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ii 

The quest for a unified voice. video and data network led to the design of Asynchronous 

Transfer Mode (A TM), a packet switching architecture. One of the promises of ATM is 

the provision of guaranteed Quality of Service (QoS). A major factor in the provision of 

QoS in A TM switches is the capability of a scheduling mechanism to control access to the 

switching fabric. Historically the use of queuing and scheduling at the switch fabric 

outputs has been the favoured approach used in the design of ATM switches. However, 

input queued switch architectures have recently been receiving considerable interest in the 

research community. Input queued switch architectures for various reasons have become 

an attractive solution for the design of high performance packet switches. In particular 

input queued switches scale better to larger sizes. They are also cheaper to construct in 

terms of the speed of the switch fabric and the memory size and bandwidth required. 

However, there are still considerable problems associated with the implementation of input 

queued scheduling algorithms. 

The dissertation to follow is devoted to design and related theory of a centralized 

scheduling algorithm to maximize the throughput and provide fair bandwidth allocation in 

an input queued A TM switch. In particular, the use of Virtual Output Queueing (VOQ) at 

the input ports to avoid head of line blocking is considered. The problem faced by an input 

queued scheduling algorithm utilizing VOQ is formalized as finding the maximum 

weighted matching on a bipartite graph in which nodes represent input and output ports 

and edges represent cells to be switched. 

In this dissenation, the candidate proposes the use of a ratio to multiply the weights used 

in the matching algorithm to control the delay that individual connections encounter. We 

demonstrate the improved characteristics of a switch using a ratio presenting results from 

s1mulatIons. 
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'rhe candidate also proposes a novel scheduling mechanism for an input queued A TM 

switch. In order to evaluate the performance of the scheduling mechanism in tern1S of 

throughput and birness, the use of various metrics. initially proposed in the literature to 

evaluate output butTered s\vitches are evaluated. adjusted and applied to input scheduling. 

In particular the Worst-case Fairness Index (WFl) which measures the maximum delay a 

connection \vill encounter is derived for usc in input queued switches 

The evaluation of the scheduling algorithm is conducted with the use of a specifically 

dcveloped software cell based simulator. The simulator is designed to evaluate the 

performance of input scheduling algorithms under various traffic conditions and different 

switch configuralions. In particular the usc of algorithms which accurately mimic real 

network traffic allows the evaluation of the scheduling mechal1lsm under realistic 

conditions. By using the simulator to compare the performance of the proposed scheduling 

algorithm with those in the literature. the candidate will demonstrate the scheduler'S 

advantages. The dissertation is concluded with a study of the practical considerations of 

implementing the scheduler in hardware, and with some thoughts on simulating scheduling 

algorithms. Some ideas for further research are also proposed. 
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Chapter 1 : Introduction 

1.1 Quality of Service in Packet Switched Networks 

Rapid advances in computer and telecommunications network technologies have meant 

that in the near future we will experience as part of every day life, applications and 

services that a decade or two ago were in the realms of science fiction. Examples of these 

applications are videophones, video on demand and multi person virtual reality. 

Traditionally there was one network for each type of traffic, for example a business 

enterprise may have had a private Time Division Multiplex (TDM) based voice network, 

an Internet Protocol OP) network to the Internet, and an ISDN video conferencing network 

as well as a multi-protocol based Local Area Network (LAN). However today network 

traffic is becoming more varied and in the future there will be requirements to support an 

even more diverse set of applications. It is evident that it would be ideal to support all of 

these applications on one network. 

When the different applications had separate dedicated networks, controlling the levels of 

service provided was less of a problem as all the traffic in each network was similar and 

the networks could be engineered and fine tuned to provide the required service levels. 

When different types of traffic, each with different requirements are transported over a 

single network, the different traffic types often react unfavourably together. For example a 

voice application expects to experience no packet loss and a minimum but fixed amount of 

packet delay The voice application receives this service level when it operates over a 

TDM network. A best effort IP network has varying amounts of packet loss and variable 

delay. The result is that the voice application runs very badly on the IP network, however 

the alternative of using circuit switching to transmit data, results in ineffective use of the 

resources of the network. 

1.1.1 QoS and the Converged Network 

What is requ Ired in a multi-service network is a means of preventing different applications 

from affecting the performance of one another. The term for this concept is "Quality of 

Service" (QoS). A best effort IP network effectively provides no QoS. Other networks 
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technologies such as Asynchronous Transfer Mode (ATM) have been engineered to 

provide QoS. 

From the network user's point of view, QoS is a term used to describe the complete 

experience an application will receive from a network. A more network centric definition 

would be that QoS refers to the classification of packets for the purpose of treating certain 

classes or flows of packets in a particular way compared to other packets. 

The aim of this chapter is to provide an introduction to QoS and to show why it is 

necessary and how it is incorporated in the modern network and what mechanisms are 

required to provide this. 

Today most networks are converging to an IP based transport layer. Data applications are 

already all IP-based. while traditionally Time Division Multiplexing (TOM) based voice 

networks are also transitioning to being IP-based. Video conferencing is also moving 

towards IP however at a slower pace. 

Traditionally IP has been routed over ATM using IP over ATM virtual circuits or multi 

protocol over A TM (MPOA). These forwarding methods have proven to be complicated 

and cumbersome. However packet switched IP does have numerous advantages over 

traditional IP routers. the most important of which is the ability to provide QoS. Along 

with this move to IP transport networks, the Multi Protocol Label Switching (MPLS) 

protocol is being widely deployed in the core network as a means to bring the speed 

advantages of packet switching to the IP realm. Multi protocol Label switching allows IP 

flows to be routed through a packet switched network and so allows IP to acquire some of 

the QoS mechanisms of ATM and packet switched networks. The intention of this chapter 

is not to give an introduction to MPLS or any particular technology. but merely to show 

how each technology provides QoS, 

1.1.2 QoS Parameters 

How is QoS quantified? A number of QoS parameters can be measured and monitored to 

determine whether a service level offered or received is being achieved. Not all are equally 

important to every application. Perhaps the most basic is network availability. Network 

availability can have a significant affect on QoS. Network availability is the sum of the 

availability of many items that are used to create a network. such as fibre. network 

interface cards. power sources etc. Network operators can determine their networks 
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availability by among other things the amount of redundancy they incorporate into their 

network. 

When the term QoS is discussed with regard to packet switched networks what comes to 

mind is most commonly associated with a guaranteed bandwidth. When more than one 

user shares the use of a network they compete for the available bandwidth. They get more 

or less bandwidth depending on various factors. If QoS is to be implemented in a network 

some mechanism is required to divide up the bandwidth and share it fairly among users. 

Since the point of congestion in most modem computer networks is the switch or router, 

dividing up the bandwidth amounts to implementing a scheduling mechanism which 

allocates access to the switch fabric. This topic is the focal point of this text. 

Network delay is the transmit time a user experiences from the ingress point to the egress 

point of the network. Delay can cause significant QoS issues with applications such as 

voice and video. The delay can be fixed, for example due to propagation delay, or it can be 

variable, for example due to contention in switches. 

Jitter is the measure of delay variation between consecutive packets for a given traffic 

flow. Jitter has a pronounced effect on real time delay sensitive applications such as voice 

and video. Losses can occur due to various reasons. Two of the main causes of packets 

loss are errors introduced by the physical transmission medium and congested network 

nodes. Because congestion has a direct impact on packet loss, congestion avoidance 

mechanisms are often deployed. In the ideal converged network, those connections which 

are within their allowed traffic agreement will not experience any of the congestion. 

1.2 A Quality of Service Framework 

Providing QoS in a network has become an active area of work in the last few years, and 

many approaches have been investigated. Generally implementing QoS in a network 

requires a number of technologies to work together. These QoS technologies operate at 

different layers in the protocol stack and provide different services. Some of these are 

listed in Table l.The purpose of this section is not to delve in depth into these technologies 

but to provide an understanding of how they are used to support QoS. Univ
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Table 1. - QoS Technologies 

QoS Aware Application 

IPQoS 

Network-Signalled QoS 

Traffic Engineered Paths 

Link Layer QoS 

Physically Layer QoS 

RSVP 

IP Differentiated Services 

ATM PNNI, MPLS RSVP-TE 

or MPLS CR-LDP 

A TM Virtual Circuits, MPLS 

Label Switched Paths(LSP) 

ATM, MPLS, PPP. Frame 

Relay 

Wavelengths, Ports, Virtual 

Circuits 

4 

Physical technologies allow for the separation of traffic. The separation may take the form 

of wavelengths, Virtual Circuits, ports on a device, or frequencies over the air. This is the 

simplest form of QoS whereby different levels of QoS are provided through traffic 

separation at the physical layer. For example different wavelengths may provide different 

services. This type of QoS works well when the transmission media is inexpensive or 

abundant, but when the resources are limited it becomes inefficient and expensive, for 

example the Wireless frequency spectrum. A TM currently has the most comprehensive 

QoS support. The A TM forum has created A TM service categories. each with a different 

QoS traffic management parameters and performance levels. A more comprehensive 

introduction to a QoS framework is provided in Appendix A. 

1.3 Packet Switching 

Both MPLS and ATM have packet switching as the core of the technology. This could be 

said to form the basis of the ability of these technologies to support QoS. Packet switching 

means the forwarding of the packet through the switch fabric from the input port to the 

output port. Scheduling consists of choosing which packet to transmit or forward across 

the switch fabric when there is more than one packet destined for the same output port. 

The switch scheduling mechanism thus determines the order in which traffic is forwarded 

as it traverses a network node. Traffic with higher priority is typically forwarded ahead of 

traffic with lower priority. The scheduling mechanism may be designed to classify traffic 

as belonging to different classes or each connection may be assigned a specific bandwidth 
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share. Thus the s..:heduling priority detell111l1es the amount of latency introduced to the 

tramc by the switching node. In its simplest form a scheduling mechanism is a simple 

priority scheme \vhere higher priority connections are always giyen priority ahead of lower 

priority traffic. This is usually accomplished using some form of priority scheduling. The 

problem with this approach is that lower prionty traffic may never get serviced, iCthere is 

always higher pnority traffic entering the switch. More elaborate scheduling schemes 

provide a weighted approach to the transmission of traffic to improve faill1ess. In this way 

lower priority connections will not always yield to higher priority traffic. The ideal 

scheduling situation is when every connection gets its exact share of the bandwidth at 

every moment. This is called Generalised Processor Sharing, and is a t1uid system, and is 

not possible to implement exactly in Packet Switched Net\vorks. 

It has been shown that the element that has the most effect on the QoS provided by packet 

switched networks is the mechanism that detennines which packets will be transmitted 

next on the output link. We will refer to this mechanism as the traffic scheduling 

algorithm. Although this traffic scheduling algorithm is the basis for the provision of QoS, 

as has been shown the successful provision of QoS is also dependant on variolls other 

technologies at di fferent layers in the protocol stack. 

1.4 Scheduling in a Packet Switch 

One of the major barriers to building high perfonnance netvv'Orks is the difficulty of high 

speed switching. With the introduction of fibre optics the perf0ll11anCe bottleneck has 

moved trom the transmission media to the switching node. Many ATM switches have 

been proposed in the literature and this is still an area of active research. 

The aIm of this dissertation is to focus on scheduling strategies for packet switches. 

Although it is impossible to separate the scheduling mechanism from the switching fabric, 

we make certain assumptions on the architecture of the switching fabric. Thc switch 

fabrics considereJ all fall into the space di vision, internally non-blocking category. These 

fabrics provide multiple concurrent paths between the input and output ports and allows 

multiple cells to be simultaneously switched across the fabric, assuming that all cells are 

destined for distinct outputs. This dissertation investigates the issues involved in the 

design of schedul ing algorithms. 

Scheduling mechanism that packet switches use can be generally classified ll1to two 

categories depending on whether cells arc buffered at the inputs or the outputs of the 
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s\\'itch. Scheduling algorithms for input buffered and output buffered switches are 

investigated in this thesis, although the main focus is input butfered s\vitches. 

Output buffered switches are examined first. Traditionally A TM switches have employed 

output queuing. Switches with output queues are conceptually simpler and were more 

popular before the recent interest in input queued switches. In output queuing, when 

packets arrive at an input pOl1 they are transferred by a high speed switching fabric to the 

con'ect output pon. At the output port a scheduling mechanism then allocates the output 

bandwidth to the different connections accordmg to a specific policy. The function of the 

scheduling mechanism is thus to select the particular packet to he transmitted next on the 

output link. 

Scheduling algorithms for output buffered switches are currently able to offer guaranteed 

bandwidth protection to individual connections, hO\vever for various reasons, mainly due 

to speed limitations, output buffered switches are not practical for all but the smallest 

switches. These factors are investigated more completely in the following chapters. 

To overcome the many problems associated with output queuing, input queuing is being 

widely investigated. In an input buffered switch eells are buffered at the input ports of the 

switch. A set of paths must be established in the switch fabric for transmitting packets 

from the input ports to the output ports of the switch. Input Buffered have their own set of 

problems, the most serious is that they are currently not able to otTer any meaningful delay 

guarantees to connections. 

1.5 The Evaluation of Scheduling Mechanisms 

The evaluation or scheduling algorithms 1S a non trivial exercise. There are many factors 

to consider and 0 ften trade offs need to be made. Most of the considerations apply to both 

output and input queued switches; however there are some which apply exclusively to 

each. We now brietly discuss some of the issues involved in the design of a scheduling 

mechanism. 

Perhaps the primary requirement for a scheduling algorithm is that it should be able to 

isolate a connection hom the effects of other possibly misbehaving connections. This 

means that the scheduling algorithm must provide per connection isolation. There are 

certain QoS frameworks which provide different classes of service to different types of 
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applications, for example guaranteed delay traffic would always have the highest priority. 

However providing per connection QoS means that a scheduler should also be able to 

isolate traffic belonging to the same class. Note that the ability to isolate traffic IS 

necessary even if policing mechanism are used to shape tramc entering the network, since 

traffic can become bursty while in the network. 

A scheduling algorithm should also be able to et1ectively utilize the available bandwidth. 

In other words the algorithm should be able to achieve the benefits of statistical 

multiplexmg, whIle also being able to handle bursty sources. It should be able to do this in 

real-time as well. For example if a low delay, high priority connection is not lIsing its 

bandwidth, it should be instantly available to low priority tratTie, but as soon as the high 

priority application requires its bandwidth capacity, it should be available. 

A scheduling algorithm should preferably minimize the delay that cells cncounter as they 

are routed across the switch. This delay should preferably be independent of the behaviour 

of other connections. If a switch is not able to provide proper traffic isolation, behaving 

connections end up enduring unwanted delay. Algorithms which provide propcr traffic 

isolation may still difter considerably in their ability to provide low delay. 

Another requirement is that the scheduling mechanism implementation should also be fair. 

This is not exactly the same as providing traffic isolation. The algorithm should attempt to 

allocate each connection its fair share of bandwidth every instant, and should also 

distribute excess bandwidth fairly among conncctions Including those with no minimum 

bandwidth resenations. In reality it is helpful to consider the ability of a scheduling 

mechanism to otter fair bandwidth distribution over the long term and over short time 

intervals. While lwo schedulers may distribute their bandwidth equally fairly over a long 

time interval. one may for instance penalize a connection for bandwidth received in excess 

of its reservation at an earlier time. Thus a backlogged connection would be starved until 

all the other connections are given the same amount of service. This situation would lead 

to short-term unfairness. Thus two scheduling algorithms having otherwise similar 

properties may e,hibit vastly different fairness properties over the short tern1. This factor 

is very important for delay sensitive traffic, such as packet based voice applications. 

