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ABSTRACT 

The Cape gannet (Morus capensis) and the African penguin (Spheniscus demersus) have distinct 

aquatic adaptations for locomotion. The gannet, which is an efficient flying bird, uses both fore- 

and hind limbs to propel itself under water. On the other hand, the flightless penguin swims 

underwater using only its forelimbs. In this study, the long bones of ten penguins and nine gannets 

were compared in terms of microanatomy and histology with respect to ontogenetic stage 

(hatchlings, juveniles and adults) and locomotion. 

Micronatomical and histological findings of the fore-limbs and hind limbs show that the bone 

microstructure of the gannets and the penguins differs significantly in term of compactness and 

bone remodeling. Penguin bones are more thick-walled and compact as compared to gannet bones 

and their cortical tissue is dominated by simple vascular canals whilst the medullary cavity is 

nearly absent. The forelimb bones of penguins are more compact that the hind limb bones. This is 

due to the aquatic adaptation of the bone to fore-limb underwater propulsion. On the other hand, 

the gannet bones are thin walled, less compact with primary osteons dominating the mid-cortex, 

and a large vacant medullary cavity is present. The gannet fore- and hind limb bones do not differ 

in terms of bone compactness.  

Ontogenetic differences in the penguin long bones show that the hatchling bears an active growth 

phase. Some of the bones of the juvenile penguins are still actively growing whilst the adult ones 

appear to have stopped growing as the bone mid-cortex is more organized. For the gannet species, 

the juvenile and adult differs in terms of the presence and thickness of the inner and outer 

circumferential layers and the presence of circumferential vascularizations.  

Intra-specific differences are noted in the juvenile penguins with one specimen still undergoing 

active growth depicted by the presence of numerous simple vascular canals. Amongst the adult 

penguins, one male specimen is actively molting as indicated by the presence of large resorption 

cavities in all of the long bones. One adult gannet individual possesses large resorption cavities in 

all its long bones as a result of starvation caused by perforation of its intestines. 

Inter-skeletal differences are noted with the stylopod and zeugopod being the most affected by 

sub-aquatic locomotion with osteosclerosis occuring the most in the proximal bone and decreases 
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in the distal bones going from the pectoral to the pelvic bones in the African penguin. In the Cape 

gannet, the stylopod and ulna have micro-structural features for torsional resistance during flight. 
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INTRODUCTION 

 

Throughout their evolution, birds have adapted their morphological structures and 

behavioural patterns with respect to their environment (flying, terrestrial, freshwater or marine) 

and foraging behaviour (Kato et al, 2006; Habib and Ruff, 2008). Birds like the Frigate birds 

(Fregata species) are surface predators and they are pelagic piscivores that obtain their food on 

the wing. They do not swim under water and their adaptation to flight is efficient during their 

feeding pattern above the ocean surface (Vickery and Brooke, 1994). Some bird species such as 

the gannets (Morus capensis) or the cormorants (Phalacrocorax capensis) exhibit both aerial and 

sub-aquatic adaptations, i.e. they have bimodal locomotion (Ropert-Coudert, 2004). Lineages like 

the Spheniscidae have evolved such that flying skills have been lost to give way to excellent 

swimming and diving aptitudes. Birds that have developed sub-aquatic locomotion have also 

adapted various swimming and diving patterns that are energy-efficient and conserving (Kato et 

al, 2006). Birds, such as the cormorant (Phalacrocorax species) are hindlimb-propelled divers 

which use their hindlimbs for swimming. Spheniscidae are forelimb-propelled divers. Birds like 

the gannets have an intermediate adaptation for underwater diving by means of fore-limbs and 

hindlimbs propulsion (Ropert-Coudert, 2004).  

 

Most avian cortical bone bears a primary bone structure which persists throughout the 

bird’s life. Bird cortical bone is generally made up of highly oblique vascularized fibrolamellar 

bone consisting of primary osteons (de Ricqlès et al, 1991). In addition, a mixture of longitudinal, 

circumferential and radial primary osteons is also present in avian bone (de Ricqlès et al, 1991; de 

Margerie, 2002). However, the composition of the bone microstructure is greatly affected by 

habitat and locomotion (Habib and Ruff, 2008). Birds adapted primarily to flight possess a slender 

bone compacta as compared to their terrestrial counterparts (Dumont, 2010). Flightless birds 

adapted solely to an aquatic environment exhibit very compact bone whilst those of birds with 

bimodal locomotion lies somewhere in-between (Habib and Ruff, 2008).  

 

Various studies have revealed that the limb bone microanatomy is important in 

understanding lifestyle adaptations of birds. For example, bone compactness is an important factor 

that allowed birds to adapt to an aquatic environment. Previous studies of marine adaptations of 
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tetrapod bone microanatomy examined involved only one adult specimen per species and only one 

or two limbs bones were used for comparisons (Wall, 1983; Fish and Stein, 1991; Kriloff et al, 

2008). Furthermore, evaluations between fore-limbs and hind limbs during various ontogenetic 

stages were not examined. In addition, non-ecological adaptation factors have been found to 

transform bone histology and microanatomy (Starck and Chinsamy, 2002). Also, it has been 

shown that both intrinsic and extrinsic factors can influence bone microstructure (Chinsamy and 

Abdala, 2008). 

