
Univ
ers

ity
 of

 C
ap

e T
ow

n

Software packages performance evaluation of
basic radar signal processing techniques

Presented by:
Xavier Frantz

Prepared for:
Associate Professor Daniel O’Hagan

Dept. of Electrical Engineering
University of Cape Town

Submitted to the Department of Electrical Engineering at the University of Cape Town
in partial fulfilment of the academhic requirements for a Master of Engineering

specialising in Radar and Electronic Defence

January 26, 2019

Univ
ers

ity
 of

 C
ap

e T
ow

n
The copyright of this thesis vests in the author. No
quotation from it or information derived from it is to be
published without full acknowledgement of the source.
The thesis is to be used for private study or non-
commercial research purposes only.

Published by the University of Cape Town (UCT) in terms
of the non-exclusive license granted to UCT by the author.

Declaration

I know the meaning of plagiarism and declare that all the work in the document, save
for that which is properly acknowledged, is my own. This thesis/dissertation has been
submitted to the Turnitin module (or equivalent similarity and originality checking soft-
ware) and I confirm that my supervisor has seen my report and any concerns revealed by
such have been resolved with my supervisor.

Signature:
X. Frantz

Date: 10 September 2018

Acknowledgments

I would like to thank the following people who helped with the completion of this project:

Darryn Jordan, for assisting with the implementation of pulse compression and Doppler
processing algorithms.

Francois Schoken and Lerato Mohapi, for being available to brainstorm ideas for perfor-
mance analysis.

Colleagues in the RRSG Radar Lab, for helping with setting up equipment, sharing
resources and perfecting the implementation of algorithms.

My supervisor, Professor Daniel O’Hagan for patience and guidance during the comple-
tion of the project.

My family, for constant encouragement and motivation.

I would like to thank ARMSCOR and the CSIR for their generous funding of my studies.

The Almighty God, for always giving me the strength and motivation for life.

i

Abstract

This dissertation presents a radar signal processing infrastructure implemented on script-
ing language platforms. The main goal is to determine if any open source scripted pack-
ages are appropriate for radar signal processing and if it is worthwhile purchasing the more
expensive MATLAB, commonly used in industry. Some of the most common radar signal
processing techniques were considered, such as pulse compression, Doppler processing and
adaptive filtering for interference suppression. The scripting languages investigated were
the proprietary MATLAB, as well as open source alternatives such as Octave, Scilab,
Python and Julia.

While the experiments were conducted, it was decided that the implementations should
have algorithmic fairness across the various software packages. The first experiment
was loop based pulse compression and Doppler processing algorithms, where Julia and
Python outperformed the rest. A further analysis was completed by using vectors to index
matrices instead of loops, where possible. This saw a significant improvement in all of the
languages for Doppler processing implementations. Although Julia performed extremely
well in terms of speed, it utilized the most memory for the processing techniques. This was
due to its garbage collector not automatically clearing the memory heap when required.
The adaptive LMS (least mean squares) filter designs were a different form of analysis,
as a vector of data was required instead of a matrix of data. When processing a vector
or one dimensional array of data, Julia outperformed the rest of the software packages
significantly, approximately a 10 times speed improvement.

The experiments indicated that Python performed satisfactorily in terms of speed and
memory utilization. Physical RAM of computer systems is, however, constantly improv-
ing, which will mitigate the memory issue for Julia. Overall, Julia is the best open source
software package to use, as its syntax is similar to MATLAB compared with Python, and
it is improving rapidly as Julia developers are constantly updating it. Other disadvantage
of Python is that the mathematical signal processing is an add-on realized by modules
such as NumPy.

ii

Contents

1 Introduction 1

1.1 Objectives of this study . 2

1.1.1 Problems to be investigated . 2

1.1.2 Purpose of the study . 2

1.2 Scope and limitations . 2

1.3 Plan of development . 3

2 Literature review 4

2.1 Radar theory . 4

2.1.1 Radar signals . 4

2.2 RSP techniques . 6

2.2.1 NetRAD data . 6

2.2.2 Matched filter . 7

2.2.3 Pulse compression . 8

2.2.4 Doppler processing . 10

iii

2.2.5 Adaptive noise cancellation . 11

2.3 Programming languages . 14

2.3.1 MATLAB . 15

2.3.2 Julia . 15

2.3.3 Scilab . 15

2.3.4 Octave . 16

2.3.5 Python . 16

2.3.6 Additional features for interpreted languages 17

2.3.7 Memory principles . 20

2.3.8 FFT library . 23

2.3.9 Floating point operations per second (FLOPS) 24

3 Implementation of radar signal processing (RSP) techniques 26

3.1 Fairness . 26

3.2 Pulse compression implementation . 27

3.3 Doppler processing implementation . 29

3.4 Adaptive LMS filter implementation . 31

4 Results and discussion 36

4.1 Performance of RSP algorithm designs 37

4.1.1 Computation time for pulse compression design 37

iv

4.1.2 Computation time for Doppler processing design 42

4.2 FLOPS for different RSP algorithms . 46

4.2.1 FLOPS for pulse compression algorithm design 46

4.2.2 FLOPS for Doppler processing algorithm design 48

4.3 Memory handling for pulse compression and
Doppler processing . 50

4.4 Performance of adaptive LMS filter algorithm design 53

5 Conclusions and recommendations 58

5.1 Improved performance with spatial locality 58

5.2 Adequate performance of pulse compression 58

5.3 Lack of JIT during Doppler processing for Octave and Scilab 59

5.4 Impact of large vectors on adaptive LMS filter design 60

5.5 Impact of memory utilization on various language packages 60

5.6 Lack of implicit parallelism in Scilab . 60

5.7 Suitable alternatives to MATLAB . 61

5.8 Recommendations . 61

A Additional Procedures 62

A.1 Changing BLAS/LAPACK libraries for Scilab 62

A.2 FFTW procedures . 62

A.3 Vectorization procedures . 63

v

List of Figures

2.1 Pulse train taken from adaptive filters applied on radar signals [1] 5

2.2 NetRAD dataset structure . 7

2.3 An overview of matched filtering in the frequency domain using fast convo-
lution, taken from NextLook a lightweight, real-time quick look processor
for NeXtRAD [2] . 8

2.4 Reference chirp used for transmission during NetRAD trial 9

2.5 Applying pulse compression on NetRAD dataset structure 9

2.6 Applying Doppler processing on a pulse compressed data set, where an
oval represents a CPI . 11

2.7 Block diagram of an adaptive LMS filter taken from [3] 12

2.8 Demonstration of spatial locality of a matrix of data. 23

3.1 Algorithm design for pulse compression 28

3.2 RTI plot before and after pulse compression 29

3.3 Algorithm design for Doppler processing 30

3.4 Range and amplitude of Doppler frequencies at different range bins . . . 31

3.5 Adaptive LMS algorithm implementation 33

vi

3.6 Simulated fixed frequency pulse radar signals before and after LMS adap-
tive filtering . 35

4.1 Time taken for pulse compression . 38

4.2 Time taken for pulse compression with different indices 38

4.3 Vectorization implementation for pulse compression 39

4.4 Time taken for pulse compression in Scilab with different BLAS/LAPACK
libraries . 41

4.5 Time taken for Doppler processing . 42

4.6 Time taken for Doppler processing with different indices 43

4.7 Vectorized implementation for Doppler processing 44

4.8 Time taken for Doppler processing in Scilab with different BLAS/LAPACK
libraries . 45

4.9 FLOPS for pulse compression . 48

4.10 FLOPS for Doppler processing . 49

4.11 Memory usage during pulse compression and Doppler processing for vari-
ous language packages . 51

4.12 Memory utilized during Doppler processing when only necessary variables
used . 53

4.13 Time taken per iteration for LMS processing on a fixed sized data set . . 55

4.14 Time taken for LMS processing for varied dataset sizes 56

4.15 Time taken for LMS algorithm in Scilab with different BLAS/LAPACK
libraries . 57

vii

List of Tables

2.1 Default BLAS libraries used for different packages 20

2.2 Basic number of operations used in RSP algorithms 25

3.1 Fixed frequency signal parameters . 34

4.1 Standard specifications used during pulse compression and Doppler pro-
cessing . 37

4.2 Hardware specification used for the computation of the RSP techniques . 37

4.3 Floating point operations used in pulse compression 47

4.4 Floating point operations used in pulse compression 49

4.5 Expected RAM utilized after pulse compression and Doppler processing
were completed . 52

4.6 Parameters chosen for LMS filter . 54

viii

Nomenclature

ADC Analogue-to-digital converter
ATLAS Automatically tuned linear algebra software
BLAS Basic linear algebra subprograms
CPI Coherent processing interval
CPU Central processing unit
DFT Discrete Fourier transform
FFT Fast Fourier transform
FLOPs Floating point operations
FLOPS Floating point operations per second
JIT Just-in-time
LAPACK Linear Algebra PACKage
LFM Linear frequency modulated
LMS Least mean squares
MKL Math kernal library
MSE Mean square error
NetRAD Netted Radar
OpenBLAS Open source basic linear algebra subprograms
PRF Pulse repitition frequency
PRI Pulse repitition interval
RAM Random-access memory
RefBLAS Reference basic linear algebra subprograms
RF Radio frequency
RSP Radar signal processing
RTI Range-time intensity
SNR Signal-to-noise ratio

ix

Chapter 1

Introduction

The signal processor will take the raw radar data from the receiver, and perform a number
of common signal processing operations on the data. These include pulse compression,
Doppler processing and adaptive filtering. When performing the above algorithms, op-
erations such as correlation, fast Fourier transforms (FFT) and matrix-vector algebraic
operations are typically required [4].

Scientific computing is typically used for designing radar signal processing (RSP) so-
lutions. Using compiled languages like C++ for processing will be time consuming as
development time is longer. Its syntax is not simple; libraries have to be integrated
manually or own functions have to be written, and memory has to be handled manually.
Interpreted languages are much simpler and easier for engineers to use. Syntax is almost
like writing mathematical expressions on paper and memory handling is automatic. The
most common interpreted language used in research and industry is MATLAB. However,
it is costly and extra funding would be needed for purchasing additional toolboxes. There
is, therefore, a need for suitable open source alternatives to MATLAB that can provide
acceptable, or even superior, performance.

1

1.1. OBJECTIVES OF THIS STUDY

1.1 Objectives of this study

1.1.1 Problems to be investigated

The main problem to be investigated in this study is the fair comparison of different
scripted language packages, in the context of common RSP operations. The objectives
of this report are to:

• design RSP algorithms in such a manner that performance is not decremented, but
still gives algorithmic fairness across various language packages;

• compare scripting language platforms in terms of memory usage and execution time;

• draw conclusions to determine which open source software packages are viable for
RSP; and

• recommend strategies to improve performance for all of the language packages such
that further comparisons can be made.

1.1.2 Purpose of the study

The main purpose is to determine which of the several scripted languages are appropriate
for RSP. In engineering, MATLAB is widely used in research and industry to design RSP
techniques. Therefore, a requirement is to determine how open source software packages
compare with the more accomplished and expensive MATLAB, as well as which of the
open source packages would be recommended for various RSP techniques.

1.2 Scope and limitations

This report is limited to the implementation of pulse compression, Doppler processing
and adaptive filter algorithms in MATLAB, Julia, Python, Octave and Scilab. The
algorithms are designed in such a way that they can be used in various other radar
applications besides the datasets used in these experiments.

In this paper the following limitations occurred:

2

1.3. PLAN OF DEVELOPMENT

• A fair algorithmic comparison was made across all of the software packages. Firstly,
a loop based algorithm was written, implying that code was not written for maxi-
mum performance for each language package. Secondly, code was optimized where
possible in order to give faster execution time. In both scenarios, performance was
measured for identical algorithmic implementation and code patterns, correspond-
ing to each software package.

• Memory utilization analysis was only considered for the pulse compression and
Doppler processing algorithms, because Netted Radar (NetRAD) datasets consume
large amounts of memory. The dataset used for the adaptive LMS processing algo-
rithms was approximately 6 megabytes (MB), for which it was not worthwhile to
do a thorough memory analysis. It was decided to avoid redundancy as memory
would be handled in the same way as in large datasets.

• The default linear algebra libraries were used for all the software packages, with only
Scilab’s linear algebra libraries being altered for analysis and clarification purposes.

1.3 Plan of development

The rest of the report is organized in the following way:

Chapter 2 provides a literature review of the basics of radar, different RSP techniques, and
software packages used in the study. It also describes important techniques that must
be considered when implementing different RSP algorithms on the different language
packages.

In Chapter 3 the manner in which the RSP algorithms were designed is described in
detail.

Chapter 4 describes how the RSP algorithms were executed. Performance results are
presented for all three RSP algorithms across all investigated software platforms, after
which an analysis and comparison will follow.

Chapter 5 presents the conclusions based on the progression of the study and discusses
which software packages are suitable for RSP design. Chapter 5 also has a list of recom-
mendations that can be used for future work to build on the results of this study.

3

Chapter 2

Literature review

2.1 Radar theory

RADAR is an acronym for radio detection and ranging. It’s two most basic functions are
to detect an object and to determine it’s distance from the radar system. Radar systems
have improved over the years, with the ability to track, identify, and image detected
targets. A radar system typically transmits radio frequency (RF) electromagnetic (EM)
waves towards a region of interest. In this region of interest, the EM waves are reflected
from the objects, creating echoes. These echoes are received by the radar system and are
processed to determine important information about the target [4].