Scheduling algorithms usually need to be implemented in hardware in high speed 

networks. 

Some of the scheduling algorithms presented in the next chapters perform very well 

theoretically but are immensely complex. It is important that the scheduling algorithm be 
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Scheduling algorithms usually need to be implemented in hardware in high speed 

networks. 

Some of the scheduling algorithms presented in the next chapters perform very well 

theoretically but are immensely complex. It is important that the scheduling algorithm be 

simple enough to implement in hardware. In ATM the available time for scheduling cells 

is very short. At ATM speeds less than 3 f..IS are available for scheduling. The result of this 

is that only hardware implementations are feasible. This places severe restrictions on the 

complexity of algorithms that can be implemented. For example some of the factors that 

can increase the implementation complexity of a scheduling algorithm are the need to 

maintain per cell or per connection timestamps and to generate random numbers. However 

the scheduling algorithms which don't use timestamps generally provide worse delay 

bounds and fairness. The scheduling algorithm designer usually has to trade off 

complexity of implementation with the properties of low delay and good short-term 

fairness. In practice often the only way to determine whether a scheduling algorithm is 

feasible and can support the desired speed is to implement it in a prototype. 

The scheduling algorithm should also scale well to larger sizes and maintain its 

performance characteristics. It should also perform equally well at different link speeds. It 

is quite a difficult task to simultaneously provide good delay bounds to a 150mb/s 

connection and a 56kb/s connection. Again often the only way to determine if a scheduling 

algorithm is feasible to implement at a specific switch size is to prototype it. 

An important criterion for scheduling algorithms is that they perform well under real 

network conditions. Real network traffic is correlated and in practice packets arrive in 

bursts. Understanding the nature of this sort of traffic and evaluating its impact are 

important for the design of network elements. Many ways of modelling traffic bursts in 

network traffic have been proposed. Studies have shown that burstiness has more 

influence on the performance of output queued switches than input queued switches. In 

other words burstiness tends to concentrate the conflicts on outputs rather than inputs. 

Generally burstiness has been shown to increase the queuing delay of a particular 

connection: however some scheduling algorithms may be more susceptible to decreased 

performance under bursty traffic. Univ
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to mimic a real \vorld switch as closely as possible. For example a typical configuration 

would be a 16 by 16 switch with up to a few hundred connections on cach port. 

To model a core network switch the connections would be randomly distributed across all 

the ports and the destinations would also be more or less randomly distributed. To model a 

network edge switch all the input ports connections destination would be focused all on 

one or two of the output ports, to model a switch connecting several DSL access 

multiplexers (DSLAMS) to the network. 

An important part of the simulation is the choice of traffic model. As is widely known real 

network traffic is not uniform, and has been shown to be bursty over many time scales. 

Ideally the tratllc model should mimic real network traffic as closely as possible. The 

modelling of real network traffic is a complex topic. Generating a bit stream that closely 

approximates real traffic is processor intensive, while using a trace from real network 

traffic requires large disk space and is slow. While a life-like tratTic model is useful to 

detennine the performance of a scheduling algorithm under real traffic, using a simple 

unifoml tratllc model is useful to gain a more intuitive understanding of the algorithm. It 

also provides a mdhod of comparing an algorithm' s perfomlance with others. 

Another consideration is the modelling of the cell queues. A real switch has a finite 

number of buffers and perhaps only a small number of buffers dedicated to each 

connection. Other factors which may be considered are the use of early packet discard 

mechanisms whll'h are usually implemented in real s\\ltches. The behaviour of traffic is 

also not immune to the condition of a switch: a connection experiencing very long 

switching delays may lower its transmission rate or find an altemati\"e route through the 

network. 

The simulation also needs to be carefully designed so that it is practical to implement in 

the time and hardware constraints available" A supercomputer would be the ideal 

simulation platfonn, but on smaller platfonns approximations may have to be made in 

order to decrease the complexity of the simulation. Univ
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1.7 Conclusion 

This chapter has provided a review of the current state of QoS in packet switched 

networks and given a very brief introduction to output buffered switch scheduling and 

input buffered sWltch scheduling. In a switch the quality of the service that is offered to 

the packets of a particular connection depends on several factors including the arrival 

pattern of the connections trame, the number of buffers in the switch and the congestion 

information from downstream nodes. However the most important factor which affects the 

quality of service IS the scheduling mechanism \vhich determines which packet to transmit 

next on the output lInk. 

[n chapter 2, the architecture of A TM switches is investigated in further detail. This 

chapter provides the necessary background for schedulll1g in an ATM switch. In chapter 3 

scheduling an output buffered switch is presented. This chapter provides an introduction to 

scheduling in output buffered switches it also lays some of the foundation for material 

presented in the next chapter. An introduction to Generalised Processor Sharing is 

presented. The topic of tairness is addressed andin particular the worst-case fairness and 

service fairness indices are introduced. Some simpler mechanisms are described, followed 

by some more complicated algorithms which attempt to make provision for per connection 

QoS. In chapter 4 the topic of scheduling in input queued ATM switches is presented. The 

development of scheduling algorithms of output buffered ATM switches is covered, and 

hence this chapter serves as a review of the current state of research into scheduling 

algorithms for input buffered A TM switches. The chapter starts with an investigation into 

the benefits of input butTered switches. Algorithms sueh as maximum size matching and 

maximum weighkd matching are studied. Some of the input scheduling algorithms which 

have been presented in the literature very recently are reviewed. The methods used to 

evaluate the performance of input scheduling algorithms are derived from similar methods 

used in output bUl'fered A TM switches. 

In chapter 5, we present the idea of using a mUltiplying ratio to control the delay that a cell 

experiences in an input buffered switch. We also present a new algorithm tor input 

buffered switches. calJed Worst-case Iterative Matchillg (WIM). We highlight some of its 

predicted advantages, and we present a design tor implementing it in hardware. In chapter 

6, the results of some experiments to determine the pertormance of WIM scheduling 

algorithm for input buffered switches compared to other scheduling algorithms tor input 

buffered switche.:;. The chapter is concluded with an investigation of the effect of the 

switch size on the performance of scheduling algorithms for input buffered switches. In 
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chapter 7 we give a summary of the ,vork whIch has been conducted. together with some 

conclusion. We abo present some directions for future research. 
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Chapter 2 : Overview of ATM switch 
Architectures 

2.1 Overview of A TM switch Architectures 

12 

The aim of this section is to provide an introduction to A TM switching. The aim is not to 

provide an extensive discussion on various switch architectures. but rather to describe 

general switching fundamentals and to provide a description of the various architectural 

options. The design of a switch fabric is a complex topic. For a more detailed introduction 

to the topic of ATM switch architectures see the paper by Turner [1]. Ahmadi and Denzel 

[2] provide an extensive survey of ATM switching, perhaps a little outdated but still 

largely relevant. A good review of commercial A TM switches is presented By Chao in 

[3]. 

The switching function is performed by a switching fabric. This fabric switches between N 

links usually of the same speed. A physical port is bi-directional and consists of an input 

and an output port on the same physical port. There are thus N input ports and N output 

ports. The input port is usually responsible for VPIIVCI translation. This operation is 

performed using a look-up table, possibly implemented using Content Addressable 

Memory (CAM). Other information which may be included in the look-up table is the 

output port. class of service and priority. The switch fabric routes from the input port to 

the desired output port and in the case of multicast two or more output ports. In all 

switches time can be divided into switching slots or the amount of time it takes to switch 

one cell. The design of the switch fabric has the most impact on the performance of an 

ATM switch. 

There are many ways to categorize A TM switches. but the broadest is according to their 

structure. 

Switch fabrics have been classified into 2 general categories in terms of their structure, 

namely space division and time division. A time division switch consists of a single dual 

ported memory block or a common high speed medium such as a parallel bus which is 

accessed by all input links and output links sequentially. The memory is usually 

partitioned per output link. A space division switch fabric uses many concurrent spatial 

paths from each mput link to each output link' 
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ATM switches can also be classified according to their size. Smaller switches (4-16 ports) 

are usually made up of one switching stage. while larger switches have multiple switching 

stages. Most ATl\l switches today Llse one of several single stage s\vitching techniques. 

Single stage switches are relatively simple. but of course are limIted in the number of ports 

and also their total throughput. This section reviews the major categories of single and 

multi stage switches and discusses the key design issues. 

2.2 Single stage A TM Switches 

Most small ATM switches are of the shared memory or shared medium variety. The 

shared memory switch uses a common memory to transfer cells from the input ports to the 

output ports. Shared medium switches use a common medium like a bus or a ring. 

2.2.1 Shared memory switches 

In a shared memory switch cells from the input ports are multiplexed into a single stream 

and written sequentially into logically partitioned memory. The cells are then written to a 

particular section of memory depending on their destination. There are several issues 

affecting the performance of shared memory switches the main one being the structure of 

the shared memory, for example it can be a common memory for all ports which needs 

less memory, or it can be partitioned into separate sections for each port. It could also be a 

combination of both. 

2.2.2 Shared medium (Bus) 

Shared medium switches use a shard medium like a bus or a ring to sequentIally send cells 

to the output pons. Buses are the most common fOl1l1 of single stage switches today. A 

simple single stage switch is illustrated in figure 2.1. See [I]. The input port processor 

handles the input processing functions at the ATM layer; this includes synchronizing 

arriving data to the intemal timing of the switch, VPliVCI tTanslation, checking ATM 

header errors. To transfer data to the outputs. input port processes contend for access to the 

shared bus using one of a variety of bus contention techniques. Once an input port has 

possession of the bus it then transfers a cell or cells onto the bus in parallel form. The 

input port processor also transmits the output port number on the bus. The output port 

processors compare the number of the output port on the bus to their own address and 

buffer matching cells in a queue prior to transmission. The output port may implement a 

Univ
ers

ity
 of

 C
ap

e T
ow

n



14 

simple FIFO queue, or several more sophisticated per virtual circuit queues. It may also 

implement one or more congestion control techniques to improve queuing performance in 

the presence of bursty data traffic. 

Control Processor 

Input Poris Output Po rts 
1-

.... I I I I I I I I I I 
.... ... ... 

I I I I I I I I I I 
... .... 
II'" ... 

... 
I I I I I I I I I I 

--... 
po ... 

., · .. · .. • 
-... 

I I I I I I I I I I 
... 

II'" ,... 

Bus 
Figure 2.1 Bus Based Switch 

In addition to the data path components described above, a switch must also have a control 

processor, which configures the input port routing tables in response to user requests. The 

control processor must also have control of the queuing system in the output port. The 

control processor is usually implemented as a general purpose processor with software to 

perform terminal-to-switch and switch-to-switch signalling, in addition to switch control 

and maintenance functions. In some systems the control processor is directly connected to 

the bus and often also has a separate bus connecting it to the memory implementation in 

the routing tables. This enables the control processor to modify the routing tables. The 

control processor may be connected to the switch through one of its external ports and 

communicate control information through the use of A TM cells carried on a specific 

VPINCI. This of course requires that the input and output ports have the ability to 

interpret and react to control cells. This solution becomes more attractive as the switch 

size increases as multiple processors may be required to maintain the switch. In order to 

provide non-blocking u'ansfer medium, a bus supporting n ports, operating at a rate of R 

bits per second, must provide a bandwidth of at least Rn bits per second. If the clock 
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Rn 
frequency used for the bus is r Hz, the bus width w must be at least - . Notice that as the 

r 

number of ports in a system increases, both the number of ports connecting to the bus and 

the width of the bus must increase. This yields quadratic growth factors, making bus based 

switches unfeasible for larger systems. Another problem with bus based systems is the 

capacitive loading effect, as the number of ports connecting to a bus lDcreases the 

capacitive loading of the signal lines increase, thus reducing the maximum frequency that 

can be used. The result of this is that the bus bandwidth must increase faster than the port 

count to maintain sufficient bandwidth . 

Shared medium switches have the advantage that the technologies that are used to 

construct them are well developed and commercially available. For example Gigabit 

Ethernet is one technology that is well suited to building a shared medium switch. 

