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ABSTRACT

Ve study the propagation and growth of acceleration waves in
isotropic thermoelastic media subject to a broad class of thermo-
ﬁechanical constraints. The work is based on an existing thermo-
dynamic theory of constrained thermoelastic materials presented by
Reddy (1984) for both definite and non-conductors, but we differ by
Adopting a new definition of av constrained non-conductor and by
investigating the consequences of isotropy. The set of constraints
considered is not arbitrary but is large enough to include most
constraints commonly found in practice. We also extend Reddy’s (1984)
work by including consideration of sets of constraints for which a set
of vectors associated with the constraints is linearly dependent.
These vectors play a significant role in the propagation conditions and

‘in the growth equations described below.

Propagation conditions (of Fresnel-Hadamard type) are derived for
both homothermal and homentropic waves, and solutions for longitudinal
gnd fransverse principal waves are discussed. The derivations involve
the determination of jumps in the time derivative of constraint multi-
pliers which are required in the solution of the corresponding growth
eqﬁations, and it is found that these multipliers cannot be separately
determined if the set of constraint vectors mentiongdlabove is linearly
dependent. This difficulty forces{us“to restrict the constraint set
for which the growth equations fofﬂhomothermal and homentropic waves
can be derived. The growth of plane, cylindrical and spherical waves

~is considered and solutions are discussed, concentrating on the

influence of the constraints on the results.
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CHAPTER 1

INTRODUCTION

One approach to the investigation of finite amplitude waves in\
nonlinear materials is to study the behaviour of propagating Singular
surfaces, in which the wave is a disturbance of arbitrary magnitude>
localized on a surface which propagates through the material (see
review in Truesdell and Toupin (1960), Chapter C). This approach,
developed mainly by Christoffel (1877), Hugoniot (1885) and Hadamard
(1903), has the advantage that apart from assumptions about conditions
vahead of the singular surface, only conditions across the surface.
itself need be cohsidered. One implicétion of this is that it is not
necessary to solve initial-boundary value problems involving the.
eduations of motion. The power and elegance of the method is referred
to in the review article of waves in solids by Chen (1973), who notes
for instance that the method is able to illuminate common features of
the behaviour of waves in various types of materials without having to

appeal to any explicit representation for the constitutive relations of

the materials.

Ve focus attention on acceleration waves, and their behaviour in
. thermoelastic media. An acceleration wave is an example of a singular
surface across which the motion, velocity and deformation gradient are
continuous, and for which the acceleration and second and third
‘derivatives of the motion have finite discontinuities across the
singular surface, but are continuous everywhere else (Chen (1973); see

also Truesdell and Noll (1965), Section 71)).



Truesdell (1961) discussed the purely mechanical theory of
acceleration waves in elastic media and obtained the Fresnel- Hadamard
theorem, which requires the accéleration amplitude of a wave to be a
proper vector of a second order tensor called the acoustic tensor. The
speed of propagation of the wave is then the square root of the
corresponding proper number, which must be feal and positive for the
wave to exist. Although the Fresnel-Hadamard theorem determines the
direction of the acceleration amplitude(s) corresponding to a given

direction of propagation, it is unable to predict the magnitude of the
| acceleration amplitude. V.A. Green (1964,5) however,. obtained a
differential equation for the magnitude of the acceleration amplitude
in the case of plane acceleration waves in homogeneously deformed
isotropic materials; the magnitude was shown either to grow to infinity
‘within a finite time t , decay to zero as t - o ; or to remain
constant, depending on conditions ahead of the wave. Extensions of
this result have been made by (amongst others) Chen (1968a,b), who
- considered accelerafion waves of arbitrary form, Chadwick and 0Ogden
(1971a), who removed the restriction of isotropy, and by Bowen and Wang
(1970), who discussed acceleration waves of arbitrary form in
inhomogeneous isotropic bodies. Eringen and Suhubi (1975) reviewed
acceleration wave propagation and growth (including Suhubi’s results

(1970) for hyperelastic materials) in purely mechanical elastic media.

Ve now consider the behaviour of acceleration waves in thermo-
elastic media. Truesdell (1961) (after Duhenm (1903,6)) showed that the
Fresnel-Hadamard theorem applies (but with different acoustic tensors)

both to materials that conduct heat according to Fourier’s law with a

- positive definite thermal conductivity tensor, and to non- conductors of

heat. 1In the former case such waves are homothermal; that is, the »



first spatial and temporal derivatives of the temperature across the

wavefront are continuous. In the latter, acceleration waves are homen-

tropic; that is, the first spatial and temporal derivatives of the
entropy across the wavefront are continuous. Chen (1968c) used the
concept of a definite conductor (rather than Fourier’s heat conduction
law) from the thermodynamical theory of Coleman and Gurtin (1965) (see
also Chapter D III of Truesdell and Noll, (1965)) to derive results for
propagation and growth of acceleration waves in both definite and non-
conductors of heat; in each case, the material was assumed to be
isotropic and homogeneously deformed. Bowen and Wang (1971) extended
their earlier results for.inhomogeneous isotropic elastic materials by
considering thermodynamic influences and including internal state
variables.  Chadwick and Currie (1972) removed the restriction of
isotropy; furthermore, they showed that heat-conductors are more
appropriately classified by the heat flux vector than by the thermal
conductivity temnsor. They defined normal and anomalous conductors by
considering the conditions under which the dissipation inequality is
satisfied as an equality, and derived results for the propagation and

growth of acceleration waves for normal, anomalous and non- conductors.

The quesfion of wave propagation and growth in elastic materials
subject to one or more iﬁternal constraints has also been'considered by
various authors. Truesdell and Noll (1965) discussed the propagation
of waves in incompressible materials, and referred to the work of
Ericksen (1953), who restricted attention ‘to isotropic hyperelastic
materials. Ogden (1974) considered both the propagation and growth
equations for waves in incompressible media, and presented a detailed
investigation of the case of vplane waves in homogeneously deforméd

materials. Scott (1975) developed a theory of arbitrarily constrained



elastic materials, adopting the ray-theory approach. The same author
applied this theory (Scdtt (1976)) to the propagation and growth of
waves in incompressible elastic solids for plane waves and certain
cylindrical waves. Chen and Gurtin (1974) considered wave propagation
in inextensible elastic bodies; these results were extended by Chen and
Nunziato (1975) to include the constraint of perfecﬁ conductivity in
the fibre directions, but in neither case was wave growth treated.
Borejko and Chadwick (1980) investigated energy relations for
arbitrarily constrained elastic materials, and Whitworth (1982)
considered the related problem of the behaviour of simple waves in such
materials. WVhitworth’s contribution, and that of Whitworth and
Chadwick (1984) on surface waves, are unusual in that they include
discussion of the situation in which a set of vectors associated with
the constraints is linearly dependent.  This situation is usually
ignored but is easily encountered in practice, especially in the case

of material isotropy.

; We turn finally to the behaviour of acceleration waves in thermo-
elastic materials which are subject to arbitrary thermomechanical con-
straints. Reddy (1984) (hereafter referred to as (I)) has developed a
theory of constrained elastic materials and derived propagation and
growth equations for acceleration waves in such materialé. The thermo-
dynamic theory pfesented in (I)}incorpdrates features of the earlier
theories developed by Green, Naghdi and Trapp (1970) and Gurtin and
Podio- Guidugli (1973). These theories are distinguished by the fact
that the constraints make no contribution to the production of entropy,
and that they reduce for purely mechanical constraints to the theory of
"Noll (see Truesdell and Noll, (1965)); they are therefore to be

preferred to the more restrictive theory of Andreussi and Podio-



Guidugli (1973) which does not reduce to Noll’s formulation (see review
in (I)). Reddy revised the general formulation of the constraint
equation presented by Trapp (1971) by restating it in the two alterna-
tive forms in which it is generally found in practice. Constraiﬁts
that can be represented as scalar-valued functions of the deformation
gradient and temperature are called type I constraints, and those that
can be represented as vector-valued functioné of the deformation
gradient and temperature are called type IT constraints. (Examples of
type I constraints are temperature-dependent compressibility and
temperature-dependent extensibility in a given direction, and an
example of a type II constraint is temperature-dependent conductivity
in a given direction). Reddy defines an augmented free energy function
which incorporates the contributions of the type I constraints, and
uses the augmented free energy function to rephrase the constitutive

equations in a particularly concise form. Advantages of this approach

are apparent both in the discussion of waves in definite conductors,

~ where temperature is used as an independent variable, and of waves in

non- conductors, where entropy is used in place of temperature as an in-
dependent variable. It is shown that for constrained materials, every

acceleration wave in a definite conductor is homothermal and every

-acceleration wave in a non-conductor is homentropic, generalizing an

earlier result of Coleman and Gurtin (1965) for unconstrained
materials. Reddy derives necessary conditions to be satisfied by the
constraints when either homothermal or non-homothermal waves are
present and then shows that the propagafion conditions for homothermal
and homentropic waves are both of Fresnel-Hadamard type. Finally,

attention is restricted to plane waves propagating into static homo-

~geneously deformed regions and the growth equations for homothermal and

homéntropic waves are derived; them results show similarities with the



corresponding unconstrained results derived by Chadwick and Currie
(1972). In a subsequent paper (hereafter referred to as (II)), Reddy
(1985) has made a preliminary investigation of the consequences of
material isotropy for the theory developed in (I). Constraints are
classified as isotropic if the scalar constraint equation is a functioﬁ
of temperature and of the principal stretches only, or as directional
if the constraint equation is a funcfion of temperature, the principal
stretches, and of scalar invariants of vectors which endow the con-
straints with preferred directions. The propagation conditions for
homothermal and homentropiq principal waves are derived and, unlike
(I), linear dependence of a set of vectors associated with the con-
straints is considered. The groﬁth equatidn however, %s not treated.
A final noteworthy feature of (I) and_(II) is that all variables are
treated as functions referred to the reference confi uration, which is
taken to be the undeformed configuration. Such an approach, based on
material coordinates, is generally physically meaningless, but an
exception is the case when the region ahead of the wave is at rest (as
assumed in (I) and (II)), and the approach then makes for a less

cluttered analysis.

Aim of the thesis

The aim of this contribution’is to extend the analysis presented
in (I) and (II); in a sense we re-examine and extend the analysis in
(I) but with the restriction of isotropy imposed as in the preliminary
study made in (II). Ve impose a further restriction by considering
| only a subset of the type I (scalar) constraints investigated in (I);

this restriction is however broad enough to encompass most constraints

likely to be encountered in practice. Ve focus attention on each of



the following topics in turn:

(1)

the theory of thermodynamically constrained materials
developed in (I), and its immediate consequences for the

nature of acceleration waves in both definite and non-

. conductors;

(ii) the propagation conditions for homothermal and homentropic
acceleration waves in definite conductors and non-conductors
respectively; |

(iii) the growth equations and solutions for homothermal and
vhomentropic waves.
We now comment on the way in which the topics (i) - (iii) are

approached in the thesis and what is achieved. A detailed description

of the contents of Chapters 2-9 is not presented here (since that would

essentially involve a repetition of the introduction given for each

chapter), but rather a brief appraisal is given of what the investiga-

tion has yielded by way of new results, insight into the topic, and the

~ delineation of areas worthy of further study.

(@)

In Chapter 2 the theory of thermodynamically
constrained materials is presented in a form that obeys the
principle of material frame- indifference and the restriction
of isotropy. The type I (scalar) constraints of (I) are
presented with their directionality made explicit as in
(II); this directionality characterizes any anisotropy.due
to the constraints. Constraints for which such direction-
ality is absent (resp. present) are termed isotropié (resp.

directional), and particular examples of these are intro-



duced, namely temperature-dependent compressibility (iso-
tropic), temperature-dependent extensibility in each of two
orthogonal directions, and temperature-dependent shearing

(all directions).

A new definition for constrained materials of a non-
conductor of heat is adopted here in preference to that
given in (I). There, a material is regarded as a non-
conductor if the heat flux vector is identically zero, and
we note that the heat flux vector for constrained materials

~contains contributions from the type II constraints. In the
revised definition of a non-conductor adopted here, these
contributions from the type II constraints are unrestricted.
So for inétance, a material that has zero heat flux every-
where éxcept for non-zero heat flow through perfectly-
conducting fibres imbedded in it would be regarded as a
(constrainéd) non- conductor in the new definition, irrespec-
tive of the heat flow through the fibres. In consequence,
acceleration waves in non-conductors are no longer homen-
tropic in general, but are so if type II constraints are
absent, or if all type II constraints present are orthogonal

to the wave normal (see Chapter 3).

A central issue raised in the discussion in Chapters

3, 5 and 8 of homentropic waves is the question of whether
to work in the thermal formulation of the 'constitﬁtive
equations? employing temperature as an independent variable
v(as is done for homothermal waves), or whether to adopt the

entropic _formulation, with entropy as an = independent ”



variable as is usually done in work on homentropic waves in
unconstrained non-conductors (and also utilized by Reddy in
(I), (II)). The entropic formulation has the advantage of
conciseness for homentropic waveé!v However, the definition
of type I and II constraints employs temperature and not
entropy as an independent variable (since this is the way in
which constraint pioperties are usually determined experi-
mentally) and as a result the influence of the constraints
cannot be as easily separated out in the entropic formula-
tion as in the thermal formulation, so that valuable simpli-
fications can be obscu:ed. These problems would fall away
if constraints were specified in terms of entropy, in which
case the homentropic treatment would be a close.parallel of
the thermal onme. Ve choose to employ the entropic formula-
tion when brevity is an asset'(aé in the derivations of the
propagation conditions and the growth equations), andvturn
to the thermal formulation in order to facilitate comparison
with homothermal results. In situations where waves are
both homothermal and homentropic (i.e. are generalized
_transversé ‘waves, as defined by Chadwicky and Currie

(1972,4)), we choose the.thermal formulation.

We extend in Chapter 2 the analyses of (I) and (II) by
considering a set of N type I constraints for which the
associated set of constraint vectors is not necessarily
linearly independent. A linearly independent subset is
isolated and labelled 1, ..., M , so that H < N . Ve then
have constraints M+1, ..., P whose constraint vectors are

non-zero and expressible as linear combinations of the
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vectors making up the linearly independent subset, and con-

straints P+1, ..., N whose constraint vectors are all zero.

The corresponding entropic formulation of the type I
constraint vectors is also presented in Chapter 2, but it is
noted that the constraint vectors corresponding to the -
constraints 1, ..., M are not necessarily lineariy indepen-
dent, unlike the situation in the thermal formulation. An
alternative set of constraint vectors is accordingly intro-

duced in Chapter 5 that overcomes this difficulty in the

~ entropic formulation.

The propagation conditions for homothermal and homen-
tropic principal waves that are longitudinal or transverse
are derived in Chapter 4 and 5 fespectively. In both cases,
we are able to extend the treatment in (I) and (II) to
include the possibility of type I constraints with linearly
dependent constraint vectors, for which case ¥ < N . (Note
that constraints whose constraint vectors are collinear are
also treated in (II)). For both homothermal and homentropic

waves, we obtain a propagation condition of Fresnel- Hadamard

- type, with a symmetric acoustic tensor in each case.

A second propagation condition is obtained in the two
situations by evaluating the jump of the time derivative of
the type I constraint definition across the wavefront;

unlike the first propagation condition, there is no equiva-

“lent of this condition for unconstrained waves.
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For homothermal waves (for which the second propaga-
tion condition yields the restriction M < 2), we discuss
longitudinal and transverse principal wave solutions for the
three possibilities M = 0,1,2. In'particular we discuss the
influence of directional and isotropic constraints on both
the strong ellipticity condition for the acoustic tensor and
on the speed of propagation. It is found that directional
constraints which allow longitudinal waves (these are mnot
possible if isotropic constraints are present) have no

effect on the wave speed.

We then consider plane, cylindrically symmetric and
spherically' symmetric waves in materials ;ubject to
irrotational plane, cylindrical and spherically symmetric
deformations respectively. We then use both the definitions
of the constraints as well "as the second propagation con-
dition in 'a detailed study of the restrictions (if any)
placed on the deformations by the constraints, acting singly
- or in combination. It is found that the deformation is
often restricted to either homogeneous deformation or
umiforn dilatation. These homothermal results are
illustrated using the four constiaint examples mentioned in
(i) acting singly or in combinations of two, three or four;
it is seen that linear dependence of the constraints is a

common occurrence.

We now turn to a central problem of this investiga-
tion, which is revealed in the derivation of the first

propagation condition, although'it does not cause a diffi-
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culty there and is accordingly only discussed in Chapter 6.
Each constraint has an associated scalar multiplier (such as
the arbitrary hydrostatic pressure in the constraint of
incompressibility), and the jump of the time derivative of
these multipliers for the type I constraints 1, ;.., P
appears in the derivation. Although an expression is
obtained for the sum of these jumps, expressions for the
individual jumps are obtainable in the event that only the

constraints 1, ..., M whose constraint vectors are linearly

independent are present. No information is obtainable for
the jumps corresponding to the type I constraints P+1, ...,
N . This has ramifications for the derivation of the growth

equation in Chapter 6.

The derivation of the first propagation condition for
homentropic waves is given in Chapter 5 in the entropic
formulation and, as in the homothermal case, expressions for
the jumps in.the time derivatives of the scalar multipliers
are individually obtainable if only the constraints 1, ...,
M are present, and obtainable as a sum if constraints
1,...,P are present. (The details of the derivation of
these results differs, however, from the homothermal case).
Nevertheless we are able to obtain the first propagation
condition and discuss results for longitudinal and trans-
verse principal waves for M = 0,1,2,3. It is noted that
constraints are often required to be mechanical, and in some
cases, this leads to the result that transverse waves are
necessarily both homothermal and homentropic. They are

therefore examples of generalized transverse waves and are



(iii)
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most conveniently treaéed using a thermal formulation.
Lastly, in a discussion of the influence of isotropic and
directional constraints on the propagation conditions, we
demonstrate the use of the thermal formulation of the
prOpagation conditions for homentropic waves; this facili-
tates comparison (for M ¢ 2) with the homothermal results
and displays more easily the influence of the constraints on

the solution.

The derivation of the growth equation for'homotherﬁal
longitudinal and transverse waves is given in Chapter 6,
assuming the material ahead of the wave to be at rest and at
constant température. Ve remove the restriction of homo-
geneous deformation adopted in (I) (except where this’is

required by the presence of a particular constraint) and

. present results for plane, cylindrical and spherical waves

in materials subject to the plane, cylindrical and spheri-
cally symmetric deformations specified at the end of Chapter
4. (Only plane waves are treated in (I)). Ve are able to
obtain the growth equation for longitudinal principal waves
in the presence of the thermomechanical constraints 1,...,N
if type II constraints are present and at least one type II
constraint is not orthogonal to the wave normal. If type II

constraints are absent, then the difficulty of evaluating

the jumps discussed in (ii) forces us to restrict attention

to the following situations:

-:if .the constraints M+1, ..., P are present, then all

constraints present must be mechanical;
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if the constraints P+1, ..., N are present, these

particular constraints must always be mechanical;

if the constraints 1, ..., M are present, these may be
thermomechanical (as long as constraints M+1, ..., P

are absent).

For transverse waves, evaluation of these particular jumps is not
required and consequently only a.relatively minor restriction is
placed on the thermomechanical behaviour of the constraints M+1,

.., P . In all cases the analysis represents an improvement on
(I), where only constraints for which the associated vectors are

linearly independent are considered.

Solutions to the growth equations for longitudinal and transverse
principal waves are shown in Chapter 7 to be a Bernoulli and
linear first order equation respectively, in close analogy with
corresponding results in (I) and in earlier inveétigations for
materials squect to mechanical constraints or unconstrained. The
anélysis of the Bernoulli equation in the context of acceleration
waves (see review by Chen (1973)) is appropriate for longitudinal
waves and is briefly presented. Ve are particularly concerned in
ascertaining the general nature of the constraint influence on
both the longitudinal wave and transverse wave solutions; for
longitudinal waves, type I constraints (which must be directional)
affect only the curvature terms for cylindrical and spherical
waves. For transverse waves, isotropic constraints Are permitted,
and directional constraints influence both the wave speed and the

curvature terms. For homogeneous deformation, plane waves have
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constant amplitude and are independent of the constraints. In
certain circumstances the growth of cylindrical waves in
homogeneously deformed media and spherical waves in a situation of
uniform dilatation is also independent of constraint influence,

and of material properties.

Ve present in Chapter 8 a derivation of the homentropic growth
equation and its solution for longitudinél and transverse
principal waves travelling in media that are at rest and in a
state of constant entropy}aheaa of the wave. No restriction to
homogeneous deformation or to plane waves is made, as in (I), and
we are able to find an alternative to the method employed in (I)
to remove terms involving a particular higher-order jump. As
usual, we do not initially restrict attention to the type I
constraints 1, ..., M as in (I), but we find that the growth
equation involves many terms containing jumps in the time
derivative - of the type I constraint multipliers. A detailed

discussion of the conditions under which these jumps can be
evalﬁated is made for M = 0,1,2,3 using results from Chapter 5; we
find that although no solutions are obtainable if the constraints
M+1, ..., P occur, solutions are always obtainable if the linearly
independent constraints 1,...,M are present and, in certain cases,
if the set P+1, ..., N is present (as in for instance, the case M
= 0, when these are the only cbnstraints present). In some
situations it is found that homentropic waves are necessarily
homothermal as well, and are therefore generalized transverse
waves. They are most easily treated by employing the thermal

formulation of Chapters 6 and 7 instead.
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A similar difficulty is found_regarding the type II constraint
multipliers, which (unlike the homothermal case) occur in the
homentropic growth equation for curved wavefronts. By restrictiné
the set of type II constraints under consideration, we are able to
remove theAdifficulty; this restriction is not so severe as to
exclude the type II constraint examples of either perfect
conductivity or perfect conductivity in a particular direction,las
considered by Gurtin and Podio-Guidugli (1973). It should be
noted however, that this problem with.the type II constraints does
not arise in (I), due to the different definition of a ;non-

conductor adopted there.

Use vof‘ the above results leads to the growth equations for
longitudinal and transverse waves, both cf wvhich are seen to be
Bernculli equaticns. The analysis given in Chabter 7 of the
solution applies"and further discussion 'is restricted vto>\the
nature of thelinflueqces of the cqnstraints‘cn the solution. The
_ equations are more cumbersome than their homothermal cocnterpcrts,
partly because the jumps in the constraint parameter derivatives
- are now .non-zero in general, and also ‘because the type I con-
straints are present in many terms. Because of this, we do not
~ present a discussion of solutions for particular wavefronts or
- constraints (although it is clearly bossible to obtain such
| solctions) for the case H > 1 ; wefconclude the chapter though by
~showing that for M = 0, the longitudinal growth equation is
- considerably simplified (transverse waves are both homeﬁtropic and
. homothermal‘and.are therefore not treated here), and we obtain the
result that the growth of plane waves and spherical waves is not

influenced by the constraints. . This result also holds for
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cylindrical waves if the (directional) constraints present obey a

particular criterion.

Ve note finally that the subject of Appendix A is the derivation
of the foﬁrth— and sixth-order tensors of elastic moduli when
isotropic and directional constraints are present. Ve employ a
method due td Durban (1978) for the differentiation of tensor
functions: this method is considerably simpler than those of
Chadwick and Ogden (1971a,b) and Bowen and Wang (1970,2) (as used
in (II) for the fourth-order tensor case) when directional
constraints are present. Appendix B is devoted to a derivation of

the physical components of the gradient of the deformation temsor.

In this discussion of the thesis, for the sake of brevity few
references have been given to earlier work other than that of (I); many
results obtained by the authors mentioned in the review given earlier

are retrieved as special cases of the present work.

A slightly earlier version of the work on homothermal waves in
‘definite conductors presented in Chapters 2-4, 6-7 of this thesis has

been published (Bleach and Reddy (1987)).
Notation
The space of tensors of rank m is-denoted by 7 : the special cases

of scalars (m=0) and vectors (m=1) are denoted by R and V , respective-

- 1ly. Ve seldom need to be specific about the smoothness properties of

- \fields of tensors defiﬁed on the unbounded domain ! and the time inter-

val [0,T] , so by a cérruption of notation we employ the symbol ™ to
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denote also the space of tensors of rank m , whose components are

functions defined on f x [0,T] .

A tensor T of rank m is an m-linear function on V® = Vx ... xV
(m times). For any T = u ® v ® ... (m times) € Tm‘we define the
m- linear map by

T: VPR , u®@ve ........ (a,by...) = (u-a)(v-b)...

Relative to an arbitrary basis g; we than have T = TH .- g; ® 8; ® ...

where the contravariant components T8 of T are found from

il o T(gi,gj,...) (m indices)

gl being the reciprocal basis of g - Ve also employ covariant com-
ponents Tij relative to the basis g, , and mixed components Ti%"‘
relative to combinations of gl » By - Tensors are also conveniently

regarded as linear vector- or tensor-valued maps. For example, the
second- rank tensor u ® v and the fourth-rank tensor S=u® v e w @ z

may be defined by
T:V-V , (aev)(a)=u(va) |,
2 .2 o
S:7“-+7° , uevewezaeb)=(va)(zbuev

Ve employ both definitions of temsors, making clear if necessary

which representation is being used.
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convention

Ve employ the following form of the summation convention for

vector and tensor indices (Roman miniscules are summed over 1,2,3;

Greek maju

(1)

(ii)

(iii)

scules over 1,2):

®

if an index appears on both sides of an equation it is not
summed ;
indices that occur twice in an expression on only one side

of an equation are summed;
indices occurring more than twice in an expression have the
summation explicitly shown, where such summation is

appropriate.

So, for example, in equation (2.3) no'summation'is implied over i or

j , but in

1

(2.4), summation is implied over both i and j :

et (2.13 bis)
ﬁii .
P=6radx=% g 06 . (2.46 bis)
axd 7t
" In (2.7) however, the sumnation is explicitly shown:
F:Eai q ®p; - (2.7 bis)

The summation convention presented above is also used for the

indices (Greek miniscules) labelling the type I and type II
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constraints, so that in (2.45) and (2.46)4 for example, we sum over

a=1, ..., Nand f =1, ..., L respectively:
= 9(F, 8) « 4, 4°(F, 0, ¢) (2.45 bis)
a = q°(F, 0, Grad 0) + 1 P, 0,¢) . ((2.46), bis)

Finally, we also use the above convention for the indices (Roman
majuscules) labelling the vectors ey that characterize the direction-

ality of the constraints, so that, for example, we sum over A, B in

c® = fyp Z a;(p;-e)(n-ep)a; (2.89 bis) |
1 .

where clearly we also sum over i but not over a in terms of the
summation convention. VWe note finally that case -(iii) above only
occurs in what follows for the vector and tensor indices i,j, ..., and

not the constraint indices a,f, .. or A,B, ... .
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CHAPTER 2

CONSTITUTIVE EQUATIONS FOR CONSTRAINED
ISOTROPIC MATERIALS

We review the description of a body and its motion, and describe
the theory of unconstrained thermoelastic materials in isotrOpié media,
follbwing the approach of Coleman and Noll (1963), Chadwick and Seet
(1971) and Gurtin (1974). .Attention is then focussed on constitutive
theories for elastic materials subject to internal thermoelastic
constraints. The theories of Green, Naghdi and Trapp (1970) and of
Gurtin and Podio-Guidugli (1973) are considered and then the
alternative theory proposed by Reddy in (I) is dealt with in detail. =
It is presented here in the form appropriate to isotropic materials,
tﬁking into account the work of Reddy in (II) and with further
modifications. As in (I), we classify the constraints as being of type
I or type II according to whether they .are defined By a scalar- or
vector-valued function respectively. Attention is réstricted here to a
particular subset of type I constraints which is broad enough to cover

those constraints commonly found in practice.

We follow (I) and consider constrained materials that are either
definite or non-conductors, but adopt a different definition of a
non- conductor for comstrained materials to that given by Reddy in (I).
It will often (though not invariably) prove convenient when considering
wave behaviour in non-conductors to employ entropy rather than

temperature as an independent variable in the constitutive equations
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and this form of the constitutive equations (the entropic formulation)

is accordingly presented here.

The chapter concludes with the definition of a constraint vector
associated with each of the type I (scalar) constraints. We extend the
treatments in (I,II) by allowing the set of constraint vectors to be

either fully active (if the set of constraint vectors is linearly

independent) or partially active (the constraint vectors form a

linearly dependent set) or inactive (each constraint veétor has the
value zero). The corresponding set of constraint vectors in the
entropic formulation is also introduced, but it is noted that a further
modification of this set (presented‘in'Chapter 5) proves to be more

convenient when the entropic formulation is to be employed.

Description of the motion

Ve consider a body B and identify the position of each particle of
B by its position vector X in a fixed and undeformed reference
configuration at time t=0 . The subseéuent position at time t of a
particle initially located at X is found from the motion x = x(X,t) ,
where x(X,0) = X . TFor each value of t , the function x(X,t) is

invertible, so that X = i'l(x,t) where ¥ 1 is the inverse of X .

An  arbitrary set of orthogonal curvilinear coordinates
xt (i =1,2,3) is chosen angfthe position vector X of particles in the

reference configuration is a function of these coordinates, that is,
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X = i(Xl) . The tangent basis vectors G, are thus given by
G. = — . ) (2‘1)

The dual basis vectors Gi are uniquely'defined by
o - gl
6.6’ = &
61 being the Kronecker delta,

~and components of the metric tensor Gij and its inverse G relative to

{6,} and {6} respectively are

- Q.. ij _ gl. gl
65 = 606 5 67 =66

A co-ordinate system {x'} , generally distinct from {x'} , is used
to locate particles in the current configuration, so that

X = i(xi)

The corresponding tangent basis vectors 8; » dual basis vectors g1 ,
metric tensor components> 8i; and its inverse g'J are defined

respectively by
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gi = E;I :
gi'gJ = 6{ ’
gij = gi.gj ’ gl'] = gl‘SJ . (2.2)

The motion of the body can be described alternatively by the set

of functions

Moo IR N | | (2.3)

Any field variable y , say, associated with the body may be

represented either in the spatial form

X = i(x’t) or i(xlyt) ’

or using (2.3), it may be represented in the material form (Truesdell

and Noll, (1965), Section 66)

x = ¥(X,;t) or F(X',t)
The deformation gradient F is defined by

: _i . '
F = Qrad X = gij g; ® ¢ . . ' - (2.4)

According to the polar decomposition theorem, F can be written as

F-RU=VR , O (2.5)
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where R is a proper orthogonal tensor known as the rotation tensor and
U and V are the (positive definite) symmetric right and left stretch
tensors respectively. The stretch tensors have the spectral
representations (see for instance Chadwick (1976)):

U=Ya;p0p; 5 V=)2,q°q
i i

where a; are proper numbers of U and V and are known as the principal
stretches; the triad of proper vectdrs {pi} defines locally a set.of
principal axes in the reference configuration and the corresponding
triad {q;} defines locally a set of principal axes in the current.
configuration. These two sets’ of principal axes will be used

extensively later; they are related by

6 =tp - | | | (2.6)
The rotation tenéor R is expressible as
B=q ®p

and so we can write the deformation gradient F as

i .

