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ABSTRACT 

Ve study the propagation and growth of acceleration waves in 

isotropic thermoelastic media subject to a broad class of thermo-

mechanical constraints. The work is based on an existing thermo-

dynamic theory of constrained thermoelastic materials presented by 

Reddy (1984) for both definite and non- conductors, but we differ by 

adopting a new definition of a constrained non-conductor and by 

investigating the consequences of isotropy. The set of constraints 

considered is not arbitrary but is large enough to include most 

constraints commonly found in practice. Ve also extend Reddy's (1984) 

work by including consideration of sets of constraints for which a set 

of vectors associated with the constraints is linearly dependent. 

These vectors play a significant role in the propagation conditions and 

in the growth equations described below. 

Propagation conditions (of Fresnel-Hadamard type) are derived for 

both homothermal and homentropic waves, and solutions for longitudinal 

and transverse principal waves are discussed. The derivations involve 

the determination of jumps in the time derivative of constraint multi­

pliers which are required in the solution of the corresponding growth 

equations, and it is found that these multipliers cannot be separately 

determined if the set of constraint vectors mention~d above is linearly 

dependent. This difficulty forces us· to restrict the constraint set 

for which the growth equations for homothermal and homentropic waves 

can be derived. The growth of plane, cylindrical and spherical waves 

is considered and solutions are discussed, concentrating on the 

influence of the constraints on the results .. 



111 

TABLE OF CONTENTS 

ACKNOVLEDGEMENTS i 

ABSTRACT ii 

TABLE OF CONTENTS iii . 

1. INTRODUCTION 1 

2. CONSTITUTIVE EQUATIONS FOR CONSTRAINED ISOTROPIC 
MATERIALS 21 

3. SINGULAR SURFACES IN CONSTRAINED THERMOELASTIC 
MATERIALS 55 

4. PROPAGATION CONDITIONS FOR HOMOTHERMAL VAVES 74 

5. PROPAGATION CONDITIONS FOR HOMENTROPIC VAVES 111 

6. GROVTH EQUATIONS FOR HOMOTHERMAL VAVES 158 

7. SOLUTIONS OF THE GROVTH EQUATIONS FOR HOMOTHERMAL VAVES 182 

8. DERIVATION AND SOLUTION OF THE GROVTH EQUATIONS FOR 
HOMENTROPIC VAVES 196 -

9. CONCLUSIONS 228 

APPENDIX A 232 

APPENDIX B 239 

REFERENCES 242 



1 

CHAPTER 1 

INTRODUCTION 

One approach to the investigation of finite amplitude waves in 

nonlinear materials is to study the behaviour of propagating singular 

surf aces, in which the wave is a disturbance of arbitrary magnitude 

localized on a surface which propagates through the material (see 

review in Truesdell and Toupin (1960), Chapter C). This approach, 

developed mainly by Christoffel (1877), Hugoniot (1885) and Hadamard 

(1903), has the advantage that apart from assumptions about conditions 

ahead of the singular surface, only conditions across the surface. 

itself need be considered. One implication of this is that it is not 

necessary to solve initial-boundary value problems involving the 

equations of motion. The power and elegance of the method is referred 

to in the review atticle of waves in solids by Chen (1973), who notes 

for instance that the method is able to illuminate common features of 

the behaviour of waves in various types of materials without having to 

appeal to any explicit representation for the constitutive relations of 

the materials. 

Ve focus attention on acceleration waves, and their behaviour in 

thermoelastic media. An acceleration wave is an example of a singular 

surface across which the motion, velocity and deformation gradient are 

continuous, and for which the acceleration and second and third 

derivatives of the motion have finite discontinuities across the 

singular surface, but are continuous everywhere else (Chen (1973); see 

also Truesdell and Noll (1965), Section 71)). 
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Truesdell (1961) discussed - the purely mechanical theory of 

acceleration waves in elastic media and obtained the Fresnel-Hadamard 

theorem, which requires the acceleration amplitude of a wave to be a 

proper vector of a second order tensor called the acoustic tensor. The 

speed of propagation of the wave is then the square root of the 

corresponding proper number, which must be real and positive for the 

wave to exist. Al though the Fresnel- Hadamard theore~ determines the 

direction of the acceleration amplitude(s) corresponding to a given 

direction of propagation, it is unable to predict the magnitude of the 

acceleration amplitude. V.A. Green (1964,5) however, obtained a 

differential equation for the magnitude of the acceleration amplitude 

in the case of plane acceleration waves in homogeneously deformed 

isotropic materials; the magnitude was shown either to grow to infinity 

within a finite time t , decay to zero as t -1 ro , or to remain 

constant, depending on conditions ahead of the wave. Extensions of 

this result have been made by (amongst others) Chen ( 1968a, b) , who 

considered acceleration waves of arbitrary form, Chadwick and Ogden 

(1971a), who removed the restriction of isotropy, and by Bowen and Vang 

(1970), who discussed acceleration waves of arbitrary form in 

inhomogeneous isotropic bodies. Eringen and Suhubi ( 1975) reviewed 

acceleration wave propagation and growth (including Suhubi' s results 

(1970) for hyperelastic materials) in purely mechanical elastic media. 

Ve now consider the behaviour of acceleration waves in thermo-

elastic media. Truesdell (1961) (after Duhem (1903,6)) showed that the 

Fresnel-Hadamard theorem applies (but with different acoustic tensors) 

both to materials that conduct heat according to Fourier's law with a 

·.positive definite thermal conductivity tensor, and to non-conductors of 

heat. In the former case such waves are homothermal; that is, the 
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first spatial and temporal derivatives of the temperature across the 

wavefront are continuous. In the latter, acceleration waves are homen-

tropic; that is, the first spatial and temporal derivatives of the 

entropy across the wavefront are continuous. Chen _(1968c) used the 

concept of a definite conductor (rather than Fourier's heat conduction 

law) from the thermodynamical theory of Coleman and Gurtin (1965) (see 

also Chapter D III of Truesdell and Noll, (1965)) to derive results for 

propagation and growth of acceleration waves in both definite and non­

conductors of heat; in each case, the material was assumed to be 

isotropic and homogeneously deformed. Bowen and Vang (1971) extended 

their earlier results for inhomogeneous isotropic elastic materials by 

considering thermodynamic influences and including internal state 

variables. Chadwick and Currie (1972) removed the restriction of 

isotropy; furthermore, they showed that heat-conductors are more 

appropriately classified by the heat flux vector than by the thermal 

conductivity tensor. They defined normal and anomalous conductors by 

considering the conditions under which the dissipation inequality is 

satisfied as an equality, and derived results for the propagation and 

growth of acceleration waves for normal, anomalous and non-conductors. 

The question of wave propagation and growth in elastic materials 

subject to one or more internal constraints has also been considered by 

various authors. Truesdell and Noll (1965) discussed the propagation 

of waves in incompressible materials, and referred to the work of 

Ericksen (1953), who restricted attention . to isotropic hyperelastic 

materials. Ogden (1974) considered both the propagation and growth 

equations for waves in incompressible media, and presented a detailed 
r 

investigation of the case of plane waves in homogeneously deformed 

materials. Scott (1975) developed a theory of arbitrarily constrained 

I 
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elastic materials, adopting the ray-theory approach. The same author 

applied this theory (Scott (1976)) to the propagation and growth of 

waves in incompressible elastic solids for plane waves and certain 

cylindrical waves. Chen and Gurtin (1974) considered wave propagation 

in inextensible elastic bodies; these results were extended by Chen and 

Nunziato (1975) to include the constraint of perfect conductivity in 

the fibre directions, but in neither case was wave growth treated. 

Borejko and Chadwick (1980) investigated energy relations for 

arbitrarily constrained elastic materials, and Vhitworth (1982) 

considered the related problem of the behaviour of simple waves in such 

materials. Vhitworth's contribution, and that of Vhitworth and 

Chadwick (1984) on surface waves, are unusual in that they include 

discussion of the situation in which a set of vectors associated with 

the constraints is linearly dependent. This situation is usually 

ignored but is easily encountered in practice, especially in the case 

of material isotropy. 

Ve turn finally to the behaviour of acceleration waves in thermo­

elastic materials which are subject to arbitrary thermomechanical con­

straints. Reddy (1984) (hereafter referred to as (I)) has developed a 

theory of constrained elastic materials and derived propagation and 

growth equations for acceleration waves in such materials. The thermo­

dynamic theory presented in (I) incorporates features of the earlier 

theories developed by Green, Naghdi and Trapp ( 1970) and Gurtin and 

Podio- Guidugli ( 1973). These theories are distinguished by the fact 

that the constraints make no contribution to the production of entropy, 

and that they reduce for purely mechanical constraints to the theory of 

. Noll (see Truesdell and Noll, (1965)); they are therefore to be 

preferred to the more restrictive theory of Andreussi and Podio-

____________ _J 
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Guidugli {1973) which does not reduce to Noll's formulation (see review 

in (I)). Reddy revised the general formulation of the constraint 

equation presented by Trapp {1971) by restating it in the two alterna­

tive forms in which it is generally found in practice. Constraints 

that can be represented as scalar-valued functions of the deformation 

gradient and temperature are called type I constraints, and those that 

can be represented as vector-valued functions of the deformation 

gradient and temperature are called type II constraints. (Examples of 

type I constraints are temperature-dependent compressibility and 

temperature-dependent extensibility in a given direction, and an 

example of a type II constraint is temperature-dependent conductivity 

in a given direction). Reddy defines an augmented free energy function 

which incorporates the contributions of the type I constraints, and 

uses the augmented ftee energy function to rephrase the constitutive 

equations in a particularly concise form. Advantages of this approach 

are apparent both in the discuss ion of waves in definite conductors, 

where temperature is used as an independent variable, and of waves in 

non-conductors, where entropy is used in place of temperature as an in­

dependent variable. It is shown that for constrained materials, every 

acceleration wave in a definite conductor is homothermal and every 

acceleration wave in a non- conductor is homentropic, generalizing an 

earlier result of Coleman and Gurtin (1965) for unconstrained 

materials. Reddy derives necessary conditions to be satisfied by the 

constraints when either homothermal or non-homothermal waves are 

present and then shows that the propagation conditions for homothermal 

and homentropic waves are both of Fresnel-Hadamard type. Finally, 

attention is restricted to plane waves propagating into static homo­

geneously deformed regions and .the growth equations for homothermal and 

homentropic waves are derived; then results show similarities with the 
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corresponding unconstrained results derived by Chadwick and Currie 

(1972). In a subsequent paper (hereafter referred to as (II)), Reddy 

( 1985) has made a preliminary investigation of the consequences of 

material isotropy for the theory developed in (I). Constraints are 

classified as isotropic if the scalar constraint equation is a function 

of temperature and of the principal stretches only, or as directional 

if the constraint equation is a function of temperature, the principal 

stretches, and of scalar invariants of vectors which endow the con­

straints with pref erred directions. The propagation conditions for 

homothermal and homentropic principal waves are derived and, unlike 

(I), linear dependence of a set of vectors associated with the con­

straints is considered. The growth equation however, ~s not treated. 

A final noteworthy feature of (I) and (II) is that all variables are 

treated as functions referred to the reference configuration, which is 

taken to be the undeformed configuration. Such an approach, based on 

material coordinates, is generally physically meaningless, but an 

exception is the case when the region ahead of the wave is at rest (as 

assumed in (I) and (II)), and the approach then makes for a less 

cluttered analysis. 

Aim of the thesis 

The aim of this contribution is to extend the analysis presented 

in (I) and (II); in a sense we re- examine and extend the analysis in. 

(I) but with the restriction of isotropy imposed as in the preliminary 

study made in (II). Ve impose a further restriction by considering 

only a subset of the type I (scalar) constraints investigated in (I); 

this restriction is however broad enough to encompass most constraints 

likely to be encountered in practice. Ve focus attention on each of 

j 
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the following topics in turn: 

( i) the theory of thermodynamically constrained materials 

developed in_ (I), and its immediate consequences for the 

nature of acceleration waves in both definite and non­

conductors; 

(ii) the propagation conditions for homothermal and homentropic 

acceleration waves in definite conductors and non-conductors 

respectively; 

(iii) the growth equations and solutions for homothermal and 

homentropic waves. 

Ve now comment on the way in which the topics (i) - (iii) are 

approached in the thesis and what is achieved. A detailed description 

of the contents of Chapters 2-9 is not presented here (since that would 

essentially involve a repetition of the introduction given for each 

chapter), but rather a brief appraisal is given of what the investiga­

tion has yielded by way of new results, insight into the topic, and the 

delineation of areas worthy of further study. 

(i) In Chapter 2 the theory of thermodynamically 

constrained materials is presented in a form that obeys the 

principle of material frame-indifference and the restriction 

of isotropy. The type I (scalar) constraints of (I) are 

presented with their directionality made explicit as in 

(II); this directionality characterizes any anisotropy due 

tb the constraints. Constraints for which such direction­

ality is absent (resp. present) are termed isotropic (resp. 

directional), and particular examples of these are intro-
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duced, namely temperature-dependent compressibility (iso­

tropic), temperature-dependent extensibility in each of two 

orthogonal directions, and temperature-dependent shearing 

(all directions). 

A new definition for constrained materials of a non­

conductor of heat is adopted here in preference to that 

given in (I) . There, a material is regarded as a non­

conductor if the heat flux vector is identically zero, and 

we note that the heat flux vector for constrained materials 

contains contributions from the type II constraints. In the 

revised definition of a non- conductor adopted here, thes,e 

contributions from the type II constraints are unrestricted. 

So for instance, a material that has zero 4eat flux every­

where except for non-zero heat flow through perfectly­

conducting fibres imbedded in it would be regarded as a 

(constrained} non-conductor in the new definition, irrespec­

tive of the heat flow through the fibres. In consequence, 

acceleration waves in non- conductors are no longer homen­

tropic in general, but are so if type II constraints are 

absent, or if all type II constraints present are orthogonal 

to the wave normal (see Chapter 3). 

A central issue raised in the discussion in Chapters 

3, 5 and 8 of homentropic waves is the question of whether 

to work in the thermal formulation of the ·constitutive 

equations, employing temperature as an independent variable 

(as is done for homothermal waves), or whether to adopt the 

entropic formulation, with entropy as an independent 
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variable as is usually done in work. on homentropic waves in 

unconstrained non-conductors (and also utilized by Reddy in 

(I), (II)). The entropic formulation has the advantage of 

conciseness for homentropic waves. However, the definition 

of type I and II constraints employs temperature and not 

entropy as an independent variable (since this is the way in 

which constraint properties are usually determined experi­

mentally) and as a result the influence of the constraints 

cannot be as easily separated out in the entropic formula­

tion as in the thermal formulation, so that valuable simpli­

fications can be obscured. These problems would fall away 

if constraints were specified in terms of entropy, in which 

case the homentropic treatment would be a close parallel of 

the thermal one. Ve choose to employ the entropic formula­

tion when brevity is an asset· (as in the derivations of the 

propagation conditions and the growth equations), and turn 

to the thermal formulation in order to facilitate comparison 

with homothermal results. In situations where waves are 

both homothermal and homentropic (i.e. are generalized 

transverse waves, as defined by Chadwick and Currie 

(1972,4)), we choose the_thermal formulation. 

Ve extend in Chapter 2 the analyses of (I) and (II) by 

considering a set of N type I constraints for which the 

associated set of constraint vectors is not necessarily 

linearly independent. 

isolated and labelled 1, 

A linearly independent subset is 

... , M , so that M ~ N . Ve then 

have constraints M+l, ... , P whose constraint vectors are 

non-zero and expressible as linear combinations of the 
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vectors making up the linearly independent subset, and con­

straints P+l, ... , N whose constraint vectors are all zero. 

The corresponding entropic formulation oi the type I 

constraint vectors is also presented in Chapter 2, but it is 

noted that the constraint vectors corresponding to the . 

constraints 1, ... , Mare not necessarily linearly indepen­

dent, unlike the situation in the thermal formulation. An 

alternative set of constraint vectors is accordingly intro­

duced in Chapter 5 that overcomes this difficulty in the 

entropic formulation. 

The propagation conditions for homothermal and homen­

tropic principal waves that are longitudinal or transverse 

are derived in Chapter 4 and 5 respectively. In both cases, 

we are able to extend the treatment in (I) and (II) to 

include the possibility of type I constraints with linearly 

dependent constraint vectors, for which case M < N . (Note 

that constraints whose constraint vectors are collinear are 

also treated in (II)). For both homothermal and homentropic 

waves, we obtain a propagation condition of Fresnel-Hadamard 

. type, with a symmetric acoustic tensor in e,ach case. 

A second propagation condition is obtained in the two 

situations by evaluating the jump of the time derivative of 

the type I constraint definition across the wavefront; 

unlike the first propagation condition, there is no equiva-

· 1ent of this condition for unconstrained waves. 
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For homothermal waves {for which the second propaga­

tion condition yields the restriction M ~ 2), we discuss 

longitudinal and transverse principal wave solutions for the 

three possibilities M = 0,1,2. In particular we discuss the 

influence of directional and isotropic constraints on both 

the strong ellipticity condition for the acoustic tensor and 

on the speed of propagation. It is found that directional 

constraints which allow longitudinal waves (these are not 

possible if isotropic constraints are present) have no 

effect on the wave speed. 

lie then consider plane, cylindrically symmetric and 

spherically symmetric waves in materials subject to 

irrotational plane, cylindrical and spherically symmetric 

deformations respectively. lie then use both the definitions 

of the constraints as well ·as the second propagation con­

dition in ·a detailed study of the restrictions {if any) 

placed on the deformations by the constraints, acting singly 

or in combination. It is found that the deformation is 

often restricted to 

uniform dilatation. 

either 

These 

homogeneous deformation 

homothermal results 

or 

are 

illustrated using the four constraint examples mentioned in 

{i) acting singly or in combinations of two, three or four; 

it is seen that linear dependence of the constraints is a 

common occurrence. 

lie now turn to a central problem of this investiga­

tion, which is revealed in the derivation of the first 

propagation condition, although it does not cause a diffi-
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culty there and is accordingly only discussed in Chapter 6. 

Each constraint has an associated s~alar multiplier (such as 

the arbitrary hydrostatic pressure in the constraint of 

incompressibility), and the jump of the time derivative of 

these multipliers for the type I constraints 1, ... , P 

appears in the derivation. Although an expression is 

obtained for the sum of these jumps, expressions for the 

individual jumps are obtainable in the event that only the 

constraints 1, ... , M whose constraint vectors are linearly 

independent are present. No information is obtainable for 

the jumps corresponding to the type I constraints P+1, ... , 

N . This has ramifications for the derivation of the growth 

equation in Chapter 6. 

The derivation of the first propagation condition for 

homentropic waves is given in Chapter 5 in the entropic 

formulation and, as in the homothermal case, expressions for 

the jumps in the time derivatives of the scalar multipliers 

are individually obtainable if only the constraints 1, ... , 

M are present, and obtainable as a sum if constraints 

1, ... ,P are present. (The details of the derivation of 

these results differs, however, from the homothermal case). 

Nevertheless we are able to obtain the first propagation 

condition and discuss results for longitudinal and trans­

verse principal waves for M = 0,1,2,3. It is noted that 

constraints are often required to be mechanical, and in some 

cases, this leads to the result that transverse waves are 

necessarily both homothermal and homentropic. They are 

therefore examples of generalized transverse waves and are 
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most conveniently treated using a thermal formulation. 

Lastly, in a discussion of the influence of isotropic and 

directional constraints on the propagation conditions, we 

demonstrate the use of the thermal formulation of the 

propagation conditions for homentropic waves; this facili­

tates comparison (for M ~ 2) with the homothermal results 

and displays more easily the influence of the constraints on 

the solution. 

The derivation of the growth equation for homothermal 

longitudinal and transverse waves is given in Chapter 6, 

assuming the material ahead of the wave to be at rest and at 

constant temperature. Ve remove the restriction of homo­

geneous deformation adopted in (I) (except where this is 

required by the presence of a particular constraint) and 

. present results for plane, cylindrical and spherical waves 

in materials subject to the plane, cylindrical and spheri­

cally symmetric deformations specified at the end of Chapter 

4. (Only plane waves are treated in (I)). Ve are able to 

obtain the growth equation for longitudinal principal waves 

in the presence of the thermomechanical constraints 1, ... ,N 

if type II constraints are present and at least one type II 

constraint is not orthogonal to the wave normal. If type II 

constraints are absent, then the difficulty of evaluating 

the jumps discussed in (ii) forces us to restrict attention 

to the following situations: 

if ... the constraints M+ 1, •.. , P are present, then all 
'· . 

constraints present must be mechanical; 
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if the constraints P+ 1, ... , N are present, these 

particular constraints must always be mechanical; 

if the constraints 1, ... ,Mare present, these may be 

thermomechanical (as long as constraints M+1, ... , P 

are absent). 

For transverse waves, evaluation of these particular jumps is not 

required and consequently only a relatively minor restriction is 

placed on the thermomechanical behaviour of the constraints M+1, 

... , P . In all cases the analysis represents an improvement on 

(I), where only constraints for which the associated vectors are 

linearly independent are considered. 

Solutions to the growth equations for longitudinal and transverse 

principal waves are shown in Chapter 7 to be a Bernoulli and 

linear first order equation respectively, in close analogy with 

corresponding results in (I) and in earlier investigations for 

materials subject to mechanical constraints or unconstrained. The 

analysis of the Bernoulli equation in the context of acceleration 

waves (see review by Chen (1973)) ·is appropriate for longitudinal 

waves and is briefly presented. Ve are particularly concerned in 

ascertaining the general nature of the constraint influence on 

both the longitudinal wave and transverse wave solutions; for 

longitudinal waves, type I constraints (which must be directional) 

affect only the curvature terms for cylindrical and spherical 

waves. For transverse waves, isotropic constraints are permitted, 

and directional constraints influence both the wave speed and the 

curvature terms. For homogeneous deformation, plane waves have 
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constant amplitude and are independent of the constraints. In 

certain circumstances the growth of cylindrical waves in 

homogeneously deformed media and spherical waves in a situation of 

uniform dilatation is also independent of constraint influence, 

and of material properties. 

Ve present in Chapter 8 a derivation of the homentropic growth 

equation and its solution for longitudinal and transverse 

principal waves travelling in media that are at rest and in a 

state of constant entropy ahead of the wave. No restriction to 

homogeneous deformation or to plane waves is made, as in (I), and 

we are able to find an alternative to the method empJoyed in (I) 

to remove terms involving a particular higher- order jump. As 

usual, we do not initially restrict attention to the type I 

constraints 1, ... , M as in (I), but we find that the growth 

equation involves many terms containing jumps in the time 

derivative of the type I constraint multipliers. A detailed 

discussion of the conditions under which these jumps can be 

evaluated is made for M = 0,1,2,3 using results from Chapter 5; we 

find that although no solutions are obtainable if the constraints 

M+1, ... , P occur, solutions are always obtainable if the linearly 

independent constraints 1, ... ,M are present and, in certain cases, 

if the set P+1, ... , N is present (as in for instance, the case M 

= O, when these are the only constraints present). In some 

situations it is found that homentropic waves are necessarily 

homothermal as well, and are therefore generalized transverse 

waves. They are most easily treated by employing the thermal 

formulation of Chapters 6 and 7 instead. 
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A similar difficulty is found . regarding the type II constraint 

multipliers, which (unlike the homothermal case) occur in the 

homentropic growth equation for curved ~avefronts. By restricting 

the set of type II constraints under consideration, we are able to 

remove the difficulty; this restriction is not so severe as to 

exclude the type II constraint examples of either perfect 

conductivity or perfect conductivity in a particular direction, .as 

considered by Gurtin and Podio-Guidugli (19!3). It should be 

noted however, that this problem with the type II constraints does 

not arise in (I), due to the different definition of a non­

conductor adopted there. 

Use of the above results leads to the growth equations for 

longitudinal and transverse waves_, both of which are seen to be 

Bernoulli equations. The analysis given. in Chapter 7 of the 

solution applies ,and further discussion is restricted to ·the 

nature of the influe~ces of the constraints on the solution. The 

equations are more cumbersome than their homothermal counterparts, 

partly because the jumps in the constraint parameter derivatives 

are now non- zero in general, and also because the type I con­

straints are present in many terms. Because of this, we do not 

present a discussion of solutions for particular wavefronts or 

constraints (although it is clearly possible to obtain such 

solutions) for the case M ~ 1 we conclude the chapter though by 

showing that for M = O, the longitudinal growth equation is 

considerably simplified (transverse waves are both homentropic and 

homothermal and are therefore not treated here), and we obtain the 

result that the growth of plane waves and spherical waves is not 

influenced by the constraints. This result also holds fo~ 
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cylindrical waves if the (directional) constraints present obey a 

particular criterion. 

Ve note finally that the subject of Appendix A is the derivation 

of the fourth- and sixth- order tensors of elastic moduli when 

isotropic and directional constraints are present. Ve employ a 

method due to Durban (1978) for the differentiation of tensor 

functions: this method is considerably simpler than those of 

Chadwick and Ogden (1971a,b) and Bowen and Vang (1970,2) (as used 

in (II) for the fourth-order tensor case) when directional 

constraints are present. Appendix B is devoted to a derivation of 

the physical components of the gradient of the deformation tensor. 

In this discussion of the thesis, for the sake of brevity few 

references have been given to earlier work other than that of (I); many 

results obtained by the authors mentioned in the review given earlier 

are retrieved as special cases of the present work. 

A slightly earlier version of the work on homothermal waves in 

definite conductors presented in Chapters 2-4, 6-7 of this thesis has 

been published (Bleach and Reddy (1987)). 

Notation 

The space of tensors of rank mis-denoted by 1 : the special cases 

of scalars .(m=O) and vectors (m=l) are denoted by R and V , respective­

ly. Ve seldom need to be specific about the smoothness properties of 

fields of tensors defined on the unbounded domain n and the time inter­

val [O, T] , so by a corruption of notation we emplo~ the symbol rm to 
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denote also the space of tensors of rank m , whose components are 

functions defined on n x [O,T] . 

A tensor T of rank m is an m- linear function on ym = Vx . . . xV 

(m times). For any T = u ® v ® • • • (m times) e rm. we define the 

m-linear map by 

T ym -1 R u ® v ® •••••••• (a,b, ... ) = (u·a)(v·b) .... 

Relative to an arbitrary basis g
1
. we than have T = Tij ... g. ® g. ® ••• 

1 J 

where the contravariant components Tij ... of Tare found from 

Tij · · · = T(gi ,~, ... ) (m indices) 

gi being the reciprocal basis of gi . Ve also employ covariant com­

ponents Tij ... relative to the basis gi , and mixed components Tk~::: 

relative to combinations of gi , gk . Tensors are also conveniently 

regarded as linear vector- or tensor- valued maps. For example, the 

second-rank tensor u ® v and the fourth-rank tensor S = u ® v ® v ® z 

may be defined by 

T V -1 V (u ® v)(a) = u(v·a) 

s 12 
-I 12 u ® v ® v ®. z(a ® b) = (v·a)(z·b)u ® v 

Ve employ both definitions of tensors, making clear if necessary 

which representation is being used. 
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Summation convention 

Ve employ the following form of the summation convention for 

vector and tensor indices (Roman miniscules are summed over 1,2,3; 

Greek majuscules over 1,2): 

(i) if an index appears on both sides of an equation it is not 

summed; 

(ii) indices that occur twice in an expression on only one side 

of an equation are summed; 

(iii) indices occurring more than twice in an expression have the 

summation explicitly shown, where such summation is 

appropriate. 

So, for example, in equation (2.3) no summation is implied over 1 or 

j', but in (2.4), summation is implied over both i and j : 

(2.13 bis) 

- ax.1 . 
F = Grad x = ~. g. ® GJ 

axJ 1 
(2.46 bis) 

In (2.7) however, the summation is explicitly shown: 

F = ~ a. q. ® P· l 1 1 1 
· (2.7 bis) 

i 

The summation convention presented above is also used for the 

indices (Greek miniscules) labelling the· type I and type II 
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constraints, so that rn (2.45) and (2.46) 4 for example, we sum over 

a= 1, ... ; N and P = 1, ... , L respectively: 

(2.45 bis) 

((2.46) 4 bis) 

Finally, we also use the above convention for the indices (Roman 

majuscules) labelling the vectors eA that characterize the direction­

ality of the constraints, so that, for example, we sum over A, B in 

ca= Pfs l ai(pi·eA)(n·es)qi (2.89 bis) 
1 

where clearly we also sum over 1 but not over a in terms of the 

summation convention. Ve note finally that, case (iii) above only 

occurs in what follows for the vector and tensor indices i,j, ... , and 

not the constraint indices a,p, .. or A,B, .... 



CHAPTER 2 

CONSTITUTIVE EQUATIONS FOR CONSTRAINED 
ISOTROPIC MATERIALS 
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Ve review the description of a body and its motion, and describe 

the theory of unconstrained thermoelastic materials in isotropic media, 

following the approach of Coleman and Noll (1963), Chadwick and Seet 

(1971) and Gurtin (1974). Attention is then focussed on constitutive 

theories for elastic materials subject to internal thermoelastic 

constraints. The theories of Green, Naghdi and Trapp (1970) and of 

Gurtin and Podio-Guidugli (1973) are considered and then the 

alternative theory proposed by Reddy in (I) is dealt with in detail~ 

It is presented here in the form appropriate to isotropic materials, 

taking into account the work of Reddy in (II) and with further 

modifications. As in (I), we classify the constraints as being of type 

I or type II according to whether they . are defined by a scalar-. or 

vector-valued function respectively. Attention is restricted here to a 

particular subset of type I constraints which is broad enough to cover 

those constraints commonly found in practice. 

Ve follow (I) and consider constrained materials that are either 

definite or non- conductors, but adopt a different definition of a 

non-conductor for constrained materials to that given by Reddy in (I). 

It will often (though not invariably) prove convenient when considering 

wave behaviour in non-conductors to employ entropy rather than· 

temperature as an independent variable in the constitutive equations 

\ 
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and this form of the constitutive equations {the entropic formulation) 

is accordingly presented here. 

The chapter concludes with the definition of a constraint vector 

associated with each of the type I (scalar) constraints. Ve extend the 

treatments in (I,II) by allowing the set of constraint vectors to be 

either fully active {if the set of constraint vectors is linearly 

independent) or partially active {the constraint vectors form a 

linearly dependent set) or inactive (each constraint vector has tlie 

value zero). The corresponding set of constraint vectors in the 

entropic formulation is also introduced, but it is noted that a further 

modification of this set (presented in Ch.apter 5) proves to be more 

convenient when the entropic formulation is to be employed. 

Description of the motion 

Ve consider a body B and identify the position of each particle of 

B by its position vector I in a fixed and undeformed reference 

configuration at time t=O . The subsequent position at time t of a 

particle initially located at I is found from the motion x = x{X,t) , 

where x(X,O) = I For each value of t , the function x(X,t) is 

invertible, so that I = x- 1 {x, t) where x- 1 is the inverse of x . 