_--~Ring 

--~ Interface 
Ring 
Interface 

Ring 
~~~~~-1lnter-

face Control Processor 

Ring 
rr:::;'::::;'::::;':=;----j Inter-
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Figure 2.2 Ring Based Switch 
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2.2.3 Rings 

This switch architecture replaces the bus in the previous section with a ring interconnect 

system. Each input port or output port interfaces with the ring, which is where cells are 

inserted or removed from the ring . The simplest ring protocol uses a time slotted approach 

where cells are sent synchronously during specified time slots, and a busy/idle bit is used 

to indicate the availability or unavailability of a time slot. An input port which has a cell to 

send waits for the start of a times lot in which the busylidle bit is clear and then changes the 

value of the bit and then transmits the cellon the timeslot. The ring rotates and the output 

ports compare the output number of the transmitted cell to their own address and copy the 

matching cells of the ring. They then change the value of the busy idle bit to indicate that 

the slot is again available for transmission. 

Rings, like buses have quadratic scaling properties; however they are not hampered by 

capacitive loading effects. Rings do introduce some additional latency, relative to buses, 

but for switching applications these latencies are not that significant. If carefully designed 

they also may allow for more than one cell to be switched in each time slot. 

2.3 Multistage Switches 

Single stage switching techniques are inherently limited by their inability to scale to larger 

sizes. While the use of higher speed cores to handle lower speed ports provides some 

relief, for any given technology there comes a point where greater amounts of parallelism 

are needed to obtain higher throughput. For systems implemented using modern integrated 

circuits, multistage networks using identical small switching nodes are among the most 

attractive. An example of a multistage network is shown in Figure 2.2. Each of the switch 

elements is capable of simultaneously switching all of its inputs to all of its outputs 

(possibly using speedup) . Each element may also have a small cell buffer. 
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Figure 2.3 A Multistage Switch 

The most convenient method of classifying space division (multistage) switches is based 

on whether there is more than one path between any two pairs of input and output ports. If 

only one path exists it is a single path switch, and if more than one path exists it is a 

multipath switch. The switching network illustrated in figure 2.3 is multipath. 

In order for cells to get from the input ports to the correct output ports there needs to be 

some method of routing cells through the switch fabric. There are two main classifications 

of switches in terms of routing, those that use dynamic routing and those that use static 

routing. In systems that use dynamic routing, each cell is routed independently, spreading 

traffic as evenly as possible among all different paths between the pair of input and output 

ports . In static routing systems all cells in a given virtual circuit follow the same path. 

Static routing networks maintain cell ordering directly, but require explicit path selection 

and are subject to virtual circuit blocking. Virtual circuit blocking occurs when one cell 

can ' t be routed from its input port to its output port, because the resources are in use by 

another connection . Dynamic routing networks require the use of some other mechanism 

to restore cell order, after cells emerge from the interconnection network. This usually 

involves some form of re-sequencing buffer. 
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2.3.1 Performance of Multistage Switches 

After routing queuing in multistage interconnection networks is the second key 

performance issue for this class of systems. The design parameters that have the most 

influence on performance are the speed advantage, the dimensions of the switch elements, 

their queue organization and queue size, and the absence or presence of inter-stage flow 

control. In general, large switch elements with shared queues give the best performance for 

a given total amount of buffering. [2] 

In dynamic routed multistage ATM switches only limited studies have been performed for 

time dependant traffic. For switches that use static routing, the queuing performance in the 

presence of time dependent traffic is somewhat more problematic. In these systems 

congestion can occur on any inter stage switch link in the interconnection network. The 

most effective way to solve this problem [1] is to use separate queues for each virtual 

circuit that passes through a switch element. In this approach a switch element with a 

congested output link signals to its upstream neighbours, blocking new cell transmissions 

for all virtual circuits using the congested link. These Signals would be oropagated 

backwards through the network to the input port where typically large buffers are located 

for the storage of bursts. Note that scheduling algorithms similar to those required for 

single stage switches are required in each stage of a static routed buffered multistage 

switch. 

The switches considered in this text are static routed switches. The switch is capable of 

making as many connections as there are ports. For example in a 16 by 16 switch there can 

be 16 simultaneous connections all originating and destined for separate ports. The exact 

details of how the cells are switched are not relevant to the operation of the scheduling 

mechanism. Univ
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2.4 Queuing in A TM Switches 

This section compares the different queueing options that a switch designer might use. 

Basically cells can be queued at the input or the output of a switch or both or not at all. 

1 

2 

N 

1 

Input Buffers 

o 

o 

Internally Non Blocking 
Packet Switch 

Output Buffers 

DDD~ 

2 

N 

2 _D----I[] r-. 2 

N 

Internally Non Blocking 
Packet Switch 
N x speedup 

Figure 2.4 Input and Output Queueing 

2.4.1 Output Queuing 

o 

o 

In output queuing, when packets arrive at an input port they are transferred by a high 

speed switching fabric to the correct output port. The cells are then transfened into 

memory to await transmission on the output link. At the output port a scheduling 

mechanism then allocates the output bandwidth to the different connections according to a 

specific policy. If there are no input buffers the switch fabric has to be capable of 

transmitting as many cells as there are ports to any output in any switching interval. This 

absence of input buffers makes two very demanding requirements on the switch. 
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2.4.2 Input Queuing 

In a switch with only input buffers, cells contend for access to the output port before they 

enter the switch fabric. Cells that are not selected are stored in the input buffers mth cells 

that arrive in the next time slot. Again the switch fabric transfers at most one cell per unit 

time slot from each input port. Output buffers are obviously not needed in this case. 

When a first in first out (FIFO) service discipline is used for the input butlers the 

maximum switch throughput is 0.586 of the total switch bandwidth. The maximum 

throughput of a non blocking switch \vith FIFO input buffers is thus lower than that of a 

switch fabric with no buffering. Note that the cell loss performance is still much better for 

an input buffered switch. 

An input buffered switches usmg FIFO service discipline suffers from head of Line 

blocking. This means that cells at the head of the queue block which are blocked stop cells 

which could otherwise be routed to different output ports. A number of methods are 

available to increase the switching capacity of input butTered switches. One approach is to 

increase the speed of the switehing fabric. Another is to use a non FIFO input buffered 

service discipline. This topic is dealt with in more detail in subsequent chapters. 

2.4.3 Combined Input and Output Queuing 

The option of using both input and output buffering has recently received a lot of attention. 

This combines both the advantages and disadvantages of input and output queueing. The 

switch fabric is required to be faster than that required for input queueing, but does not 

need the speed required of a typical output butTered switch. This solution is usually 

referred to as Combined Input Output Queueing (CJOQ). HowC\er in larger switches even 

a small speed-up is not very practical. 

For a switch fabnc without any buffers, when output contention occurs, only one cell gets 

transmitted. The other cells are dropped or recycled into another input link. Assuming the 

cell switches at 1110St one cell per time slot from each input, this sort of SWitch generally 

has a higher probability of dropping cells than the other solutions discllssed here. 
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2.5 Buffer Management 

The and the \\ay in which the cell burters in an AIM switch are allocated in an output 

buffered switch have a large impact on the performance of the switch. Dedicated per VC 

queues are required to guarantee buffer space for non eongestcd connections and traffic 

classes. Large buffers (of the order of several megabytes) are required to support bursty 

self similar traffic. Sharing a large central memory allows a switch to provide sufficient 

bufters for each port to handle large traffic bursts with a smaller total amount of memory. 

The alternative of providing several hundred megabytes on each port can be prohibitively 

expenSIve. 

Usually the first step in providing buffer management on an AIM s\vitch is to provide 

traffic isolation. Non-congested ports and traffic classes should always have available 

buffer space. The simplest way to achieve this IS to assign dedicated queues to the five 

ATM forum management version 4.0 traffic classes (i.e. CBR. rt-VBR, nrt-YBR, ABR, 

and UBR). A TYPical buffer allocation scheme is shown in figure 2.5. 
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Figure 2.5 Buffer Allocation in an ATM switch 

• • • 

Port Shared 
Buffer Space 

Port N 

~ 
~ co 

~ co ~ co ~ -t::: 
U 't: C Univ

ers
ity

 of
 C

ap
e T

ow
n



21 

2.5 Buffer l\ianagement 

The size and the \\ay in which the cell buffers in an ATM switch are allocated in an output 

buffered switch have a large impact on the performance of the switch. Dcdicated per VC 

queues are required to guarantee buffer space for non congested connections and traffic 

classes. Large butTers (of the order of several megabytes) are required to SUpp0l1 bursty 

self similar traffic. Sharing a large central memory allows a switch to provide sufficient 

buffers for each port to handle large traffic bursts with a smaller total amount of memory. 

The alternative of providing several hundred megabytes on each port can be prohibitively 

expenSive. 

Usually the first step in providing buffer management on an AIM switch is to provide 

traffic isolation. 0lon-eongcsted ports and traffic classes should al\\ays have available 

buffer space. The simplest way to achieve this is to assign dedicated queues to the five 

ATM forum management version 4.0 traffic classes (i.e. eBR, rt-VBR, nrt-VBR, ABR, 

and UBR). A Typical buffer allocation scheme is shown in figure 2.5. 
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Figure 2.5 Buffer Allocation in an A TM switch 
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Switched cells are placed in an appropriate queue based on origin. destination and traffic 

class. If the per connection becomes congested the traffic will back up into the traffic class 

queue. If the dedicated traffic class queue fills up then the traffic backs up into the port 

shared buffer space. If the per port shared buffer fills up the traffic backs up into the 

shared switch memory. 

2.6 Sunnnary 

As stated the aim of this dissertation is to focus on scheduling strategies for ATM 

switches. Although it is impossible to separate the scheduling mechanism from the 

switching fabric. we make certain assumptions on the architecture of the switching fabric. 

The switch fabrics considered all fall into the space division. internally non-blocking and 

internally blocking category. These fabrics provide a limited number of concurrent paths 

between the input and output ports and thus allow multiple cells to be simultaneously 

switched across the fabric. 

In the case of output buffered switches it is assumed that all required cells can be 

switched. while in the case of input buffered switches only cells that are destined for 

separate outputs can be switched. This dissertation investigates some of the issues 

involved in the design of scheduling algorithms for this sort of switch. 
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Buffered Switches 

3.1 Introduction 
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As scheduling for output buffed switches is generally a simpler topic than scheduling for 

input buffered switches we discuss this topic first. Some of the material presented here IS 

necessary for the following chapter. Traditionally ATM switches have employed output 

queuing. They are conceptually simpler and provide a benchmark for the performance of 

input buffered switches which are examined later. In output queuing, when packets arrive 

at an input port they are transferred by a high speed switching fabric to the correct output 

port. At the output port a scheduling mechanism then allocates the output bandwidth to the 

different connections according to a specific policy. See figure 3.1. The function of the 

scheduling mechanism is thus to select the particular packet to be transmitted next on the 

output link. 
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Figure 3.1 Scheduling in an Output Buffered A TM Switch 
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The main function of this output scheduling mechanism function is to provide the desired 

service to each connection. Each ATM connection has a set of A TM forum traffic 

management parameters, and these should be supported by the ATM switch. 

3.2 Output Scheduling Algorithms 

Many scheduling mechanisms for output buffered switches have been proposed in the 

literature in recent years. in the general context of connection orientated packet network 

architectures with explicit resource allocation and admission control policies. One of the 

first to studies to investigate fair scheduling was by Demers Keshav and Shenker in [4]. 

Many have since followed. This section aims to give a review of some of the algorithms 

proposed in the literature. The area of investigation will be restricted to rate based 

scheduling algorithms. A rate based service discipline is one that attempts to provide 

connections with a service rate. independent of the traffic characteristics of other clients 

[5]. Typically such a discipline manages the following resources at an output port: 

bandwidth. service priority, and buffer spaces. In conjunction with appropriate admission 
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policies, such disciplines allow clients to get perf0n11anCe guarantees in terms of 

throughput, delay, jitter and loss rate. 

3.3 Generalized Processor Sharing 

Generalised Processor Sharing (GPS) is the ideal theoretical scheduling algorithm, first 

proposed for use in broadband networks in [6]. Generalised Processor Sharing is defined 

with respect to a f1uid model. In GPS each connection gets Its fair share of the total 

available bandwidth at every instant. It is thus a f1uid system and can not be exactly 

implemented in practice. 

A GPS server serving N sessions is characterised by N positive real numbers, 

4>1,4>2 , ... ,4>.v which represent the bandwidth that each of the N connections will receive. 

The server operates at a fixed rate r and is work conserving (If there are packets uvailable 

to s\vitch it will always switch them) If 1t'i (II' t:!) is the amount of traffic from session i 

served in the interval (t I ' t:>.) then a GPS server is defined as one for which 

j = 1,2,A ,N 

holds for any session i that is backlogged throughout the interval [tl,1 2 J. From the 

definition, it follows that BGPs( r) the set of backlogged sessions at time T remains 

unchanged during any time interval [tl' t 2]' the sen"ice rate of session i during the interval 

will be exactly 

Where r is the output link speed. Since BCI'.I (U is a subset of all the sessions on the server, 

it is easy to see that r: (11 ,f:>.) ?:: Ij holds where: 

(1 ) 

(2) 

(3) 
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Therefore session i is guaranteed a minimum service rate of rj during any interval when it 

is backlogged. 

Of course realise that GPS is an idealised server that does not transmit packets as entities 

or even as bits. It assumes that the server can serve all backlogged sessions simultaneously 

and that the traffic is infinitely divisible. In packet system, only one session can receive 

service per timesloL 

In order to implement a GPS-like scheduling policy in practice many packet 

approximations have been proposed. These approximations generally involve the 

computation of a virtual finishing time for each packet and the computation of a system 

virtual time. The packets are then scheduled in increasing order of their virtual finishing 

times. These algorithms are usually referred to as Packet Fair Queuing (PFQ) algorithms. 

3.4 Fairness in Output Buffered Switches 

The service provided by a scheduling mechanism to a group of connections can differ 

significantly over the short term. The generally accepted definition of fairness is that we 

would like to serve connections in proportion to their reservations and distribute unused 

bandwidth among connections which are able to use it. (Not all connections can use excess 

unused bandwidth). However allowances also have to be made for connections which have 

no reserved bandwidth which only use excess bandwidth (UBR connections). Fairness can 

also be defined in terms of average delay jitter, some connections require this parameter to 

be very low. and it would be unfair to give one of two identical connections a low average 

delay jitter and the other one a much larger average jitter. Two indices for determining the 

performance of an ATM scheduling mechanism have been proposed in the Literature. 

These are the Service Faimess Index and the Worst-case Fairness Index. 

3.4.1 The Service :Fairness Index 

The Service Faimess Index(SFlj, originally introduced by Golestani in [7] is the 

maximum difference of normalised service that two sessions i, j can receive during any 

time interval when they are continuously backlogged: 
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Ft.; = (4) 

where W (Ill' n J) is the number of cells session transmitted by the server between timeslot 

III and n 2 , and B(n" 11 2 ) is the set of sessions that are continuously backlogged between 

II, and 11 2 , The SFI captures the difference in fairness of the scheduler from the ideal 

fairness of GPS in distributing service to connections that are continuously backlogged. 

3.4.2 The Worst-case Fairness Index 

The Worst-case Fairness Index, defined by Parekh in [8] and also used by Bennett and 

Zhang in [9], measures the maximum amount of time that a backlogged connection may 

have to wait between two consecutive services. In the case of ATM., the WFI can only be 

measured in cells and a Cell Worst Case Fairness Index (C-WFI) is thus defined. A 

scheduler is called worst-case-fair if the C-WFI for any session i is minimal and 

independent of the total number of allocated sessions. The distribution of service to 

competing connections in a scheduler with small C-WFl is closer to GPS than in a 

