5 olefin content as a function of reaction-diffusion path length at 220°C 
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Figure  5.41: C5 olefin content as a function of reaction-diffusion path length at 230°C 
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Figure  5.42: C5 olefin content as a function of reaction-diffusion path length at 240°C 

The C5 �-olefin content in the fraction of linear C5 olefins is used as an indication of 

the extent of double-bond isomerisation of re-adsorbed �-olefins. In the absence of 

internal mass transport limitation, as observed with the uniform powder catalyst 

(U1C), a minor decline in the C5 �-olefin content in the fraction of linear olefins was 

observed with increasing reaction temperature (see Figure  5.43-49). This suggests that 

the double bond isomerisation is not strongly affected by reaction temperature. 

Generally, the C5 �-olefin content is lower for the catalyst in the pellets form in 

comparison to catalyst in the powder form. This suggests the reaction-diffusion path 

length of the structured pellets affects the �-olefin re-adsorption. 
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Figure  5.43: C5 �-olefin in C5 linear olefins as function of reaction-diffusion path length at 

220°C 
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Figure  5.44: C5 �-olefin in C5 linear olefins as function of reaction-diffusion path length at 

230°C 
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Figure  5.45: C5 �-olefin in C5 linear olefins as function of reaction-diffusion path length at 

240°C 

The C5 �-olefin content of egg-shell type of catalysts appears to be almost independent 

and even shows a slight increase with reaction-diffusion path length. Saib et al. (2002) 

showed that the extent of double-bond isomerisation is also a function of the cobalt 

crystallite density (in their case the cluster size in which cobalt crystallites appears). 

The density of cobalt crystallites within the egg-shell type of catalysts increases with 

decreasing reaction-diffusion path length. The cobalt crystallites density is estimated 

by dividing the cobalt metal surface area according to CO chemisorption by the 

volume of area of the cobalt enriched region in the structured catalyst (Optic 

Microscopy). C5 �-olefin in the fraction of linear C5 olefin of the uniform catalyst and 

egg-shell type of catalyst decreases with increasing estimated cobalt density (see 

Figure  5.46-52). This means the chance of re-adsorbed �-olefin undergoes double-

bond isomerisation is a function of the distance between the cobalt crystallites. Thus, 

a decrease in reaction-diffusion path length leads to an increase in cobalt crystallite 

density, and therefore increases double-bond isomerisation. 
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Figure  5.46: C5 �-olefin in C5 linear olefins as function of cobalt surface density at 220°C 
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Figure  5.47: C5 �-olefin in C5 linear olefins as function of cobalt surface density at 230°C 
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Figure  5.48: C5 �-olefin in C5 linear olefins as function of cobalt surface density at 240°C 

The egg-yolk type of catalyst showed a higher C5 �-olefin in linear olefin content, and 

decreases with increasing reaction-diffusion path length. The cobalt-free shell of the 

egg-yolk type of catalyst further increases the intra-pellet H2/CO ratio. Hydrogenation 

over double-bond isomerisation of the re-adsorbed olefin is likely to be more favoured 

at higher intra-pellet H2/CO ratio. When secondary hydrogenation is dominant, the �-

olefin in linear olefin content is expected to decrease with increasing reaction-diffusion 

path length. 

The egg-white type of catalyst with lower reaction-diffusion path length seems to 

behave between egg-shell and egg-yolk type. However, the C5 �-olefin content of the 

egg-white type of catalyst with higher reaction-diffusion path length (W3 and W4) is 

lower than the egg-yolk type of catalyst. According to the TPR-TPO results, the cobalt-

free shell of the egg-white type of catalysts is likely to contain cobalt silicate due to 

acid leaching of metal cobalt. Double-bond isomerisation is likely to be enhanced by 

the presence of cobalt silicate. This could be the reason for the observed decrease in 

C5 �-olefin or and increase in C5 internal-olefin content in the egg-white type of 

catalyst with thick cobalt-free shell. 

The ratio of branched product to linear hydrocarbons in the C5 fraction is used as an 

indication of degree of branching. In the absence of internal mass transport limitation, 

an increase in the formation of branched product compounds relative to the formation 

of linear product compounds was observed with increasing temperature (U1C) as 

described in literature (Claeys et al., 2004). The ratio of branched C5 products versus 

linear C5 products of structured catalyst pellets increases with increasing reaction-
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diffusion path length (see Figure  5.49-55). This suggests that branching of re-

adsorbed �-olefins is favoured under internal mass transport limitation. 
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Figure  5.49: C5 branched to linear product ratio as function of reaction-diffusion path length 

at 220°C 
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Figure  5.50: C5 branched to linear product ratio as function of reaction-diffusion path length 

at 230°C 
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Figure  5.51: C5 branched to linear product ratio as function of reaction-diffusion path length 

at 240°C 

It can be concluded based on the C2 and C5 olefin selectivity, that the re-adsorption of 

�-olefin is enhanced by internal mass transport limitation. With increasing reaction-

diffusion path length, the selectivity for the formation of paraffinic and branched C5-

product compounds increases, while the �-olefin and olefin content in the C5 fraction 

decreases. These results suggest the re-adsorbed �-olefin is likely to be hydrogenated 

under internal mass transport limitation. 
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5.3.3 Methane Selectivity and C5+ Selectivity 

Methane selectivity (in C-%) can be influenced local H2/CO ratio. The higher diffusivity 

of H2 in Fischer-Tropsch wax compared to the diffusivity of CO in wax (albeit less than 

reported by Erkey et al. (1990)) will affect the intra-pellet H2/CO ratio and thus 

affecting product selectivity (Schulz et al., 1994). An average H2/CO ratio, defined as 

the ratio of amount of unreacted H2 over CO over the reactive layer in catalyst pellet, is 

used to indicate the effect of internal mass transport limitation on local H2/CO ratio. 

∫ ∑

∑∫

active,j
active,j

H2 H2

active,i active,i

active,j active,j

COCO

active,i
active,i

r r
dC dC

pellet pellet dr dr
rr r

2 average r r
dCdC

drpellet pellet dr r
rr

πr l r dr r×

H CO =

r×πr l r dr

≃  

The methane selectivity of structured catalysts is plotted against the predicted average 

H2/CO ratio in the structured catalyst pellets (see Figure  5.52-5.58). The trend of 

methane selectivity verses the predicted average intra-pellet H2/CO ratio shows that 

the structural type of the catalyst pellets may affect product selectivity. The methane 

selectivity in uniform and egg-shell type of catalyst increases with an increase in intra-

pellet H2/CO ratio. The probability of chain termination by hydrogenation is expected 

to increase with an increase in H2 partial pressure. Therefore a higher H2/CO ratio 

increases the product selectivity towards methane (Vannice, 1975a). 

The egg-yolk and egg-white type of catalysts show significantly higher methane 

selectivity than egg-shell type and uniform catalyst. It should be realised that methane 

selectivity, and thus also C5+ selectivity, can be influenced by many other factors 

other than H2/CO ratio, local partial pressures of the major compounds (H2, CO and 

H2O), and the extent of the reaction. 
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Figure  5.52: Methane selectivity as function of model predicted intra-pellet H2/CO ratio at 

220°C 
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Figure  5.53: Methane selectivity as function of model predicted intra-pellet H2/CO ratio at 

230°C 
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Figure  5.54: Methane selectivity as function of model predicted intra-pellet H2/CO ratio at 

240°C 

The methane selectivity and C5+ selectivity of the structured catalysts was compared 

with respect to reaction-diffusion path length. At reaction temperature of 220°C, egg-

shell type of catalysts shows a slight increase in methane selectivity with an increase 

in reaction-diffusion path length (see Figure  5.55), and a slight decrease in C5+ 

selectivity with an increase in reaction-diffusion path length (see Figure  5.56). This 

can be explained by the increased intra-pellet H2/CO ratio with increasing reaction-

diffusion path length, which favours the product selectivity towards methane and 

short chain products. The methane selectivity of egg-yolk type of catalysts increases 

with decreasing reaction-diffusion path length, while C5+ selectivity decreases with 

decreasing reaction-diffusion path length. The extent of the reaction (XCO) in the egg-

yolk type of catalyst decreases with decreasing reaction-diffusion path length due to 

the additional diffusion layer. The decreased conversion means that a higher reactant 

partial pressure and a lower �-olefin partial pressure are expected. The decreasing �-

olefin partial pressure would lead to lower secondary chain growth and therefore a 

lower C5+ selectivity. The methane selectivity and the C5+ selectivity of the egg-white 

type of catalyst behave similar to the egg-shell type of catalysts. 
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Figure  5.55: Methane selectivity as function of reaction-diffusion path length at reaction 

temperature of 220°C 
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Figure  5.56: C5+ selectivity as function of reaction-diffusion path length at reaction 

temperature of 220°C 

As reaction temperature increases, methane selectivity of egg-shell type of catalysts 

increases with a decrease in reaction-diffusion path length (see Figure  5.57 and Figure 

 5.59), while C5+ selectivity decreases with an increase in reaction-diffusion path 

length (see Figure  5.58 and Figure  5.60). The reaction-diffusion path length is a 

combination effect of reaction rate and diffusion path length. At a high reaction 

temperature, in other words a high reaction rate, the metal density becomes the 

stronger factor than diffusion path length. For constant metal loading, the metal 

density increase with decreasing reaction-diffusion path length. An increase in local 
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reaction rate may increase intra-pellet H2/CO ratio. Thus explains the changes in 

product selectivity trend. 

U1C 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

20

40

60

80

100

 

C
H

4 
S
el

ec
ti

vi
ty

 [
%

ca
rb

on
]

Reaction-diffusion path length [mm]

 Uniform
 Egg-Shell
 Egg-Yolk
 Egg-White

 

Figure  5.57: Methane selectivity as function of reaction-diffusion path length at reaction 

temperature of 230°C 
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Figure  5.58: C5+ selectivity as function of reaction-diffusion path length at reaction 

temperature of 230°C 
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Figure  5.59: Methane selectivity as function of reaction-diffusion path length at reaction 

temperature of 240°C 
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Figure  5.60: C5+ selectivity as function of reaction-diffusion path length at reaction 

temperature of 240°C 

According to Iglesia (1997a), an increase in internal mass transport limitation 

increases the residence time of �-olefins which may initiate secondary chain growth 

and thereby increases the C5+ selectivity. This suggests that a variation in the 

reaction-diffusion path length that changes residence time of �-olefins within the pellet 

would result in an increase in C5+ selectivity. However severe internal mass transport 

limitation would increase intra-pellet H2/CO, which will increase methane formation. 

Thus, a maximum C5+ selectivity or a minimum in methane selectivity can be 

expected with a variation of reaction-diffusion path length. However, no maximum C5+ 
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selectivity with various diffusion-reaction path lengths was observed in any type of 

structural catalyst pellet. The effectiveness factor of egg-shell type of catalysts is close 

to 1, this means that they were exposed to a moderate internal mass transport 

limitation. This excludes the possibility that the experimental sample range was in the 

severe internal mass transport limitation. The product selectivity towards paraffins 

increases with increasing reaction-diffusion path length. Thus, it may be concluded 

that hydrogenation of re-adsorbed �-olefins is favoured and re-incorporation of �-

olefins is not encouraged under conditions of internal mass transport limitation. This 

agrees with the findings of Schulz and Claeys (1999b), who reported that upon co-

feeding 1-octene, ca. 75% of the re-adsorbed 1-octene is hydrogenated, 15% is 

isomerised and only 10% is re-incorporated. 
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5.3.4 C3-C8 Chain Growth Probability 

The experimental chain growth probability was extracted from the slope of the straight 

line obtained in semi-logarithmic plots of the molar product distribution of products 

(Anderson-Schulz-Flory plot) containing 3 to 8 carbons (excluding oxygenates). The 

chain growth probabilities with respect to reaction-diffusion path length show similar 

trend as the methane selectivity at the tested reaction temperatures (see Figure  5.61, 

Figure  5.62 and Figure  5.63). This can be explained by the increased methane 

selectivity due to the increasing intra-pellet H2/CO ratio with increasing reaction-

diffusion path length.  
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Figure  5.61: C3-C8 chain growth probability of structured catalyst at reaction temperature of 

220°C 
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Figure  5.62: C3-C8 chain growth probability of structured catalyst at reaction temperature of 

230°C 
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Figure  5.63: C3-C8 chain growth probability of structured catalyst at reaction temperature of 

240°C 

5.3.5 C5 Oxygenate Content 

Oxygenates content with respect to linear hydrocarbons in C5 fraction is below 5% for 

all structured catalyst pellets and uniform powder. No obvious trend for oxygenate 

with structural parameter were observed, this suggests that oxygenate formation is 

not directly affected by internal mass transport limitation (see Table  5-9). 
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Table  5-9: C5 Oxygenates in C5 linear hydrocarbons at various reaction temperatures 