An arbitrary set of orthogonal curvilinear coordinates 

xi {i = 1,2,3) is chosen an~'the position vector I of particles in the 
/ 

reference configuration is' a function of these coordinates, that is, 



I 

The tangent basis vectors Gi are thus given by 

G. = 
l 

ax 
ax1 

The dual basis vectors G1 are uniquely defined by 

G. ·GJ = 6~ 
l l 

a{ being the Kronecker delta, 

23 

(2.1) 

and components of the metric tensor Gij and its inverse Gij relative to 

{Gi} and {Gi} respectively are 

G .. = G. ·G. 
lJ l J 

A co-ordinate system {xi} , generally distinct from {Xi} , is used 

to locate particles in the current configuration, so that 

!, ' 

The corresponding tangent basis vectors gi , dual basis vectors gi 

metric tensor components g .. and its inverse g1J are defined 
lJ 

respectively by 
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g. ax. = axi 1 

g. ·~ = 8~ .1 ~-

g .. = g. •g. ' gij = gi·~ 
lJ 1 J 

(2.2) 

The motion of the body can be described alternatively by the set 

of functions 

(2.3) 

Any field variable x , say, associated with the body may be 

represented either in the spatial form 

x = x(x,t) 
1 . 

or x(x ,t) 

or using (2.3), it may be represented in the material form (Truesdell 

and Noll, (1965), Section 66) 

A • 

X = x(I,t) or i(X1 ,t) 

The deformation gradient F is defined by 

- ax_l . 
F = Grad x = -. g. ® GJ 

·, axJ 1 
(2.4) 

According to the polar decomposition theorem, F can be written as 

F = R U = V R (2.5) 
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where R is· a proper orthogonal tensor known as the rotation tensor and 

U and V are the (positive definite) symmetric right and left stretch 

tensors respectively. . The stretch tensors have the spectral 

representations (see for instance Chadwick {1976)): 

U = \' a. P· ® P· l 1 1 1 

1 

where ai are proper numbers of U and V and are known as the principal 

stretches; the triad of proper vectors {pi} defines locally a set of 

principal axes in the reference configuration and the corresponding 

triad { q) defines locally a set of principal axes in the current 

configuration. These two sets· of principal axes will be used 

extensively later; they are related by 

q. =RP· 
1 1 

The rotation tensor R is expressible as 

R = q. ® P· 
1 1 

and so we can write the deformation gradient F as 

F = l ai qi ® pi 
i 

{2.6) 

(2.7) 

The (symmetric) right and left Cauchy-Green strain tensors are defined 

respectively by 

(2.8) 
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here and henceforth a superscript T denotes the transpose. Using (2.7) 

we find that C and B have the spectral representations 

C = u2 = ~ a~ p. ® p. , B = v2 = ~ a~ q. ® q. 
l11 1 l11 l 
i i 

Thermodynamics of unconstrained elastic materials 

Ve characterize a thermodynamic nrocess (see Chadwick and Seet 

(1971), Gurtin (1974)) by the motion x , the temperature 8 , the free 

energy ¢ , the first Piola-Kirchhoff stress tensor S , the specific 

entropy 1/ , the referential heat flux vector q , the external body 

force b and the rate of heat supply r . The local form of the laws of 

,balance of linear and angular momentum and of energy are respectively 

Div S + p b = p x (2.9) 

(2.10) 

- p(¢ + 1/ 0 + ~ 8) + S·F - Div q + p r = o (2.11) 

where p is the density in the reference configuration, Div is the 

divergence operator relative to I and a superimposed dot denotes 

differentiation with respect to time holding I constant. The 

corresponding local form of the entropy production inequality is 

- p ( ¢ + 1/ 0) + S · F - 0- 1 q ·Grad 8 ~ 0 (2.12) 
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The thermodynamic processes that the material can undergo are 

restricted by the set of constitut~ve equations for that material. For 

the case of an unconstrained thermoelastic material, the equations are 

assumed to have the form 

¢ = ¢0 (F, O, Grad 0) , S = s0 (F, 0, Grad 0) , 

T/ = 11° (F, 0, Grad 0) , q = q0 (F, 0, Grad 0) . (2.13) 

However, every admissible thermodynamic process must satisfy the 

reduced dissipation inequality (2.12). Necessary and sufficient 

conditions that this is so for an unconstrained thermoelastic material 

are firstly that ¢0 , s0 and 11° be independent of Grad 0 , i.e. 

¢ = ¢0 (F, 0) , S = S0 (F, 0) , T/ = 11°(F, 0) 

0 . 
secondly that ¢ determines S and T/ by 

arf;o s = p 7JF 

T/ = - ~ 

and finally that q0 obeys the heat conduction inequality 

q0 (F, 0, Grad O)·Grad 0 ~ 0 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

These results were obtained for the general case with mutual body 

forces present by Gurtin and Yilliams (1971); see also the review by 
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Gurtin (1974). Ve consider throughout only the influence of external . 

body forces, however. 

Some consequences of (2.14) - , (2.17) are as follows. 

equation (2.11) takes the form 

p 0 ~ = - Div q + p r 

and the stress S and entropy ~ obey the Maxwell relation 

The energy 

(2.18) 

(2.19) 

The absence of a piezo-caloric effect is made manifest through the fact 

that q must obey 

q0 (F, 0, 0) = 0 (2.20) 

and finally the thermal conductivity tensor I , defined by 

- - ago 
I - a(Grad 0) Grad 0 = 0 

(2.21) 

is positive semi-definite, i.e. v·I v ~ 0 for all vectors vjO . 

Further restrictions on the constitutive equations arise as a result of 

the principle of material frame-indifference of the observer, that is, 

invariance under every transformation of the form 

x -I q x + c (2.22) 
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where the orthogonal tensor q and vector c are in general time­

dependent. Under a change of observer as expressed by (2.22), the 

variables characterizing the process transform as (see Gurtin (1974)) : 

s -I q s (2.23) 

(Note that the heat flux vector is invariant since it is measured per 

unit area in the reference configuration). In addition, (2.22) and 

(2.23) imply that F and Grad 0 transform according to 

F -1 Q F , Grad 0 -1 Grad 0 (2.24) 

the latter being invariant since it is the gradient relative to the 

reference configuration. 

Material frame-indifference dictates that the functions appearing 

in (2.14), (2.17) satisfy 

¢0 (F, 0) = ¢0 (q F, 0) 

s0 (r, 0) = qTs0 (q F, 0) 

11°(F, 0) = 11°(Q F, 0) ' -

q0 (F, 0, Grad 0) = q0 (q F, O, Grad 0) (2.25) 
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Ve make use of the polar decomposition theorem and follow a standard 

procedure (Carlson (1972)) to obtain the reduced form of the constitu­

tive equations. These are: 

¢ = ¢0 (C, 0) 

-o S = S (C, 0) 

1J = n°(C, 0) 

q = q_0 (C, 0, Grad 0) (2.26) 

where C is the right Cauchy-Green strain tensor defined in (2 .. 8). 

Ve conclude the discussion of unconstrained thermoelastic 

materials by imposing the condition of isotropy and finding the 

appropriate form of the constitutive equations. An unconstrained 

material is isotropic if it possesses a reference configuration (called 

a'.n undistorted state) for which the isotropy group of the material 

contains the full orthogonal group (see for example Chadwick (1976)). 

Ve require therefore that the response to a deformation F from an 

undistorted state be indistinguishable from the response to a 

deformation F q from that state. The condition of isotropy when 

applied to ¢0 and q_0 (see (2.26) 1 4), yields the following relations 
' 

and 

q q0 (c, 0, Grad 0) = q0 (q C qT, 0, Q Grad 0) (2.27) 

. ! 
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Hence the scalar ¢0 and vector q_0 are isotropic functions (Truesdell 

and Noll (1965), Sections 8, 47; Chadwick and Seet (1971)). Note that 

only ¢ and q are considered here; since S and ~ are obtainable from ¢ 

by (2.15) and (2.16) respectively. 

The representation theorems for isotropic functions given by 

Truesdell and Noll (1965, Sections 10-13) and by Vang (1969,70) (see 

also Smith (1970)) can then be used to write ¢0 as 

-o 
¢ = ¢ ( t.c, O) (2.28) 

where t.c = (I1,r2,r3) is the set of scalar invariants of C r1 = tr C, 

I2 =~{(tr C) 2 - tr c2} , and r3 = det C. 

The corresponding representation for q is (see also 'Chadwick and Seet 

(1971)) 

(2.29) 

where 

~1 = I Grad OI, ~2 = IF Grad OI, ~3 = IC Grad OI 

Thermomechanically constrained elastic materials 

/ 

The original theory of Noll (Truesdell and Noll (1965), Section 

30) for mechanically constrained elastic materials expressed the total 

stress in a constrained material as the sum of an undetermined reaction 

plus a determinate stress, and this general approach underlies all the 
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later theories described below. Cohen and Vang -(1987) claim that such 

theories are not entirely satisfactory since the determinate stress is 

not unique and so should not be used to formulate intrinsic properties 

or conditions on the material model such as material frame-indifference 

and material symmetry. They develop a theory for mechanically 

constrained elastic materials that is independent of the concept of 

determinate stress, and note that it is theoretically possible that for 

some constrained materials, a determinate response function that 

specifies both the conditions of material frame-indifference and 

material symmetry cannot be found. They are, however, unable to 

furnish an example of a constraint having this property; indeed, their 

analysis of commonly used constraints, acting singly and in 

combination, shows that these constraints do not cause such problems, 

and accordingly we see no need to abandon the approaches described 

below. 

Ve develop a constitutive theory for elastic materials subject to a set 

of internal thermomechanical constraints. The first such theory was 

that of Green, Naghdi and Trapp (1970), with further contributions by 

Trapp (1971). They assume the constraint equations to be of the form 

(here presented in our notation, relative to the reference 

configuration and incorporating the dependence on lJ used by Trapp 

(1971)): 

!·F + P lJ + c·Grad 0 = 0 (2.30) 

Here ! = l(F, 0) is a second order tensor, c = c(F, 0) is a vector and 

P = ~(F, 0) is a scalar. 
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They further assume that constraint contributions Sc, r/, qc to the. 

stress, entropy and heat flux respectively are such that there 1s no -
entropy production due to the constraints, that is, 

c . c . -1 c 
S · F - p 1J 0 - 0 q ·Grad 0 = 0 (2.31) 

where here and henceforth a superscript c denotes the contribution from 

the constraints. Both of these assumptions are the appropriate 

generalizations of the general mechanical theory of internal 

constraints developed by Noll. 

Gurtin and Podio-Guidugli (1973) dev~lop a general thermodynamic 

theory of constrained materials which is essentially .based on 

constitutive equations of the form 

'= ,0 (F, 0, Grad 0) 

S = S0 (F, 0, Grad 0) + Sc 

1J = 11°(F, 0, Grad 0) + 1/c 

q = q0 (F, 0, Grad 0) + qc (2.32) 

where here and henceforth a superscript zero denotes a function with no 

explicit constraint dependence, such dependence being contained in the 

functions with superscript c . (Ve note, however, that functions such 

as , 0 , s0 , 11°, q0 are influenced by the constraints through the effect 

. of the constraints on F, 0, Grad 0). Gurtin and Podio-Guidugli assume 

the existence of a reaction set (Sc, - 1/c, - U- 1 qc) and use the 
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entropy production inequality (2 .12) to obtain as a consequence of 

their theory the assumption (2.31) of Green, Naghdi and Trapp. 

Furthermore, Gurtin and Podio- Guidugli are able to strengthen this 

result to 

c . c . s ·F - p n o = o 

(2.33) 

Since (2.31) holds, the entropy production inequality (2.12) is 

independent of the constraints and it reduces to 

·o o · o · -1 o - p(¢ + q 0) + S ·F - 0 q ·Grad 0 ~ 0 (2.34) 

A third theory, that of Andreussi and Podio-Guidugli (1973), 

imposes the additional restriction that the constraints make zero 

contribution to the energy equation. A disadvantage of this 

restriction is that the resulting theory does not reduce to Noll's, 

formulation for purely mechanical constraints. These authors also add 

a constraint term to the free energy function ¢ , so that 

¢ = ¢0 (F, 0, Grad 0) + ¢c (2.35) 

Note however that Gurtin and Podio-Guidugli omit the term ¢c, following 

Green, Naghdi and Trapp, on the grounds that f , if included, is 

eventually found to be constant in every process. 

Ve now develop the constitutive theory for constrained thermo-

elastic materials proposed by Reddy (I,II). This theory is a 
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development of that of Green, Naghdi and Trapp 1n the way the 

constraint equations are defined and exploits the results (2.33) of 

Gurtin and Podio-Guidugli. Instead of assuming the constraint 

equations to be of the form (2.30) as proposed by Green, Naghdi and 

Trapp, Reddy makes the following subdivision. The material is assumed 

to be subject to N internal constraints of the form 

a= 1,2, ... , N (2.36) 

and L internal constraints of the form 

{J = 1,2, ... , L (2.37) 

where ~a and z{J are respectively scalar-. and vector- valued functions. 

The vector fields eA (A = 1,2, ... ) are assumed.to be time independent 

and of unit length, so 

{2.38) 

These vectors characterize the directionality of the constraints, as 

for example in the constraints of temperature- dependent extensibility 

(which obeys (2.36)) and of perfect conductivity in some direction e 

(which obeys (2. 37)). Of course, not all the eA need appear in each 

constraint. Ve will return to the case of particular constraints 

later, but here it suffices to note that an advantage of the above 

subdivision is that constraints commonly fall into either of the 

categories (2.36) or (2.37), rather than appear in the more general 
. r 

form {2.30). Following Reddy, we call constraints expressible in the 

form {2.36) and {2.37) type I and type II constraints respectively. 
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The explicit inclusion of possible constraint directionality through 

the eA in the definitions (2.36,7) differs from the original develop­

ment in (I) - (2.36) though, is used in its present form in (II). The 

inclusion of such vectors is important here because we shall be 

concerned with isotropic materials and the vectors eA characterize any 

anisotropy due to the constraints. As we will see, the presence of the 

eA in (2.36,7) does not require substantial modification of the 

constitutive theory presented ·in (I). 

The set of constitutive equations obeyed by a material subject to 

type I and type II constraints is given below. This is a slight 

modification of the set (2.32) proposed by Gurtin and Podio-Guidugli 

(1973) and is 

o -a 
-~ = ~ (F, O, Grad 0) +,\a¢ (F, O, eA) 

q = q0 (F, 0, Grad 0) + 7p ~(F, 0, eA) (2.39) 

where ,\a(X,t) and 7p(X,t) are arbitrary scalar fields; here we assume 

summation over a and P (for N type I and L type II constraints 

respectively) from the outset. Substitution of (2.39) 1_4 and the type 

II constraint equation · (2.37) in the entropy production inequality 

(2.12) and use of the f~ct that ,\a and 7p are arbitrary yields 

(2.40) 

L_ _____ _ 
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and 

a · a · - p q 0 + S ·F = 0 (2 .41) 

corresponding to Gurtin and Podio-Guidugli' s assumption (2. 32) 1 and 

their result (2.33) 1 respectively. Equation (2.40) is also consistent 

with the definition (2.36) of type I constraints. Now the rate form of 

(2.36) is 

/Na a~a or·F + 7J7J o = o (2.42) 

so for consistency with (2.39) and (2.41) we must have 

a ~~a S = p F 

a - fJ¢a 
q - - ao 

and 

(2.43) 

Since the entropy production inequality (2.34) is not affected by 

the constraints, it can be used as described in the unconstrained case 

(see (2.13) - (2.18)) to obtain restricted forms of ¢0
, s0

, q0 and q0 
. 

The constitutive equations (2.39) then reduce to 

¢ = v0 (F, 0) 
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q = q0 (F, 0, Grad 0) + 1p zp (2.44) 

A more convenient representation of (2.44) is obtained by defining an 

augmented free energy function ¢ by 

(2.45) 

The set of constitutive equations (2.44) can then be written more 

concisely as 

(2.46) 

and we also have the relation 

(2.47) 

The set of constitutive equations in this form will be 

particularly convenient later when we construct a conjugate set with q 

replacing 0 as an independent variable. 
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The fact that the entropy production inequality (2.34) has no 

contribution from the constraints has the following further con­

sequences, which parallel those for unconstrained materials quoted in 

(2.18) - (2.21). Specifically, the energy equation and entropy 

production inequality take the respective forms 

p 0 q = - Div q + p r (2.48) 

and 

q0 ·Grad 0 ~ 0 (2 .49) 

while the Maxwell relation can be expressed in terms of (2.46) 2,3 as 

I as _ ~· 
OU - - P BF (2.50) 

The results (2.20) and (2.21) that express respectively the absence of 

a piezo-caloric effect and the positive semi-definiteness of the 

thermal conductivity tensor carry over unchanged . 

. As in the unconstrained case, the set of constitutive equations 

(2.46) must obey the principle of material frame-indifference. Ve note 

that under transformations of the form (2.22), eA and q are invariant 

as they are defined relative to the reference configuration; this, 

together with the use of standard procedures for invoking frame­

indifference (recall (2.22) - (2.26), see also Carlson (1972)) leads to 

the following reduced forms of the constitutive equations: 
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(2.51) 

Ve now define the two classes of constrained heat-conducting 

materials with which we will be concerned for the remainder of this 

thesis. 

A definite conductor of heat is a material for which 

v· (sym K)v > 0 (2.52) 

for all non-zero vectors v and where sym K denotes the symmetric part 

of the thermal conductivity tensor (2.21) (see also the discussion 

following (2.50)). 

A non- conductor of heat is defined for constrained materials to be o.ne 

for which 

q0 (F, 0, Grad 0) = 0 (2.53) 

i.e. 

(2.54) 
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This definition is in contrast with that used in (I), where a non­

conductor was defined to be a constrained material for which 

0 /:i' 
q :::: q + 1p zP = Q 

The present definition is to be preferred as it implies that the 

material is a non-conductor in all directions except z/3 . For example, 

heat-conducting fibres passing through an otherwise non-conducting 

material rn some direction e give the constraint of perfect 

conductivity in the direction e . 

Ve conclude this discussion of the constitutive equations (2.39) 

proposed by Reddy in (I) for constrained thermoelastic materials by 

imposing (as in (II)) the condition of isotropy. As in the 

unconstrained case it is only necessary to obtain the appropriate form 
I 

of ¢' and q' , since S and 1/' can be found from ¢' through (2.46) 2 and 

(2.46) 3 respectively. 

The constraint vectors eA characterize the directionality of the 

constraints and this directionality must be accommodated within our 

definition of an isotropic material. If we ref er back to the 

unconstrained case, an analogous situation exists in the case of the 

temperature gradient Grad 0 , which also defines a field of directions 

within the body. In that case, the material is regarded as isotropic 

if after an arbitrary rotation q of the reference configuration, the 

material response is unchanged provided that the vector Grad 0 has also 

been rotated through q , 

i.e. Grad 0 ~ q Grad 0 
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The constraint vectors eA define particular (fixed) directions in 

the body which is otherwise isotropic. Ve require therefore that the 

material response be unaffected by an arbitrary rotation Q provided 

that the vectors eA are also rotated through Q , that is, 

This approach is also adopted by Spencer (1972) in a discussion of the 

purely mechanical case of fibre- reinf arced materials. Ve note that 

Gurtin and Podio-Guidugli {1973), however, exclude the directional 

vectors eA completely from their discussion of isotropy. 

Ve require for an isotropic constrained thermoelastic material 

that 

and 

I 

(Ve restrict atention to ¢', q', since S and ~, are obtainable from ¢' 

by (2.46) 2,3). Consequently, the functions~ and q defined in (2.51) 1 
and (2.51) 4 respectively satisfy the following relations: 

(2.55) 

and 
T . = q(Q C q , 0, q Grad 0 , 1p, q eA) 

(2.56) 
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that is, ¢ .and q are isotropic scalar- tnd vector-valued- functions, 

respectively (Trµesdell and Noll (1965), Section 8). Results on the 

representation of isotropic functions ((II), Truesdell and Noll (1965), 

Sections 10-13, Vang (1969, 70), Smith (1970)) can be invoked and we 

find 

- . -o -a -
¢(C, 0, Aa' eA) = ~ (tc, 0) + Aa ~ (ic, 0, e!B' f!B' kAB), 

(2.57) 

where 

(2.58) 

(2.59) 

where "l' "2' "3 are as defined fo~lowing (2.29). 

Use of (2.46}2 3 , (2.57) and (2.59) together with the definitions of 
' . -I ·.. , 

S and TJ' from ,(2.51-)
2

, 3 enables us to _write the constitutive equations 

for isotropic constrained thermoelastic materials - in their final form 

as follows: 

(2.60) 

'- _.:. 

·: ', 

- ~ ' ' ·. ' ' 

-- -~----"-~' ------~- ---~~-~ ---------------'--_2c.-'-"'--"'--_:__c___-~c____"'.'.______'._____'._~~~~~"'----"-2-'~"-''._:_' . --'-"·\;~', !""-J~ 
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(2.62) 

q = qO(ai' 0, Kl' K2' K3) 

+ lp zP(ai, O, Kl' K2' K3' eAB' fAB' kAB) (2.63) 

Equations (2.60- 63) are presented in the notation to be used in 

the remainder of the thesis, and for convenience the same symbol is 

used to denote the function ¢ and its value. The derivation of the 

final form of (2.61) is given in (II) (see (2.22) there), and summation 

is assumed here and henceforth over repeated indices A, B. In 

(2.60-63) the constraints satisfy 

(2.64) 

or 

(2.65) 

1n the case of type I and II constraints respectively, with the 

dependence on ai in (2.60) - (2.65) being symmetric. 

Isotropic and directional type I constraints 

Ve now turn our attention to the general representation (2.36) of 

type I constraints and define restricted subsets of this set of con-
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straints that are still sufficiently general to accommodate a wide 

variety of constraints found in practice. In particular, we restrict 

attention to the following two classes: 

( i) Isotropic constraints, which are those expressible in the 

form 

(2.66) 

An example of such a constraint is temperature-dependent 

compressibility (Trapp (1971), Gurtin and Podio-Guidugli (1973)): 

(2.,67) 

where e1(0) is a scalar-valued function of temperature. 

(ii) Directional constraints, which are of the form 

(2.68) 

and which are further restricted by the requirement that de~endence on 

f AB is to be linear, so that 

' . (2.69) -

where for each a , P~B is a symmetric matrix of constants. An example 

of a directional constraint is temperature-dependent extensibility in a 

·-...... 
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direction e1 (Trapp (1971)) defined by the condition 

(2.70) 

where e2(0) is a scalar-valued function of temperature. 

The constraint of temperature-dependent shearing is now considered 

in the context of the above definition of directional constraints. 

This constraint is a generalization of the orthogonality- preserving 

(mechanical) constraint (Gurtin and Podio-Guidugli (1973)), and 

constrains the angle /J between two directions F e1 and F e2 in the 

current configuration to be a function of both the angle a between e1 

and e2 in the referen~e configuration and the temperature. Since 

and 

the constraint can be written as 

(2.71) 

where {3 is a scalar-valued function of temperature and the angle a . 

This clearly does not obey (2.68) or (2.69), but there are two special 

cases of (2.71) which do. Firstly, if the temperature-dependent 

extensibility constraint (2. 70) holds in the two directions e1 and e2 
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then (2.71) reduces to 

(2.72) 

where e3 is a scalar-valued function of temperature and the angle a . 

Secondly, the mechanical orthogonality-preserving constraint discussed 

by Gurtin and Podio- Guidugli ( 1973) (for which e12 and f 12 are zero) 

can be written simply as 

(2.73) 

Entropic formulation of the constitutive equations 

For the analysis of wave propagation and growth 1n isotropic 

definite conductors, the set of constitutive equations is appropriately 

taken to be (2.60-3) with the constraints obeying (2.64) or (2.65). In 

the case of non- conductors though, it proves more convenient to con­

struct a set with the specific internal energy t and 1/ replacing ¢ and 

0 as the independent variables. This results for the unconstrained 

case in constitutive equations of the form 

£ = €(F, 11) 

8€ s = P HF 

0 - 8€ - 81; 
q = q(F, 1J, Grad 0) (2.74) 
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where 

E = ¢0 
+ 1/ 0 (2.75) 

is the specific internal energy (see Chadwick and Currie (1972), (I), 

(II)). 

A corresponding set for constrained elastic materials was derived 

in (I). An augmented internal energy function 'f is defined by 

Differentiation of 'f with respect to F, 11, ~a then yields 

o'E 
0 = Fri 

,,,a - ae 
'f' - --or-

a 

(2.76) 

(2.77) 

(2.78) 

(2.79) 

and we complete the set by writing the heat flux q in the form 

(2.80) 

A superimposed caret will be used throughout to denote the use of 1J 

rather than 0 as one of the independent variables. 
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Ve choose the above approach for incorporating the constraints 

rather than for example expressing constraints in the form 

, 
because constraints do not usually appear in the above form, but rather 

as in the definitions (2.36,7) of type I and II constraints respective­

ly. Ve now comment on a significant difference between the two sets of 

constitutive equations which have 0 and 1J respectively as variables. 

In (2.46), for instance, the constrained part of ¢ is explicitly 

separated from the unconstrained term, that is, 

((2.46) 1 bis) 

but in the corresponding equation for e , we have 

(2.76 bis) 

where throughout we must insert 0 = O(F, 1J, Aa' eA) . Consequently it 

is not generally possible to disengage the constraint contributions in 

the same manner as in (2.46) 1. 

The restrictions on the set (2.76) - (2.80) due to material frame­

indifference can be obtained by arguments similar to those used for the 

thermal formulation; details are therefore omitted and the results are 

found to· be (see also (II)) 

(2.81) 
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Constraint vectors for type I constraints 
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(2.83) 

(2.84) 

In later chapters we will make extensive use of sets of vectors 

associated with the constraints. For convenience we describe these 

vectors and their properties here. 

Given a set of type I constraints 

a=1, ... ,N (2.36 bis) 

and a unit vector n, we define the set {ca(n)}~=l of vectors by 

a ipa c (n) = F n a=1, ... ,N (2.85) 

In subsequent chapters the vector n appearing in the definition of 

ca(n) will be the normal to a singular surface or wavefront. 
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It was assumed in {I) that the set {ca} was linearly independent. 

For numerous combinations of the constraint examples mentioned earlier 

(recall {2.67,70,72,73)), however, the corresponding vectors ca form a 

linearly dependent set, some often having the value zero. Ve accord­

ingly allow for this possibility in general (see also Vhitworth {1982), 

Vhitworth and Chadwick {1984) and Chadwick, Vhitworth and Borejko 

{1985) for similar discussions relating to simple waves, surface waves 

and small-amplitude waves respectively). 

Ve assume that 

dim span {ca} = M ~ N 

and order the constraints in the following way: 

(i) the subset {c"(n)}!=l is linearly independent. 

(ii) the subset { cM+µ(n) }~~~ (P ~ N) consists of vectors which 

are non-zero, and which are linear combinations of the 

subset {i), so that 

u=1, ... ,M 

(µ = 1, ••• , P- M) 

(2.86) 

where D~ is a matrix of rank M and summation on u is 

implied. 
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(iii) the subset {cP+77(n)}~~i consists of the remaining (N-P) 

constraints, each satisfying 

l+77 (n) = 0 
' 11 = 1, ... ' N-P (2.87) 

Ve adopt the following terminology, introduced by Chadwick, 

Vhitworth and Borejko (1985) : the type I constraints ¢a, a= 1, ... , N 

defined by (2.36) are said to be fully active in the direction n if the 

vectors ca(n) are linearly independent (so that dim span { ca(n)} = 

M = N). The constraints are partially active if dim span { ca(n)} = 

M < N , and are inactive if ca(n) = 0 , a= 1, ... , N (so that P=O in 

(2.87)). 

The vectors ca(n) take particular forms for isotropic materials 

subject to the restricted classes of type I constraints defined by 

(2.66,8). For isotropic constraints (we henceforth drop the explicit 

indication of dependence of ca on n except where this would cause 

confusion) 

ca=~ o~a (p.·n) q. l7fii: 1 1 
1 

1 

and for directional constraints 

ca= PAB l ai (pi-eA)(n·eB) qi 
i 

(2.88) 

(2.89) 

Ve will require later an alternative to the set {ca} that arises 

from the entropic formulation (2.81-4), with the type I constraints 

satisfying (2.36) in the form 

~a(F, O(F, 17, J. 7, eAB)) = 0 a= 1, ... , N (2.90) 

I 

. ·. ! 
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A set of entropic type I constraint vectors { ca(n) }~=l is defined in 

terms of (2.90) by (see Reddy (I)): 

where I is the second-order tensor 

a2¢ 
I = p 7!100 

and the scalars µ and wa are defined by 

and 

i!J_ 
µ = p 2 ao 

a V/ (JJ = ' a=l, ... ,N 

(2.91) 

(2.92) 

(2.93) 

(2.94) 

respectively~ As before, in definition (2.85) of the set {ca(n)} , the 

unit vector n appearing in (2.91) will be the normal to a singular 

surface or wavefront. 

For the restricted subsets of type I constraints defined by (2.66) 

and (2.68,9) respectively, I takes the form 

0 faSo2 0 I= I (a., 0) = ~ p q. ® P· 
1 l a. 1 1 

. 1 
1 

where ¢0 (a., 0) is as defined in (2.60). 
. 1 

/ , 

(2.95) 
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Ve can write the set {ca} (we suppress as earlier the explicit 

dependence of ca on n from now on) as: 

Au u 1 u \ a2w0 
c = c - pµ- w l 7fi:7fD (n.pi) qi , u = 1, ... , M, 

1 
1 

CAP+TJ = CP+TJ - - 1 P+TJ \ ll_ ( ) q. ' T/ = pµ w l aa.ao n.pi 1 

i 1 

1, ... , N- P, 

/ 

(2.96) 

where the subsets { c0°}, { cM+µ} and { cP+TJ} are as defined following 

(2.85). Although there are some similarities between the entropic 

constraint vectors {cu}, {cM+µ} and {cP+TJ} and their thermal count~r­

parts, the subset {cu} is not necessarily linearly iridependent. It is 

therefore convenient to introduce another set of entropic constraint 

vectors which may be conveniently partitioned as was {ca} , and this 

point is taken up in Chapter 5. 

Ve conclude this discussion of the constrained vectors associated 

with each of the type I constraints with a remark pertaining to the 

corresponding situation for type II constraints. Here the vectors 

{zfi}~=l will play a role equivalent to the {ca}~=l . Since the vectors 

zp appear far less frequently than the ca in both the propagation con­

ditions and the growth equation for acceleration waves, we neither 

restrict the set {zp} nor subdivide it into linear independent­

dependent subsets (as was done with {¢a} and {ca}) at this stage. A 

relatively minor restriction on {zfi} is imposed in Chapter 8 in the 

derivation of the growth equation for homentropic waves. 
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CHAPTER 3 

SINGULAR SURFACES IN CONSTRAINED THERMOELASTIC MATERIALS 

In this chapter we review aspects of the theory of singular 

surf aces relevant to our work. Most of the results in this chapter are 

not new but are in some cases clarified by their presentation here in 

coordinate-free form. 