2.1.1 Radar signals

In this investigation, pulsed radar systems were considered. For a pulsed radar system,
radar signals have to be defined. A radar signal can be described by three important
characteristics: pulse repetition interval, pulse width and carrier frequency. Radar signals
consists of a train of short pulses. The pulse width (TP W) is the duration time of a pulse
and decides the bandwidth and range resolution. Pulse repetition interval (TP RI) is the
time between the beginning of one pulse and the start of the next pulse and can be
designed to avoid Doppler and range ambiguities [1]. A typical envelope of a radar signal
pulse train is depicted in Figure 2.1, which is the baseband signal that will be modulated
with the carrier.

4

2.1. RADAR THEORY

Figure 2.1: Pulse train taken from adaptive filters applied on radar signals [1]

The transmitted pulse train in Figure 2.1 can be represented mathematically in discrete
form as follows:

x[n] =

 xp[n] 0 ≤ n ≤ fsTP W

0 fsTP W < n < fsTP RI

(2.1)

where fs is the sampling frequency.

For a pulse radar system, the train of narrow, rectangular shaped pulses in Figure 2.1 is
amplitude modulated with a CW RF carrier signal. This generates a simple pulsed RF
signal. The transmitted pulses can also have different intra pulse modulation to improve
radar performance and capabilities [4, 1]. The two most common types of intra pulse
modulation schemes are [1]:

1. Binary phase coded pulses: This is when pulses have one or more 180 degree phase
shifts during the pulse.

2. Linear frequency modulated (LFM) chirp pulses: These are pulses with linear varying
frequency during the pulse.

In this paper, LFM chirp pulses and fixed frequency pulses will be used. LFM chirps are
commonly used in radar, as it improves range resolution, which is the ability of the radar
to distinguish two or more targets that are closely spaced [5]. It is also the transmitted
signal chosen during the NetRAD experiments.

The signal represented by the equation (2.1) is an ideal radar signal. In reality, received
radar signals are corrupted by random unwanted signals, normally regarded as noise.
Firstly, the radar receiver generates thermal noise from its circuitry, due to random

5

2.2. RSP TECHNIQUES

electron motion. There is also environmental noise, clutter, unwanted echoes from the
environment and jamming that could interfere with the desired signal. So the data
collected is not perfect, as these unwanted signals might mask the signal of interest [4].

The radar signal processor becomes important, as it takes the raw radar signal and
applies signal processing techniques to it, improving the ability to detect targets and
extract useful information from raw radar echoes. In this study the most common RSP
techniques were considered. These include pulse compression, which improves range
resolution and SNR, as well as Doppler processing, which measures Doppler shift and
thus radial velocity. Adaptive filtering is also used to suppress thermal noise from raw
radar data [4].

2.2 RSP techniques

2.2.1 NetRAD data

NetRAD, is a three node coherent multistatic radar system, consisting of one transmit-
receive node and two receive-only nodes. In other words, there is only one monostatic
node and two bistatic nodes [6]. This system was originally developed at the University
College of London in 2000 as a cable synchronized, multi-node radar system. However,
due to the limitations of the 50m cable used to connect the nodes, the University of Cape
Town joined the project in 2003 by developing a distributed global positioning system
synchronized set of clocks. Control software was also developed such that different nodes
can be controlled over a wireless network from a central control computer. This enabled
nodes to be separated many kilometres apart and improved synchronization problems.
The main purpose of the NetRAD system was making raw data available, with the
intention that individuals and organizations process this multistatic data, and understand
sea clutter and vessel properties in a multistatic configuration [7].

The datasets used for pulse compression and Doppler processing experiments were the
NetRAD data sets collected in the United Kingdom and South Africa. NetRAD data
sets are stored in binary files as sequential non-delimited 16 bit numbers. Each 16 bit
number corresponds to a real valued sample, captured by the analogue-to-digital converter
(ADC). Figure 2.2 indicates that received echoes were sampled such that a single range
line contains 2048 range bins with an ADC sample rate of 100 MHz [8]. Therefore, the
time to sample each range line was:

6

2.2. RSP TECHNIQUES

2048 · 1
100 MHz = 20.48 µs (2.2)

During the experiments, a total of 130000 pulses were transmitted at a PRF of 1 kHz [8].
This resulted in the experiment lasting for:

130000 · 1
1kHz = 130 s (2.3)

Figure 2.2: NetRAD dataset structure

2.2.2 Matched filter

The received signal, x[n], is embedded in additive white noise. A matched filter is a
filter that maximizes the signal to noise ratio (SNR) of its output. This is achieved
by identifying a known transmitted signal, r[n], within this noisy received waveform.
To maximize output SNR, the filter’s transfer function must be a time-reversed and
conjugated reference signal [9].

7

2.2. RSP TECHNIQUES

h[n] = r∗[−n] ⇐⇒ H[k] = R∗[k] (2.4)

Matched filtering is normally implemented digitally by using fast convolution. Fast con-
volution is a correlation operation implemented using the FFT, thus the discrete time
samples can be efficiently transformed into discrete-time Fourier transform samples [4].
The fast convolution technique is illustrated in Figure 2.3.

FFT

FFT Conjugation

IFFTx[n]

r[n]

X[k]

R[k]

Y[k]

H[k]

y[n]

Figure 2.3: An overview of matched filtering in the frequency domain using fast con-
volution, taken from NextLook a lightweight, real-time quick look processor for NeX-
tRAD [2]

2.2.3 Pulse compression

Pulse compression is a modified version of the matched filter whereby the transmitted
waveform is modulated. The modulation technique used is linear frequency modulation.
This technique produces chirp waveforms, which is a popular choice for radar applications
as it is simple to implement and insensitive to Doppler [8]. The chirp pulse used during
the experiment has a pulse width of 5 µs, with the number of samples determined by the
multiplication of the pulse width and sample rate, therefore giving 500 samples [8]. The
chirp pulse is illustrated in Figure 2.4.

8

2.2. RSP TECHNIQUES

Samples

0 50 100 150 200 250 300 350 400 450 500

A
m

p
li

tu
d

e

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

Reference signal

Powered by TCPDF (www.tcpdf.org)

Powered by TCPDF (www.tcpdf.org)

Figure 2.4: Reference chirp used for transmission during NetRAD trial

In order to generate a pulse compressed dataset, the matched filter procedure is applied
on the fast time/range dimension of the dataset, implying that the FFT of the LFM chirp
is multiplied with the FFT of each pulse of the NetRAD dataset, as shown in Figure 2.5.

Figure 2.5: Applying pulse compression on NetRAD dataset structure

9

2.2. RSP TECHNIQUES

Analytic signals

When implementing pulse compression, the Fourier transform of a real valued time do-
main signal was taken. It results in a symmetric frequency spectrum, X(−f) = X∗(f).
The spectrum, therefore, contains double the amount of information required to recon-
struct the original time domain signal. To remove the redundancy, the real signal is
extended to an analytic signal, in other words, having no negative frequency components
[8]. It is defined mathematically as follows:

Z(f) =

2X(f), f > 0
X(0), f = 0
0, f < 0

Real signals can be extended to analytic signals in the time domain or frequency domain.
In the time domain, a process known as Hilbert transform is used. In the frequency
domain, the negative spectral components are removed as described above. The real
data stored in NetRAD datasets need to be extended to its analytic form before Doppler
processing can occur [8].

2.2.4 Doppler processing

By generating a pulse compressed dataset, the output SNR has increased significantly.
It is then customary to apply Doppler processing after pulse compression [6]. Pulse
Doppler processing is a technique, whereby the energy of a moving target is separated
from clutter, implying that the energy of the target would only compete with noise in
the targets Doppler bin [4].

When applying pulse Doppler processing, each range bin is considered, whereby a DFT
on each slow time row of the data is computed using an FFT algorithm of a particular
size. The size of the FFT corresponds to the coherent processing interval (CPI) [4]. The
procedure is depicted in Figure 2.6.

10

2.2. RSP TECHNIQUES

..........

..........

..........

...........

1300001 255 256....

Slow time/Pulse number

Fa
st

 ti
m

e/
Ra

ng
e

bi
ns

2048

2

3

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...... 511......

Powered by TCPDF (www.tcpdf.org)

Powered by TCPDF (www.tcpdf.org)

Figure 2.6: Applying Doppler processing on a pulse compressed data set, where an
oval represents a CPI

The DFT bins or CPI corresponds to Doppler frequencies in the range of -P RF
2 to P RF

2 .
When deciding on an FFT size, a trade-off exists between spectrum resolution and com-
putation overhead. A longer CPI generates more data points, which improves spectrum
resolution. However, this requires more memory, as FFTs are longer. Also if the CPI is
too long, the target migrates to another range bin. Once the computation is completed, it
results in a range/Doppler data matrix, with the dimensions being fast time and Doppler
frequency [4, 8].

The importance of pulse Doppler processing, the Doppler shift of a target, can be es-
timated by the Doppler bin in which the target was detected. Furthermore, multiple
targets can also be detected based on the detections in multiple Doppler bins, provided
they are separated enough in Doppler to be resolved [4].

2.2.5 Adaptive noise cancellation

The main objective of the adaptive noise cancellation is to use an adaptive filter to reduce
the thermal noise in the received radar signals, such that the weak radar signals can be
detected. By using the adaptive filter, thermal noise can be suppressed, with no prior

11

2.2. RSP TECHNIQUES

knowledge of the signal or interference characteristics needed [6]. It is a type of filter that
is self adjusting, meaning that the filter parameters are able to change automatically
with time [1]. The adaptive noise cancellation technique used was the adaptive line
enhancement method, with the least mean squares (LMS) adaptive filter chosen. This
adaptive noise cancellation technique can be modelled by Figure 2.7.

delay Adaptive filter

Adaptive
algorithm

+
x[k] = s[k]+n[k] d[k] e[k]

y[k]
-

Figure 2.7: Block diagram of an adaptive LMS filter taken from [3]

The signal, x[k], is the received signal, which consists of the radar signal of interest, s[n],
and broadband noise, n[k]. This received signal, x[k], constructs both the desired signal,
d[k], which is equal to x[k] and the input signal to the adaptive filter, which is a delayed
version of x[k]. The delay, ∆, must be chosen such that the broadband noise in the desired
and delayed signals becomes uncorrelated but still has the radar signal correlated. The
adaptive filter attempts to minimize the error signal such that the correlated periodic
components are passed and broadband noise is rejected. The output signal, y[k], of the
adaptive filter will attempt to create the radar signal of interest, s[k] [3].

The adaptive filter coefficients for a finite impulse response filter are represented at each
time step, k, by a vector, wk, of length, L.

wk = [w0 w1 ... wL]T (2.5)

The input into the adaptive LMS filter is a delayed version of x[k]. It can be represented
at each time step, k, as follows:

xk = [x[k] x[k − 1] ... x[k − L]]T (2.6)

12

2.2. RSP TECHNIQUES

The radar signal of interest, s[k], is embedded in noise. The output of the adaptive filter,
y[k], attempts to create this radar signal of interest and is denoted by Equation (2.7):

y[k] = wT
k · xk (2.7)

At each time step, the adaptive filter coefficients, wk, are updated by an adaptive algo-
rithm. The adaptive filter algorithm consists of a mean square error (MSE) objective
function. The MSE is a function of the error signal, e[k].

e[k] = d[k]− y[k] (2.8)

Since y[n] goes towards the signal of interest, s[n], the error signal will be approximate
thermal noise.

e[k] = d[k]− y[k] = s[n] + n[n]− s[n] ≈ n[n] (2.9)

To minimize the MSE, the adaptive filter coefficients are altered recursively as follows:

wk+1 = wk + 2µ · e∗(k) · xk (2.10)

where ∗ represents complex conjugate.

The step size, µ, is also known as the convergence factor. This determines the change
of the filter coefficients in each time step. By using a small step size, changes to the
filter parameters are small in each time step. This results in a high convergence time,
as steps towards the minimum of the performance surface are short. The advantage is
that, the steady state MSE will be small. However, a large step size is the opposite, as it
gives a fast convergence time and an increase in steady state MSE. Therefore, choosing
an appropriate step size becomes a tradeoff between having a fast convergence time or a
small steady state MSE [10].

The other important parameter needed for the LMS filter is the filter length. This
determines the best SNR performance that the adaptive filter can achieve. A small
number of filter coefficients will give a low SNR gain, while a large number of filter

13

2.3. PROGRAMMING LANGUAGES

coefficients generate a high SNR gain. Having many filter coefficients requires more
samples, resulting in a longer time to converge [10].

2.3 Programming languages

Users design algorithms in high-level languages, consisting of basic English words and
phrases, arithmetic operators and punctuation. A program written in a high level lan-
guage is known as source code. Computers will not be able to execute source code;
therefore it needs to be converted to machine code. Machine code is written in binary,
0’s and 1’s, which is understandable by a computer. In order to convert source code to
machine code, either compilers or interpreters are used [11].

Compiled programming languages: These are programming languages that goes
through a compiling step during which all of the source code is converted to machine
code. The machine code generated is then executed directly on the target hardware. In
other words, during runtime, only machine code is executed. Compiled languages also
optimize generated code to achieve faster execution [12].