The aims of this study is to assess how long bone microstructure and compactness changes 

during ontogeny in two marine taxa (Morus capensis and Spheniscus demersus) and to also 

document differences between genders and to the particular type of locomotion. Inter-skeletal 

variability between fore- and hind limbs will also permit an assessment of how specialized sub-

aquatic locomotary adaptations affect bone microanatomy and histology. Comparisons will be 

made between the two marine bird taxa (Morus capensis and Spheniscus demersus) which exhibit 

different lifestyle adaptation to assess the effect of their specialized locomotary adaptations on 

their bones. 

 

The main objectives of this study are: 

- To assess the limb bone microstructure and compactness variability during ontogenesis of 

marine birds 

-To study how the mode of locomotion affects the bone microanatomy 

- To study the inter-specific variability between marine birds. 

-To evaluate the intra-specific bone histological variability between individuals of the same age 

- To determine intra-skeletal variability of the various long bones and which bones are most 

affected by sub-aquatic locomotion 

-To determine physiological variables responsible for bone microanatomical differences 
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MATERIAL AND METHODS 

In the present study, we employed histo-morphometry to quantify the cortical thickness of 

the bones, as well as qualitative descriptions of bone microanatomy and histology to assess inter- 

and intra- specific variability in the bone microstructure of two marine birds, Morus capensis and 

Spheniscus demersus. 

Biological sample 

A total of 19 individuals spread across two species of marine birds, with similar body 

size/body weight range, but with different aquatic adaptations, were included in the study sample. 

The African penguin species is represented by 10 individuals. Three developmental stages are 

included in this penguin study sample, namely, hatchling, juvenile and adult in ratio 1:3:6 (Table 

1). Four juveniles and five adults of gannets are in the sample (Table 1).  

The first species is the flightless Spheniscus demersus (Linnaeus, 1758), commonly known 

as the African penguin or Jackass penguin and is part of the penguin family Spheniscidae. These 

penguins can reach a height of 60–70 cm and weigh between 2.2–3.5 kg (Sinclair et al, 2011), and 

they exhibit some sexual dimorphism with males being larger and having heavier beaks than 

females. The African penguin exhibits a highly active sub-aquatic mode of locomotion using 

forelimb propulsion. They forage 33-46 km from their colonies and can dive to a mean depth of 

17 m for 2.5 minutes (Wilson and Wilson, 1995). The species breeds monogamously all year 

round once they reach sexual maturity at the age of 3-7 years old with females maturing faster 

than males (Whittington et al, 2005). One to two eggs are laid and incubation lasts ~40 days and 

parents brood chicks for 15-30 days. Fledging occurs between 60-130 days after hatchling. 

Juveniles leave the colonies for 1 to 3 years (Kemper and Roux, 2005). African penguins return to 

their nest sites during annual molt (Cooper 1978). Juveniles undergo a pre-molt fattening-up 

phase (~34 days) followed by molting which takes about 21 days. Plumage replacement takes 

place after molting (~41 days) prior to the start of breeding (Randall and Randall, 1981). The 

overall duration of the molting phase is about 96 days per year. Juvenile penguins lose half their 

body mass during this period (Randall and Randall, 1981). 

The second species consists of Morus capensis (Lichtenstein, 1823), commonly known as 

the Cape gannet belongs to the family Sulidae. It can reach a length of 84–94 cm from head to tail 
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and a mean body mass of 2.8 kg (Nelson, 1978). Males are larger than females, and females have 

a wider weight variation than males (Rand 1959). This species expresses efficient bimodal 

locomotion to fly or swim when foraging (Ashmole 1971). They use either their forelimb or hind-

leg as a way of propelling themselves underwater. They are known to forage away from their 

colonies distances of 67-228 km and can plunge-dive from a height of 5-20 m to a mean depth of 

3.6 m lasting 4.3 seconds (Grémillet et al, 2004; Ropert-Coudert et al, 2004). The Cape gannet 

breeds monogamously in late August on islands (Rand, 1959). One single egg is laid and the 

incubation lasts 42-46 days. Hatchlings remain in the nest for 93-105 days until the juveniles are 

fully fledged and leave the colonies. They have a fat storage of 10 days during which time they 

learn to forage. Molting into adult plumage occurs in juveniles at 4 years of age upon their return 

to the nesting sites prior to first breeding attempts (Jarvis, 1972). Adults molt in summer.   

All osteological samples were obtained post-mortem from birds that died after 

unsuccessful rehabilitation at the Southern African Foundation for the Conservation of Coastal Birds 

(SANCCOB). Each bird was assigned a specimen number (Table 1). Data such as age, sex, cause 

of death, weight, size and area of collection were tabulated in Table A1 (Appendix section). 

Bones of the left forelimb (humerus,radius, ulna and carpometacarpus) and hind limb 

(femur, tibiotarsus, tarsometatarsus and proximal phalanx) were sampled (Figure 1). These bones 

were selected since they are the skeletal elements most micro-structurally affected by locomotion 

and habitat (Habib and Ruff, 2008) and they also permit comparisons with previous histological 

papers. Some bones were not systematically sampled, such as the phalanges due to the extensive 

damage these bones were subjected to (Cause of death – Table A1). A few bones were missing in 

our sample, including the carpometacarpus and the femur of some specimens, because they were 

broken (Cause of death –Table A1). A total number of 136 bones were analyzed during this study. 