Ve begin by. defining a singular surface and discuss the 

geometrical and kinematic compatibility conditions to be satisfied 

across the surface (see Truesdell and Toupin, (1960), Sections 

173-181). Acceleration waves are then defined following Chen (1973) 

and the compatibility conditions are exploited to find expressions for 

the required non-zero jumps of second and higher order derivatives of 

the motion x = x(I,t) . Ve give the definitions of principal waves and 

of longitudinal and transverse waves; we will often be considering 

principal waves that are either longitudinal or transverse later in the 

thesis. Ve then deal with the behaviour at the wavefront of the 

remaining variables characterizing the thermodynamic process and in 

particular define homothermal and homentropic waves. 

The chapter concludes with an investigation of acceleration waves 

in definite and non-conductors. Ve discuss Reddy's result in (I) that 

all acceleration waves in constrained definite conductors are homo­

thermal and use our revised definition (2~53,4) of a constrained non­

conductor to show that waves in constrained non- conductors are homo­

thermal if the material is subject to at least one type II constraint 
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for which zp·n f 0 . If there are no type II constraints, or if all 

type II constraints present satisfy zp·n = 0 , then all waves in the 

constrained non-conductor are shown to be homentropic. 

Singular surf aces 

Ve consider a one-parameter family of surfaces St (a moving 

surface) in the reference configuration 

E(I,t) = 0 (3.1) 

parametrised by time, and continuously differentiable but of arbitrary 

curvature. The surface has an alternative representation in terms of a 

pair of surface coordinates yr (r = 1,2), so that the position vector 

of a point on the surf ace is 

with the corresponding tangent basis at I given by 

and the unit normal to the surface n given by 

n = Grad E 
!Grad El 

(3.2) 

(3.3) 

(3.4) 
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The components Hra and nra relative to {Hr} of the surface tensor 

and curvature tensor are then 

HrA = Hr·H~ (3.5) 

and 

. DHr 
(3.6) nra = n·-:l" 

~ 

The velocity u of a point on the surface is 

(3.7) 

and the speed of propagation of the surface v (Truesdell and Toupin 

(1960), Section i83) is defined by 

v = u·n (3.8) 

v (unlike u) is independent of the choice of coordinates yr and is 

therefore an intrinsic property of the surface. It is a measure of the 

speed with which the surface St traverses the material. 

Ve now discuss the representation of the surface in the current 

configuration. The image of the surface St in the current conf igura­

tion st is defined by 

u(x,t) = ~(i(x,t),t) = 0 (3.9) 

using the representation for the motion introduced in Chapter 2. 



Alternatively, from (3.2) we may characterize st by 

x = x(E(Y~t),t) = x(Yr,t) 

The tangent basis vectors hr on st are given by 

and the unit normal to st is 

m = grad u 
I grad u I 
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(3.10) 

(3.11) 

where grad is the gradient operator in the current configuration. 

The components hrA and wrA relative to {hr} of the surface metric 

tensor and curvature tensor are 

hr A = hr·hA 

and 

BHr 
wrA = n·-=x 

aY 

Ve will not make use of the speeds corresponding to (3. 7 ,8) for the 

surface in the current configuration and accordingly omit their 

details, which are given, for example, in Chen ((1973), Section 4). 

Although the two descriptions (3 .1) and (3. 9) describe the same 

surface, they are fundamentally different in that the spatial 

description (3.9) gives the geometry of the surface at time t whereas 
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(3.1) is the locus of initial positions of the particles that are on 

the surface E at time t (Truesdell and Toupin, (1960), Section 182). 

This means that in general the properties of the surface St (such as 

the curvature or the wave normal) may be very different to those viewed 

by an observer of the actual surf ace st , and in cases where this is 

so, the material description of the surface loses much of its appeal. 

Ve shall be concerned however, with deformations of the material that 

are static ahead of the wave and for which material wavefronts that are 

plane (resp. cylindrical, spherical) correspond to.plane (resp. cylin­

drical, spherical) wavefronts in the spatial description. Vith tpese 

assumptions, the wave normals n and m in the material and spatial 

descriptions respectively coincide. In such cases, the material 

description of the wave surface is easily interpreted; we accordingly 

henceforth adopt the material description and thereby take advantage of 

the less cluttered analysis which it allows for. (The relative 

simplicity of the material description in the context of acceleration 

waves is also apparent in Eringen and Suhubi (1975), where the spatial 

description is only introduced at a penultimate stage of the analysis 

of wave growth). 

The concept of a singular surface is now introduced; an extensive 

treatment of this topic is in Truesdell and Toupin ((1960), Chapter C), 

and we give merely a summary. A smooth surface St defined by (3.1) 

divides the body B into two regions B+ and B- , the surf ace forming the 
+ -common boundary bet ween B and B The unit normal n to St is 

directed towards B+. Ve consider a function f(I,t) (which may be 

scalar-, vector- or tensor-valued), continuous within B+ and B - and 

with definite limits f+ and r as st· is approached from within B+ and 
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B- respectively. The .i!!.!.lm of f at X E St is denoted by 

[f(X)] ::: f+(X) - r (X) 

and the surface St is singular with respect to f at time t if [f] * 0 . 

(Ve subsequently drop the explicit dependence of jump quantities on 

their position on the surface, as this is unlikely to cause confusion). 

A surface St that is singular with respect to some quantity and has 

non-zero normal velocity, that is, 

v(X,t) f 0 

is said to be a wave (Truesdell and Toupin (1960), Section 183). 

There are a number of conditions to be satisfied across St . 

These follow from applications of Hadamard's lemma (Truesdell and 

Toupin (1960), Sections 174,5), according to which a scalar-valued 

function x and vector- or tensor-valued function V obey 

and 

d di 
ds [x] = [Grad x]·ds 

~s [V] = [Grad VJ·~~ 

respectively, where l(s) is a curve on St . 

(3.12} 
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If we choose for l(s) the coordinate curves yr = constant, then 

the equations (3.12) take the form 

a 
OYr [x] - (Grad x]·Hr 

a OYr [V] = [Grad V] Hr (3.13) 

These results can in turn be expressed (Truesdell and Toupin (1960), 

Section 175) in the form: 

(Grad x] = (Grad x·n]n + a r [x]Hr 
OY 

[Grad V] = [(Grad V)n] ® n + Q___ [V] ® Hr ayr (3.14) 

Summation over r (r = 1,2) is implied from (3.14) onwards and also 

implied for A = 1,2 from (3.15) onwards. 

The results (3.14) are known as the geometrical conditions of 

compatibility, and the reduced forms that (3.14) take when [x] = 0 or 

when [V] = 0 are known as Maxwell's theorem. 

Since the conditions (3.14) are merely identities expressing the 

jump of a derivative in terms of the jump of the normal derivative and 

the tangential derivatives of the jump of the function, they can be 

iterated and expressions for jumps in second derivatives obtained. The 

conditions obtained in this way are known as iterated geometrical 
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conditions of compatibility, and are given by 

[Grad(Grad x)] = [n·Grad(Grad x)n] n@ n 

[Grad(Grad V)] = [Grad(Grad V)(n,n)J ® n ~ n 

+ [(Grad V)nJ,r ® (n ®Br+ Br® n) 

(3.15) 

for the case in which [x] = 0 and (VJ = 0 . 

Ve require that the moving singular surface persist in time, that 

is, that discontinuities do not appear or disappear. This requirement 

is expressed in the kinematical condition of compatibility, which we 

now discuss. The rate of change of functions x(I,t) and V(I,t) seen by 

an observer moving with the normal velocity v n (see (3.7,8)) is given 

by the displacement derivative 6/6t defined by 

%f = X + v(Grad x)·n 

for scalars, and' 

~ . at = V + v(Grad V)n 

for vectors and tensors. (3.16) 
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By an application of Hadamard's lemma along the path tangent to n the 

kinematical conditions of compatibility 

ft- [x] = [X] + v(Grad x·n] 

and 

k [V] = [V] + v((Grad V)n] (3.17) 

are obtained. 

As with the geometrical compatibility conditions, the results (3.17) 

can be iterated, yielding the iterated kinematical conditions of 

compatibility 

(Grad x] = ((Grad x) ·n]n + Uhr Hr 

[x] = - v[(Grad x)n] + k [x] 

[Grad V] 
. . r = [(Grad V)n] 8 n + [VJ,r 8 H 

and 

[V] = v[(Grad V)n] + %t [V] (3.18) 

It is possible to find expressions for [(Grad x) ·n] and [(Grad V)n] 

(using for example (3.17) 1 with x replacing x) to obtain the following 

alternatives to (3.18). These alternatives are known as Thomas's 

iterated kinematical conditions of compatibility. [x] is taken as zero 

in (3.19) 1,2 and [VJ is zero in (3.19) 3,4. 

(Grad x] = v(n·Grad(Grad x)n]n + k (Grad x·n]n 

- (v[Grad x·n]),r Hr 

/ 
I 
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[x] = v2[n·Grad(Grad x)n] - 2v %t [Grad x·n] - [Grad x·n] %.£ ; 

[Grad'V] = - v[Grad(Grad V)(n,n)] en+ %t [(Grad V)n] en 

- ( v [ (Grad V) n] ) , r e Hr 

.. 2 0 . ov 
[V] = v [Grad(Grad V)(n,n)] - 2v at [(Grad V)n] - [(Grad V)n] a-t· 

(3.19) 

Ve conclude this discussio.n of the geometric and kinematic 

conditions of compatibility by giving special cases that will be useful 

later. Vhen x and V are continuous equations (3.14) take the forms · 

[Grad x] = [Grad x·n]n 

and 

[Grad V] = [(Grad V)n] e n (3 ._20) 

Furthermore, equations (3.17) with [x] = 0 and [V] = 0 yield 

(Grad x·n] = - v- l (fl 

and 

[(Grad V)n] = - v- 1 [V] (3.21) 

Substitution for [Grad x·n] and [(Grad V)n] from (3.21) 1 2 in (3.20) 1 2 
' ' 

respectively provide the required identities 

[Grad x] = - v- 1 [X]n 

and 

[Grad V] = - v- 1 [V] e n (3.22) 
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Acceleration waves 

Ve follow Chen (1973) and define an acceleration wave to be a 

_ propagating singular surf ace for which 

x(I,t) , i(I,t) , F(I,t) are continuous functions everywhere; 

i , F , Grad F , ·x· , F , Grad(Grad F) have non-zero jumps across 

the singular surface but are continuous everywhere else. 

The jump [x] in acceleration is known as the amplitude and we write 

[x] = s (3.23) 

Now by making use of the compatibility conditions (3.18) 3 and (3.18) 4 

with v = x(I,t) , 

[F] = - v - 1 s ® n (3.24) 

and by (3.15) and (3.19) 3 with V = x(I,t) , 

(3.25) 

The jumps in the third- order derivations of x that will be required 

later are found similarly and are: 

[ ·x· .] 2 os -1 ov 2 = (ff- v iffs+v w (3.26) 

[Grad F] = w ® n ® n - (v- 1 s) ,r ® .(n ® Hr + Hr ® n) 

+ v- 1nra s ®Hr® Ha (3.27) 
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where the vector v satisfies 

v·a = [Grad F]{a, n, n) (3.28) 

for an arbitrary vector a . 

Ve will often in this thesis be concerned with principal waves, 

which are waves travelling in the direction of one of the proper 

vectors pi {defined following (2.5)). The principal directions are 

numbered in such a way that 

(3.29) 

Ve will also be considering longitudinal waves, whose defining property 

is that 

s ... m = 0 (3.30) 

and transverse waves, defined by 

s·m = 0 (3.31) 

It is convenient to choose the material coordinates X1 in such a way 

that at time t the wavefront is on the surface x3 = constant = C , say, 

and xr = yr so that 

(3.32) 
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Later we will focus attention on a class of irrotational deformations 

for which the principal directions {pi} are tangent to the coordinate 

curves and we can write 

since the motion is irrotational, R = I and so 

q. = P· 
1 1 

Ve also denote the magnitude of the amplitude s by u 

(3.33) 

(3.34) 

(The symbol u was used previously in (3. 9) to denote the surface st . 

No confusion is likely to arise from this in future). 

In the event that a principal wave is a longitudinal wave, its 

amplitude will satisfy 

s = (3.35) 

Similarly, if a principal wave is a transverse wave its amplitude will 

satisfy 
/.", 

{~"-. 

/ 
./ 

fl = 1 or 2 (3.36) 
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Ve note, however, that in general it is possible to have longitudinal 

and transverse waves which are not principal waves. 

Homothermal and homentropic waves in definite and non-conductors 

Ve now consider the behaviour at the singular surface of the 

remaining variables characterizing the thermodynamic process. 

Attention is restricted to processes for which the body force b , the 

heat supply r and' the density p are continuous, as are their first 

temporal and spatial derivatives. The constraint multipliers Aa and 1p 

in (2.39) are assumed continuous, but may have discontinuous 

derivatives at the wavefront. 

The temperature 0 and entropy 1/ are assumed to be continuous at 

the wavefront, but their derivatives are not necessarily so. Since 

[O] = 0 ., the identities (3.20) 1 and (3.21) 1 with 0 replacing x apply 

and we obtain 

[Grad O] = Tn [O] = v T (3.37) 

where 

T = [Grad 0 • n] (3.38) 

An acceleration wave is called homothermal if 

T :: 0 (3.39) 

in which case the first derivatives of 0 are continuous by (3.37). 
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Since T/ is conti_nuous, [TJ] = 0 and use of (3.20) 1 and (3.21) 1 
leads to the following results analogous to (3.37-9): 

[Grad T/] = Hn [~] = v H (3.40) 

where 

H = [Grad rJ·n] (3 .41) 

An acceleration wave is called homentropic if 

H _ 0 (3.42) 

Vaves that are both homothermal and homentropic (H = T = 0) are called 

generalized transverse waves (see Chadwick and Currie (1974)). 

Ve now investigate the conditions under which acceleration waves 

in definite and non-conductors are homothermal or homentropic. 

Coleman and Gurtin (1965) used the entropy production inequality to 

establish that all acceleration waves in unconstrained definite 

conductors are homothermal. Reddy showed in (I) that this result also 

holds for constrained definite conductors, noting that the entropy 

production inequality (2.49) for constrained materials has no 

contributions from the constraints. 

Ve now turn to the case of acceleration waves ·1n constrained 

non- conductors. Reddy showed in (I) that the Coleman-Gurtin result 

(1965) for unconstrained materials that all acceleration waves in 

non-conductors are homentropic is also valid for materials subject to 

type I and II constraints. Reddy however, defined a non-conductor for 
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constrained materials to be a material for which q = 0 and we accord­

ingly reconsider his analysis with the definition of a non-conductor as 

a material for which q0 = 0 and q = 1p z(J by (2.53,4). Ve assume 

throughout that entropy is constant · ahead of the wave for non­

conductors, and use the energy equation (2.48) to determine the entropy 

jump H across the singular surface. Ve have at the wavefront 

p 0 [ii] = [Div q] (3.43) 

assuming the body force r to be continuous. Use of (3.40) 2 and (2.54) 

in (3.43) yields 

- p 0 11 H = - [Div ( 7 (3 zll)] (3.44) 

where the superposed caret denotes the use of 1/ as an independent 

variable, so~= z(J(F, O(F, 11, Aa' eA), eA) (see (2.80) and following 

remark). 

Clearly, if type II constraints are absent, then H = 0 by (3.44). 

Ve now consider the situation in which at least one type II constraint 

is present, and evaluate the jump of (2.37) across the singular 

surface. After employing the identity (3.37) 1, we obtain the type II 

constraint equation 

T zfl.n = 0 , (3 = 1, ... , L (3.45) 

The condition (3.45) suggests that we consider the following two cases 

separatelr in order to evaluate Hin (3.44): 
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By (3.45), this situation is only possible for homothermal waves 

(for which T = 0 by (3.39)). An expression for H is obtained by 

evaluating (3.44) in the thermal formulation (using 0 and not n as an 

independent variable). Ve find that 

= 

where the vector and tensor components are relative to the basis 

vectors defined in (2.1,2), and the semi-colon denotes the covariant 

derivative. 

Now [O .] = 0 for homothermal waves by (3.37) 1, (3.39), and expressions 
,1 . 

for [7a .] and [Fkn .. ] are obtained from (3.22) 1 and (3.25) respect-
µ,1 .c.,l 

ively. Vith these results, (3.46) yields 

(3 .47) 

and such waves are clearly not in general homentropic. 
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(ii) z/l·n = 0 

Here, unlike case {i), no restriction is placed on T by {3.41). In 

evaluating {3.44), it is convenient to choose orthogonal curvilinear 

coordinates X
1 

with corresponding basis vectors Gi defined by (2.1) 

such that n = G3/ I G3 i . That is, the wavefront coincides with the 

surface x3 = constant. Then the condition zp·n = 0 implies that 

, r = 1,2 {3.48) 

Equation {3.44) is now evaluated in the entropic formulation and we 

obtain 

= [ -1 [' ] Apr v 7p z 

{3 .49) 

k 
where in evaluating the jumps [7p,rJ, [,\a,rJ, [F l;rJ and [TJ,r] , the 

identities {3.22) 1 (twice), {3.25) and (3.40) 1 respectively have been 

·used .. 
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Now n = G3/IG3I implies that nr = 0 'r = 1,2 in (3.49) and 

consequently we have the result that 

H = 0 (3.50) 

so that the waves are homentropic by (3.42). 

The above results for acceleration waves in constrained definite 

and non-conductors can be summarized as follows: 

(i) All waves in definite conductors are homothermal. 

(ii) Vaves in constrained non-conductors (as defined by (2.53,4)) 

are homothermal if the material is subject to at least one 

type II constraint for which zp·n f 0 , and such waves are 

not in general homentropic. 

(iii) Vaves in constrained non- conductors are homentropic if all 

type II constraints present satisfy ~-n = 0 , or if type II 

constraints are absent. 
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CHAPTER 4 

PROPAGATION CONDITIONS FOR HOMOTHERMAL VAVES 

Introduction 

Ve begin by deriving the first and second propagation conditions 

for homothermal waves. These conditions are obtained from an 

evaluation across the wavefront of the equation of motion and the time 
-

derivative of the type I constraint equation (2.36) respectively. The 

derivations given here extend the treatment in (I) to include type I 

constraints whose corresponding constraint vectors ca are linearly 

dependent. The first propagation condition is found to be of Fresnel­

Hadamard type (Truesdell and Noll (1965, Section 71)), and is a 

modification of the corresponding propagation condition for uncon­

strained materials. The second propagation condition, however, has no 

parallel in the case of unconstrained materials. Both the first and 

second propagation conditions involve only the type I constraints; the 

type II constraints yield instead the condition (3.45) discussed 

previously in the context of homothermal and homentropic wave 

propagation in non-conductors. 

After derivation of the propagation conditions, the material is 

taken to be isotropic and we investigate both longitudinal and trans­

verse principal wave solutions of the propagation conditions. The 

speed and amplitude of the waves are obtained from the proper numbers 

and proper vectors respectively of the acoustic tensor that appears in 

the first propagation condition, and the second propagation condition 

restricts the amplitude to the subspace orthogonal to ca . The 
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solutions for the all-embracing cases M = 0,1,2 are discussed in turn; 

for M = O it is shown that the constraints have no effect on the wave 

speed. Ve then discuss the influence of isotropic and directional 

constraints on the strong ellipticity condition; this condition when 

applied to the acoustic tensor (Scott (1975), Ogden (1984)) ensures 

that the proper numbers of the acoustic tensor (and hence the squares 

of the corresponding wave speeds) are positive. This is followed by a 

further analysis of the propagation conditions that focuses on the 

influence of isotropic and directional constraints on longitudinal and 

transverse principal waves. 

Firstly, we consider homothermal wave propagation in definite 

conductors that are subject to a particular class of irrotational 

deformations and are assumed to be at rest and at constant temperature 

ahead of the wave. (Later, in Chapters 6 and 7, we will treat wave 

growth in materials subject to the above conditions). Ve treat three 

distinct situations: plane waves (resp. cylindric~l, spherical) 

propagating 1n materials subject to plane (resp. cylindrical, 

spherical) deformations where the directional constraints present are 

so configured that they make a constant angle with the plane (resp. 

cylindrical, spherical) coordinate curves. (Note that there is an 

entirely different constraint configuration in general when different 

waveforms are considered; i.e. we are not making a general comparison 

of the behaviour of plane, cylindrical and spherical waves in a given 

material situation). The analysis yields the range of deformations, 

_compatible with the constraints, corresponding to which the propagation 

of waves is possible. These results are illustrated by the analysis of 

longitudinal and transverse wave propagation in materials subject to 

the four constraint examples introduced in Chapter 2 (see (2.67, 70, 
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72, 73)). The constraints are treated singly and in combinations of 

two, three or four; it is to be noted that in a number of cases the 

constraint vectors ca take the value zero, or are found to be linearly 

dependent when the constraints act in combination. In each case, the 
' . 

restrictions (if any) on the deformation are presented. 

Ve differ in this work from most authors by restricting attention 

to principal. waves, which at times clarifies the details of the con­

straint contributions. Apart from this difference, there are close 

analogies with the results of Ogden ( 1974) for acceleration waves in 

incompressible materials and those of Scott (1975,76,85) for accelera­

tion waves in materials subject to linearly independent mechanical 

constraints. Vhitworth (1982) and Chadwick, Vhitworth and Borejko 

(1985) obtain corresponding solutions for simple waves and small­

amplitude waves respectively in materials subject to arbitrary 

mechanical constraints. Chen and Nunziato (1975) treat acceleration 

waves in inextensible elastic bodies which are also subject to the 

thermomechanical constraint of perfect heat conduction in the direction 

of inextensibility. 

Derivation of the propagation conditions for homothermal.waves 

Ve now derive the propagation conditions for acceleration waves 

for a material subject to type I constraints (and possibly also type II 

constraints, al though these do not, appear in the propagation 
./ 

conditions). Ve begin with the definition (2.36) of type I constraints 
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and consider the jump in ~a at the wavefront: from (2.36), 

using (3.24) and (3.37) 2. 

Vith the aid of (2.85) and (2.94) we obtain 

a 2 a c ·S = - 1J 6J T a=l, ... , N (4.1) 

Since we restrict attention in this chapter to homothermal waves, T = 0 

by (3.39). Thus (4.1) becomes 

a 
, C ·S = 0 (4.2) 

so that a necessary condition for the existence of homothermal waves is 

that 

dim span {ca} = M ~ 2 (4.3) 

Ve recall from (2.88) that for isotropic constraints the 

constraint vectors ca take the form 

ca=~ a¢a (p.·n) q. 
l&. 1 1 
i 1 

(2.88 bis) 

;,- . 



78 

so that for these constraints (4.2) becomes 

(4.4) 

For directional constraints, the vectors ca take the form 

ca= PAB l ai(pi·eA)(n·eB) qi 
i 

(2.89 bis) 

(recall that we sum on repeated indices A,B) and in this case (4.2) 

becomes 

PAB l ai(pi·eA)(n·ee)(qi·s) = O (4.5) 
1 

Clearly equations (4.4,5) establish necessary conditions to be 

satisfied by the wave amplitude s . Ve will explore further aspects of 

(4.4,5) later in this chapter. 

Ve now turn our attention to the equation of motion. The local 

form of the equation for the balance of linear momentum is 

Div S + pb = pi (2.9 bis) 

At the singular surface St , (2.9) together with the assumption that 

the body force vector b is continuous imply that 

[$Jn = - p v s (4.6) 
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where we have made use of the identity [Div SJ = - v- 1[S]n which 

follows from (3.22) 2. 

Now the use of (2.46) 2 for S together with the definitions (2.85) for 

ca and (2.92) for I yield the expression 

[S]n = (![F] )n + I n[B] + p[~a] ca (4.7) 

where ! is the fourth-order tensor of elastic moduli defined by 

a2~ 
!=pOFUF (4.8) 

Now (3.24) provides an expression for [F] , and [OJ = 0 for homothermal 

waves by (3.37) 2, (3.39). Vith the aid of these results, the 

substitution of (4.7) in (4.6) yields 

2 · a (pv I - Q)s = - pv [Aa] c (4.9) 

where the second-order acoustic tensor Q is defined by 

Q(u,v) = !(u,n,v,n) for all u,v E V (4.10) 

"h · q· Ajl wit components .k = . k n.na 
. 1 1 J G. 

(4.11) 

relative to the tangent bases GJ and gi , and I is the identity tensor. 

In view of the definition (4.8) of ! we have Aijkl = Aklij so that Q is 

symmetric. 
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Equation (4.9) was examined in (I) for linearly independent ca and 

in (II) for collinear ca . Here these treatments are extended to allow 

for the linearly dependent set of constraint vectors introduced in 

(2.86,7). 

Ve first eliminate the jumps [~a] in (4.9). The right-hand side 

of (4.9) may be written as 

(4.12) 

where, as in (2.86), q = 1, .... , M ; µ. = 1, ... , P-M , and we note 

that the set { [AP+7JJ }~~i corresponding to the vectors l+1J in (2. 87) 

which are identically zero does not appear. 

M 
A set {d-r} 

-r=1 
of vectors is defined that is reciprocal to cq in 

the sense that 

(4.13) 

For homothermal waves, cq • s = 0 by ( 4. 2) and hence dT · s = 0 ; the 

scalar product of (4.9) with dT together with the use of (4.12) yields 

the expression 

so that (4.9) can be written as 

(pv2 I - Q) s = - ( d · q s) cq 
q 

(4.14) 

(4.15) 

, I 
I 



Rearrangement of (4.15) yields the equation 

(pv2 I - P Q)s = 0 

where the projection tensor P is defined by 

P = I - c(J ~ d 
(J 

81 

(4.16) 

(4.17) 

Clearly P leaves invariant vectors s which are orthogonal to ca 

(and hence da) since 

P s = s - (d ·s) cfJ = s 
(J 

(4.18) 

Ve adopt the terminology of Chadwick, Vhi tworth and Borej ko ( 1985) 

introduced in their study of small- amplitude waves in a constrained 

elastic body, and refer to the equations (4.16) and (4.2) as the 

propagation conditions of the wave. For ease of reference, these 

equations are collected here and renumbered: 

(pv2 I - P Q)s = 0 (4.19) 

a 
C •S = 0 a=1, ... ,N (4.20) 

Ve will refer to (4.19) and (4.20) as the first and second propagation 

conditions respectively, and note that in the corresponding 

unconstrained situation, (4.20) does not occur, so that (4.19) with 

P = I is the sole propagation condition for the wave. Ve also note 

that, in view of (4.18), the first propagation condition (4.19) implies 

, the condition (4.20), but that the converse is not true. 
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Ve now proceed with the investigation of the propagation 

conditions by imposing the condition of isotropy, and deriving the form 

of A. (and thereafter of Q) for isotropic materials subject to type I 

constraints. (Type II constraints, if present, do not enter into the 

expression.for!). Ve restrict attention to isotropic or directional 

type I constraints, for which ¢a = ¢a(ai, 0) by (2.66) and ¢a = ¢a(eAB' 

fAB' 0) by (2.68,9) respectively. It is therefore sufficient in 

deriving the required expression for A. to assume that ¢a = ¢a(ai'' 0, 

eAB' f AB) and to ignore the dependence which ¢a may have on kAB (see 

(2.60-3)). (The expression for A. that results if such dependence on 

kAB is included is given in (II), and is found to be considerably more 

cumbersome than that given below). The analysis of Appendix A yields, 

the required expression for A. , which is found to be 

a . {}¢ / {Ja . - a . {}¢ / {Ja . } 
+ J 21 21 .1 (1-6 .. )q. ®p. 

lJ J 1 a. - a. 
1 J 

® P· + 2 A ~f¢a q. ® eA ® q. ® eB] 
J a AB 1 1 

(4.21) 

Here it is assumed that ai 1 aj ; the slight modifications for ai = aj 

follow those given by Chadwick and Ogden (1971b). 

Since we will be primarily concerned with the propagation of 

principal waves we specialize here for convenience. and derive the 
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acoustic tensor for the case in which the elastic moduli are given by 

(4.21), for principal waves· propagating in the direction n = p3 (recall 

3.29)). Substitution of the expression (4.21) for! and (3.29) in the 

definition (4.10) for q yields 

+ 2 A a~u (n·e1)(n·eB) q. ® q. a / l aaIAB i i 
(4.22) 

when ar * a3 ' r = 1 or 2; 

+ 2 A a~a (n·e1) (n·eB) q. ® q.]· aaIAB i i 
. ( 4. 23) 

-. 
when ar = a3 , r = 1 or 2 , or when a1 = a2 = a3 = a . 

Clearly Q is in spectral form in both (4.22) and (4.23), with 

proper vectors qi and corresponding proper numbers given by 

Q. = Q(q. ' q.) 
1 1 1 

(no sum on i) (4.24) 

and we also introduce the notation 

Q. = q? + A Q~ 
i i a I 

(4.25) 
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where 0 0( Q. = q q. 
1 1 

q.) 
1 

and 

It will be found that for waves to propagate with non-zero speed v in 

the direction qi , the corresponding proper number Qi must necessarily 

be positive. A sufficient condition for the proper numbers Qi to be 

positive is that ! satisfies the strong ellipticity condition 

!(v, u, v, u) > 0 for all u, v e V 

in which case 

Q(v , v) > 0 for all v e V (4.26) 

as obtained by Truesdell and Toupin, (1965, equation (71.15)) for 

unconstrained materials. 

The influence of the constraints on (4.26) will be discussed later, but 

.here it is simply assumed that conditions are such that (4.26) holds 

and consequently that the Qi are positive. 

Ve examine now whether longitudinal and transverse waves are 

possible~ In these cases s = ~ qi , i = 1,2, or 3. By (4.22,3) then, 

q s is parallel to s since from (4.22) 

-1 p q q. 
1 [ 

ai an aai - a3a~/ aa3 . a2¢ 
= ( 1 - 8·3) 2 2 (q. •q.). + 2 (q3•q.) 

1 . ai - a3 1 1 aa3 1 

+ 2 ,\ aa1a (n·eA)(n·eB)(q. ·q. )lq· (4.27) a AB 1 1 1 
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and a similar result follows from (4.23). The effect of P on q s is 

that 

P q s = q s for B such that ca·s = 0 

and the first propagation condition (4.19) is therefore equivalent to 

the condition 

(pv2 I - Q) s = 0 (4.28) 

for all s that satisfy the second propagation condition (4.20), namely 

that ca·s = 0 . 

Longitudinal and transverse principal wave solutions of the propagation 
conditions 

Ve now obtain longitudinal and transverse principal wave solutions 

to the propagation conditions ( 4 .19, 20). For homothermal waves, dim 

span {ca} = M ~ 2 by (4.3) and we consider the three cases M = O, 1,2 

in turn. Vave speeds v1, v2, v3 corresponding to the wave amplitudes 

q1, q2, q3 respectively are obtained where these are not precluded by 

the constraints. 