Interpreted programming languages: When using interpreted languages, source code
is not converted to machine code prior to runtime. There is no explicit compile step.
During runtime, interpreted languages are executed one command at a time by another
program, known as an interpreter program. It therefore interprets the source code and
then executes previously compiled functions based on that source code during runtime and
not before runtime as for compiled languages. For this very reason interpreted languages
can be considered slower than compiled languages [12].

All of the investigated packages contain interpreted languages and RSP algorithms are
developed on a Linux system. The open source packages are all available from the Linux
distribution packaging system. However, the up-to-date versions might not be available,
therefore, for certain languages, the binary version of the packages was used. A binary
version of a software package is a pre-compiled version that can be read by the computer
and used for execution.

14

2.3. PROGRAMMING LANGUAGES

2.3.1 MATLAB

MATLAB stands for MATrix LABoratory. It is a high performance language, used for
technical computing, and has been commercially available since 1984 [13]. It has grown
to be considered as a standard tool used by most universities and industries. There are
numerous powerful built-in science and engineering toolboxes available, used for a variety
of computations. These comprise signal processing, control theory, symbolic computation
and many more [13]. MATLAB 2014 was the licenced version used for RSP designs. To
get a MATLAB licence is expensive, which is why free, open source alternatives need to
be considered.

2.3.2 Julia

Julia is a high-level language that achieves high performance for numerical computing.
It also provides a just-in-time (JIT) compiler, numerical accuracy and a comprehensive
mathematical function library. Julia’s base library is mostly written in Julia, integrating
C and FORTRAN libraries for linear algebra and signal processing. Currently, the Julia
developer community is rapidly contributing numerous external packages through Julia’s
built-in package. Julia 0.5.2, which was updated in May 2017, was used in the develop-
ment of RSP algorithms. A new, much improved version, Julia 0.6.0, is available but still
in its infant stage, with algorithms on Julia 0.5.2 completed before Julia 0.6 was released
[14].

2.3.3 Scilab

Scilab is a free, open source software package provided under the Cecill licence. It is
used for numerical computations, as it provides a powerful computing environment for
engineering and scientific applications. It includes various functionalities such as signal
processing, control system design and analysis, and many more [15]. On the Linux system
used for the experiments, the packaging system is distributed with Scilab. The up-to-
date version, Scilab 6.0.0, was, however, not available on that particular Linux version,
therefore the binary version of Scilab 6.0.0 was used. Reasons for using Scilab 6.0.0
were that memory was dynamically allocated and previous versions of Scilab only accept
approximately 2GB of memory. This was not sufficient when large datasets need to be
processed. Algorithms were also implemented on Linux systems because the Windows

15

2.3. PROGRAMMING LANGUAGES

version of Scilab 6.0.0 immediately shuts down for unknown reasons when processing the
datasets. This happened on multiple Windows systems. The latest version of Scilab 6.0.0
was downloaded and installed in June 2017.

2.3.4 Octave

Octave was initially developed in 1988 as a companion software, for an undergraduate-
level textbook on chemical reactor design. It was later decided to build a more flexible
tool which, that was more than just courseware package. Today it is a high level language,
intended for numerical computations. Octave is convenient as its syntax is compatible
with MATLAB, which is commonly used in industry and academia. Today it is used by
thousands of people for numerous activities that include teaching, research and commer-
cial applications. It is currently being developed under the leadership of Dr J.W. Eaton
and released under the GNU General Public Licence [16]. In the designing of the RSP
algorithms Octave 4.0.0 was used as it was initially installed from the Linux distribu-
tion package. There are no substantial changes from Octave 4.0.0 to the latest Octave
package.

2.3.5 Python

Guido van Rossum invented Python around 1990 while working with the Amoeba dis-
tributed operating system and the ABC language. Initially, Python was created as an
advanced scripting language for the Amoeba system. Later it was realized that Python’s
design was very general, such that it could be used in numerous domains. Today it is
a general purpose open source language used for numerous applications [17]. The im-
plementation of Python used is the default version, CPython. It is both a compiler and
interpreter that comes with standard packages and modules written in standard C [18].

Two versions of Python are currently being used, Python2 and Python3. Python2 is
mostly used, it is stable, with no changes being made to it as its life cycle will end
approximately in 2020 [19]. Python3 is an improvement on Python2 and will be the future
of Python. At the moment it is still growing and updated regularly. The motivation for
Python3 was to fix old design mistakes, requiring backward compatibility to be broken
from Python2. There would be a few changes in both languages and its libraries, as
major Python packages were ported to Python3. This implies that many skills gained by
learning Python2 can be transferred to Python3 [20]. The versions of Python used during

16

2.3. PROGRAMMING LANGUAGES

this investigation are Python 2.7.12 and Python 3.5.2, which are the default installations
on UbuntuMATE 17.04.

Python also has many specialized modules that can be used for solving numerical prob-
lems with fast array operations. The Numeric Python (NumPy) package was used in this
investigation, as it is an open source numeric programming extension module for Python
that consists of a flexible multidimensional array for fast and concise mathematical cal-
culations. The internals of this array is based on C arrays, which will give performance
improvements, as well as the ability to interface with the existing C and FORTRAN
routines. NumPy provides a large library of fast precompiled functions for mathematical
and numerical routines that effectively turn Python into a scientific programming tool,
allowing for efficient computations on multi-dimensional arrays and matrices [17, 21, 22].
NumPy’s speed is achieved through vectorization, which will be elaborated on in further
sections [23].

2.3.6 Additional features for interpreted languages

JIT compiler

When using interpreted languages, faster code can be generated by using a JIT compiler.
A JIT compiler uses both the interpreter and compiler, whereby each line is compiled
and executed to generate machine code. By doing this, the application can be optimized
for target hardware [12].

MATLAB and Julia have introduced a JIT, one of the most important factors in how
code is executed faster. Currently, Octave’s JIT compiler is in its experimental stage,
while CPython and Scilab do not have such a feature. However, Python makes use of
the CPython compiler, which is not optimized for numerical processing. This compiler
could be replaced with the Numba compiler that would give CPython JIT capabilities
but it is not compatible with all the existing Python libraries (mainly Pyfftw) and some
of the language features [24]. Another Python implementation known as PyPy imple-
ments a standard JIT compiler, this also has the libraries issues that Numba does [25].
The disadvantage of languages with a JIT compiler is that the first run is always slower
than subsequent runs because of the compilation process. Therefore, when performing
benchmarks, always use the second runs [12]. A JIT compiler also performs optimiza-
tion techniques, such as vectorization on for loops in the background, resulting in loop
overhead being minimized. MATLAB’s JIT compiler has been improved significantly in

17

2.3. PROGRAMMING LANGUAGES

newer versions, speeding up for loops without the user’s attempt to vectorize them [26].

Python JIT compiler

Implicit parallelism

There are several forms of parallelism that can be implemented in algorithms. These
can be classified into either implicit or explicit parallelization. The former is where the
user’s code is parallelized without any modification to the algorithm, while the latter is
a transformation of the user’s algorithm to achieve parallelization [27, 28]. During this
investigation, implicit parallelization was constantly used, as it occurs without the users
knowledge. There are two types of implicit parallelism: vectorization and linear algebra
computations.

Vectorization: This is a programming technique whereby vector operations are used,
instead of element-by-element loop-based operations. Vectorized operations are implic-
itly parallelized. This means that the internal implementations are optimized by being
multi threaded behind the scenes in optimized, pre-compiled C code. When possible, it
also makes use of the hardware’s vector instructions or performs other optimizations in
software that accelerates everything. A JIT compiler is important as one of its features
is vectorizing for loops in the background, such that loop overhead is minimized. The
three main advantages of vectorized code are [29, 30]:

1. Appearance of the code is neater, which is easier to understand.

2. It is faster than loop based code, as its operations are optimized for matrices and
vectors.

3. It is typically shorter than loop-based code, which is less prone to errors.

In most scenarios vectorized code achieves a massive speed up compared to loop based
code [31]. All of the above languages have operations which are optimized for matrices
and vectors.

Linear algebra computations: Implicit parallelization also shows up in linear algebra
computations, such as matrix multiplication, linear algebra and performing the same
operation on a set of numbers [28, 32]. The building blocks for linear algebra is the basic

18

2.3. PROGRAMMING LANGUAGES

linear algebra subprograms (BLAS) and Linear Algebra PACKage (LAPACK) libraries
[33].

• LAPACK: This is the library responsible for linear algebra computations. It con-
sists of a collection of FORTRAN routines, used for solving high level linear algebra
problems [33]. All of the above packages make use of this library.

• BLAS: It is a collection of FORTRAN routines that provide low level operations
such as vector addition, dot products and matrix-matrix multiplications [33]. LA-
PACK relies on this library for its internal computations [34].

There are four major implementations of the BLAS libraries that can be used. These
are reference basic linear algebra subprograms (RefBLAS), automatically tuned linear
algebra software (ATLAS), open source basic linear algebra subprograms (OpenBLAS)
and intel math kernel library (MKL).

• ATLAS: It provides optimized routines for BLAS, as well as a small subset of
LAPACK. The procedure is based on empirical techniques to provide portable per-
formance and improvements over the reference BLAS/LAPACK libraries [33].

• Intel MKL: This is a library developed by Intel. It consists of highly optimized,
heavily threaded math routines for Intel processors. This implies that on Intel
processors, maximum performance would be achieved [34, 33]. For computers with
Intel CPU’s, these MKL libraries can be obtained for free. If installed correctly,
all of the language packages investigated can make use of it for complex matrix
operations [35, 36, 37, 38].

• OpenBLAS: For several processor architectures, optimized implementations of
linear algebra kernels are provided [39].

• RefBLAS: Reference BLAS library is a single threaded implementation of BLAS.
For particularly complex linear algebra, this library will be slower than optimized
multi-threaded versions [34].

The key difference between these libraries is that RefBLAS is a single threaded implemen-
tation and the others are highly optimized, multi-threaded versions of BLAS [34]. Intel
MKL is a proprietary library, while RefBLAS, ATLAS and OpenBLAS are open source
libraries, all available from the Ubuntu Linux distribution package system [34]. The bi-
nary packages of ATLAS and OpenBLAS distributed by Debian are generic packages

19

2.3. PROGRAMMING LANGUAGES

which are not optimized for a particular machine [39]. To achieve optimal performance,
ATLAS and OpenBLAS must be recompiled locally for optimal performance, which is
recommended for advanced Linux users seeking maximum performance. If the hardware
used is amd64 or x86, there is no need to recompile OpenBLAS, as the binary includes
optimized kernels for several CPU micro-architectures [39].

The default version of BLAS and LAPACK libraries was used for each of the packages
and is outlined in Table 2.1. Note that Octave uses OpenBLAS from Linux distribution
package by default.

Table 2.1: Default BLAS libraries used for different packages

Software BLAS library
MATLAB Intel MKL

Julia OpenBLAS
Octave OpenBLAS
Scilab RefBLAS

Python2 OpenBLAS
Python3 OpenBLAS

There is a necessity to also have a fair performance comparison. This means that for
Scilab, the OpenBLAS library from the Linux distribution package, as well as the default
version were considered during the experiment. This was encouraged in order to have
multi-threaded BLAS/LAPACK libraries for all software packages, not necessarily being
optimized for specific hardware. Note that on Windows, Scilab uses Intel MKL linear
algebra libraries by default, instead of the reference linear algebra libraries as with Linux
machines.

2.3.7 Memory principles

Memory heap

In any programming language, heap memory management is important. The heap is a
massive space where memory is dynamically allocated. In other words, when a program
is in execution, it will continuously allocate memory to the heap until algorithms are
completed. If the space used on the heap is not freed, that space will never be available
again while the program continues to execute. Normally, two scenarios might happen

20

2.3. PROGRAMMING LANGUAGES

when this occurs. Firstly, the heap will fill up and the program will abnormally terminate.
Secondly, the program would continue to run, but the performance of the system will
deteriorate [40].

There are two ways to free space on the heap: manually, whereby programmers must
remember to free space that was allocated on the heap or it can be done automatically.
Many interpreted languages do the latter. This is accomplished by using a garbage
collector which runs as part of the interpreter and checks for space that can be freed on
the heap. Garbage collectors will ensure that space on the heap is allocated and accessed
correctly. This allows for programmers to allocate space on the heap, without concerning
themselves about freeing that space [40].

Virtual memory

Processing datasets that require a significant amount of memory might cause the process-
ing procedure to fail or performance might deteriorate, as explained in the memory heap
section. To compensate for this, computer systems automatically use virtual memory
without the user’s control. Virtual memory is a technique whereby the hardware uses a
portion of the hard disk, called a swap file, that extends the amount of available mem-
ory. This is completed by treating main memory as cache for most recently used data,
the inactive RAM contents are stored onto disk and only active contents are allowed to
be situated in main memory. This process is continued as needed by the computer by
continuously swapping from disk to memory, eventually causing the system performance
to deteriorate [41].

Principle of locality

Over the years, memory performance has not increased at the same rate as CPU perfor-
mance. When processing large datasets, generating fast algorithms could be troublesome,
as performance will be limited by the time it takes to access memory. Code is thus mem-
ory bound, which means that processing is decided by the amount of memory required to
hold the datasets. However, there are measures that can overcome memory bound code,
such as avoiding inefficient memory usages [42].