Catalyst 220°C 230°C 240°C Catalyst 220°C 230°C 240°C 

Code [%] [%] [%] Code [%] [%] [%] 
U1C 3 5 4 Y1 5 1 - 
U1 1 1 1 Y2 2 1 - 
U2 1 1 2 Y3 1 1 1 
S1 1 1 1 Y4 1 1 1 
S2 2 1 1 Y5 1 1 1 
S3 1 1 1 Y6 1 1 1 
S4 1 1 1 Y7 1 2 1 
S5 3 2 1 W1 1 1 1 
S6 2 1 1 W2 3 1 1 

    W3 1 1 1 
    W4 5 - - 
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6 SUMMARY AND CONCLUSIONS 

Uniform, egg-shell, egg-yolk and egg-white type of structured cobalt catalyst pellets 

were successfully synthesised. The structured catalysts synthesis method was based 

on hydrophobic properties of the silica support. Thermodynamic calculation on the 

surface wetting scenarios inside the pores of the pellet showed a sharp boundary 

between the organics and aqueous solution will always be somewhat perpendicular to 

wards the walls of the pellet pores, irrespective of the amount of organics in the pore 

and the geometry of the pore. Thus, a sharp boundary between the cobalt-enriched 

region and cobalt-free silica can be expected. The egg-shell type of catalysts were 

synthesised by covering the core of the silica support with organics to inhibit contact 

from aqueous impregnation solution. The shell thickness can be varied by changing 

the amount of organic solution inside the silica support. The egg-yolk type of catalysts 

were synthesised by covering the inner core of an uniform pellet with organics to 

inhibit the core from contacting with diluted acid during leaching of the reduced 

cobalt. The synthesis of egg-white type of catalyst is similar to the synthesis of egg-

yolk type of catalyst synthesis method, except an egg-shell type of catalyst is used as 

the starting precursor. The sometimes observed irregular boundary between cobalt-

enriched silica and cobalt-free silica is due to the cracks in the surface of silica 

support prior to impregnation. According to N2 physisorption the average pore size in 

the pellet was not changed by the synthesis method. This confirms that the use of 

diluted acid and a slow cobalt leaching rate did not affect the structural integrity of 

the silica pellet. Thus, this structural catalyst synthesis method provides a plausible 

route for synthesizing non-uniform transition metal catalysts with a sharp boundary 

between the metal enriched region and metal free support. The weakness of the 

synthesis method is that the leaching of the metal in egg-yolk and egg-white type 

synthesis can only be achieved after reduction of cobalt oxide in the calcined catalyst 

to cobalt metal, therefore additional reduction and calcination steps are required. 

In all synthesized structured catalyst, the average cobalt particle size is greater than 

6nm. Therefore, the results are unlikely to be clouded by particle size effect. The 

reduction of the structured pellets appears not been affected by the exposure to 

organics and diluted acids during synthesis method. The TPR-TPO experiments 

showed that under the influence of internal mass transport limitation, formation of 

cobalt (hydro-) silicate is enhanced. The increased amount of cobalt silicate in egg-yolk 

and egg-white type of catalyst leads to the conclusion that the acid leaching step in 

the catalyst synthesis may result in formation of cobalt silicate. 
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The performance of the catalyst pellets was tested in a modified slurry reactor. The 

catalyst pellets were kept in a mesh-wire basket to minimise structural damage due to 

attrition in the slurry reactor, while immersed in wax. The stirring speed was adjusted 

to ensure the absence of external mass transport limitation at operation conditions. 

The activation energy of the uniform powder catalyst was in good agreement with 

literature; therefore it was used as a basis for this study. 

A reaction-diffusion pellet inside a CSTR model was derived for infinite cylindrical 

geometry with Yates and Satterfield intrinsic rate expression for cobalt catalyst. The 

model can only adequately predict the activity when the ratio of the H2 diffusivity to 

CO diffusivity in wax ratio is around 1.3. This diffusivity ratio is in agreement with the 

Wilke-Chang (1955) diffusivity correlation, but not in accordance with the 

experimental data presented by Erkey et al. (1990). 

The intra-pellet metal distribution affects the extent of internal mass transport 

limitation, thus affecting intra-pellet H2/CO ratio. Egg-shell type of catalyst showed a 

slight increase in activity compared to the rest of the structured types. The egg-yolk 

type of catalyst showed a decrease in activity with a decrease in its cobalt enriched 

core size. The cobalt-free shell of the egg-yolk type of catalyst lengthens the diffusion 

path length for the reactant, therefore limits the concentration of reactant in the core. 

This results in a decrease in the Fischer-Tropsch activity. In the case of egg-white type 

of catalyst, the thickness and the position of the cobalt-enriched region affect its 

activity. 

An increase in methane selectivity and a decrease in C5+ selectivity with an increase 

in internal mass transport limitation were observed in all types of structured catalysts. 

Neither a minimum in methane selectivity nor a maximum in C5+ selectivity with 

increasing internal mass transport limitation was observed in this study. The reaction-

diffusion path length appears to be a good correlation parameter. The methane 

selectivity increases and C5+ selectivity decreases with increasing reaction-diffusion 

path length of uniform, egg-shell and egg-white type of catalyst. The methane 

selectivity decreases and C5+ selectivity increases with an increase in reaction-

diffusion path length in the egg-yolk type of catalyst. This observation can be attribute 

to the increase in the intra-pellet H2/CO ratio with increasing reaction-diffusion path 

length for the uniform, egg-shell and egg-white type of catalyst, while the intra-pellet 

H2/CO ratio increases with a decrease in reaction-diffusion path length in the egg-yolk 

type of catalyst. 
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The olefin content in the C2 and C5 fraction of the structured catalyst decreases with 

an increase in reaction-diffusion path length. While the �-olefin in olefin content of the 

C5 fraction decreases with increasing reaction-diffusion path length. Thus, it can be 

concluded that the �-olefin re-adsorption is enhanced by an increase in the reaction-

diffusion path length. However, the fact that neither minimum in methane selectivity 

nor a maximum in C5+ selectivity with increasing reaction-diffusion path length 

suggests the simultaneous increase in the intra-pellet H2/CO ratio and enhancement 

of �-olefin re-adsorption due to internal mass transport limitation is not beneficial to 

secondary chain growth. The increased paraffin product selectivity with increasing 

reaction-diffusion path length shows that hydrogenation of the re-adsorbed �-olefin is 

favoured. The ratio of the branched hydrocarbons to linear hydrocarbons in the C5 

fraction of structured catalyst increases with an increase in reaction-diffusion path 

length, further indicating the enhancement of �-olefin re-adsorption. 

These observations lead to the conclusion that enhancement of �-olefin re-adsorption 

in the presence of reactant arrival limitation that increased intra-pellet H2/CO ratio, 

does not promote the probability of secondary chain growth. Hydrogenation, 

isomerisation and re-incorporation (branching) of �-olefin are more likely to take place. 



Univ
ers

ity
 of

 C
ap

e T
ow

n



Univ
ers

ity
 of

 C
ap

e T
ow

n

RECOMMENDATIONS FOR FUTURE WORK  |  153 

7 RECOMMENDATIONS FOR FUTURE WORK 

Base on the conclusions drawn from this study, the follow recommendations are made 

� Catalyst synthesis: Modify the leaching step in the synthesis of egg-yolk type of 

catalyst. This synthesis method would be very attractive as a commercial process, 

if reduction step is not required as part of egg-yolk type of catalyst synthesis. An 

alternative synthesis route is to inhibit the inner core of the vacuum dried 

uniform catalyst precursor with organics. The cobalt nitrate in the outer shell of 

the uniform catalyst precursor can be removed by re-dissolving in de-ionised 

water (washing). The analogy can be applied on vacuum dried egg-shell type 

catalyst precursor in the synthesis of egg-white type of catalyst. 

� Kinetic modelling: The diffusivity of hydrogen, alkanes and alkenes in wax needs 

to be determined for the development of a complete diffusion-reaction model with 

product selectivity for slurry phase Fischer-Tropsch synthesis. 

� Further investigation: The combined effect of reaction-diffusion path length and 

the inter-particle distance may be decoupled by synthesis of a series of 

structured catalysts with identical reaction-diffusion path length and different 

metal loading. The Fischer-Tropsch performance of these catalysts can be tested 

at constant CO conversion. 

� Further investigation: The effect of conversion on product selectivity could not be 

separated from catalyst structure effect due to instrumentation limitation. Flow 

control valves with wider flow range needs to be considered for future work. A 

conversion target is recommend for catalyst performance test, therefore a longer 

period of initial catalyst condition (initial deactivation and conversion adjustment) 

can be considered. 

� Further investigation: The experimentally determined reaction rate constant by 

assuming a literature value (Yates and Satterfield, 1991) for CO adsorption rate 

constant decreased with increase in temperature. This indicates the inadequacy 

of using literature CO adsorption rate constant values. Further work can be co-

currently advanced with a project of which the kinetic parameters are been 

experimentally determined. 

� Further investigation: This study can be repeated on iron catalyst, the use of egg-

shell type of catalyst maybe beneficial to iron catalyst as it is more sensitive to 

oxidation in the presence of water. The product removal (water) may be improved 

by shorten the reaction-diffusion path length. 
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APPENDIX A 

1. GTL & CTL Potential Index 

A reserve of coal or natural gas is needed for a country to consider CTL or GTL. Proven 

coal and natural gas reserve as at 1 January 2008 according to CIA (2008) was 

classified into 6 levels and illustrated on thematic maps. 
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Figure A.1: Thematic maps of proven natural gas (left) and coal (right) reserves [109 boe] 

Defining FTS necessity index as percentage of oil imports to oil consumption, GTL 

index is then defined as the product of FTS necessity index and natural gas reserve, 

while CTL index is the product of FTS necessity index and coal gas reserve. The scale 

of the indices where made from 0 to 36. 
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Figure A.2: Thematic maps of GTL index (left) and CTL index (right) 
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APPENDIX B 

1. AAS Acid Digestion Procedure 

Approximately 0.1g of each dried; calcined catalyst were crushed (-200µm) and 

weighed into 250mℓ wide mouthed Erlenmeyer flasks. Ten millilitres of HCl/HF 

mixture, which is made of 4 parts hydrochloric acid (~40%) and 1 part hydrofluoric 

acid (~30%), was added to each sample and heated to boil. Once the mixture is boiled, 

10mℓ of nitric acid (~60%) was added and heated further. When sample volume was 

approximately 2mℓ, 5mℓ of perchloric acid was added and heated further. Samples 

were cooled down when the volume in the flask was approximately 2mℓ. 

The aqueous sample was transferred quantitatively into a 100mℓ plastic volumetric 

flask and made up to 100mℓ with distilled water. This solution is then filtered through 

filter paper (Whatman No1) into sample bottles. The filtrate is then read on Atomic 

Absorption Spectrophotometer Varian 3.0, which is calibrated with a standard cobalt 

solution. 

The cobalt concentration of the aqueous sample is measured in milligrams per litre. 

Hence the cobalt loading of calcined catalyst is calculated as follows 

Co Concentration[mg/ ]×0.1[ ]
Co Content[%]=

Sample Mass[g]×10
ℓ ℓ

 

Assuming all cobalt oxide is in the form Co3O4, cobalt loading of a fully reduced 

catalyst is then 

 
 
 

3 4

100
Co Loading[%]=

M(Co O )100
1+ -

Co Content[%] 3×M(Co)
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2. SEM Sample Preparation 

A low viscosity embedding resin developed by Spurr (1969) for electron microscopy 

was used to anchor catalyst pellet. Composition of this resin is shown in Table B-1. 

Catalysts were place in resin such that its cross-sectional area is perpendicular to the 

electron beam. 

Catalysts embedded in resin were hardened in oven at 60°C for 24 hours, 

subsequently cut in half. The surface of the cross-sectional area was when polished 

using a Metaseru Polisher with 0.05µm γ-alumina powder. 

Table B-1: Composition of Spurr's resin used in electron microscopy 

Composition [wt%] 
ERL 4206 24.8 
DER 736 14.9 

NSA 59.4 
S-1 1.0 
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3. TEM Image Analysis Procedure 

IMAGE J is image software coded in Java. It converts picture in any format to 8-bit 

greyscale image, in which contrast of the image can be isolated and outlined. Contrast 

image of cobalt metal particles within a local cluster were combined and outlined. 