The (symmetric) right and left Cauchy-Green strain tensors are defined

respectively by

C=FF , B=FF ; (2.8)
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here and henceforth a supefscript T denotes the transpose. Using (2.7)

we find that C and B have the spectral representations

2 v .2 2.2
C=1 - Z 2y R 5 B=V =)aiqeq
i i

Thermodynamics of unconstrained elastic materials

We characterize a thermodynamic process (see Chadwick and Seet
(1971), Gurtin (1974)) by the motion x , the temperature ¢ , the free
energy ¢ , the first Piola-Kirchhoff stress temsor S , thg specific
entropy 7 , the referential heat flux vector q , the external body
force b and the rate of héat supply r . The local form of the laws of

.balance of linear and angular momentum and of energy are respectively

DivS+pb=px |, , (2.9) O
SH-Fs§ | (2.10)
-p(p+ 90 +90) +SF-Divq+pr=0 |, | (2.11)

/

where p is the density in the reference configuration, Div is the
divergence operator relative to X and a superimposed dot denotes
differentiation with respect to time holding X constant. The -

corresponding local form of the entropy production inequality is

- p(prnd)+Sk- 0l qgerad g0 . (2.12)
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The thermodynamic processes that the material can undergo are
restricted by the set of constitutive equations for that material. For
the case of an unconstrained thermoelastic material, the equations are

assumed to have the form

= ¢°(F, 0, Grad 8) , S =S°(F, @, Grad 0) ,

..
|

(¥, 0, 6rad 0) . (2.13)

=3
i

nO(F, g, Grad 4) , q

However, every admissible thermodynamic process must satisfy the
reduced dissipation inequality (2.12). Necessary and sufficient
conditions that this is so for an unconstrained thermoelastic material
0 g0

are firstly that ¢ and n° be independent of Grad 4 , i.e.

i OE 0,5 L® 0, 0-1°® 0 5 (2.14)

secondly that ¢° determines S and 7 by

v
H

X S ‘ (2.15)

9 () . v
1=- 9 | (2.16)
and finally that qP obeys the heat conduction inequality
- °(®, 0, 6rad §)-Grad § < 0 . (2.17)

These results were obtained for the gemeral case with mutual body

forces present by Gurtin and Williams (1971); see also the review by

~
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Gurtin (1974). Ve consider throughout only the influence of external

body forces, however.

Some consequences of (2.14) -. (2.17) are as follows. The energy

equation (2.11) takes the form
plfg=-Divgq+pr (2.18)
and the stress S and entropy 7 obey the Maxwell relation

0 0
B | (2.19)

The absence of a piezo-caloric effect is made manifest through the fact

that q must obey
C(F, 6, 0) =0 - (2.20)

and finally the thermal conductivity tensor K , defined by

- 5d° S :
K = J0sa 7y : (2.21)
6rad ) |Grad 6= 0

is positive semi-definite, i.e. v:K v 2 0 for all vectors v{0 .

Further restrictions on the constitutive equations arise as a result of
the principle of material frame- indifference of the observer, that is,

invariance under every transformation of the form

x+Qx+c , (2.22)
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where the orthogonal tensor (§ and vector c¢ are in general time-
dependent. Under a change of observer as expressed by (2.22), the

variables characterizing the process transform as (see Gurtin (1974)) :
p-9¢ , 00 , p-1n
q-q , b-Qb ’

S-0S . | (2.23)

(Note that the heat flux vector is invariant since it is measured per
unit area in the referemnce configuration). In addition, (2.22) and

(2.23) imply that F and Grad # transform according to
F-QF , Grad 0 - Grad 8 (2.24)

the latter being invariant since it is the gradient relative to the

reference configuration.

Material frame-indifference dictates that the functions appearing

in (2.14), (2.17) satisfy
¢O(Fa 0) = ¢0(Q F; 0) ’

SO(Fa = qTSO(q F, 0) ’

<D
~—
|

=3
[«
—
=
-
<
Nt
1

°(QE, 6

«°(F, 0, 6rad §) = °(Q P, 4, Grad 4) . (2.25)
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Ve make use of the polar decomposition theorem and follow a standard
procedure (Carlson (1972)) to obtain the reduced form of the conmstitu-

tive equations. These are:

q=a(C, 0,' Grad 4) (2.26)
where C is the right Cauchy-Green strain tensor defined in (2.8).

‘We conclude the discussion of uncohstrained thermoelastic
materials by imposing the condition of isotropy and finding the
appropriate form of the constitutive equations. An unconstrained
material is isotropic if it possesses a reference configuration (called
an undistorted state) for which the isotropy group of the material
contains the full orthogonal group (see for example Chadwick (1976)).
Ve require therefore that the response to a deformation F from an
undistorted state be indistinguishable from the response to a
deformation F Q from that state. The condition of isotropy when

applied to ¥° and q° (see (2.26), 4), yields the following relations
H

7°c, o) = @ cq, 0
and

q g°(C, 6, Grad 6) = (@ € Q°, 4, Q Grad 6) . (2.27)
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Hence the scalar #° and vector §° are isotropic functions (Truesdell
and Noll (1965), Sections 8, 47; Chadwick and Seet (1971)). Note that
only ¢ and q are considered here, since S and g are obtainable from ¢

by (2.15) and (2.16) respectively.

The representation theorems for isotropic functions given by
Truesdell and Noll (1965, Sections 10-13) and by Vang (1969,70) (see

also Smith (1970)) can then be used to write ¥° as
$= (0 0 - (2.28)
b

where (4 = (11,12,13) is the set of scalar invariants of C : I, =trC,
I {(tr )2 - tr c2} , and I, = det C .

1
272

The corresponding representation for q is (see also Chadwick and Seet

(1971))

q-= Qp(bc, 0, Kys g, m3) , (2.29)
where

Ky = |Grad 0|,vm2 = |F Grad 4|, m3.=.|C Grad 4|

Thermomechanically constrained elastic materials

The original theory of Noll (Truesdell and Noll (1965), Section
30) for mechanically constrained elastic materials expressed the total
~stress in a constrained material as the sum of an undetermined reaction

plus a determinate stress, and this general approach underlies all the
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later theories described below. Cohen and Vang (1987) claim that such
theories are not entirely satisfactory since the determinate stress is
not unique and so should not be used to formulate intrinsic properties
or conditions on the material model such as material frame- indifference
and material symmetry. They develop a theory for mechanically
constrained elastic materials that is independent of the concept of
determinate stress, and note that it is theoretically possible that for
some constrained materials, a determinate response function that
specifies both the conditions of material frame-indifference and
material symmetry cannot be fouﬁd. They are, however, unable to
furnish an example of a constraint having this property; indeed, their
analysis of commonly used constraints, acting singly and in
combination, shows that these constraints do not cause such problems,
and accordingly we see no need to abandon the approaches described

below.

We develop a constitutive theory for elastic materialsbsubject to a set
of internal thermomechanical constraints. The first such theory was
that of Green, Naghdi and Trapp (1970), with further contributions by
Trapp (1971).. They assume the constraint equations to be of the form
(here presented in our notation, relative to the reference
configuration and incorporating the dependence on # used by Trapp

(1971)):
AF+Bh+cGradf=0 . ' - (2.30)

Here A = K(F, 0) is a second order temsor, ¢ = &(F, §) is a vector and

B = B(F, 6) is a scalar.
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They further assume that constraint contributions Sc, nc, qc to the .
stress, entropy and heat flux respectively are such that there is no

entropy production due to the constraints, that is,
SC.F - p ”c p- gt q¢-Grad =0 (2.31)

where here and henceforth a superscript ¢ denotes the contribution from
the constraints. Both of these assumptions are the appropriate
generalizations of the general mechanical theory of internal

constraints developed by Noll.

Gurtin and Podio- Guidugli (1973) develop a general thermodynamic
theory of - constrained materials which is essentially based on

constitutive equations of the form

¢ = °(F, 0, Grad 0) ,

S = S°(F, 0, Grad 0) + S¢
7 = nO(F, 9, Grad 6) + nc ,
0 ' c :
q=9q(F, 0, Grad §) + q , (2.32)

where here and henceforth a superscript zero denotes a function with no
explicit constraint dependence, such dependence being contained in the
functions with superscript c . (Ve note, however, that functions such
as ¢°, SO, no, qP are influenced by the comstraints through the effect
~of the constraints on ¥, @, Grad #). Gurtin and Podio-Guidugli assume

the existence of a reaction set (S¢, - n°, - gl q°) and use the |
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entropy production inequality (2.12) to obtain as a consequence of
their theory the assumption (2.31) of Green, Naghdi and Trapp.
Furthermore, Gurtin and Podio-Guidugli are able to strengthen this

result to
SC.¥ - p nc b =0 ,
q“-Grad 6=0 . (2.33)

Since (2.31) holds, the entropy production inequality (2.12) is

independent of the constraints and it reduces to
- (9 + 00'9) + 8% - ¢l ®Grad 20 . (2.34)

A third theory, that of \Andreussi and Podio-Guidugli (1973),
imposes the additional restriction that ﬁhe constraints make zero
contribution to the energy equation. A disadvantage of this
resﬁriction is that the resulting theory does not reduce to Noll’s
formulation for purely mechanical constraints. These authors also add

a constraint term to the free energy function ¢ , so that

¢ = ¢°(F, 0, Grad 0) + ¢¢ . (2.35)
Note however that Gurtin and Podio-Guidugli omit the term #¢, following
Green, Naghdi and Trapp, on the grounds that ¢c , if included, is
eventually found to be constant in every process.

Ve now develop the constitutive theory for constrained thermo-

elastic materials proposed by Reddy (I,II). This theory is a |
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development of that of Green, Naghdi and Trapp in the way the
constraint equations are defined and exploits the results (2.33) of
Gurtin and Podio-Guidugli. Instead of assuming the constraint
equations to be of the form (2.30) as proposed by Green, Naghdi and
Trapp, Reddy makes the following subdivision. The material is assumed

to be subject to N internal constraints of the form

¢ (E, 0, éA) =0 , a=1,2, ..., N | (2.36)
and L internal constraints of the form

(B, 0, e)-Grad =0 , =12, ..., L O (2.37)

where ¢a and zﬂ are respectively scalar- and vector-valued functions.

1,2,...) are assumed.to be time independent

The vector fields e, (A

and of unit length, so

[
bt

e = eA(X) , |eA| = (2.38)

These vectors characte;ize the directionality of the constraints, as
for example in the constraints of temperature-dependent extensibility
(vhich obeys (2.36)) and of ﬁerfect conductivity in some direction e
(which obeys (2.37)). O0f course, not all the ) need appear in each
constraint. VWe will return to the case of particular constraints
later, but here it suffices to note that an advantage of the -above
subdivision is that constraints commonly fall into either of the

categories (2.36) or (2.37), rather than appear in the more general .

~form (2.30). Following Reddy, we call constraints expressible in the

form (2.36) and (2.37) type I and type II constraints respectively.
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The explicit inclusion of possible constraint directionality through
the e, in the definitions (2.36,7) differs from the original develop—
ment in (I) - (2.36) though, is used in its present form in (II). The
inclusion of such vectors is important here because we shall be
concerned with isotropicmaterials and the vectors €, characterize any
anisotropy due to the constraints. As we will see, the presence of the
e, in (2.36,7) does not require substantial modification of the

constitutive theory presented in (I).

The set of comstitutive equatidns obeyed by a material subject to
type I and type II constraints is given below. This is a slight
modification of the set (2.32) proposed by Gurtin and Podio-Guidugli
(1973) and is

¢ = ¢°(®, 4, Grad 0)

+
Do
.

1)
P
3
-
D
-
@
-
SN
-

S = S°(F, 0, Grad 0)

+
-
=}
4 2]
=
~~
-]
<
(4°)
-,
p —

=3
1
=3
o
—~
ey

0, Grad 6). + A 7%(F, 0, ¢,)

Grad 4)

-+

pd® 0e) (2.39)

=]

H
"no
—~

ey
S~

where Aa(x,t) and 7ﬂ(x,t) are arbitrary scalar fields; here we assume
summation over @ and A (for N type I and L type II constraints
respectively) from the outset. Substitution of (2.39), , and the type
II constraint equation (2.37) in the entropy production inequality
(2.12) and use of the fact that A, and 75 are arbitrary yields

=0 | (2.40)
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gnd

-pntbstk=0 |, (2.41)

corresponding to Gurtin and Podio-Guidugli’s assumption (2.32)1 and
their result (2.'33)1 respectively. Equation (2.40) is also consistent
with the definition (2.36) of type I constraints. Now the rate form of
(2.36) is |

W, 0y, | (2.42)

Sa:pF ’
a _ 0 e
77"50 ’
and
qﬁ - _ (2.43)

Since the entropy production inequality (2.34) is not affected by

the constraints, it can be used as described in the unconstrained case

(see (2.13) - (2.18)) to obtain restricted forms of #°, 8°, 7% and ¢° .

The constitutive equations (2.39) then reduce to

AN
I
5.
S -
—~
]
-
~—
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|9 i
7= [ao A5

q’(F, 0, 6rad 6) + /i A (2.44)

V-]
I

A more convenient representation of (2.44) is obtained by defining an

augmented free energy function ¢ by
g = 9°F, 0) + A, $°(F, 0, ¢) . (2.45)

The set of constitutive equations (2.44) can then be written more

concisely as

$ = ¢'(F, 9, ’\a, eA) = '¢0(Fa 0) + '\a ¢a(Fa g, eA) )
’ ’ a ’
S=8(8 0,0y e) =0 G

q = q'(F, 0, Grad 0, 7ﬁ, eA)

=3
"
=3
~
—
L]
-
A=Y
-
D
)
-
(3}
P
S
i

Grad 0) + 1, P, 0, ¢) (2.46)

/
1
-po
—_
L]
)

and we also have the relation
$° = oy /ar, . : (2.47)
The set of constitutive equations in this form will be

-particularly convenient later when we construct a conjugate set with g

replacing # as an independent variable.
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The fact that the entrépy production inequality (2.34) has no
contribution from the constraints has the following further con-
sequences,.which parallel those for unconstrained materials quoted in
(2.18) - (2.21). Specifically, the energy equation and entropy

production inequality take the respective forms

p8ap=-Divq+pr (2.48)
and |

q®-6rad § <0 | - (2.49)

while the Maxwell relation can be expressed in terms of (2.46), , as
b

g%— =-p g%i. . ' (2.50)

The results (2.20) and (2.21) that express respectively the absence of
a piezo-caloric effect and the positive semi-definiteness of the

thermal conductivity tensor carry over unchanged.

-AS in the unconstrained case, the set of constitutive equations
(2.46) must obey the principle of material frame-indifference. Ve note
‘that under transformations of the form (2.22), e, and q are invariant
as they are defined relative to the reference configuration; this,
together with the use of standard procedures for invoking frame-
indifference (recall (2.22) - (2.26), see also Carlson (1972)) leads to

the following reduced forms of the constitutive equations:
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¢'(F, 0, Aa, eA) = a(C, 0, Ad, eA) = &O(Ca 0) + Aa aa(ca 07 eA) ’

S'(F, 0, 1, ¢,) =5(C, 0, A, ¢) =8°C, 8) + 1, 5C, 4, ¢)

a
”’(F, g, Aa, eA) = ﬁ(cy g, Aa, eA) = ﬁo(ca 0) + Aa ﬁa(c7 g, eA),

Q'(Fy f, Grad 0a‘7ﬂ7 eA) = Q(C7 g, Aa, eA)

= §°(C, 0, Grad 0) + 75 2(C, 0, 6rad 0, ¢))
(2.51)

Ve now define the two classes of constrained heat-conducting
materials with which we will be concerned for the remainder of this

.thesis. '
A definite conductor of heat is a material for which
v:(sym K)v > 0 - (2.52)

for all non-zero vectors v and where sym K denotes the symmetric part
of the thermal conductivity tensor (2.21) (see also the discussion

following (2.50)).

A non- conductor of heat is defined for constrained materials to be one

for which
°(F, 6, Grad 0) =0 | (2.53)

Q=1 zﬂ(F, g, eA) i ' (2.54)
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This definition is in contrast with that used in (I), where a non-

conductor was defined to be a constrained material for which

The present definition is to bé preferred as it implies that the
material is a non-conductor in all directions except zﬂ . For example,
heat- conducting fibres passing through an otherwise non-ﬁonducting
material in some direction e give the constraint of perfect

conductivity in the direction e .

Ve conclude this discussion of the constitutive equations (2.39)
pfoﬁosed by Reddy in (I) for constrained thermoelastic materials by
imposing (as in (II)) the condition of isotropy. As in the
unconstrained case it is only necessary to obtain the appropriate form
of ¢ and q’ , since S’ and n’ can be found from ¢’ through (2.46)2 and
(2.46)3 respectively. '

The constraint vectors e, characterize the directionality of the
constraints and this directionality must be accommodated within our
definition of an isotropic material. If we refer back to the
unconstrained case, an analogous situation exists in the case of the
temperature gradient Grad 4 , which also defines a field of directions
within the body. In that case, the material is regarded as isotropic
if after an arbitrary rotation § of the reference configuration, the
material response is unchanged provided that the vector Grad # has also

been rotated through Q ,

i.e. Grad 6 - Q Grad ¢
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The constraint vectors e, define particular (fixed) directions in
the body which is otherwise isotropic. We require therefore that the
material response be unaffected by an arbitrary rotation § provided

that the vectors e, are also rotated through  , that is,
ey Qe

This approach is also adopted by Spencer (1972) in a discussion of the
purely mechanical case of fibre-reinforced materials. We note that
Gurtin and Podio-Guidugli (1973), however, exclude the directional

vectors e, completely from their discussion of isotropy.

We require for an isotropic constrained thermoelastic material

that

'ﬁ’(Fa g, "aa eA) = 'ﬁ’(F q, 9, "aa qu)

and

a’(F, 0, Grad 4, 75, ¢)) = ¢'(F 4, Q Grad 0 , 75, Q ¢))

(Ve restrict atention to ¢’, q’, since S’ and n’ are obtainable from ¢~

by (2.46), o). Consequently, the functions ¢ and q defined in (2.51),

2,3
and (2.51)4 respectively satisfy the following relations:

3(C, 0, A, €) = FACA, 8, 4, Qe 3 (2.55)
and
Qa(C, 0, 6rad 0, 75 ) = a0 ¢ 0, 4, q Grad 0 , T ENE
(2.56)



that is, ﬁ and'q are isotrbpic scalar- %hd‘vector-valued’functions,
respectively (Tfuesdell and Noll (1965), Section 8). Results on the |
fepfesentation of isotropic functions ((II),‘Truesdell and Noll (1965),
Sections 10-13, VWang (1969,70), Smith‘(1970)) can'be invoked and we
find | |

ﬁ(c’ 0’ Aa’ eA) = EO(LC, 0) t Aa 3a(bc5i0’ eAB’ fAB’ kAB)’
| (2.57)

where

o

e

=8
|

f-gA;eB , £, =Fe , fp=F éAf Fey ,
k&;ﬁ; c eAi, kyp = k4 kg ;l e | . (2.58)
’_q(c;vﬂ;.Gfad [/ 7ﬂ,eA)-=“§°(%C; 0,’ki5‘n2, 53)t'
g Blig 0 5y Ry "3":“;43"‘%’,1‘1;3) o (2.59)
whergvnl,_né, kg are as défiqed folloyi#g (2;29).
Use of (2 46)2 3 (2.57) and (2. 59) together with the deflnltlons of
s’ “and n from (2 51)2 5 enables us to write the constltutlve equations

for 1sotrop1c constrained thermoelastic materials. in their final form

-as follows:
¢ = ¢(ai’ 0’ eAB’ fAB’ kAB)

= ¢0(ai, g) + "a ¢a(a'i, g, €\’ fAB’ kAB) ’ (2.60)
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a
R Z ga. 4 @ Py * 4, ng (fy @ ep + fy @ ¢))
. 1
1

B
34°
+ Aa kAB (F kA ® ep + F kB ®e + fA ® kB + fB ® kA) ,
(2.61)
d
g = - gg , (2.62)
0
q=4g (aia g, "1, Kza "3)
+ g zﬁ(ai, g, Kyy Koy Kgs €4ps fAB’ kAB) . (2.63)

Equations (2.60-63) are presented in the notation to be used in
the remainder of the thesis, and for convenience the same symbol is
used to denote the function ¢ and its value. The derivation of the
final form of (2.61) is given in (II) (see (2.22) there), and summation
is assumed here and henceforth over repeated indices A, B. In

(2.60-63) the constraints satisfy

d ; a _
3%; = $%ag, 0, eyp, fyp, Kyp) = O (2.64)
or

in the case of type I and II constraints respectively, with the

dependence on a; in (2.60) - (2.65) being symmetric.

Isotropic and directional type I constraints

Ve now turn our attention to the general representation (2.36) of

type I constraints and define restricted subsets of this set of con-
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straints that are still sufficiently general to accommodate a wide
variety of constraints found in practice. In particular, we restrict

attention to the following two classes:

(i) Isotropic constraints, which are those expressible in the

form

a0 0) = 43a;) + 420 =0 . (2.66)

An  example of such a constraint is temperature-dependent

compressibility (Trapp (1971), Gurtin and Podio-Guidugli (1973)):
ay 2y Ay - {1(0) =0 , {1(0) =0 , | (2367)
where {1(0) is a scalar-valued function of temperature.
(ii) Directional constrgints, which are of the form
%(eyp> Typ0 0) = 07(F4p) + 45(eupy 6) (2.68)

and which are further restricted by the requirement that dependence on

fAB is to be linear, so that
a N o1 p0 » _
$1(f4p) =5 P fap > - | - (2.69)

where for each a , ﬂiB is a symmetric matrix of constants. An example

of a directional constraint is temperature-dependent extensibility in a

- il N
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direction e; (Trapp (1971)) defined by the condition

f11 - 52(‘9) =0 , 52(‘9) >0, _ , (2.70)

where 52(0) is a scalar-valued function of temperature.

The constraint of temperature-dependent shearing is now considered
in the context of the above definition of directional constraints.
This constraint 1is a generalizafion of the orthogonality-preserving
(mechanical) constraint (Gurtin and Podio-Guidugli (1973)), and
constrains the angle § between two directions F e and F ey in the
current configuration to be a function of both the angle e between ey

and e, in the reference configuration and the temperature. Since

H

coS a el-ez = 612

and

cos 4

(F e -Fep)/FellFeyl =1fy/{f Ty
the constraint can be written as

f19- L300, ey Tpp =0 | (2.71)
where Z3 is a scalar-valued function of temperature and the angle a .

This clearly does not obey (2.68) or (2.69), but there are two special
cases of (2.71) which do.  Firstly, if the temperature-dependent

extensibility constraint (2.70) holds in the two directions e, and e,
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then (2.71) reduces to

\

f0- &3(0, e) =0 (2.72)

where {3 is a scalar-valued function of temperature and the angle a .
Secondly, the mechanical orthogonality-preserving constraint discussed
by Gurtin and Podio-Guidugli (1973) (for which e,, and f,, are zero)

can be written simply as

fo=0 . | (2.73)

| Entropic formulation of the constitutive equations

For the analysis of wave propagation and growth in isotropic
definite conductors, the set of constitutive equations is appropriately
taken to be (2.60-3) with the constraints obeying (2.64) or (2.65). In
the case of non-conductors though, it proves more convenient to con-
struct a set with the specific internal energy € and 7 replacing ¢ and

¢ as the independent variables. This results for the unconstrained

case in constitutive equations of the form

e = ¢(F, 1)

S=9p g%
0%

0_— a1

q-= ‘—I(F’ n, Grad 0) ’ | (2'74)
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where

€ = ¢0 + 74 | (2.75)

is the specific internal emergy (see Chadwick and Currie (1972), (I),

(I1)).

A corresponding set for constrained elastic materials was derived

in (I). An augmented internal energy function € is defined by

e=¢R, A, €)=9+008 . - (2.76)

Differentiation of ¢ with respect to F, 7, Aa then yields

s =p %, | (2.77)
g = %% ., (2.78)

a _ Je 2.79
¢ = 5}; ’ : | ( . )

and we complete the set by writing the heat flux q in the form

q-= Q(F, N Aa’ 7ﬂ) eA) . ' (2'80)

A superimposéd caret wiil be used throughout to: denote the use of 75

rather than # as one of the independent variables.
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+

- Ve choose the above approach for incorporating the constraints

rather than for example expressing constraints in the form

¢a(F7 75 eA) =0

because constraints do not usually appear in the above form, but rather
as in the definitions (2.36,7) of type I and II constraints respective-

ly. Ve now comment on a significant difference between the two sets of
constitutive equations which have,ﬂ}and n respectively as variables.
In (2.46), for instance, the constrained part of ¢ is explicitly

separated from the unconstrained term, that is,

§(E, 0, s ) = °(E, 0) + 4, 4%F, 0, €)  ((2.46), bis)

but in the corresponding equation for ¢ , we have

E(F7 /D) Aa’ eA) # ¢O(F7 0) + Aa ¢a(F7 07 eA) + 7 0 ’
(2.76 bis)

where throughout we must insert 8 = 8(F, 7, Aa, eA) . Consequently it
is not genmerally possible to disengage the constraint contributions in

the same manner as in (2.46),.

The restrictions on the set (2.76) - (2.80) due to material frame-
indifference can be obtained by arguments similar to those used for the

thermal formulation; details are therefore omitted and the results are

found to- be (see also (II))
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: de
[%—1—] q; ®p; + {———afAB] (fA ®ep + :fB ® eA)

AB
(2.82)
Py
=% (2.83)
q-= (l(a'i’ My Kqs Kgs Kg, €iB? fAB’ kAB) . (2.84)

Constraint vectors for type I constraints

In later chapters we will make extensive use of sets of vectors

associated with the constraints. PFor convenience we describe these

vectors and their properties here.
- Given a set of type I constraints
9°(F, 0, €) =0 , a=1, ..., N (2.36 bis)
and a unit vector n , we define the set {ca(n)}lz=1 of vectors by

a
ca(n) = g%— n , a=1, ..., N . (2.85)

In subsequent chapters the vector n appearing in the definition of

c®(n) will be the normal to a singular surface or wavefront.

<



51

It was assumed in (I) that the set {c’} was linearly independent.
For numerous combinations of the constraint examples mentioned earlier
(recall (2.67,70,72,73)), however, the corresponding vectors ¢? form a
linearly dependent set, some often having the value zero. Ve accord-
ingly allow for fhis possibility in general (see also Whitworth (1982),
Vhitworth and Chadwick (1984) and Chadwick, Whitworth and Borejko.
(1985) for similar discussions relating to simple waves, surface waves

and small-amplitude waves respectively).
Ve assﬁme that
dim span {ca} =¥ < N. ,
and o;der the constraints in the following way:
(i) the subset {c”(n)}gzl/is linearly independent.
(ii) the subset {CM+ﬂ(n)}z;¥ (P < N) consists of vectors which

are non-zero, and vwhich are linear combinations of the

subset (i), so that

1
[y
-

t) = MHE@) = (m) , o o X
| 1, ..., -¥)

(2.86)

(n

where Dﬁ is a matrix of rank M and summation on ¢ is

implied.
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(iii) the subset {cp+n(n)}2;§ consists of the remaining (N-P)
constraints, each satisfying |

F*Tayz0 , p=1, ..., NP . (2.87)

Ve adopt the following terminology, introduced by Chadwick,
WVhitworth and Borejko (1985) : the type I constraints 4%, a = 1,'..., N

defined by (2.36) are said to be fully active in the direction n if the

vectors ¢%(n) are linearly independent (so that dim span {c®(n)}

M = N). The constraints are partially active if dim span {c®(n)}
¥ < N, and are inactive if ca(n) =0, a=1, ..., N (so that P=0 in

(2.87)).

The vectors c®(n) take particular forms for isotropic materials
subject to the restricted classes of type I constraints defined by
(2.66,8). For isotropic constraints (we henceforth drop the explicit
indication of dependencé of ¢? on n except where this would cause

confusion)

04° |
¢! = 2 agf (pi'n) q; (2.88)
and for directional constraints v

c? = ﬂgB 2 as (Pi‘eA)(n'eB) Q - _ o (2.89)
i ' ’

Ve will require later an alternative to the set {c?} that arises
from the entropic formulation (2.81-4), with the type I constraints
- satisfying (2.36) in the form
¢%(F, 4(F, 7, Ay ep)) =0 , a=1, ..., N . (2.90)
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A set of entropic type I constraint vectors {Ea(n)}ﬁzl is defined in

terms of (2.90) by (see Reddy (I)):

-
¢%(n) = gg— n=c?- p'l w"Yn , a=1, ..., N (2.91)

where X is the second-order tensor

X -) g;%p , (2.92)

and the scalars s and »® are defined by

-, 0
po=p (2.93)
36° -
and _
a Q :
R (2.94)

respectively:. As before. in definition (2.85) of the set {c%(n)} , the
unit vector m appearing in (2,91) will be the normal to a singular

surface or wavefront.

For the restricted subsets of type I constraints defined by (2.66)

and (2.68,9) respectively, M takes the form

2.0 .
A=2%4, 0)=) gafaa q ® p; 5 (2.95)

i

where:¢°(ai, ) is as defined in (2.60).
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Ve can write the set {¢%} (we suppress as earlier the explicit

dependence of &% on n from now on) as:

2,0
. -1 d
7= - ot Z 55%5? (n.pi) qQ ,o=1, ..., ¥,
i

: 20 .
éM+” = cM+” - pu_le+” z ggggp (n.pi) q , 4= 1, ..., P-K,
it |
P+p _ P+p -1 P+q ngg_ _
¢ =C PR Y z da.df (n'pi) qi y =1, ooy N'P’
/ ;1 :
(2.96)

where the subsets {c’}, {cM+”} and {cp+n} are as defined following
(2.85). | Although there are some similarities between the entropic
constraint vectors {¢’}, {éM+”}Aand {ép+n} and their thermal counter-
parts, the subset {¢’} is not necessarily linearly independent. It is
therefore convenient to introduce another set of entropic constraint
vectors which may be conveniently partitioned as was {ca} , and this

point is taken up in Chapter 5.

We conclude this discussion of the constrained vectors associated
with each of the type I constraints with a remark pertaining to the
corresponding situation for type II ‘constraints. Here the vectors
{Zﬂ}2=1 will play a role equivalent to the {ca}ﬁzl . Since the vectors
p

z" appear far less frequently than the ¢’ in both the propagation con-
ditions and the growth equation for acceleration waves, we neither
restrict the set {zﬂ} nor subdivide it into linear independent-

dependent subsets (as was done with {¢%} and {c”}) at this stage. A

relatively minor restriction on {zﬂ} is imposed in Chapter 8 in the

derivation of the growth equation for homentropic waves.
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CHAPTER 3

SINGULAR SURFACES IN CONSTRAINED THERMOELASTIC MATERIALS

In this chapter we review aspects of the theory of singular
surfaces relevant to our work. Most of the results in this chapter are
not new but are in some cases clarified by their présentation here in

coordinate-free form.

We begin by. defining a éingular surface and discuss the
geometrical and kinematic cbmpatibility conditions to be satisfiéd
across the surface (see Truesdell and Toupin, (1960), Sections
'173-181).: Apceieration vaves are then defined following Chen (1973)
and the compatibility conditions are exploited to find expressions for
the required non-zero jumps of second and higher order derivatives of
the motion x = %(X,t) . Ve give the definitions of principal waves and
of longitudinal and transverse waves; we will often be considering
principal waves that are either longitudinal or transverse later in the
thesis. We then deal with the behaviour at the wavefront of the
remaining Qariables characterizing the thermodynamic process and in

particular define homothermal and homentropic waves.

The chapter concludes with an investigation of acceleration waves
in definite and non- conductors. Ve discuss Reddy’s result in (I) that
all.acceleration waves in constrained definite conductors are homo-
thermal and use our revised definition (2.53,4) of a constrained non-
cdnductor to show that waves in constrained non- conductors aré hgmg-_

thermal if the material is subject to at least one type II constraint
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for which zﬂ-n # 0 . If there are no type II constraints, or if all
type II constraints present satisfy zﬂ-n = 0 , then all waves in the

constrained non-conductor are shown to be homentropic.

Singular surfaces

Ve consider a one-parameter family of surfaces 5, (2 moving

surface) in the reference configuration
I{(X,t) = 0 ' (3.1)

parametrised by time, and continuously differentiable but of arbitrary
curvature. The surface has an alternative representation in terms of a
pair of surface coordinates YF (T = 1,2), so that the position vector

of a point on the surface is

\

1-:s(v,1) (3.2)

with the corresponding tangent basis at X given by

and the unit normal to the surface n given by

_ Grad 3 | , '
B = TGrad 3] (3.4)
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The components Hy, and fl,, relative to {H} of the surface tensor

and curvature tensor are then

Hpy = Hp-Hy i (3.5)
and
l., = m- . ' 3.6
TR

The velocity u of a point on the surface is
0 nl -
u= % GOLY) (3.7)

and the speed of propagation of the surface v (Truesdell and Toupin
(1960), Section 183) is defined by |

v =un T (3.8)

v (unlike u) is independent of the choice of coordinates Yl and is
therefore an intrinsic property of the surface. It is a measure of the

speed with which the surface St traverses the material.