(i) M = 0 

The constraint set {ca} is inactive when M = 0 by the definition 
a _, 

following (2.87). Clearly P =I by (4.17) and the vectors c have no 

effect on the propagation conditions (4.19,20). The discussion of 

Truesdell and Noll ( 1965, Section 71) applies; transverse waves with 

amplitudes q1, q2 and longitudinal waves with amplitude q3 are possible 
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with corresponding wave speeds vi given by 

2 -1 v. = p Q. 
1 1 

i = 1,2,3 (4.29) 

where Qi are as defined in (4.24). Clearly, the Q. must be positive 
1 

for non-zero propagation speeds vi to exist, and the strong ellipticity 

condition (4.26) ensures that this is so. Although the form of (4.19) 

(with P = I) ·and (4.29) is identical to the unconstrained case 

discussed by Truesdell and Noll (1965), the values of Q. (and hence v.) 
• 1 1 

are in general influenced by the type I constraints and we return to 

this point later. 

(ii) M = 1 

Equation (2.86) with M = 1 implies that the set {ca} is fully 

active if N = 1 and partially active if N > 1 . In the latter 

. t . h . . t 1 N 11" . M 1 d s1 tua ion t e constrain s c , .... , c are co inear since = an 

the second propagation condition (4.20) takes the form 

1 
C ·S = 0 (4.30) 

The projection tensor P defined by (4.17) now takes the form 

P=I- C®C where c is the unit vector c1/!c1
1 

(4.31) 
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Ve now distinguish two further cases: 

c is parallel to one of the proper vectors q. ; 
1 

c lies in the plane of q. and q. . (Since we are dealing 
1 J 

with principal waves that are either longitudinal or 

transverse, the case of c not orthogonal to any of the q. 
1 

does not arise.) 

For case (iia) we take c = q1 for definiteness, so P takes the form 

and 

(4.32) 

Hence for c parallel to q1 (resp. q2 , q3) , there are two proper 

values of P q , namely Q2 , q3 (resp. Q3 , Q1 ; Q1 , Q2) where the Qi 

are as defined in (4.24), with corresponding proper vectors q2 , q3 

(resp. q3 ' q1 ; q1 ' q2) · 

For case (iib) we consider for definiteness c = a q1 + P q2 where 

a and P are scalars such that a2 
+ p2 = 1 . 

By (4.31), 

P=I- c®c 
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so 

2 2 
P q = (l-a )Q1 qi 8 qi + (i-p )Q2 q2 8 q2 + Q3 q3 8 q3 

- a P(Q2 qi 8 q2 + Q1 q2 8 qi) (4.33) 

Since we consider only longitudinal or transverse principal waves, we 

are interested in proper vectors of P q that are parallel to one of the 

principal axes qi . Now c·s = 0 by (4.30) and we are considering a 

constraint vector c = a q1 + P q2 . Hence s = <r q3 is the only 

possibility for a proper vector of P q . In general then, for c e span 

{q1 , q2} (resp. {q2 , q3} , {q3 , q1}) there is one proper value q3 
(resp. {Q1 , Q2} with corresponding proper vector q3 (resp. q1 , q2) . 

The possibility of a zero proper number for P q is spurious, for 

then we would have 

p q s = 0 

and so by the discussion following (4.27) 

q s = 0 (4.34) 

Since q is positive definite by ( 4.25), it is non- singular and so 

{4.34) implies 

s = 0 (4.35) 
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(iii) M = 2 

Since M = 2, we see from (2.86) that the set {ca} is fully active 

if N = 2 and partially active if N > 2 . Ve employ {c1, c2, a} as a 

basis, where a is a unit vector satisfying ca·a = 0 for all a . Since 

only principal waves that are longitudinal or transverse are 

considered, a parallel to a principal axis qi is the only possibility 

if the second propagation condition (4.20) is to hold. Ve take a = qk 

for k = 1, 2 or 3 in which case 

7 = 1,2, (4.36) 

Now P = qk @ qk by (4.17) and (4.36) and 

Hence 

(4.37) 

where the Qij are components of q relative to the basis vectors c7, d7, 

qk . Ve therefore have the same result as for case (iib) and the 

discussion there applies; once again, the possibility P q s = 0 is 

spurious. 

The results of case (i), (ii) and (iii) have close parallels to 

those given by previous authors. Ogden (1974) considers acceleration 

waves in incompressible elastic materials and Scott (1975,6) treats 
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acceleration waves in elastic materials subject to mechanical 

constraints for which the vectors ca are linearly independent (see also 

Scott and Hayes (1976) for small amplitude sinusoidal waves). 

Vhitworth (1982) considers the related case of mechanically constrained 

simple waves and includes in his analysis the situation where the 

constraint vectors are linearly dependent. As far as thermomechanical 

constraints are concerned, Chen and Nunziato (1975) treat acceleration 

waves in perfectly heat conducting inextensible elastic bodies, thereby 

extending the earlier results of Chen and Gurtin (1974) for the single 

mechanical constraint of inextensibility. Ve have considered the 

propagation conditions only for principal waves that are longitudinal 

or transverse (a restriction not generally imposed by the above 

authors) but there is no intrinsic difficulty in extending the present 

analysis to cater for non-principal waves (see (I) for the case of 

thermomechanical constraints with linearly independent vectors ca), and 

details are omitted. 

Influence of constraints on the strong ellipticity condition for Q 

Ve have assumed so far that the strong ellipticity condition 

(4.26) holds. Ve now discuss the influence of the constraints on this 

condition. It has been shown that for principal waves, the proper 

values of q corresponding to proper vectors s of q which satisfy 

ca· s = 0 are also the required proper values of P q in the first 

propagation condition (4.19). Hence in considering the strong 

ellipticity condition (4.26) we can restrict attention to vectors v 

such that ca. v = 0 ' so that ( 4. 26) may be replaced by the weaker 
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condition 

Q(v , v) > 0 for all v such that ca·v = 0 (4.38) 

Scott (1975) considered the direct equivalent of (4.38) in his 

corresponding analysis of mechanical constraints with Li.nearly 

independent vectors ca . 

Now (4.38) can be written as: 

Q(v , v) = q0 (v , v) + Aa qa(v , v) > 0 (4.39) 

with q0 and qa as defined following (4.25). 

Clearly the requirement that Q(v , v) be positive is influenced by the 

values of the constraint parameters A a but we concentrate -

particularly on investigating the conditions under which qa(v,v) = 0 , 

in which case the ath type I constraint has no effect on the positive 

definiteness of the proper numbers of q . 

Equation (4.22) provides the required expression for qa in the 

situation when ar f a3, r = 1 or 2 ' and so 

(4.40) 
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where v·ca = 0 ; the expression corresponding to (4.40) which is 

obtained by using the expression (4.23) for qa (when ar = a3 ' r = 1,2, 

or a1 = a2 = a3) is omitted. 

The constraint contributions qa(v , v) to the strong ellipticity 

condition (4.38) can now be studied by using (4.40). Both longitudinal 

and transverse waves are treated, and in each case the contributions of 

isotropic and directional constraints are considered separately. Ve 

also make use of the second propagation condition ( 4. 20) which for 

isotropic constraints takes the form 

by {4.4) with n = p3 (4.41) 

where the constraint vector ca is given.by 

a ~¢a c = a q3 
3 

from {2.88) with n = p3 (4.42) 

For directional constraints we recall that (4.20) takes the form 

PAB l ai(pi·e1)(n·e8)(qi·s) = 0 
i 

Longitudinal waves 

(4.5 bis). 

Langi tudinal waves have s = (J q3 by ( 3. 35) and we turn our 

attention first to isotropic constraints . 
a¢a 

Now 0i3 :f 0 in (4.41,2) 

. since ¢a depends symmetrically on a1, a2, a3 for isotropic constraints, 

and so we have the result from the propagation condition ( 4. 41) and 
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(3.35) that isotropic constraints preclude the existence of homothermal 

longitudinal waves. Consequently, the question of the contribution 

qa(v, v) due to the ath isotropic constraint does not arise. 

For directional constraints (4.~) with s = q q3 implies that the 

constraint vectors present satisfy 

(4.43) 

Now the contribution of directional constraints (for which ¢a = 

¢a(eAB' fAB' 0) by (2.68)) to the strong ellipticity condition (4.38) 

is found from (4.40) to be 

and by (4.43) 

a v·c = 0 

( 4.44) 

Hence directional constraints have no effect on the positive 

definiteness of q for longitudinal waves. 

Turning now to transverse waves, s = q qA for A = 1 or 2 by 

(3.36). 

For isotropic constraints, ca A q3 = 0 by (4.42) and so v·q3 = 0. 
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Hence (4.40) reduces to 

r = 1,2 

(4.45) 

and there is nothing further to be gained from this without considering 

particular examples of isotropic constraints. 

In the case of directional constraints, (4.40) reduces to 

( 4.46) 

where v·q~ f 0 ~ A necessary and sufficient condition for qa(v , v) to 

be zero for arbitrary v is 

(4.47) 

so we have the following two possibilities: 

(a) If PAB is positive- or negative-definite, then (4.47) holds if and 

only if (n·eA) = 0 for all vectors eA . In this situation ca = 0 

by (2.89) and so only the case (i) considered earlier is possible. 

Such constraints therefore have no effect on either the strong 

ellipticity of q or on the propagation condition. 

{b) If PAB is neither positive- nor negative-definite, then (4.47) can 

be satisfied for constraints for which (n·eA) 1 0 for at least one 

eA . The form of the corresponding vectors ca is given by 

ca= PAB l ai(pi·eA)(n·eB) qi (2.89 bis) 
i 
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Now (4.47) is also the criterion for ca·q3 = 0 by (4.43) and we are 

considering transverse homothermal waves with s = ~ qd , so that the 

second propagation condition (4.20) takes the form 

(4.48) 

Hence any non- zero ca must be parallel to qd, where d = 1 or 2 

according as d = 2 or 1 , so that from (2.89) 

( 4.49) 

and all such ca are therefore examples of case (iia) considered 

earlier. 

Influence of isotropic and directional constraints on the propagation 
conditions 

Solutions of the propagation conditions (4.19,20) have been 

derived earlier in this chapter for homothermal principal waves for the 

three cases (i), (ii), (iii) for which dim span {ca} = M = 0,1,2 

respectively. The influence of the constraints on the wave speeds was 

\ not discussed in detail, but it was noted that for case (i) the con­

straints have no effect on wave propagation. Ve now reconsider the 

propagation conditions and investigate separately the influence of 

isotropic or directional constraints on the solutions; the results have 

close parallels with those. for the positive definiteness of Q(v , v) . 

Ve present these results under the_ headings of longitudinal and 

transverse waves rather than isotropic and directional constraints 

· since this serves to emphasize the significant result that for these 

------------------------------ --
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constraints, the speed of propagation of longitudinal homothermal waves 
' 

in unaffected by the presence of constraints. (Of course, in many cases 

the constraints do not allow the possibility of longitudinal waves.) 

Longitudinal waves 

Ve consider solutions s = (J q3 as in (3.35) to the propagation 

conditions (4.19,20). The first propagation condition now takes the 

form 

(pv; I - P Q) q3 = 0 (4.50) 

where v3 is defined in (4.29), and the second propagation condition is 

a 
c ·q3 = 0 (4.51) 

Isotropic constraints are incompatible with (4.51), as remarked in the 

discussion of longitudinal waves following (4.42). 

Directional constraints must satisfy (4.51) and consequently 

so that from (2.89), 

ca= P!e l ar(Pr·eA)(n·ee) qr 
r 

r = 1,2 

(4.43 bis), 

(4.52) 
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It is clear from ( 4. 52) for directional constraints that the three 

situations dim span {ca} = M = 0, 1, and 2 are all possible. As a 

result the discussion of solutions to (4.50) for the cases (i) - (iii). 

given earlier is applicable and the wave speed 113 for longitudinal 

waves is obtained from 

((4.29) 3 bis) 

where 

by (4.24), and q is found from (4.22) or (4.23) as appropriate. 

~ 

The contribution from the directional constraints to Q3 is AaQ~ by 

(4.25), and with the aid of (4.22-4) and (4.43) we find that 

(4.53) 

Consequently, the speed of propagation of longitudinal waves 1s 

unaffected by the directional constraints. 

Transverse waves 

Ve consider solutions s = ~ qA for A = 1 or 2 as in (3.36) to the 

propagation conditions (4.19,20) which take the forms 

2 
(pvA I - P Q) qA = 0 (4.54) 

and 

(4.48 bis) 
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Isotropic constraints have constraint vectors of the form 

(4.42 bis) 

Clearly, if only isotropic constraints are present, dim span {ca} = 
. a 

M = 1 and the constraint vectors c are collinear. S. a 1nce c A 

for isotropic constraints by (4.42), we see that for transverse waves, 

the second propagation condition (4.48) places no restriction on the 

isotropic constraints. Turning now to the first propagation condition 

(4.54) we see that the earlier discussion of case (iia) is therefore 

appropriate and the comments following (4.32) apply : waves with 

amplitudes q1 and q2 are possible with corresponding speeds v1 and v2 

defined by (4.29) 1 2. The constraint contributions to p-l Q1 and 
' p-l q2 (and hence v1 , v2) are given by 

or 

a = 1 or 2 (4.55) 

according as (4.22) or (4.23) is appropriate. In general then, 

isotropic constraints do influence the speed of transverse waves. The 

constraint of temperature-dependent compressibility (recall (2.67)), 

however, is a notable exception, in this respect, as for this constraint 
// 

- 1 ./ 
p Q: is easily seen to be zero. If transverse waves exist, then from 
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(4 .. 48) the directional constraints must obey 

(4.56) l 

where (4.5) with n = p3 has been used. 

Note the contribution qg of the ath directional constraint to Q4 1n 

(4.25) is found from (4.22) or (4.23) to be 

(4.57) 

Constraints for which qg = 0 in (4.57), so that 

(4.58) 

have no effect on the wave speed v4 • In such cases, (4.56) and (4.58) 

hold and the discussion following (4.47) (for qa(v , v) = 0) applies: 

(a) If PAB is positive- or negative-definite, then ca = 0 . If 
' ' 

all constraints present satisfy this condition, then M = 0 

and case (i) applies. 

(b) If PAB is neither positive- nor negative-definite, then 

non-zero vectors ca for which (4.56,8) hold must be of the 

form 

(4.49 bis) 

and consequently the discussion of case (iia) applies. 

-- ' 
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Propagation of plane, cylindrical and spherical waves in irrotationally 
deformed materials 

Ve· now consider some particular examples. of wave propagation, 

namely the propagation of plane, cylindrical and spherical waves in 

irrotationally deformed materials that are subject to certain 

configurations of the directional constraints. The analysis serves to 

delineate the range of deformations, compat~ble with the constraints, 

corresponding to which the propagation of waves is possible. The 

results obtained here are used later in the analysis of the growth of 

plane, cylindrical and spherical waves in constrained materials. 

Attention is restricted to definite conductors which are taken to 

be at rest and at constant temperature ahead of the wave, and which are 

subject to the class Qf irrotational deformations specified below. In 

each case the orthogonal curvilinear coordinates X1 are chosen so that 

their tangent basis vectors are aligned with the principal directions; 

that is 

P· = G./IG· I 1 1 1 

(recall the discussion preceding (3.33)). 

Furthermore, since we consider irrotational deformations, R = I 
and so 

q. = P· 1 1 
(3.33 bis). 
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The directional constraint vectors eA are assumed to make a 

constant angle with the coordinate curves so that 

(4.59) 

where 

G. - G./IG. I = P· 
1 1 1 1 

Ve will consider three classes of problems: the propagation of 

plane waves in material which is subject to a plane deformation, 

cylindrical waves in material subject to a cylindrical deformation, and 

spherical waves in material subject to a spherical deformation. This 

approach is similar in spirit to that of Bowen and Vang ( 1970) (see 

also Vang and Truesdell (1973)), in their analysis of acceleration 

waves in laminated bodies. Since (4.59) applies in all the three cases 

given above, it is clear that we are considering materials that are 

differently configured in the three cases, since the directional 

vectors e A (if present) make constant angles with the plane, 

cylindrical and spherical coordinate curves in each of the three cases. 

The use of Gi rather than pi in stating (4.59) is simply to emphasize 

that we are in fact considering three distinct situations corresponding 

to distinct constraint configurations. 

The situations that ~e will be considering are: 

(A) Plane deformations 

Ve adopt a fixed rectangular cartesian coordinate system with the 

coordinates of a particle in the reference configuration denoted by 

X1 
= (Y, Z, X) . The corresponding orthonormal basis is denoted by 



E. , so that in the reference configuration, 
1 

i I = I E. 
1 
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(4.60) 

Ve also have that G. = E. , where the tangent basis vectors G. are as 
1 1 1 

defined by (2.1). In the current configuration, the coordinates are 

given by x1 = (y, z, x) and 

i x = x E. 
1 

with the tangent basis vectors gi obeying gi = Ei 

Ve will be considering irrotational plane deformations specified 

by 

i = constant, z z = constant, x = x(X) 

for which the principal stretches are given by 

dx = constant, a3 = tlX 

(4.61) 

(4.62) 

Directional vectors (if present) obey (4.59), as discussed above. 

(B) Cylindrical deformations 

Here, a fixed cylindrical coordinate system is adopted, with the 

coordinates in the reference configuration denoted by xi = (0, Z, R) , 

so that 

(4.63) 
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where Ei are as defined preceding (4.60); the corresponding cylindrical 

tangent basis vectors Gi are given by 

(4.64) 

The cylindrical coordinates · in the current configuration are xi = 

( 0, z, r) and 

the tangent basis vectors g0, gz, gr coinciding with Ge, GZ' GR 

respectively. 

The cylindrically symmetric deformations to be considered are 

specified by 

0 = e i = constant, r = r(R) (4.65) 

and the principal stretches are given by 

r dr a1 = R , a2 = constant, a3 = dR (4.66) 

Directional constraints (if present) satisfy (4.59), where now the Gi 

are the cylindrical unit basis vectors obtained from Ge, Gz, GR . 
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(C) Spherical deformations 

A fixed spherical coordinate system is employed with spherical 

coordinates in the reference configuration xi = (0 , t, R) , s~ that 

I= R(cos t(sin 0 E1 + cos 0 E3) + sin t E2) (4.67) 

and the spherical tangent basis vectors are given by 

(4.68) 

Once again Ei in ( 4.67 ,8) are the orthonormal basis vectors defined 

preceding (4.60), and the angles 0 , tare as defined in Flugge (1972). 

In the current configuration, the spherical coordinates are x1 = 
(0, ¢, r) and the tangent basis vectors g0, gf gr coincide with 

G0 , Gt and GR respectively. 

The spherical symmetric deformations considered here are specified 

by 

0 = 0 ¢ = t , r = r(R) (4.69) 

and the principal stretches are 

(4.70) 
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Any directional constraints present satisfy (4.59) with G. being 
1 

the spherical unit basis vectors obtained from G0 , G1, GR . 

(The symbols 0, ~ and r appearing in (4.65) and (4.69) above have been 

used previously to denote a type I constraint, the temperatur~, and the 

rate of heat supply respectively. No confusion is likely to result 

from these ambiguities, however). 

Ve will require later the components nrA of the surface curvature 

tensor defined by (3.6) in the reference configuration for the three 

cases presented above, and the results are accordingly presented here: 

where 

fl A r = - r,A,=1,2 

for plane waves 

R1 = R , R2 = oo for cylindrical waves 

R1 = R2 = R for spherical waves 

Longitudinal wave propagation for the cases A - C 

(4.71) 

(4.72) 

(4.73) 

Ve assume the existence of a homothermal principal wave with 

n = p
3 

that is longitudinal, so that s = u q3 . The previous 

discussion of (4.50-53) of the propagation conditions is applicable; 

isotropic constraints are incompatible with longitudinal waves, and any 

directional constraints present must obey 

(4.43 bis) 



106 

The definition (2.68,9) of directional type I constraints together with 

(4.43) yields 

;a=! PAB l a~(Pr·eA)(Pr·eB) + ;~(eAB' O) = O 
r 

(4.74) 

Now the temperature 0 is constant ahead of the wave by assumption, the 

components (Gi·e!) = (pi·eA) of eA do not vary with position and the 

PAB are also constant, so (4.74) furnishes necessary conditions on the 

deformation through the principal stretches ar . 

For plane waves with the situation as described in (A), nQ 

restriction is imposed on (4.61) 3 by (4.62) 1 2 and (4.74). 
' 

For cylindrical waves propagating in the situation described in 

(B), there are two possibilities: 

firstly, if 

PAB(P1·eA)(P1·eB) = O (4.75) 

then po restriction is placed on (4.65) 3 by (4.66) 2 and (4.74). 

Secondly, if 

P!n(P1·eA)(P1·ee) * o 

then (4.74) implies 
r a1 = R = constant 

(4.76) 

(4.77) 
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so longitudinal waves require that the material be in a state of 

homogeneous deformation. 

For spherical waves in materials as specified in (C), (4.74) takes 

the form 

(4.78) 

where 

aIJ.d ( 4. 70) 1 has been used. · 

If ( = 0 , the deformation is unrestricted. If however, both.( and~~ 

are non- zero then r /R = constant and the state of the material is 

necessarily one of uniform dilatation since a3 = dr/dR = r/R . Ve note 

that the situation of ( i= 0 and ~~ = 0 is not compatible with 

longitudinal wave propagation. 

Transverse wave propagation for the cases A - C 

Ve now assume a transverse principal wave exists with s = u qa so 

that the previous discussion of (4.54 - 58) is applicable. Isotropic 

constraints satisfy the second propagation condition (4.48) identically 

and directional constraints obey (4.48) if 
./ 
./ 

(4.56 bis) 
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Substitution of (4.56). into the definition (2.68,9) of directional 

constraints yields 

¢a=! P!B{a~(p~·eA)(p~·eB) + a~(n·eA)(n·eB)} - ¢~(eAB' 0) = 0 

(4.79) 

where A = 1 or 2 according as A = 2 or 1 . 

Ve proceed in a similar manner to that for longitudinal waves, and 

find that the following two situations arise (the quantities (1 and (2 

are constants): 

(i) n·eA = 0 for all vectors eA 

Case (A) plane waves motion unrestricted 

Case (B) cylindrical waves A = 1 motion unrestricted 

A = 2 homogeneous deformation 
(motion unrestricted if ¢~ = 0) 

Case (C) spherical waves homogeneous deformation 
(motion unrestricted if ¢~ = 0) 

(4.80) 

(ii) n·e! f 0 for at least one vector eA 

Case (A) plane waves homogeneous deformation 

Case (B) cylindrical waves A = 1 homogeneous deformation 

{ [r]2 }1/2 . 
A = 2 dr/dR = (1 R + ( 2 

{ [r] 2 }1/2 dr / dR = ( 1 R + ( 2 · • Case (C) spherical waves 

(4.81) 
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Plane, cylindrical and spherical wave propagation for combinations of 
four constraints 

Ve illustrate the above results by considering the propagation of 

plane, cylindrical and spherical waves in materials subject to the 

deformations of cases (A) - (C) , but restrict attention to the four 

constraints specified in Chapter 2 (see (2.67,70,72,73), but here we 

change the numbering of the functions e ( 0) for convenience) . The 

constraints are considered both singly and in combinations of two, 

three or four; permissible deformations are calculated and the cases 

for which constraint combinations are linearly dependent are noted. 

The four constraints and their associated vectors ca are as follows, 

and the results appear in Table 4.1. It should be emphasized that the 

results presented in Table 4.1 under the headings of plane, cylindrical 

and spherical deformations refer in general to materials with entirely 

different configurations of directional constraints (recall (4.59) and 

following discussion). 

(1) temperature-dependent extensibility in direction e1 

-l = i f 11 - e1(0) = i a~(e1 ·pi) 2 - e1(0) (4.82) 

cl= l ai(e1·n)(e1·Pi) qi 
1 

(4.83) 

(2) temperature-dependent extensibility in direction e2 with e1~e2 
(i.e. e12 = 0) : 

2 1 1 2 2 
- = ~ f22 - e2(0) = ~ ai(e2·Pi) - e2(0) 

c2 = l ai(e2·n)(e2·Pi) qi 
i 

(4.84) 

(4.85) 
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(3) temperature-dependent shearing with · respect to e1 and e2 

(e12 = 0): 

¢3 ~ £12 - e3(0) = l a~(e1·Pi)(e2·Pi) - e3(0) 
i 

(4.86) 

where {
3

(0) = 0 if ~l and ¢2 are not both present as well; 

(2.72,73)). 

c3 = l ai{Ce2·n)(e1·Pi) + (e1·n)(e2·Pi)} qi 
i . 

(4) temperature-dependent compressibility: 
4 

¢ = al a2 a3 - e4 ( 0) 
4 

c = al a2 q3 

(4.87) 

(4.88) 

(4.89) 

recall 



Table 4.1 

CONSTRAINT 

(i) 

(ii) 

(iii) 3 

(iv) 

(v) 

(vi) 1+2 

(vii) 

(viii) 1+3 

(ix) 

(x) 

(xi) 

(xii) 1.+2+3 

(xiii) 

(xiv) 4 

(xv) 4+1 

(xvi). 

(xvii) 4+3 

(xviii) 

(xix) 4+1+2, 

4+1+3, 

4+1+2+3 

. KEY : 
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Permissible deformations of the form (4.61,5,9) for various combinations of th~ constraints (4.82,4,6,8). 

dirn 
of, or 
plane 
of, 

a 
£ ·!!J ., 0 (L) 

PERMISSIBLE DEFORMATION 
Long (L) 
Trans (T) 
Both (B) 

FOR !1ATERIALS SPECIFIED IN CASE A,B,C 

B 0 

T 

L 

T 0 

T 

B 0 

T 2 

L 

T 0 

T 2 

T 

B 0 

T 2 

T 

T 

T 

T 

T 

2 

T OR 

{£a} 

a 
£ = Q 

a . 
£ = £ 

* 

* 

* 

* 

*• 
** 
OR 

* . • 
** 

OR 

a 
£ •!!A .. 0 (T) 

<!2·~> <!1 ·~> + 

<!dY<!2·~> • 0 

OR 
!1·~ - .!q·~ - 0 

OR 
!1·~ - !2'~. 0 

<!2·~><!1 ·~> + 

<!1 ·~><!2·~> .. 0 

in addition to (v) 

see 

(vi), (vii), 

(ix) - (xiii) 

PLANE 
x"(X) 

x(X) 

hom 

x(X) 

x(X) 

hom 

hom 

hom 

hom 

hom 

* Linear dependent, since at least one £a is always zero • 

CYLINDRICAL 
r(R) 

r(R) CA • 1) 

hom (A • 2) , (L) 

hom (A = 1) 

r' • F(r/R)(A .. 2) 

hom 

r(R) 

r' • F(r/R) 

as (i) 

hom (A • 1) 

r' • F(r/R)(A • 2) 

as (iii) 

as (i) 

as (vii) 

r(R) t (A • 1) 

homt (ta • 2) 

as (i) 

as (vii) 

not possible 

as (xv) 

as (xv) 

as (xv) 

** Linear dependence possible, all vectors £a involved ~re non-zero. 

hom Homogeneous deformation. 

SPHERICAL 
r(R) 

dilatation 

r' • F(r/R) 

dilatation 

r(R) 

r' • F(r/R) 

r' • F(r/R) 

~ilatation t 

not possible 

F(r/R) Function of the form F(Z) • /az2 + b , a and b are constants such that the constraint equation 
• • O holds. · · 

t Only permissible if !l:'~ •. 0 as well. 
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CHAPTER 5 

PROPAGATION CONDITIONS FOR HOMENTROPIC VAVES 

Introduction 

Ve investigate only non-homothermal waves in this chapter, so that 

T = [Grad O·n] f 0 by (3.38,9). The necessary condition (4.1) for the 

existence of non-homothermal waves is employed to derive results for 

the thermal properties of the type I constraints, and we find that the 

constraints /+1/, 1/ = 1, ... , N- P (whose constraint vectors satisfy 

cP+11 = O by (2.87)) are all mechanical, so that wP+1J = 0. An alterna­

tive form of ( 4 .1) is then presented that. replaces the set of con­

straint vectors, {ca}~=l in (4.1) by the set {cM, m~} where~= 1, ... , 

M-1, M+1, ... , N , and where m~ = wM c~ - w~ cM . Equation (4.1) now 

yields the necessary condition that dim span {m~} ~ 2 for non­

homothermal waves to exist. Ve also present ( 4 .1) in the entropic 

formulation (with 1/ replacing 0 as an independent variable) and note 

that it is advantageous to work with the vectors m~ rather than with 

the vectors ca in that the subset {m'}(~~ is linearly independent' 

whereas we recall from the discussion following (2.96) that this is not 

necessarily so for the subset {c~}!=l . 

Attention is then restricted to non-homothermal waves which are 

homentropic, so that H = [Grad11·n] = 0 by (3.41,2). Ve recall (see 

summary following (3.50)) that waves for which T f 0 and H = 0 occur in 

non-conductors when the type II constraints present satisfy zp·n = O, 

p, ... , L , or when type II constraints are absent. The first propaga-
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tion condition is derived in the entropic formulation, and the set 

{cM , ·in"} is used to remove the jumps [~a] Although (unlike (I)) we 

permi~ linear dependence of the vectors m" ' the final result involves 

only the linearly independent subset {m(} , a situation reminiscent of 

the corresponding homothermal result in which only the linearly 

independent subset { c 11}~=l appeared. The special form of the first 

propagation. condition when all type I constraints are mechanical (wa = 
wa ~ O, a =·1, ... , N) is also discussed, since ;;,a= 0 is found to be a 

necessary condition for the existence of non-homothermal waves in a 

number of cases. 

Solutions of the propagation conditions for longitudinal and 

transverse principal waves are discussed for the all- embracing cases 
. ' ' -

M = 0,1,2,3, and in each case the wave speeds are found from the proper 
I 

values of the appropriate form of the acoustic tensor. Vhen M = O (all 

type I constraints are inactive), the constraints are necessarily 

mechanical (wa = o, a = 1, ... , N ). Longitudinal waves with H = O, 

T :/= O are compatible w·i th these constraints, but transverse waves have 

H = T = 0 and are therefore generalized transverse waves. For M ~ 1 , 

acceleration waves are compatible with the situation when thermo­

mechanical constraints are present, and for M = 1 or 2, longitudinal 

waves are also compatible with the situation when all constraints are 

mechanical. Generalized transverse waves are not possible when M = 3 

because M ~ 2 is a necessary condition for homothe~mal waves by (4.3) . 

. ~;~ 
.-/ ' 

) 

Ve then reconsider the propagation conditions when only isotropic 

constraints are· present (M = 1), or when directional constraints are 

. present (M = 0,1,2,3). The 1-thermal formulation is employed here since 
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l+1J = 0 => 

1J = 1, ••• , N- P 

(5.1) 

Substitution for cq·s from (5.1) 1 in (5.1) 2 yields the following 

necessary condition for the existence of waves when T j 0 : 

q=1, ... ,M 

µ = 1, ... ' P-M 

and we also have 

1J = 1, ••• , N- P (5.2) 

where this last result is obtained from (5.1) 3 if we recall from (2.87) 

P+1 N that c , ... , c are all zero and T j 0 . It is therefore a 

necessary condition for the existence of· acceleration waves that the 

constraints ~P+1J be mechanical. 