The whole bone sample is depicted in Figures A1- A4. The fore-limb and hind limb are divided 

into 3 distinct region during limb development (Shubin et al, 1997) : the stylopod 

(humerus/femur); the zeugopod (radius, ulna, tibiotarsus) and the autopod (carpometacarpus, 

tarsometatarsus and phalanx) (Figure 2).
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Table 1: Data relevant to the biological samples showing the bird number assigned to each specimen, the species,                   

age and gender. A completed data table is tabulated in Table A1. Picture of the African penguin species showing                   

two adult, one juvenile in a lying position and an individual molting on the far right side. Cape gannet image                   

showing adults (golden-white birds) and juveniles (black birds). Images courtesy of Dr. Aurore Canoville. 

African penguin – Spheniscus demersus 

 

 Cape gannet – Morus capensis 

 
 

N° Bird N° Species Age Gender  N° Bird N° Species Age Gender 

1 064 African penguin Hatchling Male  1 G04 Cape Gannet juvenile Male 

2 466 African penguin juvenile Female  2 G17 Cape Gannet juvenile Female 

3 116 African penguin juvenile Male  3 G19 Cape Gannet juvenile Male 

4 241 African penguin juvenile Male  4 G20 Cape Gannet juvenile Female 

5 146 African penguin Adult Male  5 G59 Cape Gannet Adult Male 

6 191 African penguin Adult Male  6 G61 Cape Gannet Adult Male 

7 192 African penguin Adult Male  7 G24 Cape Gannet Adult Female 

8 167 African penguin Adult Female  8 G56 Cape Gannet Adult Female 

9 231 African penguin Adult Female  9 G57 Cape Gannet Adult Female 

10 524 African penguin Adult Female       
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Figure 1: Representative example of African penguin (Spheniscus demersus) and Cape 

gannet (Morus capensis) long bones analyzed in this study. The fore limb bones are the 

humerus, radius, ulna and carpometacarpus. The hind limb bones are the femur, 

tibiotarsus, tarsometatarsus and phalanx. The bones are presented with their proximal ends 

on the left. 

 

Figure 2: Classification of fore-limb and hind limb bones of the African penguin and the 

Cape gannet into stylopod, zeugopod and autopod with the proximal side on the left.  
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Bone preparation and sectioning 

Carcasses of the birds were dissected in the Department of Biological Sciences, UCT in 

order to remove the bones for the study. As much flesh as possible was removed from the skeletal 

elements during dissection, and thereafter they were further subjected to treatment using 

mealworms and beetles. Pictures of the bone sample were taken using a Nikon D40 camera and 

were enhanced using PhotoScape image editor (PhotoScape software v3.6.3).   

Standardized measurements of the bones were obtained with a digital caliper prior to 

sectioning and the mid-shaft level identified (Figure 3). Measurements include the bone maximal 

length, proximal width, distal width and mid-shaft diameter (Figure 3). All measurements were 

recorded in Tables A2-A3. 

 

Figure 3: a. Cape Gannet (Morus capensis) bones. b. African Penguin (Spheniscus demersus) 

bones. Approximate positions at which measurements have been taken and cutting point for 

the mid-shaft region for each type of bones. The data is reported in Appendix, Tables A2-

A3. [1: Proximal width; 2: Distal width; 3: Bone length; Blue line: Mid-shaft diameter; 

dotted black line: Cutting points]. [Bone sizes are not to scale]. 
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acetone bath 
for 6 hours (x3) 
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Figure 4: Steps in preparing bones for thin-sectioning following standard protocols detailed 

below.  

The bones were then cut about 1-2 centimeter using a Dremel precision handsaw along the 

mid-shaft region (Figure 3) and more than 130 thin-sections were prepared following standard 

protocols (Chinsamy and Raath, 1992) (Step 1). The steps are illustrated in Figure 4. Each bone 

sample was subjected to six 96.4% ethanol baths and 3 acetone baths under a vacuum fume hood; 

each lasting 6 hours, in order to dehydrate and degrease the bones (Step 2). The bones were 

allowed to air dry for 24 hours prior to resin embedding. The bones were embedded in Struers 

Epofix Resin and Epofix Hardener with a volume mixture of 25:3 and left to harden for 

approximately 24 hours (Step 3). Using Imptech C10-abrasive cutter, the embedded bones were 

finely sectioned into blocks (Step 4), which were in turn halved along the mid-shaft line using a 

Struers Diamond cut-off wheel mounted on an Imptech PC10-precision cutter at a cutting speed of 

150 rpm (Step 5). Half of the cut blocks were then sequentially polished using P800 and P1200 

grit abrasive paper on an Imptech 30 DVT Grinder polisher machine (Step 6). Polishing was 

finalized using Struers OP-U silica suspension on a felt-polishing pad. The embedded bones were 

washed and left to dry for 24 hours on paper towels. Glass microscope slides of about 1.2-1.5 mm 

thick; having a frosted finishing side obtained by abrasion using silicon carbide powder; were 

used to mount the blocks. A fine spread of Struers Specifix Resin mixed with Specifix-20 Curing 

Agent (13:2.5 volume ratio) was applied to the polished side of the blocks and then affixed onto 

the frosted side of the slides (Step 7). All slides were properly labeled and fixing was allowed to 

set for 12 hours at room temperature. The next step involves cutting the excess embedded bone so 

as to leave ~2100 μm mid-shaft thickness with a Struers diamond-encrusted blade mounted in a 