Ve now discuss the representation of the surface in the current
configuration. The image of the surface 5, in the current configura-

tion s, is defined by

t

r(x,t) = Eti(x,t),t) =0 | | (3.9)

using the representation for the motion introduced in Chapter 2.
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Alternatively, from (3.2) we may characterize s, by

i) . (3.10)

"
il
ol
~
(23]
~
—t
- —
[
p
P
p
tH

hy = er (3.11)
aY
and the unit normal to s, is
_ grad ¢
m = [grad o] °
where grad is the gradient operator in the current configuration.

The components hp, and oy, relative to {hP} of the surface metric

tensor and curvature tensor are

hpy = Bp-hy
and
0K,
Wp, = D-
I~ gy

Ve will not make use of the speeds corresponding to (3.7,8) for the
surface in the current configuration and accordingly omit their

details, which are given, for example, in Chen ((1973), Section 4).

~ Although the two descriptions (3.1) and (3.9) describe the same
~surface, they are fundamentally different in that the spatial

description (3.9) gives the geometry of the surface at time t whereas
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(3.1) is the locus of initial positions of the particles that are on
the surface I at time t (Truesdell and Toupin, (1960), Section 182).
This means that in general the properties of the surface St (such as
the curvature or the wave normal) may be very different to those viewed
by an observer 6f the actual surface St and in cases where this is
so, the material description of the surface loses much of its appeal.
Ve shall be concerned however, with deformations of the material that
are static ahead of the wave and for which material wavefronts that are
plane (resp. cylindrical, spherical) correspond tb:plane (resp. cylin-
drical, spherical) wavefronts in the spatial description. With these
assumptions, the wave normals n and m in the material and spatial
descriptions respectively coincide. In such cases, the material
description of the wave surface is easily interpreted; we accordingly
henceforth adopt the material description and thereby take advantage of
the less cluttered analysis which it allows for. (The relative
simplicity of the material description in the context of acceleration
waves is also apparent in Eringén and Suhubi (1975), where the spatial
description is only introduced at a penultimate stage of the analysis

of wave growth).

'+ The concept of a singular surface is now'iptroduced; an extensive
treatment of this topic is in Truesdell and Toupin ((1960), Chapter C),
and we give merely a summary. A smooth surface S, defined by (3.1)
divides the body B into two regions B* and B° , the surface forming the
common boundary between B and B° . The unit normal n to St is
directed towards B*. We consider a function f(X,t) (which may be
sqalar-, vector- or tensor-valued), continuous within B* and_B' and .

- with definite limits f* and f as St'is approached from within B* and
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B" respectively. The jump of f at X € §, is denoted by

()] = £7(X) - £ (%)

and the surface St is singular with respect to f at time t if [f] # 0 .
(Ve subsequently drop the explicit dependence of jump quantities on
their position on the surface, as this is unlikely to cause confusion).
A surface St that is singular with respect to some quantity and has

nop-zero normal velocity, that is,

v(X,t) # 0 ,
is said to be a wave (Truesdell and Toﬁﬁin (1960), Section,183).

There are a number of conditions to be satisfied across Sy
These follow from applications of Hadamard’s lemma (Truesdell and

Toupin (1960), Sections 174,5), according to which a scalar-valued

function y and vector- or tensor-valued function V obey

d de
35 (1] = [6rad x]-55
and
d dé
d_[v] = [oraa v]-4¢ | (3.12)

respectively, where £(s) is a curve on St,.
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If we choose for £(s) the coordinate curves V- constant, then

the equations (3.12) take the form

g'Y_[‘ [x] = [6rad x]-H;
§;F [V] = [6rad V]E, . (3.13)

These results can in turn be expressed (Truesdell and Toupin (1960),

Section 175) in the form:

[6rad ] = [G:ad x-p]n + §§T [X]HF ,
[6rad V] = [(6rad V)n] @ n + %T V] ' (3.14)

/

Summation over T (I = 1,2) is implied from (3.14) onwards and also

implied for A = 1,2 from (3.15) onwards.

The results (3.14) are known as the geometrical conditions of

compatibility, and the reduced forms that (3.14) take when [y] = 0 or

when [V] =0 are known as Maxwell’s theorem.

Since the conditions (3.14) are merely identities expressing the
jump of a derivative in terms of the jump of the normal derivative and
the tangential derivatives of the jump of the function, they can be
iterated and expressions for jumps in second derivatives obtained. The

conditions obtained in this way are known as iterated geometrical
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conditions of compatibility, and are given by
[6rad(Grad y)] = [n-Grad(Grad y)n] n ® n
+ (n® i e n) [6rad y-m],; - [6rad x-n]nPA B, e &, ,

[6rad(Grad V)] = [Grad(Grad V)(n,n)] ® n ®n

+ [(6rad V)n],p @ (n @ U n)

- ™ [Grad(6rad V) (n,n)] © B; © B, (3.15)

for the case in which [y] = 0 and [V] =0 .

Ve require that the moving singular surface persist in time, that
is, that discontinuities do not appear or disappear. This requirement
is expressed in the kinematical condition of compatibility, which we
now discuss. The rate of change of functions y(X,t) and V(X,t) seen by

an observer moving with the normal velocity v n (see (3.7,8)) is given

by the displacement derivative §/6t defined by

g% =y + V(Grad x):n
for scalars, and’
g% =V + v(Grad V)n

for vectors and tensors. (3.16)
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By an application of Hadamard’s lemma along the path tangent to n the

kinematical conditions of compatibility

% [x] = [¥] + v[6rad y-n]
and 4 .
8 [V = [V] + v[(6rad V)n] (3.17)

are obtained.

As with the geometrical compatibility conditions, the results (3.17)

can be iterated, yielding the iterated kinematical conditions of
compatibility

[6rad £] = [(6rad P)-n]n + [iop B

[{] = - v[(Grad )n] + & 1]

[6rad V] = [(Grad V)n] @ n + [V],p @ H'
and

- . 6 .

[V] = - v[(Grad V)n] + & [V] . (3.18)
It is possible to find expressions for [(Grad f)-n] and [(Grad V)n]
(using for example (3.17)1 with y replacing y) to obtain the following
alternatives to (3.18). These alternatives are known as Thomas’s
iterated kinematical conditions of compatibility. [y] is taken as zero

" in (3.19)1,2 and [V] is zero in (3.19)3,4.

[6rad y] = - v[n-Grad(Grad X)n]n + gf [6rad x-n]n
- (v[6rad x-n]),p i’ '
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and <
[¥] = uz[n-Grad(Grad x)n] - 2v %E [6rad y-m] - [Grad x-n] %% ;
[6rad V] = - v[Grad(Grad V)(n,n)] @ n + & [(6rad V)] en
- (v[(Grad V)n]), o K,
and

(V] = v2[Grad(6rad V) (n,n)] - 2v % [(Grad V)] - [(6rad V)n] .

(3.19)

Ve conclude this discussion of the geometric and kinematic
conditions of compatibility by giving special cases that will be useful

later. When y and V are continuous equations (3.14) take the forms -

[6rad x] = [6rad x-n]n
and ' |

[6rad V]

[(6rad V)n] e n . (3.20)
Furthermore, equations (3.17) with [x] = 0 and [V] = 0 yield

[6rad x-n] = - » ![i]
and

[(6rad V)a] = - v 1[] . (3.21)

Substitution for [6rad y-n] and [(Grad V)n] from (3.21); o in (3.20)1'2
H H
respectively provide the required identities

[6rad x] = - V'l[i]n

H

and

[6rad V] = - v [i]en . | (3.22)
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Acceleration waves

We follow Chen (1973) and define an acceleration wave to be a

. propagating singular surface for which
x(X,t) , x(X,t) , F(X,t) are continuous functions everywhere;
%, F, Grad ¥ ,'x , ¥, Grad(Grad F) have non-zero jumps across
the singular surface but are continuous everywhere else.

The jump [%] in acceleration is known as the amplitude and we write

k] =5 . - (3.23)

Now by making use of the compatibility conditions (3.18), and (3.18)
with ¥ = (X,t) ,

[F]=-v'isen |, (3.24)
and by (3.15) and (3.19)4 with V = x(X,t) ,
_ [6rad F] = - V-l[F] en-v2senén . (3.25)

The jumps in the third-order derivations of x that will be required

later are found similarly and are:

CrxleefEl st e 2 (3.26)
[6rad F] =v®ne®n - (1/-1 s),p @ (ne e n)
v sen0m, | (3.27)
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where the vector w satisfies
v-a = [Grad F](a, n, n) o (3.28)
for an arbitrary vector a .

Ve will often in this thesis be concerned with principal waves,
which are waves travelling in the direction of one of the proper
vectors p; (defined following (2.5)). The principal directions are

numbered in such a way that
n=p, . (3.29)

We will also be considering longitudinal waves, whose defining property

is that

s.m=0 , : A (3.30)
and transverse waves, defined by

sm=0 . | (3.31)

It is convenient to choose the material coordinates X' in such a way

that at time t the wavefront is on the surface ° - constant = C , say,

and XF = YF so that

i) - g0t o) . (3-32)
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Later we'will focus attention on. a class of irrotational deformations
for which the principal directions {pi} are tangent to the coordinate

curves and we can write

G.
i
p; = )
i |Gil
since the motion is irrotationai, R =T and so
e =p; - (3.33)

Ve also denote the magnitude of the amplitude s by ¢ :

c={ss . (3)34).

(The symbol ¢ was used previously in (3.9) to denote the surface 3y -

No confusion is likely to arise from this in future).

In the event that a principal wave is a longitudinal wave, its

amplitude will satisfy
s=om=0qy . | (3.35)

Similarly, if a principal wave is a transverse wave its amplitude will

satisfy

7
Ve
¥
s
v

s=oq , M=tor2 . (3.36)
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Ve note, however, that in general it is possible to have longitudinal

and transverse waves which are not principal waves.

Homothermal and homentropic waves in definite and non- conductors

Ve now consider the behaviour at the singular surface of the
remaining variables characterizing the thermodynamic process.
Attention is restricted to processes for whiéh the body force b , the
heat supply r and the density p are continuous, as are their first
temporal and spatial derivativgs. The constraint multipliers Aa and 78
in (2.39) are assumed continuous, but may have discontinuous

derivatives at the wavefront.

The temperature # and entropy 5 are assumed to be continuous at
the wavefront, but their derivatives are not necessarily so. Since
[6] = 0., the identities (3.20), and (3.21), with ¢ replacing y apply

and we obtain

[6rad ] =Tn , [0l =-+vT |, (3.37)
  §here

T = [Grad §-n] . (3.38)
An acceleration wave is called homothermal if
T=0 |, ' (3.39)

in which case the first derivatives of § are continuous by (3.37).

.t
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Since 7 is continuous, [7] = 0 and use of (3.20); and (3.21),

leads to the following results analogous to (3.37-9):

[6rad 7] =Hn , [§] =-vH | (3.40)

where

H = [G6rad 7-n] . ‘ (3.41)
‘An acceleration wave is called homentropic if
E=0 . (3.42)

Waves that .are both homothefmal and homentropic (H = T = 0) are called

generalized transverse waves (see Chadwick and Currie (1974)).

We now investigate the conditions under which acceleration waves

in definite and non- conductors are homothermal or homentropic.

Coleman and Gurtin (1965) used the entropy production inequality to
establish that all acceleration waves in unconstrainéd definite
~conductors are homothermal. Reddy showed in (I) that this result also
holds for constrained definite conductors, noting that the entropy
production inequality (2.49) for constrained materials has no

contributions from the constraints.

We now .turn to the case of acceleration waves in constrained
non- conductors. Reddy showed in (I) that the Coleman-Gurtin result
(1965) for unconstrained materials that all acceleration waves in

~non- conductors are homentropic is also valid for materials subject to

type I and II constraints. Reddy however, defined a non- conductor for
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constrained materials to be a material for which q = 0 and we accord-
ingly reconsider his analysis with the definition of a non-conductor as

a material for which ¢ = 0 and q = 15 zﬂ by (2.53,4). Ve assume

throughout that entropy is constant ~ahead of the wave for non-
conductors, and use the energy equation (2.48) to determine the entropy

jump H across the singular surface. Ve have at the wavefront

p 0 [0} =- [Divq (3.43)

assuming the body force r to be continuous. Use of (3.40), and (2.54)
in (3.43) yields

P 0vE=- Div (1 Py, | (3.44)
where the superposed caret denotes the use of 5 as an independent

variable; so 7 = ﬁﬂ(F, 0k, 1, 1,5 ¢,), e,) (see (2.80) and following

remark).

Clearly, if type II constraints are absent, then H = 0 by (3.44).

We now consider the situation in which at least one type II constraint
is present, and evaluate the jump of (2.37) across the singular

surface. After employing the identity (3.37)1, we obtain the type II

constraint equation
rfm-0, =1, ...,L . (3.45)

The condition (3.45) suggests that we consider the following two cases

separately in order to evaluate H in (3.44):
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(i) #en # 0

By (3.45), this situation is only possible for homothermal waves
(for which T = 0 by (3.39)). An expression for H is obtained by
evaluating (3.44) in the thermal formulation (using 6 and not 5 as an

independent variable). We find that

-pldvi

7T T R T E G Pl

"

gl P | ]+az A1

(3.46)

where the vector and tensor components are relative to the basis
vectors defined in (2.1,2), and the semi-colon denotes the covariant

derivative.

Now [0 ;] = 0 for homothermal waves by (3.37),, (3.39), and expressions
, .
for [7ﬂ i] and [er;i] are obtained from (3.22)1 and (3.25) respect-
) b
ively. Vith these results, (3.46) yields

1 3 pi
10 lu 2 1 dz"~ k

=9y X [&ﬂ] zﬂlni'- v g BEKZ s n,n, ,

(3,47)

and such waves are clearly not in general homentropic.
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B

(ii) 2°+m = 0
Here, unlike case (i), no restriction is placed on T by (3.41). In
evaluating (3.44), it is convenient to choose orthogonal curvilinear
coordinates X' with corresponding basis vectors G. defined by (2.1)
such that m = 6,/|Gy] . That is, the wavefront coincides with the

surface X3 = constant. Then the condition éﬂ-n = 0 implies that
=g, r-12 . (3.48)

Equation (3.44) is now evaluated in the entropic formulation and we

obtain
-plvi-= [7ﬂ,p]iﬂr
N\ ﬂ 53T
- F + t A
7ﬂ[0Fk£ [ ¢ F] [ﬂ F] a [ a,F]

[u‘l [igle”

\ ~ (T
2 0zﬂ 0z

- {V s ny + ~g— H
g aFkZ 4 n

AT
! Bz D ]}J ’ . (3.49)

. . . k
where in evaluating the jumps [7ﬁ,F]’ [Aa’r], [F Z;F] and [7,p]
identities (3.22), (twice), (3.25) and (3.40), respectively have been

"used..



73

Now n = G3/|G3| implies that n, = 0 , T = 1,2 in (3.49) and

consequently we have the result that
E=0 , (3.50)
so that the waves are homentropic by (3.42).

The above results for acceleration waves in constrained definite

and non- conductors can be summarized as follows:

(i) All waves in definite conductors are homothérmal.
(ii) Vaves in constrained non-conductors (as defined by (2.53,4))
are homothermal if the material is subject to at least one
~type II constraint for which zﬂ-n # 0 , and such waves are
not in general homentropic.
(iii) Vaves in constrained non-conductors are homentropic if all
type II constraints'present satisfy zﬂ-n =0, or if type II

constraints are absent.
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CHAPTER 4
PROPAGATION CONDITIONS FOR HOMOTHERMAL WAVES

Introduction

We begin by deriving the first and second propagation conditions
for -homothermal waves. These conditions are obtained from an
evaluation across the wavefront of the equation of motion and the time
derivative of the type I constraint equation (2.36) respectively. The
derivations given here extend the treatment in (I) to include type I

constraints whose corresponding constraint vectors c®

are linearly
dependent. The first propagation condition is found to be of Fresnel-
Hadamard type (Truesdell and Noll (1965, Section 71)), .and is a
modification of the corresponding propagation condition for uncon-
strained materials. The second propagation condition, however, has no
parallel in the case of unconstrained materials. Both the first and
secend.propagation conditions involve only the type I constraints; the
type II constraints yield instead the condition (3.45) discussed

previously in the context of homothermal and homentropic wave

propagation in non- conductors.

After derivation of the propegation conditions, the material is
taken to be isotropic and we investigate both longitudinal and trans-
verse principal wave solutioes of the propagatien conditions. The
speed and amplitude of the waves are obtained from the proper numbers
and proper vectors respectively of the acoustic tensor that appears in
tﬁe first propagation condition, and the second propagation cenditien

restricts the amplitude to the subspace orthogonal to ct . The
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solutions for the all-embracing cases M = 0,1,2 are discussed in turn;
for ¥ = 0 it is shown that the constraints have no effect on the wave
speed. Ve then discuss the influence of isotropic and directional
constraints on the strong ellipticity condition; this condition when
applied to the écoustic tensor (Scott (1975), 0Ogden (1984)) ensures
that the proper numbers of the acoﬁstic tensor (and hence the squares
of the correspdnding wave speeds) are positive. This is followed by a
further analysis of the propagation conditions that focuses on the
influence of isotropic and directional constraints on longitudinal and

transverse principal waves.

Firstly, we consider homothermal wave propagation in definite
conductors that are subject to a particular class of irrotational
deformations and are assumed to be at rest and at constant temperature
ahead of the wave. (Later, in Chépters 6 and 7, we will treat wave
growth in materials subject to the above conditions). Ve treat three
distinct situations: plane waves (resp. cylindrical, spherical)
propagating in materials subject to plane (resp. cylindrical,
spherical) deformations where the directional constraints present are
so configured that they make a constant énglé with the plane (resp.
cylindrical, spherical) coordinate curves. (Note that there is an
“entirely different constraint configuration in general when different
vaveforms are considered; i.e. we are not making a general comparison
of the behaviour of plane, cylindrical and spherical waves in a given
- material situation). The analysis yields the range of deformations,
~compatible with the constraints, corresponding to which the propagation
of waves is possible. These results are illustrated by the analysis of
longitudinal and transverse wave propagation in materials subject to

the four constraint examples introduced in Chapter 2 (see (2.67,70,
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72,73)). The constraints are treated singly and in combinations of
two, three or four; it is to be noted that in a number of cases the
constraint vectors c¢” take the value zero, or are found to be linearly
dependent when the constraints act in combination. In each case, the

) restrictions (if any) on the deformation are presented.

Ve differ in this work from most authors by restricting attention
to principal waves, which at times clarifies the details of the con-
straint contributiohs. Apart from this difference, there are close
analogies with the results of Ogden (1974) for acceleration waves in
incompressible materials and those of Scott (1975,76,85) for accelera-
tion waves in materials subject to linearly independent mechanical
constraints.  VWhitworth (1982) and Chadwick, Whitworth and Borejko
(1985) obtain corresponding solutions for simple wvaves and small-
amplitude waves respectively in materials subject to arbitrary
mechanical constraints. Chen and Nunziato (1975) treat acceleration
waves in inextensible elastic bodies which are also subject to the
thermomechanical constraint of perfect heat conduction in the direction

of inextensibility.

Derivation of the propagation conditions for homothermal, waves

We now derive the propagation conditions for acceleration waves
for a material subject to type I constraints (and possibly also type II
eonstraints, although these do not .appear in the propagation

conditions). Ve begin with the definition (2.36) of type I constraints
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and consider the jump in ¢® at the wavefront: from (2.36),

[
|

- = 9 - 28y
vl g%f-(s @An) - va%g T

using (3.24) and (3.37),.

Vith the aid of (2.85) and (2.94) we obtain

¢ts = - 20T , a=1,...,N . (4.1)

Since we restrict attention in this chapter to homothermal waves, T = 0

by (3.39). Thus (4.1) becomes o
cts=0 , (4.2)

so that a necessary condition for the existence of homothermal waves is

that
dim span {¢?} =M ¢ 2 . (4.3)

We recall from (2.88) that for isotropic constraints the

constraint vectors ¢? take the form

a

c? = 2 ggf (p;°m) q; (2.88 bis)

1

EE—
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so that for these constraints (4.2) becomes

P a
o (2ym(gs) =0 (4.4)

[l gy |

For directional constraints, the vectors ¢? take the form

c = ﬂZB z a;(p;-ey)(n-ep) q .. (2.89 bis)
’ i

(recall that we sum on repeated indices A,B) and in this case (4.2)

becomes

ﬂZB z ai(pi'eA)(n'eB)(qi'S) =0 . ' - (4.5)

1

Clearly 'equations (4.4,5) establish necessary conditions to be

satisfied by the wave amplitude s . We will explore further aspects of

(4.4,5) later in this chapter.

Ve now turn our attention to the equation of motion. The local

form of the equation for the balance of linear momentum is

Div S + pb = px (2.9 bis)

At the singular surface S5, » (2.9) together with the assumption that

the body force vector b is continuous imply that

Slaz-pvs (4.6)
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where we have made use of the identity [Div S] = - V'I[S]n which
follows from (3.22),.

Now the use of (2.46), for S together with the definitions (2.85) for

¢® and (2.92) for M yield the expression
[$]n = (A[f])n « X a[d] + p[A ] * (4.7)

where A is the fourth-order tensor of elastic moduli defined by

2

A=p g—F—% . | (4.8)

Now (3.24) provides an expression for [F] , and [#] = 0 for homothermal
waves by (3.37),, (3.39).  Vith the aid of these résults, the
substitution of (4.7) in (4.6) yields .

| .(pvz I- Qs =- pv [3] ¢ | , (4.9)
where the second-prder acoustic téQSOr Q is defined by

Q(u,v) = A(u,n,v,n) for all u,v eV -, (4.10)

with components .qik-? Aijkenjne (4.11)

relative to the tangent bases @ and 8; ,'and I is the identity tensor.

In view of the definition (4.8) of A we have Aijke = Akeij so that § is

symmetric.
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Equation (4.9) was examined in (I) for limearly indepéndént c¢? and

in (II) for collinear c¢® . Here these treatments are extended to allow

/

for the linearly dependent set of constraint vectors introduced in

(2.86,7).

Ve first eliminate the jumps [ ] in (4.9). The right-hand side

of (4.9) may be written as

- pv[h ] = - o v([A,] + bk [}M4#]) ¢’ (4.12)

where, as in (2.86), ¢ = 1, ...., ¥ ; p =1, ..., P-¥ , and we note

i N-P
that the set {[AP+ﬂ]}

n=1 corresponding to the vectorchPH7 in (2.87)

which are identically zero does not appear.

M 7 .
A set {dT} of vectors is defined that is reciprocal to ¢’ in
7=1

the sense that

ca-dT = 6: , d_ € span {”} . (4.13)

For homothermal waves, c¢’-s = 0 by (4.2) and hence d-s =0 ; the
scalar product of (4.9) with d_ together with the use of (4.12) yields

the expression

d_-Qs=pv([i]+DE [}M+#]) . | | (4.14)
so that (4.9) can be written as

(0 I- Qs =- (d-Qs)c” . (4.15)
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Rearrangement of (4.15) yields the equation

(2 I-PQs=0 |, - (4.16)
where the projection tensor P is defined by

1. O : '
P=I-c ed . (4.17)
Clearly P leaves invariant vectors s which are orthogonal to c?

(and hence d ) since

N

Ps=s5- (d: s) =5 . (4.18)

Ve adopt the terminology of Chadwick, Whitworth and Borejko (1985)
introduced in their study of small-amplitude waves in a constrained
elastic body, and refer to the equations (4.16) and (4.2) as the
propagation conditioﬂs of the wave. PFor ease of reference, these

equations are collected here and renumbered:
(p2I-PQs=0 |, O (4.19)
¢?s=0 |, e=1,...,N . (4.20)

Ve will refer to (4.19) and (4.20) as the first and second propagation
conditions respectively, and note that in the corresponding
unconstrained situation, (4.20) does not occur, so that (4.19) with
P=1is the sole propagation condition for the wave. Ve also note
that, in view of (4.18), the first propagation condition (4.19) implies

" the condition (4.20), but that the converse is not true.
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Ve now proceed with the investigation of the propagation
conditions by imposing the condition of isotropy, and deriving the form
of A (and thereéfter of Q) for isdtropic materials subject to type I
constraints. (Type II constraints, if present, do not enter into thel
expression. for 4). Ve restrict attention to isotropic or directional
type I constraints, for which 4% = ¢a(ai, #) by (2.66) and ¢° = ¢a(eAB,
fAB’ 9) by (2.68,9) respectively. It is therefore sufficient in
deriving the required expression for A to assume that ¢a = ¢a(a;, g,
€)p fAB) and to ignore the dependence which ¢a may have on kAB (see
(2.60-3)). (The expression for A that results if such dependence on
kyp is included is given in (Ii), and is found to be conéiderably more

cumbersome than that given below). The analysis of Appendix A yields.

the required expression for A , which is found to be

ai6¢/6ai - aj6¢/6aj

-1,
p A= z q; ® Pj ® ag ] ag (1- 6ij)qi ® Pj
1,] 1 J
a.0p/da; - a.0y/0a, A
] 1 1 ] ..
+ 2.2 (1--8;5)9; ® py
i
2 a0
d g
aiajqiepieqjepj+2/\a5-%qi®eA®qi®eB}
(4.21)

Here it is assumed that a; # aj ; the slight modifications for a; = aj

follow those given by Chadwick and Ogden (1971b).

Since we will be primarily concerned with the propagation of

principal waves we specialize here for convenience and derive the
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acoustic tensor for the case in which the elastic moduli are given by
(4.21), for principal waves propagating in the direction mn = Py (recall
3.29)). Substitution of the expression (4.21) for A and (3.29) in the
definition (4.10) for { yields

) a.0y/0a, - a,0¥/0a 2 :
N ED) [(1 - 513)[ Lot 3 3lg eq + LY g e
i .

2
ay - ag 3a3
9%
£ 22 E%XE (n-¢,) (n-ep) q; © qi] (422

when ap # ag I'=1or 2;

2 2 2
19y .8y 9%y 'y
) + - qQ. ® q. + q, ® q
13 a 3@ 3a§ Eai6a3 17 3a§ 3 3

A z{(l

34° |
+2 A Bg—— (n-e,)(n-ep) q; @ q; - (4.23)
a dfp A B }

when ap = ag ' =1or 2, or when ay = 2, £"a3 =a .

Clearly § is in spectral form in both (4.22) and (4.23), with

proper vectors qQ; and corresponding proper numbers given by

qi = Q(qi > qi) (no sum on i) : (4.24)

and we also introduce the notation

P FER L S - (4.25)
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2.0 |
i)
where Qg = qo(qi ’ qi) =p EF%F (qi,n,qi,n)
2 .a
i)
and Qg = qa(qi ’ qi) =p aj"gf (qi’naqiyn)

It will be found that for waves to propagate with non-zero speed v in
the direction q; > the corresponding proper number Qi must necessarily
be positive. A sufficient condition for the proper numbers Qi to be

positive is that A satisfies the strong ellipticity condition
A(v, u, v, u) > 0 for all u, vev

in which case

Qv ,v) >0 , forallvev (4.26)

as obtained by Truesdell and Toupin, (1965, equation (71.15)) for

unconstrained materials.

The influence of the constraints on (4.26) will be discussed later, but
here'it is simply assumed that conditions are such that (4.26) holds

and consequently that the Qi are positive.

Ve examine now whether longitudinal and transverse waves are
possible. In these cases s = ¢ q; > i=1,2, or 3. By (4.22,3) then,

Q s is parallel to s since from (4.22)

.0y/0a; - a,dy/da ' 2
-1 a 3 3 J°y
p - Q q = (1- 513) 1 21 5 (qi'qi) * T (Q3'qi)

c21, ggﬁ () (neg) (a0 |a; 5 (4.27)
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and a similar result follows from (4.23). The effect of P on Q s is

that
PQs=10s for s such that ¢ds=0

and the first propagation condition (4.19) is therefore equivalent to

the condition

(2 I-Qs=0 |, (4.28)

for all s that satisfy the second propagation condition (4.20), namely

that ¢%-s = 0 .

Longitudinal and transverse principal wave solutions of the propagation
conditions

Ve now obtain longitudinal and transverse principal wave solutions
to the propagation conditions (4.19,20). For homothermal waves, dim
spah {ca} =M <2 by (4.3) and we consider the three cases § = 0, 1,2
in turn. Vave speeds Vir Vo D3 corresponding td the wave amplitudes
ql, 9, 43 respectively are obtained vhere these are not precluded by

the constraints.

The constraint set {c%} is inactive when M = 0 by the definition -
following (2.87). Clearly P = I by (4.17) and the vectors ¢ have ﬁé
effect on the propagation conditions (4.19,20). The discussion of
‘Truesdell and Noll (1965, Section 71) applies; transverse waves with

amplitudes 95 9, and longitudinal waves with amplitude qg are possible
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with corresponding wave speeds vy given by
-1 .
Vg =P qi ’ i=1,2,3 , (4.29)

where Qi are as defined in (4.24). C(Clearly, the Qi‘must be positive
for non-zero propagation speeds Vs to exist, and the strong ellipticity
condition (4.26) ensures that this is so. Although the form of (4.19)
(with P = I) and (4.29) is identical to the unconstrained case
discussed by Truesdell and Noll (1965), thq values of {; (and hence v;)

are in general influenced by the type I constraints and we return to

this point later.
(ii) ¥ =1

Equation (2.86) with M = 1 implies that the set {c®} is fully
active if N = 1 and partially active if N > 1 . In the latter
situation the constraints c1, ceens cN are collinear since ¥ = 1 and

the second propagation condition (4.20) takes the form
1 |
cs=0 . | (4.30)
The projeétion tensor P defined by (4.17) now takes the form

P=I-cec where ¢ is the unit vector c1/|c1|

(4.31)
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We now distinguish two further cases:

(iia) ¢ is parallel to one of the proper vectors q; ;
(iib) ¢ lies in the plane of q; and g - (Since we are dealing

with principal waves that are either longitudinal or
transverse, the case of ¢ not orthogonal to any of the q;

does not arise.)

—

For case (iia) ve take ¢ = q; for definiteness, so P takes the form

P=qy®qy+a320
and

Pg-= Q2 q ] q + Q3 dq ® 43 - (4.32)

Hence for c parallel to q (resp. 4 > q3) , there are two proper
values of P § , namely Q2 , Q3 (resp. Q3 , Ql ;04 s Qz) where the Qi
are as defined in (4.24), with corresponding proper vectors qQ , 43

(resp. a3 , Q4 5 Q4 5 Gy) -

For case (iib) we consider for definiteness ¢ = a q; + f q  where

o and f are scalars such that a2+ ﬁz =1,

By (4.31),

-
I

I-coec

1

2 N
(1-a )ql ®q + (1-8 )q2 8 gy + qq ®@q- 0 ﬂ(q1 ® gy + gy ® ql),
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50

PQ-= (1'02)Q1 4 ® q + (1‘:62)Q2 a4 ® q + Q3 4 ® 44
- a ﬂ(Q2 q ® qQ + Ql D) ® ql) . (4.33)

Since we consider only longitudinal or transverse principal waves, we
are interested in proper vectors of P { that are parallel to one of the
principal axes q; . Now c-s =0 by (4.30) and we are considering a
constraint vector ¢ = a q + [} q - Hence s = ¢ a3 is the only
possibility for a proper vector of P { . In general them, for c¢ € span
{a; s g5} (resp. {a, » q3} , {83 » q,}) there is one proper value {,
(resp. {Q1 ,'Q2} with correspdnding proper vector qq (resp. q q2) .