Feret’s diameter, which defined as the largest distance possible between any two 

points along the boundary of a region of interest, were determined from outlined image 

of clusters as shown in Figure B.1. 

(a) (b) (c)

50nm

 

Figure B.1: Raw TEM image of catalyst S1 (a) Contrast isolated image showing metal cluster (b) 

Contrast outlined defining boundary of metal cluster (c) 

Metal particles were isolated by segmenting contrast isolated images using Euclidian 

distance map algorithm. Raw TEM images are converted to binary images, local 

maxima on the binary image were determined. Segmentation was performed by 

assuming each maximum belongs to one metal particle. 

(a) (b) (c)

50nm

 

Figure B.2: Segmented TEM image of catalyst S1 (a) Contrast isolated image showing 

segmented metal particles (b) Contrast outlined defining boundary of metal 

particles (c) 

The average volume based metal particle sizes were calculated by the following 

equation. 

∑
∑

3

volume 2

d1
d = ×

6 d
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4. XRD Procedure and Calculations 

The baseline noise of the X-ray diffraction intensity data was minimised by averaging 

measured data using the 5 point average method before estimating particle size using 

the Debye-Scherre equation. Peak heights were estimated from averaged baseline data 

and peak maximum. Peak width at half peak height was recorded; particle size are 

estimated according to Debye-Scherre equation at Miller indices of (3 1 1); (5 1 1) and 

(4 4 0). Particle sizes of these planes were in close agreement. These values are 

averaged to represent the Co3O4 particle size of calcined catalysts. 

Table B-2: Co3O4 particle size in [nm] calculated from XRD pattern using Debye-Scherre 

equation at various Miller indices 

Catalyst (3 1 1) (5 1 1) (4 4 0) 
U1 11.8 10.9 11.7 
U2 17.0 14.2 13.5 
S1 10.8 12.1 11.2 
S2 11.4 12.8 10.5 
S3 10.8 9.6 10.5 
S4 10.3 10.3 11.9 
S5 10.2 10.2 11.5 
S6 13.3 9.1 10.9 
Y1 6.6 6.6 7.9 
Y2 6.5 8.1 6.9 
Y3 5.5 6.3 10.7 
Y4 6.9 15.2 7.3 
Y5 9.3 11.0 8.2 
Y6 5.9 5.9 6.1 
Y7 5.8 - - 
W1 7.3 9.9 8.0 
W2 7.1 7.8 10.2 
W3 7.4 7.8 - 
W4 7.7 10.1 6.5 
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5. BET and BJH Model Calculations 

The fundamental assumption of this theory is that the forces active in the 

condensation of gases are also responsible for the binding energy in multi-molecular 

adsorption. By equating the rate of condensation of gas molecules onto an already 

adsorbed layer to the rate of evaporation from that layer and summing for an infinite 

number of layers, Brunauer-Emmet-Teller (BET) isotherm can be written as 

( )  
  
  

ads
ads sat

mono
ads

sat sat

PC ×V P
=

V P P1+ C -1 1-P P

 

and can be linearised into 

( )

1
 − 
 

ads

sat ads mono sat ads mono
ads

C -11 P 1
= × +

P C ×V P C ×VV P

 

Thus the isotherm is plotted in this form and yielded a straight line. Data obtained 

from nitrogen gas adsorption and desorption were used to fit the BET isotherm, from 

which the volume of gas absorbed to form a monolayer is estimated (Figure B.3). 
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Figure B.3: Nitrogen physisorption isotherms (left) and BET isotherms (right) of pure silica 

support 

Pore size distribution was determined using the Barrett-Joyner-Halenda (BJH) method 

described by Barrett et al. (1951), which imagine the isotherm as a series of steps 

downward of equal relative pressure, the amount of adsorptive lost in each step 

represents the core volumes of pores emptied in that step. Desorption isotherms were 

followed for the mathematics of the technique. The condition of which all pores are to 

be considered filled was taken to be at about 99.5% relative pressure (P/Psat = 0.995).  
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The thickness of the adsorbed layer remaining on the pore walls is calculated from a 

thickness relationship described by Harkins and Jura (1994). The quantity adsorbed 

can be related to the statistical thickness of the adsorbed film by the relationship 

 
 
 

sat

13.99
t =

P0.34- log P

 

A sample of pore size distribution determined by this method is demonstrated in 

Figure B.4. 
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Figure B.4: BJH pore size distribution of pure silica support 
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6. Chemisorption Particle Diameter Derivation 

Average particle diameter of the cobalt metal was calculated using the following 

relation 

2 2
m catalyst m catalyst

Co Co Co

A [m /g ] A [m /g ]
=

M [g] V [m ]×ρ [g/m ]ℓ ℓ
 

Assuming particles are spherical in shape, the above equation can be rewritten as 

( )

2
m

3
Co CoCo

A πd 6
= =

M dρπd 6 ρ
 

Therefore average particle diameter is then 

]
o
Co catalyst catalyst catalyst

2 o
m active Co active

L [g/g ]M [g6
d[nm]= × ×1000

A [m /g ]ρ [g/m ] R [g /g]ℓ
 

where Am is active metal surface area according to chemisorption, o
CoL is cobalt loading 

of the catalyst, Mcatalyst is the mass of catalyst used in chemisorption, oR is degree of 

reduction and ρCo is density of cobalt metal which is 8.9g/mℓ. Cobalt loading of the 

catalyst used in this equation was taken from AAS results and degree of reduction 

from TPR-TPO results. 
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7. TPR-TPO Calibrations and Calculations 

Micromeritics AutoChem 2910 was calibrated using five standards of NiO samples 

with various mass. Hydrogen and oxygen consumption of these samples during TPO-

TPR analysis were recorded. 
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Figure B.5: TPR H2 calibration (left) and TPO O2 calibration (right) using NiO 

Hydrogen and oxygen consumption rate were correlated using TCD integration area 

and amount of NiO used by assuming 1 mol of H2 per NiO during reduction and 0.5 

mol of O2 per NiO during oxidation. 
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Figure B.6: H2 and O2 calibration curves 

The degree of reduction and the cobalt loading were calculated as follows: 

The mass of catalyst U1C loaded into the TPR-TPO machine is 0.2131g. The amount of 

H2 consumed during the TPR of the reduced U1C is 0.148mmol (0.58mmol/g). The 

amount of O2 consumption and O2 released during TPO were 0.237mmol (1.11mmol/g) 
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and 0.068mmol (0.32mmol/g) respectively. If cobalt is completely reduced to metal 

after the post-reduction-TPR, and the oxygen released during TPO can be described as: 

→ 1
23 4 2Co O 3CoO+ O  

The amount of cobalt metal on the catalyst is thus: 6×0.068mmol = 0.41mmol. 

The cobalt metal loading of the calcined catalyst (if cobalt exists as Co3O4) is then: 

( )0.2131 4
31000

58.94(0.41)
=11.8%

-( ×15.99)0.41
 

If the hydrogen consumed during the post-reduction-TPR can be described as: 

→3 4 2 2Co O +4H 3CoO+4H O  

The amount of unreduced cobalt is ¾×0.148mmol = 0.111mmol. 

Thus, the degree of reduction is 0.111/0.41 = 73% 
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8. TCD Trace 
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Figure B.7: Example of a TCD specturm 
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9. FID Operating Conditions and Peak Identification 

Temperature and pressure program used in FID analysis is summarised in Figure B.8.  

Example of product distribution determined from FID analysis is illustrated in Figure 

B.9.  
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Figure B.8: Temperature and pressure programs used for the separation of VOC in FID 

analysis 
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Figure B.9: Example of product distribution (U1C) obtained from FID analysis 



Univ
ers

ity
 of

 C
ap

e T
ow

n

|  APPENDIX B 

 

182 

Peaks were assigned using the retention indexes suggested by Kováts, 1958. 
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Figure B.10: Example of a FID spectrum (U1, 120h07m30s) 
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Table B-2: Compound codes used for FID peak identification 

Compound Code Compound Code Compound Code 

Methane 100 2-Me-Pentene (1) 621 5-Me-Heptene (1) 851 

Methanol 110 3-Me-Pentene (1) 631 z-Octene (2) 802 

Ethane 200 4-Me-Pentene (1) 641 c-Octene (2) 822 

Ethene 201 2,3 Di-Me-Butene (1) 664 z-Octene (3) 803 

Ethanal 207 z-Hexene (2) 602 c-Octene (3) 833 

Ethanol 210 c-Hexene (2) 622 z-Octene (4) 804 

Propane 300 z-Hexene (3) 603 Me-C8-Olefin 891 

Propene 301 c-Hexene (3) 633 Octanal 807 

Propanal 307 Hexanal 607 Octanol (1) 810 

Propanol (1) 310 Hexanol (1) 610 Octanone (2) 817 

Propanol (2) 315 Hexanone (2) 617 Rest C8 899 

Propanone 317 Cyclo-Hexane REF n-Nonane 900 

n-Butane 400 n-Heptane 700 2-Me-Octane 920 

2-Me-Propane 420 2-Me-Hexane 720 2,4 Di-Me-Heptane 924 

Butene (1) 401 2,3 Di-Me-Pentane 723 2,5 Di-Me-Heptane 925 

2-Me-Propene (1) 421 3-Me-Hexane 730 3-Me-Octane 930 

z-Butene (2) 402 3-Et-Pentane 780 4-Me-Octane 940 

c-Butene (2) 422 Heptene (1) 701 3-Et-Octane 980 

Butadiene (1,3) 499 2-Me-Hexene (1) 721 Nonene (1) 901 

Butanal 407 3-Me-Hexene (1) 731 2-Me-Octene (1) 921 

Butanol (1) 410 4-Me-Hexene (1) 741 z-Nonene (2) 902 

Butanol (2) 415 5-Me-Hexene (1) 751 c-Nonene (2) 922 

Butanone (2) 417 z-Heptene (2) 702 z-Nonene (3) 903 

n-Pentane 500 c-Heptene (2) 722 c-Nonene (3) 933 

2-Me-Butane 520 z-Heptene (3) 703 Nonene (4) 904 

Pentene (1) 501 c-Heptene (3) 733 Nonanal 907 

2-Me-Butene (1) 521 2-Me-Hexene (2) 797 Nonanol (1) 910 

3-Me-Butene (1) 531 3-Me-Hexene (2) 732 Nonanone (2) 917 

z-Pentene (2) 502 Heptanal 707 Rest C9 999 

c-Pentene (2) 522 Heptanol (1) 710 n-Decane 1000 

2-Me-Butene (2) 597 Heptanone (2) 717 2-Me-Nonane 1020 

Pentanal 507 Rest C7 799 3-Me-Nonane 1030 

Pentanol (1) 510 n-Octane 800 4-Me-Nonane 1040 

Pentanone (2) 517 2-Me-Heptane 820 5-Me-Nonane 1050 

n-Hexane 600 3-Me-Heptane 830 Decene (1) 1001 

2-Me-Pentane 620 4-Me-Heptane 840 z-Decene (2) 1002 

3-Me-Pentane 630 Octene (1) 801 c-Decene (2) 1022 

2,3 Di-Me-Butane 623 2-Me-Heptene (1) 821 z-Decene (3) 1003 

2,4 Di-Me-Butane 624 3-Me-Heptene (1) 831 c-Decene (3) 1033 

Hexene (1) 601 4-Me-Heptene (1) 841 z-Decene (4) 1004 
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Compound Code Compound Code Compound Code 

c-Decene (4) 1044 4-Me-Undecane 1240 Rest C13-Olefin 1304 

Decene (5) 1005 5-Me-Undecane 1250 Tridecanal 1307 

Decanol (1) 1010 6-Me-Undecane 1260 Tridecanol (1) 1310 

Decanal 1007 Dodecene (1) 1201 Tridecanone (2) 1317 

Decanone (2) 1017 z-Dodecene (2) 1202 Rest C13 1399 

Rest C10 1099 c-Dodecene (2) 1222 n-Tetradecane 1400 

n-Undecane 1100 z-Dodecene (3) 1203 2-Me-Tridecane 1420 

2-Me-Decane 1120 c-Dodecene (3) 1233 3-Me-Tridecane 1430 

3-Me-Decane 1130 Rest-C-12-Olefin 1204 4-Me-Tridecane 1440 

4-Me-Decane 1140 Dodecanal 1207 5-Me-Tridecane 1450 

5-Me-Decane 1150 Dodecanol (1) 1210 6-Me-Tridecane 1460 

Undecene (1) 1101 Dodecanone (2) 1217 7-Me-Tridecane 1470 

z-Undecene (2) 1102 Rest C12 1299 Tetradecene (1) 1401 

c-Undecene (2) 1122 n-Tridecane 1300 z-Tetradecene (2) 1402 

z-Undecene (3) 1103 2-Me-Dodecane 1320 c-Tetradecene (2) 1422 

c-Undecene (3) 1133 3-Me-Dodecane 1330 Rest-C-14-Olefin 1404 

Rest-C-11-Olefin 1104 4-Me-Dodecane 1340 Tetradecanal 1407 

Undecanal 1107 5-Me-Dodecane 1350 Tetradecanol (1) 1410 

Undecanol (1) 1110 6-Me-Dodecane 1360 Tetradecanone (2) 1417 

Undecanone (2) 1117 Tridecene (1) 1301 Rest C14 1499 

Rest C11 1199 z-Tridecene (2) 1302 n-Pentadecane 1500 

n-Dodecane 1200 c-Tridecene (2) 1322 n-Hexadecane 1600 

2-Me-Undecane 1220 z-Tridecene (3) 1303 n-Heptadecane 1700 

3-Me-Undecane 1230 c-Tridecene (3) 1333 n-Octadecane 1800 

 