Struers Accutom-50 machine (Step 8). The slides were further grounded using the Fine Grind 

option and the Struers diamond-encrusted grinding wheel to remove ~700 μm thickness or until 

the desired thickness is obtained for proper comparative microanatomy (Step 9). To ensure that 

the relevant thickness was attained, a Leica Galen III microscope was used intermittently during 

the grinding process. For the final step, the slides were polished using OP-U suspension and a 

velvet polishing cloth on the Imptech 30 DVT machine (Step 10). The slides were place on layers 

of the paper towel to ensure dryness as water could affect the bone collagen and cause the 

mounted specimen to detach from the slide. 
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Bone histo-morphometry and microanatomy 

For the bone histo-morphometry, images of the complete bone section were captured using 

a Nikon digital camera attached to a stereomicroscope (Nikon SMZ745T). All the measurements 

were obtained using the ruler option in the NIS Element 3.0 software. For the sake of accuracy, a 

total of six measurements were taken at three levels on the section, because the sections are not 

circular and the bone wall has an uneven thickness (Table A4; Figure 5). The averages for the 

diameter of the section and the diameter of the medullary cavity were calculated. The bone 

cortical thickness (inversely proportional to the extent of the medullary cavity) was measured 

using the k index as coined by Currey and Alexander (1985). The k value is calculated by dividing 

the average diameter of the medullary cavity by the average diameter of the section. The k values 

lies between 0 and 1 whereby the closer to 0, the thicker the cortex and nearer to 1, the thinner the 

bone wall. Intra-specific comparisons between the k values (Table A5) of the bones in our sample 

were made in the form of descriptive statistics and box-and-whiskers graphs (Statistica 7) were 

plotted to illustrate the differences between both species. 

 

Univ
ers

ity
 of

 C
ap

e T
ow

n



18 

 

Figure 5: Approximate positions at which measurements have been taken to determine the 

bone cortical thickness (Example of the midshaft cross-section of the humerus of specimen 

G24). A1, B1 and C1 (continuous + dotted lines) represent diameter of the cortex and the 

medullary cavity length. A2, B2 and C2 (break lines only) represent the radius of the 

medullary cavity. The bone cortical thickness, or the k index (Currey and Alexander, 1985) 

has been calculated as follows: k = ((A2 + B2 + C2)/3) ÷ ((A1 + B1 + C1)/3). 

Bone histology 

 The bone histology deals with the description of the vascularization, the bone tissue type 

in the cortex, as well as the organization in layers on the bone wall (Figure 6). The layers that can 

be generally encountered in the long bone cortex of modern birds are usually the outer 

circumferential layer (OCL), the mid-cortex and the inner circumferential layer (ICL) (Ponton et 

al, 2004). The mid-cortex can vary in term of bone matrix type, which can be lamellar (highly 

organized tissue as a result of slow deposition of collagen fibers) or rather woven (highly 

disorganized due to fast, loose and random deposition of collagen fibers) (Currey, 2003). The 

vascularization can also vary, depending on the organization of the vascular canals and the type of 

vascular canals. The common types of vascularization present are simple vascular canals, primary 

osteons and secondary osteons (also known as Harvesian canals). When radially-oriented vascular 

canals inter-connect, they are known as Volkmann’s canals (Padian and Lamm, 2013). The 

orientation of the vascularization can be circumferential, longitudinal, radial and reticular (Figure 

7) (de Margerie et al, 2005). The presence of primary osteons with a woven bone tissue is referred 

to as fibrolamellar bone (de Ricqlès et al, 1991).  

For the bone microanatomy and histological description, images were obtained using a 

Nikon digital camera mounted on a light compound microscope (Nikon Eclipse E200) and a 

stereomicroscope (Nikon SMZ745T) under normal and polarized light. The magnifications for the 

pictures under the stereomicroscope ranged from 10× to 50×. Under the compound microscope, 

the magnifications of the pictures ranged from 40×, 100× and 400× and the imaging software used 

was NIS Elements 3.0 (Nikon Instruments Inc.). The following qualitative and quantitative 

features were recorded to describe bone microstructure (Figure 6; Table A6-A7): a. Bone wall 

thickness. b. Description of the medullary cavity.  c. Description of the circumferential layers.  d. 

Bone tissue type in the mid-cortex.  e. Type of vascularization in the mid-cortex (Figure 7) 
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Figure 6: In the present work, the bones were studied at different levels of integration. From 

the left to the right: A. the anatomical level (measurements of the bones recorded before 

sectioning); B. the microanatomical level (the bone wall thickness was measured); C. the 

histological level (the bone cortical tissue was described). Abbreviations, OCL: outer 

circumferential layer; ICL: inner circumferential layer; PO: primary osteons; SO: 

secondary osteons; RC: resorption cavity. 

 

Figure 7: Diagram showing the various types of vascularization encountered in the bone 

slides and in modern birds in general. All sections are seen under normal light. A. Mostly 

radial. B. Reticular. C. Circumferential. D. Longitudinal. 
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RESULTS 

Microanatomical and histological differences in the bone structure are well defined 

between the gannets and penguins allowing for inter-specific comparisons. Intra-specific bone 

variability was also observed thus denoting that some micro-structural differences occur within 

the ontogenetic stages, the genders of the individuals, and between the fore- and hind limb bones.  