scheduler with identical SFI but larger C-WFI. 

Parekh's definition of the Worst-case Fairness Index for output buffered switches is 

presented here for completeness and for comparison with the WFI for input buffered 

switches which is presented in the next chapter. 

Definition 1 A service discipline s is called worst case fair for session i. if for any time r. 

1 . 
the delay of a packet arriving at r is bounded by Qi.Jr) + Ci." t.e., 

ri 

[
k k Qi.,(a ,

k
) C 

( .. , < a , + + i., 
r, 

(5) 

where ri is the throughput guarantee to sessiOll i, Qi" (a;) is the queue size of session i at 

time a: and eLI is a constant indepelldent of the other sessions sharing the multiplexer. 

d L is the departure time of the packet. A service discipline is called worst-case fair if it is 

worst case fair for all sessions. 
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To perfoml a comparison between connections with different bandwidth reservations 

Bennett and Zhan~ define the N0l111alised Worst-case Fair Index for session i at server s to 

be: 

(6) 
rC. 
fl."" 

r 

For a server that is worst-case fair, its Nomlalised Worst-case Index is defined to be: 

(7) 

GPS is \vorst-case fair with cGPS = O. Thus we can use the Worst-case Index to quantify 

the service discrepancy between GPS and a another scheduling algorithm. or indeed we 

can use it to compare any two scheduling algorithms 

3.5 Practical Output Scheduling Algorithms 

Although generalized processor sharing is the optimal scheduler. it is extremely complex 

if not impossible to implement in practice. Hence various approximations have been 

suggested and the following section reviews theses schedulers, which vary in their 

performance, complexity 

3.5.1 Weighted Round Robin Scheduling 

In round robin schedulers the time axis is split in frames of a certain maximum size. In 

each frame packets from different channels are serviced in a round robin manner. A credit 

counter is associated with each connection, and this counter is decreased each time a 

packet from a connection receives service. Credit counters are reset at the beginning of a 

frame to the maXllTIUm amount of traffic that the connection may transmit during a frame, 

and a connection is not eligible for service if its credit counter is zero. The simplicity of 

the algorithm allO\vs a high speed hardware implementation. 

The maximum dday a packet will encounter is propOliional to the maximum frame size 

and the requirement for a fine bandwidth allocation results in a large fi'ame size and hence 

a high end-to-end delay bound. Thus WRR makes a good seheduling algorithm for 

separating classes of traffic but it is not as good at scheduling individual connections. 
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3.5.2 Packet-by-packet Generalised Processor sharing Policy (PGPS) 

PGPS was proposed in [4] by Demers, Keshav and is also called Weighted Fair Queueing 

(WFQ) and was the first proposed policy to approximate GPS for packet transmission, In 

this policy a GPS server is emulated to transmit packets: each packet receives a virtual 

service starting timestamp and a virtual service finishing timestamp, These represent the 

times that the packet would start and complete transmission through the server in a GPS 

system. Then the packets are scheduled in ascending order of their virtual finishing 

timestamps, A virtual time function (also called the system potential) is defined as 

pPGPS (t) ret t) PCto) + 0 

I leB(to.1) ifJ, 

(8) 

Where BUo , t) is the set of backlogged session in interval [to, tJ 

The virtual starting and finishing timestamps (S/ ' F/) of the ith session's jth packet are 

computed as 

S;' = maxCF,J-I, Pea/)) (9) 

FJ = sJ + , , 
'r (10) 

where I,' is the size of the jth packet of session i and a( is its arrival time, Notice that the 

rate at which the virtual time is updated every time the set B(t 0' t) changes due to the 

ending or beginning of a session's transmission, PGPS requires a computation of the 

system potential which requires a real time simulation of GPS, This is the major drawback 

of the PGPS policy because the complexity of virtual time updating is in O((N)) in an 

A TM network, where N is the number of connection, A TM networks would generally 

have a great number of sessions in parallel and the traffic is likely to be very bursty, so 

that the set of backlogged sessions is changing constantly, Therefore the total complexity 

of PGPS is linear with the number of sessions, It is not very difficult to see that PGPS is 

thus not a very practical scheduling algorithm to implement in practice, However PGPS 

does provide the best emulation of GPS, In [6] Parekh demonstrated that for any packet 

the delay between the real finishing time under PGPS, (f-l'GPs(p) and the virtual finishing 

time f'ips(p)) of a packet of maximum size lilla., is given by: 
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(11) 

In a similar manner the inequality (11) provides an upper bound on the advance of the 

service under OPS compared to the service under POPS, the POPS server may be far 

ahead of the corresponding OPS server. This advance in packet based system is not 

bounded and may cause discrepancy in the output flows of some sessions, which results in 

a large delay jitter. An example illustrating this problem was presented by Bennett and 

Zhang in [9] where they also proposed a solution. A summary of their work (Worst-case 

Fair Queueing) is presented in a following section. 

3.5.3 Self-Clocked Fair Queueing Scheduling (SCFQ) 

SCFQ was proposed by Oolestani in [7] in order to improve the virtual time computing 

complexity of the POPS policy. A SCFQ server schedules the packet having the minimum 

virtual finishing time in the same way as POPS. The virtual timestamps are computed 

according to the same formulae but the virtual time is computed differently. In SCFQ the 

virtual time is determined only using information from the real system (hence the name 

SCFQ), without referring to a corresponding virtual time obtained from a simulation. 

pSCFQ(t) = the virtual finishing timestamp oflhe packet ill service at time t 

Hence the complexity of implementing this algorithm consists of finding the minimal 

virtual finishing timestamp, which is done in O(logN). Obviously this simplification 

affects the quality of the service of the scheduler; it introduces some unfairness, which 

does however remain bounded. It has also been shown that the latency of a session 

depends on the number of sessions backlogged in the system. Furthermore this policy also 

suffers from a poor Wfl in the same way as POPS does. 

3.5.4 Start Time Fair Queuing Policy (SFQ) 

The SFQ policy was proposed by Ooyal et al [10] in order to offer a scheduling 

mechanism better adapted to low bandwidth flows. They modified the definition of the 

virtual time and the packet selection criterion. The virtual time of SFQ is given by: 

PSFQ(t) = the virtual start time of packet in service at time t. 
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The packets are scheduled according to their Virtual starting timestamps instead of their 

virtual finishing timestamps, which is the main reason why the SFQ policy favours low 

bandwidth sessions. Such low bandwidth sessions have smaller bandwidth parameters, so 

their vil1ual finishing times are greater. Thus under seheduling algorithms using virtual 

finishing times, packets of low bandwidth connections must wait for the transmission of 

packets belonging to sessions with larger bandwidth reservations (i.e. smaller virtual 

finishing timestamps), even if they started transmission previously. This property is 

desirable for low bandwidth eBR connections which would nornmlly carry delay sensitive 

voice. Intuitively giving the priority to the low bandwidth sessions will not significantly 

damage the fairness of the scheduler since these sessions are supposed to emit a smaller 

number of packet". 

3.5.5 Discrete Rate Schedulers 

The discrete rate approach was tirst introduced by Bennett et a I in [1 1 J. 'rhe discrete rate 

scheduler is based on the assumption that it is required to support a relatively small 

number of guaranteed service rates at any time. This assumption is certainly realistic in 

most if not all A 1M switches. In the discrete rate scheduler, backlogged sessions with the 

same service rate are grouped together in the same rate FIFO queue. When a connection 

becomes backlogged after being idle, it is assigned a new timestamp and appended at the 

tail of the corresponding rate FIFO queue. At any time scheduling is only perforn1ed 

among sessions at the head of rate FIFO queues at that time. Since only the timestamps at 

the head of the queues need to be searched to find the minimum virtual finishing time. the 

number of timestamps to be searched is greatly reduced (equal to the number ofrate FIFO 

queues). The session selected by the scheduler is extracted from the head of its rate FIFO 

queue at that time' and if still backlogged assigned a new timestamp and queued back at the 

tail of the rate FIFO queue. 

For a discrete rate scheduler to have delay bounds and fairness indices \vhich are 

independent of the number of connections or the source behavIOur, the discrete rate 

implementation of a scheduler must satisfy the two conditions originally defined in (11], 

the globa/~r bOllnded timestamp and l()cal~r bOlll/ded tilllestamp properties 

For any pair of connections having iJ having the same allocated service rate (ri r i ), the 

following condition holds: 
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(12) 

The locally bounded timestamp (LBT) property proves that the difference between two 

consecutive timestamps of a continuously backlogged connection i is always equal to .!.. , 
r, 

and therefore that the contribution of the source model to the delay bounds is independent 

of the scheduler considered. However the LBT property does not enforce a fixed value of 

latency, which still depends on the scheduler and on its specific implementation 

The globally bounded timestamp property is defined as follows: 

At any times lot m the following relation holds between the timestamp Fi of any 

backlogged connection i and the system potential P: 

C 
P(m)::; Fi ::; P(m) + 

ri 

Where C is a constant value shared by all the connections. 

(13) 

For a discrete rate scheduler the combination of the GBT and LBT properties with the 

minimum slope property determines the following bounds for the Service Fairness Index 

[ 11]: 

F " C I C 1) 
I, ] ::; rnax(- +-,-+- (14) 

r, r, r, ri 

The Cell Worst-case Fairness Index is [II]: 

CWFI C-l (15) 

The discrete rate scheduler with per connection timestamps represents an important 

improvement in reducing the complexity of GPS related schedulers while maintaining near 

optimal delay bounds and SFL as well as maintaining a minimal CWFI. 

3.5.6 Worst Case Fair Weighted };'air Queuing (WF2Q) 

In order to attain as fair a scheduling mechanism as possible, Fair queuing algorithms 

generally try to approximate what is happening in GPS as closely as possible. The main 

difference between the fluid GPS system and a packet system is that at any time there can 

be multiple packets being serviced simultaneously in GPS while there can only be one 
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packet serviced in the packet system. In fact in a fluid system every connection has at least 

one packet bemg serviced. While the service time of a packet with L bits in a packet 

system is L it can be much longer in the GPS system depending on the guaranteed 
r 

fraction of bandwidth for the connection. Therefore even though a packet may start 

transmission later in a packet scheduler, it will still finish transmission before it would in 

GPS. Then if a second packet starts transmission in the packet scheduler before the first 

packet finishes transmission in GPS we can reach a situation where the difference between 

the fluid and the packet system in the short term can be quite large. In the long run the 

service that each session gets is the same amount of service as in GPS. To avoid this 

discrepancy. in the WF~Q scheduler the next packet to transmit is selected only from those 

packets that would have started transmission in the corresponding GPS scheduler. It has 

been shown that WF~Q differs by no more than one packet in providing identical service to 

GPS and is thus considered the optimal output scheduling algorithm. 

3.5.7 Single Bit Discrete Rate Schedulers 

This scheduler was proposed by Chiussi in [12] and represents an important step in that it 

is realistIcally practical to implement the single-bit-timestamp scheduler is very similar to 

the discrete rate scheduler with per connection timestamp. There are a few simplifications. 

The scheduler only supports only a fixed number of rates at any given time. Connections 

with the same service rate are queued in the same rate FIFO. When a connection becomes 

backlogged. it is queued at the tail of the corresponding rate queue. The single bit 

timestamp differs from the discrete rate scheduler with per connection timestamps in that 

it does not use per connection timestamps, but only maintains one timestamp and one bit 

per rate queue. and a single bit per connection. A set of rules govern the relations ship 

between per connection and per rate bits. This scheduler effectively reduces the 

complexity of implementation of worst case fair GPS - related schedulers while 

maintaining near optimal delay and fairness properties. 

3.6 Other Work 

A large amount of work has been done in the area of scheduling algorithms for output 

buffered switches. Perhaps one of the most popular scheduler compared to GPS- related 

schedulers are those called Earliest Deadline First (EDF) schedulers, first proposed by 

Ferrari and Varma in [13][14]. EDF associates a per-hop deadline with each packet, and 
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schedules packets in order of deadlines. Using traffic shapers at every node in the network 

in conjunction with a variant of EDF called rate controlled EDF or RC-EDF, it has been 

shown that exact delay bounds can be guaranteed. There are some problems in that RC­

EDF does nOl necessarily fully utilize the bandwidth available [15]. 

3.7 Summary 

This chapter has examined the development of scheduling algorithms for output buffered 

ATM switches. This chapter has presented algorithms for output buffered ATM Switches 

which have the ability to control the delay of a cell through the switch accurately. It has 

also presented algorithms which are in fact practical to implement and which still maintain 

per connection delay guarantees. 

These are desirable properties for a switch to have. However output buffered switches still 

have the significant drawback that the internal switching fabric and the output queues must 

operate at N times the line speed, where N is the number of ports. This limits the use of 

output queueing to smaller switches, and led to further interest in scheduling algorithms 

for input queued switches which are investigated in the next chapter. However many of the 

ideas presented in this chapter are again applied to input queueing in the form of virtual 

output queueing which is described in the next chapter. 
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4.1 Traffic Scheduling in Input Buffered Switches 
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Although scheduling algorithms for output buffered switches are currently able to offer 

guaranteed bandwidth protection to individual connections, output butfered switches are 

not practical for all but the smallest switches. The switch fabric and the buffers at each 

output port are required to operate at N (where N is the number of ports) times the line 

transmission speed. In the case of output buffered switches there needs to be some sort of 

provision for this "speedup" By speedup we refer to the ratio of the fabric speed to the 

input/output speed. Achieving this speedup is usually very costly in all but the smallest 

switches. and IS simply impossible in larger switches. 

To overcome the scalability problems associated with output queuing, input queuing is 

being widely investigated. One of the earlier studies of input queuing was presented in 

[16], where it is compared with output buffering. In the input queuing paradigm incoming 

cells are stored at the input before being transferred across the switching fabric to the 

output side where they are transmitted immediately or perhaps queued for resource 

management. The decision of which cells are transmitted across the switch fabric is made 

by an input scheduling algorithm. One of the main advantages of input queuing is that no 

speedup is required. This makes scaling the switch to larger sizes feasible, in terms of 

current technologies and cost 

In an input buffered switch cells are buffered at the input ports of the switch. A set of 

paths must be established in the switch fabric for transmitting packets from the input ports 

to the output ports of the switch. The scheduling problem can be defined as a two stage 

problem. A path through the switch fabric must first be established to transmit packets 

from the input port to the required output port. Another form of scheduling that has to take 

place in input buffered switches is to select which packet to select among those waiting at 

the input port for transmission. Note that output buffers are not needed; as soon as a cell is 

switched it is transmitted. 
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In a non-blocking switch architecture, connection requests must still contend with other 

requests, if two separate packets arrive at separate input ports, but are both destined for the 

same output port, then still only one of them can be transmitted on the output link at the 

next timeslot while one will have to be bufTered. This is commonly known as output port 

contention and is one of the reasons why output buffered switches require large output 

butTers. In input buffering packets are buffered at the input side until they are selected for 

switching to the output port. This can create a problem with this sort of buffering in that it 

suffers from what is known as Head of line Blocking. In Head of Line Blocking a packet 

can not be transmitted even if its destination output port is capable of transmitting it 

because of output contention at the head of the input queue. Head of line blocking has 

been shown to haw very restrictive effect on the perfonnance of input buffered switches, 

limiting the throughput of an input buffered switch to 5S% of its capacity when the traffic 

is uniformly distributed. 

The performance of an input buffered switch can be improved by negating this head of 

line blocking effect by allowing the switch to select among more than just the first cell in 

the queue. The number of cells in an input queue among which a cell can be transmitted is 

called the windO\\. Even a small window has been shown to improve the perfom1ance of 

an input buffered switch compared to FIFO queuing. When more than one cell is 

accessible in each input butTer, it becomes possible to maximize the throughput by 

selecting the packets in the input ports for transmission to output ports such that the largest 

possible number of packets is scheduled for transmission in every cycle. Head of Line 

Blocking (HOLB) can be eliminated entirely using a queuing technique known as virtual 

output queuing (VOQ) in which each input maintains a separate queue for each output. It 

has been shown that with a suitable centralized scheduling algorithm the throughput can 

increased from 5SB% to 100% [17] 

Overall there has been much interest recently in mput queueing for packet switches. A 

good introduction and review of the subject is given by Marsan et al in [IS] and [19]. 