Principal of locality is an important concept for cache friendly code, which is when the
same or related storage locations are being accessed regularly [43, 4]. It allocates data

21

2.3. PROGRAMMING LANGUAGES

such that it is aligned close in memory. There are two types:

Temporal locality: When data in a specific memory location is accessed and cached -
data that is accessed can be used again for a short time period.

Spatial locality: Relevant when manipulating datasets, the data in a particular dataset
are aligned in memory locations that are close to each other. When accessing elements
in matrices, elements adjacent/next to it will also be fetched.

When the user generates code to manipulate data, both forms of locality are likely to
occur. By considering spatial locality, datasets can be manipulated to ensure that it
handles contiguous memory effectively. This will lead to fewer memory accesses and
faster code [43].

Contiguous memory

When processing 2-D or an N-D array, try accessing data that transverses monotonically
increasing memory locations [42]. This means either accessing rows or columns, depending
on how data is stored in contiguous memory. When accessing memory, data is not directly
read from it, some of the data is initially stored from memory to cache, and then read
from cache to the processor. If data needed is not in cache, the required data will be
fetched from memory. This process can be referred to as spatial locality: when fetching
an element, the elements next to it are cached. To ensure spatial locality occurs for the
RSP algorithms, row major or column major ordering needs to be considered [44].

Figure 2.8 demonstrates spatial locality using a simple 3x3 matrix with data for row and
column major ordering schemes.

22

2.3. PROGRAMMING LANGUAGES

a b c

d e f

g h i

(a) Block diagram of memory
block configuration.

a b c

d e f

g h i

(b) Contiguous memory block
configuration for row major.

a b c

d e f

g h i

(c) Contiguous memory block
configuration for column major.

Figure 2.8: Demonstration of spatial locality of a matrix of data.

Figure 2.8(b) demonstrates row major ordering, whereby the data will be processed from
left to right. The value at position a is read from memory and values at positions b
and c will be cached. This implies that the first row must be processed or accessed first
before the next row is accessed or processed. Column major ordering is the reversed
procedure, as shown in 2.8(c), with one column being processed before the next column.
Considering this ordering scheme before applying operations results in fewer memory
accesses and more cache accesses. This would lead to faster code, as modern CPUs make
use of a faster cache, reducing the average time taken to access main memory. This results
in maximum cache efficiency when large datasets need to be processed [42]. Python uses
row major ordering by default, while all of the other packages use column major ordering.

2.3.8 FFT library

When pulse compression and Doppler processing are applied to a particular dataset, the
FFT operation is required. Implementing fast FFTs is beneficial if the datasets are large.
The library used to achieve fast FFTs is FFTW, the "Fastest Fourier Transform in the
West". It is a free portable C package developed by MIT. FFTW is based on the Cooley-

23

2.3. PROGRAMMING LANGUAGES

Tukey fast Fourier transform, that takes real data and computes the complex discrete
Fourier transforms (DFT) in N log(N) time. This library is considered to be much faster
than available DFT software, as well as being on par with proprietary, highly tuned
libraries [8, 45].

The user also has the ability to interact with the FFTW library through the planner
method which helps the FFTW to adapt its algorithm to the hardware of the ma-
chine. FFTW is thus optimized by the planner during runtime. FFTW’s performance is
portable, as the same code can be used to achieve good performance on various hardware
types. Different types of planner methods can be used. The user can decide on a planner
that runs all tests, including ones that are not optimal, to determine the best transform
algorithm for the dataset. This type of planner would result in a higher computational
cost, however the least computational cost algorithm would be used for the experiments
in this investigation [8]. The planner that can accomplish this scenario is the estimate
planner, which will give the best guess transform algorithm based on the size of the
problem [46].

When using the FFTW, the number of operations is proposed to be 2.5N log(N) and
5N log(N) [47]. This is for the real and complex transforms respectively, where N is the
number of values to be transformed. It is not an actual flop count, but a convenient scaling
based on the radix-2 Cooley-Tukey algorithm and it is based on Big O notation. Big
O notation describes the performance or complexity of an algorithm, giving information
about the rate of growth of an algorithm as the size of the input increases [48]. This means
that as N increases, the runtime will be proportional to 2.5N log(N) and 5N log(N) for
real and complex transforms respectively [47, 48]. The proposed values are viable for
this investigation, because it was used in many scenarios to generate benchmark tests
for performance analysis [49]. All of the languages use FFTW by default apart from
Python which requires the Pyfftw library. The procedure for Pyfftw is mentioned in the
Appendix section.

2.3.9 Floating point operations per second (FLOPS)

A floating point number is one where the position of the decimal point can float rather
than being in a fixed position within a number [50]. When mathematical operations are
applied on floating point numbers, these operations are called floating point operations.
In scientific computing, a common procedure is to count the number of floating point
operations carried out by an algorithm [51]. The floating point operations used in this

24

2.3. PROGRAMMING LANGUAGES

investigation include multiplication, division, addition, subtraction and the FFT function.
Some of the above operations are applied on complex values. To estimate the central
processing unit (CPU) or hardware performance, it is necessary to convert complex valued
operations to real valued operations. Table 2.2 illustrates a list of how many real valued
operations were used for each operation.

Table 2.2: Basic number of operations used in RSP algorithms

List of operations Number of real operations assumed
complex-complex multiplication 6 RFLOPS
real-complex multiplication 2 RFLOPS
FFT (5N log(N)) RFLOPS
IFFT (5N log(N) + N) RFLOPS
complex divided by real 8 RFLOPS

The values for the operations in Table 2.2 are taken from [47, 52]. The complex divided
by real was determined by 1 real inverse + 1 real-complex multiply. A real inverse is
assumed to be 6 RFLOPS because the number of operations for it varies significantly on
different hardware and a real-complex multiplication is 2 RFLOPS [52]. This then gives
a total of 8 RFLOPS for a complex divided by a real.

To get an estimate of how fast the CPU can process the floating point operations (FLOPs)
of an algorithm on different language packages, FLOPS need to be determined [53]. This
can be defined by the FLOPs for the floating point operation used, divided by how long
it takes to compute that specific operation.

FLOPS = FLOPs

time
(2.11)

25

Chapter 3

Implementation of radar signal
processing (RSP) techniques

3.1 Fairness

In the design process of the algorithms, four main considerations were taken into account
to ensure a fair algorithmic comparison across the different languages.

• Float64 numbers: This is to achieve maximum accuracy and precision when
computations take place. Double precision numbers also occupy more memory than
Float32 numbers, indicating how well the software packages handle algorithms that
use maximum computer resources. This could be considered as a worst case scenario
in terms of computer resource usage.

• Spatial locality: This ensures that the contiguous memory block is used effectively
for each of the language packages. It makes sure that one language is not given an
advantage over another language - all software packages will have the same amount
of memory accesses and the same amount of data will be cached.

• Same libraries: The only library used was the FFTW library and all of the lan-
guages made use of the estimate planner. No additional libraries were used during
the actual design of the algorithms, with the exception of Python. For Python, the
NumPy library is encouraged because it gives Python scripting language capabili-
ties such as vectorization. During the actual experiment to get speed results, the
file I/O, graphics was ignored as it is not part of the actual signal processing of the

26

3.2. PULSE COMPRESSION IMPLEMENTATION

algorithms.

• Similar implementation: All of the RSP algorithms across all of the software
packages will have the same algorithmic implementation.

3.2 Pulse compression implementation

The pulse compression algorithm is basically the matched filter implementation described
in the previous chapter. Figure 3.1 illustrates the procedure followed to implement the
pulse compression on the NetRAD dataset.

1. The dataset is read into memory as a two dimensional matrix of size N, where N =
number of range bins × number of pulses. In Python, it is read in the reversed direction
(number of pulses × number of range lines). This is because its contiguous memory block
is in row major ordering instead of column major ordering.

2. Reference signal or transmitted pulse is read from a text file into a one dimensional
matrix. The reference signal was windowed by applying a Hanning window [54]. Since the
reference signal has only 500 samples, it was zero padded such that it has 2048 samples.
This ensures that it has the same amount of samples as a single pulse in the datamatrix.
The reference signal was also transposed.

3. The FFT of the reference signal is multiplied with the FFT of each line of the data-
matrix. This is done sequentially in a for loop for a specific number of pulses stipulated
by the user. The output is then stored in the MF2 matrix.

4. Analytic signal is formed by taking the completed MF2 matrix and zeroing the negative
half of it. Since the MF2 matrix has 2048 samples, the first 1024 samples were zeroed,
leaving only the positive half of the spectrum.

5. Inverse FFT is applied on each pulse of the modified MF2 matrix with the result
stored in pulseCompressData matrix.

27

3.2. PULSE COMPRESSION IMPLEMENTATION

Load data set, window and
zero padded reference

signal, and indicate
number of pulses.

Initialize matrices:

REF: To store result from FFT of reference signal.
MF2: To store result from frequency domain.
pulseCompressData: To store result from time domain.

FFT reference signal and
take complex conjugate to

form matched filter.

Loop through data set and
apply FFT on single pulse.

All pulses
processed?

Multiply reference signal
FFT with single pulse FFT..

Store result into MF2
matrix.

No

Zero pad and form
analytic signal matrix from

MF2 matrix.

Loop through modified
MF2 matrix and apply
IFFT on each pulse.

All pulses
processed?

No

Done

Yes

Yes

Store result into
pulseCompressData

matrix.

Figure 3.1: Algorithm design for pulse compression

Typically, the pulse compressed data was visualised by a range-time intensity (RTI) plot.
This is a two-dimensional image plot, with the x-axis representing slow time, y-axis
representing fast time and the amplitude of each pulse as the range of colour. Figure 3.2
represents an RTI plot of a particular NetRAD dataset, as well as the pulse compressed
version.

28

3.3. DOPPLER PROCESSING IMPLEMENTATION

0 20000 40000 60000 80000 100000 120000
Pulse number

0

500

1000

1500

2000

R
a
n
g
e
 b

in
s

Before pulse compression

(a) RTI plot of raw NetRAD radar data.

0 20000 40000 60000 80000 100000 120000
Pulse number

0

500

1000

1500

2000

R
a
n
g
e
 b

in
s

After pulse compression

(b) RTI plot of pulse compressed NetRAD dataset.

Figure 3.2: RTI plot before and after pulse compression

It is important to note that the dataset is a scene of the ocean. In (b) the pulse compressed
version of (a) shows high intensity curves. This illustrates that ocean waves are moving
towards the radar over time. This also indicates that SNR has improved, as more valuable
information can be interpreted from the pulse compressed dataset. To get even more
information from this dataset Doppler processing can now be applied.

3.3 Doppler processing implementation

To perform Doppler processing, the output data matrix from the pulse compression was
used. Figure 3.3 displays the procedure followed to generate range Doppler matrix.

1. The data matrix from pulse compression algorithm was loaded and then transposed.
This gives the data matrix with dimensions of (number of pulses × number of range lines)
for column major ordering and (number of range lines × number of pulses) for row major
ordering. This allows for the exploitation of contiguous memory storage of each language
package. In other words, there will be more cache accesses and fewer memory accesses
when the FFT operations are applied.

2. To produce a Doppler spectrum, CPI needs to be defined. This is the FFT size which
is applied to all pulses of each range bin. During the experiment, the FFT size was de-
termined empirically. An FFT size of 256 was chosen, as it gave a compromise between
computation time and spectrum resolution. The result was stored in the pulseDoppler-
Data matrix.

29

3.3. DOPPLER PROCESSING IMPLEMENTATION

Load data set from
pulse compression

step.

Indicate how many
pulses and the FFT
size to be applied on

each range bin.

Loop through all pulses of
range dimension considered,
and apply FFT on specified

number of pulses.

All pulses
processed?

All range bins
processed?

Loop through each
range dimension of

data set.

No Yes

No

Done

Initialization:

pulseDopplerData: To store
result from main doppler
processing procedure.

Yes

Store result into
pulseDopplerData

matrix

Figure 3.3: Algorithm design for Doppler processing

Figure 3.4 shows a range Doppler plot for the first 256 pulses, illustrating Doppler shifts
of targets for a specific range, over short instance in time.

30

3.4. ADAPTIVE LMS FILTER IMPLEMENTATION

Range Doppler plot of a NetRAD dataset

DFT bins
50 100 150 200 250

R
an

g
e

b
in

s

200

400

600

800

1000

1200

1400

1600

1800

2000

Figure 3.4: Range and amplitude of Doppler frequencies at different range bins

Figure 3.4 shows several targets that were detected at positive Doppler frequencies as
Doppler bins from 0 to 256 represent Doppler frequencies from -0.5 kHz to 0.5 kHz.

3.4 Adaptive LMS filter implementation

The adaptive LMS filter is identical to the implementation that was described in the
previous chapter. Figure 3.5 shows the procedure that was followed to implement the
adaptive LMS filter on a simulated dataset.

1. The noisy dataset is read into memory as a one dimensional array/vector. A one
dimensional array/vector is stored in a contiguous block of memory by default.

2. Step size and filter length were chosen, that gave a reasonable convergence rate with
a small MSE, and a suitable SNR.

3. The (delay_x) signal is the noisy dataset signal vector that is delayed by five samples
to ensure the noise is uncorrelated from it. Five samples was chosen because there are
about 2.5 samples per signal period. This shifting of the vector is completed by adding
zeros to the beginning of the vector.