The possibility of a zero proper number for P { is spurious, for

then we would have
PQs=0
and so by the discussion following (4.27)
1s<0 . | (4.34)

Since § is positive definite by (4.25), it is non-singular and so

(4.34) implies

g§=0 . | (4.35)
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(iii) B =2

Since M = 2, we see from (2.86) that the set {c®} is fully active
if N = 2 and partially active if N > 2 . Ve employ {c1, c2, a} as a
basis, where a is a unit vector satisfying ¢%.a = 0 for all a . Since
only principal waves that are longitudinal or transverse are
considered, a parallel to a principal axis q; is the only ﬁossibility
if the second propagation condition (4.20) is to hold. Ve take a = q

for k = 1, 2 or 3 in which case

I=c7®d7+qkeqk , y=1,2, (4.36)
where ¢’ d = 6$ as in (4.13).
~ Now P=gq ©q by (4.17) and (4.36) and
— 8 =k -
0=0"cTed;+ 0 cTeq+Q qed + geq
Hence

Pll=f]7q®d+l]q®q ,736=1,2 ’ (4'37)
=l g ed, U g ® gy

where the ﬁiJ are components of { relative to the basis vectors c7, d7,
q - Ve therefore have the same result as for case (iib) and the
discussion there applies; once again, the possibility P s = 0 is

spurious.

The results of case (i), (ii) and (iii) have close parallels to

_those given by previous authors. Ogden (1974) considers acceleration

~ waves in incompressible elastic materials and Scott (1975,6) treats
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acceleration waves in elastic materials subject to mechanical
constraints for which the vectors c® are linearly independent (see also
Scott and Hayes (1976) for small amplitude sinusoidal waves).
Vhitworth (1982) considers the related case of mechanicilly constrained
simple waves aﬁd includes in his analysis the situation where the
constraint vectors are linearly dependent. As far as thermomechanical
constraints are concérned, Chen and Nunziato (1975) treét acceleration
waves in perfectly heat conducting inextensible elastic bodies, thereby
extending the earlier results of Chen and Gurtin (1974) for the single
mechanical constraint of inextensibility. Ve have considered the
propagation conditions only for principal waves that are longitudinal
or transverse (a restriction not generally imposed by the above
authors) but there is no intrinsic difficulty in extending the present
analysis to cater for non-principal waves (see (I) for the case of

thermomechanical constraints with linearly independent vectors ca), and

details are omitted.

Influence of constraints on the strong ellipticity condition for {

We have assumed so far that the strong ellipticity condition
(4.26) holds. Ve now discuss the influence of the comstraints on this
condition. It has been shown that for principal waves, the proper
values of { vcofresponding to proper vectors s of § which satisfy
c®s =0 are also the required proper values of P { in the first
propagation condition (4.19). Hence in considering the strong

ellipticity condition (4.26) we can restrict attention to vectors v

such that ¢%v =10 , so that (4.26) may be replaced by the weaker
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condition
(v, v)>0 for all v such that ¢®v =0 . (4.38)

Scott (1975) considered the direct equivalent of (4.38) in his
corresponding analysis of mechanical constraints with linearly

independent vectors c?
- Now (4.38).can be written as:

Qv , v) = Q°(v, v)v+ A, %(v, v) >0 | (4.39)
with Q° and Q% as defined following (4.25).

Clearly the requirement that Q(v , v) be posifive is influenced by the

values of the constraint parameters Aa , but we concentrate -

particularly on investigating the conditions under which Qé(v,v) =0,

th

in which case the a type I constraint has no effect on the positive

definiteness of the proper numbers of { .

Equation (4.22) provides the required expression for Qa in the

- gituation when ap # ags ' =1o0r 2, and so

| | a.0¢%/0a. - a,00%/da,) | 5240
(v, v) =) [(1— 513>[ e 3} (v-a9)% + L8 (v-q5)°
i aj - a3 dag

* ﬂZB(“'eA)(n-eB)(v-qi)z} (4.40)
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where v-c¢? = 0 ; the expression corresponding to (4.40) which is
obtained by using the expression (4.23) for ° (when ap = ag , r =1,2,

0T a; = 2y = a3) is omitted.

The constréint contributions Qa(v , V) to the strong ellipticity
condition (4.38) can now be studied by using (4.40). Both longitudinal
and transverse waves are treated, and in each case the contributions of
isotropic and directional constraints are considered separately. Ve
also make use of the second propagation condition (4.20) which for

isotropic constraints takes the form

a

gg; (gg°8) =0, by (4.4) withn=p; (4.41)
where the constraint vector ¢’ is given by

c = qg ‘from (2.88) with n = p, . (4.42)

For directional constraints we recall that (4.20) takes the form

Bip 2 a;(p;-ey)(n-ep)(q;-s) = 0 | (4.5 bis).

Longitudinal waves

Longitudinal waves have s = ¢ q, by (3.35) and we turn our
g3 o

a
attention first to isotropic constraints. Now %g— # 0 in (4.41,2)
, 3 o

~since ¢a depends symmetrically on a;, ag, a4 for isotropic constraints,

and so we have the result from the propagation condition (4.41) and
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(3.35) that isotropic constraints preclude the existence of homothermal

longitudinal waves. Consequently, the question of the contribution

h

Qa(v, v) due to the ot isotropic constraint does not arise.

For directional constraints (4.5) with 8 = ¢ q4 implies that the

-

constraint vectors present satisfy

Bip(n-ey)(n-eg) =0 . | (4.43)
Now the contribution of directional constraints (for which $® =

¢a(eAB, fip ) by (2.68)) to the strong ellipticity condition (4.38)
is found from (4.40) to be

ply(nee) (noey) (voq)®, ve®=0

1

qa(v s V)
and by (4.43)

(4.44)

1
o

°(v , v)

Hence directional constraints have no effect on the positive

‘definiteness of § for longitudinal waves. _

Turning now to transverse waves, § = ¢ q, for A = 1 or 2 by

(3.36).

For isotrogic constraints, c? . qq = 0 by (4.42) and so v-qg = 0
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Hence (4.40) reduces to

ara¢“/aaF - a3a¢“/aa3

2
qa(v ’ V) = [ D) 9 J(v'qr) , T'=1,2 )
an - a4
|\ 3

and there is nothing further to be gained from this without considering

particular examples of isotropic constraints.
In the case of directional constraints, (4.40) reduces to
a a . 2 '
Q°(v , v) = fyp(n-e;)(n-ep)(v-qy) , (4.46)

where v-q; # 0 . A necessary and sufficient condition for Qa(v , V) to

be zero for arbitrary v is

Bip(n-e)(n-eg) =0 , (4.47)

so we have the following two possibilities:

a) If % is positive- or negative-definite, then (4.47) holds if and
AB

only if (m-e,;) = 0 for all vectors e, . In this situation =0
by (2.89) and so only the case (i) considered earlier is possible.
Such constraints therefore have no effect on either the strong
ellipticity of § or on the propagation condition.

| (b) If ﬂXB is neither positive- nor negative-definite, then (4.47) can
be satisfied for constraints for which»(n-eA) # 0 for at least one

e, . The form of the corresponding vectors c? is_given by

c? = ﬂgB 2 a;(p;-ey)(n-ep) q; - (2.89 bis)
1 ‘
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Now (4.47) is also the criterion for ca-q3 = 0 by (4.43) and we are
considering transverse homothermal waves with s = ¢ q , so that the

second propagation condition (4.20) takes the form
a v
C 'qA =0 . (4.48)

Hence any non-zero c? nmust be parallel to 4, where A = 1 or 2

according as A = 2 or 1 , so that from (2.89)
c? = ﬁﬁs aA(PA‘eA)(n'eB) 4qQ : (4.49)

and all such c® are therefore examples of case (iia) considered

earlier.

Influence of isotropic and directional constraints on the propagation
conditions

Solutions of the propagation conditions (4.19,20) have been
defived earlier in this chapter for homothermal principal waves for the
three cases (ij, (ii), (iii) for which dim span {c%} = ¥ = 0,1,2
respectively. The influence of the constraints on the wavé speeds was
not discuséed in detail, but it was ﬁoted that for case (i) the con-
~straints have no effect on wave propagation. We now reconsider the
propagation conditions and investigate separately the influence of
isotropic or directional constraints on the solutions; the results have
close parallels with those for the positive definiteness of {(v ,_v)
We present these results under the headings of longitudinal and
transverse waves rather than isotropic and directional constraints

~since this serves to emphasize the significant result that for these
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constraints, the speed of propagation of longitudinal homothermal waves

in unaffected by the presence of comstraints. (0f course, in many cases

the constraints do not allow the possibility of longitudinal waves.)

Longitudinal waves

Ve consider solutions s = ¢ g as in (3.35) to the propagation
conditions (4.19,20). The first propagation condition now takes the

form
(pug I-P Q) q; = 0 | (4.50)
where Vg is defined in (4.29), and the second propagation condition is
c’qg=0 . o | (4.51)

Isotropic constraints are incompatible with (4.51), as remarked in the

discussion of lqngitudinal waves following (4.42).

Directional constraints must satisfy (4.51) and consequentiy
ﬂKB(n-eA)(n-eB) =0 | (4.43 bis),

so that from (2.89),

c? = ﬂXB Z ap(pp-ey)(n-eg) ¢ , =12 . | (4.52)
r
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It is clear from (4.52) for directional constraints that the three
situations dim span {c?} = M = 0, 1, and 2 are all possible. As a
result the discussion of solutions to (4.50) for the cases (i) - (iii)
given earlier is applicable and the wave speed 2 for 1ongitudinal

waves is obtained from

2 -1 .
vg=p U3 | ((4.29)4 bis)
where

Q3 = Q(Q3 ) Q3)

by (4.24), and § is found from (4.22) or (4.23) as appropriate.

-

The contribution from the directional constraints to Qs is Aéqg by

(4.25), and with the aid of (4.22-4) and (4.43) we find that
P05 = 0 0%ag s ag) = Bfp(nee)(neg) =0 . (4.53)

Consequently, the speed of propagation of longitudinal waves 1is

unaffected by the directional constraints.
Transverse waves

Ve consider solutions s = ¢ qy for 4 =1 or 2 as in (3.36) to the

propagation conditions (4.19,20) which take the forms

(g T- P Q) q =0 | (4.54)
and

c®q =0 . (4.48 bis)
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~

Isotropic constraints have constraint vectors of the form

a
a_ 40 .
c = agg aQ - (4.42 bis)

Clearly, if only isotropic constraints are present, dim span {ca} =
M =1 and the constraint vectbrs.ca are collinear. Since c%. q = 0
for isotropic constraints by (4.42), we see that for transverse waves,
the second propagation condition (4.48) places no restriction on the
isotropic constraints. Turning now to the first propagatioh condition
(4.54) we see that the earlier discussion of case (iia) is therefore
appropriate and the comments following (4.32) apply : waves with
amplitudes 9 and q, are possible with corresponding speeds vy and Vg
defined by (4.29)1’2. The constraint contributions to ;f1 0, and

j)'1 Q, (and hence v, , v,) are given by

§A6¢a/6aA - a36¢a/6a3

-1 -1
=0 0%y s q) = 5 ,
3 " %3
or
2.a - A2
1 g0 _ |1 04% , 9%°9° 9%
plge- Lo, ; A=1or 2 (4.55)
A a da, 6a§ da, daq ?
according as (4.22) or (4.23) is appropriate. In general then,

isotropic constraints do influence the speed of transverse waves. The -
constraint of temperature-dependent compressibility (recall (2.67)),
however, is a notable exception in this respect, as for this constraint

,o'1 QZ is easily seen to be zero. If transverse waves exist, then from



(4.48) the directional constraints must obey
Bip(py-ey)(neg) =0 , -~ - (4.56) ¢
where (4.5) with n = Py has been used.

Note the contribution QZ of the ath directional constraint to QA in

(4.25) is found from (4.22) or (4.23) to be
P 0f = Aip(neey) (nep) (4.57)

Constraints for which QZ = 0 in (4.57), so that

ﬂXB(n-eA)(n-eB) =0 (4.58)

have no effect on the wave speed-uA . In such cases, (4.56) and (4.58)

hold and the discussion following (4.47) (for Q%(v , v) = 0) applies:

(a) If ﬂXB is positive- or negative-definite, then ¢® = 0 . If
all const?iints present\satisfy this condition, then M = 0
and case'ki) applies. |

(b) If ﬂZB is neither positive- nor negative-definite, then
non-zero vectors ¢ for which (4.56,8) hold must be of the
form. | | |

¢t = ﬂXB aA(pA-eA)(n-eB)q_A , (4.49 bis)

and consequently the discussion of case (iia) applies.
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Propagation of plane, cylindrical and spherical waves in irrotationally
deformed materials

Ve now consider some particular examples of wave propagation,
namely the propagation of plane, cylindrical and spherical waves in
irrotationally deformed materials that are subject to certain
configurations of the directional constraints. The analysis serves to
delineate the range of deformations, compatible with the constraints,
corresponding to which the propagation of waves is possible. The
results obtained here are used later in the analysis of the growth of

plane, cylindrical and spherical waves in constrained materials.

Attention is restricted to definite conductors which are taken to

be at rest and at constant temperature ahead of the wave, and which are

subject to the class of irrotational deformations specified below. In
each case the orthogonal curvilinear coordinates X' are chosen so that
their tangent basis vectors are aligned with the principal directions;

that is
P; = Gi/lcil
(recall the discussion preceding (3.33)).

Furthermore, since we consider irrotational deformations, R = I

and so

q =p; - (3.33 bis).
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The directional constraint vectors e, are assumed to make a
constant angle with the coordinate curves so that
€- éi = constant : (4.59)
where B

6 =6./[6] =p;

Ve will consider three classes of problems: the propagation of
plane waves in material which 1is subject to a plane deformation,
cylindrical waves in material subject to a cylindrical deformation, and
spherical waves in material subject ﬁo a spherical deformation. This
approach is similar in spirit to that of Bowen and Wang (1970) (see
also Wang and Truesdell (1973)), in their analysis of acceleration
waves in laminated bodies. Since (4.59) applies in all the three cases
given above, it is clear that we are considering materials that are
differently configured in the three cases, since the directional
vectors e, (if present) make constant angles with the plane,
cylindrical and spherical coordinate curves in each of the three cases.
The use of éi rather than p; in stating (4.59) is simply to emphasize
that we are in fact considering three distinct situations corresponding

to distinct constraint configurations.
The situations that we will.be cdnsidering are:
(A) Plane deformations
Ve adopt a fixed rectangular cartesian coordinate system with the

coordinates of a particle in the reference configuration denoted by

k- (Y, Z, X) . The corresponding orthonormal basis is denoted by
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E, , so that in the reference configuration,
I=x'E . ~ (4.60)

Ve also have that Gi = B, where the tangent basis vectors Gi are as

defined by (2.1). In the current configuration, the coordinates are

.

given by x* = (y, z, x) and

i
x = x E. ,
i

with the tangent basis vectors 8; obeying g = Ei .

We will be considering irrotational plane deformations specified

by
% = constant, % = constant, x = x(X) (4.61)
for which the principal stretches are given'by
_dx

ay, 4o = constant, a; = 4x . (4.62)

Directional vectors (if present) obey (4.59), as discussed above.

(B) Cylindrical deformations

Here, a fixed cylindrical coordinate system is adopted, with the
coordinates in the reference configuration denoted by ) Gl (0, Z, R) ,
so that

X =R(sin 0 E; + cos 0 E;) + Z E ~(4.63)

g +TE
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where E. are as defined preceding (4.60); the corresponding cylindrical

tangent basis vectors Gi are given by

i
[-p]

1 = G R(cos B E, + sin 0 E3) ,
G2 = GZ = E2 ,
6, = 6 = sin O E; + cos 0 E, . ‘ (4.64)

The cylindrical coordinates in the current configuration are xt =

(8, z, r) and
X = r(sin'ﬂ E, + cos g E3) +z By

the tangent basis vectors g,, §,, & coinciding with GB’ GZ, GR

respectively.
The cylindrically symmetric deformations to be considered are

specified by

r(R) (4;65)

6=0 |, % = constant, T
and the principal stretches are given by

: d |
Ay = % , & = constant, as = aﬁ . (4.66)

~

Directional constraints (if present) satisfy (4.59), where now the G,

are the cylindrical unit basis vectors obtained from Gﬂ, GZ, GR .



104

(C) Spherical deformations

A fixed spherical coordinate system is employed with spherical

coordinates in the reference configuration - (@, &, R), so that
X = R(cos &(sin @ E, + cos @ E3) + sin ¢ Ey) (4.67)

and the spherical tangent basis vectors are given by

G, = 65 = R cos #(cos 8 E; - sin'ﬁE3) ,
6y = G5 = R(- sin Q(sin 8 E + cos® E3) +cos ¢ Ey)
G, = 6 = cos #(sin @ E; + cos @ E3) + sin @ E2_ . (4.68)

Once again E. in (4.67,8) are the orthonormal basis vectors defined
preceding (4.60), and the angles 8 , & are as defined in Flugge (1972).
In the current configuration, the spherical coordinates are xi =
(0, 4, r) and the tangent basis vectors gy, 840 Br coincide with

G9 R GQ and GR respectivgly.

The spherical symmetric deformations considered here are specified

by
=0, ¢=9¢ , r= r(R) , - (4.69)
and the principal stretches are

- r . - ar _
ay =8 = § ; a3 g - (4.70)
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Any directional comstraints present satisfy (4.59) with éi being

the spherical unit basis vectors obtained from Gﬂ , Gq, GR .

(The symbols 4§, ¢ and r appearing in (4.65) and (4.69) above have been
used previously to denote a type I constraint, the temperature, and the
rate of heat supply respectively. No confusion is likely to result

from these ambiguities, however).

Ve will require later the components ﬂFA of the surface curvature
tensor defined by (3.6) in the referemnce configuration for the three

cases presented above, and the results are accordingly presented here:

R L Y NER I

where
By =Ry =a for plane waves , (4.71)
B, =Rk, 32 = o for cylindrical waves (4.72)
By =Ry =R for spherical waves . (4.73)

Longitudinal wave propagation for the cases A - €

Ve assume the existence of a homothermal principal wave with
D= Py that is longitudinal, so that s = ¢ 43 - The previous
discussion of (4.50-53) of the propagation conditions is applicable;

isotropic constraints are incompatible with longitudinal waves, and any

directional constraints present must obey

vﬂXB(n-eA)(n-eB) =0 . . (4.43 bis)
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The definition (2.68,9) of directional type I constraints together with
(4.43) yields

¢a = % ﬂZB 2 a%(Pp‘eA)(Pp'eB) + ¢g(eAB’ g) =0 . (4.74)
T

Now the temperature # is constant ahead of the wave by assumption, the
‘components (éi-eA) = (pi-eA) of e, do not vary with position and the
ﬂXB are also constant, so (4.74) furnishes necessary conditions on the

deformation through the principal stretches ap .

For plane waves with the situation as described in (i), no
restriction is imposed on (4.61), by (4.62); 5 and (4.74).
H

For cylindrical waves propagating in the situation described in

(B), there are two possibilities:

firstly, if

ﬂXB(pl.eA) (plieB) =0 , (4.75)
then no restriction is placed on (4.65)4 by (4.66), and (4.74).

Secondly, if

Bip(py-€,) (pyep) #0 (4.76)

then (4.74) implies

ay = % = constant , | (4.77)
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so longitudinal waves require that the material be in a state of

homogeneous deformation.

For spherical waves in materials as specified in (C), (4.74) takes

the form

. .
C[ﬁ] - ¢5(eyps ) = 0 | (4.78)

1 ra r 2
=508 ) (] Gredpey)
T
and (4.70)1'has been used.

If ( =0 , the defdrmation is unrestricted. If however, both.{ and ¢g
are non-zero then r/R = constant and the state of the material is
necessarily one of uniform dilatation since a5 = dr/dR = r/B . Ve note
that the situation of ( # 0 and ¢g = 0 is not compatible with

longitudinal wave propagation.

Transverse wave propagation for the cases A - C

Ve now assume a transverse principal wave exists with s = ¢ g, so
that the previous discussion of (4.54 - 58) is applicable. Isotropic

constraints satisfy the second propagation condition (4.48) idgntiéally

e
-/

and directional constraints obey (4.48) if

ﬂzB(pA-eA) (‘ll'eB) =0 . : (4.56 biS)
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Substitution of (4.56). into the definition (2.68,9) of directional

constraints yields

0° = 3 Bplai (py-ey) (py-ep) sa(ney) (nep)} - dleyg 0 =0

(4.79)

1 or 2 accofding as A =2o0r1.

where A

Ve proceed in a similar manner to that for longitudinal waves, and
find that the following two situations arise (the quantities (; and (,
are constants):

(i) n-ey = 0 for all vectors e !

Case (A) plane waves : motion unrestricted

1 motion unrestricted

Case (B) cylindrical waves : A

: A = 2 homogeneous deformatlon 1
(motion unrestricted if ¢, = 0)
Case (C) spherical waves : homogeneous deformation

(motion unrestricted if ¢2 0)

(4.80)

(ii) n-e, # 0 for at least ome vector e :

Case (A) plane waves : homogeneous deformation

Case (B) cylindrical waves : A =1 homogeneoué deformation

Ph=2 drjdl - {(1[%]2 * 42}1/2 |

' 2 1/2
Case (C) spherical waves : dr/dR = {(1[%] + (2} /.
(4.81)
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Plane, cylindrical and spherical wave propagation for combinations of
four constraints

We illustrate the above results by considering the propagation of
plane, cylindrical and spherical 4waves in materials subject to the
deformations of cases (A) - (C) , but restrict attention to the four
constraints specified in Chapter 2 (see (2.67,70,72,73), but here we
change the numbering of the functions ¢(#) for convenience). The
constraints are considered both singly and in combinations of two,
three or four; permissible deformations are calculated and the cases
for which constraint combinations are linearly dependent are noted.
The four constraints and their associated vectors ¢! are as follows,
and the results appear in Table 4.1. It should be emphasized that the
results'presented in Table 4.1 under the headings of plane, cylindrical
and spheiical deformations refer in general to materials with entirely
different configurations of directional comstraints (recall (4.59) and

following discussion).

(1) temperature-dependent extensibility in direction e, :

o = % £ &(0) = % a?(el-pi)2 - &), (4.82)

ch =) as(epn)(epy) 4 (4.83)

(2) temperature- dependent extensibility in direction e, with elle2
(i.e. ej9 =0) :
2 _1 1.2 2
$” = 5 f22 - 52(0) =3 ai(ez'pi) - 52(0) ’ (4'84)

¢? - 2 ai(ez'n)(e2'Pi) qQ; ) (4.85)

i
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(3) temperature-dependent shearing with respect to e and e,

= 0):
62 = 1~ &5(0) = ) al(e; ;) (eypy) - £3(0)

i

(€49

(4.86)

where §3(0) = 0 if ¢1 and ¢2 are not both present as well; recall

(2.72,73)).

¢ = 2 ai{(eg'n)(el'l’i) + (el'n)(ez'l’i)} qi. ; (4.87)

(4) temperature-dependent compressibility:
4

4
¢’ =ay 3903 - (4.89)

]
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Table 4.1 : Permissible deformations of the form (4.61,5,9) for various combinations of the constraints (4.82,4,6,8).

. .0 . a PERMISSIBLE DEFORMATION
1 . =0 (L
Long (L) . dir n £ ) FOR MATERIALS SPECIFIED IN CASE A,B,C
Trans (T) dim of, or dep - RyDab.
.t 0 plane of OR
CONSTRAINT  Both (B)  {g7} g e PLANE CYLINDRICAL © SPHERICAL
{E'a} ~ SG'EA =0 (T) x(X) . r(R) r(R)
o r(R) (A = 1) .
i) 1 B ] g =0 ea=0 x(X) hom (A = 2), (L) dilatation
(ii) T 1 Wl 8Py =0 hom hom (A = 1) r' = F(z/R)
r' = F(r/R)(A = 2)
(iii) 3 L 1 44:9, (gy-n)(gy-») = 0 x(X) hom 4 dilatation
(iv) . ST 0 ga =0 &R " gn " 0 x(X) r(R) ‘ r(R)
v T 1 W3 (g5-m)(eq-py) *+ hom r' = F(r/R) r' = F(z/R)
‘ (51 .g)(gz.gA) =0
(vi) 142 B 0 ga =0 * R =gn - 0 as (i)
(vii) ‘ T .2 Sé’b 21 P - 2’2.& =0 hom ~ hom (A = 1) . -< F(r/R)
r' = F(z/R)(A = 2)
(viii) 1+3 L U *  gem=0 : v as (iii)
(ix) T ) ga =0 * e;-n=gen" 0 as (i)
OR
(x) T 2 Wl &1'Pp = &Bp = 0 e .(vn.)
: a OR ' + S t
(xi) T 1 < ”Sé *  en=gpa=0 .  hom r(R)+ =1 dilatation
hom' (A = 2)
(xii)  1+2+3 B 0 c*=g * g -n=gn=0 as (i)
(xiii) . T 2 24’2,3 -k ‘ £4°Pp = &°Pp = 0 as (vii) -
] o _ 2 2, 2_2 3_3_ 353
(xiv) 4 , T 1 < ”33 hom rer] £(8) (R R) r-r=f(8) (R°-R))
(v) 4+t T 1l * gm0 :
. ) a hom not possible . not possible
i ke - .
(xvi) . T 1 < ”.J g =1
20 a - v-
(xvii) 443 T 1 s llg, * emn=gm=0 as (xv)
‘es a
(xviii) T 1 g llag *h (52'5)(51'34) + as (xv)
(21 .g)(gz.BA) =0
* in addition to (v)
B _(xix) 44142, 2 95093 *:’ see
4+1+3, T OR OR OR (vi), (vii), as (xv)
[+ *
MRACAES tooellly () - i)
KEY : * Linear dependent, since at least one ga is always zero.

. : . a . .
*% Linear dependence possible, all vectors ¢ involved are non-zero.

hom Homogeneous deformation.

F(r/R) Function of the form F(2) = /az’ +b, aandb are constants such that the constraint equation
¢ = 0 holds. .

+ Only permissible if SpBA ™ 0 as well.

AY
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CHAPTER 5

PROPAGATION CONDITIONS FOR HOMENTROPIC WAVES

Introduction

Ve investigate only non-homothermal waves in this chapter, so that
T = [6rad ¢-n] # 0 by (3.38,9). The necessary condition (4.1) for the
existence of non-homothermal waves is employed to derive results for
the thermal properties of the type I constraints, and we find that the
constraints ¢P+”, n =1, ..., N-P (whose constraint vectors satisfy
F = o by (2.87)) are all mechanical, so that & - 0. in alterna-
tive form of (4.1) is then presented that replaces the set of con-
straint vectors, {ca}ﬂzl in (4.1) by the set {cM, mﬁ} where £ = 1, ...,

R Equation (4.1) now

yields the necessary condition that dim span {m"} ¢ 2 for non-
homothermal waves to exist. Ve also present (4.1) in the entropic
formulation (with 7 replacing 4 as an independent variable) and note
that it is advantageous to work with the vectors @" rather than with
the vectors ¢ in that the subset {ﬁC}%;i is linearly independent,

whereas we recall from the discussion following (2.96) that this is not

|

necessarily so for the subset {éa}azl .

- Attention is then restricted to non-homothermal wa§es which are
homentropic, so that H = [Gradp-n] = 0 by (3.41,2). Ve recall (see
spmmary.following (3.50)) that waves for which T # 0 and H = 0 occur in
non- conductors when the type II constraints present satisfy zﬂ-n = 0,

f, ..., L , or when type II constraints are absent. The first propaga—
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tion condition is derived in the entropic formulation, and the set
'{éM ,'ﬁm} is used to remove the jumps [}a] . Although (unlike (I)) we
permit linear dependence of the vectors @ , the final‘result involves
only the linearly independent subset {m{} , a situation reminiscent of
the corresponding homothermal result in whlch only the linearly

independent subset {c0}§=1 appeared. The special form of the first

propagation condition when all type I constraints are mechanical (&a
=0,a=1, ..., N) is also discussed, since 9% = 0 is found to be a
necessary condltlon for the ex1stence of non—homothermal waves in a

number of cases.

Solutions of the propagation conditfons for longitudinal and
trensverse principal waves are discuseed for the all-embracing cases
M=0,1, 2 3, and in each case the wave speeds are found from the proper
values of the approprlate form of the acoustic tensor. Vhen M 0 (all
type I constraints are inactive), the constraints are necessarily)
mechanical (#® = 0, @ = 1, ..., N ). Longitudinal waves with i = 0,
T#+0 are compatlble w1th these constralnts, but transverse waves have
H=T=0 and are therefore generallzed transverse waves. For > 1,
acceleration waves are compatible with the situation when thermo-
meehanical constrainte nre present, and for ¥ = 1 or 2, longitudinal
waves are also compatible with the situation when all constraints are

mechanical. Generalized transverse waves are not possible when M = 3

because M < 2 is a necessary condition for homothermal waves by (4.3).

L~

P

o y \ .
Ve then reconsider the propagation conditions when only isotropic
constraints are present (¥ = 1), or when directional constraints are

~ present (M'= 0,1,2,3). The.thermal formulation is employed here since
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P+g _

1
(=]
It

(5.1)

Substitution for c¢’-s from (5.1), in (5.1), yields the following

1
necessary condition for the existence of waves when T # 0 :

wM+” = Dﬁ o, =1, ..., %

and we also have
P+p -> _
) =0 ', g=1, ..., NP (5.2)

where this last result is obtained from (5.1)3 if we recall from (2.87)
that cP+1, ceey cN are all zero and T # 0 . It is therefore a
necéssary condition for the existence of acceleration waves that the

constraints ¢P+” be mechanical.

It will prove useful later to employ an alternative set to (5.1)

that involves a set of N-1 vectors m” defined by

m =¢ C - ¢ C , k=1, ..., ¥1, ¥+1, ..., N ,
(5.3)
where ! is the H*™M and last member of the subset {c’} of linearly
~ independent constraint vectors in (5.1),. Before deriving the

alternative to (5.1), we investigate the properties of the n® a little
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further. The set {m"} is first subdivided as follows:

m{ = wM c{ - w{ cM , (=1, ..., ¥1
mm”=ﬁcm”-wwcm , p=1, ..., P-X ,»

mP+1; _ uM cP+1; _ wP+n cM

, =1, ..., N~-P (5.4)
where M and P have the same meanings as in (2.86,7).

In (5.4), the vectors n¢ are only defined for M > 2 . The vectors m' A

are defined for M > 1 however, but we have from (5.4)2 that for ¥ =1,

m1+ﬂ ) wl-c1+p ) U1+y c1

gl(nil‘ ¢') - (0¥ o) c! by (2.86) and (5.2) when T #0
and so for T+0,

Vm1+/‘.=0 . op=1, ..., -1 . (5.5)
For N 2'2 , (5.4), and (5.2), yield the relation (T}# 0)

H+p _ UM cM+/L ) UM+p cM

=y DA cc - D/évw{'cM

1l
L
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P+p

Turning now to (5.4),, we recall that P*7 and w are all zero 'by

(2.87) and by (5.2), respectively, so (5.4), becomes
mP+" =0 , g=1, ..., N-P

The set {m®} appearing in (5.4) can be written for T # 0 with the aid

of the above results as
m( = uM cc - wc cM

mM+u _ UM cM+p ) UM+y cM

~~
=+
1
[y
—

m?+ﬂ -0  gp=1, ..., NP . (5.6)

It is easily shown that since the set {c”} is linearly independent

(recall (2.86)) so is {mc}%'l .

We now derive the alternative set to (5.1), and follow Reddy (I)

by writing (4.1) in the following form

and

nfs=0 , k=1, ..., 81, 1, ..., N (5.8)
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where, as before, ! is the MM and last member of the set {c} of
linearly independent constraint vectors in (5.1);.  Equation (5.8)
immediately provides a necessary condition for the existence of non-
homothermal waves (corresponding to (4.3) for homothermal waves) and

requires that

dim span {n"} ¢ 2 . (5.9)

Entropic formulation of type I constraint vectors

It will prove convenient in the derivation and anal&sis of the
propagation conditions for homentropic waves to employ the entropic
formulation. (The thermal formul@tion introduced above will also be
useful, however, especially in. facilitating comparisons with the
corresponding homothermal results).ﬂ The type I constraint vectors in
the -entropic formulation, {¢} , together with the subsets {&’} ,
{éM+”} and {ép+"} vere introduced in (2.91) and (2.96), 5 respectively.
Ve also recall that the set {¢’} is not necessarily linearly indepen-
dent, and this prompts us to introduce the set of vectors {a"}
(analogous to the set {m"} in the thermal formulation) which will be
found to have the desired properties; namely that the subset {ﬁ<}%;i is

linearly independent.