It will prove useful later to employ an alternative set to (5.1) 

that involves a set of N-1 vectors mK defined by 

K = 1, ... , M-1, M+1, ... , N 

(5.3) 

where cM is the Mth and last member of the subset { cq} of linearly 

independent constraint vectors in (5.1) 1. Before deriving the 

alternative to (5.1), we investigate the properties 'of the mK a little 
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further. The set {m~} is first subdivided as follows: 

m( = wM c( - w( cM ( = 1, ... , M-1 

M+µ M M+µ M+µ M m = w c - w c , µ = 1, ••• , P- M 

P+n M P+n P+n M m = w c - w c , n = 1, ••• , N- P (5.4) 

where Mand P have the same meanings as in (2.86,7). 

In (5.4)
1 

the vectors m( are only defined for M ~ 2 . The vectors mM+µ 

are defined for M ~ 1 however, but we have from (5.4) 2 that for M = 1, 

ml+µ = wl cl+µ _ wl+µ cl 

= w1(Di c1) - (Di w1) c1 by (2.86) and (5.2) when T f 0 

and so for T f 0 , 

ml+µ ·= 0 µ = 1, ... , P-1 (5.5) 

For M ~ 2 , (5.4) 2 and (5.2) 1 yield the relation (T f 0) 

M+µ M M+µ M+µ M m =fJJC -fJJ C 
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Turning now to (5.4) 3, we recall that cP+1J and ,/+1J are all zero 1by 

(2.87) and by (5.2) 2 respectively, so (5.4) 3 becomes 

1J = 1, .•• , N- P 

The set {m~} appearing in (5.4) can be written for T f 0 with the aid 

of the above results as 

M+µ M M+µ M+µ M m = w c - w c 

(M = 1) 
(M ~ 2) 

( = 1, ... , M-1 , (M ~ 2) 

µ = 1, ... , P-M 

1J = 1, ••• , N- P (5.6) 

It is easily shown that since the set { c"} is linearly independent 

(recall (2.86)) so is {m(}~- 1 
. 

Ve now derive the alternative set to (5.1), and follow Reddy (I) 

by writing (4.1) in the following form 

M 2 M c ·S = - v w T (5.7) 

and 
~ m · s = 0 ~ = 1, ... , M-1, M+1, ... , N (5.8) 
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where, as before, cM is the Mth and last member of the set { c0
} of 

linearly independent constraint vectors in (5.1) 1. Equation ( 5. 8) 

immediately provides a necessary condition for the existence of non­

homothermal waves (corresponding to ( 4. 3) for homothermal waves) and 

requires that 

dim span {m~} < 2 (5.9) 

Entropic formulation of type I constraint vectors 

It will prove convenient in the derivation and analysis of the 

propagation conditions for homentropic waves to employ the entropic 

formulation. (The thermal formulation introduced above will also be 

useful, however, especially in facilitating comparisons with the 

corresponding homothermal results). The type I constraint vectors in 

the ·entropic formulation, {ca} , together with the subsets {c0
} , 

{cM+µ} and {cP+1J} were introduced in (2.91) and (2.96) 1_3 respectively. 

Ve also recall that the set {cu} is not necessarily linearly indepen­

dent., and this prompts us to introduce the set of vectors {m~} 

(analogous to the set {m~} in the thermal formulation) which will be 

found to have the desired properties; namely that the subset {m.(}~~i is 

linearly independent. 

Returning now to the subsets of {ca} defined in (2. 96), we find 

with the aid of the definitions (2.86) for {cM+µ} and the condition 
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(5.2) that for non-homothermal waves, 

' (J = 1, ... ' I 

µ = 1, ... ' P-M 

for M ~ 1 (5.10) 

Also, (2.93) yields 

1J = 1, •.• , N- P 

where we have made use of the fact that cP+1J = 0 by (2.87). 

Furthermore, wP+1J = 0 for non-homotherrnal waves from (5.2) 2, so finally 

1J = 1, ••• , N- P (5.11) 

The entropic quantities µ and ~ are defined by 

and 

(5.12) 

they are related to their thermal counterparts µ and wa (defined by 

(2.93) and (2.~4) respectively) by 

2 -1 µ = - p µ Aa -1 a w = - p µ w (5.13) 



Now wM+µ = - p µ- 1 wM+µ = - p µ- 1 D~ wu 

= Dµ wu 
ff 

where (5.2) 1 has been used; 

furthermore, 

= 0 

from (5.2) 2 for T f 0 . 
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(5.14) 

(5.15) 

I 

Ve now use the entropic formulation and obtain the equivalent of 

the condition 

a 2 a c ·S = - v w T (4.1 bis) 

The jump of the time derivative of the type I constraint definition 

(2.36) yields 

, 7 = 1, ... , N . 

(5.16) 

Use of the expressions (3.24) for [F] and (3.40) 2 for [iJ] plus the 

definitions (2.91) for ca and (5.12)2 for wa in (5.16) gives 

(5.17) 
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Ve will be restricting attention to homentropic waves from now on, in 

which case H = 0 by (3.42). Ve also make use of the identity 

(5.18) 

given in (I), and consequently (5.17) can be written for homentropic 

waves in the form 

7 = 1, ... , N (5.19) 

Use of the results (5.10,11,14,15) enables us to write (5.19) when 

T :J: 0 as 

tT,T= 1, ••• , M 

µ, = 1, ... ' P-M 

(5.20) 

Elimination of the jumps [Aa] appearing in (5.19,20) will be dealt with 

later in the derivation of the first propagation condition for homen-

tropic waves. 

The set {ca} suffers from the disadvantage that the subset {cu}!=l 
is not necessarily l~nearly independent, as has been remarked pre-

viously (discussion following (2.96)). Ve therefore construct an 

alternative set to (5.20) that is analogous to the set (5.7,8) by 
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µ = 1, 

AK, 0 
Dl • s = 

... ' 
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P-M 

(5.21) . 

(5.22) 

where (5.14,15) have been used in ( 5. 21) and where the vectors mK. are 

defined by 

K. = 1, ... , M- 1, M+ 1, ... , N 

Ve also note that the mK. are related to their thermal counterparts mK. 

by 

AK, -1 K, 
Dl =-pµ Dl (5.23) 

The set {mK.} can be rewritten as follows after the use of the 

expressions (5.10,11) for ca ' (5.14,15) for wa and (5.23) for mK, in 

terms of mK. : we have 

A( AM A' A( AM 
Dl = w c - w c 

= p µ-1 Dl' ( = 1, ••• , M- 1 (M ~ 2) 

µ = 1, ••• , P- M (M ~ 2) 

P+1J -1 P+TJ m = - P µ m = o 1/ = 1, ••• , N- P (5.24) 
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Because of the relations (5.13) 2 for wa and (5.23) for m~ in terms of 

the corresponding thermal variables, the subset {m(} is linearly 

independent. 

Propagation conditions for homentropic waves 

Ve begin the derivation of the first propagation condition for 

homentropic waves with the local form of the balance of linear momentum 

equation (2.9) as was done in Chapter 4 for homothermal waves. At the 

singular surface, (2.9) takes the form 

[SJ n = - p 11 s (4.6 bis) 

The entropic formulation is employed here and by (2.76,7) we have 

(5.25) 

where the definition (2.91) for ca has been used and where the second 

order tensor i and fourth order tensor A are defined respectively by 

A a2e 
I = p OFlf1i (5.26) 

and 

A a2e 
A = P 7JFfJF (5.27) 

these quantities being related to their thermal counterparts I (see 

(2.92,5) and ! (see (4.8)) by 

(5.28) 
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and 

! = ! - µ-1 ,o ® ,o (5.29) 

For homentropic waves [~] = 0 in (5.25) by (3.40,2). Ve use (3.24) to 

substitute for [F] in (5.25) and use (5.25) in turn to substitute for 

[$Jn in (4.6). This yields 

2 A o a 
(p 11 I - Q) s = - p 11 [ i\ a] c (5.30) 

where the homentropic acoustic tensor q is defined by 

Q(u, v) = A(u, n, v, n) for all u, v, E V (5.31) 

and is related to the acoustic tensor q (recall ( 4.10,11)) in the 
thermal formulation by 

(5.32) 

The set of equations (5.21,2) is now employed in (5.30), following 

the general approach given in (I). There, however, only the type I 

_constraint subset { ¢0'"}!=1 with the corresponding linearly independent 

set of vectors { i/'1~~i was treated; here we allow also the subsets 

{"M+µ}P-M and {"P+r/ N-P with the corresponding vectors mM+µ and mP+1J 
f µ=1 f 1J=1 

given by (5.24) 2,3 respectively. 

First we assume wM * 0 (the case wM = 0 will be discussed later) 

in (5.21) to obtain 

[. J -1 -1 A(AM)-2 AM "'A/l,("'AM)-1[' J AM = p 11 µ (J) C •S - AK, 

If,= 1, ... , M-1, M+1, ... , N ( 5. 33) . 
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/ 

Equation (5.30) can then be written 

and with the aid of the definition for i~ following (5.22) we find that 

(5.34) 

·* where the modified acoustic tensor q is defined by 

(5.35) 

·* Since q is symmetric by (5.32), q is clearly also symmetric. 

Now from (5.24) we have, when T :/: 0 , 

AM+µ - Dµ A( 
m - ( m ( = 1, ... ' M-1 

µ = 1, ... ' P-M 
AP+7J 0 1, N-P m = 1/ = ... ' 

so (5.34) can be written as 

(5.36) 



,·/ 
./ 
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Ve recall from (4.15) that in the derivation of the first homo­

thermal propagation condition, only the linearly independent set of 

constraint vectors { c0
} !=l appeared. Their role is played in the 

homentropic case by the set {in'}~~i ; in both cases the jumps CAp+ 11] 

corresponding to the constraint vectors { l+11} ~~i (or equivalently, 

{ cP+11} ~~i ) , are absent f ram the first propagation condition. Ve 

recall from the discussion preceding (4.29) that the subset {cu}!=l has 

no effect on homothermal propagation if M = 0; correspondingly, the 

subset {in'}~~i has no effect on homentropic propagation if M = 0 or 1 

by (5.24). 

For M ~ 2 , the rema1n1ng jumps in [A J on the right-hand side of a . 

(5.36) are eliminated by defining a set {tc}~~i of vectors reciprocal 

to m( , in the sense that 

(5.37) 

The scalar product of (5.35) with lf yields 

( = 1, ... ' M-1 

µ = 1, ••. , P-M 

(5.38) 

The first propagation condition for homentropic waves when T :f 0 is 

obtained from (5.36) with the aid of (5.38) and is found to be 

(p 11
2 I - P q*) s = 0 (5.39) 
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where the projection operator p is defined by 

( = 1, •.. , M-1 (5.40) 

and we recall that the {m(} are only defined for M > 2 by (5.24), so 

for M < 2 , P = I . 

The derivation given above for the first propagation condition 

(5.39) requires w1 :f: 0 in the expression (5.33) for [~1] . Ve will 

find that in some cases, it is a necessary condition for the existence 

of non-homothermal waves that all the type I constraints be mechanical, 

so that wa ~ 0, a = 1, .•. , N Ve therefore rederi ve the first 

propagation condition under these circumstances. 

Ve begin by noting that wa = 0 => wa = 0 by the transformation 

Now 

(2.91 bis) 

and so wa = 0 implies that . 

(5.41) 

and in consequence the subset { c"} is linearly independent. This is 

not normally the case for { c"} , (al though it is for { c"} by the 

definition (2.86)), as will be recalled from the discussion following 

. (2.96). Furthermore, we have from (5.1) and (5.4) that when wa = 0 , 



(T 1 0 still holds) 

A(J (J 
C •S = C •S = 0 

CM+µ·S = CM+µ·S = Dµ C(J·S = 0 
(J 

and we also recall the result (5.11) that 

(J = 1; 

µ = 1, 

1/ = 1, ••• , N- P 
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••• ' M 

... ' P-M 

(5.42) 

. a 
The above results (5.41,2) mean that for w = 0 and T 1 0 , the 

analogy with the derivation of the homothermal propagation condition 

(equations ( 4. 9- 19)) is immediate, and ·we follow the procedure given 

there. Ve begin with (5.30) (the homentropic equivalent of (4.9)) 

which is 

(5.30 bis) 

and write 

(5.43) 

by analogy with (4.12). 

A set {ci,.}~=l is now defined such that c(J·d,. = 8~ , 6,. e span {c(J} and 

the scalar product of (5.30) with a,. yields 

(5.44) 
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The first propagation condition for homentropic waves when wa = O and 

T * 0 is then found from (5.30) with the aid of (5.43,4) to be 

(p v2 I - P Q) s = 0 (5.45) 

where the projection tensor P is defined by 

r = 1 - clT ~ a 
IT 

(5.46) 

Propagation conditions for longitudinal and transverse principal waves 
in isotropic materials 

Ve continue this investigation of the propagation conditions for 

homentropic waves by imposing the condition of isotropy and assume that 

;a = ;a(ai, 0, eAB' fAB) for type I constraints as in the homothermal 

case (discussion following (4.20)). Attention is also restricted to 

principal waves that are longitudinal ( s = IT q3) or transverse ( s = 

IT qA , A = 1 or 2) and the waves are assumed to propagate in the 

direction n = p3 . 

Since the analysis of homentropic wave propagation is somewhat 

more cumbersome than it is for homothermal waves, it is advantageous to 

identify situations in which waves are found to be both homentropic and 

, homothermal (H = T = 0) and so are generalized transverse waves as 

defined following (3.42). In such cases the analysis of homothermal 

wave propagation presented in Chapter 4 can be adopted in pref ence to 

that given here. An expression that will enable the value of T to be 

determined is now derived. 
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Ve begin by evaluating the jump [~] using the expression (2. 62) 

for q and find that 

[q] = [[U] ·] · 

= - ~50 [:i'J - ~ [ill - ~ P.l (5 .47) 

!!.!I!__ a . 
where the result BA = ¢ has been used in the last term on the right-

a 
hand side of (5.47). Vith the aid of the definitions (2.93-5) and the 

identities (3.24), (3.37), (3.40), equation (5.47) yields, after some 

rearrangement, 

Now H = O for homentropic waves by (3.42) and s·I0n can be simplified 

with the aid of (2.95), since n = p3 and we are considering isotropic 

media. Hence (5.48) reduces to 

-1 -1 -1 a a . 
[ 

2 0 l T = p µ 11 - 11 y (s·q3) + fJJ [Aa] (5.49) 

Vhen T f 0 , we can use the results for fJJM+µ 

write (5.49) as 

fJJ~+q given in (5.2) and 

+ D~ [,IJl+µl J] 
(5.50) 
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The equivalents of (5.49,50) in the entropic formulation are easily 

obtained from (5.47) with the aid of the transformations (5.13) and 

(5.28) and are 

(5.51) 

and, when T f 0 , 

(5.52) 

where t(s·q3) = s·ln and t contains contributions from the constraints, 

unlike s · 1°n . 

Two results are immediate from (5.49) or (5.51): when wa = wa = 0 

and all type I constraints are mechanical, then 

T f 0 for longitudinal waves; 

T = 0 for transverse waves, so that these waves are 
generalized transverse waves (H = T = 0). (5.53) 

Ve follow our previous approach in Chapter 4 and collect· together 

the propagation conditions that are satisfied across the wavefront when 

homentropic waves exist. Both the thermal and entropic formulations of 

the conditions are given where appropriate. 

The first propagation condition is given by (5.39) or (5.45) (we 

renumber the equations for convenience): 

(p v2 I - P q*) s = 0 

(p v2 I - P Q) s = 0 

(5.54). 

(5.55) 
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The second propagation condition is given in the entropic formulation 

by the set (5.21,2): 

A.M A-1 A.M AT[ci ] n'µ [i J] c ·S = p v µ w w AT + T AM+µ T = 1, ••• ' .M 

µ = 1, ... ' P-.M 

A" m ·S = 0 " = 1, ... , .M- 1, .M+ 1, ... , N 

(5.56) 

The thermal formulation of the second propagation condition is given 

either by (4.1), which is 

a=1, ••• ,N (5.57) 

or by (5.7,8): 

(5.58) 

and 

" m ·S = 0 " = 1 , ••• , .M- 1 , .M + 1 , ••• , N (5.59) 

It will at times prove useful to express the type I constraint vectors 

ca ' m" and the acoustic tensor Q in the thermal f o"rmulation with the 

aid of the transformations 

CAa =ca - -1 a a2wo 
p µ w oa::oo q3 

. 3 
a=1, ••• ,N (5.60) 
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which follows from (2.92), (2.95) and (3.29), and 

A" -1 A" m = - p µ m " = 1, ••• , M- 1, M+ 1, ••• , N 

(5.61) 

as in (5.23). 

Finally (5.32) with the aid of (2.95) and (3.29) yields 

q q- 2 -1 = p µ (5.62) 

so that q , like q , is in spectral form (recall 4.22-5) with proper 

vectors qi and corresponding proper numbers 

qd) = Qd 11 = 1 or 2 

= Q3 - P2 µ-1 [~!;;of (5.63) 

Longitudinal and transverse principal wave solutions of the propagation 
·conditions 

Ve investigate solutions to the propagation conditions for homen­

tropic waves for the wave speeds v1, v2 , v3 corresponding to the wave 

amplitudes u q1, u q2, u q3 respectively, where such solutions are not 

precluded by the constraints. The propagation conditions are employed 

in the entropic formulation, but it will prove convenient later to 

employ the thermal formulation when investigating the influence of the 

constraints on the solutions for vi and to facilitate comparison with 

the corresponding homothermal results. 
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Ve have the result from (5.9) that for homentropic waves, dim span 

{m~} ~ 2 • Ve treat the four all-embracing cases dim span {ca} = M = 
0,1,2,3 in turn. It will be recalled that M ~ 2 for homothermal waves 

by (4.3), and where appropriate we relate the homentropic results 

obtained here to the homothermal results obtained previously. It is 

assumed throughout that conditions are such that 

A* q (v, v) > 0 

for all non-zero v for which m~·v = 0 , so that the proper numbers of 
A* q are real and positive. Since we restrict attention to principal 

waves that are longitudinal or transverse, we will only be concerned 
A* 

with situations in which there exist one or more proper vectots of q 

that are parallel to qi , i = 1, 2, or 3, with corresponding proper 

numbers 

i = 1,2, or 3 

In each of the following cases, M = 0,1,2,3, we begin by assuming 

the existence of a homentropic wave that is non-homothermal, so that 

the previous expression (5.52) for T is applicable. 

M = 0 

All type I constraints are inactive and en~ O, n = 1, ... , N from 

(2.87) with P = 0 . Since T j 0 we have, from (5.2) and (5.15), -wn = 
wn = 0 , so that all type I constraints are mechanical, and e,n = en _ O 

. f ram (5 . 11) . The results (5.53) for mechanical constraints are 

recalled; only longitudinal waves with T j 0 are compatible with 
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mechanical constraints, and transverse waves (for which H = T = 0) are 

best treated as in Chapter 4. For waves with mechanical constraints, 

the form of the first propagation condition given in · (5.55) is 

appropriate: 

(p v2 I - P Q) s = 0 (5.55 bis) 

For M = 0 , P =·I from (5.46), and (5.55) can be rewritten as 

q s = p v2 s (5.64) 

·and from (5.62,3) we see that longitudinal waves s = <r q3 satisfy 

(5.64) with wavespeed v3 given by 

(5.65) 

M = 1 

Ve begin by considering the situation in which w1 f 0 , and since 

T f 0 is assumed, we have from (5.52) that 

(5.66) 

The first propagation condition (5.54) is appropriate when w1 f 0 and 

can be rewritten in the form 

QA A(Al)-2 (Al ) Al 2 S = µ W C •S C = p V S (5.67) 
I 

! 
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A* 
where we have made use of the definition (5.35) of Q , so that for 

M = 1, 

(5.68) 

The second propagation condition is found from (5.56) to be 

Al A-1(A1)2[[' J Dµ, [' J] C •S = p V µ, W Al + 1 Al+µ, (5.69) 

The first propagation condition (5.67) has a proper vector in the 

direction of q. , i = 1,2, or 3 if either 
1 

or 

(5.70) 

(5.71) 

These situations are considered in turn for longitudinal and transverse 

waves. 

For longitudinal waves s = <T q3 and if ( 5. 70) holds, the first 

propagation condition reduces to 

(5.72) 

with the wavespeed v3 given by 

(5.73) 

with q3 as in (5.63). 
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The second propagation condition (5.56) reduces to 

(5.74) 

and we note that substitution of (5.74) in (5.66) yields that T f 0 , 

consistent with our assumption there. Ve will in Chapter 8 be making 

use of the results such as (5.74) for M = 0,1,2,3 in order to evaluate 

terms involving [la] . 

Vhen (5~71) holds, the first propagation condition (5.67) reveals 

that the wavespeed v3 is given by 

(5.75) 

The second propagation condition (5.69) now yields 

A1 A-1(A1)2[c' J nµ, c' J] U C •q3 = p V µ, ~ Al + 1 Al+µ (5.76) 

and so 

[ ' J Dµ [ ' J -1 - 1 A ( A 1 )- 2 ( A 1 ) .L 0 Al + 1 Al+µ = p V µ, ~ U C •q3 r (5.77) 

Ve see from (5.66) that (5.77) is consistent with the assumption that 

T f 0 , as long as 
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For transverse waves s = u qA , A = 1 or 2 , and when ( 5. 70) 

holds, the second propagation condition takes the form 

.(5.78) 

Since w1 f 0 is assumed, we must have [~ 1] +Di [~l+µJ = 0 from (5.78), 

but then T = 0 in (5.66), contradicting our assumption there. 

Consequently, this constraint configuration is not compatible with 

transverse waves for which T f 0 . 

Conversely, when (5.71) holds, we find from (5.67) that transverse 

waves propagate with wavespeed 

A = 1 or 2 (5.79) 

and the second propagation condition (5.59) yields 

(5.80) 

use of (5.80) in (5.66) yields a non-zero value for T as required. 

Th . t . f A 1 0 . . d d A 1 + µ Dµ Al d · e s1tua ion o w = 1s now cons1 ere ; since w = 1 w an 

·l+TJ = 0 for T f 0 by ( 5. 2), all type I constraints are mechanical. 

The results (5.53) apply; longitudinal waves with T f 0 are compatible 

with mechanical constraints, but transverse waves are not. 

For longitudinal waves, s = u q3 and the first propagation 

condition for wa = 0 takes the form 
2 - A (p v I - P Q)s = 0 (5.55 bis) 
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where P =I - c ® c from (5.46), and c = c1/ic1
1 • Hence (5.55) can be 

written in the form 

q (
A qA )A 2 S - C· S C = p V S (5.81) 

and since w1 = O , the second propagation condition (5.58) yields 

(5.82) 

Now q s is parallel to s from (5.62,3) for s = 

with the aid of (5.82), 

u qi , and so we have, 

C• Q S = 0 (5.83) 

Now finally (5.81) with (5.83) yields the result that for s = u q3 , 

waves propagate with speed 

(5.84) 

M = 2 

Ve begin by assuming w2 * 0 and (5.52) takes the form 

(5.85) 

Since w2 f 0 the first propagation condition (5.54) is appropriate and 

with the aid of (5.35) we find 

(5.86) 
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The second propagation condition is found from (5.56), and with the aid 

of the results (5.24) for {m~} it takes the form 

.,. = 1,2 

µ = 1, ... , P- 2 

1J = 1, ••• , N- P 

(5.87) 

Since m1-s = 0 by (5.87), we have m1-Q s = 0 ' as Q sis parallel to s 

(recall the discussion preceding (5.83)). For M = 2, we have P =I -

m ® m from (5.40) with m = m1/im1
1 ' and with the aid of these results 

the first propagation condition can be written as 

(--2 )("2 (" --2)") ---1(--2)2(q" 2 I) c • s c - m· c m = µ (J) - p 11 s (5.88) 

Ve are considering only longitudinal and transverse principal waves, so 

that s = u q. , i = 1,2 or 3. Ve recall from (5.62,3) that Q is in 
1 

spectral form, and so (5.88) yields the result that either 

(5.89) 

or 

( --2 (" "2)") 0 c - m· c m " s = 
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and, since m·s = 0 by (5.87), this latter condition is equivalent to 

(5.90) 

Longitudinal and transverse wave solutions are now investigated when 

(5.89,90) hold, following the previous approach for M = 1. 

For longitudinal waves s = u q3 and if (5.89) holds, then from (5.88) 

we see that longitudinal waves propagate with speed 

(5.73 bis) 

The second propagation condition (5.87) yields firstly that 

(5.91) 

Secondly, 

by the definition of m~ following (5.22), and so 

(5.92) 

since (5.89) holds. 

No further information is gained from the expressions involving ml+µ 

iP+q in (5.87). If instead (5.90) holds, then (5.88) yields 

2 -l(qA A(A2)-2(A2 )2) V3 = p 3 - µ W C • q3 (5.93) 



141 

and from (5.87), 

AT([' J Dµ [' ]) (A2 ) -1 -1 µA(~·2)-2 
{J) AT + T "2+µ = (J C • q3 p 1J "' 

(5.94) 

Furthermore, 

by the definition of m~ following (5.22), and so 

(5.95) 

For transverse waves s = (J qA , A = 1 or 2 , and we find by an analysis 

similar to that used for M = 1 (see discussion foliowing (5.78)) that a 

constraint obeying (5.89) is not compatible with transverse waves for 

which T :/= 0 . 

If (5.90) holds then (5.88) and (5.87) are easily shown to yield 

the results 

(5.96) 

(5.97) 

(5.98) 

Th • t • Al A2 0 • d e s1tua ion w = w = 1s now treate . (The case ;;/ :/= 0 , 

w2 = 0 can be treated by the above procedure by relabelling the 

constraints). All constraints are mechanical since w2+µ = Dµ w(J and 
(J 

wP+n = 0 when T :/= 0 by (5.14,15). As in the situation when M = 1, the 
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results (5.53) apply and only longitudinal waves are compatible with 

mechanical constraints when T f 0 . 

Ve proceed as before for M ~ 1; the first propagation condition 

(5.55) applies, but now 

P = I - cu ~ d 
(/ 

(/ = 1,2 

and so (5.55) can be written as 

Q s - (d ·Q s) = p v2 s 
(/ 

(5.99) 

(5.100) 

The second propagation condition is best used in the form (5.19), since 

Al A2 Al Al A2 0 • O • 11 o f o d h Al A2 0 m ·s = w c ·s - w c ·s = 1s tr1v1a y sat1s 1e w en w = w = , 
and we find from (5.19) that 

(5.101) 

Consequently du·Q s = 0 , u = 1,2 since du·s = 0 by (5.101) and Qs is 

parallel to s (recall discussion preceding (5.83)). Longitudinal waves 

therefore propagate with speed v3 where 

(5.103) 

from (5.100). 
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M = 3 

The possibility of homothermal waves does not arise here since 

M ~ 2 for homothermal waves from (4.3). Furthermore, when M = 3 the 

case wa = O (all constraints /mechanical) is not compatible with 

homentropic wave propagation since then 

AO' 0 c • s = ' (f = 1,2,3 by (5.42), 

which is clearly impossible for non-zero s as the set {c<F} is linearly 

independent by the discussion following (5.41). Consequently we assume 

w3 * 0 and proceed as before for .M = 1,2; we find from (5.54) and 

(5.35) that the first propagation condition can be written as 

(5.103) 

and the second propagation condition is found from (5.56) and (5.24) to 

be 

1" = 1,2,3 

( = 1,2 

µ = 1, ... ' P-3 

/:·· 

// 

1, 
./ 

N-P 1/ = ... ' 
(5.104) 
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The projection P in (5.103) is given by 

( = 1,2 (5.105) 

from (5.40) and we also note that 

(5.106) 

since q s is parallel to s by the discussion preceding (5.83) and l(·s 

= 0 by (5.37) and (5.104). Vith the aid of (5.105,6) the first 

propagation condition can be rewritten as 

( = 1,2 

(5.107) 

The argument. used ear-lier for M = 2 in analyzing ( 5. 88) is again 

applicable: we are considering solutions with s = u qi , i = 1,2 or 3 

and q is in spectral form by ( 5. 62, 3) , so ( 5 .107) yields the result 

that either 

(5.108) 

or 

and since m(•S = 0 by (5.104), this latter condition is equivalent to 

(5.109) 

- ---. 
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The two possibilities (5.108,9) are considered for longitudinal and 

transverse waves; the analysis is closely related to that· given for 

M = 2 of the conditions (5.89,90) and only a summary is given. 

For longitudinal waves s = u q3 , and if c3·s = 0 then it is found 

from (5.103) that 

(5.110) 

If c3 
A s = 0 then 

(5.111) 

For transverse waves, s = u qA , A = 1 or 2 and if c3·s = 0 then 

(5.112) 

if on the other hand c3 
A s = 0 ' then (5.103) yields 

(5.113) 

Influence of isotropic and directional constraints on the homen­
tropic propagation conditions 

Ve now consider the propagation conditions (5.54-6) when either 

isotropic constraints or directional constraints are present. The 

results (5.64-113) are employed where appropriate, but are presented 

here in the thermal formulation. This facilitates comparison with the 

. corresponding homothermal results and also enables the influence or 

otherwise of the constraints on the solution to be more easily seen. 
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Longitudinal waves 

In the case of isotropic constraints only, M = 1 aµd all 

constraints are collinear: 

from (4.42) , and 

cl+µ = n't_ c1 µ = 1, ... , N , from (2.86) with P=N . 

The constraint vector c1 in the entropic formulation is found from the 

transformation (5.60) with the aid of (4.42) to be 

(5.114) 

Clearly c1 is parallel to q3 and so c1 is parallel to s since s = u q3; 

consequently the condition (5. 71) is satisfied and the longitudinal 

wave speed is given by (5.75), which takes the form (thermal 

formulation): 

2 1 [ 2 1[a2vP]
2 

1 , 2 [i;1 
113 = P - Q 3 - P µ- oa:;an + µ ( (JJ ) - a3 - P µ-1 i f.;;0rJ 

(5.115) 

The transformations (5.13) 2, (5.60) and (5.62) have been used in 

obtaining (5.115) and we note that (J}l (and w1) is non-zero (constraints 

for which w1 = (J}l = 0 when M = 1 must obey c1·s = 0 by (5.82) to be 

compatible with non-homothermal waves, and this is not possible here by 

(5.114)). 
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The wave speed v3 is clearly influenced by the constraint ~ 1 
1 . 

through the terms i: and w1 ; furthermore, all isotropic constraints 
3 

contribute non-zero terms AaQ; to Q3 . (This is easily seen by sub-

stituting the results (4.42) and (2.86) quoted above into (4.22,3) and 

evaluating (4.24) with the aid of (4.25)). Finally, we note that 

a2¢° awa 
µ = p + p A !171"""" ao2 a uu 

(5.116) 

by (2.60)' (2.93,4). 
a a 

Ve will not be evaluating oO , but we note for 

future reference that constraints for which wa = 0 do not contribute to 

µ . 

