# OMP-13: Further Investigation of the Anchovy Control Rule 

C.L. de Moor* and D.S. Butterworth*<br>Correspondence email: carryn.demoor@uct.ac.za

## Introduction

de Moor and Butterworth (2013) have shown that under equivalent leftward shifts of the OMP to no catch biomass distribution in the transition from operating models (whether HSO. $9^{1}$ or BH1.2 ${ }^{2}$ ) based on data to 2006 to those based on data to 2011, the anchovy risk ${ }^{A}$ statistic deteriorates, reflecting an appreciably greater probability that the adult anchovy biomass falls below $10 \%$ of its average value over the November 1984 to November 1999 period at least once during a 20-year projection period.

This document explores the effect of changes to the anchovy catch control rule, in particular to the threshold survey biomass level $B_{e c}^{A}$ below which Exceptional Circumstances provisions are invoked.

## Results

Table 1 summarises key results for alternative Candidate OMP-13s from de Moor and Butterworth (2013) as well as the Interim OMP-13 of de Moor and Butterworth (2012), assuming the BH1.2 operating model. The particular focus is on Candidate OMP-13 with $c_{m x t a c}^{A}=450$, for which risk ${ }^{A}=0.347$, a risk statistic much greater than its corresponding value of 0.219 for OMP-08 for the corresponding BH1.2 operating model for data to 2006.

Table 2 considers various modifications to the anchovy control rule parameter values to attempt to reduce this value of 0.347 for risk ${ }^{A}$.

1) The Exceptional Circumstances threshold biomass $B_{e c}^{A}$ is increased from 400 to first 500 and then 600 thousand tons. The average anchovy TAC is little affected, and risk decreases, both in terms of risk ${ }^{A}$ and of a lesser "leftward shift" of the projected no catch to catch biomass distribution. There is however a "cost" involved: the probability of a TAC less than $c_{m n t a c}^{A}=120$ thousand tons increasing from 26 to $31 \%$ as $B_{e c}^{A}$ is increased from 400 to 600 (Table 2). Figure 1 shows that the frequency of zero anchovy TAC is slightly decreased, while the frequency of an anchovy TAC below 50000 t is slightly increased.
2) Considering either a higher threshold ( $\Delta^{A}$ ) above $B_{e c}^{A}$ at which linear smoothing is introduced before anchovy Exceptional Circumstances are declared, or a maximum proportion ( $100 \%$ rather than $25 \%$ ) by

[^0]which normal season anchovy TAC can be reduced annually $\left(c_{m x d n}^{A}\right)$, the probability of a TAC less than $c_{m n t a c}^{A}=120$ thousand tons reduces slightly and also, for the latter case, risk ${ }^{A}$ decreases.
3) A rather extreme conservative rule in which the "protection level" (zero TAC) is the same as $B_{e c}^{A}$ $\left(x^{A}=1\right)$ while there is no restriction on the proportion by which normal season anchovy TAC can be reduced annually $\left(c_{m x d n}^{A}=1\right)$, reduces risk ${ }^{A}$ down to $11 \%$. Note, however, that the proportion of times Exceptional Circumstances are declared (and anchovy TAC set to zero) remains high at an average of 1 in 4 years (Table 2, Figure 1).
4) Attempting to achieve the same leftward shift with $B_{e c}^{A}=600$ as with $B_{e c}^{A}=400$ by changing the $\alpha$ and $\beta$ control parameter values, which leads to slightly higher anchovy TACs at the expense of lower sardine TACs.
The trade-off curves for some of these options are compared in Figure 2.

Tables 3 and 4 repeat the results of Tables 1 and 2 respectively for the same control parameter values, but for an HS0.9 operating model. In qualitative terms there are similarities in the BH1.2 and HSO.9 results in terms of relative patterns. The main difference is that a greater average anchovy TAC will eventuate if HSO.9 reflects reality better than BH1.2. Note also that when compared to the OMP-08 trade-off curve, potential anchovy TACs are not greatly reduced, though there is a larger decrease in the predicted average directed sardine catch (Figure 3).

## Conclusions

The results of this paper indicate that the value of the risk ${ }^{A}$ statistic can be reduced by changing the values of other control parameters without greatly changing the average predicted anchovy TAC, but the frequency of low anchovy TACs then increases.

## References

de Moor, C.L. and Butterworth, D.S. 2012. Interim OMP-13. Department of Agriculture, Forestry and Fisheries Document FISHERIES/2012/DEC/SWG-PEL/64. 17pp.
de Moor, C.L. and Butterworth, D.S. 2013. Re-considering the appropriate risk level for anchovy in OMP-13 development. Department of Agriculture, Forestry and Fisheries Document FISHERIES/2013/APR/SWG-PEL/04. 18pp.