 

Bone wall thickness 

Based on the k values obtained in this study, the results show that the penguins have  

thicker and more compact bones (low k values) as compared to the gannets which possess bones 

with a thinner and less compact structure (high k values) (Table A5; Figure 8; Figure 9). All 

comparative bone wall thickness is illustrated in Figure 8 that depicts the cross-sections of the 

different bones. A difference can be seen in the k values between adult penguins and adult gannets 

as depicted in the box-plots of the fore-limb bones and hind limb bones in Figure 9. 

From this analysis, it can be seen that gannets exhibiting bimodal locomotion have a rather 

identical k values between the different fore-limb and hind limb bones sampled, with overlapping 

confidence intervals at 95% as they make use of both forewing and hindleg during diving. The k 

values for the fore-limb and hind limb bones of the adult gannets do not differ with a standard 

deviation that does not exceed 0.05 hence the homogeneity of the k values. There is an average k 

value of 0.73 for the humerus, radius, carpometacarpus and tarsometatarsus whilst the ulna, femur 

and tibiotarsus lie within a k value of 0.77 (Table A8). The k values for juvenile fore-limb and 

hind limb bones also do not differ with a variation that lies below 0.06 (Table A8). The fore limb 

bones and the hind limb stylopod of the juveniles have an average k value of 0.76 and both the 

hind limb zeugopod and the autopod have a mean k value of 0.72. Comparisons between the 

adults and juveniles k value averages for each bone results in the hind limb autopod having the 

same k (0.72). Only the hind limb zeugopod bears an ontogenetic k difference of 0.04 (juvenile 

tibiotarsus: 0.72, adult tibiotarsus: 0.76). All the other bones have a relatively small k value 

difference of 0.02 between adult and juvenile. The fore-limb and hind limb bones of the male and 

female gannets show deviation of less than 0.05 (Table A8). All the bones with the exception of 

the ulna and carpometacarpus differ by 0.02 between males and females.  
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The flightless penguin exhibit heterogeneous k values with large separate confidence 

intervals at 95% between the forewing and hindleg bones. The adult penguin bones show high 

differences as the fore-limb and hind limb bones deviate by a k value of 0.18 (Table A8). The fore 

limb bones are more compact than the hind limb bones with k values on averages 0.23 and 0.43 

respectively. The juvenile penguin bones exhibit the same tendency as the adult with a difference 

in k value of 0.16 between hind limb and forelimb (Table A8). The average k value for the fore 

limb bones is 0.17 against 0.33 for the hind limb bones. There is a difference between adult and 

juvenile penguin fore-limb and hind limb bones. There was no difference between the fore-limb 

autopod of the juvenile and the adult (0.03). The fore-limb zeugopod and hindlimb stylopod 

differed by 0.07 between adult and juvenile. The most difference occurred in the humerus, 

tibiotarsus and tarsometatarsus with an average k value difference of 0.11 with adult having the 

higher k values. The fore-limb and hind limb bones of the male and female show little deviation of 

less than 0.19 (Table A8). The k values are small on average by 0.09 for all the fore-limb and hind 

limb bones of the female penguin (except for the ulna) as compared to the male penguins. This 

shows that the female fore-limb and hind limb bones are less compact than those of the males.  

Microanatomical and histological description 

African penguin 

Hatchling: Only one penguin hatchling specimen (064) was available for histological and 

microanatomical analyses. All the fore-limb and hind limb bones appeared to have similar 

histological characteristics when examined under the microscope in normal and polarized light. 

The bones are all very compact (Figure 10a-11a). A reduced medullary cavity (m) is present and 

is not visible under the stereo-microscope but slightly visible under the compound microscope as 

it is almost entirely in-filled with bone trabeculae. The outer and inner circumferential layers, 

generally encountered in sub-adult or adult birds, are absent or if present, they are barely visible 

(Figure 10b-11b). The deep cortex (close to the medullary cavity) is composed of a highly 

vascularized fibrolamellar bone with longitudinal primary osteons (PO). The second half of the 

cortex is composed of large vascular canals (SVC) with a radial orientation with few longitudinal 

poorly-established primary osteons. The cortex is mostly formed of a woven bone matrix, 

characteristic of fast deposited bone tissue, with numerous, globular and disorganized osteocytes. 

This fibrous bone tissue, with a high vascularization is characteristic of hatchling individuals. 

Univ
ers

ity
 of

 C
ap

e T
ow

n



22 

 

A. 

Figure 8. A. The complete cross-sectional diagram of the fore-limb bones of the African 

penguin (Spheniscus demersus).  
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B. 

Figure 8. B. The complete cross-sectional diagram of the hind limb bones of the African 

penguin (Spheniscus demersus).  
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C. 

Figure 8. C. The complete cross-sectional diagram of the fore-limb and hind limb bones of 

the Cape gannet (Morus capensis).  
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 B. 

Figure 9: A. Box and whiskers comparative plots for the fore-limb bones of adult gannet and penguin using the k index values 

at CI: 95%. (A: Humerus; B: Radius; C: Ulna; D: Carpometacarpus). B. Box and whiskers comparative plots for the hind 

limb bones of adult gannet and penguin using the k index values at CI: 95%. (E: Femur; F: Tibiotarsus; G: Tarsometatarsus).
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Juveniles: The three juvenile specimens appear to share similar microanatomical features. The 

bones are very compact with a more distinct medullary cavity as compare to the hatching 

medullary cavity (Figure 10c,e-11c,e) and some parts of the medullary cavity is filled up by 

trabecular bone. The outer circumferential layer is absent to partially present in some fore-wing 

bone and absent in all hind leg bones. The inner circumferential layer is barely noticeable. The 

four types of vascularizations namely circumferential, longitudinal, radial and reticular are 

encountered in the fore-limb and hind limb bone matrices (Figure 7). Primary osteons (PO) 

dominates the mid-cortex in a woven bone matrix, forming a highly vascularized fibrolamellar 

bone complex (Figure 10d,f-11d,f). In some sections, some small vascular canals (SVC), 

secondary osteons (SO) and resorption cavities (RC) can also be encountered closer to the 

medullary cavity.  