4. The filter length of 80 was chosen. This means that 80 samples of the delay_x signal
were stored into vector x.

31

3.4. ADAPTIVE LMS FILTER IMPLEMENTATION

5. A weight vector of length 80 is multiplied with the x vector, with the result stored
into array/vector y.

6. Error vector is calculated by using equation (2.8) , the parameters inserted were the
noisy dataset vector from Step 1 and y vector from Step 4.

7. Weight vector is updated from equation (2.10) by using the step size as well as the
weight, error and the x vector from the above results.

8. The process is repeated until all samples have been processed from the delay_x vector.

32

3.4. ADAPTIVE LMS FILTER IMPLEMENTATION

Load noisy data set
into a vector with N
amount of samples.

delay_x: Delay
dataset vector by

n number of
samples.

Choose step
size,m and filter

length,L.

i = N-L?

Store (i : i+L-1)
samples from the

delay_x vector into x
vector

i++

multiply x vector
with w vector.

Store result into y
vector.

Calculate error
vector from

equation (2.8).

Update weight
vector from

equation (2.10)

No
Done

Yes

Initialization

w: weight vector,size L.
e: error vector, size N-L.
y: filtered output vector,N-L.
x: To store input into adaptive filter.
n: Choose number of samples to
delay data set signal vector.

Figure 3.5: Adaptive LMS algorithm implementation

33

3.4. ADAPTIVE LMS FILTER IMPLEMENTATION

The dataset used for LMS filter was radar signals generated in MATLAB. The signal
consists of fixed frequency pulses with additive white Gaussian noise. The parameters of
this signal are shown in Table 3.1:

Table 3.1: Fixed frequency signal parameters

Signal parameters Value
Frequency 500 MHz
Sampling frequency 1280 MHz
Amplitude 1
Pulse width 2 µs
Pulse repetition interval 20 µs
Simulation time 50 µs

The signal was then saved to a text file, such that the same simulated radar data was
used for all of the language packages. Figure 3.6 illustrates the noisy dataset which was
loaded into the LMS algorithm for the experiment, as well as the output of the LMS filter
which suppressed the thermal noise.

34

3.4. ADAPTIVE LMS FILTER IMPLEMENTATION

Number of samples #104

0 1 2 3 4 5 6

A
m

p
lit

u
d

e

-5

-4

-3

-2

-1

0

1

2

3

4
Before adaptive LMS filter

(a) Fixed frequency pulse with noise simulated in MATLAB.

Number of samples #104
0 1 2 3 4 5 6

A
m

p
lit

u
d

e

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
After adaptive LMS filter

(b) Output of LMS adaptive filter.

Figure 3.6: Simulated fixed frequency pulse radar signals before and after LMS adap-
tive filtering

35

Chapter 4

Results and discussion

In this chapter, the performance related results will be shown for three RSP algorithms.
These are pulse compression, Doppler processing and LMS filter. In order to evaluate the
performance of pulse compression and Doppler processing on all packages, three different
experiments were undertaken:

1.) Computation time: Determines the wall clock time for the RSP algorithms in
various language packages. Wall clock time is the actual time taken, from the start of
the RSP algorithms to the end. This determines which software package would complete
the quickest.

2.) Memory handling: Gives an indication of how memory is used for all of the language
packages, by considering if the calculated memory or extra memory was used during
processing. This was completed only for pulse compression and Doppler processing, as
the NetRAD datasets required a lot of memory. It was not worthwhile completing this
for small sets of data that was used for the adaptive LMS filter.

3.) FLOPS: This gives an indication of how many mathematical operations are per-
formed for different RSP algorithms on various language packages.

By evaluating the performance of the experiments and comparing it with all the lan-
guage packages under investigation, the objectives of the study can be met. Note: thesis
algorithms can be found on bitbucket (https://bitbucket.org/ExtremesExtreme/thesis-
code/src/master/)

36

4.1. PERFORMANCE OF RSP ALGORITHM DESIGNS

4.1 Performance of RSP algorithm designs

The standard parameters used for computing pulse compression and Doppler processing
from the NetRAD dataset are as follows:

Table 4.1: Standard specifications used during pulse compression and Doppler pro-
cessing

Range lines Range bins Doppler bins
130000 2048 256

In order to evaluate computation time, the number of range lines was altered. All of the
RSP techniques were benchmarked with the following fairness simulation criteria:

• No loading of binary and text files into memory was considered during the perfor-
mance analysis.

• No GUI interface was considered while the RSP algorithms on each of the language
packages were executed.

• Programs ran under the same conditions, no other users were using the server com-
puter and no other programs but the RSP algorithms were executing. This ensures
maximum performance and fair comparison for each of the language packages.

The hardware used for the software packages performance analysis was the following:

Table 4.2: Hardware specification used for the computation of the RSP techniques

Hardware specifications
CPU Intel(R) Core(TM) i7 960
CPU clock(GHz) 3.2GHz
RAM 25.77GB

4.1.1 Computation time for pulse compression design

Commonly the number of range lines is altered to measure the performance of pulse
compression. It gives an indication of how well the algorithms handle larger sets of data.

37

4.1. PERFORMANCE OF RSP ALGORITHM DESIGNS

Figure 4.1 and 4.2 illustrates the performance of pulse compression as the number of
range lines was varied from 13000 to 130000.

Number of pulses #104

2 4 6 8 10 12

E
x
e

c
u

ti
o

n
 t

im
e

(s
)

0

10

20

30

40

50

60

Execution time vs number of pulses for pulse compression

Julia

MATLAB

Octave

Scilab

Python2

Python3

Powered by TCPDF (www.tcpdf.org)

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

Figure 4.1: Time taken for pulse compression

Number of pulses #104

2 4 6 8 10 12

E
x
e
c
u

ti
o

n
 t

im
e
(s

)

0

10

20

30

40

50

60

70

80

Execution time for pulse compression for non contiguous memory accessess

Julia

MATLAB

Octave

Scilab

Python2

Powered by TCPDF (www.tcpdf.org)

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

Figure 4.2: Time taken for pulse compression with different indices

38

4.1. PERFORMANCE OF RSP ALGORITHM DESIGNS

Figure 4.1 illustrates a nearly linear relationship between the number of pulses and com-
putation time. The trend was expected, as more data is processed the longer the program
takes to execute. The most important observation: the same algorithm ran on numerous
language packages but the computation times varied. MATLAB, Julia and Python all
had similar results, varying from 9 to 12 seconds, with Python being the fastest. Octave
and Scilab were the slowest at 28 and 63 seconds respectively. Figure 4.1 trends are much
faster than Figure 4.2, because it is cache friendlier, as it does not have non-contiguous
memory accesses.

There is no JIT compiler built into Octave and Scilab, but CPython, the default Python
version, has a compiler which is not optimized for numerical processing. Since processing
is completed in a for loop, the loop will not be vectorized automatically, Python’s NumPy
and Pyfftw libraries are however highly optimized for numerical computations applied on
NumPy arrays, resulting in faster execution time. In order to see if vectorization was
the problem, specifically for Octave and Scilab, vectorization techniques were applied
when possible in all of the language packages. This means that instead of using a for
loop, a vector was used to index the data matrix to apply processing. In some scenarios,
processing could not be completed without a loop, therefore it could be interpreted that
loops were minimized as much as possible in the design. Figure 4.3 illustrates the result
after vectorization was applied to the pulse compression algorithm for each of the language
packages.

Number of pulses #104

2 4 6 8 10 12

E
x
e
c
u

ti
o

n
 t

im
e
(s

)

0

5

10

15

20

25

30

35

40

45

50

Execution time vs number of pulses for pulse compression

Julia

MATLAB

Octave

Scilab

Python2

Python3

Powered by TCPDF (www.tcpdf.org)

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

Figure 4.3: Vectorization implementation for pulse compression

39

4.1. PERFORMANCE OF RSP ALGORITHM DESIGNS

Figure 4.3 emphasizes that there was an improvement in MATLAB, Octave and Scilab.
Octave computed processing in approximately 16 seconds, while Scilab was still signifi-
cantly slower than the rest of the packages.

Another reason for the discrepancy in Scilab’s computation time could be from implicit
parallelization. Scilab employed the reference BLAS library by default, which used one
core when doing matrix multiplication. To investigate if this was the problem, a different
BLAS library was used, namely OpenBlas library from the Linux distribution package.
This library was applied to the loop based and semi-vectorized code, with the results
depicted in Figure 4.4

40

4.1. PERFORMANCE OF RSP ALGORITHM DESIGNS

Number of pulses #104

2 4 6 8 10 12

E
xe

cu
ti

o
n

 t
im

e(
s)

0

10

20

30

40

50

60

Execution time for pulse compression using different BLAS libraries on Scilab

Scilab using default BLAS library
Scilab using Linux OpenBLAS library

(a) Loop based Pulse compression with different BLAS/LAPACK libraries.

Number of pulses #104
2 4 6 8 10 12

E
xe

cu
ti

o
n

 t
im

e(
s)

0

10

20

30

40

50

60

Execution time for pulse compression using different BLAS libraries on Scilab

Scilab using default BLAS library
Scilab using Linux OpenBLAS library

(b) Semi-vectorized based Pulse compression with different BLAS/LAPACK libraries.

Figure 4.4: Time taken for pulse compression in Scilab with different BLAS/LAPACK
libraries

41

4.1. PERFORMANCE OF RSP ALGORITHM DESIGNS

For the loop based version there was approximately an 8 percent improvement when
changing the BLAS/LAPACK libraries, while the partially vectorized version showed no
speed improvement. The reason for this is that the pulse compression implementation
does not require very complex linear algebra, therefore the difference in performance
was not that significant from the default BLAS libraries. Another reason could be that
the OpenBLAS library by Debian was a generic package, which was not optimized for
the machine used for the benchmarks. This could be one of the main reasons for the
non-linear relationship of the Linux OpenBLAS library after 65000 pulses.

4.1.2 Computation time for Doppler processing design

To observe computational performance, the number of range lines was varied from 12288
to 122880. The FFT size was chosen to be 256, as it gave a compromise between spectrum
quality and computation time.

Number of pulses #104

2 3 4 5 6 7 8 9 10 11 12

E
x

e
c
u

ti
o

n
 t

im
e
(s

)

0

10

20

30

40

50

60

70

80

90

100
Execution time vs number of pulses for Doppler processing

Julia

MATLAB

Octave

Scilab

Python2

Python3

Powered by TCPDF (www.tcpdf.org)

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

Figure 4.5: Time taken for Doppler processing

42

4.1. PERFORMANCE OF RSP ALGORITHM DESIGNS

Number of pulses #104

2 3 4 5 6 7 8 9 10 11 12

E
x
e
c
u

ti
o

n
 t

im
e
(s

)

0

50

100

150

200

250

300

Execution time for Doppler processing in non contiguous memory accesses

Julia

MATLAB

Octave

Scilab

Python2

Powered by TCPDF (www.tcpdf.org)

Powered by TCPDF (www.tcpdf.org)

Figure 4.6: Time taken for Doppler processing with different indices

Again the expected linear trend was attained as more data was processed. These per-
formance trends differ slightly from pulse compression. Julia, Python2 and Python3
completed Doppler processing the fastest, at approximately 17, 20 and 23 seconds re-
spectively. MATLAB computed Doppler processing at approximately 45 seconds, which
is almost three times slower than Julia. On the other hand there were no surprises, as Oc-
tave and Scilab took the slowest at 196 and 308 seconds respectively. The speed difference
between MATLAB and Julia was due to their JIT compiler. Since the algorithm was loop
intensive, implying that the implementation consisted of nested loops, MATLAB’s JIT
began to suffer as performance started to deteriorate. Again Figure 4.5 trends are much
faster than Figure 4.6, because it is cache friendlier, as it does not have non-contiguous
memory accesses. The Doppler processing algorithms were also vectorized where possible,
like for pulse compression. The results are shown as follows:

43

4.1. PERFORMANCE OF RSP ALGORITHM DESIGNS

Number of pulses #104

2 3 4 5 6 7 8 9 10 11 12

E
x
e

c
u

ti
o

n
 t

im
e
(s

)

0

5

10

15

20

25

30

Execution time vs number of pulses for Doppler processing

Julia

MATLAB

Octave

Scilab

Python2

Python3

Powered by TCPDF (www.tcpdf.org)

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

Figure 4.7: Vectorized implementation for Doppler processing

Figure 4.7 shows a significant improvement in performance from the loop based imple-
mentation in Figure 4.5. MATLAB, Octave and Scilab had approximately 10 times
improvement from the loop based implementation, however, Scilab is still significantly
slower than the rest of the software packages. MATLAB was the fastest when the Doppler
processing algorithm was vectorized.

Again the discrepancy in computation time for Scilab was investigated by altering the
BLAS/LAPACK library. This result is illustrated in Figure 4.8, to see if the implicit
parallelization was the cause of the problem.