Univ
ers

ity
 of

 C
ap

e T
ow

n

APPENDIX C  |  185 

APPENDIX C 

1. Scilab Code for Surface Wetting 

clear;clc;format(20); 
//***************Wetting Phase of Organic and Water******************* 
//---------------------------------------------------------Assumptions 
//1) Cylindrical pores with diameter D, average pore length L 
//2) Filling with water, fraction of pore volume filled with organic 
//3) The interfacial profile is flat 
//-------------------------------------------------Solution Properties 
//Handbook of Chemistry$Physics 63rd Edition 
//Tension air/water, [dyn/cm2], 25oC, (F-35) 
  gvw=71.97; 
//Tension air/n-Hexane, [dyn/cm2], 20oC, (F-37) 
  gvo=18.43; 
//Tension water/n-Hexane, [dyn/cm2], 20oC, (F-35) 
  gwo=51.1; 
//Chemical Reviews, Volume 75, Number 5, October 1975 
//Tension solid/air, [dyn/cm2], 25oC, (Table V) 
  gsv=605; 
//Measured contact angle of solid/water is 150 degrees 
  cangsw=150/180*%pi; 
//Tension solid/water, Young's equation 
  gsw=gsv+gvw*cos(cangsw); 
//Measured contact angle of organic/water is 150 degrees 
  cangso=6/180*%pi; 
//Tension organic/water, Young's equation 
  gso=gsv+gvo*cos(cangso); 
//-----------------------------------------------------Pore Properties 
//Diameter of the pore [cm], 13 nm 
  D=13*1e-7; 
//Length of the pore [cm] 
  L=1*D; 
//----------------------------------------Gibb's Free Energy of System 
  for i=1:50; 
      d(i)=i*D/100; 
      //Water fraction as function of d 
      Xw(i)=((D-2*d(i))^2)*(L-d(i))/D^2/L; 
      //Case 1: Water close to pore mouth--------- 
      //Area between water and organic 
      Awo1(i)=(%pi*D^2)/4; 
      //Area between solid and water 
      Asw1(i)=%pi*D*L*Xw(i); 
      //Area between solid and organic 
      Aso1(i)=%pi*D*L*(1-Xw(i)); 
      //Free energy of Case 1 
      G1(i)=Awo1(i)*gwo+Asw1(i)*gsw+Aso1(i)*gso; 
      //Case 2: Water on top of organic----------- 
      //Area between water and organic 
      Awo2(i)=%pi*(D-2*d(i))*(L-d(i))+%pi*((D)^2)/4; 
      //Area between solid and organic 
      Aso2(i)=%pi*D*L+%pi*(D^2)/4;   
      //Free energy of Case 2 
      G2(i)=Awo2(i)*gwo+Aso2(i)*gso; 
      //Free energy of occurance of Case 2 
      Gd(i)=G1(i)-G2(i); 
  end 
//-------------------------------------------------Export Data to File 
print('phase.txt',Gd,Xw); 
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2. Wetting Calculations 

N-undecane soaked silica pellet has greater transparency compared to soaked pellets 

with n-undecane on the pellet surface evaporated as shown in Figure C.1. This can be 

explained by the different refraction index of silica and n-undecane. 

(a) (b) (c)
 

Figure C.1: Optical image of dry silica pellet (a) n-undecane soaked pellets with surface free of 

n-undecane (b) Pellet completely soaked in n-undecane (c) 

The volume of n-undecane and water filling the pores without wetting the pellet 

surface was determined gravimetrically by observing the transparency change during 

evaporation. 
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Figure C.2: Experimentally determined amount of solution required to fill pore volume 
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3. Synthesis Gas Properties at Reaction Conditions 

3.1. Density 

Using the ideal gas law, gas density at 220°C and total pressure of 20bar is 

3 3

2 2
3 32

3 3

51
g g-3CO CO 3

CO m cm

52
H H g g-43

H m cm

52 1
sg sg g g-33 3

sg m cm

(28) (20×10 )M P
ρ = = = 4554 = 4.554×10

RT (8.314)(493)

M P (2) (20×10 )
ρ = = =650 =6.5×10

RT (8.314)(493)

M P ( (2)+ (28))(20×10 )
ρ = = =5204 =5.204×10

RT (8.314)(493)

 

3.2. Viscosity 

Gas viscosity according to Chapman and Cowling (1951) is 

CO-5
2

µ

M T
µ =2.6693×10

σ Ω
 

where σ is the characteristic diameter of the gas molecule , and Ωµ is the coefficient of 

viscosity which is correlated with the characteristic energy of interaction between the 

molecules (є) over Boltzmann constant (к). Correlation of viscosity coefficient was done 

using tables provided in Bird et al., 1962. Step-wise calculation is shown in the 

following table. 

Table C-1: Values used for the estimation of gas viscosity at 220°C 

M σ є/к кT/є Ωµ µ 
Gas 

[g mol-1] [Å] [°K] [-]  [g cm-1 s-1] 
CO 28 3.59 110 4.48 0.9464 2.57×10-4 

H2 2 2.915 38 12.97 0.8242 1.19×10-4 
 

3.3. Diffusivity 

The Chapman-Enskog formula for gas diffusivity at low density is 

A B

AB

3 1 1
M M

AB 2
AB D

T ( + )
D =0.0018583

Pσ Ω
 

Lennard-Jones parameters of species A and B can be estimated empirically 

1
AB A B2

AB A B

σ = (σ +σ )

є = є є
 

In the synthesis gas mixture only CO and H2 are present, therefore 
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2

2

1
H ,CO 2

H ,CO

σ = (2.915+3.59)=3.253

є
= 38(110) =65

к

 

The correlated diffusivity coefficient of synthesis gas species is then 0.7712 

( )H ,CO2

кT
є =8.0 . 

Diffusivity for mixture of CO and H2 at 220°C and 20bar total pressure is then 

2

3 1 1 2
28 2

CO,H 2

(493) ( + ) cm
D = 0.0018583 =0.0912

s(20)(3.253) (0.7712)
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4. External Mass Transport Limitation Polymath Code 

4.1. Gas-phase mass transport in Fixed-bed reactor 

f(CCOs) = kcCO * ac * (CCObulk - CCOs) - rateCO 
f(CH2s) = kcH2 * ac * (CH2bulk - CH2s) - rateH2 
rateCO = (a * CCOs * CH2s) / (1 + b * CCOs) ^ 2 
rateH2 = 2 * rateCO 
CCObulk = 0.162 # [mmol/cm3] 
CH2bulk = 0.324 # [mmol/cm3] 
a = 15 # [mmol/s/g(cm6/mmol2)] 
b = 91 # [cm3/mmol] 
ac = 28 # [cm2/g] 
U = 1 # [cm/s] 
kcCO = 0.486 + 0.384 * U ^ (1 / 2) # [cm/s] 
kcH2 = 0.486 + 0.262 * U ^ (1 / 2) # [cm/s] 
COdiff = (CCObulk - CCOs) / CCObulk * 100 
Flow = U * 3.1416 * 0.5 ^ 2 
CCOs(0) = 0 
CH2s(0) = 0 

4.2. Liquid-phase mass transport in Fixed-bed reactor 

f(d) = Rate - a * (COsat - Rate * d / DCO) * (H2sat - (2 * Rate) * d / DH2) / ((1 + kads * (COsat - Rate * d / DCO)) ^ 2) # 
[cm] 
k = 15 # [mmol/s/gcat/(mmol2/cm6)] 
a = k / ac # [mmol/s/cm2/(mmol2/cm6)] 
kads = 91 # [cm3/mmol] 
rate = 58 # observed [mmol/min/gcat] (57,78) 
ac = 28 # measured [cm2/gcat] 
Rate = rate / ac / 60 # observed [mmol/s/cm2] 
U = 1.36 # [cm/s] (0.68, 1.36) 
DCO = 0.000174/10 # [cm2/s] (effective diffusivity) 
DH2 = 0.000473/10 # [cm2/s] (effective diffusivity) 
COsat = 0.0356 # [mmol/cm3] 
H2sat = 0.0537 # [mmol/cm3] 
wax = 0.78 # [g/cm3] 
d(max) = 0.162 
d(min) = 0 
d(0) = 0 
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5. Dimensionless Reaction-Diffusion Model Derivation 

Mass balance on CO in an open ended cylinder with a vertical orientation (Figure C.3) 

at steady-state condition is 

Mass In Mass Out Mass Generation

CO pellet CO pellet volume pelletr r+∆r
W ×l ×2πr - W ×l ×2πr +R ×l ×2πr×∆r =0
��������	 ����������	 ����������	

 

Divide the above equation by pellet2πl ∆r  

CO COr r+∆r
volume

W ×r - W ×r
+R ×r =0

∆r
 

( )
0

lim
r∆ →

CO
volume

d W ×r
=R ×r

dr
 

substituting mass flux with 

CO
CO CO

dC
W =-D

dr
 

and taking intrinsic reaction rate expression suggested by Yates and Satterfield (1991) 

in a active metal based form, the mass balance is then 

( )
2

2
CO HCO CO structured

2 2
COads CO

kC Cd C dC ρ1
=- +

r dr Ddr 1+k C
 

where ρstructured is the metal density within the active region of structured catalyst in 

[m2/m3catalyst]. 

lpellet

rpellet

rcore

∆r rwhite

 

Figure C.3: DVE of reaction-diffusion model 

Using egg-shell catalyst as an example, ρegg-shell can be derived for constant metal 

loading 
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2 2 2
total pellet pellet egg-shell pellet core

2
pellet

egg-shell total 2 2
pellet core

egg-shell total egg-shell

ρ πr l =ρ π(r - r )

r
ρ =ρ

(r - r )

ρ =ρ σ

 

similarly, σstructured of other structured types are 

uniformσ =1; 
 
 
 

2
pellet

egg-yolk
core

r
σ =

r
; 

2
pellet

egg-white 2 2
white core

r
σ =

r - r
 

CO mass balance can then be written as  

( )
2

2
CO HCO CO total structured

2 2
COads CO

kC Cd C dC ρ σ1
=- +

r dr Ddr 1+k C
  BC: 

pellet

CO
CO CO,Sr=r

r=0

dC
C =C  ; =0

dr
 

Similarly, H2 mass balance is 

( )
2 2 2

2

2
H H CO H total structured
2 2

Hads CO

d C dC kC C ρ σ1
=- +2

r dr Ddr 1+k C
  BC: 2

2 2
pellet

H
H H ,Sr=r

r=0

dC
C = C  ; =0

dr
 

Define dimensionless parameters as 

2

2

2

HCO
CO H

CO,S H ,S pellet

CC r
ψ =   ;  ψ =   ;  λ =

C C r
  

2

2

2

HCO
CO,S H ,S

CO H pellet

dCdC dλ 1
=C  ; = C  ; =

dψ dψ dr r
 

substituting into CO mass balance becomes 

( )

   
   

  
  

2 2

2
CO,S H ,S CO HCO,S CO,SCO CO total structured

2 2 2
pellet pellet COpellet ads CO,S CO

kC C ψ ψC Cd ψ dψ ρ σ1
=- +

λr r dλ Ddλ r 1+k C ψ
 

multiply both sides by 2
pellet CO,Sr C  

( )
2 2

22
pellet H ,S CO HCO CO total structured

2 2
pellet COads CO,S CO

r kC ψ ψd ψ dψ ρ σ1
=- +

λr dλ Ddλ 1+k C ψ

 BC: CO
CO λ=1

λ=0

dψ
ψ =1 ; =0

dλ
 

Similarly, H2 mass balance becomes 

( )
2 2

2

22
pellet H ,S CO HCO CO total structured

2 2
pellet Hads CO,S CO

r kC ψ ψd ψ dψ ρ σ1
=- +2

λr dλ Ddλ 1+k C ψ
 BC: 2

2

H
H λ=1

λ=0

dψ
ψ =1 ; = 0

dλ
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Define Thiele modulus as 2H ,S total structured
pellet