Table 1. The risk to the resources, the ratio of lower percentiles of the predicted distribution of anchovy $1+$ biomass in the final projection year under the MP to that under a no catch scenario, and average projected annual directed catch (with average anchovy assumed caught during the additional season in parentheses), for OMP-08, a Candidate OMP13 (with $c_{\text {mxtac }}^{A}=600$ or $c_{m x t a c}^{A}=450$, and $B_{e c}^{A}=400$ ) and Interim OMP-13. All results given assume a Beverton Holt stock recruitment relationship and $\bar{M}_{j}^{A}=\bar{M}_{a d}^{A}=1.2$ year $^{-1}$ for the underlying operating model (BH1.2), with the operating model used for OMP-08 based on data up to 2006 and that for Candidate and Interim OMP-13 based on data up to 2011. All biomasses are given in thousands of tons. The two different sets of control parameters for Candidate OMP-13 with $c_{m x t a c}^{A}=600$ correspond to using different operating models to match the "leftward shift" in predicted biomass distributions from a no catch to MP scenario (see de Moor and Butterworth 2013 for details).

|  | OMP-08 | Candidate OMP-13 |  |  | Interim <br> OMP-13 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $c_{\text {mxtac }}^{A}$ | 600 | 600 | 600 | 450 | 450 |
| $\beta$ | 0.097 | 0.067 | 0.082 | 0.082 | 0.090 |
| $\alpha$ | 0.78 | 0.782 | 0.635 | 0.636 | 0.321 |
| risk $^{A}$ | 0.219 | 0.436 | 0.347 | 0.347 | 0.197 |
| risk $^{S}$ | 0.159 | 0.188 | 0.208 | 0.207 | 0.209 |
| $10 \%$ ile | 0.11 | 0.10 | 0.11 | 0.11 | 0.22 |
| $20 \%$ ile | 0.14 | 0.14 | 0.14 | 0.14 | 0.31 |
| $30 \%$ ile | 0.18 | 0.17 | 0.17 | 0.17 | 0.37 |
| $40 \%$ ile | 0.20 | 0.20 | 0.20 | 0.20 | 0.41 |
| $50 \%$ ile | 0.22 | 0.24 | 0.24 | 0.24 | 0.43 |
| $\bar{C}^{A}$ | 395 | $292(67)$ | $289(69)$ | $281(69)$ | $259(70)$ |
| $\bar{C}^{s}$ | 193 | 129 | 145 | 145 | 154 |

Table 2. The risk to the resources, the ratio of lower percentiles of the predicted distribution of anchovy $1+$ biomass in 2032 under the MP to that under a no catch scenario, and average annual directed catch (with average anchovy assumed caught during the additional season in parentheses), for a Candidate OMP-13 (with $c_{m x t a c}^{A}=450$ ) and Interim OMP-13. All results given assume a Beverton Holt stock recruitment relationship and $\bar{M}_{j}^{A}=\bar{M}_{a d}^{A}=1.2$ year ${ }^{-1}$ in the underlying operating model (BH1.2). All biomasses are given in thousands of tons. Comparisons (shown in bold) are made among:
5) alternative thresholds, $B_{e c}^{A}$, below which Exceptional Circumstances for anchovy are invoked,
6) a higher threshold ( $\Delta^{A}$ ) above $B_{e c}^{A}$ at which linear smoothing is introduced before anchovy Exceptional Circumstances are declared,
7) a maximum proportion by which normal season anchovy TAC can be reduced annually ( $c_{m x d n}^{A}$ ),
8) a maximum proportion by which normal season anchovy TAC can be reduced annually with a higher proportion below $B_{e c}^{A}$ at which anchovy TAC is zero, $x^{A}$, and
9) a final column which corresponds to a closer "leftward shift" to that of the first column.