Other studies worthy of mention are by Gupta[20] and Anderson [21] 

There has also been quite an interest in combined input output queuing (ClOQ). various 

studies have been done such as in [22], [23], [24], [25]. [26] and [27] however the focus is 

restricted to input queueing in this chapter. 
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4.2 Virtual Output Queuing 

The idea of Virtual Output Queuing was developed by Mckeown et al in [28]. This scheme 

effectively circumvents the effects of head of line blocking by maintaining per connection 

queues for every output port at each input. See figure 4.1 has proved very successful and a 

number of studies have built on this the scheme. A practical method of implementing 

virtual output queues in hardware is proposed in [121. 
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Figure 4.1 Virtual Output Queueing 
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Figure 4.2 The Matching Problem 

The problem of switching the maximum number of packets in a crossbar with windowed 

or other access method queues is reduced to a matching problem. See figure 4.2. Every 

input port is represented by a circle in the left hand column of the matching section and 

every output port by a circle in the right hand column. Each available packet is represented 

by a line between the packets input port and its destination output port. Not all the input 

and output ports are shown. The matching problem then amounts to finding the set of 

packets for transrrtission that maxirrtize the number of lines from input port to output ports, 

remembering that there can only be one line from every input port or to every output port. 
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Various techniques have been described to optimally solve this matching problem and 

these will be described in some detail in the following sections. 

The problem of switching the maximum number of packets in an input based switch can 

be reduced to the matching problem in a bipartite graph. The bipartite graph is constructed 

by representing each input port with a vertex in a first set and every output port as a vertex 

in the second set. Each backlogged connection is represented by an edge between the 

originating input port and the destination output port. The bipartite matching problem tries 

to maximize the number of vertices in the first set connected to the second group by 

selecting a set of edges such that no two edges have a common vertex . This constraint of 

no more than one edge connecting to a vertex is due to the packet nature of A TM (only 

one cell can be transmitted in each cell interval). 

In abstract terms a switch is usually represented as a bipartite graph G= (U, V, E) where U 

are the input nodes, V are the output ports and the edges E represent possible 

transmissions . The constraints of the A TM switch specify that a set of transmissions can 

occur at the same time only if it corresponds to a matching - a subset of edges such that 

each edge has at most one connecting edge. Some scheduling algorithms associate a 

weight w (e) to each edge. 

Input queuing is attractive for very high bandwidth ATM switches because no portion of 

the internal data path has to run faster than the line rate . The longstanding was that that 

input queued switches was impractical due to the head of line blocking problem, and the 

standard approach was to use output queuing. Today however input queuing is the more 

popular option. By increasing the internal bandwidth of the switch fabric multiple cells can 

be forwarded in the same timeslot to an output port, and queued there for transmi ssion on 

the output link. 

One problem with input scheduling algorithms is that of providing each connection with 

its fair share of bandwidth. Most input scheduling algorithms are not very good at doing 

this. We will examine several solutions in some detail, excluding FIFO queuing which has 

already been dealt with sufficient detail. 
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4.4 Maximum Size Matching (MSM). 

Several algorithms have been proposed for achieving a maximum size match. By this we 

mean that the algorithm attempts to maximize the total number of connections in each cell 

time. Maximum size matching algorithms have been shown to perform well when the 

arriving traffic is uniformly distributed over all the switch outputs. 

If a new packet or connection cannot be added to a set of matches without altering the 

current assignments , then a maximal match has been found. In this case all packets are 

either scheduled or blocked . If the number of packets scheduled is the maximum possible 

among all possible matching sets, then the matching is a maximum matching. A maximum 

matching is always maximal, but a maximal matching is not necessarily maximum. 

Unfortunately maximum size matching performs poorly for non-uniform traffic in a 

number of ways. When traffic is non-uniform, the occupancies of the various input queues 

can differ greatly, this coupled with the inability of MSM to consider queue length when 

allocating bandwidth can cause queues with heavy traffic to overflow. MSM also has a 

reduced total throughput under non-uniform traffic compared to uniform traffic see [29] 

for an explanation of this . MSM also suffers from the starvation problem. The result of 

this is that a connection can have a large maximum delay. Referring to Figure 4.3., we see 

that even a simple traffic pattern can lead to traffic starvation for certain inputs when using 

a maximum size matching algorithm. 

! 
Inputs Ou1puts 

r--
1 
~U 

hPut~S ______________ O_illCi)puffi I. 
--+--~ 

i 

2J~ 2 ---+-;~2/~ _______________ ~2J-__ -+-' 

Req.Jested Traffic Traffic from 2 to 1 gets no service 

Figure 4.3 Service denial using a Maximum Size Matching Algorithm 

4.5 Maximum Weighted Matching (MWM). 

Maximum weighted matching attempts to perform a match but instead of just finding the 

maximum size match, a weight is assigned to each individual packet and the algorithm 
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4.5 Maximum Weighted Matching (MWM). 

Maximum weighted matching attempts to perform a match but instead of just finding the 

maximum size match, a weight is assigned to each individual packet and the algorithm 

attempts to maximize the total weight. Thus it can be seen that this can provide for 

dynamic priority scheduling. Maximum weighted matching operates in a similar method 

to Maximum Size Matching except that edges are assigned weights. The maximum 

weighted matching for a bipartite graph is one that maximizes the sum of the edge weights 

and is found by solving an equivalent network flow problem. 

As in MSM, if a new packet or connection cannot be added to a set of matches without 

altering the current assignments, then a maximal weighted match has been found. In this 

case all packets are either scheduled or blocked. If the summed weighted number of 

packets scheduled is the maximum possible among all possible matching sets, then the 

matching is a maximum weighted matching . Again a maximum matching is always 

ma.ximal, but a maximal matching is not necessarily a maximum matching. 

The complexity of the best maximum weight matching algorithms is o (ft) , thus this sort 

of scheduling gets very complex for even small switches. Edmonds and Karp [31] 

' algorithm for maximum matching on graphs ' is the basis for most other algorithms 

solving maximum weighted matching. Gabow's "Efficient Implementation of Edmonds 

Algorithm for Maximum Matching on Graphs" [47] was one of the first implementations 

and has a running time of 0 (ft). Various approximations to Edmonds Algorithm have 

since been proposed. 

The NrN switch has connections which are represented in an NxN matrix whose elements 

are the edge metrics in graph G=[V,E}, called the weight matrix W The elements are 

denoted wi}, and W,/ is assumed to be zero when no cells at input i are destined to output). 

The same scheduling algorithms used in output buffered switches are used to provide the 

weights used in maximum weighted matching. MWM was tested with weights according 

to the current queue length, called largest queue first and to the current packet delay, oldest 

packet first in [29 j. It can be easily seen that weights used in maximum weighted matching 

can be calculated in an arbitrary way. 
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Figure 4.4 Example of Weights for Maximum Weighted Matching Algorithm. 
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Output I 

• • • 

There are variations on what to use as the edge weights. One choice proposed in [29] is to 

use the queue length Un). to thus give preference to queues with greater occupancy. This 

is called Longest Queue First (LQF) scheduling. It has been proved that LQF provides a 

maximum throughput of 100% for independent and either uniform or non-uniform 

arrivals. [29]. In Error! Reference source not found.4 we show the operation of MWM 

using the age of the timestamp at the head of the queue. One problem with MWM is that 

the algorithms for solving it are too expensive in terms of running time. Faster algorithms 

are still required. Various approximation algorithms have been investigated, a good review 

of some of these is given in [30]. 

As noted the algorithms which attempt to mimic MWM are too complex to implement in 

hardware and are therefore unsuitable for switches operating at the speeds that ATM 

requires they operate at. Instead most switches use a much simpler scheduling algorithm to 

configure the switch fabric. 
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4.6 Iterative Scheduling Algorithms 

The algorithms that are discussed in this section differ from those in the previous section 

in that they are more or less feasible to implement in hardware and in some cases have 

actually been implemented in prototypes or even commercial products [45J, [32], [33] and 

[34]. These algorithms generally try to find some sort of maximal weighted match, but 

with less comple:dty than is required for a maximum weighted match. In general the 

algorithms don't achieve the optimal match that MWYI achieves. but that is to be 

expected. Most of these algorithms are iterative in their operation. These algorithms 

generally only find a maximal match, which means that once they make a pairing between 

an input and an output they will not break that pairing. 

4.6.1 Parallel Iterative Matching 

Parallel Iterative Matching (PIM) was one of the first algorithms to use an iterative 

approach to find a maximal match and was proposed by Anderson. Owicki, Saxe and 

Thacker in [21J. PIM attempts to quickly converge on a contlict-free match using an 

iterative method involving three steps. All inputs and outputs are initially unmatched and 

only those inputs and outputs not matched at the end of each iteration are eligible for 

matching in the next loop. The three steps of each loop operate in parallel on each input 

and output and are as follows: 

1. Each unmatched input sends a request to every output for which it has a queued cell. 

2. If an unmatched output receives any requests, it grants to one by randomly selecting a 

request uniformly over all requests. 

3. When an input receives a grant it accepts one by selecting an output among on of those 

that granted 

This algorithm has the following properties: As the authors show in [21] this algorithm 

converges in O(log(N) iterations. It also ensure that all requests will eventually get service. 

This algorithm has the following problems. Firstly it lIses randomness which is difficult 

and expensive to implement at high speed in hardware. and secondly it sufters from being 

unfair as shown 111 [20J. 

Univ
ers

ity
 of

 C
ap

e T
ow

n



44 

4.6.2 Weighted Probabilistic Iterative Matching 

Weighted Probabilistic Iterative matching which was proposed by Stiliadis in [35] was the 

first input scheduling algorithm which attempted to provide some sort of bandwidth 

protection. It does this by breaking the scheduling problem into two levels: 

I. Connection Level Scheduling: Each output port of the switch selects the input port to 

service in accordance with the connection-level bandwidth reservations. 

2. Flow-level scheduling: Each input port selects a packet from one of the incoming 

flows sharing the same input-output connection based on its total share of bandwidth. 

In Weighted Probabilistic Iterative Matching we assume that the switch maintains a 

separate queue for packets destined to each output of the switch. Within each queue, the 

packets are ordered by a flow level scheduling algorithm used to allocate bandwidth to 

connections sharing the same output destination. Every output port must also maintain a 

count of the packets serviced during the current frame from each input. Each repetition of 

the WPIM algorithm consists of four stages: 

1. Every input port of the switch that has not yet been matched with one of the output 

ports sends a request to every output corresponding to destinations for packets in its 

queues 

2. On receiving the requests from the input ports, each output port creates a mask 

consisting of one bit per request as follows: For those inputs that have transmitted at 

least as many packets as their credit to the output port in the current frame the mask bit 

is set to one. For others the mask is set to O. Among the requests received by the 

output port only those originating at unmasked input ports are used in the matching 

process and the rest are ignored. 

3. From the requests that remain from the masking phase, the output selects one 

randomly with uniform probability and sends a grant signal to its originating input 

port. 

4. Every unmatched input port that receives one or more grants selects one with equal 

probability and notifies the corresponding output port. The input and output ports are 

now matched and can be removed from subsequent iterations. 

The above cycle is repeated for a fixed number of times or until no more pending requests 
remain. 
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4.6.3 Iterative Round Robin Matching with Slip 

Iterative Round Robin Matching with Slip or iSLIP, like PIM is an iterative algorithm. It 

was described by Mckeown in [29]. The three steps which are iterated in iSLIP as 

described in [29] are presented below. In iSLIP each input and output port maintains a set 

of registers with a pointer to the current port which should be given highest priority. 

1. Request: Each unmatched input sends a request to every output for which it has a 

queued cell. 

2. Gram If an unmatched output receives any requests it chooses the one that appears 

next in a fixed round robin schedule starting from the highest priority element. The 

output notifies each input whether or not its request was granted. The pointer to the 

highest priority element of the round robin scheduler is incremented (modulo N) to 

one location beyond the granted input if and only if the grant is accepted in step 3 of 

the first iteration. The pointer is not incremented in subsequent iterations 

3. Accept If an unmatched input receives one or more grants it accepts the one that 

appears next in a fixed, round robin schedule starting from the highest priority 

element. The pointer to the highest priority element of the round robin schedule is 

incremented (modulo N) to one location beyond the accepted output only if this input 

was matched in the first iteration. 

So each output arbiter decides among the set of ordered, competing requests using a 

rotating priority. When a requesting input is granted and the input accepts that grant, the 

input will have the lowest priority at that output the next cell interval. 

4.6.4 Iterative Fair Scheduling 

iFS was proposed by Ni and Bhuyan in [36], although it belongs to a broad class of 

iterative input scheduling algorithms. The iFS scheme can be formalized in the following 

way: 

Initially, all inputs and outputs are unmatched. 

In each iteration 

1. Each unmatched output selects a flow with the smallest virtual time and marks the cell 

as a candidate for the corresponding Input 

2. Each unmatched input examines its candidate set as processed by the outputs. and 

selects a winner according to smallest virtual time. The specific input and output are 

then considered matched. 
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3, The candidate set is re-initialised 

Ni and Bhuyan show in [36] that iFS gives fairer bandwidth sharing than WPIM or iSLIP, 

HO\vever it is sho\vn in the next section that iFS still perfonns poorly under some 

circumstances, the evaluation is incomplete, 

4.7 Other Work 

Recently Schoem:n [37J,[38] has proposed a good although fairly simple scheduling 

algorithm for input buffered switches called SLvlP which stands for Successive 

Incremental Matching over multiple Ports, It approximates j\IWM using a sequential 

seareh for the largest weights. Starting with a sequentially rotated output port, the 

maximum input port weight is chosen, For the next output port there is then one less input 

port to consider. They also evaluate the algorithms perfonnance under bursty traffic, 

Another scheduler worthy of mention is the !'vfUCS scheduler presented by Lockwood et al 

in [33], [34]. They present an interesting method of maximizing the throughput of a 

switch, By giving the ports with the least amount of contention priority they are able to 

maximize the nurnber of matches and hence increase the throughput of the switch. Their 

implementation i:" also interesting, using mixed analogue and digital core. They do little 

however to addre:;s the maximum delay that a cell might experience, indeed this could be 

said to be a weakness intrinsic in their design. 

Reservation with Pre-emption and Acknowledgment or RPA is another scheduler 

proposed recently [39]. Our impreSSions of it are that while it attempts to provide 

bandwidth protection it suffers from being unnecessarily complex. 

There are various other scheduling algorithms which have been proposed in the literature, 

SFA by Tamir and Chi [40] is one worthy of mention. Very recently (2002) Shah and 

Kopikar [41] have done a study oflatency of MWM approximate scheduling algorithms, Univ
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4.8 Evaluation of scheduling algorithms for input buffered 

switches. 

There are a number of factors that would lead a switch designer to select one scheduling 

algorithm over another one. The evaluation of scheduling algorithms for input buffered 

switches is a complex topic. Firstly it must be feasible to implement. This is the over­

riding consideration. Even a module as simple as a random number generator can prove 

complicated to implement in hardware. Secondly the algorithm should provide Jow 

latency. high throughput and be fair in allocating bandwidth. iSLIP is one algorithm which 

has proved that iterative algorithms are not too complex to implement in practice [29], 

while also providing good performance. Recently, iFS has also been shown to give good 

fairness, although the authors make no attempt to implement it. However the ability of 

input queued switches to offer bandwidth protection in the way that output buffered 

switches do is still clearly lacking. 

Following the criteria used in other studies of resource allocation schemes such as [29] and 

[33], the evaluation of input scheduling algorithms should be evaluated with respect to 

fairness and efficiency. The main considerations for efficiency are throughput and cell 

delay. The two measures used to measure fairness in output buffered switches, namely the 

Service Fairness Index and the Worst Case Fairness Index can also be applied to some 

degree for obtaining results for the performance of input scheduling algorithms. The 

Service Fairness Index used is identical to that derived in [6]. As in output buffered 