 

Adult: The fore-limbs bones of the adult penguins all bear the same traits (Figure 12-13). The 

bone wall is thick and very dense and a well-defined medullary cavity can be observed at the 

center of the bone (Figure 12a,c). The medullary cavity is free of bone trabeculae. The outer 

circumferential layer is absent and the inner circumferential layer appears to be absent or poorly 

formed. Towards the medullary cavity in the mid-cortex, stratified layers are encountered. The 

outermost layer consists of poorly vascularized woven matrix consisting of primary osteons 

(Figure 12b,d). The second layer is dominated by longitudinal and reticular secondary osteons. 

The dominating layer closest to the medullary cavity is composed of few Harvesian canals with 

some Volkmann’s canals with radial, longitudinal, reticular and few circumferential 

organization. Some resorption cavities can be encountered in some bones ((Figure 12b,d).  

The bones of the hind limb are less compact with an even larger medullary cavity (Figure 13a,c). 

The periosteal layer is present and is thin, with flattened and well-organized osteocytes (Figure 

13d). The endosteal layer is absent. The major types of vascularizations are radial and 

longitudinal with some reticulation (Figure 13b,d). The outer-cortex is composed of a layer of 

primary osteons in a woven bone matrix, followed by a zone of Harvesian canals in a deep cortex 

and a small number of resorption cavities lined with lamellar bone (Figure 13b,d). 
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Figure 10: Comparative histology of the bones of the forelimbs of a male hatchling (specimen 

064), female juvenile (specimen 466) and a male juvenile (specimen 116) African penguin. a, c 

and e are the complete cross-section of the bone cut at the mid-shaft region as seen under normal 

light. b, d, and f are the magnified view of the selected regions on the cross-section as seen under 

normal and polarized light. (m: medullary cavity; PO: primary osteons; SO: secondary osteons; 

SVC: simple vascular canal). 
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Figure 11: Comparative histology of the bones of the hind limbs of a male hatchling (specimen 

064), female juvenile (specimen 466) and a male juvenile (specimen 116) African penguin. a, c 

and e are the complete cross-section of the bone cut at the mid-shaft region as seen under normal 

light. b, d, and f are the magnified view of the selected regions on the cross-section under normal 

and polarized light. (m: medullary cavity; PO: primary osteons; SO: secondary osteons; SVC: 

simple vascular canal; RC: resorption cavity).  
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Figure 12: Comparative histology of the bones of the forelimbs of a male adult (specimen 146) 

and female adult (specimen 524) African penguin and a male juvenile (specimen G19) Cape 

gannet. a, c and e are the complete cross-section of the bone cut at the mid-shaft region as seen 

under normal light. b, d, and f are the magnified view of the selected regions on the cross-section 

under normal and polarized light. (m: medullary cavity; PO: primary osteons; SO: secondary 

osteons; RC: resorption cavity; OCL: outer circumferential layer; ICL: inner circumferential 

layer). 
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Figure 13: Comparative histology of the bones of the hind limbs of a male adult (specimen 146) 

and female adult (specimen 524) African penguin and a male juvenile (specimen G19) Cape 

gannet. a, c and e are the complete cross-section of the bone cut at the mid-shaft region as seen 

under normal light. b, d, and f are the magnified view of the selected regions on the cross-section 

under normal and polarized light. (m: medullary cavity; PO: primary osteons; SO: secondary 

osteons; RC: resorption cavity; OCL: outer circumferential layer; SVC: simple vascular canal). 
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Figure 14: Comparative histology of the bones of the forelimbs of a female juvenile (specimen 

G20), male adult (specimen G61) and a female adult (specimen G24) Cape gannet. a, c and e are 

the complete cross-section of the bone cut at the mid-shaft region as seen under normal light. b, 

d, and f are the magnified view of the selected regions on the cross-section as seen under normal 

and polarized light. (m: medullary cavity; PO: primary osteons; OCL: outer circumferential 

layer; ICL: inner circumferential layer). 
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Figure 15:: Comparative histology of the bones of the hind limbs of a female juvenile (specimen 

G20), male adult (specimen G61) and a female adult (specimen G24) Cape gannet. a, c and e are 

the complete cross-section of the bone cut at the mid-shaft region as seen under normal light. b, 

d, and f are the magnified view of the selected regions on the cross-section under normal and 

polarized light. (m: medullary cavity; PO: primary osteons; SVC: simple vascular canal; RC: 

resorption cavity; OCL: outer circumferential layer; ICL: inner circumferential layer).  
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Cape gannet 

Juvenile: The juvenile gannet bones are less compact as compared to the penguin bones, having a 

thin bone cortex with a large medullary cavity (Figure 12e, 13e, 14a, 15a).  A well-defined outer 

circumferential layer runs around the bone, suggesting that the active growth phase is over and 

that the growth slowed down ((Figure 12f, 13f, 14b, 15b). The inner circumferential layer is 

however less pronounced and incomplete ranging from being absent to thin and to thick layer in 

some parts of the section. The mid-cortex is composed of numerous primary osteons set in a 

woven bone matrix with longitudinal and reticular orientation (Figure 12f, 13f, 14b, 15b).  