Returning now to the subsets of {¢’} defined in (2.96), we find
with the aid of the definitions (2.86) for {cM+”} and the condition
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(5.2) that for non-homothermal waves,

el

1]

P
-

.

.
-

==
~

2.0
o -1 o7 0
Df:[c-ﬂ# Uz;;%ﬂ(n-Pi)qi ) 0
i _

=1, ..., -0 |

Dﬁ &’ for ¥>1 . (5.10)

Also, (2.93) yields

2.0
N -1 P )
-yt PNy (), m=1, ., NP
S U9
i
where we have made use of the fact that ¢ 7 = 0 by (2.87).

Furthermore, & *" = 0 for non-homothermal waves from (5.2)4, so finally
=‘C = ’ =1, ..., N-P . (5.11)

The entropic quantities Z and & are defined by

, 2
i=p e
dn
and
e e 04" '
v = 555}; = 3%— ’ . (5.12)

they are related to their thermal counterparts g and o° (defined by

(2.93) and (2.94) respectively) by

p=-ptyt , =-pp st - (5.13)
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Now M= gt Moyt D2 o .
N4
=0 a (5.14)
where (5.2), has been used;
furthermore, PR p ﬂ'l et/
=0 (5.15)

from (5.2)2 for T #0 .

We now use the entropic formulation and obtain the equivalent of

the condition

Cs=- 20T . (4.1 bis)

The jump of the time derivative of the type I constraint definition

(2.36) yields

RSRS SURS SURE SNSRI

(5.16)

Use of the expressions (3.24) for [F] and (3.40), for [7] plus the
definitions (2.91) for &° and'(5.12)2 for 3% in (5.16) gives

~Q 2 .a aha .
.8 = i . :
s =02 %0+ v gg; ] (5.17)
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We will be restricting attention to homentropic waves from now on, in

which case H = 0 by (3.42). Ve also make use of the identity
-
9 ottt (5.18)
7

given in (I), and consequently (5.17) can be written for homentropic

waves in the form
ehs=pu ittt Bl s 7=t o ¥ (5.19)

Use of the results (5.10,11,14,15) enables us to write (5.19) when
T # 0 as .

H
[y
-
.
-
=4
-

e%s=pv ﬁ_l i &T[[jT] + Dﬁ [iM+M]] 7,7
) p=1, ..., -0

éM+”-s =pt s
a
s -0 . | (5.20)

Elimination of the jumps [}a] appearing in (5.19,20) will be dealt with
later in the derivation of the first propagation condition for homen-

tropic waves.

|

The set {¢%} suffers from the disadvantage that the subset {é”}azl

is not necessarily linearly independent, as has been remarked pre-
viously (discussion following (2.96)). Ve therefore construct an

alternative set to (5.20) that is analogous to the set (5.7,8) by
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writing
N R U e ;
Cs=pvi ¥ w7{[A7] + Dﬁ [AM+u]] T=1, ..., M ,
p=1, , P-M
(5.21)
@*s =0 ; | (5.22)

where (5.14,15) have been used in (5.21) and where the vectors @* are

defined by

K

Ve also note that the m" are related to their thermal counterparts n”®

W= ot . (5.23)

The set {@"} can be rewritten as follows after the use of the
expressions (5.10,11) for ¢, (5.14,15) for 2% and (5.23) for @® in

terms of m* : we have

al = oM el - ¢

-1
== pp m< ’ (=1, , -1 s (M 2 2) ’
M+p _ D/é ﬁ.c : 5
= -1 DA ¢ = |
=-pH ¢ I ’ p=1, , P-M ’ ( 2 2) ’
- a0, g1, ., NP (5.24)
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PN

Because of the relations (5.13), for % and (5.23) for @ in terms of

the corresponding thermal variables, the subset {ﬁ(} is linearly

independént.

Propagation conditions for homentropic waves

We begin the derivation of the first propagation condition for
homentropic waves with the local form of the balance of linear momentum
equation (2.9) as was done in Chapter 4 for homothermal waves. At the

singular surface, (2.9) takes the form
[Sln=-pvs . (4.6 bis)
The entropic fbrmulation is employed here and by (2.76,7) we have
[é]n = i[f]n + in[ﬁ] + p[ia]éa , ' ~ (5.25)

vhere the definition (2.91) for ¢* has been used and where the second

order tensor M and fourth order tenmsor A are defined respectively by

D .
[
m

i =p am ’ (5.26)

and
i-, O 27
=P FF (5.27)

these quantities being related to their thermal counterparts M (see

(2.92,5) and A (see (4.8)) by

E=-,u510 . (5.28)
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and

i=1-4'0°e® . (5.29)

For homentropic waves [#] = 0 in (5.25) by (3.40,2). Ve use (3.24) to
substitute for [F] in (5.25) and use (5.25) in turn to substitute for
[§]n in (4.6). This yields

(0 1-0)s=-pv[]e" (5.30)

where the homentropic acoustic tensor § is defined by

P

Q(u, v) = A(u, n, v, n) for all u, v, e V (5.31)

and is related to the acoustic tensor § (recall (4.10,11)) in the
thermal formulation by :

1=0- 4 o0 xn . ' (5.32)

The set of equations (5.21,2) is now employed in (5.30), following
the general approach given in (I). There, however, only the type I

constraint subset {¢a}g=1 with the corresponding linearly independent

k|M-1

set of vectors {ﬁ was treated; here we allow also the subsets

(=1
{¢M+ﬂ}£;¥ and {¢P+” z;g with the corresponding vectors at'* and "

given by (5.24)2 3 respectively.
H

First we assume o0 # 0 (the case M = 0 will be discussed later)

in (5.21) to obtain

: -1 -1 -, H\-2 AM -1
Dyl = ot vt ah 2 s - @t
k=1, ..., ¥-1, ¥+1, ..., N .  (5.33)"



124

Equation (5.30) can then be written
2 A ~M\-2,. A kM -1pri Al toaa
(0 2 1-0)s=-u@2@Me)d o or@ g - pupigeE

and with the aid of the definition for @" following (5.22) we find that

~¥ _ N " R . R
0 P I-0)s=-pu@) ) @"er- or e

S w@ IR, (5.34)

K
where the modified acoustic tensor { is defined by

éM

AM)-2 éM ®

0 =0Q- i@ (5.35)

“a ¥
Since  is symmetric by (5.32), § is clearly also symmetric.
Now from (5.24) we have, when T # 0 ,

st o phal =1, o, E1
p=1, ..., -0

-0 =1, .., NP,

so (5.34) can be written as

(0 AT-0) 5= oo [0+ 04 [y,]]

(5.36)
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Ve recall from (4.15) that in the derivation of the first homo-
thermal propagation condition, only the linearly independent set of
constraint vectors {ca}gzl appeared. Their role is played in the
homentropic case by the set {ﬁC}%;i ; in both cases the jumps [)P+”]

N-P

corresponding to the constraint vectors {cp+”} (or equivalently,

=1
{ép+”}§;§ ) , are absent from the first propagation condition. We
recall from the discussion preceding (4.29) that the subset {c”}gzl has

no effect on homothermal propagation if M = 0; correspondingly, the
subset {ﬁc}%;i has no effect on homentropic propagation if ¥ = 0 or 1
by (5.24).

For ¥ > 2 , the remaining jumps in [ia] on the right-hand side of

(5.36) are eliminated by defining a set {ZC}%:i of vectors reciprocal

to ﬁc , in the sense that

ﬁc-ze = Jg , Z< € span {ﬁf} . v_ (5.37)

The scalar product of (5.35) with Ze yields

"
—

-

-
=
—

-

ZC.Q S=-p V(&M)'l[[ic] + D? [)M+p]] y ¢
p=1, ..., P-M

The first propagation condition for homentropic waves when T # 0 is

_.obtained from (5;36) with the aid of (5.38) and is found to be

, o, _ _
(prv"I-PQ)s=0 |, (5.39)
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where the projection operator P is defined by

P-1-ae? =1, ..., b1 (5.40)

C ’
and we recall that the {ﬁg} are only defined for M > 2 by (5.24), so
for ¥<2,P=1. A

The derivation given above for the first propagation condition
(5.39) requires T # 0 in the expression (5.33) for [iM] . Ve will
find that in some cases, it is a necessary condition for the existence
of non-homothermal waves that all the type I constraints be mechanical,
so that 4® = 0, e = 1, ..., N . Ve therefore rederive the first
propagation condition under these circumstances.

Ve begin by noting that &% = 0 => v® = 0 by the transformation
(5.13)2.

Now

&%= ¢ - ;{1 A, (2.91 bis)
and so % = 0 imblies that -

¢ = ¢ | | (5.41)
and in consequence the subset {&’} is linearly independent. This is
not normally the case for {&’} , (although it is for {c’} by the

definition (2.86)), as will be recalled from the discussion following

(2.96). Furthermore, we have from (5.1) and (5.4) that when Wt =0,
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(T # 0 still holds)

N o :
c:s=c¢c:s=0 |, c=1, ..., ¥ |

b -

and we also recall the result (5.11) that
U o B S TR 4 T (5.42)
The above results (5.41,2) mean that for W =0and T #0, the
analogy with the derivation of the homothermal propagation condition

(equations (4.9-19)) is immediate, and we follow the procedure given

there. Ve begin with (5.30) (the homentropic equivalent of (4.9))

which is

(P 2I-0) s=-p v[i e, | (5.30 bis)
and write

o] &= p V[[ia] . DK [jM+#]]e” K (5.43)

by analogy with (4.12).

A set {&T}Ezl is now defined such that é”-&T = 5: > 37 € span {éd} and
the scalar product of (5.30) with &T yields

d-is=p u[[AT] + D [jM+ﬂ]] . (5.44)
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The first propagation condition for homentropic waves when % = 0 and

T # 0 is then found from (5.30) with the aid of (5.45,4) to be
(W A1-PQ)s=0 |, (5.45)

vhere the projection tensor P is defined by

(5.46)

Propagation conditions for longitudinal and transverse principal waves
in isotropic materials :

ﬁé continue this investigation of the propagation conditions for
homentrobic waves by imposing the condition of isotropy and assume that
¢ = ¢a(ai, g, e)p fAB) for type I cohstraints as in the homothermal
case (discussion following (4.20)). Attention is also restricted to
principal waves that are longitudinal (s = ¢ q3) or transverse (s =
A TR A =1 or 2) and the waves are assumed to propégate in the

direction n = Py -

Since the analysis of homentropic wave propagation is somewhat
more cumbersome than it is for homothermal waves, it is advantageous to
identify situations in which waves are found to be both homentropic and
_homothermal (H = T = 0) and so are generalized transverse waves as
defined following (3.42). In such cases the analysis of homothermal
wave propagation presented in Chapter 4 can be adopted in prefence to
that given here. An expression that will enable the value of T to be

determined is now derived.
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Ve begin by evaluating the jump [#] using the expression (2.62)
for n and find that

- |3

2 2 a
= - b 1 - ggg - % u) (5.47)

p

where the result g%— = ¢® has been used in the last term on the right-
a

hand side of (5.47). Vith the aid of the definitions (2.93-5) and the
identities (3.24), (3.37), (3.40), equation (5.47) yields, after some

rearrangement,

T=-p;[lﬂ—uq'izsl%1+pu4'f1waﬂ%] . (5.48)

Now § = 0 for homentropic waves by (3.42) and s-M°n can be simplified

with the aid of (2.95), since m = p, and we are considering isotropic

media. Hence (5.48) reduces to

T=p u-l V—l[- v g;f%? (s-qq) + w? [ja]] E (5.49)

When T # 0 , we can use the results for wM+” , w?+” given in (5.2) and

write (5.49) as

2
1ot G ey (0] % D)
(5.50)
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The equivalents of (5.49,50) in the entropic formulation are easily
obtained from (5.47) with the aid of the transformations (5.13) and

(5.28) and are
T = u'l[p_l ¥(s-qy) - &a[ia]] (5.51)

and, when T # 0 ,

O I TCE NI (¢S a7 9900 B

where T(s-qB) = s-Mn and ¥ contains contributions from the constraints,

unlike s-K°n .

Two results are immediate from (5.49) or (5.51): when & = v =

and all type I constraints are mechanical, then

T # 0 for longitudinal wavés;

T = 0 for transverse waves, so that these waves are ,
generalized transverse waves (H = T = 0). (5.53)

Ve follow our previous approach in Chapter 4 and collect together
‘the propagation conditions that are satisfied across the wavefront when
homentropic waves exist. Both the thermal and entropic formulations of

the conditions are given where appropriate.

The first propagation condition is given by'(5.39) or (5.45) (we

renumber the equations for convenience):

i iAI-PQ)s=0 , (M+#0) (5.54)
(5.55)

~~
©

A

(M)

]

1

- -}
F — 1 — 1
o

S’

<] </}
1 i
[ (==
» >
~

S

[~

1]

o
S’
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The second propagation condition is given in the entropic formulation

by the set (5.21,2):

N, | =1 M o7 ry Lory
C'S=pVvp & wT[[AT] + Dﬁ [AM+#]] T=1, ..., M ,

s =0 | ‘ k=1, ..., -1, ¥+1, ..., N
(5.56)

The thermal formulation of the second propagation condition is given

either by (4.1), which is
s =- 20T , ea=1, ..., N ;= - (5.57)
or by (5.7,8):

HAs-- M0 . (5.58)

and

ns=0 , k=1, ..., %1, ¥+1, ..., N . (5.59)

It will at times prove useful to express the type I constraint vectors
¢? , n" and the acoustic tensor @ in the thermal formulation with the

aid of the transformations

2.0 '
] -1
et p Lt %535? G 3 a=1, ..., N , (5.60)
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which follows from (2.92), (2.95) and (3.29), and

ﬁﬁ=-p/[1ﬁﬁ , &=1, ..., 81, M+1, ..., N ,
(5.61)
as in (5.23).
Finally (5.32) with the aid of (2.95) and (3.29) yields
; 2 -1 (2 )
0=0-p"u ﬁgqugﬁqg (5.62)

so that § , like § , is in spectral form (recall 4.22-5) with proper

vectors q; and corresponding proper numbers

L =]
-
|

"ﬁ(qA,qA):QA ’ A=1or2 ’

: 2
o . ) 2.0
Oy = (a5 > a3) = 853 - #° 47" {%ﬁ% : (5.63)

Longitudinal and transverse principal wave solutions of the propagation
“conditions

We investigate solutions to the propagation conditions for homen-
tropic waves for the wave speeds Vi Vo Vg corresponding to the wave
amplitudes ¢ Q15 7 g, 7 Qg respectively, whe;e such solutions are not
precluded by the constraints. The propagation conditions are employéd
in the entropic formulation, but it will prove convenient later to
employ the thermal formulation when investigating the influence of the
constraints on the solutions for v and to facilitate comparison with

the corresponding homothermal results.
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Ve have the result from (5.9) that for homentropic waves, dim span
{n"} < 2 . Ve treat the four all-embracing cases dim span {c’} = ¥ =
0,1,2,3 in turn. It will be recalled thét M < 2 for homothermal waves
by (4.3), and where appropriate .we‘ relate the homentropic results
obtained here to the homothermal results obtained previously. It is
assumed throughout that conditions are such that

Lk
g (v, v) > 0

for all non-zero v for which @®-v = 0 , so that the proper numbers of
ﬁ* are real and positive. Since we restrict attention to principal
waves that are longitudinal or transverse, we will only be concerned
with situations in which there exist one or more proper vectors of Q*
that are parallel to 4 > i = 1,2, or 3, with corresponding proper

numbers

Ak K ' .
Q; =0 (q; ,95) , 1i=12,0r3

In each of the following cases, ¥ = 0,1,2,3, we begin by assuming
the existence of a homentropic wave that is non-homothermal, so that

‘the previous expression (5.52) for T is applicable.

~ All type I constraints are inactive and ¢"=0,9=1, ..., N from
(2.87) with P = 0 . Since T # 0 we have, from (5.2) and (5.15), & =
w7 = 0 , so that all type I constraints are mechanical, and é"-;‘c” =0
from (5.11).  The results (5.53) for mechanical constraints are

recalled; only longitudinal waves with T # 0 are compatible with |
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mechanical constraints, and transverse waves (for which H = T = 0) are
best treated as in Chapter 4. For waves with mechanical constraints,
the form of the first propagation condition given in *(5.55) is

appropriate:
(p 2 1- P Q) s=0 . (5.55 bis)
For =0, P =1 from (5.46), and (5.55) can be rewri}cten as
gs=p 2 s , | (5.64)

"and from (5.62,3) we see that longitudinal waves s = 0'q3:satisfy
(5.64) with wavespeed vg given by |

2 1;
v3=p" U3

5 012
p'l[l!?, - u'l[g‘aj%g} J : (5.65)

3

=
1
WY

Ve begin by considering the situation in which ot # 0 , and since

T # 0 is assumed, we have from (5.52) that

T - y‘l[p‘l ¥(s-q) - 2'([4,] + D4 [11+ﬂ])] . (5.66)

The first propagation condition (5.54) is appropriate when &1 # 0 and

can be rewritten in the form

is=a@h?@ls)el=p%s (5.67)
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ok
where we have made use of the definition (5.35) of @ , so that for

¥ =1,
§ =§-ael)y2elect . (5.68)
The second propagation condition is found from (5.56) to be

els=p v p‘l(a1)2[[j1] . D [jw}] — (5.69)

The first propagation condition (5.67) has a proper vector in the

direction of q; > i =1,2, or 3 if either
¢-5=0 ‘ | (5.70)
or

d.s=0 . v (5.71)

These situations are considered in turn for longitudinal and transverse

waves.

For longitudinal waves 8§ = ¢ qg and if (5.70) holds, the first

propagation condition reduces to

Gag=r+"a5 | (5.72)

with the wavespeed Vg given by
w2 =1 | - (5.73)
3=7 N3 S0

with Q3 as in (5.63).
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The second propagation condition (5.56) reduces to

((d + 0% Oy, ) =0 (5.74)

and we note that substitution of (5.74) in (5.66) yields that T # 0 ,
consistent with our assumption there. We will in Chapter 8 be making
use of the results such as (5.74) for M = 0,1,2,3 in order to evaluate

terms involving [}a] .

Vhen (5.71) holds, the first propagation condition (5.67) reveals

that the wavespeed v, is given by
2 -1,a araly-2,41
=My - a6 M gy) (5.75)
The second propagation condition (5.69) now yields
A1 A= 1,2102( 15 i
c&q=pvi (i) [[/\1] + D ["1+u]] ; (5.76)

and so

[y + 04 [ Lylaaly? e@tg) £0 . (5.77)

1+#] = p

Ve see from (5.66) that (5.77) is consistent with the assumption that

T+ 0, as long as

: -1 .,~1\-1,-1
-0ty H(etgy) # 0
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For transverse waves s = ¢ ¢y , A = 1 or 2 , and when (5.70)

holds, the second propagation condition takes the form
. -1,2102( ;
0=élq =pv it [[,\1] . D4 [Aw]] . (5.78)

Since &' # 0 is assumed, we must have [A,] + D{ [i1+#] = 0 from (5.78),
but then T = 0 in (5.66), contradicting our assumption there.
Consequently, this constraint configuration is not compatible with

transverse waves for which T # 0 .

Conversely, when (5.71) holds, we find from (5.67) that transverse

waves propagate with wavespeed

BN e deterr (879
and the sécond propagation cbndition (5.59) yields

Uiy + 1] Dy, = oL aEy P eehg) #0005 (5.80)

use of (5.80) in (5.66) yields a non-zero value for T as required.

‘The situation of il = 0 is now considered; since Pl Df o1 and
&P+” =0 for T # 0 by (5.2), all type I constraints are mechanical.
The results (5.53) apply; longitudinal waves with T # O are compatible

with mechanical constraints, but transverse waves are not.

For longitudinal waves, s = 7 qg and the first propagation
“condition for 3% = 0 takes the form

(pA1-BQs=0 |, (5.55 bis)
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where P = I - ¢ ® ¢ from (5.46), and ¢ = él/lé1 . Hence (5.55) can be

written in the form

Qs- (&As)e=0 2s ~ (5.81)
-and since @ = 0 , the second propagation condition (5.58) yields
¢s=0 . (5.82)

Now § s is parallel to s from (5.62,3) for s = ¢ q > and so we have,

with the aid of (5.82),

s=0 . | | (5.83)

o
L —14

Now finally (5.81) with (5.83) yields the result that for s = ¢ qq ,

waves propagate with speed

2 _ -1, |
=p Qg . (5.84)

Ve begin by assuming 2 # 0 and (5.52) takes the form

T = V_l[p_l_!(s-qs) - a”([ﬁaj + D [}2+ﬂ])] $0 . (5.85)

Since &2 # 0 the first propagatioh condition (5.54) is appropriate and

with the aid of (5.35) we find

(0 A I1-P- wi?)y2Pee?))s=0 . (5.86)
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The second propagation condition is found from (5.56), and with the aid

of the results (5.24) for {@"} it takes the form

2.5 =pvpla? aT[[;T] . [)2+ﬂ]] r=1,2
ales = 0 ,
W s =D ils=0 b=, ..., P-2
=0, p =1, ..., N-P
(5.87)
Since ﬁl-é = 0 by (5.87), we have ﬁl-ﬁ s=0, as Qs is parallel to s

(recall the discussion preceding (5.83)). For X = 2, we have P = I -
i e from (5.40) with @ = a'/|al| , and with the aid of these results

the first propagation condition can be written as
-2 -2 A a2y a-1,4212/5 2
(€%-5)(&% - (m-e)m) = 4 "(4)°(Q- p " I)s . (5.88)
Ve are considering only longitudinal and transverse principal waves, so

- that s = ¢ q; > i = 1,2 or 3. Ve recall from (5.62,3) that @ is in

spectral form, and so (5.88) yields the result that either

s=0 | (5.89)

or
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and, since m-s = 0 by (5.87), this latter condition is equivalent to
~s=0 . | (5.90)

Longitudinal and transverse wave solutions are now investigated when

(5.89,90) hold, following the previous approach for M = 1.

For longitudinal waves s = ¢ q; and if (5.89) holds, then from (5.88)

ve see that longitudinal waves propagate with speed
2 _ -1; :
vg=p U3 - | (5.73 bis)
The second propagation condition (5.87) yields firstly that

o"([A] + Dk [i2+#]) =0 . - (5.91)

1

Secondly, ﬁ'-q3 =0

=> o elgy - alePqy = 0

by the definition of @* following (5.22), and so
~1 '
¢ gy =0 (5.92)

since (5.89) holds.

No further information is gained from the expressions involving al*h ,

&7 in (5.87). If instead (5.90) holds, then (5.88) yields

v =0y - 10 ap)?) (5.93)
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and from (5.87),

0[]+ B Oy, D) = o(&qg) ot vt (%)

(5.94)
Furthermore,
S U
m-qq = 0
=> 0% eleqy - o &%hgqy = 0
by the definition of @* following (5.22), and so
~1 al,a2\-1 A2
¢ qq =¥ (%) © €qq . (5.95)

For transverse waves s

1]

T A =1o0r 2, and we find by an analysis

similar to that used for ¥ = 1 (see discussion following (5.78)) that a

constraint obeying (5.89) is not compatible with transverse waves for

which T # 0 .

If (5.90) holds then (5.88) and (5.87) are easily shown to yield

the results

~2
)

T (R O RGN (5.9)

5T+ 0 Oy, D) = o(@q) 7t RGP, (5.0m)

A1 Al a2v-1 22
¢hoqy = 0 (0%) " &qy . B (5.98)
The situation ' = 2% = 0 is now treated. (The case ot $# 0,

0 can be treated by the above procedure by relabelling the

constraints). All constraints are mechanical since LAl Dﬁ #” and

&**" = 0 when T # 0 by (5.14,15). As in the situation when M = 1, the
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results (5.53) apply and only longitudinal waves are compatible with

mechanical constraints when T # 0 .

We proceed as before for M = 1; the first propagation condition

(5.55) applies, but now

P-=1-¢"ed c=1,2 |, O (5.99)

Qs -.(& ‘Qs)=9p 2s . - (5.100)

The second propagation condition is best used in the form (5.19), since

A1 a2

m-s = &2'él-s St s =0 s trivially satisfied when -0 ,

and we find from (5.19) that

~1

c-s=0 . (5.101)
Consequently &a'ﬂ s =0, ¢=1,2 since &a-s =.0 by (5.101) and Qs is
parallel to s (recall discussion preceding (5.83)). Longitudinal waves
therefore propagate with speed 2 where

2 _ -15; A | _ '

vg = p = g | \ _ “(5.103)

from (5.100).
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The possibility of homothermal waves does not arise here since
¥ < 2 for homothermal waves from (4.3). Furthermore, when ¥ = 3 the

case #® = 0 (all constraints .mechanical) is not compatible with

homentropic wave propagation since then
¢’.s=0, c=1,2,3 by (5.42),

which is clearly impossible for non-zero s as the set {&¢’} is linearly
independent by the discussion following (5.41). Consequently we assume
5 # 0 and proceed as before for ¥ = 1,2; we find from (5.54) and

(5.35) that the first propagation condition can be written as |
(p?-1-PA-5@°)y2Beed)s=0 (5.103)

and the second propagation condition is found from (5.56) and (5.24) to
be

'53.s.= 5y ﬁ_l &3 ET([XJ . Dﬁ [A3+ﬂ]) ’ v} =1,2,3 ,

als =0 , (=12 |,
iS3*h.g - p* al.s = 0 , b =1, , -3,
AR T
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The projection P in (5.103) is given by

P=T-ale Lo, (=12, (5.105)

Zc-ﬁ §=0 (5.106)

since § s is parallel to s by the discussion preceding (5.83) and Zc-s
= 0 by (5.37) and (5.104). Vith the aid of (5.105,6) the first

propagation condition can be rewritten as

i) = 712 - 02 Ds , (=12
 (5.107)

(&5 - (@,

The argumenti'used earlier for ¥ = 2 in analyzing (5.88) is again
'applicable: we are considering solutions with s = ¢ q; > i=1,20r3

and § is in spectral form by (5.62,3), so (5.107) yields the result

that either

3.5 =0 | - - (5.108)
or

and since ﬁc-s = 0 by (5.104), this latter condition is equivalent to

.8=0 . ' (5.109)
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The two possibilities (5.108,9) are considered for longitudinal and
transverse waves; the analysis is closely related to that given for

M = 2 of the conditions (5.89,90) and only a summary is given.

For longitudinal waves s = ¢ 4 and if 63-s = 0 then it is found
from (5.103) that

2 -1
vg=p Q3 . ) (5.110)

(5.111)
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For transverse waves, s = 7 q; , A =1or 2 and if 63-s = 0 then -

2 -14 '
vy=p 0y (5.112)
if on the other hand & . 5 = 0 , then (5.103) yields:

g = o (G - 2@ HE )Y (5.113)

Influence of isotropic and directional constraints on the homen-
tropic propagation conditions

Ve now consider the propagation conditions (5.54-6) when either
isotropic constraints or directional constraints are presént. The
results (5.64-113) are employed where appropriate, but are presented
here in the thermal formulation. This facilitates comparison with the
~corresponding homothermal results and also enables the influence or

otherwise of the constraints on the solution to be more éasily seen.
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Longitudinal waves

In the case of isotropic constraints only, M = 1 and all

constraints are collinear:

from (4.42) , and

bt p=1, ..., N, from (2.86) with P=N .
The constraint vector ¢! in the entropic formulation is found from the

transformation (5.60) with the aid of (4.42) to be

' 1 2 0 ] '
14 -1 14
EE X R Bl % (5.114)

Clearly el is parallel to dg and so el is parallel to s since s = 7 qg;
consequently the condition (5.71) is satisfied and the longitudinal
wave speed is given by (5.75), which takes the form (thermal

formulation):

2 2
2.0 : 1 2.0
2 - 2 -1 1,-214 -1 1
"3=P1{Q3‘P b [%ﬁ:n} ) [5&%’”' o %%MH

(5.115)

The transformations (5.13) (5.60) and (5.62) have been used in

2’
obtaining (5.115) and we note that ot (and &1) is non-zero (constraints

for which 2% = &' = 0 when M = 1 must obey els =0 by (5.82) to be
compatible with non-homothermal waves, and this is not possible‘here by

(5.114)).
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The wave speed Vg is clearly influenced by the constraint ¢1

1
through the terms gg— and ul ; furthermore, all isotropic constraints
3

contribute non-zero terms Aaqg to Q3 . (This is easily seen by sub-
stituting the results (4.42) and (2.86) quoted above into (4.22,3) and
evaluating (4.24) with the aid of (4.25)). Finally, we note that

2,0 a
p:pZ—og—+p,\ag%— (5.116)

a
by (2.60), (2.93,4). Ve will not be evaluating g%— , but we note for

future reference that constraints for which #? = 0 do not contribute to

ko

WVhen only directional constraints are present, the situations dim
span {c} = ¥ = 0,1,2,3 are all possible and are now dealt with in
turn. Ve recall from the discussion following (4.53) that the corres-
ponding homothermal wave sﬁeeds Vg (M < 2).are unaffected by the
presence of directional constraints and are given by

2 -1 .
vg=p Q3 (4.29 bis)

where Q, is obtained from (4.22-5) and Qg = 0 by (4.53). In the
homentropic situation, it will be found that the constraint influence
on the longitudinal wave speed is non-zero in general for M > 1

Detailed results are given for the cases M = 0,1; results for M = 2,3
have similarities to those for M = 1 and are accordingly dealt with in

brief.
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Now M = P = 0 and we have, by the definition (2.89) of ¢,

c"=0=> ﬂXB z ai(pi-eA)(n-eB)qi =0 (5.117)
1

these constraints are mechanical by the previous discussion in this

chapter of the case M = 0.

The wéve speed is given by

2
' 2.0
Vg = p_l{qs - p2 u'l[gaﬂgz% } (5.65 bis)

and the constraint contributions to (, are found from (4.25), (2.89)
and (5.117) to be

by 0 - ,\nﬂzB(n-eA) (n-ep)
=0 . | (5.118)

Since all.the constraints afe mechanical, g in (5.65) is unaffected by
the constraints (recall (5.116)). Consequently the directional
constraints have no effect on the wave speed. We recall from the |
discussion following (4.53) that directional constraints have no effect
on the corresponding result for homothermal waves, ¥ = 0,1, or 2, which

is

vg=p O3 - | (4.29 bis)
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The constraint vector & is required to satisfy either (5.70) or

(5.71) when ot (and wl) is non-zero and we consider these in turn:

Vhen (5.70) holds, we have

so that (5.60) yields

2.0
-1 1
hag=out Flpro
3
and hence from (2.89),
_ 2.0
By ag(n-e,)(n-ey) = p 4t ot ‘933 £0 . (5.119)

The wave speed is given by

2 -1 2-162012
vg = p Q3 - p° B [55%5?] , (5.65 bis)

as it was for M = 0, but now the constraint contribution from ¢1 to

,o'1 Q; is found with the aid of (2.69), (4.22-5) to be

Lo 0= Bp(nee) (ney) (5-120)
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and this is nom-zero by (5.119). Similar contributions to { arise

from the constraints ¢1+”, p=1, ..., P-1 , and details are omitted.

Alternatively, if (5.71) holds, el s parallel to a3 and so

therefore is ¢! ; consequently we have, from (5.60), that
1
- (its value, however, differs from that in (5.119)).

The wave speed vq is given by (5.75), which when transformed (as in

(5.115) for isotropic constraints) to the thermal formulation takes the

form

) |
v = p‘l{u:,,- o* u‘ll%} : u(w%‘z[ﬂh(n-eg(n-eB) |

-1 1320.2 : o
P p T w EEEBZJ - - (5.122)

with the aid of (2.89). Once again the contribution p'l A Qé is

non- zero from (5.120,1), as is the contribution to g .