switching and scheduling the Service Fairness Index gives an indication as to how the 

scheduler is allocating bandwidth compared to GPS. The WFI gives an indication as to 

how far the delay an individual cell may differ from what it would receive where the 

server GPS. In an input buffered switch several flows may be sharing the same source 

destination POIt on a switch. A feature of most input scheduling algorithms is that they 

make no distinction between individual flows belonging to the same input output 

destination. 
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4.8.1 Latency 

The average queuing delay or latency as a function of the total offered load is the most 

commonly used method of determining the performance of an input buffered switch 

scheduling mechanism. In figure 1 we present the results of the simulation, of several 

input scheduling algorithms in a 16 by 16 switch. Arrivals at each input are Bernoulli i.i.d 

and the cell destinations are uniformly distributed over all the outputs. This configuration 

is the standard for evaluating scheduling algorithms for input queued switches and almost 

identical studies are presented by Mckeown in [17] and by Ni and Bhuyan in [20]. This 

experiment thus also served as a means to verify and calibrate the simulation environment. 

The average latency is traditionally the primary means of comparing input buffered 

scheduling algorithms. Referring to figure 4.5, it is the performance of the algorithm when 

the traffic load is between 60 and 95 percent that is most important. As can be seen in 

figure 4.5 FIFO queueing performs worst, as opposed to output queuing which has the best 

performance. Maximum Weighted Matching matches output queueing very closely. There 

is a noticeable gap then between MWM and the iterative algorithms like iSLIP and iFS. 
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Figure 4.5 Latency characteristics of MWM, iSLIP, iFS and Output Queueing for 
Bernoulli arrival processes and destinations uniformly distributed across the output 
ports. The switch size used is 16x16. The graph shows the average delay in cell units. 
The % traffic load is an indication of the probability of a celJ arriving at a specific 
input port in any time slot. The arrival process is BernouUi and the cells destinations 
are uniformly distributed. 

4.8.2 Worst-case Fairness 

In an input buffered switch several flows may be sharing the same source or destination 

port on a switch . . A feature of most current input scheduling algorithms is that they make 

no distinction between individual flows originating at the same input port and destined for 

the same output port. 

The most common method of providing connection level allocation of bandwidth is by 

combining the switch level input scheduling algorithm with a flow level scheduling 

algorithm. The scheduling problem is then divided into two levels, switch level scheduling 
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load is the most commonly used method of determining the performance of an input 

buffered switch scheduling mechanism 

While this may give a good indication of the performance of a scheduling mechanism it 

does not give an indication of the maximum delay a connection might experience. This 

figure is linked to the jitter and is very important for certain classes. The weighted average 

maximum delay for all connections is used as an indicator of the worst case performance 

of an input buffered scheduling mechanism. 

One very important poi nt to note here is that we are comparing the performance of an 

input buffered switch and scheduler with the optimal infinite bandwidth output buffered 

switch. So while it may be possible to obtain theoretical bounds for scheduling mechanism 

suitable for output buffered switches, this notion just does not make sense for input 

buffered switches. since we cannot make the same guarantees because the output port may 

be in contention, We can however still use the index to compute a figure which gives a 

good indication of how the input scheduler is performing under a given traffic profile and 

load, 

The worst case fairness index used in input buffered switches is defined as below. This 

derivation is closely related to that derived for output scheduling algorithms by Zhang in 

[9]; the main difference is that the index we derive here is not independent of the traffic 

profile. 

Definition 1 A service discipline s has a cell worst case fairness index c. for traffic 
f.~ ,p 

profile p and for session i, if for any time r. the delay of a packet arriving at r is 

1 
bounded by -Qi.s,P en + C""p' i.e .. 

r , 

k k (a
k

) 
eli,s < aj + ---,---' - + C, . .v.p 

ri 

(16) 

where 1', is the throughput guarantee to session i. Q i"p (a jk ) is the queue size of session i 

• k 
at tune a j 

Since C is measured in time it is not suitable to compare C 's of session with 
1.,1,1' L,\.p 

different r; 's or bandwidth shares. To perform such a comparison we define the 

normalized Cell Worst-case Fair Index for session i at server s and traffic profile p to be: 

(17) 
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Ci . .I'.P = --'-'-'-
r; 

Now the servers Normalised Worst-case Fair Index is defined to be 

C"P = max{c/.s•p } 
(18) 

Now c gives us an indication of the maximum delay weighted according to a 
-'>.1' 

connections reserved bandwidth. This is an important metric for delay sensitive 

applications such as voice. A theoretical switch with infinite buffers and infinite switch 

fabric bandwidth and perfect GPS scheduling at each output would have c .. = 0 under a 
1'1' 

specific traffic profile p. Note that if we want to compare the worst case fairness index of 

two servers it is only suitable to do this if they are subjected to the identical traffic load 

and profiles. 

4.8.3 Service Fairness Index 

As in chapter 3 the Service Fairness Index is defined in the following manner to measure 

the fairness of a scheduler at allocating bandwidth. Note that ideally unused bandwidth 

from connections not fully utilizing their shares should be distributed proportionally to 

backlogged flows. If there are N flows each with a bandwidth reservation r;, and some of 

these connections are honouring their reservations, while others are oversubscribing their 

bandwidth reservation, then ideally each oversubscribed connection would receive ri+8i, 

where Bi is the excess bandwidth share for oversubscribed connection i. See [33] for a 

formal definition of excess bandwidth share. Now for every connection define Yi as the 

minimum of the reserved bandwidth plus excess bandwidth share and the actual arrival 

(19) 

So in the case of an under subscribing flow, y; equals the arrival rate, and in an 

oversubscribing flow Y
i 

equals the reserved bandwidth plus excess bandwidth share 

(r, + B,)' 
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(20) 

where W, (Ill' 111 ) is the number of cells session i transmitted by the server between 

timeslot III and liz • Note that if a connection transmits no cells between timeslots !l1 and 

II 2' we do not consider it in our calculations; its reserved bandwidth is just distributed to 

other connection excess bandwidth share. The SFI captures the difference in fairness of the 

scheduler from the ideal fairness of GPS in distributing service to connections that are 

continuously backlogged. 

The evaluation of these scheduling algorithms is conducted with the use of specifically 

developed software cell based simulator. The simulator was designed to compare various 

algorithms with one another, and it is easily extensible, should a new algorithm require 

evaluation. Part of the cell based simulator is the maximum weighted matching module, 

which performs a maximum weighted match. This required an implementation of a 

complex mathematical algorithm; however this topic is discussed further in the next 

chapter. 

The two measures used in Output Buffered Switches, namely the Service Fairness Index 

and the Worst-case Fairness Index can also be applied to some degree in obtaining results 

for the performance of input scheduling algorithms. The Service Fairness Index used is 

identical to that derived in [9]. As in output buffered switching and scheduling the Service 

Fairness Index gives an indication as to how the scheduler is allocating bandwidth 

compared to GPS. The Worst-case Fairness Index gives an indication how far the delay an 

individual cell may differ from what it would receive where the server Generalized 

Processor Sharing. 

One very important point to note here is that we are comparing the performance of an 

input buffered switch and scheduler with the optimal infinite bandwidth output buffered 

switch. So while it may be possible to obtain theoretical bounds for scheduling mechanism 

suitable for output buffered switches, this notion just does not make sense for input 

buffered switches, since we cannot make the same guarantees because the output port may 

be in contention. We can however still use the index to compute a figure which gives a 

good indication of how the input scheduler is performing under a given traffic profile and 

load. 
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4.9 Traffic models 

Investigations have shown that wide area network traffic is correlated form cell to cell and 

so m practice cells arrive in bursts. This traffic can therefore not be very well characterized 

by commonly employed Bernoulli or geometrically distributed ON/OFF models. Recently 

this internet and data traffic has been shown to be bursty over many time scales. 

Understanding the nature of this sort of traffic and evaluating its impact are important for 

the design of network elements. Quite a number of ways of modelling bursty network 

traffi<.: have recently been proposed. 

Initial studies have shown [29] that burstiness has as much or more influence on the 

performance of output queued switches than input queued switches. In other words 

burstiness tends to concentrate the conflicts on outputs rather than inputs. Intuitively this is 

what also what happens in real life scenarios; consider for example a single server serving 

multiple clients or an edge switch connecting to the core network on one port and access 

devices on the other ports. 

Modern packet switches have to be designed to handle bursty traffic. This usually means 

that more cell buffers are required. although there are other methods of handling 

burstmess. 

Generally burstiness has been shown to increase the queueing delay of a particular 

connection [29]; however some scheduling algorithms may be more susceptible to 

decreased performance under bursty traffic. 

4.10 Implementation of Input Scheduling Algorithms 

One of the most important considerations for input scheduling algorithms is whether they 

are practical to implement in hardware. Most of the scheduling algorithms presented in 

this chapter have a proposed hardware implantation. Indeed some of them have actually 

been used in prototype switches or even commercial products. 

In [29] Mckeown proposes an iterative method of implementing iSLIP. He describes an 

implementation of an NxN switch using 2N Arbiters and N2 memory bits. Stiliadis presents 

a hardware implementation of WPIM in [35]. The implementation of this algorithm seems 
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to be more complex than the implementation of iSLIP; it requires random number 

generators and a complex bandwidth enforcer. 

Although Bhuyan and Ni do not provide a description of an iFS implementation IN [36], it 

should also be possible to implement iFS using the iterative method Mckeown proposes 

for i-OCF and i-LQF in [29] 

4.11 Summary 

This section has provided an introduction to scheduling algorithms for input buffered 

switches. We have highlighted some of the benefits of using input buffered ATM switches 

and also drawn attention to some of the problems associated with them. None of the 

existing approaches for traffic scheduling in input buffered switches provide a satisfactory 

means of providing delay guarantees. The existing approaches are currently only able to 

offer limited protection to a traffic flow from other possibly misbehaving traffic flows. In 

chapter 5 we attempt to address this problem, where a simple method of providing 

bandwidth guarantees is presented. In chapter 6 we present the results of tests which were 

run to test the operation of this scheduling algorithm and compare it with other current 

scheduling algorithms. 
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Chapter 5 : Worst-case Iterative 
Matching 

5.1 Iterative Scheduling Algorithms 

Scheduling for input buffered switches has advanced to the point where the throughput 

and average latency are very close to what is achieved in output buffered switches. 

However input buffered switches are still not able to offer the hard delay guarantees that 

output butTered can ofter. Current input scheduling algorithms tend to focus more on 

maximizing the throughput through the switch fabric and assume that some sort of cell 

dropping mechanism such as Early Packet Discard (EPD) will stop the switch fabric 

becoming overloaded, which would cause other connections to receive degraded service. 

Current scheduling algorithms are not particularly good at preserving bandwidth 

guarantees in an input buftered switch. The problem is that a cell from a connection with a 

large bandwidth share has to not only contend with cells from its own port but with cells 

from other ports as well. This leads to a situation where connections with large bandwidth 

shares may not suffer degradation in the total bandwidth they receive but they do suffer an 

increase in the maximum delay that a cell may encounter. 

5.2 Using a Ratio to control the delay_ 

We propose that the choice of weights used in these algorithms may not be ideal for 

minimizing cell delay. The weights need to be modified in such a way as to force the 

maximum matching scheduling algorithm to provide the best cell delay protection even 

under heavy tramc loads. The weights used in OPF are usually \veighted according to the 

connections' bandwidth shares. Thus a packet with a larger bandwidth share will have a 

larger weight tor a cell which has been backlogged the same amount of time as a cell from 

a connection that has a smaller bandwidth connection. It is this ratio that needs to be 

modified. Note that if a multiplication factor R is mtroduced this ratio between the weights 

will increase. 
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The idea is then to find the multiplication factor R by which to multiply the weights used 

in the maximum weighted match, so as to minimize the C-WFI as defined in the previous 

chapter. 

To this end an experiment was conducted with various traffic profiles and loads using the 

maximum weighted matching algorithm by Edmonds Karp. and using an iterative 

scheduling algorithm which we call worst case iterative matching which is described 

below. The results of this experiment are presented in the next chapter. 

As stated in the previous chapter virtual output scheduling takes place at the input ports. 

This means we maintain a queue at each input for each output. From these output queues 

we have to find some metric to use in the maximum weighted matching algorithm. There 

are many chOIces. such as average queue length. maximum queue length or age of the 

cells. We have chosen to use the age of cell. As stated there are other metrics which could 

be used, but using the cell timestamp makes the system more sensitive to an individual 

cells delay. 

The weights of a cell are computed as follows: 

Virtual output scheduling takes place at the input ports, ri.} is the desired bandwidth for 

flow i on output port j, r . is the actual weighting used for the connection. The weights 
I.} 

used in the iterative algorithms are determined as follows. If P(tn) is the system 

Potentia!, the timestamps F/} of cell k on connection i on any input port destined for 

output portj is computed as: 

k k-\ k 1 
Fi.} = rnax(F"j ,P(ai.)+ 

rk 

(21) 

where a,~j is the arrival timeslot of the cell. In a switch with N ports, each input port will 

hold an array of N timestamps holding the oldest timestamps for each output port. These 

oldest timestamps are called Fj .l • Using the oldest timestamp first scheme, Wj ./, the 

weighting between input I and output j used in the matching part of the algorithm and is 

defined as: 

(22) 
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Fmax is the youngest (or largest) timestamp in the whole system, and Fmax can also be the 

current time if a cell has arrived in that slot. So for example a switch with 8 input ports and 

8 output ports will calculate a 64 number array holding the weights, 

If the ratio R is large then we will be weighting the older timestamps more than the new 

timestamps. Thus we can use this to give greater importance to scheduling older cells. It is 

intuitive that the maximum sized match will usually occur when the weights used in the 

matching algorithm are equal. Thus by modifying R we have control over whether we 

favour increasing the switch's throughput or decreasing the maximum delay an individual 

connection might encounter. If the load on a switch is light. or if it is heavy but none of the 

traffic is delay sensitive there would be no need for a large R value. 

Why this scheme would work is intuitive. If the weights are all equal, there is no way for a 

delay sensitive connection to gain priority. Using a larger ratio makes the system more 

sensitive to an individual cells delay. The trade off is that the switch may not be 

maximismg its total throughput, it ends up finding the matching which maximises 

throughput of those cells which are experiencing unwanted delay. 

5.3 Worst-case Iterative Matching 

As it is impractical to use a maximum weighted matching algorithm in a real switch, what 

is required is an iterative method which comes as close as possible to approximating 

MWM. To this end we devised the Worst-case Iterative Matching scheme. 

Worst-case iterative Matching is an iterative algorithm. Scheduling takes place in two 

stages, at the virtual output ports and to maximize the throughput across the fabric. 

The maximum weighted matching part of the algorithm consists of two linked iterative 

algorithms running in parallel. In one part the matching is done at the inputs and the other 

it is done at the outputs. After each algorithm iterates the total weighted match is 

compared and the one with the largest is selected. 

At the Input Ports: 

1. Each unmatched output selects a flow with the smallest virtual time and marks the cell 

as a candidate for the corresponding input 

2. Each unmatched input examines its candidate set as processed by the outputs, and 

selects a winner according to smallest virtual time. The specific input and output are 
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then considered a candidate match. The result of this is a preliminary set of candidate 

matches 

At the Output Ports: 

l. Each unmatched output selects the largest unmatched input as the winner. The order in 

which output ports get to select is rotated. The result of this is a second preliminary set of 

candidate matches 

The candidate sets weights are totalled separately. If the set selected at the inputs set has a 

larger weight than the set selected at the output then the set from the input side is selected. 

otherwise the output set is selected. The ports selected by the winning set are then 

considered matched and the whole process is repeated with the unmatched ports 

Why this method of choosing winning input and output ports was selected is explained 

using Figure 5.1 

'JylU 

0 , -. 
=9 -. 

I 

3 3 • • 
i 4 W.,4 =7 4 

Figure 5.1 Finding a maximum match, selecting at the output ports 