Vhen only directional constraints are present, the situations dim 

span {ca} = M = 0,1,2,3 are all possible and are now dealt with in 

turn. Ve recall from the discussion following (4.53) that the corres­

ponding homothermal wave speeds v3 (M ~ 2) . are unaffected by the 

presence of directional constraints and are given by 

(4.29 bis) 

where Q3 is obtained from (4.22-5) and Q; = 0 by (4.53). In the 

homentropic situation, it will be found that the constraint influence 

on the longitudinal wave speed is non- zero in general for M ~ 1 . 

Detailed results are given for the cases M = 0,1; results for M = 2,3 

have similarities to those for M = 1 and are accordingly dealt with in 

brief. 
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Now M = P = 0 and we have, by the definition (2.89) of ca , 

c~ = 0 => PAB l ai(pi·eA)(n·eB)qi = 0 
i 

(5.117) 

these constraints are mechanical by the previous discussion in this 

chapter of the case M = O. 

The wave speed is given by 

2 -1 2 -1a20 

[ 
2] 

"3 = p Q3 - p µ [~] (5.65 bis) 

and the constraint contributions to Q3 are found from (4.25), (2.89) 

and (5.117) to be 

= 0 (5.118) 

Since all the constraints are mechanical, µ in (5.65) is unaffected by 

the constraints (recall (5.116)). Consequently the directional 

constraints have no effect on the wave speed. ·Ve recall from the 

discussion following (4.53) that directional constraints have no effect 

on the corresponding result for homothermal waves, M = 0,1, or 2, which 

is 

(4.29 bis) 
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The constraint vector c1 is required to satisfy either (5.70) or 

(5.71) when w1 (and w1) is non-zero and we consider these in turn: 

Vhen (5.70) holds, we have 

so that (5.60) yields 

and hence from (2.89), 

(5.119) 

The wave speed is given by 

(5.65 bis) 

as it was for M = O, but now the constraint contribution from -
1 

to 

p- 1 q
3 

is found with the aid of (2.69), (4.22-5) to be 

(5.120) 
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and this is non'"" zero by ( 5 .119). Similar contributions to Q3 arise 

from the constraints ~l+µ, µ = 1, ... , P-1 , and details are omitted. 

Alternatively, if (5.71) holds, c1 is parallel to q3 and so 

therefore is c1 ; consequently we have, from (5.60), that 

(5.121) 

(its value, however, differs from that 1n (5.119)). 

The wave speed v3 is given by (5. 75), which when transformed (as in 

(5.115) for isotropic constraints) to the thermal formulation takes the 

form 

-1 1 a2,po]' 2] 
p µ w oa::oo (5.122) 

3 

-1 1 with the aid of (2.89). Once again the contribution p ,\1 Q3 is 

non-zero from (5.120,1), as is the contribution toµ . 

If we consider the case when all constraints are mechanical, then 

(5.82) holds and this together with the transformation (5.60) and 

(2.89) yields 

(5.123) 
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The wave speed is given by (5.84), which transforms as 

2 -1 2 -1a20 

[ 
2] 

•3 = p Q3 - p µ [~] (5.124) 

and from (5.120) and (5.123) we see that the constraint contribution Q~ 

f h ~1+µ -to Q3 is zero, as is that rom t e constraints~ , µ - 1, ... , P-1 , 

since cl+µ = Di c1 and so from (5.123) 

(5.125) 

Furthermore,µ in (5.124) is unconstrained since wa = 0 in (5.116), and 

consequently the directional constraints have no effect on the wave 

speed v3 in.(5.124) when all constraints are mechanical. 

M = 2 

The constraint vector c2 is required when w2 f 0 to satisfy either 

(5.89) or (5.90) and wave speeds are given by (5.73) and (5.93) 

respectively. The analysis in each situation is very similar to that 

given above for, M = 1; in essence we proceed as before and obtain 

equivalents of (5.116-119) and (5.65) but with ; 2 (resp. c2, w2, Q;) 

replacing ; 1 (resp. c1, w1; Q~) throughout. Consequently, details are 

omitted. Contributions to Q3 from the constraint labelled ; 1 when 

M = 2 are similar to those from ; 2 , · and contributions from the 

. ~2+µ d h f constraints~ , µ = 1, ... , P-2 can then be deduce wit the aid o 

the result (5.1) 2 that c2+µ·s = D~ cu·s , u = 1,2 . 
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M = 3 

The previous analysis of this situation noted the similarity to 

the case when M = 2; the constraint vector c3 (when w3 :f O) must 

satisfy (5.108) or (5.109) and the corresponding wave speeds are given 

by (5.110) and (5.111) respectively; the analysis with the results for 

M = 1,2 are immediate. 

One significant difference between the situation when M = 3 and 

those when M = 0,1,2 is that comparisons with· homothermal waves are 

only possible for M ~ 2 , since M ~ 2 is a necessary condition for the 

existence of homothermal waves by (4.3). Ve recall that situations 

when M = 3 and only mechanical constraints are present are not 

compatible with waves for which T :f 0 . 

Transverse waves 

Since the analysis is similar to that presented above for longi­

tudinal waves, it is given in succinct form. Once again reference is 

made to the earlier analysis (5.64-110) of solutions to the propagation 
~ 

conditions for principal waves that are homentropic and non-

homothermal. 

Vhen only isotropic constraints are present, M = 1 and we have 

from (4.42) and (2.86) with P = N the results 

1~ 
c = aa q3 

3 
cl+µ = D't_ c1 µ,=1, ••• ,N 
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Now 1 c ·s = O for s = ~ qa , a = 1 or 2 from (4.42) and with the aid of 

the transformation (5.60) we find that c1·s = 0 . Ve recall the 

previous analysis of this situation: transverse waves with T f 0 are 

not compatible with a constraint for which c1·s = 0 (irrespective of 

. the value of w1) from the discussion following (5.78) and the 

discussion for w1 = 0 following (5.80). 

Turning now to the situation in which only directional constraints 

are present, we recall from (4.56-8) that in the corresponding homo-

thermal situation for transverse wave propagation, directional con­

straints do in general influence the wave speed, unlike the situation 

for homothermal longitudinal waves. 

M = 0 

The previous discussion of principal wave solutions to the 

propagation conditions when M = 0 is immediately applicable: transverse 

homentropic waves with T f 0 are not compatible with this constraint 

configuration. 

M: = 1 

Ve recall that when w1 f 0 , transverse waves with T f 0 are 

compatible with directional constraints only when (5.71) holds, so that 

c1 is parallel to q~ The situation wa = 0 is not allowed by (5.53) 

and the discussion following (5.80). The wave speed vA is found from 

(5.79), and in thermal variables takes the form 

2 -1( ( 1)-2( 1 )2) vA = P QA + µ w c ·qA (5.126) 
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The influence of the constraint ~ 1 on v A is manifest through c1 • qA 

(f 0) and w1 , but is also present in QA (since c1 ·q3 f 0 by (5.60)) 

andµ . The constraints ~l+µ, µ = 1, ... , P-1 (for which cl+µ are 

collinear with c1) influence QA ~ µ in a similar fashion to ~ 1 . 

Furthermore, the directional constraints l+1J , 1J = 1,. . .. , N- P (for 

which cP+1J = 0) are compatible with non-homothermal transverse waves 

when M = 1, unlike the previous case when M = O; since ~ 1 unlike ~P+1J 

is able to provide the necessary non-zero contributions to T by (5.80). 

The constraints l+1J do not influence vA , however. 

M = 2,3 

The results for M = 2,3 have close parallels with those for M = 1 

and are merely summarized here. In each case, 'WM f 0 and cM is 

parallel to qA ; the wave speed vA in the thermal formulation is given 

by 

(5.127) 

from ( 5. 96) and ( 5 .113) according as M = 2 or 3 respectively. The 

.b . f h Mth . 11 1 h f ,,1l h contr1 ut1on o t e constrarnt to vA para e s t at o 'I' w en 

M = 1. The contributions of ~( , ( = 1, ... , M-1 to QA are found from 

an analysis of (5.98) in the case when M = 2, and similar results are 

obtainable from inC s = 0 in ( 5 .104) when M = 3. Contributions from the 

remaining N-M constraints are similar to those discussed above in the 

equivalent situation when M = 1. 
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Temperature gradient ahead of homentropic waves in non-conductors 

It has been noted that when H = T = 0 , the analysis of homo­

thermal wave propagation presented 1n Chapter 4 can be used in 

prefererence to that for homentropic waves developed in this chapter. 

A similar situation is found to occur in the investigation of 
1 
wave 

growth; we treat the growth of homentropic waves in non-conductors in 

. Chapter 8, but when H = T = 0 , the corresponding analysis of homo­

thermal wave growth in Chapters 6 and 7 is to be preferred. In Chapter 

4 (section following (4.58)) and Chapter 6, however, it is assumed that 

the waves propagate in definite conductors and that the temperature is 

constant ahead of the wave. By contrast, the homentropic waves treated 

in this chapter and in Chapter 8 are propagating in non-conductors for 

which any type II constraints present satisfy zp·n = 0 (recall 

discussion following (3.50)), and in Chapter 8 it is assumed that the 

entropy is constant ahead of the wave. Ve therefore investigate the 

temperature gradient ahead of a generalized transverse wave (H = T = 0) 

in a non-conductor for which entropy is consiant ahead of the wave. 

Ve recall that n = - ~as in (2.62), and so since the entropy is 

assumed to be constant ahead of the wave, 

0 = Grad n + = - Grad [ ~] + (5.128) 

where a superscript plus sign denotes evaluation just ahead of the 

wave. 
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Equation (5.128) is evaluated in the thermal formulation and we obtain 

M . . F . . . + 0 . + (J) ,\ • = l o + + a + 

. <JJ> <JJ;1> µ ,<1> P a,<1> O (5.129) 

J 

with· the aid of (2.92-5) for 1° , µ and (J)a The angle brackets in 

(5.129) denote "physical components" with respect to an orthonormal 

basis of vectors pi or qi or combinations of these. (Ve will make 

extensive use of such components in Chapters 6-8). 

Ve now assume that the temperature is constant ahead of the wave, 

and so (5.129) reduces to 

l o + a + M .. F .. ,. +pw ,\ . =0 
. <JJ> <JJ;1> a,<i> (5.130) 

J 

The condition (5.~30) must be satisfied whenever the analysis of 

Chapters 4, 6, 7 is adopted for waves satisfying H = T = 0 with Grad O+ 
+ = Grad 'f/ = 0 . 

Two special cases of (5.130) are worth noting. Firstly, when all 

type I constraints are mechanical, wa = 0 for a = 1, 

reduces to 

... ' N and (5.130) 

(5.131) 

Secondly, if we assume that plane, cylindrical or spherical waves 

are propagating in irrotationally deformed materials as specified by 
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(4.60-70), (this assumption is also made in Chapt,ers 6-8), then the 

results of Appendix B for Grad F yield that the only non-zero 
+ components F . . . are 
<JJ; 1) 

+ 
F<jj ;3> = aj ,3 

(see also (6.34)), and so (5.130) takes the form 

L o a + 
0 M .. a. 3 + p w Aa,<3> = <11> I, 

1 

p 
a + 

w Aa,<f> = 0 r = 1, 2 

(5.132) 

(5.133) 
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CHAPTER 6 

GROVTH EQUATIONS FOR HOMOTHERMAL VAVES 

The propagation conditions (4.19,20) are unable to predict the 

change in magnitude u of a homothermal acceleration wave as it passes 

through the material. In this chapter we derive the growth equation 

for homothermal waves in isotropic media subject to both type I con­

straints satisfying (2.66) or (2.68,9), and to type II constraints; 

this is a differential equation whose solution provides information 

about the behaviour of u with time. 

Reddy in (I) derived the growth equation for plane waves in 

thermoelastic media subject to type I and type II constraints, and 

assumed homogeneous deformation. Ve extend these results by removing 
' 

the restriction of homogeneous deformation and also by ·considering 

cylindrical and spherical waves as well as plane waves; these are taken 

to be propagating in definite conductors subject to the deformations 

specified in cases (A) - (C) at the end of Chapter 4. 

Ve further extend the results of (I) by treating the type I 

constraint subsets {¢M+µ}:~~ and {l+1J}~~~ (see (2.86,7)) as well as 

the linearly independent subset {.¢u}!=l dealt with in (I). It is found 

that when we consider longitudinal waves and when type II constraints 
~... . 

·, 

are absent, the type I constraints must satisfy certain restrictions as 

detailed in (6.29) if either or both of the subsets {¢M+µ} , {¢P+17} are 

present. For transverse waves a minor restriction is imposed on the 

subset { ¢M+µ} in the discussion following (6. 32). The restrictions 
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imposed above are due to the fact that solutions for the jumps [~ J are a 
not separately available when linearly dependent constraints are 

present; this difficulty manifests itself again in the investigation of 

homentropic wave growth in Chapter 8. 

The growth equation is derived for both longitudinal and trans­

verse principal waves and is shown to be a Bernoulli equation and a 

linear first-order equation respectively. Solutions to these equations 

are dealt with in Chapter 7. 

Our equations have close analogues in the literature on uncon-

strained materials; Chen (1968c), Bowen and Vang (1971), and Chadwick 

and Currie ( 1972) consider ther.modynamic influences on such materials; 

see also the review by Chen (1973). For constrained elastic materials, 

Ogden (1974) treats the growth of plane acceleration waves in incom­

pressible media, Scott (1975) discusses propagation and growth of 

acceleration waves in elastic materials subject to arbitrary mechanical 

constraints, and provides an application (Scott (1976)) to incom­

pressible materials. Reddy (I) however, appears to be the first to 

provide a general theory for the propagation and growth of acceleration 

waves subject to arbitrary thermomechanical constraints. 

The derivation of the growth equation begins with the calculation 

of the jump in _the time derivative of the equation of motion (2.9) 

across the wavefront. The time derivative of the body force b is 

assumed to be continuous, and we find that 

[Div SJ = p [ · x · ] (6.1) 
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Now (3.26) provides an identity for [".i:"] , and this introduces the 

displacement derivative of s . Ve find after substitution of (3.26) in 

(6.1) and some rearrangement that 

2 p OS - -1 ov s p 2 [D1"v s·J at-pv at - v v+ (6.2) 

where the vector v satisfies v·a = [Grad FJ (a, n, n) as in (3.28). 

After taking the dot product of (6.2) with s and using the definition 

(3.34) of the magnitude u of the wave amplitude, we find that 

2 p ou -1 011 2 -1 -1 · 
at = p v u at - p v u s · v + u s · [Div SJ ( 6 . 3) 

The expression s·[Div SJ is now evaluated. Ve have from (2.46) 1 2 and 
. ' 

(2.47) that 

where the vector and tensor components in (6.4) are relative to the 

basis vectors defined by (2 .1,2), and A. , 1°. and S4 are defined by 

(4.8), (2.92,5) and (2.43) 1 respectively. 

The divergence of S is found from (6.4) to be 

j l ·k 
+ A. k F 0 • 

1 (.; J 
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(B.5) 

In (6.5), the sixth-order tensor of elastic moduli j is defined by 

and the constraint term !a is given by 

! a = a3¢ ~2~a 
P ~ = p F F 

a 

(6.6) 

from (2.46) 1 and (4.8). Ve have also used the result that for type I 

constraints considered here, 

la -- ~2~: p = 0 by (2.92,5). 

The jump [Sir·r] is now evaluated using (6.5) 1n conjunction with 
' 

the identity (Vang and Truesdell (1973), p.456) 

[ab J = - [a J [b J + a+ [b J + [a J b + (6.7) 

where a,b are scalar-, vector-, or tensor-valued quantities and the 

superscript plus sign denotes evaluation just ahead of the wave. Ve 

assume the material ahead of the wave to be at rest and at constant 
·+ ·+ .+ .+ ·+ + 

temperature, so that F , Grad F , Aa , Grad Aa , 0 and Grad 0 are 
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all zero, and we find that 

[S r J = [- ,A) i n[Fm .J + E+1"ki - ~ A)ki[O .J i ;r 1 k m n;J uu 1 ,J 

a j l[ ] a j i + J [·k ] j i ·k - A . k A . + A . k A • F n + A . k [F n •• ] 1 a ,J 1 a ,J .c. 1 .c. ,J 

+ M? j [ 0 . J + [- A~ j i [Fk . J + A~ j i F+ k · l [ ~ J 1 ,J 1 k i;J 1 k i;J a 

a J . +S. [A .J 
1 _a,J 

(6.8) 

In (6.8), the components of the third-order tensor E are defined by 

i , j i n m E.k = A· k F . 1 1 m n;J 

The jumps involving derivatives of F in (6.8) are evaluated using 

(3.24,5, 7), and we also employ the result for homothermal waves that 

[Grad OJ = [OJ = 0 from (3.37,9). The identity (3.22) 1 is then used to 

express [Grad JaJ in terms of [~aJ . 

An expression for s· [Div SJ can now be obtained from (6.8) with 

the aid of the above results from Chapter 3, and we find that 

. -3 -1 +( ) s·[Div SJ = v .A(s,n,s,n,s,n) - v E s,s,n 
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-1 rA ( ) -0( [ ·] + v n A. s,Hr,s,HA + •- s, Grad 0) 

(6. 9) 

Here ka is defined to be the vector with components 

a !a j i k k. = .. k F D . 
1 1 ~ ;J 

(6.10) 

q is as defined 
. a 

in . ( 4. 10 , 11) , and q ( s , s) (see 

(4.10,11,25)). 

The expression (6.9) for s·[Div SJ is used in (6.3), and the rema1n1ng 

jumps in (6.3) are evaluated in. turn. A term u- 1(Q(s,v) - p v2 s·v) is 

now present on the right-hand side of (6.3), and with the aid of (4.15) 

we find that 

Q(s,v) - p v2 s·v = - (d ·Q s)cu·v 
11" 

u=l, ... ,M 

(6.11) 

Ve are concerned with homothermal principal waves for which s = u qi , 

i = 1,2 or 3, in which case Qs is parallel to s by (4.27). Now du·s 

= 0 by the discussion following (4.13), and consequently 

d ·Qs = O 
11" 

(6.12) 
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so that the expression on the left-hand side of (6.11) vanishes. (The 

result (6.12) will again be useful later on in the evaluation of the 

jumps [~a]) . 

The term 1° ( s, [Grad iJ]) in ( 6. 9) is now evaluated. Thomas' s 

iterated kinematical condition of compatibility (3.19) 1 yields for 

homothermal waves the identity 

[Grad iJ] = - v 3 n (6.13) 

where 3 = [n· (Grad (Grad O)n] . (The scalar 3 is not related to the 

vector 3 introduced in (3. 2), and no confusion is likely to arise 

between the two). 

From (6.13) then, 

t 0 (s, [Grad iJ]) = v 3 I 0 (s,n) 

and since we assume the waves to be propagating with n·p3 in isotropic 

media, we have from (2.95) that 

0 a2,po 
I (s,n) = p aa:::oD (s·q3) 

3 

Consequently, 

a2vP 1°(s, [Grad iJ]) = p v 3 oa::lfD (s·q3) 
3 

For transverse waves s = qA , A = 1 or 2, and so 

t°(s, [Grad OJ) = 0 from (6.14). 

/' 

(6.15) 
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For longitudinal waves, we follow (I) and find an expression for 3 

and thence [Grad OJ , but are able to show that the restriction imposed 

there of homogeneous deformation is unnecessary. 

Ve first assume that type II constraints defined by (2.37) are 

present. The time derivative of (2.37) is 

(6.16) 

and the jump of (6.16) is found with the aid of the identity (6.7) to 

be 

(6.17) 

Since the material ahead of the wave is assumed to be at constant 

temperature, Grad O+ = 0 , and we also have [Grad OJ = 0 for homo­

thermal waves by (3.37,9). Hence (6.17) reduces to 

(6.18) 

Now (6.18) can be written with the aid of (6.13) as 

(6.19) 

If i1 ·n = 0 for all type II constraints present, we are unable to 

determine 3 from (6.19). Ve therefore assume (as in (I)) that zp·n 1 0 
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for at least one type II constraint, in which case (6 .. 19) yields 

::: = 0 (6.20) 

Consequently [Grad iJ] = 0 from ( 6 .13) , so that 

t°(s, [Grad iJ]) = 0 (6.21) 

Vhen type II constraints are absent, we consider the jump 1n the 

heat flux q , where q is defined by (2.46) 4: 

[Grad qJ = ~ [Grad F] + a(G~~d O) [Grad (Grad O)] + ~ ® [Grad OJ 

(6.22) 

For homothermal waves Grad 0 is continuous at the wavefront by 

(3.37,9). + Since Grad 0 = 0 by the assumption of constant temperature 

ahead of the wave we have Grad 0 = 0 at the wavefront. Equation (6.22) 

now reduces to 

[Grad qJ = ~ (Kn) I 
~ Grad 0 = 0 

(6.23) 

where the thermal conductivity tensor K f o:r constrained materials is 

defined as in (2~21) to be 

I{ - - ago_ I 
- 8(Grad 0) Grad 0 = 0 

(2.21 bis), 
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and where we have used the result (Chadwick and Currie (1972), equation 

(3.1)) that 

~ - 0 
F Grad () = 0 -

From (6.23), the identity Div q =tr (Grad q) implies 

[Div qJ = - ::. 11, (6.24) 

where 11, = l(n,n) I 
Grad () = 0 

and so the jump of the energy equation (2.48) can be written as 

pOvH=-211, (6.25) 

where the entropy jump H is defined by 

H = [Grad 11·n] (3.42 bis) 

An expression for H is obtained from (5.48), and for homothermal waves 

we have 

(6.26) 

a2,JP 
where we have used the fact that s-1°n = p oa:;:an (s·q3) as in 

3 
the 

derivation of (6.14). 
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Ve now evaluate pwa[la] in (6.26). The only solutions available for 

[la] are those obtained from (4~14) with the aid of (6.12); we recall 

that 

u=1, ... ,M 

µ = 1, ... ' P-M 

(4.14 bis) 

and for homothermal principal waves with s = u q. , i = 1,2 or 3, 
1 

du·Qs = 0 (6.12 bis) 

so we have 

(6.27) 

Clearly, when only the subset {¢u} is present (we recall from (2.86) 

that these constraints have constraint vectors cu which form a linearly 

independent set), then 

u=1, ... ,M (6.28) 

Vhen the subset {uM+µ} is present, (6.27) is unable to provide 

solutions for the individual jumps [lu] 

is no information regarding the jumps 

corresponding to the constraint subset 

/+1J = 0 . 

, [lM+µ] . Furthermore, there 

[ lP+ ] , 1/ = 1, •.• , N- P , 

{ ;P+q} corresponding to which 
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·Consequently the term ptl PaJ can only be evaluated in the 

following situations: 

(i) when the subset {~P+q} is present, if these constraints are 

mechanical, so that wP+q = 0 ; 

(ii) when the subset {~M+µ} is present, if all constraints are 

mechanical, s~ that wa = 0 , a= 1, ... , N • 

(6.29) 

Vhen (6.29) holds, pwa[l~ = 0 and from (6.25) with the aid of (6.~6) 

we have for s = q q3 that 

::: = P v-1 /f,-1 o q·. §21f~o (6.30) 
a3 

Finally we obtain from (6.14), ·for the case in which type II 

constraints are absent, 

(6.31) 

Ve collect together the results (6.i5), (6.21) and (6.31) and find that 

for longitudinal waves (s = q q3) ,-

t 0 (s, [Grad iJ]) = 0 

_: .. .. 

when type II constraints are 
present (recall that we assume 
that at least one type II con- -
straint obeys zp·n f 0) , 

[ 
2 0 ]2 

p ~ when type II 
3 are absent; 

constraints 

. ··"... 
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(4.49 bis) 

where A = 1 or 2 according as A = 2 or 1, 
,,M+µ 

and P.A.B is required to be neither positive-

negative-definite. 

nor 

(It is noteworthy that the term qM+µ(s,s) in (4.55) is not necessarily 

non-zero for isotropic constraints; we recall from the discussion 

following (4.55) that it is zero for temperature-dependent 

compressibility, for instance). 

Ve therefore assume that for transverse waves, constraints for which 

qM+µ(s,s) t O are absent. 

Turning now to the term ka+.s , we note that for waves with s = 

q., i = 1,2 or 3, the definition (6.10) for ka leads to the following 
1 

· f ka+ expression or ·s : 

(6.33) 

(Ve recall from (5.129) that the subscripts enclosed in angle brackets 

denote "physical components" relative to an orthonormal basis of proper 

vectors pi or qi , or combinations of these. Ve will make extensive 

use of this component representation in future). 

Ve now investigate (6.33) for isotropic materials subject to the 

class of irrotational deformations introduced in Chapter 4, and show 

that for longitudinal and transverse principal waves propagating under 

these conditions, the term ka+.s is always zero. It will be recalled 

that we considered plane waves (resp. cylindrical, spherical) in 
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materials subject to a plane deformation (resp. cylindrically 

symmetric, spherically symmetric), with the deformation and principal 

stretches specified for plane deformations by (4.61,2) (resp. (4.65,6) 

for cylindrical deformations, (4.69,70) for spherical deformations). 

Under these situations, the only non-zero components F~kl;j> are 

found with the aid of the results in Appendix B to be 

plane deformation 

cylindrical deformation 

spherical deformation 

+ 
F<33;3> 

+ + + + 
F<33;3> F<11;3> F<31;1> F<13;1> 

+ + + + 
F<33;3> F<rr;3> F<3r;r> F<r3;r> 

r = 1,2 

(6.34) 

Now for longitudinal waves we may have only directional con­

straints (recall discussion preceding ( 4.43)) and, with s = q3 , we 

have from (4.21) for ! , (2.68,9) for ca and (6.33,4) 

PAB(n·eA)(n·eB)F~33;3> 

= P!B[(n·eA)(n·eB)F~33;3> + (P1·eA)(P1·eB)F~31;1>] 

P!B[(n·eA)(n·eB)F~33;3> + l (Pr·eA)(Pr·eB)F~3r;r>] 
r 

(6.35) 

for plane, cylindrical and spherical waves, respectively. But we 

·recall from (4.43) that a necessary condition for the existence of 
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longitudinal waves is that 

(4.43 bis) 

and so the terms in (6.35) involving F~33 ; 3 > are zero. For cylindrical 

waves we see from (4.75-77) that either P!8(p1·eA)(p1·e8) = 0 or, if it 

is non-zero then the deformation must necessarily be homogeneous. For 

+ -1 ( ) this latter case F <31 ; l> = R a3 - a1 = 0 , so that either way 

(6.35) 2 is zero. In the same way we can establish that (6.35) 3 is 

zero. 

For transverse waves we have, for s = ~ qA, A = 1 or 2 , that 

(6.36) 

in which only the first term is non- zero for plane waves, while for 

cylindrical waves the remaining terms are zero for r = 2 . By 

inspection the first term is zero for an isotropic constraint since the 

only non- zero components of .! a are then A a. . . . , A a. . . . and 
< 11 J J > <lJ lJ > 

Aa.. . . from (4.21). 
<lJ J 1> 

Hence we now look at directional constraints, 

and we recall from (4.56) that 

(4.56 bis) 
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must be satisfied. Also, from (4.21) we have 

so that A~A3 33> = A~ar 3r> = O . For cylindrical waves we are left 

with the terms 

A~A3 11> F~11;3> + A~A1 13> F~13;1> 

which is zero from (4.56), so that ka+.s = 0 . In the same way we can 

argue that ka+.s = 0 for spherical waves. In all circumstances then, 

we have the result 

a+ k ·S = 0 (6.37) 

Ve turn finally to the term Sa(s, [Grad ~a]) that occurs on the 

right-hand side of (6.3) from (6.9). The compatibility condition 

(3.18) 1 enables us to write 

(6.38) 
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Since Sa = P ~a from (2.43) 1, we find with the aid of (6.38) that 

a a r . 
=A c ·s + S (s,B )[A J '" a a 1 

(6.39) 

where we have used the definition (2.85) for ca . 

Now for homothermal waves we recall from (4.20) that the second 

propagation condition takes the form ca·s = 0 , and so we obtain from 

(6.39) 

(6.40) 

The term Sa[s,Br] can be shown to vanish in certain circum­

stances, but is in general non-zero, and so the terms [~a] 'r need to be 

evaluated. The jumps [Aa] in (6.40) can be determined in the situation 

when only the subset { ¢0
} is present, and then [\,.J = 0 , rr = 1, ... , M 

by (6.28). ·If either or both of the subsets {¢M+µ} and {/+7J} are also 

present, the jumps [~a] can no longer be determined, as will be 

recalled from the discussion following (6.28). 

Ve accordingly adopt another approach and recall that the material is 

subject to the class of irrotational deformations described in Chapter 

4, and that for these deformations there is dependence on the x3 

coordinate only, so that x = x(X) (resp. r = r(R)) for plane (resp. 

cylindrically and spherically symmetric) deformations by (4.61} (resp. 

(4.65,9). Ve also recall that eA·pi is independent of position by 
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(4.59), and that we have earlier assumed the temperature ahead of the 

wave to be constant. Ve further assume that the body force b is a 

function of x3 only, and that.in the unbounded medium all other data 

(such as prescribed surf ace tractions on boundary surfaces, if such 

surfaces exist) depend at most on x3 . It is not difficult to show 

that the equations of equilibrium under these circumstances admit 

solutions Aa which are functions of x3 only. Rather than furnish full 

details, for an example of the outcome of such a calculation we refer 

the reader to work by Beskos (1973) on universal solutions for fibre­

reinforced incompressible isotropic elastic materials. Beskos obtained 

solutions for stresses and constraint multipliers Aa as functions of x3 

for a variety of situations which include the class of deformations 

considered here. Vith the above assumption for Aa we find that [~a] is 

independent of Ir and consequently (6.40) reduces to 

(6.41) 

This completes the evaluation of the remaining terms involving 

jumps in (6.9). Ve have finally from (6.3) and (6.9) together with the 

results (6.11,12), (6.32), (6.37) and (6.41) the equation for the 

amplitude: 

as -1 611 - 3 '( ) - 1 + ( 2p s·(ff = p 11 (ff s·s + 11 Jl s,n,s,n,s,n - 11 E s,s,n) 

- 11 ::: t 0 (s,n) (J=1, ..• ,M (6.42) 
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The underlined term in (6.42) is zero unless s = ff q3 and type II 

constraints are absent by (6.32). Ve have simplified the term - v- 1 

!a(s, Grad A:, s,n) in (6.9) and (6.3) by using the assumption that 

A:= A:(x3) and the result !M+e(s,n,s,n) = qM+e(s,s) = 0 , e = 1, ... , 

N-M , as in the discussion of qa(s,s) following (6~32). 