44

4.1. PERFORMANCE OF RSP ALGORITHM DESIGNS

Number of pulses #104

2 3 4 5 6 7 8 9 10 11 12

E
xe

cu
ti

o
n

 t
im

e(
s)

0

50

100

150

200

250

300

Execution time for Doppler processing using different BLAS libraries on Scilab

Scilab using default BLAS library
Scilab using Linux OpenBLAS library

(a) Loop based Doppler processing with different BLAS/LAPACK libraries

Number of pulses #104

2 3 4 5 6 7 8 9 10 11 12

E
xe

cu
ti

o
n

 t
im

e(
s)

0

5

10

15

20

25

30

Execution time for Doppler processing using different BLAS libraries on Scilab

Scilab using default BLAS library
Scilab using Linux OpenBLAS library

(b) Semi-vectorized based Doppler processing with different BLAS/LAPACK libraries

Figure 4.8: Time taken for Doppler processing in Scilab with different BLAS/LAPACK
libraries

The Scilab results for Doppler processing differ from the pulse compression results. There
was a slight improvement in both the loop based and semi-vectorized algorithms when
the BLAS/LAPACK libraries were altered to a multi-threaded version. The reason for
this is that Doppler processing is a heavily based FFT algorithm, consisting of many
complex multiplications and additions applied to a pulse compressed dataset.

45

4.2. FLOPS FOR DIFFERENT RSP ALGORITHMS

4.2 FLOPS for different RSP algorithms

The main interest was only in RSP algorithms, as stated previously in the benchmark
criteria. Therefore, the number of FLOPs would only be determined for RSP techniques
and not for the file input and output. The basic number of FLOPs used for a specific
floating point operation is stated in 2.2. This will be deployed as a reference to estimate
the number of FLOPS that was processed by the CPU for various RSP algorithms.
Note: FLOPS were estimated using the loop based implementation, not the
vectorized implementation.

4.2.1 FLOPS for pulse compression algorithm design

The main computations happened during the correlation process, whereby matched fil-
tering was computed by the fast convolution implementation from Figure 2.3. Table 4.3
depicts the major mathematical operations used during pulse compression, as well as an
approximation of the number of floating point operations used for each operation.

46

4.2. FLOPS FOR DIFFERENT RSP ALGORITHMS

Table 4.3: Floating point operations used in pulse compression

List of operations Number of floating point operations
FFT section

FFT of dataMatrix

2.5N log N · totalPulses: Since one pulse
contains N=2048 samples and the FFT
operations are applied to all 130000 pulses. The dataset
is also real data, therefore the 2.5 factor.

multiplication

6 · totalPulses · N : Element complex multiplication is
computed for reference signal and a single pulse, with
both having N=2048 samples. One complex multiplication
takes 6FLOPs and it is considered for all of the 130000
pulses.

FFT of reference
chirp

2.5N log N : Since reference chirp consists of
N = 2048 real data samples.

IFFT section

IFFT

5N log N · totalPulses: Again one
pulse contains N=2048 samples and the
IFFT operation is applied to 130000
pulses.

division
8 · totalPulses · N : This considers the 1

N
scalar

factor computed for IFFT.

All of the operations in Table 4.3 were summed to obtain the total floating point op-
erations (FLOPs) used for pulse compression. This value was meaningless as the total
FLOPs would be the same for each software package. However, an approximation of how
many FLOPs were processed per second was estimated. This basically represents the
speed comparisons above in a different way for pulse compression. This was determined
by equation (2.11) , by inserting the total FLOPs gathered from Table 4.3 , and the
execution time as the number of range lines was varied from 13000 to 130000. This was
completed for all the software packages and illustrated in Figure 4.9.

47

4.2. FLOPS FOR DIFFERENT RSP ALGORITHMS

Samples #108

0.5 1 1.5 2 2.5

F
L

O
P

S
 p

e
r

s
e
c
o

n
d

#109

0.5

1

1.5

2

2.5

3

3.5
FLOPS vs number of samples for pulse compression

Julia

MATLAB

Octave

Scilab

Python2

Python3

Powered by TCPDF (www.tcpdf.org)

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

Figure 4.9: FLOPS for pulse compression

Figure 4.9 indicates that the CPU processes approximately the most FLOPS when Python
was used. Julia and MATLAB process 0.5 GFLOPS less than Python2 and Python3,
while Scilab and Octave process the least number of FLOPS. This implies that for pulse
compression, the CPU computes approximately six times more GFLOPs in a second with
Python, compared to Scilab. The reason for this is that the calculation for approximating
FLOPS was dependent on the execution time.

4.2.2 FLOPS for Doppler processing algorithm design

When computing Doppler processing, the main computation comes from the FFT func-
tion, as the FFT is applied on each slow time row of the data set. The number of
operations used for the FFT operation is displayed in Table 4.4.

48

4.2. FLOPS FOR DIFFERENT RSP ALGORITHMS

Table 4.4: Floating point operations used in pulse compression

List of operations Number of floating point operations

FFT of data set

5N log N · (totalPulses/256) · 2048

For one slow time row, the FFT is computed of size,
N=256 on all pulses. A factor of 2048 is included
because operations are applied on all 2048 slow
time rows.

To estimate how many FLOPs were processed in a second, the same procedure was
followed as for pulse compression, but using the FLOPs calculations from Table 4.4
instead. Figure 4.10 displays an estimate of how many FLOPs are processed per second
by the CPU for each language package during Doppler processing.

Samples #108

0.5 1 1.5 2 2.5

F
L

O
P

S
 p

e
r

s
e
c
o

n
d

#109

0

0.5

1

1.5

2

2.5
FLOPS vs number of samples for Doppler processing

Julia

MATLAB

Octave

Scilab

Python2

Python3

Powered by TCPDF (www.tcpdf.org)

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

Figure 4.10: FLOPS for Doppler processing

The CPU processed the most FLOPS when Julia was used, while for Octave and Scilab the
least number of FLOPS was still being processed. The reason was the same as for pulse
compression; the calculation for approximating FLOPS is dependent on the execution
time. Doppler processing shows a peak of 2.5 GFLOPS, whereas pulse compression
shows a peak of 3.5 GFLOPS. This is due to memory access, Doppler reads in a strided
fashion, whereas pulse compression reads contiguously.

49

4.3. MEMORY HANDLING FOR PULSE COMPRESSION AND
DOPPLER PROCESSING

4.3 Memory handling for pulse compression and
Doppler processing

The requirement was to observe how much memory was handled during the actual pro-
cessing. Memory utilization was difficult to determine, but as stated in the previous
sections, all of the above languages are interpreted languages. This means that it is not
necessary to free memory space as it is done automatically with the garbage collector. A
good estimate was then to determine peak memory performance during processing. Con-
sidering the above, two scenarios were taken to evaluate how memory is handled during
the actual processing:

1. When no unnecessary variables are cleared: This determines how well the garbage
collector of each language automatically handles memory deallocation.

2. Clearing unnecessary variables before processing begins: To examine if the measured
memory consumption corresponds to theoretical memory.

Memory observations were gathered from HTOP software from the Linux distribution
package while the pulse compression and Doppler processing algorithms were process-
ing. Many runs of the algorithms were completed in order to make sure that the values
recorded correlate with each other. Note that changing the BLAS library for Scilab dur-
ing the memory analysis was not considered, as it only improves performance in terms of
speed.

Figure 4.11 illustrates peak memory consumption, handling of memory from garbage
collector, and memory consumption once unnecessary variables are cleared. This was
completed for all of the language packages.

50

4.3. MEMORY HANDLING FOR PULSE COMPRESSION AND
DOPPLER PROCESSING

Julia MATLAB Scilab Octave Python

M
e
m

o
ry

 u
ti

li
z
a
ti

o
n

 (
g

ig
a
b

y
te

s
)

0

2

4

6

8

10

12
Memory utilization for pulse compresson on various languages

Used memory (peak)

Used memory (after garbage collector freed unused memory)

Used memory (after freed manually)

Powered by TCPDF (www.tcpdf.org)

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

(a) Memory utilization for pulse compression algorithms

Julia MATLAB Scilab Octave Python

M
e
m

o
ry

 u
ti

li
z
a
ti

o
n

 (
g

ig
a
b

y
te

s
)

0

5

10

15

20
Memory utilization for doppler processing on various languages

Used memory (peak)

Used memory (after garbage collector freed unused memory)

Used memory (after freed manually)

Powered by TCPDF (www.tcpdf.org)

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

(b) Memory utilization for Doppler processing algorithms

Figure 4.11: Memory usage during pulse compression and Doppler processing for
various language packages

Figure 4.11 shows that while the programs were executing, peak memory consumption
was identical in all of the language packages as the RAM usage was the same. The
discrepancies occur during the handling of memory from the garbage collector, namely
from Julia. The variables that hold the computations from the pulse compression and
Doppler processing functions should have the RAM usage according to Table 4.5:

51

4.3. MEMORY HANDLING FOR PULSE COMPRESSION AND
DOPPLER PROCESSING

Table 4.5: Expected RAM utilized after pulse compression and Doppler processing
were completed

Variables for RSP
techniques

Variable size Variable type
Required
memory

Variables for Pulse
compression
Data matrix (130 000,2048) Array{Float64} 2.12992 GB
Reference signal (1,2048) Array{Float64} 0.032768 MB
PulseCompression
matrix

(130000,2048) Array{Complex{Float64}} 4.25984 GB

Total 6.3898 GB
Variables for Doppler
processing
Total from
pulse compression step 6.3898 GB
DopplerProcessing
matrix (130000,2048) Array{Complex{Float64}} 4.25984 GB
Total 10.64964 GB

All of the languages except Julia corresponded to the expected total memory used from
Table 4.5 , after pulse compression and Doppler processing were completed. It can be
interpreted that Julia’s garbage collector does not clear memory effectively, as it still holds
memory from the pulse compression and Doppler processing functions respectively. This
implies that it accumulates memory to a particular threshold value, before deciding that
clearing needs to happen [55]. This notion was illustrated in Figure 4.11 (a), the garbage
collector has not freed the memory heap, as the value is the same as the peak memory
usage. For Doppler processing, memory utilization depends on the pulse compression
memory usage, implying that it uses more memory. The notion was further justified
by Figure 4.11 (b), that approximately 4GB from the pulse compression function was
released by the garbage collector when Doppler processing was completed. This means
that the threshold has been reached at some point. If the programs were continuously
executing, Julia’s performance would be the first to deteriorate, as more memory would
be needed before clearing was decided upon. The computer will then automatically use
virtual memory, which would slow the execution speed of the algorithms.

Since some users will not have enough memory to execute algorithms with large datasets,
all variables not needed for Doppler processing were not considered. This includes data-
matrix and reference signal from Table 4.5. The memory utilization is illustrated in

52

4.4. PERFORMANCE OF ADAPTIVE LMS FILTER ALGORITHM DESIGN

Figure 4.12.

Julia MATLAB Scilab Octave Python

M
e

m
o

ry
 u

ti
li

z
a

ti
o

n
 (

g
ig

a
b

y
te

s
)

0

2

4

6

8

10

12
Memory utilization for doppler processing on various languages

Used memory (peak)

Used memory (after garbage collector freed unused memory)

Powered by TCPDF (www.tcpdf.org)

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

Figure 4.12: Memory utilized during Doppler processing when only necessary variables
used

The results were similar to Figure 4.5 (b) but with less RAM used. Julia’s garbage
collector still does not clear memory when needed. It is often not necessary to clear
memory for interpreted languages, but it can be completed with the clear function for
MATLAB, Octave and Scilab. For Python and Julia the variables need to be set to 0,
however, Julia requires a further step by calling the garbage collection function, gc(),
afterwards. In Julia, it is not recommended to force garbage collection, as it will suffer
speed performance due to the extra overhead it generates. Figure 4.11 shows only the
memory measured for the pulseCompression and dopplerProcessing matrix, while the
variables not needed were cleared. This shows that unnecessary variables can be cleared
successfully if needed.

4.4 Performance of adaptive LMS filter algorithm
design

The parameters set for the LMS filter were chosen to give satisfactory performance in
terms of SNR, mean square error (MSE) and convergence time. This was determined

53

4.4. PERFORMANCE OF ADAPTIVE LMS FILTER ALGORITHM DESIGN

empirically, whereby the convergence time was fast, but still achieving a small MSE and
high SNR. The parameters chosen are given in Table 4.6.

Table 4.6: Parameters chosen for LMS filter

Parameters Values
Filter length 80
Step size 2e-4

In order to test the performance of the LMS filter algorithm, two scenarios were considered
when evaluating its performance:

1. Initially, a dataset with a fixed size was used: many iterations were completed to
observe the performance of each language package.

2. A larger dataset was used, such that the size of the dataset could be varied: this
allowed for the performance to be observed for variable dataset sizes.

During the algorithmic design of the LMS filter, two variations of the algorithm were
implemented in Julia, Python and Scilab. First a two dimensional array, then a one
dimensional array was used to represent a one dimensional vector. For MATLAB and
Octave, this was not needed as it only has a matrix representation. Figure 4.13 (a)
represents the former, while Figure 4.13 (b) represents the latter.