CO

kC ρ σ
Φ= r

D
 

and adsorption constant ads ads CO,SK = k C  

Substituting above defined parameters into dimensionless mass balance gives 

( )
2

2
CO H2CO CO

2 2
ads CO

ψ ψd ψ dψ1
=- +Φ

λ dλdλ 1+K ψ
 

( )
2 2 2

2

2
H H CO H2 CO
2 2

H ads CO

d ψ dψ ψ ψD1
=- +2Φ

λ dλ Ddλ 1+K ψ
 

Effectiveness factor is defined as 

overall rate within structured catalyst
η=

rate of reaction at catalyst surface (absence of IMTL)
 

therefore 

( )

( ) ( )( )
( )

2

pellet pellet CO CO λ=1

22
pellet pellet total structured CO,S H ,S ads CO,S

2
pellet ads CO

CO,S λ=1

2πr l D dψ dλ
η=

πr l ρ σ kC C 1+k C

2r 1+K dψ
=

χ C dλ

 

Energy balance for the differential volume at steady-state is 

Heat In Heat Out Heat Generation

pellet pellet volume pellet rxnr r+∆r
Q×l ×2πr -Q×l ×2πr +R ×l ×2πr×∆r×∆H =0
��������	 ��������	 ��������������	

 

Divide the above equation by pellet2πl ∆r  

r r+∆r
volume rxn

Q×r -Q×r
+R ×∆H ×r =0

∆r
 

( )
0

lim
r∆ →

volume rxn

d Q×r
=R ×∆H ×r

dr
 

Assuming energy flux is only due to the conductivity of species 

t
dT

Q=-κ
dr

 

Substitute energy flux into energy balance, and rewrite reaction constant k as a 

function of temperature 

( )

 
 
 

2

2
CO H total structured rxn a

2 2
tads CO

C C ρ σ ∆H -Ed T 1 dT
=- + Aexp

r dr κ RTdr 1+k C
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The ratio of rate constant at surface temperature versus local temperature in the 

catalyst is 

( )
( )

  
   

  

a

a

S

-E
RT a
-E

S SRT

Aexp -Ek 1 1
= =exp -

k R T TAexp
 

Hence, energy balance can be rewritten as 

( )

  
   

  

2

2
CO H S total structured rxn a

2 2
t Sads CO

C C k ρ σ ∆H -Ed T 1 dT 1 1
=- + exp -

r dr κ R T Tdr 1+k C

 BC:
pellet

Sr=r
r=0

dT
T = T  ; = 0

dr
 

Define dimensionless temperature as 

S

T
Γ =

T
 

 Arrhenius number (measure of activation energy versus potential energy) as 

a
a

S

E
γ =

RT
 

Prater number as 

rxn CO CO,S

t S

(-∆H )D C
β=

κ T
 

The dimensionless energy balance is then 

( )

  
  

  

2

2
CO H2

a2 2
ads CO

ψ ψd Γ 1 dΓ 1
=- +Φ βexp -γ -1

λ dλ Γdλ 1+K ψ
  BC: 

λ=1
λ=0

dΓ
Γ =1 ; =0

dλ
 

Thiele Modulus of uniform catalyst pellet (U1) is estimated using kinetic parameter 

suggested by Anfray et al. (2007),  

2
pellet total2

CO

2 -7

-9

r kρ
Φ =

D

(0.00123 )(5.392×10 )(65437)
=

(17.4×10 )

=3.07
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6. Scilab Code for Derived Reaction Model 

6.1. Uniform Pellets 

clear;clc;format(20); 
//***********Yates&Satterfield Cylinder bvodeS in CSTR**************** 
//Infinite Cylinder 
//CO Mass DE: CO"=-(1/x)*CO'+density/DCO*(k*CO*H2/(1+kads*CO)^2) 
//CO Mass BC: CO'(0)=0 ; CO(1)=COsat 
//H2 Mass DE: H2"=-(1/x)*H2'+2*density/DH2*(k*CO*H2/(1+kads*CO)^2) 
//H2 Mass BC: H2'(0)=0 ; H2(1)=H2sat 
//z=[CO CO' H2 H2'] 
//pellet model in CSTR model loop 
//-------------------------------------------------Physical Parameters 
  mcat=1.85;//Mass of catalyst loaded [gcat] 
  smet=2.1;//[m2co*/gcat] 
  SCo=mcat*smet;//area of active cobalt [m2co*] 
  Sil=1;//Average silica density [g/cm3] 
  AAS=0.29;//Metal loading [g/gcat] 
  rou=smet/(Sil/(1-AAS));//Active cobalt density [m2co*/cm3] 
  Flow=103.1/3/60/22.414;//flow of CO [mmol/s] 
  Rp=0.125;//Pellet radius [cm] 
//-------------------------------------------------Chemical Parameters 
  Ktemp(1)=167;//at 220C [mmol/s/m2co*/(mmol2/cm6)] 
  Ktemp(2)=199;//at 230C [mmol/s/m2co*/(mmol2/cm6)] 
  Ktemp(3)=232;//at 240C [mmol/s/m2co*/(mmol2/cm6)] 
  kadstemp(1)=423;//at 220C [cm3/mmol] 
  kadstemp(2)=423;//at 220C [cm3/mmol] 
  kadstemp(3)=423;//at 220C [cm3/mmol] 
  DCOtemp(1)=1.5e-4;//[cm2/s](Erkey) 
  DCOtemp(2)=1.74e-4;//[cm2/s](Erkey) 
  DCOtemp(3)=1.8e-4;//[cm2/s](Erkey) 
  Temp(1)=493;//220C 
  Temp(2)=503;//230C 
  Temp(3)=513;//240C 
//---------------------------------------------------Experimental Data   
  UR_exp(1)=2.2;//H2/CO usage ratio [H2/CO] 
  UR_exp(2)=2.2;//H2/CO usage ratio [H2/CO] 
  UR_exp(3)=2.2;//H2/CO usage ratio [H2/CO] 
  X_exp(1)=0.14; 
  X_exp(2)=0.17; 
  X_exp(3)=0.22; 
//-----------------------------------------------------Rate Expression 
  function rf=Rate(z) 
    if z(1)>0 then 
      if z(3)>0 then 
      rf=K*z(1)*z(3)/((1+kads*z(1))^2); 
      else rf=0; 
      end 
    else rf=0; 
    end 
  endfunction 
//----------------------------------------------Differential Equations 
  function RhS=fsub(x,z) 
    RhS=[-z(2)/x+Rate(z)*rou/DCO;-z(4)/x+UR*Rate(z)*rou/DH2] 
  endfunction 
//-------------------------------------------------------Initial Guess 
  function [z,lhS]=ystart(x) 
    z=zeros(4,1);z(1)=CObulk;z(3)=H2bulk 
    lhS=[0;0]; 
  endfunction 
//-------------------------------------------------Boundary Conditions 
  function g=gsub(i,z) 
    g=[z(2) z(4) z(1)-CObulk z(3)-H2bulk] 
    g=g(i) 
  endfunction 
//------------------------------------Solve as function of Temperature 
for i=1:3 
  Xexp=X_exp(i); 
  ERROR_exp=1; 
  K=Ktemp(i);//[mmol/s/m2co/(mmol2/cm6)] 
  kads=kadstemp(i);//[cm3/mmol] 
  UR=UR_exp(i); 
  ds=0.5;//initial guess for H2/CO diffusivity loop 
  while ERROR_exp>1e-2 
    DCO=DCOtemp(i);//[cm2/s] 
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    DH2=ds*DCO;//[cm2/s] 
    XCO_Old=1;//initiating guess for CSTR loop 
    XCO_New=0;//initiating guess for CSTR loop 
    ERROR_XCO=1;//iniciating CSTR loop error  
    while ERROR_XCO>1e-3 
      pCO=(1-XCO_New)/(3-(UR-1/3)*XCO_New)*20;//CO Partial pressure 
      pH2=(2-UR*XCO_New)/(3-(UR-1/3)*XCO_New)*20;//H2 Partial pressure 
      CObulk=(1.169e-5*Temp(i)-4.281e-4)*pCO;//[mmol/cm3] (Chou&Chao) 
      H2bulk=(1.507e-5*Temp(i)-3.399e-3)*pH2;//[mmol/cm3] (Chou&Chao) 
      H2COb=H2bulk/CObulk; 
      //bvodeS Parameters--------------------------------------------- 
      n=2;//Number of DE's 
      m=[2 2];//Maximum order of DE's 
      N=100;//Number of step points 
      a=0; b=Rp;//End points of BC's 
      zeta=[a a b b];//BC position of defined BC function 
      tol=[1e-2 1e-2 1e-2 1e-2]; 
      //Distributing Distance of Integration-------------------------- 
      x=linspace(a,b,N); 
      Tp(i)=Rp*sqrt(K*H2bulk*rou/DCO);//Thiele 
      //ODE solver---------------------------------------------------- 
      z=bvodeS(x,m,n,a,b,fsub,gsub,zeta,ystart=ystart,tol=tol); 
      //Average H2/CO ratio------------------------------------------- 
      H2sum=0; 
      COsum=0; 
      for j=2:N 
        H2sum=H2sum+(z(3,j-1)*(x(j)-x(j-1))*x(j)); 
        COsum=COsum+(z(1,j-1)*(x(j)-x(j-1))*x(j)); 
      end 
      H2CO(i)=H2sum/COsum; 
      //Effectiveness Factor------------------------------------------ 
      Eff(i)=2*DCO*z(2,N)/(Rp*rou*K*CObulk*H2bulk/((1+kads*CObulk)^2)); 
      //Closing the CSTR loop----------------------------------------- 
      Ratebulk=SCo*(K*CObulk*H2bulk/((1+kads*CObulk)^2));//[mmol/s] 
      XCO_cal=Ratebulk*Eff(i)/Flow;//Calculated conversion 
      XCO_OLD=XCO_New;//Update old conversion 
      XCO_New=XCO_cal;//Update new conversion 
      ERROR_XCO=abs(XCO_New-XCO_OLD)/XCO_New;//Update CSTR error 
    end 
    ERROR_exp=abs(Xexp-XCO_cal)/Xexp;//Update Conversion error 
    if Xexp>XCO_cal 
      ds=ds+0.1;//Increase H2/CO diffusivity ratio if too low 
      else ds=ds-0.01;//decrease H2/CO diffusivity ratio if too high 
    end 
  end 
  XCO(i)=XCO_cal;//Record conversion 
  DF(i)=ds;//Record H2/CO diffusivity ratio 
end 
//-------------------------------------------------Export Data to File 
  print ('Uniform.txt',H2CO,XCO,DF) 
//******************************End*********************************** 
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6.2. Egg-shell Type Pellets 