Growth equation for longitudinal waves 

Our aim now is to investigate further equation (6.42) for 

longitudinal waves. Since longitudinal waves are incompatible with 

isotropic constraints by the discussion preceding ( 4.43), it is only 

necessary to consider directional constraints. The growth equation 

becomes, with s = ff q3 and n = p3 , 

(6.43) 

and we note that the term involving qff(s,s) in (6.42) is zero for 

longitudinal waves '.by (4.53), and that the superscript zero on J 
. , / 

indicates that the term contains no quantities associated with 

constraints (see comment at the end of App~ndix A). 

Ve now specialize (6.43) for the set of irrotational deformations 

described by (4.61,5,9). Making use of the results in Appendices A and 
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= l ~33 33 mm> am,3 + l (A~3r 33 3r> + A~3r 33 r3> Rr
1 

(a3 - ar), 
m r 

(6.44) 

the remaining terms being zero. 

Ve consider next the terms involving the fourth-order tensor ! in 

(6.43). For the class of deformations (4.61,5,9) and corresponding 

wavefronts, 11 and " depend only on x3 and so do not vary along the 

wavefront. Hence 

= -1 -1 IG I v-1" R-r1 IGrlqr 
ll " r r ar r qr = 

(6.45) 

8q 
where we have used expressions for __J. 

8x1 

axi 
axr from Appendix B, and the 

-1 -1 
fact that ar = rr Rr whenever Rr f 0 

The terms on the right-hand side of (6.43) involving ! now reduce to 

-1 2 \' -1 [ 0 0 0 
- 11 " l Rr A<33 rr> + A<3r r3> - A<3r 3r> 

r 
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Finally, the growth equation for longitudinal waves is found from 

(6.43) with the aid of the above results to be 

b(J - 3 2 Ao - 1 { 6v \' .o 2P et = v (J <33 33 33> + v (J P et - ~ 11<33 33 mm> am,3 

+ A~33 rr> + A~3r r3> - A~3r 3r> - Aa A~3r 3r>} 

+ ~- 1 + a!:5;f} (6.46) 

where the underlined term is zero unless type II constraints are absent 

(recall (6.32)). Note that the influence of type I constraints is 

manifested solely in the term involving Aa ; we recall that the wave 

speed vis unaffected by the constraints from (4.53). 

Growth equation for transverse waves 

Ve begin again with (6.42) and set s = (J qA with A = 1 or 2. The 

growth equation is then 

+ (J l !(qa,•r,qa,Hr)nrr} 
r 

(6.47) 
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Ve now evaluate the terms in (6.45). First, 

(6.48) 

using the results of Appendix A. Next, 

E+(qA,qA,n) = A<AJ·. A3 F+ · a a a a mn> <mn; J > 

= l A<A3 A3 ii> ai,3 + l [A<Ar A3 r3> + A<Ar A3 3r>]Rr
1 

(a3 - ar) 
i r 

(6.49) 

the remaining terms are found from Appendices A and B to be zero for 

the irrotational deformations described by (4.61,5,9). 

Ve turn now to the terms involving A. • The expression s r = u qA r is 
' ' 

simplified using 

and 

where is the Christoff el symbol, and we get, after some 

manipulation, 

-v-1 u{!(qA,n,qA,r'Hr) + A(qA,Hr,qA,r'n) - l A(qa,Hr,qa,Hr)nrr} 
r 
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(6.50) 

the terms involving the Christoffel symbols being zero for the types of 

wavefronts considered here. 

Vith the aid of (6.49,50) 1n (6.47) the growth equation for transverse 

waves reduces to 

2p ~~ = v-l u{p ~~ - l A(d3 d3 ii> ai,3 - A;'<3> Q~dd> 
1 

-r = r, ... , M • 

(6.51) 
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CHAPTER 7 

SOLUTIONS OF THE GROVTH EQUATIONS FOR HOMOTHERMAL VAVES 

Ve now present solutions to the growth equations (6.46) and 

(6.51), which are shown to be a Bernoulli equation and a linear first­

order equation respectively. Ve discuss the general behaviour of the 

solutions, following Bailey and Chen (1971) and the review by Chen 

(1973), then present results for plane, cylindrical and spherical 

waves. Throughout the chapter we recover as special cases the well­

known results for unconstrained materials, in particular those given by 

Chen (1968 a,b,c), Chadwick and Currie (1972) and by Bowen and Vang 

(1970,1971). (Ve differ slightly from Bowen and Vang (1972) however, in 

that our expression for transverse waves in non-homogeneously deformed 

media involves the wavefront curvature components n<ra> rather than the 
1 r mean curvature 2 Or) . 

In the case of constrained materials our general result for 

transverse waves includes the result for plane waves in an inc om· 

pressible isotropic solid given by Ogden (1974) and confirmed by Scott 

(1976), who also discusses the cylindrical case. Reddy in (I) provides 

results for plane waves in homogeneously deformed thermoelastic media 

subject to type I and type II constraints, but does not treat the case 

in which the constraint vectors ca are linearly dependent. Our results 

for plane waves are special cases of his in the sense that we assume 

material isotropy and the restrictions (2.66,8,9) on type I con­

straints, but are also slightly more general in that we allow in the 

case of longitudinal (resp. transverse) waves, the presence of 
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mechanical (resp. thermomechanical) constraints with linearly dependent 

vectors ca , and do not assume homogeneous deformation a priori. (Of 

course, the results of Chapter 4 indicate that in certain circumstances 

the constraints do not admit non-homogeneous deformations.) Our 

approach in this chapter is not to concentrate on results for specific 

constraints (although this can easily be done using, for example, the 

constraints described in Chapter 4), but rather to show the general 

influence (or otherwise) of the constraints on the solution. 

Ve begin by recording the identity 

(7.1) 

which follows from (4.29), (4.21-4), and the results of Appendix A. 

Since the material is assumed to be at rest ahead of the wave, the 

displacement derivative defined by (3.16) takes the respective forms 

and 

§.x - 11 Qr 
t5t - i dn 

(7.2) 

for arbitrary scalar x and vector or tensor V , where n measures 

displacement in the normal direction. 
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Longitudinal waves 

Vith the aid of (7.1) and (7.2) the growth equation (6.46) reduces 

to 

(7.3) 

where 

a(n) (7.4) 

1 -1[av3 -1 o[p §a23¢;0]2] P(n) = 2 v3 on- + ~ (7.5) 

0 for plane waves, 

1 -1 -2{( 0 0 ) ( . 
7r(n) = 2 P v3 A<3r 33 3r> + A<3r 33 r3> a3 - ar) 

- 1~33 rr> - 1~3r r3> + A~3r 3r> + ~.PfB(Pr·e1)(Pr·eB)} 

for cylindrical or spherical waves. 

(7.6) 

The underlined term in (7.5) is zero unless type II constraints are 

absent. Ve note immediately that a(n) in (7 .4) has no contribution 

from the constraints. This is because v
3 

is constraint-independent by 

( 4.53)' and so is av3/ aa3 ' since for longitudinal waves isotropic 

constraints are absent and .,.( in (7 .1) has no contributions from the 

directional constraints (see conclusions to Appendix A). Furthermore, 

a(n) > 0 (resp. < 0) implies that av3/8a3 > 0 (resp. < 0) since we have 
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assumed that v
3 

> 0 . Ve note that for homogeneous deformation, P(n) 

in (7.5) is independent of the constraints, a, p, 7r are all constant, 

and P > 0 . 

The growth equation (7.3) is a Bernoulli equation and its 

solutions in the context of acceleration waves were discussed by Bailey 

and Chen (1971), Bowen and Chen (1972) and reviewed by Chen (1973). 

Since we treat plane, cylindrical and spherical waves propagating in 

regions subject to plane, cylindrically symmetric and spherically 

symmetric deformations respectively, the waves propagate as families of 

parallel surfaces. Furthermore the principal curvatures for these waves 

are non-positive by (4.71-3), so that the waves are diverging waves in 

the sense defined by Bowen and Chen (op.cit.). The following analysis 

(due to Bailey and Chen (op.citJ, but see also Chen's review (Chen 

(1973), Section 13) therefore applies: we assume that 

(i) a, p, 7r are defined and integrable on every finite 

subinterval of [O,ro) ; 

(ii) a(n) is of fixed sign on [O,ro) 

(iii) fl 
0 

> 0 , where fl 
0 

= fl I t=O , (Bailey and Chen treat also 

f!
0 

< 0) we note also from (7.3) that if fl0 (n1) = 0 then 

fl
0

(n) = 0 for all n > n1 .. 

(iv) lim inf la(n) I f 0 (in one case, (see Chen (1973), page 340) 
· n-iro 
the weaker condition/~ la(n)I dn = ro , where n0 = nlt=O , 

0 

is sufficient). 

(7.7) 
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The local, global and asymptotic behaviour of the amplitude was 

discussed by Bailey and Chen (op. cit.) and the results are conven­

iently presented by Chen ((1973), Theorems 13.1-13.5). Ve outline here 

the essential £eatures of these theorems, then comment in more detail 

on the influence of the constraints on the solutions £or the particular 

waveforms speci£ied. 

(a) a > 0 

Local behaviour of ~(n) 

-1 

{

. greater than} P + 7r Rr d 
If u is equal to then __..! is 

less then a dn 

Global behaviour of u(n) 

If u0 > ucr then limn ~ n u(n) = ro 
ro 

and if u
0 

< u then lim infn u(n) = 0 er ~ ro 

{ 

greater than} 
equal to 
less then 

(7.8) 

(7.9) 

·(7.10) 

0 . 

where the critical amplitude u and the finite distance n are defined er ro 

by 

(7.11) 

and 

(7.12) 
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respectively, and where 7 = 0 for plane waves, 7 = 11 for cylindrical 

waves and 7 = 71 + 12 for spherical waves (see (7.6)). 

Asymptotic behaviour of u(n) 

If u
0 

> ucr and a is continuous from below at n
00 

, then 

u(n) = {a(n )(n - n )}- 1(1 + 0(1)) as n ~ n 
00 0 00 

where 

a(n ) = lim a(n) 
00 n ~ n 

00 

as n ~ oo or as u(n) ~ O . 

Ve note that for <1
0 

> ucr , the asymptotic behaviour of u is due solely 

to the unconstrained term a(n) . 

(b) a < 0 

Local behaviour of u(n) 

-1 

{ 
greater than} {J + 7r Rr d ··{ greater than} 

If u is equal to __ .::....._....:...,_ then d <1 is: equal to 
less then a n less then 

0 . 

(7.13) 
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Global behaviour of u(n) 

-1 P + 7r Rr 
(i) If __ .::....a __ is bounded above or tends to a finite or infinite 

limit L ~ 0 , the same is true for any solution u(n) . 

(ii) Let u1(n) , u2(n) be any two solutions with u < 0 . 

If lim u1(n) ; oo then lim u2(n) = oo . 
n-+oo n-+oo 

If u1(n) is bounded then u2(n) is bounded. 

If lim u1(n) = 0 , then lim u2(n) = 0 and 
n-+oo n-+oo 

lim 
n -+ oo 

Theorem (i) says that if a- 1(/J + 7r Rr1) is well behaved, then 

the solutions u(n) will eventually behave the same way as a-
1(/J + 7r 

Rr1) , and theorem (ii) says that the eventual behaviour of all 

solutions is the same even if the behaviour of a-
1(/J + 7r Rr1

) is not 

known (Chen (1973)). 

Ve now investigate in more detail the solution of (7.3) for 

. particular waveforms. 

(i) Plane waves 

Equation (7.3) reduces to 

du/dX = a(X)u2 - {J(X)u (7.14) 

.. , ' -
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with a(X) and fi(X) as in (7.4,5) with X replacing n . Since bot}\ a and 

(J are unaffected by the constraints, the growth of plane waves is 

constraint-independent. The solution of (7.14) is 

u-
0 

exp ( - fJX) 
for a -:/: 0, f3 -:/: 0 

for a -:/: O, f3 = 0 

u-
0 

exp ( - fjX) for a = O, f3 -:/: 0 

(7.15) 

For a > 0 , f3-:/: 0 , the critical amplitude u-cr in (7.11) takes the form 

U'~~ = f0

. a(X) exp[- t PW d(l dX 
XO XO 

and the finite distance X is defined by 
CD 

In the special case of homogeneous deformation, 

U' . = §_ 
er a 

/ 
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There are then three possibilities for u(X) 

tTO > ucr => tT ~ w in a distance x 
w 

tTO = ucr =fl/a => tT remains constant 

tTO < ucr => tT decreases monotonically and approaches zero 

exponentially as X ~ w • 

The solution (7.15) reduces to that given by Chadwick and Currie 

(1972) for unconstrained materials subject to homogeneous deformations 

and also to that given by Bowen and Vang (1971) for inhomogeneous media 

(note, however, that we are dealing with homogeneous media subject to 

non-homogeneous deformations). 

(ii) Cylindrical waves 

For this case equation (7.3) is 

(7.16) 

The constraints influence the result only through the term Aa 

flAB(p1·eA)(p1·ee) appearing in 11 , and we recall from (4.75-7) that 

the deformation is unrestricted unless AaflAB(p1·eA)(p1·ee) t 0 for at 

least one a , for which case we the material must necessarily be in a 

state of homogeneous deformation when longitudinal.waves are present. 

For homogeneous deformation, the principal stretches are of course 

constant and so a, fl ( >0) and 7 are no longer functions of R . The 
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solution in this case is then 

where 

(7.18) 

and 

The behaviour of the solution follows the general result given 

earlier with ucr (>0) and R
00 

being given by (Bowen and Vang (1971)) 

and 

erfc ((31/ 2 R 112) = (1 - u u- 1) erfc ((31/ 2 R1/ 2) . oo er o o 
(7.20) 

where 

1/2 Joo 2 erfc z = 2 ~- exp (- t ) dt 
z 

(7.21) 

Finally, we note that in the case a1 = a3 (which includes as a 

special case homogeneous deformation) , 71 takes the simple form 

(7.22) 

after using the limiting forms of A~33 H> and A~31 13> (see note 

following (4.21)). · 
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(iii) Spherical waves 

The growth equation is identical to that for cylindrical waves with r1 
in (7 .16) replaced by ( 11 + 12) . Ve recall from the discussion 

following (4.78) that when spherical waves are present, the material is 

necessarily in a state of uniform dilatation if both P!e(Pr·eA)(pr·e8) 

and ~~(eAB' 0) are non-zero. In this case, the expression for (71 +, 

12) takes the special form 

(7.23) 

The solution to the growth equation and the" corresponding results for 

<rcr and Rec are immediate on replacing 71 in (7.17) by ,the above 

expression. 

Transverse waves 

Ve simplify (6.51) using (7.2) and obtain, for a wave with s = 

u qA , A = 1 or 2, the growth equation 

(7.24) 

where 

0 = -
1 - 1 dv A T d,\T [ +] 2 VA dn + Q<Ail> dn T=l, ... ,M (7.25) 

and 

0 for plane waves 

,fr = 
1 -1 -2 
2 P vA (wr - A<Ar Ar>) otherwise, (7.26) 
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wr = (ar - a3)(A<ar r3 r3> + 1<ar r3 3r>) + A<a3 3a> + A<aa 33> 

(7.27) 

Clearly o vanishes for homogeneous deformation. The influence of 

directional constraints is through the term A<ar ar> in Er and through 

Q~aa> . Ve note that Q~aa> can also be written as QI by (4.24,5), and 

recall from (4.57) and the discussion following (6.32) that v~ has a 

contribution p-l QI from the constraint subset {~T}~=l . The terms 

making up wr are free from directional constraints by (4.21) and the 

conditions of Appendix A. 

The general solution of (7.24) is 

6 f o, € f 0 

6 = o, € * 0 

c an integration constant o -:/: O, e = 0 

0 = o, € = 0 

(7.28) 

where e = 0 for plane waves, E = e1 for cylindrical waves and e = e1 + 

e2 for spherical waves. 

The presence of constraints restricts the permissible deformation 

in many cases to homogeneous deformation (see (4.80,1) for directional 

constraints and also Table 4.1 for the specific constraints mentioned 

in the text). In such cases, the form of the solution with 6 = 0 is 
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appropriate. Ve now comment on the form of the solution for particular 

wavefronts. 

(i) Plane waves 

By (7. 28) for € = 0 , we see that for homogeneous deformation 

( 8 = 0) the wave amplitude is constant and independent of the con­

straints. This agrees with Ogden (1974), who considered the single 

constraint of incompressibility. Vhen 8 f 0 wave growth is influenced 

by the constraints through the value of vA 

(ii) Cylindrical waves 

Ve recall from (4. 72) that R1 = R , R2 = en for cylindrical waves 
-1 . 

and consequently €2 R2 = 0 in (7.24). For waves in the circumferent-

ial direction (A = 1) , we have from (7.26) that fl takes the form 

(7.29) 

In the special case where a1 = a3 , 

where I is vl 

Hence if e! 

solution is 

(7.30) 

the wave speed in the absence of directional constraints. 

i p1 (or if directional constraints are absent) then the 

(7.31) 
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If in addition the deformation is homogeneous, then a = 0 , E = - 1/2 

and we have 

- -3/2 -1/2 
(J - (Jo Ro R (7.32) 

so that the amplitude is independent of the constraints and of the 

material properties. 

For waves in the axial direction (A = 2) we have from (7.26) that 

(7.33) 

(iii) Spherical waves 

Ve choose A = 1 (for A = 2 the behaviour is identical) and the 

solution is given by (7.28) with E = E1 + E2 . 

The appropriate restrictions on the deformation due to the constraints 

are given by (4.80,1), and we note that for homogeneous deformation, 

the appropriate form of (7.28) is 

( -1) € 
(J = (J 0 RRO ((7.28) 2 bis). 
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DERIVATION AND SOLUTION OF THE GROVTH EQUATIONS 
FOR HOMENTROPIC VAVES 
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Ve investigate the growth of homentropic acceleration waves in 

non- conducting isotropic media subject to isotropic and directional 

type I constraints and to type II constraints. Reddy in (I) derived 

the growth equation for constrained homentropic waves in non­

conductors; there however, attention was restricted to plane waves in 

elastic media subject to homogeneous deformation, and a non- conductor 

was defined to be a material for which q = q0 + 1p zp = 0 , rather than 

the definition (2.53) adopted here that q0 = 0 . Since (2.53) applies, 

we recall from (3.50) that all type II constraints must satisfy J.n 

= 0 when homentropic waves are present. The analysis of (I) is 

extended here by treating the subsets {~~+µ}~~~ and {~P+q}~~~ of type 

I constraints (see (2.86,7)); we find however that the required 

solutions for terms involving [~a] are only possible if the subset 

{~M+µ}~~~ is absent. In order to evaluate a term involving [Grad n] , 

we restrict attention to the subset of type II constraints for which 

[Grad(Div(1p z.8))] = 0 ; this subset nevertheless contains the 

constraints of perfect conductivity in all directions and of perfect 

conductivity in a particular direction e as investigated by Gurtin and 

Podio-Guidugli (1973). The treatment of (I) is further extended by 

considering cylindrical and spherical wavefronts in addition to plane 

waves, and the final form of the growth equation is somewhat simplified 

compared to the corresponding result in (I) by the use of an 

alternative technique in.dealing with terms involving [n·Grad ~a] . 
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Ve £ind that both the longitudinal and transverse growth equations 

are of Bernoulli type, as for the case of longitudinal homothermal 

waves (see (7.3)). Both homentropic growth equations are more 

complicated than their homothermal counterparts; this is due to the 

presence of constraint terms throughout the equations and because the 

expressions for the [~a] - where these are obtainable at all - are 

usually non- zero, in contrast to the homothermal result. As a con­

sequence, for M ~ 1 we do not investigate particular results for 

different waveforms, etc. , as was done in Chapter 7; the procedure 

involves a considerable amount of tedious substitution and the results 

are not especially illuminating as constraint influences are generally 

non- zero and so remain in the equations but simply take different 

forms. Ve rely rather on the general analysis of the Bernoulli 

equation given in Chapter 7 to give the nature of the solution; 

particular results can be obtained from the growth equations using the 

procedures given here for evaluating [~a] together with the results 

given earlier for dealing with the particular constraints. For the 

case M = O, however, numerous simplifications occur and we show that 

plane waves and spherical waves are then unaffected by the constraints, 

as are certain cylindrical waves. Since the corresponding homothermal 

approach is simpler, we indicate throughout situations in which only 

generalized transverse waves are possible, i.e. the waves are both 

homothermal and homentropic and are the ref ore best treated using the 

thermal· formulation of Chapters 6 and 7. 

Results in the literature are essentially restricted to the case 

of unconstrained materials (Chen (1968c), Chadwick and Currie (1972), 

Bowen and Vang (1971)), apart from the investigation of Reddy (I) as 

discussed above. 
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Derivation of the growth eguation 

Ve begin as in Chapter 6 with the time derivative of the equation 

of motion (2.9) and obtain 

ofl -1 ov 2 - 1 - 1 [ · ' 2 p iff = p v fl tt - p v fl s · w + fl s · Div SJ 

(8.1) 

as in (6.3), where the vector w satisfies w·a = [Grad F](a,n,n) as 1n 

(3.28). The expression s· [Div SJ is now evaluated in the entropic 

formulation by proceeding similarly to the derivation of (6.9). Ve 

have, from (2.76,7,9), 

:. j A j l •k A j Aa J • S. = A. k F n + M. 11· + S . A 1 1 <. 1 1 a (8.2) 

where i and i are defined by (5.27) and (5.26) respectively, and where 

since 

(2.79 bis) 

The divergence of S is found with the aid of (8.2) to be 

s . r = [.:t) kl n Fm . + ~ r l . j kl] 1/ • + [la) kl A . ] Fk n 1 ; r 1 m n; J u1J l 1 ,J 1 a ,J <. 

A j l ·k 
+ A. k F n • 

1 (. ;J 



[ 

{) [MA j J Fk + L [MA j J 1/ MA a j ' 
+ {)Fk l i l ; j 017 i , j + i ,, a, j 

A j 
+ M. ~ . 

1 ,J 

AA a ) l Fk . MA a j i , ' [ 
asa. j l 

+ i k t;J + i 17 ,j + a"e "e,j "a 

Aa j o 

+ s . ,\ . 
i a,J 
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(8.3) 

In (8.3) we have, by analogy with the definitions of .A , A.a and la 

following ( 6. 5), that the sixth- order tensor of elastic moduli A is 

defined by 

and the constraint terms la and ia are given by 

and 

(8.4) 

Ve note that ia , unlike la , is non-zero (recall the discussion of the 

entropic formulation following (2.80)). 

The material is now taken to be at rest ahead of the wave, as in 

Chapter 6, but is assumed to be at constant entropy ahead of the wave. 

Vith the aid of the identity (6. 7) and the above assumptions, the 
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following expression for the Jump in the divergence of S is obtained 

from (8.3): 

Aa j l Aa j l + ] [·k ] A j l[·k ] - A . k [A .J + A . k A . F l + A. k F l·. i a,J i a,J i ,J 

[ 
a [A j] [ k J a [A j] +k a A j ] . + - -k- M. F l·. + -k- M. F l·. - ~ M. [TJ . J [TJ] aF i 'J aF i 'J uTJ i 'J 

l l 

A J 
+ M. [TJ .J + 

1 ,J [
- AA a) l [F· k . J + AA a) l F+ k . MA a j [ J 

1 k i;J 1 k i;J + i 1/,j 

(8.5) 

The components of the third- order tensor E appearing in (8. 5) are 

defined by 

Al Ajlnm 
E.k = A. k F . 

1 i m n;J 

Ve proceed as before in the evaluation of (6.8), and employ the 

results (3.24,5,7) to eliminate the jumps involving derivatives of Fin 

(8.5). For homentropic waves, [Grad TJ] = [~] = 0 from (3.40,2) and 

[Grad Aa] = - v- 1[Aa]n from (3.22) 1. Vith the aid of these results, 

(8.5) can be used to obtain the required expression for s· [Div SJ and 
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we find that 

A -3 A -1 A+ -1 Aa + 
s · [Div SJ = v A( s, n, s, n, s, n) - v E ( s, s, n) - v A. ( s, Grad ..\ , s, n) , a 

' A A -1 r A r -1 
+ Q(s,v) - A.(s,n,(v s) r,H) - A.(s,H ,(v s) r,n) 

' ' 

(8.6) 

Here a, e = 1, ... , N and 1 = 1 , ... , P , and we have used the result 

( ) AP+TJ - 0 5 .11 that when T 'f 0 , c - , 1J = 1, ... , N- P . 

In (8.6}, ka is defined to be the vector with components 

kAa+ _ AAa j l p+k 
i - i k l;j 

and 

Ve recall that Q , i, ca and win (8.6) are defined by (5.31), (5.26), 

(2.91) and (5.12) respectively. The last two terms in (8.6) are 

obtained from the last term in (8.3) with the aid of the compatibility 

condition (6.38); Aa = [{Grad Aa) ·n] as in the definition following 

(6.38). \ 



202 

Ve use (8.6) to substitute for s· [Div SJ in (8.1), and investigate 

the remaining jumps in (8.1). A term u- 1lQ(s,v) - p v2 s·v) occurs on 

the right-hand side of (8.1), and by (5.30) together with (5.11) we 

have 

7=1, ... ,P (8.7) 

An expression for p c1·v can be found from the condition [n·Grad (¢1)] 

= 0 . Ve begin with the definition (2.36) of type I constraints in the 

entropic formulation (recall (2.76,9)) and find that 

where 7 = 1, ... , N- P and a, e = l, ... , N , and we have made use of 

the identity (5.18) to substitute for terms of the form a~1ja).e . Ve 

now use (8.8) to evaluate [n·Grad ¢7J = 0 with the aid of the jump con­

ditions (3.22,4,5,7) and (6.7,38); the approach is similar to that used 

in deriving (8.6) from (8.5) and details are omitted. The assumptions 

given following (8.3) and (8.5) are invoked and we also employ the 
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result (5.18). After some minor rearrangement we obtain 

A1 -3qA( ) -1i1( + -1[ar.7] + pc ·W = - 11 . s,s + 11 Jl s,n, Grad F ·n) + p11 a~a·S (Grad "a·n) 

SA 1 ( ( - 1 ) r) [ · J [ -2 . ac 1 as 1 + +. 11 s r,H + ,,\a 2p11 [..\a] -or-·s - 7f5:" (Grad F ·n) 
' a a 

(8.9) 

In (8.9) a= 1, ... , N; 7, 6 = 1, ... , P and we have also used the 
. AP+q 

result (5.15) that for T f 0 , w = 0 , ~ = 1, ... , N-P • 

If we substitute for pc7·w from (8.9) in (8.7), we find that (8.1) has 

on the right-hand side the expressions 

involving A
7 

, and since 

' 

c 7 · s = p 11 ;r 1w7 ;i A 
7 

[ 16] 

the terms involving A
7 

vanish in (8.1). 

7, 6 = 1, ... ' p 

by (5.19), 

This treatment of the A 
7. 

represents an improvement on the procedure adopted in (I). 

Vith the elimination of A , the only remaining jumps in (8.1) are 
/ 7 . 

[Grad n] and [1a] , and we now investigate the former. The gradient of 
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the energy equation (2.48) yields 

~ Grad(pB) + pBGrad ~ = - Grad(Div q) + Grad(pr) (8.10) 

so for non-conductors (for which q = 1p zp , p = 1, ... , L by (2.54)), 

we have at the wavefront that 

~+[Grad (pB)] + [~]Grad (pB)+- [~][Grad (pB)] + (pB)+[Grad ~] 

= [Grad(Div(lp zp))] (8.11) 

after using the identity (6.7) and the assumption that r is continuous. 

Since we have assumed the entropy to be constant ahead of the wave, we 

have from (8.11) for homentropic waves that 

(8.12) 

Clearly, in the absence of type II constraints, [Grad ~] = 0 . 

Vhen type II constraints are present, the expression [Grad(Div(?p 

zp))] must be evaluated. Use of the definition (2.37) of type II 

constraints and the entropic formulation (with zp = zp(F,B(F,1J,Aa,eA), 

eA) plus the methods of Appendix A for derivatives of zp yields the 

required expression. The result is found to be somewhat cumbersome 

and, more seriously, is found to involve ['lp] for curved wavefronts if 

no restrictions are imposed on either the deformation or the form of 
~P z . 
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It will be recalled from Chapter 5 that for type I constraints, 

the corresponding solutions for [A a] were obtained during .the 

derivation of the propagation condition, that is, from an analysis of 

the equation of motion (2.9). The type II constraints do not appear in 

the equation of motion and consequently the analysis of Chapter 5 

yields no information about [7,a] . In fact, it is only the energy 

equation (2.48) that involves the type II constraints through the term 

Div q it will be recalled that the entropy production inequality 

(2.49) involves only q0 
• The energy equation was examined in Chapter 

3 and we recall from (3.49) that the sole term involving [7,a] is 

v- 1[7,a] zfl.n . Since z.B·n = 0 for non-homothermal waves by (3.45), the 

energy equation also yields no information about [7,a] . 

Ve proceed further despite the indeterminacy of [7,a] by restrict­

ing attention to the subset of type II constraints for which 

[Grad(Div(1p z.8))] = 0 (8.13) 

This set includes the following important type II constraints investi­

gated by Gurtin and Podio-Guidugli (1973): 

(a) Perfect conductivity in all directions; 

{b) .Perfect conductivity in a particular direction e. 

Now if (a) holds, then. Grad (} = 0 in every direction. Hence at 

the wavefront, 

[Grad OJ = 0 
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and so by (3.37,9), such waves are necessarily homothermal and are best 

treated by the analysis given in Chapters 6 and 7. 

In the situation (b), the constraint of perfect conductiv~ty in a 

direction e1 is expressed by 

(8.14) 

where by (3.45) we must have e1 E {p1,p2} when non-homothermal waves 

with n = p3 are present. For perfect conductivity in a second 
( 

direction in the (p1,p2) plane, 

and any further constraints expressing perfect conductivity in some 

direction in the (p1,p2) plane can be described in terms of the 

linearly independent subset {z1,z2} , by 

x = 1,2 

11 = 3, ••• , L- 2 

where Z11 is a matrix of constants. x 

(8.16) 

For type II constraints such as (8.14-16) that obey (8.13), terms 

involving [Grad~] vanish in (8.6,9). These type II constraints there­

fore have no effect on the growth of homentropic waves. Ve recall from 

the discussion following (2.54) that Reddy in (I) obtained this result 

for type II constraints in general, but did so by employing a different 

definition of a non-conductor. 



207 

After making use of the results just described, the growth 

equation is found from (8.1) to be 

brr -1 2 6v 3A -1A+ -1Aa + 2prr (5t = pv rr (5t + v- A(s,n,s,n,s,n) - v E (s,s,n) - v A (s, Grad Aa,s,n) 

A -1 r A r -1 -1 rA A 
- !(s,n, (v s) ,r ,H ) - !(s,B , (v s) 'r ,n) + v n !(s,llr, s,BA) 

o [ 2A1 Al + Al -1 r] + [A 
1
] - v- q ( s, s) + A ( s, n, Grad F · n) + v S ( ( v s) , r , B ) 

(8.17) 

where as usual; a, e = 1 , ... , N 1, 6 = 1 , ... , P , and r = 1,2 . 