54

4.4. PERFORMANCE OF ADAPTIVE LMS FILTER ALGORITHM DESIGN

Number of iterations

10 20 30 40 50 60 70 80 90 100

E
x

e
c

u
ti

o
n

 t
im

e
 p

e
r

it
e

ra
ti

o
n

(s
)

0

0.5

1

1.5

2

2.5
Execution time per iteration for LMS algorithm

Julia

Matlab

Octave

Scilab

Python2

Python3

Powered by TCPDF (www.tcpdf.org)

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

(a) Two dimensional array version

Number of iterations

10 20 30 40 50 60 70 80 90 100

E
x

e
c

u
ti

o
n

 t
im

e
 p

e
r

it
e

ra
ti

o
n

(s
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Execution time per iteration for LMS algorithm

Julia

MATLAB

Octave

Scilab

Python2

Python3

Powered by TCPDF (www.tcpdf.org)

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

(b) One dimensional array version

Figure 4.13: Time taken per iteration for LMS processing on a fixed sized data set

Figure 4.13 displayed a surprising result: Scilab processed a vector of data in a reasonable
amount of time, while Octave processed the vector in approximately 2 seconds, which was
much slower than the other language packages. The key observation was that in Julia
and Python, a two dimensional array to represent a vector was 0.5 seconds slower to
process the dataset than a one dimensional array design. This led to the one dimensional
array design to be used for further analysis on Julia and Python.

55

4.4. PERFORMANCE OF ADAPTIVE LMS FILTER ALGORITHM DESIGN

The dataset was now increased from 64000 to 640000 samples. Figure 4.14 depicts the
performance of the LMS algorithm, as the number of samples was varied from 64000 to
640000. This determines how the algorithm scales for larger datasets.

Number of samples #105

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

E
x

e
c
u

ti
o

n
 t

im
e
(s

)

0

5

10

15

20

Execution time vs number of samples for LMS algorithm

Julia

MATLAB

Octave

Scilab

Python2

Python3

Powered by TCPDF (www.tcpdf.org)

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

Figure 4.14: Time taken for LMS processing for varied dataset sizes

Figure 4.14 shows that Julia processed a vector of data approximately 10 times faster than
any of the other language packages. Octave processed the entire dataset in 20 seconds,
which was far slower than any of the other languages. Scilab processed the dataset in
a similar time range to most of the languages. The BLAS/LAPACK libraries for Scilab
were altered to OpenBLAS from the Linux distribution package, and this was compared
with the default version. The results can be observed in Figure 4.15.

56

4.4. PERFORMANCE OF ADAPTIVE LMS FILTER ALGORITHM DESIGN

Number of iterations
10 20 30 40 50 60 70 80 90 100

E
xe

cu
ti

o
n

 t
im

e
p

er
 it

er
at

io
n

(s
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Execution time per iteration for LMS algorithm using different BLAS libraries on Scilab

Scilab using default BLAS library
Scilab using Linux OpenBLAS library

(a) Time taken per iteration for LMS processing on a fixed sized data set with different
BLAS/LAPACK libraries

Number of samples #105

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

E
x

e
c

u
ti

o
n

 t
im

e
(s

)

0

1

2

3

4

5

6

7
Execution time for LMS algorithm using different BLAS libraries on Scilab

Scilab using default BLAS library

Scilab using Linux OpenBLAS library

Powered by TCPDF (www.tcpdf.org)

Powered by TCPDF (www.tcpdf.org)

(b) Time taken for LMS processing for varied dataset sizes with different
BLAS/LAPACK libraries

Figure 4.15: Time taken for LMS algorithm in Scilab with different BLAS/LAPACK
libraries

Figure 4.15 indicates that using OpenBLAS from the Linux distribution package does not
impact the performance of the LMS adaptive filter algorithm. The main reason for this
could be that during the LMS algorithm processing not very complicated linear algebra
was computed. Another reason could be that the OpenBLAS package from the Linux
distribution package was not completely optimized to the hardware.

57

Chapter 5

Conclusions and recommendations

Scripting languages are constantly improving. When designing algorithms for the purpose
of a fair algorithmic comparison across different software packages, several factors need
to be considered such that suitable performance can also be achieved. These include how
data is stored in memory and to maintain implicit parallelism when possible. Based on
the results obtained, the following conclusions can be drawn.

5.1 Improved performance with spatial locality

Algorithms that process large datasets, can result in code that is inefficient, as most users
hardly consider spatial locality. Knowing how data is ordered in each of the language
packages would result in cache-friendly code. Taking this into account the efficiency of
the algorithms can be improved and, hence, the processing time can be reduced. This
is one mechanism that can be used in any of the software packages to improve efficiency
and performance of any algorithms, not just RSP algorithms.

5.2 Adequate performance of pulse compression

Algorithm speed was the most important factor when comparing performance of various
software packages. It was also an essential component when estimating the number of
FLOPS, which represents how efficient the program language can translate the ’numerical
expression’ into machine code. Initially, the algorithms were written with loops that

58

5.3. LACK OF JIT DURING DOPPLER PROCESSING FOR OCTAVE AND
SCILAB

iterate over matrices with data. All of the language packages achieved performances
under the real time constraint of 130 seconds, implying that the external FFTW library
of all the software packages gave acceptable performances, as most of the processing
completed with pulse compression was completed with this library. The for-loop based
algorithm implemented in MATLAB, Julia and Python obtained the best performance
compared to Octave and Scilab, with Scilab resulting in the slowest execution speed. It
was realized that Scilab used the reference BLAS/LAPACK libraries by default, which
was a single core implementation. Implicit parallelism was then further investigated by
altering the Scilab BLAS/LAPACK libraries to a multi core OpenBLAS library from the
Linux distribution package. This resulted in an 8 percent improvement from the reference
BLAS library, which was not significant enough for the default BLAS/LAPACK libraries
to be changed. When implementing pulse compression, the best performance would be
obtained by MATLAB, Python and Julia, as they would complete the processing in the
shortest amount of time.

5.3 Lack of JIT during Doppler processing for Oc-
tave and Scilab

When applying Doppler processing, a nested loop-based algorithm was implemented.
Since Scilab and Octave do not have a JIT compiler, performance was significantly worse
than the other software packages. Although CPython compiler is not optimized for
numerical processing, the efficiency and optimization of the NumPy and Pyfttw libraries
allowed it to achieve good performance. Julia’s JIT compiler was extremely useful, as it
maximized the performance of for loops. MATLAB’s JIT compiler was not as advanced
but still attempts to vectorize for loops, obtaining execution times of approximately five
times slower than Python and Julia.

In order to determine if vectorization was the problem for Scilab and Octave, the nested
for loops were vectorized, where possible. There was a massive improvement in per-
formance with MATLAB, Octave and Scilab having approximately a 10 times speed
improvement, but Scilab was still significantly slower than the rest of the languages.
The partially vectorized implementations resulted in MATLAB performing better than
the rest of the packages. Since all of the languages are vectorizable, using vectors to
index a data matrix would improve the performance. This proves that using scientific
languages as they were intended, results in maximum performance for heavily loop based
algorithms.

59

5.4. IMPACT OF LARGE VECTORS ON ADAPTIVE LMS FILTER DESIGN

5.4 Impact of large vectors on adaptive LMS filter
design

The analysis of the adaptive LMS algorithm was different to that of the pulse compression
and Doppler processing algorithms. It required a vector of data as opposed to a matrix
of data. When using vectors or one dimensional arrays, Octave performed 50 percent
worse than the rest of the packages. This implies that when a vector of data is required,
Octave should be avoided, as it does not handle vectors as well as matrices of data. Julia
significantly outperformed all of the language packages, as there was a 50 percent speed
improvement compared to MATLAB, which was the next best.

5.5 Impact of memory utilization on various language
packages

Working memory size is important when dealing with large datasets. Algorithms with
large datasets require larger hardware memories. All of the language packages accumulate
similar peak memory usages, with no extra memory overhead. The only concern was
Julia’s garbage collector, which does not initially clear unnecessary variables but waits
until a particular threshold has occurred before it clears memory from the heap. Julia’s
performance would be the first to suffer, as virtual memory would be needed first from all
of the language packages. Overall, when using Julia for processing large datasets, ensure
that a computer with enough physical RAM is used, such that performance would not
suffer.

5.6 Lack of implicit parallelism in Scilab

The default installation of Scilab does not benefit from implicit parallelism as it uses
the reference linear algebra packages. It also does not have a JIT, meaning that for
loops are not automatically vectorized. All of the other languages benefit from implicit
parallelism by the default installation. This means that on Linux machines, more work
has to be done by the user to obtain satisfactory performance from Scilab. This includes
manually switching or generating optimized linear algebra libraries, while no extra effort
was needed by the other packages to achieve the required performance.

60

5.7. SUITABLE ALTERNATIVES TO MATLAB

5.7 Suitable alternatives to MATLAB

All of the software languages are constantly improving. Newer versions of MATLAB has
a new execution engine which has improved its JIT compiler to work better with nested
loops. However, all of the open source packages are also making significant refinements,
as they are still in development. Although Julia is the youngest language, it is competing
and outperforming MATLAB in some scenarios. During the experiments, whether the
algorithms were loop based or vectorized, Python and Julia’s performances were the best
amongst the open source packages. Python performed better than Julia with extremely
large data sets on computers with minimal physical RAM. However, Julia has a smoother
transition than Python in terms of syntax comparability to MATLAB. Python is also a
general programming language which is able to perform very well in the scientific area
with specific modules such as NumPy. That means it also offers the possibility to easily
build a module for interacting with other instruments, building GUI’s, processing other
data and not only numbers. When choosing between Julia and Python, the user would
need to consider what they want in terms of syntax comparability to MATLAB, speed
and their RAM constraints. Whichever one is chosen would give the user a satisfactory
performance when implementing RSP techniques.

5.8 Recommendations

On the basis of the above conclusions, the following recommendations are made:

• Implement suitable multi-core implementations of various RSP algorithms. This
would allow for performance comparisons of the single core with a multi core im-
plementation. There is also a chance to compare multi core implementations of the
various language packages. This would determine if it is possible and reasonable to
do a multi core implementation of the RSP algorithms on various languages.

• Investigate methods that change the linear algebra libraries for various software
packages, not just Scilab. Furthermore, determine procedures that optimize these
libraries, without using the versions from the Linux distribution package. This
would verify whether altering the default BLAS libraries to a more optimized version
would affect the performance significantly.

61

Appendix A

Additional Procedures

The Appendix consists of the procedures followed to change the BLAS/LAPACK
libraries for Scilab as well as the basic commands used for FFTW and vectorization
procedures:

A.1 Changing BLAS/LAPACK libraries for Scilab

This is the procedure followed in order to use the OpenBLAS library from the Linux
distribution package (this assumes that the binary version of Scilab is used):

1. Enter the directory where Scilab was downloaded.

2. Enter the lib directory and then open the thirdparty folder.

3. Search for and delete libblas.so.3 and liblapack.so.3.

4. Once the above steps are completed the OpenBLAS library from Linux distri-
bution will be used.

5. To check if OpenBLAS was actually used by Linux distribution package, open
Scilab and then the terminal.

6. Then enter the command "ps aux" into the terminal and record the pid of Scilab.

7. Finally enter the command lsof -p pid | grep ′blas\ | lapack′.

8. This should give the result, "/usr/lib/openblas-base/libblas.so.3", which implies
that openBLAS from Linux is used.

A.2 FFTW procedures

By default, all of the software packages used the FFTW library apart from Python.
To interact with the FFTW library, the pyFFTW module must be used. The

62

A.3. VECTORIZATION PROCEDURES

pyFFTW provides a unified interface for the different types of transforms that
FFTW can perform [56]. To interface with this pyfftw module, the pyfftw.builders
or pyfftw.interfaces package is recommended. The former consists of a set of func-
tions that returns pyfftw.FFTW objects. In other words, it doesn’t return the re-
sult of the FFT but instead returns a pyfftw.FFTW object that performs the FFT
operation when it is called [57]. The latter provides interfaces to pyfftw module
that implements the API of other commonly used FFT libraries such as numpy.fft
[58]. The command used to apply FFT operations on a particular dataset using
pyfftw.builders and pyfftw.interfaces packages respectively is defined as follows:

pyfftw.builders.fft(dataMatrix, planner_effort = ′FFTW_ESTIMATE′,
auto_align_input=True)

pyfftw.interfaces.numpy_fft.fft(dataMatrix, planner_effort =
′FFTW_ESTIMATE′, auto_align_input=True, auto_contiguous=True)

The arguments of the above functions are given below:

– dataMatrix: This is the data set required for processing.

– planner_effort: By default, the FFTW_MEASURE is used, therefore
FFTW_ESTIMATE has to be set as the planner method.

– auto_align_input: It correctly byte aligns the dataMatrix for optimal usage
of vector instructions. It is set to true by default. This means it does not have
to be included in the function.

– auto_contiguous: Makes sure the dataMatrix is contiguous in memory before
performing the transform on it. It is set to true by default. This means it does
not have to be included in the function.

A.3 Vectorization procedures

These were the important operations used in order to partially vectorize the algo-
rithms:

1. To index an array or matrix of data without loops use:

i = 1:step size:totalNumber

This method was used for all languages investigated except Python. Python used
the NumPy library with the indexing command being:

i = numpy.arange(totalNumber).

The parameters of the above operations are given below:

63

A.3. VECTORIZATION PROCEDURES

– totalNumber is the number of elements that needs to be accessed in a vector.

– step size is the increment between these elements.

2. The next step was to make sure that the FFT was computed in the correct
dimension to ensure Step 1 could occur correctly and without any errors. MAT-
LAB, Octave and Python automatically give the proper dimension for the FFT
computation, with Scilab and Julia requiring extra steps.

For Scilab and Julia, the following commands are used:

fft(data matrix, sign, size(data matrix,1), 1) = This is used in Scilab to apply
FFT.

fft(data matrix,1) = This is used in Julia to apply FFT.

plan_fft(data matrix,1), plan_ifft(data matrix,1) = These are optional func-
tions in Julia that can be used to determine an optimal FFT implementation for a
specific data set [6].