If we consider the case when all constraints are mechanical, then
(5.82) holds and this together with the transformation (5.60) and
(2.89) yields

ﬂig(n'eA)(n-eB) =0 . | (5.123)
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The wave speed is given by (5.84), which transforms as

0 .
2.0
-1 2 -1
V§=p Qg - 0% 4 [%;:—ﬂ} , (5.124)

and from (5.120) and (5.123) we see that the constraint contribution Qé
to Q3 is zero, as is that from the constraints ¢1+” s p=1, ..., P-1

since ¢ *F = Df ¢! , and so from (5.123)
1
ﬂAE”(n-eA)(n-eB) =0 . | (5.125)

Furthermore, g in (5.124) is unconstrained since w® = 0 in (5.116), and
consequently the directional constraints have no effect on the wave

speed 2 in (5.124) when all constraints are mechanical.

The constraint vector &2 is required}when 2 # 0 to satisfy either
(5.89) or (5.90) and wave speeds are given by (5.73) and (5.93)
respectively. The analysis in each situation is very similar to that
given above for M = 1; in essence we proceed as.before and obtain
equivalents of (5.116-119) and (5.65) but with ¢2 (resp. c2, w2, Qg)
replacing ¢1 (resp. cl, wl, Qé) throughout. Consequently, details are
omitted. Contributions to Q3 from the constraint'«labelled ¢1 when

= 2 are similar to those from ¢2 , and contributions from the
constraints ¢2+” , # =1, ..., P-2 can then be deduced with the aid of
the result (5.1), that 2th.g = Dﬁ s, 0=1,2.
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=
1]
[JX]

The previous analysis of this situation noted the similarity to
the case when M = 2; the constraint vector &3 (when i3 # 0) must
satisfy (5.108) or (5.109) and the corresponding wave speeds are given
by (5.110) and (5.111) respectively; the analysis with the results for

M =1,2 are immediate.

One significant difference between the situation when ¥ = 3 and
those when M = 0,1,2 is that comparisons with homothermal waves are
only possible for M < 2 , since M < 2 is a necessary condition for the
existence of homothermal waves by (4.3). Ve recall that situations
when M’ = 3 and only mechanical constraints are present are not

compatible with waves for which T # 0 .
Transverse waves

Since the analysis is similar to that presented above for longi-
tudinal waves, it is given in succinct form. Once again reference is
made to the earlier analysis (5.64-110) of solutions to the propagation

A

conditions for principal waves that are homentropic and non-

homotherﬁal.

Vhen only isotropic constraints are présent,_M = 1 and we have

from (4.42) and (2.86) with P = N the results
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Now c¢l-s = 0 for s = ¢ q A =1 or 2 from (4.42) and with the aid of

the transformation (5.60) we find that ¢ls = 0 . Ve recall the
previous analysis of this situation: transverse waves with T # 0 are

not compatible with a constraint for which él-s = 0 (irrespective of

the value of &1) from the discussion following (5.78) and the

discussion for @ = 0 following (5.80).

Turning now to the situation in which only directional constraints
are present, we recall from (4.56-8) that in the corresponding homo-
thermal sitﬁation for transverse wave propagation, directional con-
straints do in general influence the wave speed, unlike the situation

for homothermal longitudinal waves.

The previous discussion of principal wave solutions to the
propagation conditions when M = 0 is immediately applicable: transverse
homentropic waves with T # 0 are not compatible with this constraint

configuration.

Ve recall that when &1 # 0 , transverse waves with T # 0 are
compatible with directional constraints only when (5.71) holds, so that
él is parallel to qA . The situation &% = 0 is not allowed by (5.53)
and the discussion following (5.80). The wave speed v, is found from

(5.79), and in thermal variables takes the form

= oGy a) e (5126
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The influence of the constraint ¢1 on v, is manifest through cl-qA
(# 0) and ot , but is also present in {, (since c1-q3 # 0 by (5.60))
and 4 . The constraints ¢1+”, g =1, ;.., P-1 (for which,c1+” are
collinear with c1) influence Q . in a similar fashion to ¢1

- Furthermore, the directional constraints ¢P+n , 7. =1, ..., N-P (for
which cP+"'5 0) are compatible with non- homothermal transverse waves
‘when M = 1, unlike the previous case wvhen M = 0, since ¢1 unlike ¢P+n
is able to provide the necessary non-zero contributions to T by (5.80).

The constraints ¢P+n do not influence Yy s however.

H=2.3

The results for ¥ = 2,3 have close parallels with those for § = 1
and are merely summarized here. In each case, e # 0 and s
parallel to q ; the wave speed vy in the thermal formulation is given

by
=ty a2t e (5.121)

from (5.96) and (5.113) according as M = 2 or 3 respectively. The
contribution of the Mth constraint to v, parallels that of ¢1 when
M =1. The contributions of ¢< , (=1, ..., ¥-1 to QA are foﬁnd from
an analysis of (5.98) in the case when M = 2, and similar results are
obtainable from #-s = 0 in (5.104) when ¥ = 3. Contributions from the
remaining N-M constraints are similar to those discussed above in the

equivalent situation when M = 1.
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Temperature gradient ahead of homentropic waves in non- conductors

It has been noted that when H = T = 0 , the analysis of homo-
thermal wave propagation presented in Chapter 4 can be used in
prefererence to that for homentropic waves developed in this chaptér.
A similar situation is found to occur in the investigation of  wave
growth; we treat the growth of homentropic waves in non-conductors in
-Chapter 8, but when B = T = 0 , the corresponding analysis of homo-
thermal wave growth in Chapters 6 and 7 is to be preferred. In Chapter
4 (section following (4.58)) and Chapter 6, however, it is assumed that
the waves propagate in definite conductors and that the temperature is
constant ahead of the wave. By contrast, the homentropic waves treated
in this chapter and in Chépter 8 are propagating in non- conductors for
which any type II constraiﬁts présent satisfy .zﬂ-n = 0 (recall
discussion following (3.50)), and in Chapter 8 it is assumed that the
entropy is constant ahead of the wave. We therefore investigate the
temperature gradient ahead of a generalized transverse wave (H = T = 0)

in a non-conductor for which entropy is constant ahead of the wave.

Ve recall that 7 = - g% as in (2.62), and so since the entropy is

assumed to be constant ahead of the wave,

+
0 = Grad 7 = - Grad [g%] , - (5.128)

where a superscript plus sign denotes evaluation just ahead of the

wave.
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Equation (5.128) is evaluated in the thermal formulation and we obtain

+

0 + _
Z Heii> Feggsis " H 0 st p 0 a,<i> -0 (5.129)
J
vith the aid of (2.92-5) for X° , 4 and «® . The angle brackets in
(5.129) denote "physical components" with respect to an orthonormal
basis of vectors p; or q, or combinations of these. (Ve will make

extensive use of such components in Chapters 6-8).

We now assume that the temperature is constant ahead of the wave,
and so (5.129) reduces to

Z K° P + Wt

<Gi> T<ij;i a,<i> =0 - (5.130)

J

The condition (5.130) must be satisfied whenever the analysis of
Chapters 4, 6, 7 is adopted for waves satisfying H = T = 0 with Grad 6"

= Grad 7" = 0 .

Two special cases of (5.130) are worth noting. Firstly, when all
type I constraints are mechanical, «% = 0 for a = 1, ..., N and (5.130)

reduces to

0 +
Z ¥eii> Fejisi
J

=0 . (5.131)

Secondly, if we assume that plane, cylindrical or spherical waves

are propagating in irrotationally deformed materials as specified by
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(4.60-70), (this assumption is also made in Chapters 6-8), then the

results of Appendix B for Grad F yield that the only non-zero

' +
components F<jj;i>‘are
+ .

(see also (6.34)), and so (5.130) takes the form
0 2 + _
NP Yo,35 =0

=0 ; TI=1,2 . . (5.133)
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CHAPTER 6

GROWTH EQUATIONS FOR HOMOTHERMAL WAVES

The propagation conditions (4.19,20) are unable to predict the
change in magnitude ¢ of a homothermal acceleration wave as it passes
through the material. In this chapter we derive the growth eguation'
for homothermal waves in isotropic media subject to both type I con-
straints satisfying (2.66) or (2.68,9), and tQ type II constraints;
this is a differential equation whose solution provides information

about the behaviour of ¢ with time.

Reddy in (I) derived the growth equation for plane waves in
thermoelastic media subject to type I and type II constraints, and
assumed hombgeheous deformation. We extend these results by removing
the restriction of homogeneous deformation and also vby -considering
cylindrical and sphericél waves as well as plane waves; ﬁhese are taken
to be propagating in definite conductors subject to the deformations

specified in cases (A) - (C) at the end of Chapter 4.

Ve further extend the results of (I) by treating the type I

P-M

constraint subsets {¢M+”}#=1

and ¢P+”}2;E (see (2.86,7)) as well as
the linearly independent subset {¢0 g:l dealt with in (I). ‘It is found
that when we consider longitudinél waves and when type II constraints
are absent, the tyﬁé I constraints must satisfy certain restrictions as
detailed in (6.29) if either or both of the subsets {¢M+“} , {¢P+”} are

present. For transverse waves a minor restriction is imposed on the

subset {¢M+“} in the discussion following (6.32). The restrictions
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imposed above are due to the fact that solutions for the jumps [}a] are
not separately available when linearly dependent constraints are
present; this difficulty manifests itself again in the investigation of

homentropic wave growth in Chapter 8.

The growth equation is derived for both longitudinal and trans-
verse principal waves and is shown to be a Bernoulli equation and a
linear first-order equation respectively. Solutions to these equations

are dealt with in Chapter 7. ‘

Our equations have close analogues in the literature on uncon-
strained materials;VChen (1968c), Bowen and Wang (1971), and Chadwick
and Currie (1972) coﬁsider the;modynamic influences on such materials;
see also the review by Chen (1973). For constrained elastic materials,
Ogdenr(1974) treats the growth of plane'acceleration_waves in incom-
pressible media, Scott (1975) discusses propagation\ and growth of
~acceleration waves in elastic materials subject to arbitrary mechanical
constraihts, and provides an application (Scott (1976)) to incom-
pressible materials. Reddy (I) however, appears to be the fifst to
provide a general theory for the propagation and growth of acceleration

waves subject to arbitrary thermomechanical constraints.

The derivation of the growth equation begins with the calculation
of the jump in the time derivative of the equation of motion (2.9)
across the wavefront. The time derivative of the body force b is

assumed to be continuous, and we find that

[Div 8] = p['x'] . (6.1)
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Now (3.26) provides an identity for ['x'] , and this introduces the
displacement derivative of s . Ve find after substitution of (3.26) in

(6.1) and some rearrangement that

2 p ds -1 v

=PV ss - p )2 v +.[Div S] ., - (6.2)

where the vector w satisfies w-a = [Grad F](a, n, n) as in (3.28).
After taking the dot product of (6.2) with s and using the definition -

(3.34) of the magnitude ¢ of the wave amplitude, we find that

208 B 2 e e Div ] L (63)

The expression s-([Div S] is now evaluated. We have from (2.46), , and
, , =01,

(2.47) that
RISTRRS TR R R | (6.4)

where the vector and temsor components in (6.4) are relative to the
basis vectors defined by (2.1,2), and A , X% and S® are defined by
(4.8), (2.92,5) and (2.43), respectively.

The divergence of § is found from (6.4) to be

8 T jfn , 9 j e a J l ik
5 ;T [Al km n;j * 90 [Al k ]0 j + Ay A a,j Py

j £k
+ A. ik F 453
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6»[03’]1{ a[oj] 0j ;
X F . : . : .
+ L?sz i )P e M)l 0 T 0

aj gk g ajj
+ Ay F £ Ay *+ 85 Aa,' . (6.5)

k a h|

In (6.5), the sixth-order tensor of elastic moduli A is defined by

3 .
. 9
A= p ‘T'Lal? FOF (6.6)

and the constraint term A% is given by

3 2
< o el = ¢ e

~

from (2.46), and (4.8). Ve have also used the result that for type I

constraints considered here,

2 0
B R | by (2.92,5).

The jump [Sir_r] is now evaluated using (6.5) in conjunction with
b -

the identity (Vang and Truesdell (1973), p.456)
[ab] = - [a][b] + a’[b] + [a]b" , (6.7)

- where a,b are scalar-, vector-, or tensor-valued quantities and the
superscript plus sign denotes evaluation just ahead of the wave. Ve
assume the material ahead of the wave to be at rest and at conmstant

temperature, so that F* , Grad P, }; , Grad }; , 0" and Grad 6" are
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all zero, and we find that

85 = [ AL B - B At

i ikm

-Ang[A,J]+A"J‘ J][F]+A1k[FeJ]

[ akg[MOJ][ka e P R & ] [”,j]]m
+M(.1)j[?0,j]+[-AaJe[Fe] “J‘ ][A]

. 8¢ jUa,j] e (6.8)

In (6.8), the components of the third-order tensor E are defined by

£ _ 4] {1
Bik = 4km [ on;j
The jumps involving derivatives of F in (6.8) are evaluated using
(3.24,5,7), and we also employ the result for homothermal waves that
[6rad 4] = [#] = 0 from (3.37,9). The identity (3.22), is then used to

express [Grad A ] in terms of ] -

An expression for s-[Div S] can now be obtained from (6.8) with

the aid of the above results frbm Chapter 3, and we find that

-1

s-[Div §] = v 3 A(s,n,s,n,s,n) - v = E'(s,s,n)

. A%(s, Grad Az, S,n)
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-+

Q(s,%) - A(s,n, (v'1s) p, ) - A(s, B, (v 1s) [,m)
+ v 1glh A(S,HF,S,HA) + X°(s, [Grad 0])

- 272 Q%s,8) [} ]

-+

k"*.s[}a] + 8%(s, [Grad A0

(6.9)
Here k? is defined to be the vector with components
e _,a] € gk
ki = Ay F Gi (6.10)
Q is as defined in - (4.10,11), and Qa(s,s) = Aa(s,n,s,n) (see
(4.10,11,25)). -

The expression (6.9) for s-[Div §] is used in (6.3), and the remaining
jumps in (6.3) are evaluated in turn. A term a'l(ﬂ(s,w) - p V2-s-w) is
now present on the right-hand side of (6.3), and with the aid of (4.15)
we find that

Q(s,w) - p V2 sw=- (d-Qs)c’-w , c=1, ..., M
o
(6.11)

Ve are concerned with homothermal principal waves for which s = ¢ q9; >

i = 1,2 or 3, in which case Qs is parallel to s by (4.27). Now do-s
"= 0 by the discussion following (4.13), and consequently

d Qs =0 _ | (6.12)
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so that the expression on the left-hand side of (6.11) vanishes. (The

result (6.12) will again be useful later on in the evaluation of the

jumps [ia])

The term M°(s, [6rad #]) in (6.9) is now evaluated. Thomas’s
iterated kinematical condition of compatibility (3.19)1 yields for

homothermal waves the identity

[6rad ] =- v E n (6.13)
where £ = [n-(Grad (6rad f)m] . (The scalar Z is not related to the
vector £ introduced in (3.2), and no confusion is likely to arise
between the two).
From (6.13) then,

X(s, [6rad 6]) = - v £ X%(s,n)

and since we assume the waves to be propagating with D-pg in isotropic

" media, we have from (2.95) that

X (s,1) - P;;—%p (s-a5)

Consequently,

X°(s, [6rad 4]) v E %—ﬁgy (s q3 . ;(6.14)

For transverse waves s = q > 4 =1o0r 2, and so

X°(s, [6rad §]) = 0 from (6.14). | (6.15)
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For longitudinal waves, we follow (I) and find an expression for Z

and thence [Grad.a] , but are able to show that the restriction imposed

there of homogeneous deformation is unnecessary.

Ve first assume that type II constraints defined by (2.37) are

present. The time derivative of (2.37) is
ﬁﬂ-Grad g + zﬂ-Grad h=0 - (6.16)

and the jump of (6.16) is found with the aid of the identity (6.7) to
be

- [#7]-[6rad 0] + 7 [Grad 0]
+ [Grad #%]-Grad 0" + 2% [Grad 0] =0 . (6.17)
Since the material ahead of the wave is assumed to be at constant
temperature, Grad " = 0 , and we also have [Grad ] = 0 for homo-
thermal waves by (3.37,9). Hence (6.17) reduces to’
zﬂ-[Grad =0 . (6.18)
Now (6.18) can be writtem with the aid of (6.13) as

~vEeda-0 . (6.19)

If zﬂ-n = 0 for all type II constraints present, we are unable to

determine £ from (6.19). Ve therefore assume (as in (I)) that Pon #0
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for at least one type II constraint, in which case (6.19) yields

2=0 (6.20)
Consequently [6rad ] = 0 from (6.13), so that
(s, [6rad 8]) =0 . (6.21)

Vhen type II constraints are absent, we consider the jump in the

heat flux q , where q is defined by (2.46),:

[6rad q] = J3 [Grad ¥] + N%m [6rad (Grad 6)] + 33 @ [Grad 4]

(6.22)

For homothermal waves Grad @ is continuous at the wavefront by
(3.37,9). Since Grad §" = 0 by the assumption of constant temperature
ahead of the wave we have Grad f = 0 at the wavefront. Equation (6.22)

now reduces to

[6rad q] = - £ (Kn) - (6.23)
: Grad 4 = 0

where the thermal conductivity tensor K for constrained materials is

defined as in (2.21) to be

_ - 0q° -
K = H’GTag‘T?S (2.21 bis),

Grad 6 = 0
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and where we have used the result (Chadwick and Currie (1972), equation

(3.1)) that

=0
Grad 6 = 0

:

From (6.23), the identity Div q = tr (Grad q) implies
Mivg =-2x , | (6.24)

where £ = K(n,n) ,
Grad 0 = 0

and so the jump of the energy equation (2.48) can be written as
plOvi=-Z2¢%k |, | (6.25)
where the entropy jump H is defined by
B = [Grad n-n] . | (3.42 bis)

An expression for H is obtained from (5.48), and for homothermal waves

we have

2.0 ' |
-1 .
pvH=-pv gifﬁ? (s-q3) + 4 wa[)a] y (6.26)

' 2,0
where we have used the fact that s-¥°n = p gig?? (s-q3) as in the

derivation of (6.14).
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Ve now evaluate pwa[ﬁa] in (6.26). The only solutions available for
[A,] are those obtained from (4.14) with the aid of (6.12); we recall

that

"

_da-(]szpz/[[;\a]+D/; [iMW]] L o=1, ..., A

7

1, ..., B-M
(4.14 bis)

and for homothermal principal waves with s = ¢ q > i=1,2o0r3,

d -gs=0 |, (6.12 bis)

o
so we have
[A,] + 04 [)M+ﬂ] =0 . (6.27)

Clearly, when only the subset {¢°} is present (we recall from (2.86)
that these constraints have.constraint vectors ¢’ which form a linearly

independent set), then
Bl=0 r=1, ..., 0 . (6.28)

Vhen the subset {JM+”} is present, (6.27) is unable to provide

solutions for the individual jumps [} ] , [}M+ﬂ] . Furthermore, there

is no information regarding the jumps [lp, ] , 7 = 1, ..., NP,

corresponding to the constraint subset {¢P+41 corresponding to which
cP+” =0 |
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"Consequently the term pwa[ia] can only be evaluated in the

following situations:

(i) when the subset {¢P+”} is present, if these constraints are
mechanical, so that wP+” =0 ; |

(ii) when the subset {¢M+“} is present, if all constraints are
mechanical, so that =20 ,a=1, ..., N.

(6.29)

Vhen (6.29) holds, pwa[ia] - 0 and from (6.25) with the aid of (6.26)

we have for s = ¢ q that

2.0
.1 -1, @ | o
Z=pv &k 0o g . B - (6.30)

Finally we obtain from (6.14), for the case in which type 11

~ constraints are absent,

K°(s, [Grad ]) =t-'ﬁ-1 002{pg§£%p] - (6.31)

Ve collect together the results (6.15), (6.21) and (6.31) and find that

for longitudinal waves (s = ¢ Gg) »°

X°(s, [Grad 8]) when type II constraints are

1!
o

present (recall that we assume
that at least one type II con- -
straint obeys z°-m # 0) ,

, , 2
. _ 2.0 :
- =K 1 0 02 [p giﬂﬁﬁ] when type II constraints
3 are absent; | |
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| .
¢t = gy 2y (py-€y) (n-ep)q, (4.49 bis)

where A = 1 or 2 according as A = 2 or 1,
and ﬂ%ﬁ” is required to be neither positive- nor

negative-definite.

(It is noteworthy that the term QM+”(s,s) in (4.55) is not necessarily
non-zero for isotropic constraints; we recall from the discussion
following (4.55) that it is zero for temperature-dependent

compressibility, for instance).

Ve therefore assume that for transverse waves, constraints for which

QM+“(s,s) #+ 0 are absent.

Turning now to the term k% .5 , we note that for waves with s =
q;, i = 1,2 or 3, the definition (6.10) for k% leads to the following

. +
expression for k% .5 :

k% .5 = ¢ A P

<ij ké> (6.33)

+

<kl;j>
(We recall from (5.129) that the subscripts enclosed in angle brackets
denote "physical comporents" relative to an orthonormal basis of proper
vectors p; or q; , or combinations of these. We will make extensive

use of this component representation in future).

We now investigate (6.33) for isotropic materials subject to the
class of.irrotational deformations introduced in Chapter 4, and show
that fof longitudinal and transverse principal waves propagating under
these conditions, the term k%" .s is always zero. It will be recalled

that we considered plane waves (resp. cylindrical, spherical) in
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materials subject to a plane deformation (resp. cylindrically“
symmetric, spherically symmetric), with the deformation and principal
. stretches specified for plane deformations by (4.61,2) (resp. (4.65,6)
for cylindrical deformations, (4.69,70) for spherical defcrmations).

Under these situations, the only non-zero components F . are
<k{

\ 33>
found with the aid of the results in Appendix B to be

+

<33;3>
F

plane deformation : F

F F

+ + + . + .

<33;3> ? "<11;33> ? T<31;1> ? <13
. . + + _ + +

spherical deformation : F<33;3> , F<FF;3> , F<3F;P> , F<P3;F> ,

cylindrical deformation : F

r =1,2
(6.34)

Now for longitudinal waves we may have only directional con-

straints (recall discussion preceding (4.43)) and, with s Q3 , we

have from (4.21) for A , (2.68,9) for c¢® and (6.33,4)
a+ - a . . +
k™" a5 = Byp(ps-ey) (pgrep)f i3y, s,

Byp(n-ey) (n-ep)Foaq. g

- a . . + . 3 +
- | By[e) (aeepFigg g + (e (pyep)Fiyy, )

ﬂXB[(n'eA)(n'eB)F:33;3> +) (Pr'eA)(Pr‘eB)F:3r;r>]
r o

(6.35)

for plane, cylindrical and spherical waves, respectively. ~But we

"recall from (4.43) that a necessary condition for the existence of
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longitudinil waves is that
Bip(n-e,)(n-ep) =0 | (4.43 bis)

and so the terms in (6.35) involving F:33_3> are zero. For cylindrical
b)
waves we see from (4.75-77) that either ﬂXB(pl'eA)(pl'eB) = 0 or, if it
is non-zero then the deformation must necessarily be homogeneous. For
. . + -1 .
this latter case F<31;1> = R (a3 - al) = 0 , so that either way
(6.35)o is zero. In the same way we can establish that (6.35), is

Z€ro..

For transverse waves we have, for s = ¢ q, A =1o0r 2, that

a+ _,a +
Keay = Ays wos Feresis

Y + a +
= A% 33> Feasi3 * ) [A<A3 rrs Farr;ss
| r

+ A2 + A F (6.36)

<AT 3> F

+ a +
<3r;Im> <AT T3> “<I'3;I>

in which only the first term is non-zero for plane waves, while for
cylindricai waves the remaining terms are zero for T = 2 . By

inspection the first term is zero for an isotropic constraint since the

D a a a
only non-zero components of A" are then A<ii ij> A<ij ij> and
Al from (4.21). Hence we now look at directional constraints,

<ij ji>
and we recall from (4.56) that

Bip(py-ey)(n-ep) = 0 | (4.56 bis)



174

must be satisfied. Also, from (4.21) we have

Q _ a . .
s ko> = 7 Pap(py-ey) (pyrep)bpy

¢

so that AgA3 335 = ASAF r> = 0 . TFor cylindrical‘waves we are left

with the terms

a + a +
Aas 11> Fern;ss * Aat 13> Tass

da a, - a
1 1
= ﬂZB(“'eA)(pl'eB)[dR + 2y }5A1

" which is zero from (4.56), so that k®".s = 0 . In the same way we can
argue that k% .s = 0 for spherical waves. In all circumstances then,

we have the result
x™.s=0 . B ~(6.37)
Ve turn finally to the term SQ(s, (Grad ia]) that occurs on the

right-hand side of (6.3) from (6.9). The compatibility condition
(3.18), enables us to write

[6rad ia] =4, 0+ [ia],r i , (6.38)

where A = [(Grad ia)-n]
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. |
Since §% = 7 g% from (2.43),, we find with the aid of (6.38) that

. 94 . I -
$%(s, [Grad A ]) =7 98 [s, Ayn+ i), 0 ]
I‘ .
=, chs + S8, ) [A ]1,p (6.39)
where we have uséd the definition (2.85) for c? .

Now for homothermal waves we recall from (4.20) that the second
propagation condition takes the form ¢®s = 0 , and so we obtain from

(6.39)
s%(s, [Grad A ]) = Sa(s,HF)[}a],F. . (6.40)

The term Sa[s,HF] can be shown to vanish in certain circum-
stances, but is in general non-zero, and so the terms [}a],r need to be
evaluated. The jumps [A ] in (6.40) can be determined in the situation
when only the subset {47} is present, and then [ia] =0,0=1, ..., M
by (6.28). If either or both of the subsets {¢M+ﬂ} and {¢P+”} are also
present, the jumps [ia] can no longer be determined, as will be

recalled from the discussion following (6.28).

Ve accordingly adopt another approach and recall that the material is
subject to the class of irrotational deformations described in Chaptér
4, and that for these deformations there is dependence on the X3
coordinate only, so that x = x(X) (resp. r = r(R)) for plane (resp.
cylindrically and spherically symmetric) deformations by (4.61) (resp.

- (4.65,9). Ve also recall that e, p; is independent of position by

J
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(4.59), and that we have earlier assumed the temperature ahead of the
vave to be constant. We further assume that the body force b is a
functior of X3 only, and that in the unbounded medium all other data
(such as prescrlbed surface tractions on boundary surfaces, if such
surfaces exist) depend at most on X3 . It is not difficult to show
that the equations of equilibrium under these circumstances admit
solutions A which are functions of X3 only. Rather than furnish full
details, for an example of the outcome of such a calculation we refer
the reader to work by Beskos (1973) on universal solutlons for fibre-
reinforced incompressible isotropic elastic materials. Beskos obtained
solutions for stresses and constraint multipliers A as functions of X3
for a variety of situations which include the class of deformations
considered here. Vith the above assumption for A, we find that [ia] is

independent of XF and consequently (6.40) reduces to
s%(s, [Grad 1 ]) =0 . (6.41)

This completes the evaluation of the remaining terms involving
jumps in (6.9). Ve have finally from (6.3) and (6.9) together with the
results (6.11,12), (6.32), (6.37) and (6.41) the equation for the
amplitude: | | ’

2p s.%% p y 1 %Z §'§ + UV A(s,n,s,n,s,n) T E+(s,s,n)

A(s,m, (v 1s),poH) - A(s,H, (v '8),p5m)

+

-1 T'A
v A(s,HF,s,HA)ﬂ - v A;,3 g’ (s,s)

- v 2 X°(s,n) ., o=1, ..., 0 . (6.42)



177

The underlined term in (6.42) is zero unless s = ¢ a3 and type II
constraints are absent by (6.32). Ve have simplified the term - v 1
A%(s, Grad A;, s,n) in (6.9) and (6.3) by using the assumption that
A; = A;(X3) and the result AM+£(s,n,s,n) = QM+£(s,s) =0, =1, ...,
N-M , as in the discussion of Q%(s,s) following (6.32).

Growth eguation for longitudinal waves

Qur aim now is to investigate further equation (6.42) for
longitudinal waves. Since longitudinal waves are incompatible with
isotropic constraints by the discussion preceding (4.43), it is only
necessary to consider directional constraints. The growth equation

becomes, with s = ¢ q3 and n = pg ,

-1 2§ -3 3
2p0 %% pv @ 3% Vo0 AQ(Q3’P3aQ3aP3’Q3’P3)

12 |
-v 0 E+(Q3’Q3’p3)
| 1 r | P, -1
-0 A(Q3’P3’(V o Q3)’Pa H ) 4 A(Q3’ B,(v o Q3),Pa P3)

1 2 A 1, 2
+ vV 1 o Q A(q3, HA’ d35 HF) - K 1 0 a .lO(Q3’P3) ‘

(6.43)

and we note thaf the term involving qa(s,s) in.(6.42) is zero for
longitudinal waves ;by (4.53), and that the superscript zero on A4
indicates that ﬁﬂé term contains no quantities associated with
constraints (see comment at the end of Appendix ).

Ve now specialize (6.43) for the set of irrotational deformations

described by (4.61,5,9). Making use of the results in Appendices A and |
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B, the term E+(q3,q3,p3) is

-+

+ _ 40
E"(a3,93:P3) = 435 33 mn> F<mn;i>

_ 0 ' 0 -1
=Y L5 33 m> 20,3 * L (Aar 33 30> * Aar 33 13> B (23 2p)s
m I

(6.44)
the remaining termé being zero.

Ve consider next the terms involving the fourth- order tensor A in
(6.43). For the class of deformations (4.61,5,9) and corresponding
wavefronts, v and ¢ depend only on X3 and so do not vary along the

" wavefront. Hence

dq. i
-1 , -1 34 -1 ¢ -1
(v ogg) p=v o3 Eir = v 0 73p(1 - byq) aplepl "l6pley
-1 -1 -1 -1 ,
=- v 0T aplGplap =- v 0 |6plap s
(6.45)
v o v 6q3 Bxi
where we have used expressions for —7 E_F from Appendix B, and the
gx~ dX

fact that a; = 1p R}l whenever R}l $#0 .

The terms on the right-hand side of (6.43) involving A now reduce to

-1 2 -1 [,0 0 0 a
-V ) b [A<33 rrs> * Aear 13> 7 Acar ar> ~ Aa Aear 3r>]
I | -
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Finally, the growth equation for longitudinal waves is found from

(6.43) with the aid of the above results to be

bo _ -3 2 0 , -1 dv
20 5=V " 0" Agza333 vV {” 7 ) 433 33 mo> 2n,3
m

-1 . 0
- LR {[Agsr 33 30> * Aar 33 r3>](a3 - ap)

r
0 0 0 a
*+ Lag o> * Acar 13>~ Acar 3>~ Aa Adar 3r>}
-1 02 0 2 .
+ K 0 p 2y a ’ : (6-46)
3

where the underlined term is zero unless type II constraints are absent
(recall (6.32)). Note that the influence of type I conmstraints is
manifested solely in the term involving Aa ; we recall that the wave

speed v is unaffected by the constraints from (4.53).

Growth equation for transverse waves

Ve begih again with (6.42) and set s = 7 q with A = 1 or 2. The

growth equation is then

-3 9 -
pv o %% + vV 3 o A(QAan7QA7n’QA7n)

2p %%

+

-1
v {' o E+(QA7qA7n) - A(QA7n7s,F3HF) - A(qA7HF7s,F3n)

+

D) A(qA,HF,qA,HF)ﬂFF} . (6.47)
: | ,
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Ve now evaluate the terms in (6.45). First,

v3 6 Agym,aym,qm) = V0 g g pg =0

(6.48)

using the results of Appendix A. Next,

+ +
E*(a4,95m) = 4pj 43 o> Femn;o

) -1 _
=Y Aps 43 16> 24,3 * ) [A<AF A3 T3> * AT A3 3r>]Rr (ag - ap)
i - r ‘

(6.49)

the remaining terms are found from Appendices A and B to be zero for

the irrotational deformations described by (4.61,5,9).