clear;clc;format(20); 
//************Yates&Satterfield Cylinder bvodeS in CSTR*************** 
//Infinite Cylinder 
//CO Mass DE: CO"=-(1/x)*CO'+density*sig/DCO*(k*CO*H2/(1+kads*CO)^2) 
//CO Mass BC: CO'(0)=0 ; CO(1)=COsat 
//H2 Mass DE: H2"=-(1/x)*H2'+2*density*sig/DH2*(k*CO*H2/(1+kads*CO)^2) 
//H2 Mass BC: H2'(0)=0 ; H2(1)=H2sat 
//z=[CO CO' H2 H2'] 
//pellet model in CSTR model loop 
//-------------------------------------------------Physical Parameters 
  mcat=5.59;//Mass of catalyst loaded [gcat] 
  smet=1.69;//[m2co*/gcat] 
  SCo=mcat*smet;//area of active cobalt [m2co*] 
  Sil=1;//Average silica density [g/cm3] 
  AAS=0.082;//Metal loading [g/gcat] 
  rou=smet/(Sil/(1-AAS));//Active cobalt density [m2co*/cm3] 
  Flow=77.1/3/60/22.414;//flow of CO [mmol/s] 
  Rp=0.125;//Pellet radius [cm] 
  Rc=0.18*Rp;//Cobalt Free core [cm] 
//-------------------------------------------------Chemical Parameters 
  Ktemp(1)=167;//at 220C [mmol/s/m2co*/(mmol2/cm6)] 
  Ktemp(2)=199;//at 230C [mmol/s/m2co*/(mmol2/cm6)] 
  Ktemp(3)=232;//at 240C [mmol/s/m2co*/(mmol2/cm6)] 
  kadstemp(1)=423;//at 220C [cm3/mmol] 
  kadstemp(2)=423;//at 230C [cm3/mmol] 
  kadstemp(3)=423;//at 240C [cm3/mmol] 
  DCOtemp(1)=1.5e-4;//[cm2/s](Erkey) 
  DCOtemp(2)=1.74e-4;//[cm2/s](Erkey) 
  DCOtemp(3)=1.8e-4;//[cm2/s](Erkey) 
  Temp(1)=493;//220C 
  Temp(2)=503;//230C 
  Temp(3)=513;//240C 
//---------------------------------------------------Experimental Data   
  UR_exp(1)=2.2;//H2/CO usage ratio [H2/CO] 
  UR_exp(2)=2.2//H2/CO usage ratio [H2/CO] 
  UR_exp(3)=2.2;//H2/CO usage ratio [H2/CO] 
  X_exp(1)=0.48; 
  X_exp(2)=0.65; 
  X_exp(3)=0.74;   
//----------------------------------------------Differential Equations 
  function RhS=fsub(x,z) 
  RhS=[-z(2)/x+Rate(z)*rou*sig/DCO;-z(4)/x+UR*Rate(z)*rou*sig/DH2] 
  endfunction 
//-------------------------------------------------------Initial Guess 
  function [z,lhS]=ystart(x) 
    z=zeros(4,1);z(1)=CObulk;z(3)=H2bulk 
    lhS=[0;0]; 
  endfunction 
//-------------------------------------------------Boundary Conditions 
  function g=gsub(i,z) 
    g=[z(2) z(4) z(1)-CObulk z(3)-H2bulk] 
    g=g(i) 
  endfunction 
//-----------------------------------------------------Rate Expression 
  function rf=Rate(z) 
    if z(1)>0 then 
      if z(3)>0 then 
        if x>=Rc then 
          rf=K*z(1)*z(3)/((1+kads*z(1))^2); 
          else rf=0; 
        end 
      else rf=0; 
      end 
    else rf=0; 
    end 
  endfunction 
//------------------------------------Solve as function of Pellet Size 
for i=1:3 
  Xexp=X_exp(i); 
  ERROR_exp=1; 
  K=Ktemp(i);//[mmol/s/m2co/(mmol2/cm6)] 
  kads=kadstemp(i);//[cm3/mmol] 
  UR=UR_exp(i); 
  ds=0.5;//initial guess for H2/CO diffusivity loop 
  while ERROR_exp>1e-2 
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    DCO=DCOtemp(i);//[cm2/s] 
    DH2=ds*DCO;//[cm2/s] 
    XCO_Old=1;//initiating guess for CSTR loop 
    XCO_New=0;//initiating guess for CSTR loop 
    ERROR_XCO=1;//iniciating CSTR loop error  
    while ERROR_XCO>1e-3 
      pCO=(1-XCO_New)/(3-(UR-1/3)*XCO_New)*20;//CO Partial pressure 
      pH2=(2-UR*XCO_New)/(3-(UR-1/3)*XCO_New)*20;//H2 Partial pressure 
      CObulk=(1.169e-5*Temp(i)-4.281e-4)*20/3;//[mmol/cm3] (Chou&Chao) 
      H2bulk=(1.507e-5*Temp(i)-3.399e-3)*20/3*2;//[mmol/cm3] (Chou&Chao) 
      H2COb=H2bulk/CObulk; 
      //bvodeS Parameters--------------------------------------------- 
      n=2;//Number of DE's 
      m=[2 2];//Maximum order of DE's 
      N=100;//Number of step points 
      a=0; b=Rp;//End points of BC's 
      zeta=[a a b b];//BC position of defined BC function 
      tol=[1e-2 1e-2 1e-2 1e-2]; 
      //Distributing Distance of Integration-------------------------- 
      x=zeros(1,N); 
      N1=N/10+1;//Number of points inside the cobalt free core 
      N2=N-N/10;//Number of points inside the cobalt enriched shell 
      x1=zeros(1,N1); 
      for p=2:N1 
        x1(p)=(Rc-x1(p-1))*0.25+x1(p-1); 
      end 
      for q=2:N1 
        x(q-1)=x1(q-1); 
      end 
      x2=linspace(Rc,b,N2); 
      for o=1:N2 
        x(N1-1+o)=x2(o); 
      end 
      fixpnt=Rc;//Fix mesh point at boundary 
      //Density redistribution function------------------------------- 
      sig=Rp^2/(Rp^2-Rc^2);//Egg-shell catalysts 
      Tp(i)=Rp*sqrt(K*H2bulk*rou*sig/DCO);//Thiele 
      //ODE Solver---------------------------------------------------- 
      z=bvodeS(x,m,n,a,b,fsub,gsub,zeta,fixpnt=fixpnt,... 
      ystart=ystart,tol=tol); 
      //Average H2/CO ratio------------------------------------------- 
      H2sum=0; 
      COsum=0; 
      for j=N1:N 
        H2sum=H2sum+(z(3,j-1)*(x(j)-x(j-1))*x(j)); 
        COsum=COsum+(z(1,j-1)*(x(j)-x(j-1))*x(j)); 
      end 
      H2CO(i)=H2sum/COsum; 
      //Effectiveness Factor------------------------------------------ 
      Eff(i)=2*DCO*z(2,N)/(Rp*rou*K*CObulk*H2bulk/((1+kads*CObulk)^2)); 
      //Closing the CSTR loop----------------------------------------- 
      Ratebulk=SCo*(K*CObulk*H2bulk/((1+kads*CObulk)^2));//[mmol/s] 
      XCO_cal=Ratebulk*Eff(i)/Flow;//Calculated conversion 
      XCO_OLD=XCO_New;//Update old conversion 
      XCO_New=XCO_cal;//Update new conversion 
      ERROR_XCO=abs(XCO_New-XCO_OLD)/XCO_New;//Update CSTR error 
    end 
    ERROR_exp=abs(Xexp-XCO_cal)/Xexp;//Update conversion error 
    if Xexp>XCO_cal 
      ds=ds+0.1;//Increase H2/CO diffusivity ratio if too low 
      else ds=ds-0.01;//decrease H2/CO diffusivity ratio if too high 
    end 
  end 
  XCO(i)=XCO_cal;//Record conversion 
  DF(i)=ds;//Record H2/CO diffusivity ratio 
end 
//Export Data to File------------------------------------------------- 
  print ('Shell.txt',H2CO,XCO,DF) 
//******************************End*********************************** 
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6.3. Egg-yolk Type Pellets 

clear;clc;format(20); 
//************Yates&Satterfield Cylinder bvodeS in CSTR*************** 
//Infinite Cylinder 
//CO Mass DE: CO"=-(1/x)*CO'+density*sig/DCO*(k*CO*H2/(1+kads*CO)^2) 
//CO Mass BC: CO'(0)=0 ; CO(1)=COsat 
//H2 Mass DE: H2"=-(1/x)*H2'+2*density*sig/DH2*(k*CO*H2/(1+kads*CO)^2) 
//H2 Mass BC: H2'(0)=0 ; H2(1)=H2sat 
//z=[CO CO' H2 H2'] 
//pellet model in CSTR model loop 
//-------------------------------------------------Physical Parameters 
  mcat=5.02;//Mass of catalyst loaded [gcat] 
  smet=0.86;//[m2co*/gcat] 
  SCo=mcat*smet;//area of active cobalt [m2co*] 
  Sil=1;//Average silica density [g/cm3] 
  AAS=0.087;//Metal loading [g/gcat] 
  rou=smet/(Sil/(1-AAS));//Active cobalt density [m2co*/cm3] 
  Flow=75.6/3/60/22.414;//flow of CO [mmol/s] 
  Rp=0.125;//Pellet radius [cm] 
  Rc=0.78*Rp;//Cobalt Free core [cm] 
//-------------------------------------------------Chemical Parameters 
  Ktemp(1)=167;//at 220C [mmol/s/m2co*/(mmol2/cm6)] 
  Ktemp(2)=199;//at 230C [mmol/s/m2co*/(mmol2/cm6)] 
  Ktemp(3)=232;//at 240C [mmol/s/m2co*/(mmol2/cm6)] 
  kadstemp(1)=423.6;//at 220C [cm3/mmol] 
  kadstemp(2)=423.6;//at 230C [cm3/mmol] 
  kadstemp(3)=423.6;//at 240C [cm3/mmol] 
  DCOtemp(1)=1.5e-4;//[cm2/s](Erkey) 
  DCOtemp(2)=1.74e-4;//[cm2/s](Erkey) 
  DCOtemp(3)=1.8e-4;//[cm2/s](Erkey) 
  Temp(1)=493;//220C 
  Temp(2)=503;//230C 
  Temp(3)=513;//240C 
//---------------------------------------------------Experimental Data   
  UR_exp(1)=2.2;//H2/CO usage ratio [H2/CO] 
  UR_exp(2)=2.2;//H2/CO usage ratio [H2/CO] 
  UR_exp(3)=2.2;//H2/CO usage ratio [H2/CO] 
  X_exp(1)=0.21; 
  X_exp(2)=0.26; 
  X_exp(3)=0.31; 
//----------------------------------------------Differential Equations 
  function RhS=fsub(x,z) 
  RhS=[-z(2)/x+Rate(z)*rou*sig/DCO;-z(4)/x+UR*Rate(z)*rou*sig/DH2] 
  endfunction 
//-------------------------------------------------------Initial Guess 
  function [z,lhS]=ystart(x) 
    z=zeros(4,1);z(1)=CObulk;z(3)=H2bulk 
    lhS=[0;0]; 
  endfunction 
//-------------------------------------------------Boundary Conditions 
  function g=gsub(i,z) 
    g=[z(2) z(4) z(1)-CObulk z(3)-H2bulk] 
    g=g(i) 
  endfunction 
//-----------------------------------------------------Rate Expression 
  function rf=Rate(z) 
    if z(1)>0 then 
      if z(3)>0 then 
        if x<=Rc then 
          rf=K*z(1)*z(3)/((1+kads*z(1))^2); 
          else rf=0; 
        end 
      else rf=0; 
      end 
    else rf=0; 
    end 
  endfunction 
//------------------------------------Solve as function of Pellet Size 
for i=1:3 
  Xexp=X_exp(i); 
  ERROR_exp=1; 
  K=Ktemp(i);//[mmol/s/m2co/(mmol2/cm6)] 
  kads=kadstemp(i);//[cm3/mmol] 
  UR=UR_exp(i); 
  ds=0.5;//initial guess for H2/CO diffusivity loop 
  while ERROR_exp>1e-2 
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    DCO=DCOtemp(i);//[cm2/s] 
    DH2=ds*DCO;//[cm2/s] 
    XCO_Old=1;//initiating guess for CSTR loop 
    XCO_New=0;//initiating guess for CSTR loop 
    ERROR_XCO=1;//iniciating CSTR loop error  
    while ERROR_XCO>1e-3 
      pCO=(1-XCO_New)/(3-(UR-1/3)*XCO_New)*20;//Co Partial pressure 
      pH2=(2-UR*XCO_New)/(3-(UR-1/3)*XCO_New)*20;//H2 Partial pressure 
      CObulk=(1.169e-5*Temp(i)-4.281e-4)*pCO;//[mmol/cm3] (Chou&Chao) 
      H2bulk=(1.507e-5*Temp(i)-3.399e-3)*pH2;//[mmol/cm3] (Chou&Chao) 
      H2COb=H2bulk/CObulk; 
      //bvodeS Parameters--------------------------------------------- 
      n=2;//Number of DE's 
      m=[2 2];//Maximum order of DE's 
      N=100;//Number of step points 
      a=0; b=Rp;//End points of BC's 
      zeta=[a a b b];//BC position of defined BC function 
      tol=[1e-2 1e-2 1e-2 1e-2]; 
      //Distributing Distance of Integration-------------------------- 
      x=zeros(1,N); 
      N1=N-2*N/10;//Number of points inside the cobalt enriched core 
      N2=2*N/10;//Number of points inside the cobalt free shell 
      x1=linspace(a,Rc,N1); 
      x2=zeros(1,N2); 
      x2(N2)=Rc; 
      x2(1)=Rp; 
      for o=2:N2 
        x2(o)=x2(o-1)-((x2(o-1)-x2(N2))*0.4); 
      end 
      for p=1:N1 
        x(p)=x1(p); 
      end 
      for q=1:N2 
        x(N1+q)=x2(N2-q+1); 
      end 
      fixpnt=Rc;//Fix mesh point at boundary 
      //Density redistribution function------------------------------- 
      sig=Rp^2/(Rc^2);//Egg-yolk catalysts 
      Tp(i)=Rp*sqrt(K*H2bulk*rou*sig/DCO);//Thiele 
      //ODE Solver---------------------------------------------------- 
      z=bvodeS(x,m,n,a,b,fsub,gsub,zeta,fixpnt=fixpnt,... 
      ystart=ystart,tol=tol); 
      //Average H2/CO ratio------------------------------------------- 
      H2sum=0; 
      COsum=0; 
      for j=2:N1 
        H2sum=H2sum+(z(3,j-1)*(x(j)-x(j-1))*x(j)); 
        COsum=COsum+(z(1,j-1)*(x(j)-x(j-1))*x(j)); 
      end 
      H2CO(i)=H2sum/COsum;   
      //Effectiveness Factor------------------------------------------ 
      Eff(i)=2*DCO*z(2,N)/(Rp*rou*K*CObulk*H2bulk/((1+kads*CObulk)^2)); 
      //Closing the CSTR loop----------------------------------------- 
      Ratebulk=SCo*(K*CObulk*H2bulk/((1+kads*CObulk)^2));//[mmol/s] 
      XCO_cal=Ratebulk*Eff(i)/Flow;//Calculated conversion 
      XCO_OLD=XCO_New;//Update old conversion 
      XCO_New=XCO_cal;//Update new conversion 
      ERROR_XCO=abs(XCO_New-XCO_OLD)/XCO_New;//Update CSTR error 
    end 
    ERROR_exp=abs(Xexp-XCO_cal)/Xexp;//Update conversion error 
    if Xexp>XCO_cal 
      ds=ds+0.1;//Increase H2/CO diffusivity ratio if too low 
      else ds=ds-0.01;//decrease H2/CO diffusivity ratio if too high 
    end 
  end 
  XCO(i)=XCO_cal;//Record conversion 
  DF(i)=ds;//Record H2/CO diffusivity ratio 
end 
//Export Data to File------------------------------------------------- 
  print ('Yolk.txt',H2CO,XCO,DF) 
//******************************End*********************************** 
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6.4. Egg-white Type Pellets 