|  | Candidate OMP-13 with $c_{m x t a c ~}^{A}=450$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $B_{\text {ec }}^{A}$ | $\mathbf{4 0 0}$ | $\mathbf{5 0 0}$ | 600 | 600 | 600 | 600 | 600 |
| $\Delta^{A}$ | 100 | 100 | 100 | $\mathbf{4 0 0}$ | 100 | 100 | 100 |
| $c_{m x d n}^{A}$ | 0.25 | 0.25 | 0.25 | 0.25 | $\mathbf{1 . 0 0}$ | $\mathbf{1 . 0 0}$ | 0.25 |
| $x^{A}$ | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | $\mathbf{1 . 0 0}$ | 0.25 |
| $\beta$ | 0.082 | 0.082 | 0.082 | 0.082 | 0.082 | 0.82 | $\mathbf{0 . 0 7 1}$ |
| $\alpha$ | 0.636 | 0.636 | 0.636 | 0.636 | 0.636 | 0.636 | $\mathbf{1 . 2 1 4}$ |
| risk $^{A}$ | 0.347 | 0.258 | 0.186 | 0.183 | 0.165 | 0.106 | 0.298 |
| risk $^{S}$ | 0.207 | 0.205 | 0.201 | 0.199 | 0.194 | 0.184 | 0.208 |
| $10 \%$ ile | 0.11 | 0.15 | 0.19 | 0.19 | 0.20 | 0.25 | 0.14 |
| $20 \%$ ile | 0.14 | 0.18 | 0.22 | 0.22 | 0.23 | 0.28 | 0.16 |
| $30 \%$ ile | 0.17 | 0.20 | 0.24 | 0.24 | 0.24 | 0.28 | 0.17 |
| $40 \%$ ile | 0.20 | 0.23 | 0.26 | 0.26 | 0.27 | 0.30 | 0.19 |
| $50 \%$ ile | 0.24 | 0.26 | 0.29 | 0.29 | 0.30 | 0.32 | 0.21 |
| $\bar{C}^{A}$ | $281(69)$ | $285(70)$ | $287(71)$ | $287(70)$ | $282(75)$ | $285(77)$ | $297(50)$ |
| $\bar{C}^{S}$ | 145 | 145 | 146 | 146 | 146 | 147 | 131 |
| $T A C_{y}^{S}<c_{m n t a c \mid}^{S}$ | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
| $T A C_{y}^{A}<c_{m n t a c \mid}^{A}$ | 0.26 | 0.28 | 0.31 | 0.30 | 0.29 | $0.25^{3}$ | 0.38 |
| $E C_{\text {consec }}^{S}$ | 1.4 yrs | 1.3 yrs | 1.4 yrs |
| $E C_{\text {consec }}^{A}$ | 3.3 yrs | 3.2 yrs | 3.1 yrs | 3.1 yrs | 3.0 yrs | 2.5 yrs | 3.4 yrs |

[^1]Table 3. A repeat of Table 1 (i.e. no change to the control rules and parameters from Table 1), but where all results are given assuming a Hockey Stick stock recruitment relationship with $b^{A}=0.2 K^{A}$ and $\bar{M}_{j}^{A}=\bar{M}_{a d}^{A}=0.9$ year $^{-1}$ in the underlying operating model (HS0.9).

|  | OMP-08 | Candidate OMP-13 |  |  | Interim <br> OMP-13 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $c_{\text {mxtac }}^{A}$ | 600 | 600 | 600 | 450 | 450 |
| $\beta$ | 0.097 | 0.067 | 0.082 | 0.082 | 0.090 |
| $\alpha$ | 0.78 | 0.782 | 0.635 | 0.636 | 0.321 |
| risk $^{A}$ | 0.107 | 0.209 | 0.087 | 0.086 | 0.021 |
| risk $^{S}$ | 0.183 | 0.118 | 0.221 | 0.222 | 0.212 |
| $10 \%$ ile | 0.30 | 0.32 | 0.39 | 0.39 | 0.60 |
| $20 \%$ ile | 0.36 | 0.36 | 0.42 | 0.42 | 0.61 |
| $30 \%$ ile | 0.40 | 0.42 | 0.47 | 0.47 | 0.64 |
| $40 \%$ ile | 0.43 | 0.46 | 0.51 | 0.51 | 0.66 |
| $50 \%$ ile | 0.47 | 0.52 | 0.55 | 0.55 | 0.68 |
| $\bar{C}^{A}$ | 380 | $385(95)$ | $362(91)$ | $356(91)$ | $287(82)$ |
| $\bar{C}^{S}$ | 190 | 127 | 143 | 144 | 154 |

Table 4. A repeat of Table 2 (i.e. no change to the control rules and parameters from Table 2), but where all results are given assuming a Hockey Stick stock recruitment relationship with $b^{A}=0.2 K^{A}$ and $\bar{M}_{j}^{A}=\bar{M}_{a d}^{A}=0.9$ year $^{-1}$ in the underlying operating model (HSO.9).