If selection of the matching set takes place at the input like it does in iFS or iOFC then the 

connection Wu will always get selected over Wl.l and Wu' However if the selections 

are made at the outputs then there is a chance that Wl.I and Wu will be selected. It is not 

hard to find a situation where selecting at the input gives the largest weighted match. 
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Figure 5.2 Finding a maximum match, selecting at the input ports 
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In Figure 5.2 with selection at the inputs, as in A, W!.4 would be the selected connection, 

while if selection is done at the output ports Wl,l and W4.4 could equally likely be selected. 

Thus we have shown how selecting the larger weighted matched set of the one matched at 

the input and the one matched at the output can help increase the total weighted match. 

5.4 Parallel Implementation of Worst-case Iterative 

Matching 

To conclude the description of WIM we consider the complexity of implementing the 

algorithm in hardware. The 'iterative' method of implementing maximum weighted 

matching scheduling algorithms as presented in [29] and [36] have a serious drawback, in 

that they need 4 or more iterations to achieve performance comparable to the more 

sophisticated but unpractical MWM algorithms. It is quite likely that any hardware which 

has to repeat a step 4 or more times will be too slow 

So the requirement was to find a method of implementing WIM using a parallel method, 

which requires only one iteration, is not too complex, and gives comparable performance 

to WIM, iFS and SLIP. Other design is influenced by the fact that silicon 'real-estate' has 

become much cheaper in the recent past. Univ
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Figure 5.3 Parallel implementation of WIM 
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Figure 5.3 shows a parallel implementation of WIM. The iterative steps of WIM are 

performed in parallel in the matching decoder. At each input and output arbiters find the 

destination ports and originating ports with the largest weights and the second and third 

largest weights. 

The matching decoder consists of multiple input matching decoders and output matching 

decoders in parallel. At the input matching decoders the largest weighted output at each 

input is selected. At the output matching decoders the winning input is selected. An input 

side matching decoder for a 4x4 switch is illustrated in Figure 5.4. The output matching 

circuitry is almost identical. The matches from the largest weights always get priority. 
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Figure 5.4 An input matching decoder used in a parallel implementation of WIM for 
a 4x4 switch 

Choosing the value for b, the number of bits used to hold the timestamps is an important 

design decision, affecting the number of different timestamp values can be distinguished, 

and hence the smallest unit of time that can be scheduled. Basically what this circuitry 

does is use parallelism to compute the results which could be gained from an iterative 

approach. One drawback is that it may become too complex for the largest switches. 

5.5 Summary 

In this chapter we presented 2 major ideas, firstly the use of a multiplying ratio to control 

the delay that a cell encounters was proposed. In the next chapter we study the 

effectiveness of this scheme. Secondly we proposed an input scheduling algorithm. called 

Worst-case iterative Matching. The method computes two matches and selects the larger 

one in each iteration. 
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We also presented a possible implementation in hardware. In the next chapter we examine 

the performance of this scheduling algorithm. comparing it to iFS. iSLIP, MWM and 

Output Queuing. 
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Chapter 6 : Evaluation 
Iterative Matching 

Worst 

6.1 Evaluation of Scheduling Algorithms 

63 

Case 

The evaluation of these scheduling algorithms is conducted with the use of a specifically 

developed software cell based simulator. The simulator was designed to compare various 

algorithms with one another, and it is easily extensible, should a new algorithm require 

evaluation. Part of the cell based simulator is the maximum weighted matching module. 

which performs a maximum weighted match. This required an implementation of a 

complex mathematical algorithm, the Edmonds Karp Algorithm. 

The method of evaluation is as follows: we examine the performance of the scheduling 

algorithms using various synthetic workloads. We first look at how the schemes perfonn 

with regard to average cell latency. This is followed by an evaluation of the ability of the 

schemes to perform fair bandwidth distributIOn. These evaluations are perfom1ed on a 16 x 

16 switch; that is 16 input ports and 16 output ports. This experiment was conducted to 

test the ability of an algorithm to provide bandwidth protection. The simulation settings 

used are as follows. On each port there are 128 connections for a total of 2048 

connections. There are 128 connections (8 on cach port) evenly distributed ",hich together 

reserve half the lOtal bandwidth. the next 128 (or the next 8 on each port) connections 

reserve a quarter of the bandwidth and the next 128 one eighth and so on. Thus the 

connections with the most bandwidth would expect an average inter cell arrival time of 32 

cell units. 

First a uniform traffic model is used. Each connection transmits at an equal rate. Each 

connection transmits at an average rate of 1 cell every 128 intervals. Thus some 

connections are using much less than their reserved bandwidth. while some are usmg 

much more. 

The object of this experiment is to test the ability of the scheduling algorithm to maintain 

bandwidth delays for those connections llsing less than their total reservation while 

distributing the remaining bandwidth fairly. The experiment is first performed to 

determine the value of the ratio which gives the best performance. and then the 

performance of \VIM is compared to other scheduling algorithms. 
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The experiment is then repeated using a bursty traffic source. As is widely known real 

network traffic is not uniform. We investigate the performance of WIM using a modulated 

2 state Markov chain to drive the traffic source. The traffic sources on each connection 

produce bursts of cells which are all destined for the same output port. These are followed 

by idle periods. There are certainly more sophisticated traffic models available. and indeed 

the use of real network traces has been proposed [36]. However to a first approximation 

this model has been considered adequate by various studies [29]. This method was thus 

chosen for its simplicity and speed. 

Finally the perfom1ance of various algorithms is evaluated for different switch sizes. this is 

fairly unique and to the best of the author's knowledge no comparison has been conducted 

like this before. 

In total more than 500 hours of simulations where run. The average number of cell periods 

simulated was roughly 2000000. This figure was limited by the large amount of memory 

and disk space needed hold backlogged cell data under heavy traffic loads. With a switch 

size of 16x16 approximately 10GB of hard disk space was required for use as virtual 

memory to run the simulation for 200000 lI1tervals and at 99°/~ Bemoulli traffic load. 'rhe 

Maximum Weighted Matching algorithm also required large amounts of memory. 

The Simulations were run on an Intel Pentium IV PC With 512 MB RAM and a 30GB 

hardrive. 

6.2 Performance under Bernoulli Traffic 

The performance of the scheduling algorithms was tirst evaluated using a benign Bemoulli 

i.i.d traffic model. At any given interval a cell amves at each port with the probability 

given by the offered traffic load. The destinations are unifom11y distributed among the 

outputs. 

Although this is not the most realistic of models It is the simplest and is a standard method 

of evaluating the performance of switches and scheduling algorithms. 
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6.2.1 Latency 

We start with perhaps the simplest but perhaps most important measure of a scheduler's 

performance, the average cell latency. 

The WIM algorithm was compared with several algorithms, Pure Output Queuing, 

Maximum Size Matching, iFS and iSLIP. In figure 1 we present the results of the 

simulation, using a 16x16 switch. Arrivals at each input are Bernoulli i.i.d and the cell 

destinations are uniformly distributed over all the outputs. 
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Figure 6,} Latency characteristics for MWM, iSLIP, WIM, iFS and Output 
Queueing for Bernoulli arrival processes and destinations uniformly distributed 
across the output ports. The switch size used is 16x16. The graph shows the average 
delay in cell units 

The WIM algorithm has very similar performance to iFS and iSLIP, although it does give 

a small performance advantage over these two algorithms. It gets closer to the 
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performance of MWM than these two algorithms. However it is easy to see that there is 

still a considerable difference between the performance of WIM and MWM. The ratio R 

(discussed in the previous chapter) used in this experiment for WIM was 100. 

Next the performance of WIM was tested under uniform traffic for various ratio values. 

The values used were 1, 10,100 and 1000. As can be seen the average latency is largely 

independent of the ratio used, although the latency is lower under heavy traffic if a larger 

value is used for the ratio 
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Figure 6.2 Latency performances for WIM scheduling algorithm using different ratio 
values Arrival processes are Bernoulli and destinations uniformly distributed across 
the output ports. The switch size used is 16x16. The graph shows the average delay in 
cell units 
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6.2.2 Worst-case Fairness 

The next experiment was conducted to test the ability of an algorithm to provide 

bandwidth protectlon. The simulation was set up as described in section 6.1 

Average queue size, total throughput, and average latency \vere monitored. A umfonn 

traffic model was used and the fairness and worst-case fairness of the \VIM algOrithm was 

detennined under various ratio's 

The worst case perfonnance for various values of R is shown in Figure 6.3. 
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Figure 6.3 Worst-case Fairness Index for WIM scheduling algorithm using 
different ratio values Arrival processes are Bernoulli and destinations uniformly 
distributed across the output ports. The switch size used is 16x16. The graph gives 
an indication of the maximum delay a cell might experience. 

As can be seen in Figure 6.3 the worst case index is generally lower for larger ratio values. 

This is what might be expected. a scheduler with a higher ratio value would tend to give 

cells which had been queued longer a greater weight than a seheduler using a lower ratio. 
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cells which had been queued longer a greater weight than a scheduler using a lower ratio. 

Note that these figures only have relevance with respect to this traffic profile and this 

switch size, 16x 16, 

Next the worst-case performance of WIM with a ratio of 100 is compared to SLIP, IFS 

and Maximum Weighted Matching and Output Queueing, The results are shown in Figure 

6.4. As can be seen WIM again performs better than iFS and iSLIP, 

What this means is that connections encounter a lower maximum delay and hence a lower 

jitter when a WIM scheduler is used. 
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Figure 6.4 Worst-case Fairness Index for the WIM, iSLIP, if'S and MWM 
scheduling algorithms Arrival processes are BernouJIi and destinations uniformly 
distributed across the output ports. The switch size used is 16x16. The graph gives 
an indication of the maximum delay a cell might experience. 
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6.2.3 Service Fairness Index 

Next the performance of WIM in distributing bandwidth equally is investigated again 

using various ratio values. 
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Figure 6.S Service Fairness Index for the WIM scheduling algorithm using 
different ratio values. Arrival processes are Bernoulli and destinations uniformly 
distributed across the output ports. The switch size used is 16x16. The graph gives 
an indication of the how fairly the bandwidth is distributed under different traffic 
loads. 

As can be seen from Figure 6.5. as far as distributing bandwidth fairly WIM performs 

similarly under a wide range of ratio values. 

The algorithm distributes bandwidth more fairly under a heavy traffic load using smaller 

ratio values. Comparing WIM with iFS, iSLIP and Maximum Weighted Matching, it gives 
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very similar performance. iSLIP gives better performance under heavy loads than either 

WIM or iFS. 
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Figure 6.6 Service Fairness Index for the WIM. SLIP, iFS and MWM scheduling 
algorithms. Arrival processes are Bernoulli and destinations uniformly distributed 
across the output ports. The switch size used is 16x16. The graph gives an 
indication of the how fairly the bandwidth is distributed. 

6.3 Performance under non-uniform traffic 

We now investigate the effect of Burstiness on various schedulers. We chose MWM, 

WIM, iFS and output queueing as the schedulers to test in this scenario. The arrival 

process for each port is an on-off arrival process modulated by a two state Markov-chain. 

The sources produce bursts of cells all destined for the same output port. These bursts are 

followed by idle periods. Both the idle periods and bursts have geometrically distributed 
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number of cells. The destinations are uniformly distributed. The switch size used is 

16x 16. This is a similar configuration to that used by Mckeown in [29]. 

6.3.1 Latency 

1000 

-t/) 

(1.)100 
u -
~ 
s::: 
S 
co 

...J 
(I.) 
0) 

e 
(I.) 10 > « 

1 

20 30 40 50 60 70 80 

Traffic Load(%) 

90 99 

-x-Output 
Queueing 

-o-iFS 

-<>-WIM 

Figure 6.7 Latency performances for MWM, WIM, iFS and Output Queueing for 
Bursty arrival processes and destinations uniformly distributed across the output 
ports. The switch size used is 16x16. The graph shows the average delay in cell units 

As can be seen in Figure 6.7 the performance of the scheduler decreases significantly 

under heavy traffic. This clearly illustrates the need for a greater number of buffers in a 

packet switch which will switch real traffic. Note that while the average latency is much 

larger under heavy traffic it is still bounded. Comparing this graph with the similar one for 

Bernoulli traffic also illustrates the sort of problems applications requiring low delay 

encounter in real world situations. 
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6.3.2 Service Fairness Performance under Bursty Traffic 
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Figure 6.8 Service Fairness Index for WIM, iFS, Output Queueing and MWM. 
Arrival processes are Bursty and destinations uniformly distributed across the 
output ports. The switch size used is 16x16. The graph gives an indication of the 
how fairly the bandwidth is distributed between connections 

As can be seen in Figure 6.8. the performance as far as distributing bandwidth fairly under 

bursty traffic is similar for all the algorithms, although the WIM algorithm does perform 

slightly better. 
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6.3.3 Worst~case Fairness under bursty traffic 
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Figure 6.9 Service Fairness Index for the iFS, WIM, MWM and Output Queueing 
scheduling algorithms. Arrival processes are bursty and destinations uniformly 
distributed across the output ports. The switch size used is 16x16. 

The studies on bursty traffic seem to confirm Mckeown's observation that burstiness has 

as much or more influence on the performance of output queued switches than input 

queued switches. The advantages in latency, worst-case performance and service fairness 

that OQ held over input queued algorithms have largely diminished. 

6.4 Switch Size 

There have been very few studies to study the impact of the switch size on the 

performance of the scheduling algorithms. The algorithms which are tested are Output 
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Queuing, MWM, and WIM. The performance of SLIP with various switch sizes was 

studied in [29 J and this was used as a benchmark for these tests. The switch sizes used 

where 4x4, 8x8, 16x16. 32x32, and 64x64. No higher number could be run because of 

large amounts of memory required to run the simulation for this number of ports. 

The traffic load used in each simulation is Bernoulli, uniformly distributed among the 

outputs. 

6.4.1 Latency 

As can be seen in figures 6.10 to 6.13 the performance of scheduling algorithms for input 

buffered ATM switches degrades slightly for larger switch sizes are used. This is not 

unexpected. 
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Figure 6.10 Latency characteristics of the WIM scheduling algorithm, for different 
size switches. Arrival processes are Bernoulli and destinations are uniformly 
distributed across the output ports. The graph shows the average delay in cell units 

Comparing the performance of WIM in Figure 6.10, iFS in Figure 6.11, MWM in Figure 

6.12, and Output Queueing in Figure 6.13, it can be seen that the decreased performance 

witch accompanies larger switch sizes occurs in all the scheduling algorithms. To be more 

specific the average cell delay at 90o/c) load for a 4x4 switch using WIM was 8.3 cell units 

and for output queueing it was 5.4. For a 64x64 switch at 90% load the average delay 

using WIM was 11.8 using output queuing it was 7.3. Univ
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Figure 6.11 Latency characteristics of the iFS scheduling algorithm, for different 
size switches. Arrival processes are BernouUi and destinations are uniformly 
distributed across the output ports. The graph shows the average delay in cell units 
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Figure 6.12 Latency characteristics of Maximum Weighted Matching scheduling 
algorithm, for different size switches. Arrival processes Bernoulli and destinations 
are uniformly distributed across the output ports. The graph shows the average delay 
in cell units 
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Figure 6.13 Latency characteristics of Output Queueing, for different size switches. 
Arrival processes are Bernoulli and destinations are uniformly distributed across 
the output ports. The graph shows the average delay in cell units 

6.5 Summary 

In this chapter we presented the results of simulations which were run to determine the 

performance of the WIM scheduling algorithm compared to other scheduling algorithms. 

We showed first that the average latency of the scheduler was similar if not slightly better 

than other practical scheduling algorithms. We then determined the worst case and service 

fairness performance compared to various other input scheduling algorithms. The WIM 

scheduling algorithm also performed well in terms of fairness and worst-case fairness 

when compared to the other scheduling algorithms. We also studied the performance of 

the algorithms under bursty traffic. and noted that the differences between input and output 

queueing seem to diminish. Finally a study was conducted on the effect of the switch size 