The arguments of the above functions are given below:

– dataMatrix: this is the data set required for processing.

– sign: this is either 1 or -1, indicating the direct and inverse transform respec-
tively.

– size(data matrix,1): this is the size of the data matrix that requires a FFT
operation with ’1’ indicating that it will be a one dimensional vector.

– the parameter ’1’ indicates applying a one dimensional FFT operation.

To ensure that Doppler processing produces the correct output, the fftshift function
was needed. The fftshift function rearranges the Fourier transform of dataMatrix
by shifting the zero-frequency component to the center of the array. The command
used to apply fftshift is written as follows:

fftshift(dataMatrix,dim): Swaps halves of each column or row of the dataMatrix
depending on the value of dim. If dim is set to 1: this swaps halves of each column
of dataMatrix for all of the software packages except Python, as the halves of each
row of dataMatrix would be swapped.

64

Bibliography

[1] D. Salminen. Adaptive filters applied on radar signals. Masters, UPPSALA
Universitet, 2013.

[2] D. Jordan, M. Inggs, and D.O. Hagan. NeXtLook A Lightweight , Real-Time
Quick-Look Processor for NeXtRAD. pages 1–6.

[3] D. Salminen. Adaptive filters applied on radar signals. Masters, UPPSALA
Universitet, 2013. pages 23-24.

[4] M.A. Richards, J.A. Scheer, and W.A. Holm. Principles of Modern Radar:
Basic Priciples. 2013.

[5] M.A. Richards, J.A. Scheer, and W.A. Holm. Principles of Modern Radar:
Basic Priciples. 2013. ch. 20, page. 787.

[6] S.C. Jonkers. Software Infrastructure for NeXtRAD Development in Julia Pro-
gramming Language. Masters, University of Cape Town, 2016.

[7] M. Inggs, A. Balleri, W.A. Al-Ashwal, K.D. Ward, K. Woodbridge, M. Ritchie,
W. Miceli, R.J.A Tough, C.J Baker, S Watts, et al. Netrad multistatic sea
clutter database. In Geoscience and Remote Sensing Symposium (IGARSS),
2012 IEEE International, pages 2937–2940. IEEE, 2012.

[8] D.A. Jordan. Real-Time Pulse Compression and Doppler Processing. Under-
graduate, University of Cape Town, 2015.

[9] M.A. Richards, J.A. Scheer, and W.A. Holm. Principles of Modern Radar:
Basic Priciples. 2013. ch. 20, page. 776.

[10] D. Salminen. Adaptive filters applied on radar signals. Masters, UPPSALA
Universitet, 2013. pages 34-35.

[11] M.A. Rahman. Javascript Concepts. AuthorHouse, 1st edition, 2017.

[12] L Shure. "Run code faster with the new matlab execution engine". Loren on
the Art of MATLAB, 2016.

65

BIBLIOGRAPHY

[13] David Houcque et al. Introduction to matlab for engineering students. North-
western University, page 8, 2005.

[14] J. Bezanson, "The Julia Language", Julialang.org. [Online]. Available:
https://julialang.org/. [2017 December 20].

[15] "About Scilab / Scilab / Home - Scilab", Scilab.org, 2017. [Online]. Available:
https://www.scilab.org/en/scilab/about. [2017 December 2017].

[16] P. J. G. Long. Introduction to Octave. Software Manual, page 56, 2005.

[17] M. Lutz. Programming Python. Number March. 2nd edition edition, 2001.

[18] Dipanjan Sarkar. Text Analytics with Python: A Practical Real-world Approach
to Gaining Actionable Insights from Your Data. Apress, 2016.

[19] B. Peterson, "PEP 373 – Python 2.7 Release Schedule", Legacy.python.org,
2008. [Online]. Available: http://legacy.python.org/dev/peps/pep-0373/.
[2017 December 20].

[20] M. Lutz. Programming Python. 4th edition edition, 2010.

[21] B. klein, "numerical scientific computing with python: Introduction
into numpy", python-course.eu. [online]. available: https://www.python-
course.eu/numpy.php. [2017 november 20].

[22] G. Lanaro. Python High Performance - Second Edition. Birmingham: Packt
Publishing, 2017.

[23] "ipython books - getting the best performance out of numpy", ipython-
books.github.io. [online]. available: http://ipython-books.github.io/featured-
01/. [2018 january 20].

[24] "2.6. Supported Python features — Numba 0.39.0rc1+0.g26dde2b.dirty
documentation", Numba.pydata.org, 2018. [Online]. Available:
http://numba.pydata.org/numba-doc/0.39.0/reference/pysupported.html.
[2018, Aug, 2].

[25] "PyPy - packages", Packages.pypy.org, 2018. [Online]. Available:
http://packages.pypy.org/##numpy. [2018, Aug, 1].

[26] P. Ramarao, J. Siu, and P. Pamula. IBM Just-In-Time Compiler (JIT) for
Java. (November), 2008.

66

BIBLIOGRAPHY

[27] "documentation/parallelcomputinginscilab - scilab
wiki", wiki.scilab.org. [online]. Available:
https://wiki.scilab.org/Documentation/ParallelComputingInScilab. [2017
October 18].

[28] "ITaP Research Computing -", Rcac.purdue.edu, [Online]. Available:.
https://www.rcac.purdue.edu/knowledge/rice/run/examples/apps/
matlab/implicit_parallelism. [2018, Aug, 13].

[29] "vectorization-matlab & simulink-mathworks united
kingdom", mathworks.com. [online]. available:
https://www.mathworks.com/help/matlab/matlab_prog/vectorization.html.
[2017 december 20].

[30] "What is NumPy? — NumPy v1.12 Manual", Docs.scipy.org, 2017. [Online].
Available: https://docs.scipy.org/doc/numpy-1.12.0/user/whatisnumpy.html.
[2018 January 16].

[31] "GNU Octave Vectorization and Faster Code Execution", Gnu.org. [Online].
Available:https://www.gnu.org/software/octave/doc/interpreter/Vectorization-
and-Faster-Code-Execution.html [2017, October, 20].

[32] "Optimal Number of Workers for Parallel Julia - Stochastic Lifestyle", Stochas-
tic Lifestyle, [Online]. Available:. http://www.stochasticlifestyle.com/
236-2/. [2018, July, 30].

[33] M. Baudin. Programming in SCILAB. pages 129–130, 2011.

[34] R. Baudin. Run time comparison of MATLAB , Scilab and GNU Octave on
various benchmark programs. pages 1–20, 2016.

[35] "Julia with Intel R© Math Kernel Library for Improved Performance
| Intel R© Software", Software.intel.com, 2018. [Online]. Available:
https://software.intel.com/en-us/articles/julia-with-intel-mkl-for-improved-
performance. [2018, Aug, 5].

[36] "Using Intel R© MKL in GNU Octave | Intel R© Software", Software.intel.com,
2018. [Online]. Available: https://software.intel.com/en-us/articles/using-
intel-mkl-in-gnu-octave. [2018, Aug, 5].

[37] "Numpy/Scipy with Intel R© MKL and Intel R© Compilers | Intel R© Software",
Software.intel.com, 2018. [Online]. Available: https://software.intel.com/en-
us/articles/numpyscipy-with-intel-mkl. [Accessed: 05- Aug- 2018].

67

https://www.rcac.purdue.edu/knowledge/rice/run/examples/apps/matlab/implicit_parallelism
https://www.rcac.purdue.edu/knowledge/rice/run/examples/apps/matlab/implicit_parallelism
http://www.stochasticlifestyle.com/236-2/
http://www.stochasticlifestyle.com/236-2/

BIBLIOGRAPHY

[38] "File : Details", Fileexchange.scilab.org, 2018. [Online]. Available:
https://fileexchange.scilab.org/toolboxes/MKL/5.5.2. [2018, Aug, 5].

[39] "debianscience/linearalgebralibraries-debian wiki", wiki.debian.org, 2017. [on-
line]. available: http://wiki.debian.org/DebianScience/LinearAlgebraLibraries.
[2017 december 23].

[40] K.D. Lee. Programming languages: An Active Learning Approach, page 15.
2008.

[41] MathWorks. Memory Management Guide. pages 1–9, 2002.

[42] S. McGarrity, "Programming Patterns: Maximizing Code Performance by
Optimizing Memory Access", Mathworks.com, 2007. [Online]. Available:
https://www.mathworks.com/company/newsletters/articles/programming-
patterns-maximizing-code-performance-by-optimizing-memory-access.html.
[2017,October,20].

[43] "Principle of Locality", Codingfreak.blogspot.com, 2009. [Online]. Available:
http://codingfreak.blogspot.com/2009/03/principle-of-locality.html. [2017 De-
cember 20].

[44] "Row-major vs Column-major confusion", Stackoverflow.com. [Online]. Avail-
able: https://stackoverflow.com/questions/33862730/row-major-vs-column-
major-confusion. [2017 December 20].

[45] M. Frigo and S.G. Johnson. The Fastest Fourier Transform in the West (MIT-
LCS-TR-728). Materials Research, page 1, 1997.

[46] "define method for determining fft algorithm - matlab fftw -
mathworks united kingdom", mathworks.com. [online]. available:
https://www.mathworks.com/help/matlab/ref/fftw.html. [2017 december
20].

[47] M. Frigo and S. Johnson, "FFT Benchmark Methodology", fftw.org. [Online].
Available: http://www.fftw.org/speed/method.html. [2017 December 20].

[48] "Big-Oh", [Online]. Available: https://www.cs.cmu.edu/ mrmiller/15-
121/Lectures/14-bigOh.pdf. [2018 July 18].

[49] M. Frigo and S. Johnson, "FFT Benchmark Results", fftw.org. [Online]. Avail-
able: http://www.fftw.org/speed/. [2017 December 20].

[50] "What is a Floating-point?", Computerhope.com, 2018. [Online]. Available:
https://www.computerhope.com/jargon/f/floapoin.htm. [2018, Aug, 1.

68

BIBLIOGRAPHY

[51] M. Baudin. Programming in SCILAB. page 137, 2011.

[52] M.A. Richards, J.A. Scheer, and W.A. Holm. Principles of Modern Radar:
Basic Priciples. 2013. ch. 13, page. 466.

[53] "flops (floating point operations per second) definition", techterms.com, 2009.
[online]. available: https://techterms.com/definition/flops. [2017 decemember
20].

[54] "HANNING", Northstar-dartmouth.edu, 2018. [Online]. Available:
http://northstar-www.dartmouth.edu/doc/idl/html_6.2/HANNING.html.
[2018, Aug, 2].

[55] T Holy. "Julia Users - How does garbage collection really work in Julia?",
Julia-programming-language.2336112.n4.nabble.com, 2018. [Online]. Avail-
able: http://julia-programming-language.2336112.n4.nabble.com/How-does-
garbage-collection-really-work-in-Julia-td46829.html. [2018 January 19].

[56] H. gomersall, "welcome to pyfftw’s documentation! — pyfftw
0.10.4 documentation", hgomersall.github.io, 2016. [online]. available:
https://hgomersall.github.io/pyFFTW/. [2018 january 3].

[57] H. gomersall, "pyfftw.builders - get fftw objects using a numpy.fft like interface
— pyfftw 0.10.4 documentation", hgomersall.github.io, 2016. [online]. available:
https://hgomersall.github.io/pyFFTW/pyfftw/builders/builders.html#module-
pyfftw.builders. [2018 january 3].

[58] "pyfftw.interfaces - drop in replacements for other fft implementations —
pyfftw 0.10.4 documentation", hgomersall.github.io, 2016. [online]. available:
https://hgomersall.github.io/pyFFTW/pyfftw/interfaces/interfaces.html#module-
pyfftw.interfaces. [2018 january 7].

69

	Introduction
	Objectives of this study
	Problems to be investigated
	Purpose of the study

	Scope and limitations
	Plan of development

	Literature review
	Radar theory
	Radar signals

	RSP techniques
	NetRAD data
	Matched filter
	Pulse compression
	Doppler processing
	Adaptive noise cancellation

	Programming languages
	MATLAB
	Julia
	Scilab
	Octave
	Python
	Additional features for interpreted languages
	Memory principles
	FFT library
	Floating point operations per second (FLOPS)

	Implementation of radar signal processing (RSP) techniques
	Fairness
	Pulse compression implementation
	Doppler processing implementation
	Adaptive LMS filter implementation

	Results and discussion
	Performance of RSP algorithm designs
	Computation time for pulse compression design
	Computation time for Doppler processing design

	FLOPS for different RSP algorithms
	FLOPS for pulse compression algorithm design
	FLOPS for Doppler processing algorithm design

	Memory handling for pulse compression and Doppler processing
	Performance of adaptive LMS filter algorithm design

	Conclusions and recommendations
	Improved performance with spatial locality
	Adequate performance of pulse compression
	Lack of JIT during Doppler processing for Octave and Scilab
	Impact of large vectors on adaptive LMS filter design
	Impact of memory utilization on various language packages
	Lack of implicit parallelism in Scilab
	Suitable alternatives to MATLAB
	Recommendations

	Additional Procedures
	Changing BLAS/LAPACK libraries for Scilab
	FFTW procedures
	Vectorization procedures