|  | Candidate OMP-13 with $c_{m x t a c}^{A}=450$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $B_{\text {ec }}^{A}$ | $\mathbf{4 0 0}$ | $\mathbf{5 0 0}$ | 600 | 600 | 600 | 600 | 600 |
| $\Delta^{A}$ | 100 | 100 | 100 | $\mathbf{4 0 0}$ | 100 | 100 | 100 |
| $c_{\text {mxdn }}^{A}$ | 0.25 | 0.25 | 0.25 | 0.25 | $\mathbf{1 . 0 0}$ | $\mathbf{1 . 0 0}$ | 0.25 |
| $x^{A}$ | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | $\mathbf{1 . 0 0}$ | 0.25 |
| $\beta$ | 0.082 | 0.082 | 0.082 | 0.082 | 0.082 | 0.82 | $\mathbf{0 . 0 7 1}$ |
| $\alpha$ | 0.636 | 0.636 | 0.636 | 0.636 | 0.636 | 0.636 | $\mathbf{1 . 2 1 4}$ |
| risk $^{A}$ | 0.086 | 0.040 | 0.028 | 0.023 | 0.022 | 0.010 | 0.053 |
| risk $^{S}$ | 0.222 | 0.219 | 0.218 | 0.215 | 0.205 | 0.203 | 0.244 |
| $10 \%$ ile | 0.39 | 0.42 | 0.45 | 0.45 | 0.46 | 0.49 | 0.36 |
| $20 \%$ ile | 0.42 | 0.44 | 0.47 | 0.47 | 0.47 | 0.51 | 0.40 |
| $30 \%$ ile | 0.47 | 0.50 | 0.51 | 0.51 | 0.51 | 0.53 | 0.45 |
| $40 \%$ ile | 0.51 | 0.52 | 0.53 | 0.54 | 0.54 | 0.55 | 0.48 |
| $50 \%$ ile | 0.55 | 0.56 | 0.57 | 0.58 | 0.58 | 0.59 | 0.52 |
| $\bar{C}^{A}$ | $356(91)$ | $354(91)$ | $352(90)$ | $350(88)$ | $341(94)$ | $336(94)$ | $386(67)$ |
| $\bar{C}^{S}$ | 144 | 144 | 144 | 144 | 145 | 146 | 129 |
| $T A C_{y}^{S}<c_{m n t a c \mid}^{S}$ | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.06 |
| $T A C_{y}^{A}<c_{\text {mitac }}^{A}$ | 0.08 | 0.11 | 0.13 | 0.13 | 0.13 | 0.11 | 0.17 |
| $E C_{\text {consec }}^{S}$ | 1.4 yrs | 1.4 yrs | 1.3 yrs | 1.3 yrs | 1.3 yrs | 1.3 yrs | 1.4 yrs |
| $E C_{\text {consec }}^{A}$ | 1.9 yrs | 1.9 yrs | 1.8 yrs | 1.8 yrs | 1.8 yrs | 1.5 yrs | 2.0 yrs |



Figure 1. Histograms of total annual anchovy catch for Candidate OMP-13 with $c_{m x a c}^{A}=450$ and a) $B_{e c}^{A}=400$ or b) $B_{e c}^{A}=600$, or c) a rather "extreme" conservative rule in which the anchovy TAC is set to zero as soon as survey estimated biomass falls below $B_{e c}^{A}$ in addition to no restriction on the proportion by which normal season anchovy TAC can be reduced annually.


Figure 2. Trade-off curves for a) Interim OMP-13 ( $B_{e c}^{A}=400$ ) which was tuned to risk ${ }^{A}<0.20$, and Candidate OMP-13 with $c_{\text {mxtac }}^{A}=450$, and b) $B_{e c}^{A}=400$ with risk ${ }^{A}<0.35$, c) $B_{e c}^{A}=600$ with risk ${ }^{A}<0.19$, and d) $B_{e c}^{A}=600$ with risk ${ }^{A}<0.30$. All curves are tuned such that risk ${ }^{S}<0.21$ and based on an underlying operating model assuming a Beverton Holt stock recruitment relationship and $\bar{M}_{j}^{A}=\bar{M}_{a d}^{A}=1.2$ year $^{-1}$.


Figure 3. Trade-off curve for OMP-08 and corresponding corner trade-off points from Figure 2 a), b) and c), but based on an underlying operating model assuming a Hockey Stick stock recruitment relationship with $b^{A}=0.2 K^{A}$ and $\bar{M}_{j}^{A}=\bar{M}_{a d}^{A}=0.9$ year $^{-1}$.


[^0]:    * MARAM (Marine Resource Assessment and Management Group), Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, 7701, South Africa.
    ${ }^{1}$ Hockey Stick stock recruitment relationship with a fixed inflection point of $b^{A}=0.2 K^{A}$ and $\bar{M}_{j}^{A}=\bar{M}_{a d}^{A}=0.9$ year $^{-1}$
    ${ }^{2}$ Beverton Holt stock recruitment relationship with $\bar{M}^{A}=\bar{M}^{A}=1.2$ year $^{-1}$
    ${ }^{2}$ Beverton Holt stock recruitment relationship with $\bar{M}_{j}^{A}=\bar{M}_{a d}^{A}=1.2$ year ${ }^{-1}$

[^1]:    ${ }^{3}$ Note that this is counted as the proportion of times Exceptional Circumstances are declared in December, thus following a good recruitment, the revised TAC may increase from zero (cf Figure 1).