Additionally, the tarsometatarsus is the only bone to feature resorption cavities ((Figure 12f, 13f, 

14b, 15b).   

 

Adult: All adult gannet bones have a large medullary cavity surrounded by a thin bone wall 

(Figure 14c,e-15c,e). The bone compacta is made up of a distinct thin outer circumferential layer 

in the outermost region (Figure 14d,f-15d,f). The mid-cortex is fibrolamellar and bears numerous 

and mostly longitudinal primary osteons in a woven matrix (Figure 14d,f-15d,f). The inner 

circumferentiallayer, surrounding the medullary cavity, is very thick (Figure 14d,f-15d,f). The 

types of vascularization that dominates the cortex are longitudinal and reticular (Figure 7b-d). 

Circumferentially-oriented vascularizations occurs in the humerus, ulna and femur (Figure 7c).  

 

Intra-specific variability 

In the juvenile penguin specimens, one specimen (241) appears to possess numerous large simple 

vascular canals radiating from the medullary cavity and lining the outermost layer of the bone 

section (Figure 16a). One adult penguin bones (146) bears numerous resorption cavities (Figure 

16b). The bones of one gannet bird (G56) possess resorption cavities and secondary osteons 

amidst fibro-lamellar bone (Figure 16c). 
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Figure 16. Intra-specific bone differences as exhibited by some specimens. A. Juvenile 

African penguin specimen 241 possesses numerous vascular canals in the cross-sections of 

its limb bones. [A. Humerus. B. Tarsometartarsus. C. Ulna. D. Tibiotarsus].  B. Adult 

African penguin specimen 146 possesses large resorption cavities and some secondary 

osteons in itsbones. [E. Carpometacarpus. F. Humerus. G. Tibiotarsus. H. 

Tarsometatarsus]. C. Cross-sectional diagram of various bones of the Cape gannet adult 

specimen G56 under normal and polarized light. All the sections of bones are showing 

secondary osteons and resorption cavities. [I. Humerus. J. Radius. K. Fibula which is fused 

to the tibia to form the tibiotarsus. L. Tarsometatarsus]. Abbreviations: m: medullary 

cavity; RC: resorption cavity; SO: secondary osteons; SVC: small vascular canals. 

 

Ontogenetic variability 

African penguin: Some ontogenetic differences can be noted in the organization of the bone 

compacta through ontogeny in Spheniscus demersus. The hatchling bears no inner or outer 

circumferential layers and the mid-cortex comprises of a woven bone matrix with a number of 

primary osteons and small vascular canals (Figure 10-11). The bone structure of the juvenile has 

primary osteons in a woven bone matrix and the presence of very few small vascular canals in 

the mid-cortex (Figure 10-11). The adult bone compacta is stratified with three distinctive layers 

when moving towards the bone cavity. The outer circumferential layer is visible in some bones. 

The layers include an outermost layer of fibrolamellar bone, a second layer of loosely arranged 

secondary osteons and lastly a layer composed of dense Harvesian canals closer to the medullary 

cavity (Figure 12-13).  

Cape gannet:  The ontogenetic variability in the juvenile and adult fore-limb and hind limb 

bones of Morus capensis are less pronounced. The juveniles have a thinner inner circumferential 

layer (Figure 14-15) whilst the adults possess a relatively thicker inner circumferential layer 

(Figure 14). Besides both having longitudinal and reticular vascularizations, the adults also have 

a number of circumferentially oriented canals (Figure 14-15). The tarsometatarsus of the 

juveniles differs such that they have resorption cavities, a feature absent in the adult leg bone 

(Figure 15).  
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Gender comparison 

African penguin: The differences between the males and females are minimal. The female fore-

limb and hind limb bones appear to have thicker inner and outer circumferential layers as 

compared those of the males. Some of the fore-limb and hind limb bones of the adult males 

possessed numerous resorption cavities; a feature absent in females. 

Cape gannet: The structural distinction between gannet sexes is that females appear to have 

thinner inner and outer circumferential layers than males. Circumferentially oriented canals are 

only observed in some of the female gannet fore-limb and hind limb bones. Radially oriented 

canals are only seen in some of the male gannet fore-limb and hind limb bones.  

The differences between the sexes of each species are not clearly evident. This may be due to the 

small sample size. There is also the possibility that the individuals did not fall within the same 

age range and therefore some of them may have been very old birds as indicated by the very 

thick inner and outer circumferential layers and the organization of the bone matrix (Age, 

Weight- Table A1).  