clear;clc;format(20); 
//************Yates&Satterfield Cylinder bvodeS in CSTR*************** 
//Infinite Cylinder 
//CO Mass DE: CO"=-(1/x)*CO'+density*sig/DCO*(k*CO*H2/(1+kads*CO)^2) 
//CO Mass BC: CO'(0)=0 ; CO(1)=COsat 
//H2 Mass DE: H2"=-(1/x)*H2'+2*density*sig/DH2*(k*CO*H2/(1+kads*CO)^2) 
//H2 Mass BC: H2'(0)=0 ; H2(1)=H2sat 
//z=[CO CO' H2 H2'] 
//pellet model in CSTR model loop 
//-------------------------------------------------Physical Parameters 
  mcat=5.21;//Mass of catalyst loaded [gcat] 
  smet=0.81;//[m2co*/gcat] 
  SCo=mcat*smet;//area of active cobalt [m2co*] 
  Sil=1;//Average silica density [g/cm3] 
  AAS=0.066;//Metal loading [g/gcat] 
  rou=smet/(Sil/(1-AAS));//Active cobalt density [m2co*/cm3] 
//-------------------------------------------------Chemical Parameters 
  Ktemp(1)=167;//at 220C [mmol/s/m2co*/(mmol2/cm6)] 
  Ktemp(2)=199;//at 230C [mmol/s/m2co*/(mmol2/cm6)] 
  Ktemp(3)=232;//at 240C [mmol/s/m2co*/(mmol2/cm6)] 
  kadstemp(1)=423.6;//at 220C [cm3/mmol] 
  kadstemp(2)=423.6;//at 230C [cm3/mmol] 
  kadstemp(3)=423.6;//at 240C [cm3/mmol] 
  DCOtemp(1)=1.5e-4;//[cm2/s](Erkey) 
  DCOtemp(2)=1.74e-4;//[cm2/s](Erkey) 
  DCOtemp(3)=1.8e-4;//[cm2/s](Erkey) 
  Temp(1)=493;//220C 
  Temp(2)=503;//230C 
  Temp(3)=513;//240C 
//---------------------------------------------------Experimental Data   
  UR_exp(1)=2.2;//H2/CO usage ratio [H2/CO] 
  UR_exp(2)=2.2;//H2/CO usage ratio [H2/CO] 
  UR_exp(3)=2.2;//H2/CO usage ratio [H2/CO] 
  X_exp(1)=0.21; 
  X_exp(2)=0.32; 
  X_exp(3)=0.40; 
  Flow=60.6/3/60/22.414;//flow of CO [mmol/s] 
  Rp=0.125;//Pellet radius [cm] 
  Rc=0.63*Rp;//Cobalt Free core [cm] 
  Rw=0.86*Rp;//Boundary of shell and white [cm] 
  mid=(Rw-Rc)/2+Rc; 
//----------------------------------------------Differential Equations 
  function RhS=fsub(x,z) 
  RhS=[-z(2)/x+Rate(z)*rou*sig*SIG(x)/DCO;... 
  -z(4)/x+UR*Rate(z)*rou*sig*SIG(x)/DH2] 
  endfunction 
//-------------------------------------------------------Initial Guess 
  function [z,lhS]=ystart(x) 
    z=zeros(4,1);z(1)=CObulk;z(3)=H2bulk 
    lhS=[0;0]; 
  endfunction 
//-------------------------------------------------Boundary Conditions 
  function g=gsub(i,z) 
    g=[z(2) z(4) z(1)-CObulk z(3)-H2bulk] 
    g=g(i) 
  endfunction 
//-----------------------------------------------------Rate Expression 
  function rf=Rate(z) 
    if z(1)>0 then 
      if z(3)>0 then 
        rf=K*z(1)*z(3)/((1+kads*z(1))^2); 
        else rf=0; 
      end 
    else rf=0; 
    end 
  endfunction 
//----------------------------------------------------Density Function 
  function sa=SIG(x) 
    if x<mid then 
      sa=(-atan((Rc-x)/Rp*1000)+%pi/2)/%pi; 
      else sa=(atan((Rw-x)/Rp*1000)+%pi/2)/%pi; 
    end 
  endfunction 
//------------------------------------Solve as function of Pellet Size 
for i=1:3 
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  Xexp=X_exp(i); 
  ERROR_exp=1; 
  K=Ktemp(i);//[mmol/s/gcat/(mmol2/cm6)] 
  kads=kadstemp(i);//[cm3/mmol] 
  UR=UR_exp(i); 
  ds=0.5;//initial guess for H2/CO diffusivity loop 
  while ERROR_exp>1e-2 
    DCO=DCOtemp(i);//[cm2/s] 
    DH2=ds*DCO;//[cm2/s] 
    XCO_Old=1;//initiating guess for CSTR loop 
    XCO_New=0;//initiating guess for CSTR loop 
    ERROR_XCO=1;//iniciating CSTR loop error 
    while ERROR_XCO>1e-3 
      pCO=(1-XCO_New)/(3-(UR-1/3)*XCO_New)*20;//CO Partial pressure 
      pH2=(2-UR*XCO_New)/(3-(UR-1/3)*XCO_New)*20;//H2 Partial pressure 
      CObulk=(1.169e-5*Temp(i)-4.281e-4)*pCO;//[mmol/cm3] (Chou&Chao) 
      H2bulk=(1.507e-5*Temp(i)-3.399e-3)*pH2;//[mmol/cm3] (Chou&Chao) 
      H2COb=H2bulk/CObulk;       
      //bvodeS Parameters--------------------------------------------- 
      n=2;//Number of DE's 
      m=[2 2];//Maximum order of DE's 
      N=100;//Number of step points 
      a=0; b=Rp;//End points of BC's 
      zeta=[a a b b];//BC position of defined BC function 
      tol=[1e-2 1e-2 1e-2 1e-2]; 
      //Distributing Distance of Integration-------------------------- 
      x=zeros(1,N); 
      N1=1.5*N/10;//Number of points form 0 to Rc 
      N2=N-3*N/10;//Number of points form Rc to Rw 
      N3=1.5*N/10;//Number of points from Rw to Rp 
      x1=zeros(1,N1); 
      for p=2:N1 
        x1(p)=(Rc-x1(p-1))*0.25+x1(p-1); 
      end 
      for q=1:N1 
        x(q)=x1(q); 
      end 
      x2=linspace(Rc,Rw,N2); 
      for p=1:N2 
        x(p+N1)=x2(p); 
      end 
      x3=zeros(1,N3); 
      x3(N3)=Rw; 
      x3(1)=Rp; 
      for o=2:N3 
        x3(o)=x3(o-1)-((x3(o-1)-x3(N3))*0.4); 
      end 
      for q=1:N3 
        x(N2+N1+q)=x3(N3-q); 
      end 
      fixpnt=[Rw,Rc];//Fix mesh point at boundary 
      //Density redistribution function------------------------------- 
      sig=Rp^2/(Rw^2-Rc^2);//Egg-white catalysts 
      Tp(i)=Rp*sqrt(K*H2bulk*rou*sig/DCO);//Thiele     
      //ODE Solver---------------------------------------------------- 
      z=bvodeS(x,m,n,a,b,fsub,gsub,zeta,fixpnt=fixpnt,... 
      ystart=ystart,tol=tol);     
      //Average H2/CO ratio------------------------------------------- 
      H2sum=0; 
      COsum=0; 
      for j=N1+1:N1+N2 
        H2sum=H2sum+(z(3,j-1)*(x(j)-x(j-1))*x(j)); 
        COsum=COsum+(z(1,j-1)*(x(j)-x(j-1))*x(j)); 
      end 
      H2CO(i)=H2sum/COsum;   
      //Effectiveness Factor------------------------------------------ 
      Eff(i)=2*DCO*z(2,N)/(Rp*rou*K*CObulk*H2bulk/((1+kads*CObulk)^2)); 
      //Closing the CSTR loop----------------------------------------- 
      Ratebulk=SCo*(K*CObulk*H2bulk/((1+kads*CObulk)^2));//[mmol/s] 
      XCO_cal=Ratebulk*Eff(i)/Flow;//Calculated conversion 
      XCO_OLD=XCO_New;//Update old conversion 
      XCO_New=XCO_cal;//Update new conversion 
      ERROR_XCO=abs(XCO_New-XCO_OLD)/XCO_New;//Update CSTR error 
    end 
    ERROR_exp=abs(Xexp-XCO_cal)/Xexp;//Update conversion error 
    if Xexp>XCO_cal 
      ds=ds+0.1;//Increase H2/CO diffusivity ratio if too low 
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      else ds=ds-0.009;//decrease H2/CO diffusivity if too high 
    end 
  end 
  XCO(i)=XCO_cal;//Record conversion 
  DF(i)=ds;//Record H2/CO diffusivity ratio 
end 
//Export Data to File------------------------------------------------- 
  print ('White.txt',H2CO,XCO,DF) 
//******************************End*********************************** 



Univ
ers

ity
 of

 C
ap

e T
ow

n

APPENDIX D  |  203 

APPENDIX D 

1. Fixed-bed Reactor Set-up 

Two sets of experiments were performed in a fixed-bed reactor set-up (see Figure D.1). 

CO (Afrox, 99.97%) and H2 (Air Liquide, 99.999%) were fed to the reactor at a head 

pressure of 40bar. The mass flow of each stream was controlled individually and 

mixed before entering the reactor. The composition of the feed gas was determined by 

leading the gas mixture over the reactor-by-pass through a 4-way valve to the online 

gas chromatograph equipped with a thermal conductivity detector. A H2/CO ratio of 2 

was ensured before the start of each experiment. At the start of the reaction, the 4-

way valve was switched to allow the feed gas to flow through the reactor. The flow of 

argon to the reactor effluent was pressure controlled, in order to maintain a reaction 

pressure of 20bar. A known amount of cyclohexane (0.15%) premixed with N2 was 

added to the product effluent stream as an internal standard for quantitative data 

analysis. 

 

Figure D.1: Flow diagram of Fixed-Bed reactor set-up 

The fixed-bed reactor consisted of a stainless steel tube with an internal diameter of 

10mm and an isothermal zone of 40mm, which was heated electrically by using a 

metal jacket with 6 heating elements. The reaction temperature was measured in the 

centre of the catalyst bed with a thermocouple. Uniform catalyst pellets (U1) (0.4g for 

the first test; 0.8g for the second) was loaded into the centre of isothermal zone in the 

reactor. Silicon carbide (dp: 400µm, ca. 3g) was added to fill up the isothermal zone to 

minimise the axial and radial temperature gradient. The catalyst was kept in place by 
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plugs of glass wool at the top and bottom of the catalyst bed. Coarse silicon carbide (d: 

3-4mm, ca. 10g) was packed on top of the catalyst bed to serve as a pre-heating zone 

of 10cm in length. 