Ve turn now to the evaluation of the remaining jumps [A a] in 

(8.17) and begin by briefly recalling the corresponding situation for 

homothermal waves. In the discussion of the homothermal growth 

equation (6.3), we require solutions for the jumps in order to evaluate 
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pwa [~a] for longitudinal waves (see (6.26)). Ve know only that the 

Oa] obey 

" = 1, ... , M (M ~ 1) 

µ, = 1, ... ' P-M (6.27 bis) 

a . and so we can determine pw [,\a] in the following situations (recall 

(6.29)): 

M = 0 

if all constraints present are mechanical (recall that P = 0 

and only the subset {~n}~=l is present); 

M = 1.2 

(i) if only the linearly independent subset {~"}!=l is present; 

(ii) if the subsets {~"}, {~M+µ,}~~~ and {~P+n}~~l are all present 

and all constraints are mechanical; 

(iii) if the subset {~M+µ,} is absent and constraints /+n are 

mechanical. 

Ve now return to the homentropic growth equation (8.17) and note 

that [~a] , a = 1, ... , N and [~ 7] , 'Y = 1, ... , P occur in many terms. 

Most of the expressions multiplying these jumps do not vanish for 

longitudinal or transverse principal waves and so the results for the 

[~a] from Chapter 5 must be used. As in the homothermal case, 

solutions are not available for all of the OaJ separately; we only 

·. I 
I 
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know from (5.21) and (5.3~) respectively that when w11 f O , · 

(M ~ 1) (8.18) 

and 

(M ~ 2) (8.19) 

' where ( = 1, ... , M- 1 u = 1, ... , M µ, = 1, ... , P- M . 

Alternatively, when wa = 0 and all constraints are mechanical, we 

obtain from (5.44) by using (5.62) and proceeding as in the derivation 

of (6.27) the result 

['uJ + D.µ,u [. J A ,\M+µ, = 0 (M ~ 1) (8.20) 

where again u = 1, ... , M; µ, = 1, ... , P-M. 

For M ~ 1 , (8.18-20) yield expressions for the [Au] if the subset 

{~M+µ,} is absent. Ve are unable to obtain expressions for the [AM+µ,] 

separately and have no information about the [AP+q] . This of course 

limits the circumstances under which we can solve the growth equation 

(8.17), but we will see that by making use of some of the special cases 

discussed in Chapters 5 (in which, for instance, waves are both 

homentropic and homothermal) we can obtain solutions in a wider variety 

of situations than initially expected. It again proves convenient to 

consider the situations M = 0,1,2,3 separately. 
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Growth equation for longitudinal waves 

Ve begin the derivation of the longitudinal wave growth equation 

by discussing the form cf the constraints ;a arid the solutions for [~a] 

that arise from the results of Chapter 5 and the use of (8.18-·20). 

M = 0 

Now P = 0 and only the subset {;n}~=l is present; we recall from 

(5.11) and (5.15) respectively that en = en = 0 and wn = wn = 0 ' so 

all type I constraints present are mechanical. Only directional 

constraints are possible when M = 0 and we have from (5.117) that they 

obey 

1 = 1,2,3 (8.21) 

Since (8.18-20) yield no information about [~n] , terms involving these 

jumps can only be eliminated in (8.17) if the quantities 

are all zero, where in (8.17) we have used the results wn = 0 ' en = 0 

and noted that the terms involving summations over 7, 6 disappear since 

M = P = 0 . Firstly, we have from (5.63), (5.118), and the fact thatµ 
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is unconstrained for mechanicai constraints by (5.116) the result 

= 0 (8.22) 

Next, we note the transformation (see also equation (6.21) of (I)) 

a= 1, ... , N 

and since wn = .o ' 

sn = sn = PPiB l ai(pi-eA)(qi ® eB) 
i 

(8.23) 

by (2.61,9), 

and in (2.61) we have ignored dependence of ~a on kAB' as in Chapter 4. 

Now Grad ,\e is parallel to q3 if we impose the assumption that ,\ e = 

,\e(X3) , as in Chapter 6, and so 

= 0 by (8.21); 

hence 

(8.24) 
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Aa An+ 
Ve now recall the definition of k following (8.6) and evaluate k ·q3. 

Ve have 

where we have used the transformation (5.29) for l to convert ·to the 

thermal formulation, then used the definition (6.10) for ka plus the 

fact thatµ is unconstrained for mechanical constraints by (5.116). As 

in (6.35), we investigate. k~;> for plane, cylindrical and spherical 

waves. Equation (6.35) was previously analysed with the aid of the 

propagation condition ca·s = 0 . For homentropic waves with en = 0 and 

T f 0 , we again have cn·s = 0 (recall (5.1) with P = 0) and so the 

previous analysis applies, except as noted below. Since (8.21) 

applies, the terms involving F~33 ; 3 > in (6.35) vanish and we h~ve the 

result 

An+ 
k'' ·q3 = 0 for plane waves. (8.25) 

For cylindrical and spherical waves we have respectively 

(8.26) 

+ -1( ) . where F<3r·r> = R a3 - ar from Appendix B. 
' 
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In (6.35), the term (8.26) 1 was shown to be zero since either 

PAB(p1·eA)(p1·eB) was zero or, if PAB(p1·eA)(p1·eB) was non-zero, then 

the deformation was homogeneous by ( 4. 77) so F~31 ; l> was zero. The 

analysis of (6.35) also applies here, since (4. 77) still holds for 

mechanical constraints. For homentropic cylindrical waves we therefore 

obtain the required result that kn+.q3 = O . 

For spherical waves, we have from (4.78) and the discussion following 

it that for mechanical constraints we must have 

An+ 
so that (8.26) 2 is zero, and so k ·q3 = 0 

Finally, 

.A+ = .A (X3) 
a a ' 

(M = 0,1,2,3). 

M = 1 

we recall from the analysis of (6.40) that when 

we have that [1a] ,r = O and so PaJ ,r Sa(s, Hr) = O 

Ve have from (8.18) with s = u q3 and ;;,1 
:/= 0 that 

(8.27) 

Since we have no further information about the Pl+µ] , (8.27) only 

provides a solution for [11] when the subset {~l+µ} is absent, in which 
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case 

[ \ J -1 --1 ( A 1 )- 2 A 1 ' 
Al = p V µ W IT C •q3 (8.28) 

lie recall from ( 5. 70, 1) that the presence of longitudinal waves re­

quires that the constraint vector c1 in (8.28) satisfies either 

Al 0 Al 0 c ·q3 = or c A q3 = . 

\Then wa = O and all type I constraints are mechanical, we have 

from (8.20) with s = IT q3 that when the subset {¢1
+µ} is absent, 

(8.29) 

M = 2 

. 2+µ 
lie can only solve for [A IT] , IT = 1, 2, when the subset { ¢ } is 

absent, in which case we have from (8.18,19) when s = IT q3 and w2 f 0 

the results 

(8.30) 

and 

(8.31) 

c2 in (8.30) obeys either c2·q3 = 0 or c2 
A q3 = 0 by (5.89,90). 

In the situation when 61'1 f 0 we find from (8.20) with s = IT q3 

when {¢2+µ} is absent that 

IT = 1,2 (8.32) 
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M = 3 

Ve can solve (8.18,19) for [~u] , u = 1,2,3, if the subset {~3+µ} 
is absent and obtain for s = q q3 and w3 * 0 that 

(8.33) 

( = 1,2 (8.34) 

c3 in (8.33) obeys either c3·q3 = 0 or c3 
A q3 = 0 by (5.108,9). 

The situation wa = 0 is not compatible with homentropic waves when 

M = 3 from the discussion preceding (5.103). 

Before leaving this evaluation of the jumps [ja] we note that for 

M ~ 1 , the jumps [~P+n] appear in the following terms as part of the 

summations over a= 1, ... ,Nin (8.17): 

Ve recall from the discussions following (8.17) and (8.21) that we have 

no information regarding OP+n] . Ve can, however, proceed as in 

(8.22-4) for M = 0: we transform jJ, , w1 , r,7 and §7 to the thermal 

formulation using (5.13) 1 2, (5.60) and (8.23), then evaluate the 
' derivatives 0/0>.P+n required above. Vith the aid of the fact that µ , 

h t 'b t' f h · ~P+n · P+n 0 ( 11 as no con ri u ions rom t e constraints ~ ., since w ., = , reca 
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(5.116)), we find that the.aforemention'ed derivatives vanish, and 

consequently the terms listed above make no contribution in (8.17) . . 

This completes the analysis of the jumps appearing 1n (8.17). The 

remaining terms can be treated by the methods used in deriving the 

homothermal growth equation (7.3) for longitudinal waves from (6.43,6), 

and we therefore give merely an outline of the corresponding analysis 

required here. 

Ve take s = rr q
3 

in ( 8 .17) and denote the longitudinal wave speed 

by v
3 

. The displacement derivatives 6rr/ 6t and 6v3/ 6t are evaluated 

with the aid of (7.2), E+(s,n,n) is treated as was E+(s,n,n) in (6.44), 

and the terms involving (v- 1s) r are evaluated with the aid of the 
' result (6.45) for (v- 3rr q3) ,r . Ve simplify terms involving Grad A: by 

using the assumption. that A: = A:(x3) , and employ the results given in 

(6.34) and in Appendix B to evaluate Grad F+ for the plane, cylindric­

al and spherically symmetric deformations described in Chapter 4. 

Vi th the aid of these results, plus those for [~a] given in 

( 8 .18- 34) when the type I constraint sub;set { ~M+µ} is absent, the 

homentropic growth equation for longitudinal waves is found from (8.17) 

to be 

drr 2 1 
dn = arr - (P + 7r Rr )rr (8.35) 
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where 

(8.36) 

( ) 
1 - 1 - 1 [ dv 3 - 1 ~ A P n = 2 P V3 - P dn + v3 l A<33 33 ii> ai,3 

i 

(8.37) 

0 for plane waves, 

~ P- 1 v3 1 ~ v3
1
{1<33 rr> + l<3r r3> - 1<3r 3f> 

- (A<3f 33 3f> + A<3f 33 f3>)(a3 - ar)} 

for cylindrical or spherical waves. (8.38) 
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In (8.35-37), the notation 

(8.39) 

has been used and we note that a, 7, 6, are now summed over 1, ... , M 

(M ~ 1) only; the appropriate results for [~a] when M = 0,1,2,3 are 

inserted from (8.21) - (8.34). The solution of (8.35) is discussed 

later in the chapter. 

Growth equation for transverse waves 

Ve return to (8.17) and begin by discussing! solutions for [~ J , . , a 

making use of the results of Chapter 5 together· with (8.18-20) for· 

waves with s = <r qa where a = 1 or 2 ~ A significant feature of the 

transverse wave situation is that there are numerous instances in which 

waves are both homentropic and homothermal; in such cases the thermal 

formulation of transverse wave growth given in Chapters 6 and 7 is to 

be. preferred (recall also the discussion of (5.130-3)). 

M = 0 

Now P = O and only the constraint subset { ¢11 }~=l is present, wi.th 

r_'T/ = 0 . 

By the discussion of this case preceding (5.64), all transverse 

homentropic waves are also homothermal and so need not be considered 

here. 

.. I 



219 

M = 1 

Vhen the subset {~l+µ} is absent, (8.18) with s = u qA where A = 1 

or 2 gives the following solution for [l1J when w1 # 0 

(8 .40) 

d h A 1 • f o A 1 0 A 1 0 b ( 5 70 ) u an t e vector c sat1s ies c · qA = or c A qA = y . , 1 . we 

recall from (5.78-80) however, that only c1 
A qA = O is compatible with 

transverse waves that are non-homothermal. Furthermore, w1 = 0 is not 

compatible with non-homothermal transverse waves by the discussion 

following (5.80). 

M = 2,3 

Equations (8.18,19) with s = u qA , A = 1 or 2, yield the follow­

ing solutions for [l ] when the subset {~M+µ} is absent and, w1 # 0 : 
u 

[ 
i ] - -1 -1 A (AM)- 2 M ( M -1 I [. ] AM - p v µ w u c ·qa - w ) w~ ..\( 

(8.41) 

( = 1, ••. , M-1 (8.42) 

For M = 2, non-homothermal transverse waves require that the vector c2 

satisfies c2 
A qA = 0 by the discussion following (5. 95). The case 

w1 = w2 = 0 is not allowed by the discussion following (5.98). 
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For M = 3, both the situations c3·qa = 0 and c3 
A qA = 0 are 

' compatible with non-homothermal transverse waves by (5.112,3) but the 

case wa = 0 is not allowed by the discussion following (5.102). 

This completes the discuss ion of the jumps [j 
0
.] ; <r = 1, ••• , M 

appearing in the growth equation for transverse principal waves. Since 

{ M+µ}P-M · the subset ~ µ=l is assumed absent, the jumps [AM+µ] do not appear. 

Ve noted above that the constraint subset { /+1J }~~i is not compatible 

with non- homothermal transverse waves when M = P = 0 , but the same 

constraints are allowed when M ~ 1 , provided that the subset {~<r}!=l 
is such that wuOuJ :/: 0 .so that T :/: 0 in (5.52). In such circum­

stances, the jumps [jP+1J] occur in the following terms iil (8 .17) 

(s = <r qA , A = 1 or 2) : 

where a, e = 1, ... , N and 7, o = 1, ... , M , 1/ = 1, ... , N- P , and the 

subset {~M+µ}:~~ is absent so we take P = M . 

It is a straightforward procedure to show that the terms in (8.43) 

are zero, as was the case for longitudinal waves (recall the discussion 

of [jP+7JJ following (8.34)). The (directional) constraints ~P+1J 
satisfy (8.21), /+1J = 0 by (5.2) since T :/: 0 , and µ therefore 

contains no contributions from these constraints by (5.116). 
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Firstly, with the aid of (5.63), (4.24), (4.22) and (8.21) in 

turn, 

= 0 (8.44) 

Ve now proceed as in (8.23,4) and have 

= 0 by (8.21) (8.45) 

A1J+ 
Furthermore, by proceeding as before (following (8.24)) for k<3> , we 

find 

,_ 

with the aid of the transformation (5.29) for i and the fact that µ is 

P+TJ . P+1J independent of ~ srnce "' = 0 . Now from the expression (4.21) 

for A and the results of Appendix B, we find that the plane, 
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. cylindrical and spherical deformations considered here, 

= 0 by (8.21) (8.46) 

The remaining terms in (8 .43) are found to vanish by proceeding 

similarly; the transformations (5.60) for ca and (5.13)1 2 for µ ' wa 
' 

are used and the derivatives 8/ ff).P+1J are found to vanish since all 

terms (including µ) are independent of ).P+1J • (Recall the similar 

discussion following (8.34) for longitudinal waves). 

The remaining terms in (8~17) can be evaluated for s = (J'·qa , a= 

1 or 2, by proceeding similarly to the evaluation of corresponding 

terms in the derivation of the growth equation (8.35) for homentropic 

longitudinal waves, and in the derivation of the growth equation (7.24) 
~ 

for homothermal transverse wav~s from the preliminary forms (6.47,51). 

Consequently, only a summary is given here. 

The displacement derivatives 6/ 6t are evaluated using (7. 2), and 

we then make use of the transformation 

(8.47) 
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to show that 

(8 .48) 

(recall A<A3 A3 A3> = 0 in (6.48), and also that M~A3> = 0 by (2.95)). 

The transformation (8.47) and results of Appendix A are again used to 

evaluate E:aa3> proceeding by analogy with the treatment of E:aa3> in 

(6.49), and the terms involving (v- 1s) rare evaluated using (6.50) as 
' well as the transformation (5.29) for l . The assumption A+ = A+(x

3
) a a 

is used to simplify Grad A: , and the results (6.34) plus those of 

Appendix B are used to evaluate Grad F+ • 

The growth equation for transverse homentropic waves (s = u qA , 

A = 1 or 2) is found from (8.17) with the aid of the above procedures, 

and, with {¢M+µ}:~~ absent, takes the form 

du 2 1 dn = au - ( 8 + fr Rr ) u (8.49) 

where 

(8.50) 
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(8.51) 

0 for plane waves, 

for cylindrical or spherical waves~ (8.52) 

Ve have employed the definition (8.39) of Xa in (8.50-52) with a, 7, 

o = 1, ... , M , and the results (8.40-42) are inserted as appropriate. 

Solutions to the growth equation for homentropic waves 

Both the equations (8.35,49) for the growth of longitudinal and 

transverse principal waves are Bernoulli equations, in contrast to the 
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homothermal situation where only the longitudinal equation (7.3) was of 

Bernoulli form; the transverse equation (7 .24) being a linear first 

order equation. The analysis of the Bernoulli equation in Chapter 7 
, 

following (7.6) is therefore applicable here and details are omitted 

except to quote the general form of the solution, which is 

where as before, n measures distance in the normal direction. and 

In Chapter 7 attent~on was focussed on the nature of the con­

straint influence on the solution; in certain cases the constraints had 

no effect or influenced only one part of the equation. This is 

generally not so for homentropic waves when M ~ 1 ; both (8. 35) and 

(8.49) are then considerably more cumbersome than their thermal 

counterparts and the constraints influence a, f3 , 7r , 6 and fr . In 

addition the solutions for [~a] , where they are obtainable at all, are 

often non- zero unlike the homothermal case. In view of this, there 

seems little to be gained from discussing particular solutions when 

M ~ 1 for the various wavefronts as was done in Chapter 7; the general 

features of the solution are clear from the previous analysis of the 

Bernoulli equation and particular solutions are obtainable with the 

results of Chapter 5 plus the expressions for [~a] determined earlier 

in this chapter. 
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In the case when M = 0 , and only the type I constraints ;n for 

which e,n = en = 0 , n = 1, ... , N are present, the influence of the 

constraints is considerably less complicated, and is now described. Ve 

consider only longitudinal waves, since for M = 0 transverse waves that 
I 

are non-homothermal are not compatible with these constraints, as noted 

previously. Vith the results given earlier during the discussion of 

the longitudinal growth equation for M = 0 (see (8.21-6)), the 

expressions (8.36-8) for a, {J, rr in the growth equation (8.35) reduce 

respectively to: 

1 -1 -4 A 

a(n) = 2 P v3 A<33 33 33> (8.54) 

1 -1 -1 [ dv3 -1 \" A l 
/J(n) = 2 P v3 - P dn + v3 f A<33 33 ii> ai,3 (8.55) 

0 for plane waves, 

for cylindrical or spherical waves. (8.56) 

Ve now establish whether or not the terms on the right-hand sides of 

(8.54-6) are dependent on the constraints ;n . Firstly, 

2 -1A -1 2-1a [ [ 
2 0 ] 2] 

V3 = p Q3 = p Q3 - p µ ~ . (5.65 bis) 



227 

and the contribution of the nth constraint to Q3 is 

by (5.118) or (8.21), so ~3 is independent of these constraints. 

Ve now investigate A with the aid of the transformation (8.47) to 

thermal variables. J is unconstrained, by the conclusions to Appendix 

A, as is t° by (2.95), and so isµ by (5.116), since wn = 0 . Finally, 

we require an expression for %o (An) ; this is also zero by (4.21) and 

(2.68). Hence A is unconstrained and so a(n) is also unconstrained. 

Clearly P(n) is also unconstrained, since v3 and i are unconstrained. 

Finally, we investigate 7r(n) and find with the aid of the 

transformation (5.29) for i and the expression (4.21) for ! that the 

only constraint terms in the expression (8.56) for 7r(n) are 

(8.57) 

where r = 1 (resp. 1,2) for cylindrical (resp. spherical) waves. The 

expression in (8.57) is not necessarily zero (see the discussion of 

(8.26)), and so we have the .result for homentropic longitudinal waves 

propagating in media subject to constraints ~n only that: 

plane waves and spherical waves are unconstrained, and cylindrical 

waves are unconstrained if all constraints ~n obey 
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CHAPTER 9 

CONCLUSIONS 

This work is an extension of the analysis of plane waves in 

homogeneously deformed thermoelastic media subject to linearly 

independent type I and type II constraints presented in (I), but adopts 

the restriction of isotropy imposed in the preliminary investigation 

made in (II) . The extensions made have been: the introduction of 

curved wavefronts and the removal of the general restriction to 

homogeneous deformation in the discussion of the growth equation; an 

extensive treatment of type I constraints for which the vectors ca are 

linearly dependent; a new definition of a constrained non- conductor, 

and the recognition that for thermodynamic constraints specified with 

temperature as an independent variable, the thermal formulation is 

often appropriate to investigations of homentropic waves in constrained 

non-conductors. 

These extensions have been achieved at the cost of a restriction 

imposed throughout on the set of arbitrary type I constraints from (I) 

namely that we consider only isotropic and directional constraints as 

defined by (2.66) and (2.68,9) respectively. A restriction is also 

imposed on the type II constraints set in the derivation of the 

homentropic growth equation, where we restrict attention to type II 

constraints fo; which [Grad (Div ( 7 f3 z/3)) J = 0 These restrictions 

are, however, not severe in the sense that most constraints commonly 

encountered in practice can be accommodated within the restricted sets; 

for instance we mention the constraint examples of Gurtin and Podio-
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Guidugli (1973). Ve give four examples of type I constraints (similar 

to those of Gurtin and Podio-Guidugli referred to above), and present 

results for homothermal wave propagation in media subject to these 

constraints acting singly or in combination. Apart from the value of 

the results obtained as they stand, these constraints illustrate the 

fact that linear dependence of such constraints cannot be ignored, and 

in more general terms, illustrate the ease with which combinations of 

constraints can be studied within the general theory presented both 

here and in (I). 

Ve note that underlying the above results is an extensive 

treatment for isotropic materials of the thermodynamic theory 

introduced in (I); we also incorporate the revised definition of a 

constrained non-conductor mentioned above. The use of an apprpach due 

to Durban (1978) for the derivation of the fourth- and sixth- order 

moduli of elasticity for constrained materials is also to be noted. 

The work just described has highlighted the following areas as 

being worthy of further investigation. The definition of the 

constraints in (2.36,7) with temperature as an independent variable is 

ideally suited to the use of the thermal formulation, which is the 

natural choice for homo thermal waves. For homentropic waves though, 

the entropic formulation is to be pref erred for unconstrained 

materials. The possibility of treating homentropic waves in materials 

subject to type I and II constraints in either formulation therefore 

arises; the thermal formulation yields a more cumbersome treatment but 

has 'the advantage that constraint contributions are explicit, whereas 

the more concise entropic formulation tends to obscure constraint 

details that may very well be signif icartt. Such difficulties are 

I 
.• I 
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resolved if the constraints are presented with entropy as an 

independent variable, but it is debatable whether this is compatible 

with experimental techniques for the range of constraints considered 

here. It seems then, that the hybrid approach employed here is perhaps 

the most reasonable (though not ideal) approach at present. 

Ve now turn to the questions raised by the presence of type I 

constraints for which the corresponding constraint vectors ca are 

dependent. The investigation of the propagation conditions proceeds 

relatively unimpeded for both homothermal and homentropic waves, but 

for the growth equations, the indeterminacy of the jumps [ja] is a 

major difficulty. These problems are less severe for homothermal 

waves, but for homentropic · w.aves these terms proliferate in both the 

longitudinal and transverse growth equations. A. similar difficulty 

arises in the case of type II constraints, but is relatively easily 

removed by considering only the subset of the type II constraints 

mentioned above, with little loss of generality. It is difficult to 

see where one could obtain further information regarding [ja] and 

[7pJ , since we have already made use of the constraint equations, the 

equations of motion and the energy equation, as well as first 

derivatives of these. 

A.part from the above topics, at least two further areas of 

investigation would be of interest. It would ·be valuable to have a 

restricted version of the theory that assumed constraints to be 

mechanical from the outset, among the many simplifications which would 

follow from this is the consequence that all non- homothermal waves 

would also obey the type I propagation condition in the form ca·s = 0 . 

. In this thesis of course, we have assumed constraints to be thermo-
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mechanical unless forced to do otherwise. Finally, it would be 

valuable to extend the investigation of the growth equation to allow 

wavefronts of arbitrary curvature. 

It seems then that the original theory developed by Reddy (I) has 

provided a substantial and adaptable base on which to build the work of 

this investigation, and that there is considerable potential for 

further development. 
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APPENDIX A 

Derivations of the components of the tensors A and J relative to 

the basis of proper vectors have been. given by Chadwick and Ogden 

(1971a,b), (see also Ogden (1984)), and by Bowen and Vang (1970,1972) 

for unconstrained materials. Durban (1978) has given an alternative 

treatment, as an application of his results pertaining to the 

differentiation of tensor functions. Vhile the methods of Chadwick and 

Ogden and of Bowen and Vang may be trivially extended to cover isotrop­

ically constrained materials, for directional constraints the procedure 

becomes extremely cumbersome. Durban's method, on the other hand, 

appears more suitable, and we use his formalism as a basis for deriving 

representations for tensors A and J associated with arbitrarily 

constrained materials. The procedure will be to derive the components 

of the tensors L and l , defined by 

L = BT/BC ' l = B2T/BCBC (A.1) 

and then to obtain the components of A and A from the identities 

(Chadwick and Ogden (1971a,b), Marsden and Hughes (1983)) 

(A.2) 

and 

A .. kl = 4 a. aka £ .. kl + 2 a. L . . 1 ok <1J mn> 1 . m <lJ mn> i <1Jn m 

(!.3) 
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where< ... > denotes components relative to the principal basis. Here T 

and C are, respectively, the second Piola-Kirchhoff stress and right 

Cauchy-Green tensors, defined by 

(A.4) 

relative to the principal basis pi these tensors are given by 

C = ~ c. P· ® P· l 1 1 1 

i 

(A.5) 

= a~ and the strain energy £unction ¢ is assumed independent 
1 

Ve start by setting 

N. = P· ® P· 
1 1 1 

S. = P· ® n, + n, ® P· 
1 J ~.K &.K J 

(A.6) 

where in the second equation i,j ,k form a cyclic permutation. Then 

with these tensors available we define the identity tensor I e r4 by 

I 12 
-1 12 IT for all T e 12 

1 I = N. ® N. + -2 S. ® S. 
1 1 1 1 

(A.7) 
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From (A.5) 1 we have 

2 2 
1 -1· -& . ~ · a~ · · -2 p T = c.N. + N. + a f ,BN. c. c. J i c. i c. AB a i 

1 J 1 1 

2 2 
+ O"T/J c.E + O"T/J f E 
~ i AB ~D CD AB (A.8) 

where we have used the fact that eA = O , so EAB = 0 . 

Now 

c = c.N. + c.N. 
J 1 J 1 

(A.9) 

and it can be shown (Durban (1978)) that 

(A.10) 

. [s. ® s. sk ® sk] 
N. = 1/2 J J + C 

i c. - ck c. - c. 
1 1 J 

(A.11) 

(A.12) 

where i,j,k are cyclic and there is no summation on repeated indices. 

Hence (A.8) is easily rewritten as 

t = L(C) (A.13) 
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where. 

-1 _ -1 8T *-2 
, . l p L = p !inc= 2 a N. ® N. + 1/2 (J. s. ® s. 

U\J C · C · 1 J 1 1 1 
1 ·J i 

&
2 

+ 2 (N. ® EAB + EAB ® N ·) 
i AB 1 1 

and where 

T . . - T kk 
-- . <JJ > < > 

(J. 
i cj - ck 

(A.14) 

Here, as before, i,j ,k form a cyclic permutation. Using (A.2) we 

recover the expression (4.21) for ! . For the restricted class of type 

I constraints defined in (2.68,9), none of the directional constraint 

terms in (A.14) survive. The directional constraint terms appearing in 

the expression (4.21) for ! arise from the term. T<jl>h'ik in the 

transformation (A.2) . 

To obtain the tensor of sixth order moduli, we use the identity 

· 8L ·· · 
L = ac C = C(C) 

t is found by differentiating (A.14) and is 
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+ 2 a21;ac.ac. (N. ® N.)· + 1/2" ir. s. ® s. +" u. (s1. ® s1.)· lJ 1 1 l11 1 l1 
i i 

(A.15) 

Ve now evaluate the time derivatives using (A.10) - (A.12) and the 

definition of ui to obtain the following expression for £ 

1 Bui 
+ -

2 
\' ~ (N ® S. ® S. + S. ® N ® S. + S. ® S. ® N ) l ac_ m 1 1 1 m 1 1 1 m . m 
1 

+ ~ 2 aim Nm ® Si ® Si + i p 2 Si ® Sj® Sk 
1 i ,j ,k:/= 



&2 {[s. ® s. sk ® sk] +2 J J+ ®EAB 
AB c . - ck c . - c . 

1 1 1 J 

c. - c. 
1 J 

in which 

lJT <mm> lJT ~ j > lJT <mm> lJT <kk> 
ac . cm - ack - acm 

a ~---]~~~~~~~~~~~ 
im = c. - ck J . 

and 

f3 

i,j,k cyclic. 
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(A.16) 

As in the case of the expression for L , there are limiting values 

for those terms involving (c. - c.)- 1 when c. = cJ. ; such modifications 
. 1 J 1 . 

follow those given by Chadwick and Ogden (1971b) and by Bowen and Vang 

(1970). The components of A relative to'. the principal basis are 

obtained using the transformation (A.3) plus the appropriate terms from 

(A.14), but for the sake of brevity we do not quote the expression for 

A<ijklmn> here. 
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Finally, we observe that for the restricted subset of type I 

directional constraints defined by (2.68,9), land j contain no terms· 

due to directional constraints. 
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APPENDIX ·n 

In this Appendix we present details of the components of the 

tensor Grad F , where F is the deformation gradient tensor. 

; 

By def in it ion 

Grad F = BF. 0 Gj 
· axJ 

and since F = ~ a. q. 0 p. l l l l 
i 

Assuming the coordinates xi to be principal coordinates and the 

deformation to be irrotational (these assumptions are made in the main 

part of the thesis) we have 

using the fact that 

ag./oxj 7 gk 7k 
l = ijk = ijgk 

7. 'k and 7~. being Christoffel symbols relative to the coordinates xi . 
lJ lJ 
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Similarly, 

w~ere r~j and rijk are Christoffel symbols relative to the coordinates 

X1 
• It is not difficult to work out that 

for kjl 

so that 

{
aai -1 -1 l 

Grad F = ~ ~. q. ® P· +a.a. lg· I IG. l(lg. I lgnl7· .qn . l. axJ i i i J J J i {.. iJ {.. 
l,J 

- i.q.) ® P· + a.q. ® (IG· l- 11Gnlrrpn - r~·P·)} ® p.1c.1- 1 
lJ 1 1 .1 1 1 {.. lJ {.. lJ 1 J J 

and 
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The components of F~mn;j> required in (6.34) are now easily obtained: 

for example, for spherically symmetric deformation we have (see 

(4.69,70)) 
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