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on the performance of the algorithm. The performance of all the various scheduling 

algorithms was found to degrade slightly for larger switch sizes. 
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Research 

7.1 Summary 

and 
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Future 

This text has considered the development, analysis, and implementation of scheduling 

algorithms for input and output buffered packet switches. The focus has been on ATM 

switches. but the algorithms are applicable to most packet switches. The design of the 

scheduling algorithm is dictated to a large degree by the architecture of the A TM switch, 

and for this reason we have studied scheduling algorithms for both input and output 

buffered switches. Lots of the ideas initially developed for scheduling in output buffered 

switches can be modified and applied to scheduling in input buffered switches 

7.2 Providing QoS support in an Input Buffered Switch 

We introduced the idea of using a variable ratio to control the maximum delay a 

connection may encounter. This allows the switch using a matching algorithm to sacrifice 

total throughput in order to give priority to cells experiencing undesirable backlog. 

We also introduced a scheduling algorithm for input buffered non-blocking switches 

called Worst-case Iterative Matching(WIM). The scheme offers an improvement in 

performance over weighted probabilistic matching, iSLIP and iFS. 

Results from the simulations show that WIM is able to offer connections a lower worst­

case delay than other current algorithms, as well as a slightly lower average latency. Using 

Virtual Output Queueing and variable weight ratios in the maximal weighted matching 

algorithm, WIM can provide isolation and protection for any flow. The algorithm also 

performs well in terms of fairly distributing excess bandwidth among competing 

connections. 

A method of implementing WIM in hardware was proposed. Unlike many other iterative 

approaches which have been proposed and implement, our proposed implementation is 

largely a parallel one. 
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7.3 Worst-case Performance 

In this text we have paid specific attention to the worst-case performance of input 

scheduling algorithms, a topic which has not received much attention in previous studies, 

although certainly lots of attention has been paid to the worst case perfommnce of output 

scheduling algorithms. 

It has been found in this study and previous work [29] that the worst-case bound gives a 

very conservative result, and that the average delay performance is much difTerent. 

However the Worst-case performance does give valuable insights into the operation of the 

algorithms. In addition as Stiliadis points out in [35], if packet networks are to ultimately 

replace circuit switched networks, they \vill have to support a set of applications that do 

not accept packet losses or unpredictable delays. 

7.4 Simulation Study of Input Scheduling Algorithms 

The study of scheduling algorithms can not be conducted without takmg into account the 

effect of real net\vork traffic. rIowever the results obtained from simulations seem to 

confirm Mckeown's observation that burstiness has as much or more iniluence on the 

perfonnance of output queued switches than input queued s\vitches. 

Another important result obtained was the effect of the switch size on the pcrfom1ancc of 

the scheduling algorithm. The result was obtaincd that the latency increases slightly for 

larger switch sizes. although there is not a SIgnificant degradatIon though. Of course this 

result needs to be compared with the fact that that if a larger switch was implemented 

using interconnected smaller switches. the latency would at least double. Therefore the 

conclusion can be made that a single large switch will always give better performance than 

many smaller interconnected switches. 

7.5 Future Work 

There is still considerable work to be done in the field of input scheduling algorithms. 

Currently switches at best use some sort of maximal algorithms, the search for a maximum 

weighted matching algorithm which can be practically implemented continues. There will 

be other matching algorithms proposed with lower complexity \vhich provide perfom1ance 

closer to maximum weighted matching than the current algorithms such as WIM, iSLIP 

etc. 
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The complexity in studying the performance of these algorithms also presents 

opportunities for future work. Perhaps the best method of evaluating the performance of a 

scheduling algorithm is to implement it on a switch and test it under real network 

conditions. The Washington University Gigabit Switch would be one candidate for this, 

although a purpose designed switch would probably be the best suited for this algorithm. 

There is also work to be done in area of simulation of input scheduling algorithms. It 

would be useful to run similar simulations using more sophisticated traffic models on a 

supercomputer or cluster. This would allow a better appreciation of the performance of the 

scheduling algorithm under conditions closer to what is encountered in a real network. 

Another possible area of work is to investigate further the use of a multiplying ratio used 

in the MWM algorithm. We have used one value for the whole switch, but it may be 

possible to obtain better control over a connections delay and throughput using separate 

ratios for each connection. 
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Providing QoS in a network has become an active area of work in the last few years. and 

many approaches have been investigated. Generally implementing QoS in a network 

requires a number of technologies to work together. These QoS technologies operate at 

different layers in the protocol stack and provide different services. 

Physical Layer Quality of Service 

Physical technologies allow for the separation of traffic. The separation may take the form 

of wavelengths. Virtual Circuits, ports on a device, or frequencies over the air. This is the 

simplest form of QoS whereby different levels of QoS are provided through traffic 

separation at the physical layer. For example different wavelengths may provide different 

services. This type of QoS works well when the transmission media is inexpensive or 

abundant, but when the resources are limited it becomes inefficient and expensive, for 

example the Wireless frequency spectrum. 

Link Layer Quality of Service 

Each type of link layer has a different type of QoS that can be applied. The most common 

link layers are Ethernet ATM, ppp, MPLS, Frame Relay and Mobile wireless 

technologies. A TM and MPLS are described briefly here. 

ATM currently has the most comprehensive QoS support. The ATM forum has created 

A TM service categories, each with a different QoS traffic management parameters and 

performance levels. The most common ATM service categories are CBR (Constant Bit 

Rate), rt-VBR (real-time Variable Bit Rate), and UBR (Unspecified Bit rate). CBR is used 

for clfcuit emulation. rt-VBR for real time voice or video service and UBR for unspecified 

data. There are other less widely used services available; however these are not covered 

here. 
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ATM also provides a number of tratTic management parameters for each of the A TM 

service categories. The most important of these are the Peak Cell Rate (PCR), Sustained 

Cell Rate (SCR) and Cell Loss Priority (CLP). The Cell Loss Ratio (CLR) is the ratio of 

lost cells to total transmitted cells. Cells are lost due to a number of factors including 

switch malfunctions, discarding due to non-compliance and network congestion. Switches 

generally implement some specific cell discard policy. This discard policy has a large 

impact on the performance of the network and is discussed in some detail in the next 

subsection. The Cdl Transfer Delay (CTO) is the elapsed time between a cells entry and 

depar1ure of an ATM network. This parameter is especlally important for the CBR and rt­

VBR service categories, and the maximum Cell Transfer Delay (mCTD) IS defined in the 

ATM Forum Traffic Management specification for these categories. The Cell Delay 

Variation (CDY) is another name for jitter was discussed in a previous section. 

In order to support the guaranteeing of QoS in the network it is important to enforce the 

compliance of connections at the entrance to the network. In ATM this traffic policing 

function is implemented using algorithms such as the Generic Cell Rate Algorithm (see 

Appendix B for an explanation). TratTic policing is implemented by the network usually at 

the first switch which traffic entering the network encounters. 

Traffic shaping smoothes cell streams, eliminating bursty peaks and cell Jitter. The result 

is a more predictable tramc profile, which has economic benefits hecause it can be 

accommodated in a virtual circuit with a lower Peak Cell Rate (PCR). It is important to 

note that Traffic shaping takes usually place on the client equipment before the data enters 

the network, or on the ingress side of an edge ATM SWI tch. 

Because traffic policing enforces connections compliance to a traffic contract, traffic 

shaping may make quite a big difference in the pcrfonnance of an application. For 

example if compressed video is fed into the network without any traffic shaping, some 

tramc policing algorithm may discard some of the cells during a burst when the cell rate 

exceeds the negotIated PCR. Because most video information is contained in certain large 

frames, discarding cells leads to a severe degradation in the quality of the video. 

Congestion avoidance is the action a network takes to avoid circumstances in which flows 

or aggregated flows no longer receive their associated service levels due to excessive 

traffic loads at points in the network. This is achieved through various means, including 

the application of a packet discard policy to provide implicit feedback to host systems to 

reduce network traffic during congestion, 

It is inevitable that at some point a port \'vi1l become so congested that the buffers on a 

switch become full and packets must be dropped. The policy which is chosen to select 

which cells to discard can have a large impact on the performance of the network. If the 

discard policy is based solely on a fixed per connection threshold, it may cause 
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unnecessary retransmissions which escalate congestion. The majority of upper layer data 

packets are composed of more than one A TM cell, and when a cell is dropped it causes 

corruption of the entire packet. 

To prevent this congestion escalation, Early Packet Discard (EPD) and Partial Packet 

Discard (PPD) schemes have been proposed for ATM to discard cells on a Frame Basis. 

Partial Packet Discard is a reactive measure and acts after a switch drops a cell by 

dropping the remaining cells in a frame. except for the last cell. The last cell is not 

discarded. since it is used by the end device to determine the start of the next packet. PPD 

is not a perfect solution because cells before the first dropped cell are still transmitted. 

Early Packet Discard is a proactive measure that acts before a cell is lost due to buffer 

overflow. EPD recognizes that cells are about to be dropped and begins dropping cells 

from the new packets. This allows an entire packet to be discarded rather than only a 

partial packet. thereby minimizing the wasted bandwidth. 

MPLS provides for 2 different forms of QoS support. There are 8 service classes which 

support emission and discard priorities. MPLS also supports a number of traffic 

management parameters to define the behaviour the traffic will receive as it traverses a 

particular Label Switched Path. One of MPLS major benefits is that it makes it possible to 

engineer paths across a network. 

As traffic traverses a network it can often take different paths depending on the network 

technology. For example routed IP networks are connectionless; a packet can take 

different paths. This can lead to unpredictable QoS. Because network operators want to 

offer guaranteed service level agreements. network paths are engineered to provide 

guaranteed QoS performance. Traffic that is within the service level criteria can be steered 

along the traffic engineered Paths and obtain a predictable QoS leveL 

Network Signalled QoS 

MPLS and A TM use signalling protocols to request a desired QoS from other network 

nodes prior to connection establishment. This is known as Connection Admission Control 

or CAe. A TM uses a protocol called PNNI (Private Network - Network Interface) to 

accomplish this. MPLS uses a protocol called LDP (Label Distribution Protocol) to set up 

Label Switched Paths (LSP). To Signal QoS for these traffic engineered paths, MPLS uses 

RSVP-TE (Resource Reservation Protocol for Traffic Engineered paths) or CR-LDP 

(Constraint based Routed LDP). Both protocols achieve similar goals through different 
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approaches. The end result is that the network should be able to offer bandwidth and delay 

guarantees to a connection. 

QoS Measurement and Monitoring 

In order for service providers need to services such a IP telephony, video on demand etc, 

the network QoS must be monitored and measured to ensure that the service is being 

adequately supported. Furthermore since the QoS performance may be specified in a 

Service Level Agreement (SLA) the service provider needs to ensure that the network is 

providing the performance as specified. The SLA typically consists of parameters such as 

maximum packet loss, maximum packet loss, and maximum packet delay. 

The SLA specifies the terms and conditions of the service being offered. Once a service 

provider can accurately measure the network capabilities and provide a guaranteed 

performance level, he can confidently offer a billable service to his subscribers. 

Subscribers also want to monitor network performance to ensure that they receive the 

services to which they subscribe. 
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Scheduler Sinlulator. 
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This section gives an overview of the software design used in the development of an A TM 

scheduler test- bed. It is intended as an introduction to the problems encountered when 

using simulation as a means of evaluating scheduling algorithms and as an introduction 

to the code. 

High Level Design 

The design of simulation can be broken up into four main tasks. 

1 The generation of a cell stream 

2 The queuing and dequeuing of cells in whatever manner is chosen for example FIFO, per 

VC or per Traffic Class 

3. The solution of a maximal or maximum size matching algorithm. 

4. The analysis of the switched cells to obtain relevant results 

The basic flow of the simulator is shown in figure A.i 

Traffic 
Generation 

Queueing Matching 

Figure A.I Modular Flow of Scheduler Simulator 

Dequeueing Data Processing 

Other requirements that impacted on the design where that the simulation should be 

scalable and that the scheduler used should be easily interchangeable. 

We now discllss each of the above points separately, 
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Traffic Generation: 

Traffic generation is one of the main problems In evaluating switches and schedulers. The 

models which generate realistic traffic generally run very slowly in software. If real world 

traffic profiles are used the amount of disk space used is massive and there is a massive 

slowdowl1 in the speed at which the simulation runs. The approach taken in this project 

was to use one of the simplest traffic models, Markov modulated chains, other approaches 

considered were modi tied Brownian motion . This model allows traffic to be generated on 

the ny, or as the simulation runs. Another aspect that was designed into the simulator is 

that it is easy to switch to another traffic model if desired. 

Queuing and Dequeuing 

The main function of the enqueuing block is to maintain per virtual circuit queues. For 

each cell that is enqueued a timestamp is stored. This is necessary to calculate the delay 

through the scheduler. The requirement to store each cells timestamp means that a very 

large amount of virtual memory is necessary to run the simulation under heavy traffic 

conditions. The design makes it possible to switch to other queuing methods such as per 

traffic class and FIFO queueing by changing the command line parameters. 

In the case where pure output queuing is simulated, the matching algorithms are bypassed 

and the dequeueing block finds the best cell to dequeue from the relevant input queues as 

if they had been switched through the non-blocking infinite bandwidth fabric. 

Matching 

By far the most complex part of the code is the matching algorithms. The most complex to 

implement was the maximum \veighted matching algorithm. This required an 

implementation of Gabows "An efficient implementation of Edmond's algorithm for 

maximum matching on graphs".[47]. When this matching algorithm is bemg simulated 

over 95% of the processor time is spent solving it. Its running time is O(N3
) so the 

simulation runs very slowly tor larger switch sizes. Other algorithms simulated are 

Maximum Size Matching, iSLIP, PIM, iFS. WiM. and FIFO queueing. 
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The analysis of the Simulator output. 

Once cells have been switched, relevant data from each cell are written to a file. Once the 

simulation is completed the data analysis program is launched which parses the data, 

extracting relevant information such as jitter. delay, average delay, total throughput etc. 

Configuring the Simulator 

The simulator currently uses command line parameters to determine what scheduler. 

traffic model and traffic load to use for a specific run. 

The format of the command is as follows: 

Schedsim [scheduler1 [load1 [traffic model] 

The values for scheduler are: 

Virtual Output Queueing 0 

Per Port Queueing 

FIFO queueing 2 

Longest Queue First 3 

Slip 4 

iSLIP 5 

Parallel Iterati ve Matching 6 

Weighted PIM 7 

Iterative Fair Scheduling 8 

Maximum Size Matching 9 

Maximum Weighted Matching 10 

Output Queueing 12 

Parallel Weighted Matching 13 

The values for load are: 0 to 100 

The values for traffic model are: 

Bursty 1 

Uniform 0 

The simulator can also be quickly reconfigured with different switch sizes, number of 

queues, or number of connections. These are currently set using defines in the code: 
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#define NO_OF_GROUPS 2 

#define NO_OF_PORTS 15 

#define NO_Of_QUEUES 7 

Running a Sinlulation 
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In order to extract information about the performance of a scheduler, the scheduler must be 

tested under a range of different traffic loads. It is also necessary to obtain the steady state 

result for each type of traffic. An automated script is used to run several simulation runs 

one after another. To obtain a single graph as shown in chapter 6 typically took about 3 or 

4 days to run. 

First the simulator is run, followed by the data analysis program, which analyses the data 

written by the simulator, Every time the data analysis program runs it writes its results into 

the same data file. A couple of iterations would look like the example below. These 

commands are executed from a script file. 

mwmsimple.exe 10 20 0 

average.exe 

del outfile.dat 

mwmsimple.exe 10250 

average.exe 

del outfile.dat 

mwmsimple.exe 10300 

average.exe 

del outfile.dat 

mwmsimple.exe 10 35 0 

average.exe 

del outfile.dat 

mwmsimple.exe 10 40 0 
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