The liquid products were separated from the gas stream in a wax trap operating at 

180°C. The product water was separated from the gas stream in the cold trap 

operating at room temperature. The line from the reactor effluent to the ampoule 

breaker, in which volatile organic gas samples were taken, was heated to 180°C to 

prevent condensation. The sampling method will be described in section  4.4. 

Catalyst pellets were reduced in-situ using the standard reduction condition of this 

study (hydrogen flow rate of 90mℓ(STP)/min/gsilica at 350°C for 16 hours with heating 

rate of 5°C/min). After reduction, the system was cooled to 220°C and pressurised 

with argon to 20bar. The synthesis gas mixture at flow rate of 32mℓ(STP)/min for the 

first test and 64mℓ(STP)/min for the second was introduced. CO conversion and 

methane selectivity were recorded at steady-state condition (TOS>24hrs). 
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2. Wall Effect in Fixed-bed Set-up 

In a fixed bed reactor, catalyst pellets are packed closely to each other introducing a 

resistance to the flow of reactant gas. This resistance to gas flow results a pressure 

drop along the catalyst bed. Pressure drop of the catalyst bed is also be influenced by 

the reactor wall, and therefore wall effects may affect the catalysts performance in the 

reactor. It has been suggests that the reactor wall has counter influence on pressure 

drop (Carman, 1937; Nield, 1983). The presence of catalyst near the reactor wall 

results in a large void surrounding these catalyst pellets, which can be as large as half 

of the pellet diameter (Roblee et al., 1958; Benenati and Brosilow, 1962). At high 

Reynolds numbers, when the mass transfer boundary layer is thin, the increased local 

porosity increases the local gas velocity and hence decreases pressure drop over the 

catalyst bed. However at low Reynolds number, the additional friction introduced by 

the reactor wall may reduce the local velocity and thereby increasing the pressure 

drop across the catalyst bed. Since Reynolds number is a function of pellet diameter, 

the extent of the reactor wall effect is expected to be a function of the ratio of reactor 

to particle diameter (Dtube/dpellet). A correlation containing over 2300 experimental 

point shows that the reactor wall effect on pressure drop across the catalyst bed 

becomes negligible when Dtube/dpellet is greater than 15 for cylindrical pellets (Eisfeld 

and Schnitzlein, 2001). 

Silicon carbide (dp: 400µm) was used as diluents to minimise the wall effect. The 

reactor bed was packed in such a way that the catalyst pellets were separated from 

the reactor wall with a layer of silicon carbide to avoid immediate contact between 

reactor wall and catalyst pellet (see Figure D.2). The ratio of reactor diameter (10mm) 

to silicon carbide is 25. Thus, the reactor wall effect on pressure drop across the 

catalysts bed should be minimal. 



Univ
ers

ity
 of

 C
ap

e T
ow

n

|  APPENDIX D 

 

206 

10mm

2mm

reactor wall

thermocouple

catalyst pellet
(dpellet: 2.4mm; lpellet: 4mm)

silicon carbide
(dp: 400µm)

 

Figure D.2: Schematic representation of pellet packing inside the fixed-bed reactor 
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3. External Mass Transport Limitations in Fixed-bed Set-up 

External mass transport limitation decreases reactant concentration from bulk phase 

towards the surface of the catalyst. This may falsify the performance of catalyst pellets. 

The existence of external mass transport limitation was tested based on the idea that 

when reaction is mass transfer limited, the mass transport coefficient (kc) is much 

smaller than the pseudo first order rate constant for the Fischer-Tropsch synthesis (kr). 

Mass transport coefficient can be correlated with gas flow around a single spherical 

pellet through the Frössling correlation (Frössling, 1938). Levich (1962) suggested that 

the flow pattern around an isolated sphere is not much different from that around a 

sphere surrounded by other spheres, particularly near the sphere surface where most 

of the mass transport takes place. Therefore the Frössling correlation is applied in this 

study. 
1 1
2 3Sh=2+0.6Re Sc  

where Sherwood number (Sh) is defined as 

c pellet

AB

k d
Sh=

D
 

with kc, the mass transport coefficient [m/s], dpellet is the pellet diameter [m], and 

DAB is diffusivity of species A in fluid B [m2/s] 

Schmidt number (Sc) is defined as 

υ

AB

Sc =
D

 

with kinematic viscosity (υ ), defined as fluid viscosity over density (µ/ρ) [m2/s] 

Reynolds number (Re) is 

υ

pellet pelletρd U d U
Re = =

µ
 

with linear gas velocity represented as U. 

In the case of gas-phase reaction, Schmidt number is sufficiently large enough that 

the constant 2 in the Frössling correlation is negligible with respect to the second term 

(Fogler, 1999). The Frössling correlation can then be written as 

υ

υ

υ

   
   

  

1 1
2 3

2 1
3 2

1 1
6 2

c pellet pellet

AB AB

AB
c

pellet

k d d U
=0.6

D D

D U
k =0.6

d

 

To increase the observed reaction rate for a fast reaction, or otherwise stated r ck k≫ , 

the limiting factor i.e. the mass transfer coefficient (kc), must be increased. If linear 
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velocity of the reactant gas is doubled while keeping DAB, υ  and dpellet constant, then 

mass transfer coefficient would increase by a factor of 

( )
 
 
 

1
2

1
2c,2 2

c,1 1

k U
= = 2 =1.41

k U
 

Two sets of extreme catalyst packing scenario were tested in the fixed-bed reactor set-

up at 220°C and 20bar. In the first scenario (Run F1), 0.4g of U1 pellets (ca. 10 pellets) 

was packed into the reactor, which is considered as the minimum amount of pellets to 

represent a catalyst sample. In the second scenario (Run F2), 0.8g of U1 pellets (ca. 20 

pellets) was packed into the reactor, which is the maximum amount of catalyst that 

could be loaded into the isothermal zone of the reactor. The space velocity of the 

synthesis gas was kept at 80mℓ(STP)/min/gcatalyst. Thus, the linear gas velocity in the 

reactor was doubled in the second packing scenario. The CO conversion was increased 

by a factor of 1.38 by doubling the linear gas velocity (Figure D.3). This clearly implies 

the existence of severe external mass transport limitation for testing the performance 

of these catalyst pellets in this fixed-bed reactor set-up. 
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Figure D.3: Fischer-Tropsch performance of catalyst pellet U1 as a function of the linear gas 

velocity in a fixed-bed reactor at 220°C, 20bar and 80mℓ(STP)/min/gcatalyst with 

H2/CO ratio of 2. 

The strong external mass transport limitation observed under these conditions is 

surprising. The concentration difference between the reactant on catalyst surface and 

reactant in the bulk can be estimated by equating the rate of mass transport and 

reaction rate (see Figure D.4). 
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Figure D.4: Concentration profile of a reacting species in the vicinity of a gas-catalyst interface 

Using the Fischer-Tropsch rate expression by Yates and Satterfield (1991), the mass 

transfer rate for CO and H2 is 

2

2

2 2 2

CO,s H ,s
c,CO c CO,b CO,s 2

ads CO,s

CO,s H ,s
c,H c H ,b H ,s 2

ads CO,s

kC C
k a (C -C )=

(1+k C )

2kC C
k a (C -C )=

(1+k C )

 

were kc,i is the mass transfer coefficient of species i, ac is the interface surface area for 

mass transport, Ci,b is the concentration of species i in the bulk phase, Ci,s is the 

concentration of species i on the catalyst surface, k is the rate constant and kads is the 

adsorption constant. The Fischer-Tropsch rate constant and adsorption constant at 

220°C according to Yates and Satterfield (1991) are 0.55mmol/min/gcat/MPa2 (or 

15mmol/s/gcat/(mmol/cm3)2) and 2.66MPa-1 (or 91cm3/mmol) respectively. The 

interface surface area for mass transport was assumed to be the external surface area 

of the catalyst pellet (28cm2/gcatalyst). The mass transfer coefficient (kc,i) can be written 

as a function of linear gas velocity using the Frössling correlation 

    
    
    

1 1
2 3

i pelleti i
c,i

pellet i i i

ρ d UD µ
k = 2+0.6

d µ ρD
 

with the equivalent diameter of the pellet (dpellet) is 0.375cm. The density of gases at 

reaction condition was estimated using ideal gas law, while diffusivity and viscosity of 

CO and H2 in synthesis gas were estimated according to Chapman and Cowling (1951) 

(see Appendix C.3). 

Table D-1: Estimated synthesis gas properties at reaction condition 

ρi µi 2CO,HD  
Gas 

[g cm-3] [g cm-1 s-1] [cm2 s] 
CO 1.37×10-2 2.57×10-4 

H2 6.5×10-4 1.19×10-4 
0.0912 
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The mass transfer coefficient of carbon monoxide and hydrogen as function of linear 

gas velocity [cm/s] is then given by 
1

2

1
2

2

c,CO

c,H

k = 0.486+0.384U

k =0.486+0.262U
 

The difference between the CO concentration in the bulk phase and at the catalyst 

surface (∆CCO) was even at low linear gas velocity (less than 1cm/s) is less than 0.2% 

(see Figure D.5, Appendix C.4 for Polymath code). This means that the Fischer-

Tropsch kinetics is slower than the rate of mass of transport in the gas phase at the 

reaction condition. Even a significant increase in the rate constant does not yield a 

significant change in the concentration gradient across the boundary layer. Hence, the 

observed increase in the rate upon changing the linear velocity is unlikely to be 

caused by the mass transport limitation in the gas phase. 
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Figure D.5: CO concentration difference between bulk and catalyst surface as a function of 

linear gas velocity 

The surface of the spent catalyst from the fixed-bed tests was coated with a layer of 

wax after the reactor test. This led to the suspicion that the observed mass transfer 

limitation was due to the diffusion of reactant species through the layer of wax 

produced during Fischer-Tropsch synthesis (see Figure D.6). 
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Figure D.6: Concentration profile of a reacting species in the vicinity of a gas-wax-catalyst 

interface 

Since the rate of the Fischer-Tropsch synthesis is less than the gas-phase mass 

transport rate (as established earlier in this section), the reactant concentration in 

liquid phase at the gas-liquid interface can be considered to be the saturation 

concentration of the reactant at its partial pressure in the bulk phase. Therefore the 

observed rate is then 

×
2

CO,sat CO,s
CO CO

H CO

(C -C )
-rate =D

∆d
-rate = -2 rate

 

where Di is the diffusivity of species i in the liquid layer, ∆d is the thickness of the 

liquid layer, and Ci,sat is the liquid concentration of i species at the gas-wax interface. 

The typical tortuosity range for silica gel is ≤ ≤2 τ 6 (Knudsen et al., 2001). Thus, the 

effective diffusivity of CO and H2 in the calculation was assumed to be an order of 

magnitude less than the bulk phase diffusivity. The CO and H2 saturation 

concentration at the inlet partial pressure (CO: 6.67atm; H2: 13.33atm; 220°C) in the 

gas phase were estimated to be 0.0356mmol/cm3 and 0.0537mmol/cm3 respectively 

according to solubility study done by Chou and Chao (1992). 

The surface concentration of CO and H2 can then be written as a function of liquid 

thickness (∆d), which substituted into the rate expression 

CO CO

2CO H2

CO

CO

(-rate )∆d (-2rate )∆d
CO,sat H ,satD D

CO (-rate )∆d 2
ads CO,sat D

k(C - )(C - )
-rate =

(1+k (C - ))
 

Using the experimentally observed CO consumption rates, the thickness of the wax 

layer is determined to be 0.456µm for run F1 and 0.335µm for run F2 (see Table D-2). 

Thus even a very thin wax layers surrounding the catalyst pellet would result in severe 

mass transport limitation. The amount of the liquid phase present on the catalyst 

surface (thickness of liquid layer) would be a function of the catalyst performance 
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(liquid product formation rate) and linear gas velocity (liquid product removal by 

sweeping effect). Therefore adequate control over the reactant concentration at the 

catalyst surface in the fixed-bed reactor set-up could not be achieved. Hence testing of 

the activity of the structured cobalt catalyst pellets were performed in a slurry type 

reactor. 

Table D-2: Summary of results of uniform pellets (U1) tests in fixed-bed reactor set-up 

Catalysts Syngas XCO dwax† 
Run 

[g] [mℓ(STP)/min] [%] [µm] 
F1 0.4 32 22 0.456 
F2 0.8 64 16 0.335 

 

 

                                                 
† calculated film thickness 