Ve turn now to the terms involving A . The expression s P =09 I\.is
R . ) ?

simplified using

1/2 '
=M B, + 04,0
6YF AT “A rA

where Fﬁr is the Christoffel symbol, and we get, after some

manipulation,

J{A(qA,n,qA,F,HF) + A(qA,HF,qA,F,n) 2 A(qA, quA F)nFF}
\

s Rl
) {2( Bp/? Thp + Byg Tara)Aas ars
I |
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+ R_l A

+ hon 33y) B Ay AF>}

1
ol TR COTEIE YN

-1 -1 -1
-y ”{' Ry (Aeas gas + A 335) LE A AP>} ’
r

(6.50)

the terms involving the Christoffel symbols being zero for the types of

wavefronts considered here.

Vith the aid of (6.49,50) in (6.47) the growth equation for transverse
waves reduces to
bo _ 1 0{ bv

20 5t Pt L A as in> 2i3
1

+ T
AT’<3> q<AA>

-1
DL [(A<AF 03 13> * Aar a3 3> (337 ap) * Ay Ar>]
r
+ R_l(A + A ) T=1 |
A V<43 3A> <AA 33> ’ ’ J
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CHAPTER 7

SOLUTIONS OF THE GROVTH EQUATIONS FOR HOMOTHERMAL WAVES

We now present solutions to the growth equations (6.46) and
(6.51), which are shown to be a Bernoulli equation and a linear first- |
ordef equation respectively. We discuss the general behaviour of the
solutions, following Bailey and Chen (1971) and the review by Chen
(1973), then present results for plane, cyiindrical ‘and spherical
waves. Throughout the chapter we recover as special cases the well-
known results for unconstrained materials, in particular those given by
Chen (1968 a,b,c), Chadwick and Currie (1972) and by Bowen and Vang
(1970,1971). (Ve differ slightly from Bowen and Vang (1972) however, in
that our expression for transverse waves in non- homogeneously deformed
media involves the wavefront curvature components "<PA> rather than the

1,0
mean curvature 5 fip) .

In the case of constrained materials our general result for
transverse waves includes the result for plane waves in an incom-
pressible iSotrOpic solid given by Ogden (1974) and confirmed by Scott
(1976), who also discusses the cylindrical case. Reddy in (I) provides
results for plane waves in homogeneously deformed thermoelastic media
subject to type I and type II constraints, but does not treat the case

in which the constraint vectors c*

are linearly dependent. O0Our results
for plane waves are special cases of his in the sense that we assume
material isotropy and the restrictions (2.66,8,9) on type I con-
straints, but are also slightly more general in that we allow in the

case of longitudinal (resp. transverse) waves, the presence of
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mechanical (resp. thermomechanical) constraints with linearly dependent
vectors ¢? , and do not assume homogeneous deformation a priori. (0f
course, the results of Chapter 4 indicate that in certain circumstances
the constraints do not admit non-homogeneous deformations.) Qur
approach in fhis chapter is not to concentrate on results for specific
constraints (although this can easily be done using, for example, the -
constraints described in Chapter 4), but rather to show the general

influence (or otherwise) of the constraints on the solution.

Ve begin by récording the identity

__d 2
Ais i3 o = Fag (Vi) (7.1)
which follows from (4.29), (4.21-4), and the results of Appendix A.

Since the material is assumed to be at rest ahead of the wave, the

displacement derivative defined by (3.16) takes the respective forms

6y _ , dx

3% = Vi dn
and

ov dv

for arbitrary scalar y and vector or temsor Y , where n measures

displacement in the normal direction.
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Longitudinal waves

Vith the aid of (7.1) and (7.2) the growth equation (6.46) reduces

to
d 2 ' -1
ﬁ = ar” - (B + 7I‘RI‘ )o (7.3)
where
v, ‘
-3 73
a(n) - Vg 555 , , (7.4)
2 B
dv ) 2,0
f(n) = % V31[HH§ . 0[p %5?5?] } - (7.5)
[0 for plane waves,
{1 -1 -2].,,0 0 '
() =137 ”3_{(A<3r 33 31> * Aar 33 r3,) (23 - 2p)

0 0 0 Q |
" Az s~ Acsr s> Adar ap AaﬁAB(pF'eA)(pF'eB)}

| for cylindrical or spherical waves.

(7.6)

The underlined term in (7.5) is zero unless type II constraints are
absent. Ve note immediately that e(n) in (7.4) has no contribution
from the constraints. This is because Vg is constraint- independent by
(4.53), and so is dvy/da; , since for lomgitudinal waves isotropic
constraints are absent and A in (7.1) has no contributions from the
directional constraints (see conclusions to Appendix A). Furthermore,

a(n) > 0 (resp. < 0) implies that dvy/daq > O (resp. < 0) since we have
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assumed that v; > 0 . Ve note that for homogeneous deformation, A(n)
in (7.5) is independent of the constraints, e, f, 1 are all constant,

and 4 > 0 .

The growth equation (7.3) is a Bernoulli equation and its
solutions in the context of acceleration waves were discussed by Bailey
and Chen (1971), Bowen and Chen (1972) and reviewed by Chen (1973).
Since we treat plane, cylindrical and spherical waves propagating in
regions subject to plane, cylindrically symmetric and spherically
symmetric deformations respectively, the waves propagate as families of
parallel surfaces. Furthermore the principal curvatures for these waves

are non-positive by (4.71-3), so that the waves are diverging waves in

the sense defined by Bowen and Chen (op.cit.). The following analysis
(due to Bailey and Chen (op.cit), but see also Chen’s review (Chen

(1973), Section 13) therefore applies: we assume that

(1) e, f, 1p are defined and integrable on every finite

subinterval of [0,w) ;

(ii) a(n) is of fixed sign on [0,n) ;
(iii) ¢, > 0 , vhere o = 0|y » (Bailey and Chen treat also
0y < 0) ; we note also from (7.3) that if ¢ (n;) = O then

ao(n) = 0 for all n > n, ..
(iv) lim inf |a(n)| # 0 (in one case, (see Chen (1973), page 340)
. B

the weaker condition [® |a(n)| dn = o , where n = n|,_,
n, 0 t=0

is sufficient).

(7.7)
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The local, global and asymptotic behaviour of the amplitude was
discussed by Bailey and Chen (op. cit.) and the results are conven-
iently presented by Chen ((1973), Theorems 13.1-13.5). We outline here
the essential featﬁrés of these theorems, then comment in more detail
on the influence of the constraints on the solutions for the particular

waveforms specified.
(a) 2a>0

Local behaviour of ¢(n) :

| ~greater than) f + 1; Ril ds greater than
If ¢ is { equal to —————— then 3~ is { equal to 0 .

less then ¢ dn less then
(7.8)
Global behaviour of s(n) :
If ¢, > 0, then lim n_ s(n) =0, | » (7.9)
and if ¢ < ¢ . then lim inf ¢(n) =0 , (7.10)

and the finite distance n_ are defined

‘where the critical amplitude Oor

7l = Jm a(n) exp[— Jn B + 10 h d(} dn (7.11)
n0
and '

J “atm exp[— j (B(¢) + 1O CH dc] dn =gt o, (7.12)
0 0 '
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respectively, and where 7 = 0 for plane waves, 7 = 7 for cylindrical

waves and 7 = 7, + 7o for spherical waves (see (7.6)).
Asymptotic behaviour of «(n) :

If Ty > Oor and e is continuous from below at n_, then

o(n) = {a(n )(n - n )} ' + 0(1)) as n - n_
where

a(n ) = lin a(n)
® noon

If 7 < O.p then

dmwmﬂjymwﬂmﬂwa-%ﬁﬂuwm>

0

as n - o or as os(n) - 0 .

Ve note that for 0,> 0 the asymptotic behaviour of ¢ is due solely

cr ?
to the unconstrained term a(n) .

(b) a< O

Local behaviour of ¢(n) :

greater than] f + 1p Rfl do .- ‘greater than)
If ¢ is { equal to —Y then an is { equal to 0.
less then less then

(7.13)
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Global behaviour of s(n) :

-1
ﬂ""YPRI\

: is bounded above or tends to a finite or infinite

(i) If

limit L > 0 , the same is true for any solution o¢(n) .
(ii) Let al(n) , 0o(n) be any two solutions with ¢ < 0 .

If lim o,(n) = o then lim sy(n) = o .

n- o n- o

If al(n) is bounded then az(n) is bounded.

If lim ¢,(n) = 0, then lim oo(n) = 0 and

n- o n- o
nl_i.mm (¢y(n) - g9(n)) =0 .
Theorem (i) says that if d'l(ﬂ + Ril) is well behaved, then
the solutions ¢(n) will eventuélly behave the same way as a’l(ﬂ +
Ril) , and theorem (ii) says that the eventual behaviour of all
solutions is the same even if the behaviour of a'l(ﬂ + 1 Ril) is not

known (Chen (1973)).

Ve now investigate in more detail the solution of (7.3) for

-particular waveforms.
(1) Plane waves
Equation (7.3) reduces to

do/dX = a(X)e® - B(X)s (7.14)

a
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with a(X) and f(X) as in (7.4,5) with X replacing n . Since both a and
f are unaffected by the constraints, the growth of plane waves is

constraint- independent. The solution of (7.14) is

| 7, exp (- fX)
{t- (a0, FH(1- exp(- A}

for a0, #0 ,

g = <ao(1 - a0, X)'l fora+0, =0 ,.
7, €Xp (- fX) fora=0, #0
- (7.15)

For a >0, f# 0, the critical amplitude ¢ _ in (7.11) takes the form

cr

o X '
a'ci = Jx a(X_) eXP[- Jx B(¢) dc} dX

0 0
and the finite distance Xm is defined by
X X _ '

(p. _ . _1
|7 e exs|- [ p(0) a¢] ax =
X %

In the special case of homogeneous deformation,

Jer
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There are then three possibilities for s(X) :

= - i i
0y > e > ¢ -+ o in a distance Xm ,
Oy = Oop = f/a => ¢ remains constant
0, < O¢r => ¢ decreases monotonically and approaches zero

exponentially as X - o .

The solution (7.15) reduces to that given by Chadwick and Currie
(1972)'f0f unconstrained materials subject to homogeneous deformations
and also to that given by Bowen and Wang (1971) for inhomogeneous medié
(note, however, that we are dealing with homogeneous media subject to

non- homogeneous deformations).

(ii) Cylindrical waves

For this case equation (7.3) is

(=%

df = a(R)o® - (A(R) + 71(11)11‘1)0 : (7.16)

The constraints influence the result only through the term Aa

-ﬂZB(pl-eA)(pl-eB) appearing in 7, , and we recall from (4.75-7) that
. . a

the deformation is unrestricted unless AaﬂAB(pl-eA)(pl-eB) # 0 for at

least one a , for which case we the material must necessarily be in a

state of homogeneous deformation when longitudinal waves are present.

For homogeneous deformation, the principal stretches are of course

constant and so a, A (>0) and 7 are no 1onger functions of R . The
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solution in this case is then

7, €XP (- B(R - RO)){a0 0_1}71(1 -ao, u)—l , (7.17)

s(R) =
where
R -1, |
b(B) = jR R, ¢ exp (- (¢ - R)) dC (7.18)
. |
and
Ro - Rlt=0

The behaviour of the solution follows the general result given

earlier with oo (>0) and B being given by (Bowen and Vang (1971))

ol arg exp (50)(r 81 EHY2 ere (812812 (7.19)

cr
and )
erfc‘(ﬁln/2 le/z) =(1- 0, 051) erfc (ﬁ1/2 Ré/z) ,
| (7.20)
where
erfc z = 2 7 /2 Im exp (- t2) dt . (7.21)
' z

Finally, we note that in the case a, = ag (which includes as a

special case homogeneous deformation) » 71 takes the simple form
1 -1 -2
1 =35 [1 tp vy AaﬂKB(pl-eA)(pl-eB)] (7.22)

. 0 0 '
after using the limiting forms of A g5 44 and A g, qay (see note

following (4.21)).
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(iii) Spherical waves

The growth equation is identical to that for cylindrical waves with 2]
in (7.16) replaced by (7; + 7,) . Ve recall from the discussion
following (4.78) that when spherical waves are present, the material is
necessarily in a state of uniform dilatation if both ﬂXB(pF-eA)(pP-eB)
and ¢g(eAB, §) are non-zero. In this case, the expression for (71 +
75) takes the special form

1 -1 -2
T+ g = 1eg 0 vy A fp(ereey) (proeg) - (7.23)

The solution to the growth equation and the corresponding results for

6., and R are immediate on replacing 7, in (7.17) by the above

expression.
Transverse waves

Ve simplify (6.51) using (7.2) and obtain, for a wave with s =

7q A=1or 2, the growth equation
do _ -1
a% = (6 + epkpT)o ' ' .(7.24)

where

p oy o 4 -
5=-§VA dT.+Q<AA>dT ’ T=1, ...,M . (7.25)
and

0 for plane waves

% ,o'1 v&z(wr = AT ADS) otherwise, - (7.26)
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with

+ A

op = (ap - 23)(App 13 13> ) + A

+ A pp 33>

(7.27)

<AT T3 3> <A3 30>

Clearly ¢ vanishes for homogeneous deformation. The influence of
directional constraints is through the term A ,n ,p, in ep and through
QIAA> . Ve note that QIAA> can also be written as QZ by (4.24,5), and
recall from (4.57) and the discussion following (6.32) that Vﬁ has a
contribution p'1 QX from the constraint subset {¢T}£:1 . The terms
making up o are free from directional constraints by (4.21) and the

conditions of Appendix A.

The general solution of (7.24) is

, o 1/2
[p_l vyt exp[j & 1) dﬂ}} 540, €40
R .

0

| -1
o= {0 (RR ) , §=0, €#0

c VA1/2 , ¢ an integration constant § # 0, € =0

% : §=0,e=0 ,

(7.28)

~where ¢ = 0 for plane waves, ¢ = ¢, for cylindrical waves and € = €; +
€9 for spherical waves. |

The presence of constraints restricts the permissible deformation
in many cases to hbmogeneous deformation (see (4.80,1) for directional
constraints and also Table 4.1 for the specific constraints mentioned

in the text). In such cases, the form of the solution with 4 = 0 is
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appropriate. We now comment on the form of the solution for particular

wavefronts.
(i) Plane waves

By (7.28) for ¢ = 0 , we see that for homogeneous deformation
(6 = 0) the wave amplitude is constant and independent of the con-
straints. This agrees with Ogden (1974), who considered the single
constraint of incompressibility. When § # 0 wave growth is influenced

by the constraints through the value of v, .

(ii) Cylindrical waves

Ve recall from (4.72) that R, = R , Ry = o for cylindrical waves
and consequently €9 Rél = 0 in (7.24). For waves in the circumferent-

ial direction (A = 1) , we have from (7.26) that ¢, takes the form

-1 -2
€ = 1/2 p 7 v"(uy - A (7.29)

<11 11>)

In the special case where ay = ag ,

op - Aag 11y =0 ”{(”{)2 "3 AaﬁzB(pf"A)(1’1"33)} (7.30)

where u{ is the wave speed in the absence of directional constraints.
Hence if e, 1 p; (or if directional constraints are absent) then the

solution is

v = oy 2wl/2 (7.31)
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If in addition the deformation is homogeneous, then 6 = 0 , € = - 1/2
and we have
“3/2 ,-1/2 N
o=, 32wt - (1.32)

so that the amplitude is independent of the constraints and of the

material properties.

For waves in the axial direction (A = 2) we have from (7.26) that

1 (7.33)

) 1 -2
e =1/2p " vy" (0 - Aegg 915)

(iii) Spherical waves

Ve choose A = 1 (for A = 2 , the behaviour is identical) and the

solution is given by (7.28) with ¢ = ¢, + ¢, .

The appropriate restrictions on the deformation due to the constraints
are given by (4.80,1), and we note that for homogeneous deformation,

the appropriate form of (7.28) is

o= o (RHE L ((7.28), bis).
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CHAPTER 8

DERIVATION AND SOLUTION OF THE GROVTE__QUATIONS
FOR HOMENTROPIC WAVES

We investigate the growth of homentropic acceleration waves in
non- conducting isotropic media subject to isotropic and directional
type I constraints and to type II constraints. Reddy in (I) derived
- the growth equation for constrained homentrOpicv waves  in non-
conductbrs; there however, attention was restricted to plane waves in
~elastic media subject to homogeneous deformation, and a non-conductor
was defined to be armaterial for which q = q9 + g zﬂ =0 ,rrather than

the definition (2.53) adopted here that q° = 0 . Since (2.53) applies,

we recall from (3.50) that all type IT constraints must satisfy P .n

= 0 when homentropic waves are present. The analysis of (I) is
extended here by treating the subsets {¢¥+F}E;¥ and {¢P+"}ﬁ P of type
I constraints (see. (2.86?7)); we find however that the required
solutions for terms involving [ﬁa] are only possible if .the subset
{¢M+#}£;¥ is absent. In order to evaluate a term involving [Grad 7
we restrict attention to the subset of type II constraints fof which

[Grad Div(y zﬂ) ] = 0 ; this subset nevertheless contains the

AConstraints of perfect conductivity in all directions and of perfect
conductivity in a particular'direcfion e as investigated by Gurtin dnd
Podio- Guidugli (1973). The treatment of (I) is further extended by
considering cylihdrical and spherical wavefronts in addition to plane
waves,'and'the final form of the growth equation is somewhat simplified
compared to the corresponding result in (I) by the use of an

alternative technique in dealing with terms involving [n-Grad )a] .
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We find that both the longitudinal and transverse growth equations
are of Bernoulli type, as for the case of longitudinal homothermal
wvaves (see (7.3)). Both homentropic growth equations are more
complicated than their homothermal counterparts; this is due to the
presence of constraint terms throughout the equations and because the
expressions for the [)a] - where these are obtainable at all - are
usually non—zero,vin contrast to the homdthermal result. As a con-
sequence, for M > 1 we do not investigate particular results for
different waveforms, etc., as was done in Chapter 7; the procedure
involves a considerable amount of tedious substitutioh and the results
are not especially illuminating as constraint influences are generally
non-zero and so remain in the equations but simply take different
forms. We rely rather on the general analysis of the Bernoulli
equatibn given in Chapter 7 to give the nature of the. solution;
particular results can be.obtained from the growth equations using the
procedures given here for evaluating [ia] together with the results
given earlier for dealing with the particular constraints. For the
case ¥ = 0, however, numerous simplifications occur and we show that
plane waves and spherical waves are then unaffected by the constraints,
as are certain cylindrical waves. Since the corresponding homothermal
approach is simpler, we indicate throughout situations in which only'
generalized transverse waves are possible, i.e. the waves are both
homothermal and homentropic and are therefore best treated using the

thermal formulation of Chapters 6 and 7.

Results in the literature are essentially restricted to the case
of unconstrained materials (Chen (1968c), Chadwick and Currie (1972),
Bowen and Vang (1971)), apart from the investigation of Reddy (I) as

discussed above.
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Derivation of the growth equation

Ve begin as in Chapter 6 with the time derivative of the equation

of motion (2.9) and obtain

2p§£_pylag%-p1/2a-1s-w+a'1s-[DivS] ,
(8.1)

as in (6.3), where the vector w satisfies w-a = [Grad F](a,n,n) as in
(3.28). The expression s-[Div §] is now evaluated in the entropic
formulation by proceeding similarly to the derivation of (6.9). Ve

have, from (2.76,7,9),

(8.2)

4 %j—a . o | (2.79 bis)

The divergence of S is found with the aid of (8.2)'-1;0 be

v
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ok ) 552 .J
i j 20 j i g
T By 05 T A il

.aj.
+ 587 Aa,j . (8.3)

In (8.3) we have, by analogy with the definitions of 4 , A? and X°

following (6.5), that the sixth-order temsor of elastic moduli A is

defined by
3
Y d¢
A= 7 FoFoF >

and the constraint terms A® and M% are given by

3 . 240
a ¢ 0
A=y JFOFOT_ P GEOF
and |
3 2-a
“q ¢ _ 0 .
i = o Jrger = Wy (8.4

Ve note that M® , unlike X® , is non-zero (recall the discussion of the

entropic formulation following (2.80)).

The material is now taken to be at rest ahead of the wave, as in
Chapter 6, but is assumed to be at constant entropy ahead of the wave.

Vith the aid of the identity (6.7) and the above assumptions, the
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following expression for the jump in the divergéhce of S is obtained

from (8.3):

1
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- 1 - 1 + . ) “a'J i -
7, Vel * “é,ﬂ]“a] s
(8.5)
The components of the third-order tensor E appearing in (8.5) are

defined by

We proceed as before in the evaluation of (6.8), and employ the
results (3.24,5,7) to eliminate the jumps involving derivatives of F in
(8.5). For homentropic waves, [Grad 7] = [#] = 0 from (3.40,2) and
[6rad A ] = - u-l[ia]n from (3.22),. Vith the aid of these results,

(8.5) can be used to obtain the required expression for s-[Div §] and
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ve find that

I

s- [Div é] 3 X(é,n,s,n,s,n) - E'(s,s,n) - v 1 ia(s,Grad A;,s,n)

¢ 4(s,) - Ason, (v 1s) ) - A, (v s) fom)

+ v1aM k(s y,5,0,) + H(s, [Grad 4]) + [}a][- 272 §%(s,s)

<+

0+ “1p q 087, 08¢ YOS
+k -85+ pv [/\7] 3/\_.3 B/‘_é' [S,Grad /\é-]}

- R - I‘
+ b, ¢t-s + LA §%(s,0") (8.6)
Here a, ¢ =1, ..., Nand y =1, ..., P, and we have used the result

(5.11) that when T# 0 , &7 =0, p=1, ..., NP .

In (8.6), k% is defined to be the vector with components
£ - i@ j e F+k
i T 7ik

&3
and

Ve recall that § , M ; ¢® and # in (8.6)'are defined by (5.31), (5.26),
(2.91) and (5.12) respectively. The last two terms in (8.6) are
obtained from the last term in (8.3) with the aid of the compatibility
condition (6.38); A, = [(6rad 1 )-n] as in the definition following
(6.38). \
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We use (8.6) to substitute for s-[Div é] in (8.1), and investigate
the remaining jumps in (8.1). A term a'l(ﬁ(s,w) - P v §-¥) occurs on
the right-hand side of (8.1), and by (5.30) together with (5.11) we

have

7 2 i 12 v
Q(s,w) - pvis-w = pu[A7]c7-w b r=1 e P (8.7)

An expression for p ¢’-w can be found from the condition [n-Grad (87)]
=0 . We begin with the definition (2.36) of type I constraints in the
entropic formulation (recall (2.76,9)) and find that

) /K . Was"J .
Ly 7 ] 7.3, i
p ¢,m [A ik F ;m + i i 5 a mJF j
73 ¢l i Jpi L, 8 7 S TR PO
+ 8 Fj;m*[MiFj*Bﬁ‘“”m_’"’ma“a,m]”*p“”’m

a

87,3 . 9" n, ’ N
. a1a a1 aqa

where y =1, ..., N-P and a, { =1, ..., N, and we have made use of

the identity (5.18) to substitute for terms of the form 6¢7/6/\£ . Ve

now use (8.8) to evaluate [n-Grad $7] = 0 with the aid of the jump con-
ditions (3.22,4,5,7) and (6.7,38); the approach is similar to that used
in deriving (8.6) from (8.5) and details are omitted. The assumptions

given following (8;3) and (8.5) are invoked and we also employ the
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result (5.18). After some minor rearrangement we obtain

-2 -1 11 ga”
pelow=- v 3'Q(s,s) + U 1A7(s,n, Grad ¥ -n) + pv l[g%z-s}(Grad Az-n)

. - . -9 . a7l g7
81 1) o0y« 10|20 200,) s - B (6rad ¥ om)
‘ ’ ' : a a

) Egz (o 1972%) (6rad X%-m){v" 1 [}5] + (Grad A;-n)}}

- pw7[Grad 7l - p u 157 6A6 . (8.9) |

Inv(8.9) =1, ..., N; 9, 6=1, ..., P and we have also used the
result (5.15) that for T#0,M=0,9=1, ..., NP .

If we substitute for pé7-w from (8.9) in (8.7), we find that (8 1) has

on the rlght hane side the expressions

kpA7 .5 - pr[i ]pﬂf1w6w7A o | 1, § =1, ..., P,
involving A7 , andksince

é7es.£;pvﬁ_1&7@6A7[i6] | by (5.19),

the terms 1nv01v1ng A vanish in (8.1). This treatment of the A7

represents an 1mprovement on the procedure adopted in (I).

Vith the elimination of A7 , the only remaining jumps in (8.1) are

- [6rad ¢] and [ia] , and we now investigate the former. The gradient of
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the energy equation (2.48) yields
7 Grad(pd) + pbGrad # = - Grad(Div q) + Grad(pr) , (8.10)

so for non-conductors (for which q = i 2ﬂ , =1, ..., L by (2.54)),

we have at the wavefront that
7" [6rad (p6)] + [#]6rad (p0)" - [#][Grad (p0)] + (p6)" [Grad ]
= - [Grad(Div(7, #N, (8.11)
after using the identity (6.7) and the assumption that r is continuous.
Since we have assumed the entropy to be constant ahead of the wave, we
have from (8.11) for homentropic waves that

(p0)"[Grad 1] = - [Grad(Div(1 A1 (8.12)

Clearly, in the absence of type II constraints, [Grad #] = 0 .

When type II constraints are present, the expression [Grad(Div(yﬂ
2ﬂ))] must be evaluated. Use of the definition (2.37) of type II
constraints and the entropic formulation (with 2ﬂ = 2ﬂ(F,0(F,n,Aa,eA),
eA) plus the methods of Appendix A for derivatives of iﬂ yields the
required expression. The result is found to be somewhat cumbersome
and, more seriously, is found to involve [7ﬂ] for curved wavefronts if

no restrictions are imposed on either the deformation or the form of

o
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It will be recalled from Chapter 5 that for type I constraints,
the corresponding solutions for [ia] were obtained during .the
derivation of the propagation condition, that is, from an analysis of
the equation»of motion (2.9). The type II constraints do not appear in
the equation of motion and consequently the analysis of Chapter 5
yields no information about [7ﬂ] . Iﬁ fact, it is only the energy
eﬁuation (2.48) that involves the type II constraints through the term
Div q ; it will be recalled that the entropy production inequality
(2.49) invol&es only q0 . The energy equation was examined in Chapter
3 and we recall from (3.49) that the sole term involving [7ﬂ] is

.V'1[7ﬂ] Pa . Since 3.1 = 0 for non-homothernal waves by (3.45), the

energy equation also yields no information about [7ﬂ] .

Ve proceed further despite the indeterminacy of [7ﬂ]'by restrict-

ing attention to the subset of type II constraints for which
[6rad (Div(7 PN1-0 . | (8.13)

This set includes the following important type II constraints investi-

gated by Gurtin and Podio- Guidugli (1973):

(a) Perfect conductivity in all directions;

(b) Perfect conductivity in a particular direction e .

Now if (a) holds, then Grad § = 0 in every direction. Hence at

the wavefront,

[6rad 4] = O
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and so by (3.37,9), such waves are necessarily homothermal and are best

treated by the analysis given in Chapters 6 and 7.

In the situation (b), the constraint of perfect conductivity in a

direction e is expressed by
=e (8.14)

where by (3.45) we must have e; € {p;;py} when non-homothermal waves
with n = p; are present. For perfect conductivity in a second

{ |
direction in the (pl’p2) plane,

32 = : (8.15)

and any further constraints expressing perfect conductivity in some
direction in the (pl’p2) plane can be described in terms of the

linearly independent subset {21,22} , by

22+” _ ZV 21

‘ 1,2,

v=3, ..., I-2 (8.16)

>
H

wheré Z; is a matrix of constants.

For type II constraints such as (8.14-16) that obey (8.13), terms
involving [Grad #] vanish in (8.6,9). These type.iI constraints there-
fofé have no effect on the growth of homentropic waves. We recall from
the discussion following (2.54) that Reddy in (I) obtained this result
fbr type 1II constraints in general, but did so by emﬁloying a different

definition of a non-conductor.
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After making use of the results just described, the growth

equation is found from (8.1) to be

2p0 %% = PV_102 %% + V-31(S,n,s,n,S,n) - V—1E+(s,s,n) - V‘lia(s, Grad A;,s,n)

- _1 - - _ -
(5,0, (7 18),p HED) - A, (7 1s),p om) + VMY (s, Hp,sHy)

+

. 9. et a . . 1 aa?
[A ] 2v 2l]a(s,s) + K% .5 + g%z (s, Grad A{) + [A7]{3pu 1 Q%X_.s
a

087 ' A . -
Y (s, Grad ¥ -n) - p ;ﬂa—a (pis w7w6)[[A5] + v(Grad Az-n)]}

+

Bf v 28,8 + (son, Grad F) + v 87( )y 1)

+

[A ] T sa(s9HP) ’ (8.17)
7 |
where as usual, e¢, € =1, ..., N; 7, 6=1, ..., P, and T =1,2.

Ve turn now to the evaluation of the remaining jumps [A,] in
(8.17) and begin by briefly recalling the corresponding situation for
homothermal waves. In the discussion of the homothermal growth

" equation (6.3), we require solutions for the jumps in order to evaluate
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pd® [ia] for longitudinal waves (see (6.26)). Ve know only that the
[A,] obey

[;\0]+D{“[}M+#]=o , o=1, ..., 8 (@21) ,
p=1, ..., ¥ ,  (6.27 bis)

and so we can determine pwa[ia] in ‘the following situations (recall -

(6.29)):

if all constraints present are mechanical (recall that P = 0

and only the subset {¢ﬂ}g=1 is present);

H=-1,2

(i) if only the linearly independent subset {¢”}§ 4 is present;
(ii) if the subsets {4°}, {¢M+”}£_¥ and {¢P+”}g;$ are all present

and all constraints are mechanical;

(iii) if the subset {¢M+”} is absent and constraints ¢P+” are

mechanical.

We now return to the homentropic growth equation (8.17) and note
that [ia] ,a=1, ..., N and [)7] , 7=1, ..., P occur in many terms.
Most of the expressions multiplying these jumps do not vanish for
longitudinal or transverse principal waves and so the results for the
[ia] from Chapter 5 must be used. As in the homothermal case,

solutions are not available for all of the [ia] separately; we only
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know from (5.21) and (5.38)'respectively that when e #0,

) = o1 1@y s

| RGOS P I | S PEVR CRT)
and
[l = - p Lt Zg-ﬁ*s -0 Uy, (22) (8.19)
where (=1, ..., §-1; 0=1;..” M;;sz,..” P-¥ .

Alternatively, vhen % = 0 and all constraints are mechanical, we )
obtain from (5.44) by using (5.62) and proceeding as in the derivation
of (6.27) the result |

]+ [Am+ﬂ] =0 , (M>1) o (8.20)

v

where again s =1, ..., M ; p =1, ..., P-MN .

‘For B » 1, (8.18-20) yield expressions for the [} ] if the subset
(/") is absent. We are unable to obtain expressions for the [ih+ﬂ]
separately and have no information about the [ip+ﬂ] . This of course
limits the circumstances under which we can solve the growth equation
(8.17), but we will see that by making use of some of the special cases
discussed in Chapters 5 (in which, for ihstance, vaves are bbth
homentropic and homothermal) we can obtain solutions in a wider variety
of'situations than initially expected. It again proves convenient to

consider the situations M = 0,1,2,3 separately.
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'Growth equation for longitudinal waves

Ve begin the derivation of the lbngitudinal wave growth equation
by discussing the form cf the constraints ¢® and the solutions for [ia]

that arise from the results of Chapter 5 and the use of (8.18-20).

Now P = 0 and only the subset {¢"}2=1 is present; we recall from
(5.11) and (5.15) respectively that ¢"=c"=z0and " =" =0, so
all type I constréints present are mechanical. Only directional
" constraints are possible when K = 0 and we have from (5.117) that they

obey -

ﬂZB(pi'eA)(n'eB) =0 ’ i_ = 152,3 . (8.21)

Since (8.18-20) yield no information about [in] , terms involving these

jumps can only be eliminated in (8.17) if the quantities
p 58T . L. T
qn(Q3,Q3) ’ m ((I3’ Grad AZ) ’ kn+"l3 ’ [An],[‘ Sn(s’ i) ’

are all zero, where in (8.17) we have used the results "=0,¢e"=0
and noted that the terms involving summations over 7, & disappear since

¥=P=0. Fiistly, we have from (5.63), (5.118), and the fact that u
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is unconstrained for mechanical constraints by (5.116) the result

v 2
Q”(Q3aQ3) = 3%\9; [Q3 - p2/‘-1[gg:%ﬂ] ]

1] = ofp(n-cy) (n-ep)
=0 . . (8.22)
Next, we note the transformation (see also equation (6.21) of (I))
L L pﬂ_lwa x°

, a=1, ..., N (8.23)

and since o

1

0,

§7 = g7

oBlp ) éi(pi-eA)(qi ® ep) by (2.61,9),

1

and in (2.61) we have ignored dependence of ¢ on kyp, as in Chapter 4.
<+

Now Grad XE is parallel to q3‘if we impose the assumption that A€
AE(X3) , as in Chapter 6, and so

D>
+

1)

A §”(q3, Grad Az) pﬂXBa3(n-eA)(n-eB)|Graq

=0 _ : by (8.21);

——E (g3, 6rad Az) =0 . .(8.24)
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Ve now recall the definition of k® following (8.6) and evaluate ﬁ”+-q3.

Ve have

o/ LAY A +
k<3> - A<3j ké> F<k£;j>

= 5%; {A<3j ké> W By bp Nogy, M2k£>} Poeesi> = K35
where we have used the trﬁnsformation (5.29) for A to convert ‘to the
thermal formulation, then used the définition (6.10) for k% plus the
fact that g is unconstraiﬂed for mechanical constraints by (5.116). As
in (6.35); we investiga.te‘kz;> for plane, cylindrical and spherical
waves. Equation (6.35) was previously analysed with the aid of the
propagation condition'ca-s,z 0 . For homentropic waves with ¢ = 0 and
T#0, we Again have c’T-s = 0 (recall (5.1) with P = 0) and so the
previous analysis appliés, except as noted beiow. Since (8;21)

| applies, the terms involving F:33_3> in (6.35) vanish and we have the
' ?

- result
i”+-q3 =0 for plane waves. (8.25)
For cylindrical and spherical waves we have respectively

(47 (0. .e.)(p. -e.)F*
Bip(py-ey) (py-ep)F 3y.1,

nt _
k<3> = 1

) ﬂzB(pP'eA)(Pr'eB)F:3f;r> | (8.26)
r

L

‘where F:3F-F> = Bfl(a3 - ar) from Appendix B.
)
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In (6.35), the term (8.26), was shown to be zero since either
ﬂZB(pl-eA)(pl-eB) was zero or, if ﬂZB(pl-eA)(pl-eB) was non-zero, then
the deformation was homogeneous by (4.77) so F:31;1> was zero. The
analysis of (6.35) also applies here, since (4.77) still holds for
mechanical constiaints. For homentropic cylindrical wéves we therefore

obtain the required result that i”+-q3 =0 .

For spherical waves, we have from (4.78) and the discussion following

it that for mechanical constraints we must have

ﬂZB‘(pI"eA) (pp'eB) =0 ,

0.

so that (8.26), is zero, and so i”*-q3

Finally, we recall from the analysis of (6.40) that when

3 i " 5 : T
)7 = A, (X°) , we have that [1g) p = 0 and so [ 1 §%s, H') = 0

- 0,1,2,3).

—_
=
|

We have from (8.18) with s = ¢ dg and @1 # 0 that
; 21 -1 142 Al .
[A]=p"v pe") “ o ¢ -qq - DT[A1+#] . (8.27)

Since we have no further information about the [)1+u] , (8.27) only

provides a solution for [,] when the subset {¢1+“} is absent, in which



214

case
: 11 1-2 A1 |
B =t u@)? o g . (8.28)

Ve recall from (5.70,1) that the presence of longitudinal waves re-
quires that the constraint vector ¢l in (8.28) satisfies either

él-q3 =0 or &l

~ Qg = 0.
When 2% = 0 and all type I constraints are mechanical, we have

from (8.20) with s = ¢ q; that when the subset {¢1+”} is absent,

Cgd=o . | ‘  (8.29)

Ve can only solve for [ﬁa] , ¢ = 1,2, when the subset {¢2+”} is
absent, in which case we have from (8.18,19) when s = ¢ qq and o2 $#0

the results

i -1 -1 +/a2v-2 .2 A2v-1 ~1rj
gl = p v " a(e%) " 0 &qq - (&%) " @ [A4] (8.30)
and , |
; “1-1.2 5 a*
(Al=-p"v 4 o €0 qg v _ (8.31)
2 . | . 2 ) _
¢“ in (8.30) obeys either ¢”-qg =.0 or ¢” - qg = 0 by (5.89,90).

In the situation when &% # 0 we find from (8.20) with s - dg
when {¢2+”} is absent that

=0 , o=12 . (8.32)
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Ve can solve (8.18,19) for [)0] , ¢ = 1,2,3, if the subset {¢3+”}

is absent and obtain for s = ¢ dg and & # 0 that

P O N At R i N 93 R C X

h i - "1 '1 '*3 r ¥ - N
where [A{] =-p v o £€-Q G » (=1,2 3 (8.34)

&3 in (8.33) obeys either 63-q3 -0 or &

~ Qg = 0 by (5.108,9).
The situation &% = 0 is not compatible with homentropic waves when

¥ = 3 from the discussion preceding (5.103).

Before leaving this evaluation of the jumps [ia] we note that for
M >1, the jumps [)P+n] appear in the following terms as part of the

summations over ¢ = 1, ..., N in (8.17):

- 1y 4 087 987 +
[A ][3pu ] g—s- v — (s, Grad F :n)
P4y 7 AP+q AP+q

- p 3}5:; (pii 16%3%) ([3] + »(6rad Jjon))]

Ve recall from the discussions following (8.17) and (8.21) that we have
no information regarding [ip+n] . Ve can, howéver,v proceed as in .
(8.22-4) for M = 0: we transform £ , o7, &t andls7_to the thermal
formulation using (5.13)1,2, (5.60) and (8.23), then evaluate the

* derivatives 6/0AP+” required above. With the aid of the fact that s

has no contributions from the constraints ¢P+" since wP+” =0 , (recall

]
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(5.116)), we find that the . aforementioned derivatives vanish, and

consequently the terms listed above make no contribution in (8.17).

This completes the analysis of the jumps appearing in (8.17). The
remaining terms can be treated by the methods used in deriving the
homothermal growth equation (7.3) for longitudinal waves from (6.43,6),
and we therefore give merely an outline of the corresponding analysis

required here.

Ve take s = ¢ a3 in (8.17) and denote the longitudinal wave speed
by vy . The displacement derivatives és/dt and bvg /6t are evaluated
with the aid of (7.2), E*(s,n,n) is treated as was_E+(s,n,n) in (6.44),
and the terms involving (V—ls),r are evaluated with the aid of the
result (6.45) for (V'3d q3),r . Ve simplify terms involving Grad AZ by
ﬁsing the assumption that A; = A;(X3) , and employ the results given in
(6.34) and in Appendix B to evaluate Grad ' for the plane, cylindric-

al and spherically symmetric deformations described in Chapter 4.

Vith the aid of these results, plus those for [l ] given in
(8.18-34) when the type I constraint subset {¢M+”} is absent, the
homentropic growth equation for longitudinal waves is found from (8.17)

~ t0 be

do _ 062 - B+ 1 Ril)a o (8.35)
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where

S

a(n) 1 '1'1 ‘3

i
o}
©
<
w
<
w

-2 4~
<33 33 33> Xa[3”3 Y4335

+

ae’t N
X7{3pv3 —3532 Xs 5—— (o b Ll 6)}] J
(8.36)
du3

111 17
Bn) =56 73 [‘ Pt Vs L Aas 38 b 24,3
1

—1 a +
v3 Ac33 335 Aa,<3>

-+

oy le ] \ as<33> -+
<33 ii> "1,3 5 7,<3>

i

el b

a
i

(8.37)
10 for plane waves,
1 -1-1( -1 ; :
27 73 [‘ V3 {A<33 rr> * Aaar 13> - Aar ars
() = - (Acapr 33 ars * Aar 33 135) (33 - ar)}

+ A8

1a ol
- xo(hear 13> * Aear ary) (337 2p) * S<rr>]

Lfor cylindrical or spherical waves. | (8.38)
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In (8.35-37), the notation
= 71 8.39

has been used and we note that a, 7, &, are now summed over 1, ..., N
(M > 1) only; the appropriate results for [A%] when ¥ = 0,1,2,3 are
inserted from (8.21) -(8.34). The solution of (8.35) is discussed

later in the chapter.

Growth equation for transverse waves

We return to (8.17) and begin by discussing solutions for (]
making use of the results of Chapter 5 together with (8.18-20) for
waves with's =0 q where A = 1 or 2. A significant feature_of the
transverse wave situation is thaﬁ there are numerous instances in which
waves are both homentropic and homothermal; ih such cases the thermal

formulation of transverse wave growth given in Chapters 6 and 7 is to

beipreferréd (recall also the discussion of (5.130-3)).

Now P = 0 and only the constraint subset {¢”}g=1 is present, with
¢"=o0.

By the discussion of this case preceding (5.64), all transverse
homentropic waves are also homothermal and so need not be considered

here.
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=
1l
—

Vhen the subset {¢1+#} is absent, (8.18) with s = ¢ q where A =1

or 2 gives the following solution for [il] when &' $0

By = ot aeh? o el | (8.40)

and the vector él satisfies él-qA = 0 or él

~q =0 by (5.70,1). Ve
recall from (5.78-80) however, that only el . q =0 is compatible with
transverse waves that are non—homothermal; Furthermore, &1 = 0 is not
compatible with non-homothermal transverse waves by the discussion

following (5.80).

Equations (8.18,19) with s - 0 q A =1 or 2, yield the follow-
ing solutions for [ia] when the subset {¢M+”} is absent and &% $#0:

il

Uy = ot a2 o g - @I

(8.41)

] -p'lu_lzbmaec-q G 5 (=1, .., E1 . (8.42)

For ¥ = 2, non- homothermal transverse waves require that the vector c2

satisfies 2 . q = 0 by the discussion following (5.95). The case
1 a2
W W

= 0 is not allowed by the discussion following (5.98).
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~3

For ¥ = 3, both the situations c3 qy = 0 and C° ~ q4 = 0 are

compatible with non-homothermal transverse waves by (5.112,3) but the

case o% = 0 is not allowed by the discussion following (5.102).

This completes the discussion of the jumps [}0] s o=1, ..., X

appearing in the growth equation for transverse principal waves. Since

the subset {¢M+”}z;¥ is assumed absent, the jumps [XM+p] do not appear.

N-P
7=1
with non- homothermal transverse waves when ¥ = P = 0 , but the same

M
o=1

is such that'@”[}o] # 0 so that T # 0 in (5.52). In such circum-

Ve noted above that the constraint subset {¢P+”} is not compatible

constraints are allowed when M > 1 , provided that the subset {¢”}

stances, the jumps [iP+”] occur in the following terms in (8.17)

(s = a'qA ,A=1o0r2):

P+g A
Py aS ac
. 2 <A3> ~ 4 ; -1 TU<A>
[AP+n][' 2v) bens * y Ly ¢, <3>] ks [A7]{3PVA BAP+”
- p m;— (o8 370 )‘[[Ls] + vy (N <3>]']” )
+1 ’ :

where ¢,6 =1, ..., Nand 7,6 =1, ..., ¥, =1, ..., N-P , and the
subset {¢M+“}z;¥ is absent so we take P = M .

It is a straightforward procedure to show that the terms in (8.43)
are zero, as was the case for longitudinal waves (recall the discussion
of [}P+”] following (8.34)).  The (directional) constraints s
satisfy (8.21), F =0 by (5.2) since T # 0 , and p therefore

contains no contributions from these constraints by (5.116).
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Firstly, with the aid of (5.63), (4.24), (4.22) and (8.21) in

turn,
P+g an
Yaans = BX;:;
= oy (n-e,) (n-ep)
=0 . | | (8.44)

Ve now proceed as in (8.23,4) and have

Pen P+
Scags = P8 "ay(py-ey) (n-ep)

byv(8.21) Co - | (8.45)

it
o

Furthermore, by proceeding as before (following (8.24)) for EZ§> , We

find

<+

P+p Py .
k :A . F 3
<A> <Aj k&> “<ké;j>

<+

P+g . P+q
= A ,. F.,..=k
<Aj k&> “<ké;i> <A> ’

with the aid of the transformation (5.29) for i and the fact that 4 is

independent of ¢P+” since uP+” = 0 . Now from the expression (4.21)

for A and the results of Appendix B, we find that the plane,
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“cylindrical and spherical deformations considered here,

P+p Py
k<A> Acas aa> 2,3

P
Brp (py-ey)(m-eg) 3y 5

0 by (8.21) . (8.46)

The remaining terms in (8.43) are found to vanish by proceeding
e

~0

similarly; the transformations (5.60) for € and (5.13)1 o for n ; v
are used and the derivatives 49/49,\1,“7 are found to vanlsh since all
terms (including p) are 1ndependent of AP+ﬂ . (Recall ‘the similar

. discussion following (8.34) for longitudinal waves).

The remaining terms in (8.17) can be evaluated for s =7 q , A=
1 or 2, by proceeding similarly to the evaluation of corresponding
terms in the derivation of the.growth equation (8.35) for homentropic
longitudinal waves, and in the ?erivation of the growth equation (7.24)
for homothermal transverse waves from the preliminary forms (6.47,51).

Consequently, only a summary is given here.

The displacement derivatives &/t are evaluated using (7.2), and

we then make use of the transformation
A=4- #'1 %% o M - p'l gf (X o K°) + p’z g? L R S 1°)

WP B e e X (8.47)



223

to show that

~

Aa3 43 43> = O (8.48)

(recall 4 ya a3 p3s = 0 in (6.48), and also that M2A3> = 0 by (2.95)).

The transformation (8.47) and results of Appendix A are again used to
evaluate E:AA3> , proceeding by analogy with the treatment of E:AA3> in
(6.49), and the terms involving (u—ls) p are evaluated using (6.50) as
’ b

well as the transformation (5.29) for A . The assumption A; = );(X3)
is used to simplify Grad A; , and the results (6.34) plus those of
Appendix B are used to evaluate Grad F.

The growth equation for transverse homentropic waves (s =0 q >
A =1 or 2) is found from (8.17) with the aid of the above procedures,
and, with {¢M+”}£;¥ absent, takes the form

%% = a0 - (6 + €p Rfl)a (8.49)

7
- A> TR .
+ x7[3va1 —;};2 - PX§ 5?; (pis 1w7w5)}} ,  (8.50)
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' dv
5(n) -1 -1[ !

q 1y -
sh Wl P@m T Z Aps 43 ii> 1,3
1

1 jza
A<A3 A3>A

+

v +
A a,<3>

o
aS<A3> +

1a
- Xa{2A<A3 M> 2,3 A Ay, <35

as7. .
<ii> i} amLagafy +
X7VA{' o, 4,30, (bie "0%0 )*5,<3>}} ;

1 :

(8.51)

0 for plane waves,

{11 -1 * ~
30 Y [‘ vy {A<AA 33> * Aa3 305)8ar * Aaar Ars

ep(m) =1 - (Aap a3 13> * Aar 43 3r5) (33 - ar)}

1a T Qaa aa
- Xa{(A<AA 13> * eans) (33 - 3y)éyp S<rr>}]

L for cylindrical or spherical waves. (8.52)

Ve have employed the definition (8.39) of X, in (8.50-52) with a, 7,

§=1, ..., § , and the results (8.40-42) are inserted as appropriate.

Solutions to the growth equation for homentropic waves

Both the equations (8.35,49) for the growth of longitudinal and

transverse principal waves are Bernoulli equations, in contrast to the
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homothermal situation where only the longitudinal equation (7.3) was of
Bernoulli form; the transverse equation (7.24) being a linear first
order equation; The analysis of the Bernoulli equation in Chapter 7
following (7.65 is therefore applicable here and details are omitted

except to quote the general form of the solution, which is

on) = "oe"p[‘ﬁ (6 = 7r¢'rl)d¢]{1 : %ﬁaéxp[- JE (8 + 7P(Fl)dc]dN}'1
0 _ o o

(8.53)

where as before, n measures distance in the normal direction and

0, = a(no) .

In Chapter 7 attention was focussed on the nature of the con-
straint.influence on the solution; in certain cases the constraints had
no effect or influencéd only one part of the equation. This is
generally not so for homentropic waves when ¥ > 1 ; both (8.35) and
(8.49) are then considerably more cumbersome than their thermal
counterparts and the constraints influence e, g, n s 6 and € - In
additidn the solutions for [ia] , where fhey are obtainable at all, are

‘often non-zero unlike the homothermal case. In view of this, theré
seems little to be gained from discussing particular solutions when
¥ > 1 for the various wavefronts as was done in Chapter 7; the general
features of the solution are clear froﬁ the previous analysis of the
Bernoulli equation and particular solutions are‘obtainable with the
results of Chapter 5 plus the expressions for [ia] determined earlier

in this chapter.
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In the case when ¥ = 0 , and only the type I constraints ¢” for
which ¢"=¢"=0, 5 =1, ..., N are present, the influeﬁce of the |
constraints is considerably less complicated, and is now described. Ve
consider only longitudinal waves, since for ¥ = 0 transverse waves that
are non-homothermal are not compatible with these constfaints, as noted
previously. With the results given earlier during the discussion of
the longitudinal growth equation for M = 0 (see (8.21-6)), the
expressions (8.36-8) for a,vﬂ, 7p in the growth equation (8.35) reduce

respectively to:

1 -1-4 - |
a(n) =30 v3 433 33 33 (8.54)
dv
1 -1-1y 3, 1y
B(n) =30 vy [ Pa@m * V3 ZA<33 33 ii> a1,3} (8.55)
1
0 for plane waves,
1 -1 -1 . .
2P {A<33 rr> * Aear 13> © Adar am
7p(n) =
- (Aear 33 3r> * Aar 33 13>) (23 - ar)}
[for cylindrical or spherical waves. (8.56)

Ve now establish whether or not the terms on the right-hand sides of

(8.54-6) are deperident on the constraints ¢7 . Firstly,

2

, .
. _ _ 0
V% = p'1Q3 =p 1{@3 - 1[%} } ; (5.65 bis)

3
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h

and the contribution of the nt constraint to Q3 is

A7 = p Blg(n-e))(n-ep) = 0

by (5.118) or (8.21), so yg_is independent of these constraints.

Ve now investigate A with the aid of the transformation (8.47) to
thermal variables. J/ is unconstrained, by the conclusions to Appendix
A, as is X by (2.95), and so is p by (5.116), since o” = 0 . Finally,
we Tequire an expression for‘gﬁ (A") ; this is also zero by (4.21) and
(2.68). Hence A is unconstrained and so a(n) is also unconstrained.

Clearly f(n) is also unconstrained, since vg and A are unconstrained.

Finally, we investigate 7r(n) and find with the aid of the
transformation (5.29) for A and the expression (4.21) for A that the

only constraint terms in the expression (8.56) for 7p(n) are

ﬁXB(Pr'eA)(Pr'eB) ) o (8.57)

where T = 1 (resp. 1,2) for cylindrical (resp. spherical) waves. ‘The
expression in (8.57) is not necessarily zero (see the discussion of
(8.26)), and so we have the result for homentropic longitudinal waves

propagating in media subject to constraints ¢” only that:

plane waves and spherical waves are unconstrained, and cylindrical

waves are unconstrained if all conmstraints ¢" obey

ﬁzB(pl'eA)(pl'eB) =0
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CHAPTER 9

CONCLUSIONS

This work is an extension of the analysis of plane waves in
homogeneously deformed thermoelastic media subject to linearly
indepéndent type I and type IT constraints presented in (I), but adopts
the restriction of isotropy imposed in the preliminary investigation
made in (II). The extensions made have been: the introduction of
curved wavefronts and the removal of the general restriction to
homogeneous deformation in the discussion of the growth equation; an
extensive treatment of type I constraints for which the vectors ¢? are
linearly depehdent; a new definition of a constrained non-conductor,
and the recognition that for thermodynamic constraints specified with
temperature as an independent variable, the thermal formulation is
often appropriate to investigations of homentropic waves in constrained

non- conductors.

These extensions have been achieved at the cost of a restriction
imposed throughout on the set“of arbitrary type I constraints from (I)
namely that we.consider only isotropic and directional constraints as
defined by (2.66) and (2.68,9) respectively. A restriction is also
imposed on the type II constraints set ‘in the derivation of the
homentropic grqyth equation, where we restrict aﬁtention to type II
constraints f§;”ﬁhich [Grad (Div (7ﬂ ﬁﬁ))] = 0 . These restrictions
are, however, not severe in the sense that most constraints commonly
eﬁcountered in practice can be accommodated within the restricted sets; |

for instance we mention the constraint examples of Gurtin and Podio-
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Guidugli (1973). Ve give fdur examples of type I constraints (similar
to those of Gurtin and Podio-Guidugli referred to above), and present
results for homothermal wave propagation in media subject to these
constraints acting singly or in combination. Apart from the value of
the results obtéined as they stand, these constraints illustrate the
fact that linear dependence of such cbnstraints cannot be ignored, and
in more general terms, illustrate the ease with which combinations of
constraints can be studied within the general theory presented both

here and in (I).

Ve note that underlying the above results is an extensive
treatment for isotropic materials of the thermodynamic .theory
introduced in (I); we also incorporate the revised definition of a
constrained non-conductor mentioned above. 'The use of an apprpach due
to Durban (1978) for the derivation of the fourth- and sixth-order

moduli of elasticity for constrained materials is also to be noted.

The work just described has highlighted the following areas as
being worthy of further investigation. The definition of the
constraints in (2.36,7) with temperature as an-independent variable is
ideally suited to the use of the thermal formulation; which is the
natural choice for homothermal waves. For homentropic ﬁaves-though,
the entropic formulation is to be preferred for unconstrained
materials. The possibility of treating homentropic waves in materials
" subject to type I and II constraints in either formulation therefore

arises; the thermal formulation yields a more cumbersome treatment but

has ‘the advantage that constraint contributions are explicit, whereas

the more concise entropic formulation tends to obscure constraint

details that may very well be significant. Such difficulties are
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resolved if the constraints are presented with entropy as an
independent variable, but it is debatable whether this is compatible
with experimental techniques for the range of constraints considered
here. It seems then, that the hybrid approach employed here is perhaps

the most reasonable (though not ideal) approach at present.

Ve now turn to the questibns raised by the presence of type I
constraints for which the corresponding constraint vectors c? are
dependent. The investigation of the propagation conditions proceeds
‘relatively unimpeded for both homothermal and homentropic waves, but
for the growth equations, the indeterminacy of the jumps [}a] is a
major difficulty. These problems are less severe for homothermal
vaves, but for homentropic waves these terms proliferate in both the
longitudihal and transverse growth equations. A similar difficulty
arises in the case of type II constraints, but is relatively easily
removed by considering only the subset of the type II constraints
mentioned above, with little loss of gemerality. It is difficult to
see where one could obtain further information regarding [i,] and
[&ﬂ] , since we have already made use of the constraint‘equations, the
equations of motion and the energy equation; as well as first

derivatives of these.

Apart from the above topics, at least two further areas of
investigation would be of interest. It would be valuable to have a
restricted version of the theory that assumed constraints to be
mechanical from the outset, among the many simplifications which would
follow from this is the consequence that all non-homothermal waves
would also obey the type I propagation condition in the form cfs=0.

JIn this thesis of course, we have assumed constraints to be thermo-
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mechanical unless forced to do otherwise. Finally, it would be
valuable to extend the investigation of the growth equation to allow

wavefronts of arbitrary curvature.

It seems then that the original theory developed by Reddy (I) has
provided a substantial and adaptable base on which to build the work of
this investigation, and that there is considerable potential for

further development.
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CAPPENDIX A

Derivations of the components of the tensors A and A relative to
 the basis of proper vectors have been given by Chadwick and Ogden
(1971a,b), (see also Ogden (1984)), and by Bowen and Vang (1970,1972)‘
for unconstrained materials.‘ Durban (1973) has given an alternative
treatment, as an application of his fesults pertaining to the
differentiation of tehsdr functions. VWhile the methods of Chadwick and
Ogden and of BbWen and Vang may be trivially extended to cover isotrop-
ically constrained materialé, for directipnal constraints the procedure
becomes extremely cumbersome. Durban’s method, on the other hand,

appears more suitable, and we use his formalism as a basis for deriving
representations for tensors A and A associated with arbitrarily
constrained materials. The procedure will be'to derive the components

of the tensors L and £ , defined by
L= grjec , L= d*1/8CoC (4.1)

and then to obtain the componeﬁts of A and A from the identities

(Chadwick and Ogden (1971a,b), Marsden and Hughes (1983))

A<ijk1> =‘T<j1> §<ik> + 2852 L<ijk1> - (4.2)
and ' '
Aijiims> = 4 2123 Leijkimn> * 2 2ilijnl Okm
+ 2 4Ly fin * 2 2alajms ik (.3)
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where <...> denotes components relative to the principal basis. Here T
and C are, respectively, the second Piola-Kirchhoff stress and right

Cauchy- Green tensors, defined by
T=SF , C=FF ; (A.4)

relative to the principal basis P; these tensors are given by

g T Z %%; P; ®P; * Bgfg ey ®e , C= Z ci%pi ®P
1

1

(.5)

vhere ¢, = a? and the strain energy function ¢ is assumed independent

of kyp - -
Ve start by setting
Ny = py®p; » S;=pj@p P ®P5
Ejpg = ¢ @ieB , | | (A.6)

where in the second equation i,j,k form a cyclic permutation. Then

with these tensors available we define the identity tensor I € 74 by

1:72.712 | IMforallTer? |
_ 1
I=NK eN +585 e85 . (A.7)
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From (4.5), we have
2 2 '
1 -1 _ 0 . 0 ij Poox
571 = gl ¢;N; + G- By + oo
i7Yj i i""AB
i I a2g o |

where we have used the fﬁct that e =0 , so EAB =0 .
Now

and it can be shown’(Durban (1978)) that

éi = Ni'c 3 fAB = EAB'C 3 . (A.].O)
S.®S. S, ®8
. _ i B k k!l -
N, = 1/2 [ci ot Cj] ¢ , (A.11)
' N. o N S.®S e S.1].
8, =1 El‘?”Ek S, - 1/2 |1 ck + ik —1it (A.12)
j k . i 7] i vk

where i,j,k are cyclic and there is no summation on repeated indices.

Hence (A.8) is easily rewritten as

T = L(C) o (A.13)
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where.

| . |
-1, _ -1 0T _ d ~ :
p L= 70‘2ciac_j“i@“j+1/22"isi‘”si

i

Y
d .
*29@%@(“1”@*%”9
H—%—EABGE ,

AB”-CD
ahd vhere

T .. -.T '
R A B <kk> (A.14)

Here, as before, i,j,k form a cyclic permufation. .Using (A.2) Qe
recover the expression (4.21) for A . For the restricted class of type
I constraints defined in (2.68,9), none of the directional constraint
terms in (A;14) survive. The directional constraint terms appearing in
the expression (4.21) for A arise from the term. T

transformation (A.2) .
To obtain the tensor of sixth order moduli, we use the identity

5— C=c(0) ;

I is found by differentiating (A.14) and is -
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©
|
It

2(8%9/dc ;oc. ;0008 Ky o K, + 2(8%9/0c ;0c. 6fAB)fAB N; o K,

<+

2 | : . :
2 §°9/dc;dc; (K; @ N,)" + 1/2 z 7, S, @8, + z o, (8; ®8;)
1 1

<+

uﬁwmacﬁw)(NenA+EweN9
. - |
+ 2(0 ¢/6ciafABafCD)fCD(Ni ®@Ep+Epe N.)

2 . .
+2 0 ¢/3ciafAB)(Ni @By +Epe N.)

3 .
+ 2(0°9/dc,0f gt ) ¢; (Byp @ Egp)
| \ .
o+ 2808 gt gy pp By @ Bp) - (.15)

Ve now evaluate the time derivatives using (4.10) - (A.12) and the

definition of ¢, to obtain the following expression for £ :

3

-1, _ d
P £—2Bc—5—ﬂc—~N @NJ@Nk

i7j7k

<+

. 0.
1 1 v
1

1 1 L
r3Y o Nae8; @8 70 ) S eS8
i i,j,.k#
3
d

+

3 . .
a ,
2 33;5I15gf65 (Ni e EAB ® ECD + ECD ® Ni ) EAB + EAB ) ECD ) Ni)
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63

' Vi
+ 2 ® E,, © E
afABafCDafEF ch EF
62¢ S ® S Sk ® Sk
* 2 3c of c T, - ¢ ® EAB
AB k i j

Sj ® EAB ® Sj \ Sk ® EAB ® Sk

Sj ® Sj Sk ® Sk
* EAB ®lc. ~ ¢ te - ¢
i k i j

+

in which
aT<mm> ) aT<jj> ) 0T<mm> ) 3T<kk>
- 3cj 6cm 3ck acm
im A ' Cj - Ck :
“and

po= 2 (c - C. ;%é> “¢)

i,k cyclic. (A.16)

As in the case of the expression for L , there are 1imiting.va1ues
for those terms involving (c; - cj)'1 vhen ¢, = c5 3 such modifications
follow those given by Chadwick and Ogden (197}b) and by Bowen and Wang
(1970).  The components of A relative tbj the principal basis are

obtained using the transformation (A.3) plus the appropriate terms from

((A.14), but for the sake of brevity we do not quote the expression for

4

¢ijklmn> D€Te-



238

Finally, we observe that for the restricted subset of type I
directional constraints defined by (2.68,9), £ and A contain no terms:

due to directional constraints.
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APPENDIX B

In this Appendix we present details of the components of the

tensor Grad F , where F is the deformation gradient tensor.
By definition

Grad F = %o ¢
' oxJ

and since F =_2 a; q; ®p;
i

| k
da dq. Ox ap.
ég—.—:i'——%—q.@p.+a.—%—.®p.+q.@———%—
- oxd axd T T 1K gyd 11 xd

i ‘ .
Assuming the coordinates X' to be principal coordinates and the
deformation to be irrotational (these assumptions are made in the main

part of the thesis) we have

8 dq;
q. = => -—T
i Tg0 7 gy

-1 ¢
Iqil 7ijg£(-1- 5ig)

using the fact that -

j k k
551/3x3 = 7ijkg = 7ijgk

"5k and 7§j being Christoffel symbols relative to the coordinates xt .
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Similarly,

op; -1
o - (Gl Ti8e(1 )

where ij and Fijk are Christoffel symbols relative to the coordinates

-Xl . It is not difficult to work out that

k k
ox -1 0x
% - lg ] b6, =0 for k¢t
G I ,
so that
da.
_ i -1 -1 4
Grad F = .2. {Bij q; ® p; + aiajlgjl lGj|(|gi| |gll7iqu
1,] :
. ' -1 ! i -1
< 735%5) @ By + 2395 @ (16;17716,IT5;p - Fijpi)} > Byl
and
Femn;j> = 6rad Flap,py,p5)
da
_ %4y -1 -1 -1 m
—Evémnlcil +anajlgj| (lgnl Igmth
SR Y eae e e |t - ™ )
Tnj °mn m'"j "m n'mj  “mjmn
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The components of F' required in (6.34) are now easily obtained:

<mn;j>
for example, for spherically symmetric deformation we have (see
- (4.69,70))

-2 3
F + a,|€ 7] |65|T7,

o 11
<13;1> T aga; gl 739

a3a1r'1 + al(llcosé)'2 (-Rcoszé)

(a3 - al)/R
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