 

Inter-specific differences 

The most important difference between the penguin and gannet fore-limb and hind limb bones is 

the compactness. Penguins have a very compact fore-limb and hind limb bone structure with a 

small to nearly non-existent medullary cavity whilst the gannet fore-limb and hind limb bones 

are slender, thin-walled and bear a large hollow medullary cavity (Figure 17 –A and C). The 

penguin fore-limb and hind limb bones have well-defined stratified mid-cortical layers with 

numerous small vascular canals whilst the gannet fore-limb and hind limb bones are dominated 

by primary osteons. The presence of the inner and outer circumferential layers is more evident in 

the gannet fore-limb and hind limb bones being thicker and well-organized (Figure 17-B and D).  
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Figure 17: Comparative cross-sectional diagram of the radius of the African penguin 

(Spheniscus demersus) (146) and Cape gannet (Morus capensis) (G61). Both specimens are adult 

males. A. Cross section of the entire radius of the African penguin. B. Magnified view of the 

section. C. Cross section of the entire radius of the Cape gannet. D. Magnified view of the 

section. [ICL = inner circumferential layer; OCL = outer circumferential layer; PO = primary 

osteons; SO = secondary osteons; RC = resorption cavities; MC = medullary cavity]. 
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DISCUSSION 

The microanatomical and histological results obtained for the African penguin 

(Spheniscus demersus) and the Cape gannet (Morus capensis), indicates that intra- and inter-

specific variability occurs within the same species and between species and between the fore-

limb and hind limb long bones and that such differences relates to the ontogenetic stage and the 

gender of the individuals.  

 

Intra-specific variability 

Within the juvenile penguin, one specimen (241) is found to have a different micro-

structure as compared to the two others indicative that this individual is still actively growing 

(Figure 16a- Results section). The trabecular bone filling up the medullary cavity is more 

pronounced in this particular individual. In terms of bone compactness, specimen 241 has a less 

compact fore-limb bone when compared to the fore-limb bone of the other two juvenile penguin 

specimens indicating that the fore-limb bones are the most affected during ontogenesis. The hind 

limb bones do not seem to be the most affected as all the individuals appear to have a 

homogenous bone wall thickness (Table A5).  

One male adult penguin (146) appears to have been molting at the time of its death when 

compared to other male adult penguin individuals (Figure 16b-Results section). Since the other 

two male adult penguins were similarly larger and heavier (Head length and Weight-Table A1), 

it can be presumed that specimen 146 (which was smaller) was a sub-adult and that it was at the 

right age, size and weight to molt into an adult. As mentioned by Canoville (unpublished data), 

the stylopod and zeugopod bones of the King penguin (Aptenodytes patagonicus) are the most 

affected during molting. In specimen 146, the stylopod and the zeugopod bones of the fore-limb 

bones all have large resorption cavities. In the hind limb bones, since the zeugopod is the most 

affected. The zeugopod bones of the fore-limb and hind limb are less compact when compared to 

other individuals of the same age (Table A5); further confirming that these bones are the most 

affected during the molting phase. 
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The bones of one adult female gannet bird (G56) possess resorption cavities and 

secondary osteons (Figure 16c). Physiological stress like ovulation or starvation affects the 

calcium levels in bones. When calcium levels are reduced, this allows osteoclast to start 

resorbing (Dacke et al, 1993). This species was very thin and weighed less than the other adult 

female gannets. The bone micro-structure shows a high level of resorption occurring. Therefore, 

indicating that this bird was under a lot of physiological stress attributed to starvation caused by 

intestinal perforation before its death (Cause of death- Table A1). The stylopod, zeugopod and 

autopod of the fore-limb and hind limb bones of specimen G56 are less compact as compared to 

the other female gannets indicating that resorption occurred in all its bones (Table A5).  

 

Inter-skeletal variability 

Spheniscus demersus 

From the analysis of the bone wall thickness (Table A8), it can be seen that the inter-

skeletal elements develop at different rates during the ontogenetic stages of the African penguin. 

The pectoral bones mature slowly from hatchling to adult whilst the pelvic bones mature faster 

such that the juvenile penguin hind-limb bones are almost similar to the adult penguin hind-limb 

bones. Additionally, the different bones in the pectoral bones also mature at different rates with 

the stylopod maturing the fastest followed by the zeugopod and the autopod. Therefore, there is a 

trend in the maturation of the bones with the bone maturing faster going from the proximal to 

distal end of the fore-limb bones. Similarly, the pelvic bones have the same characteristics. The 

femur matures faster than the zeugopod and autopod and the tibiotarsus matures faster than the 

tarsometatarsus. The difference between the maturation of the fore-limb bones and hind-limb 

bones is explained by the fact that the hatching and the juvenile have a terrestrial locomotion at 

their young age and subsequently when they become adult, there is a change from terrestrial to a 

sub-aquatic locomotion. It can be noted that the fore-limbs bones are the most affected by sub-

aquatic locomotion as the bone trabeculae is replaced by compact bone due to the increase in the 

thickness of the cortex; a condition known as osteosclerosis (Domning and de Buffrénil, 1991). 

The bone is less compact when moving from the proximal humerus to the distal tarsometarsus, a 

tendency similarly reported in the dugong (dugong dugon) (Buffrénil and Schoevaert, 1989). 
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Morus capensis 

The k values of the Cape gannet bones shows that there is no difference between the long 

bone thickness between the juvenile gannets and the adults gannets (Table A8). This means that 

the gannet pectoral and pelvic bones already matures when the bird is still very young. In the 

juveniles, the fore-limb bones have a less compact bone structure than those of the hind limb 

bones which could be accountable by their terrestrial lifestyle. The juvenile fore-limb and hind-

limb bones changes slightly as the individual matures into an adult with the fore-limb bones 

becoming more compact than the hind-limb bones which remains at the same thickness as the 

juvenile long bones. This is because the gannet changes its lifestyle from terrestrial to aerial and 

sub-aquatic and therefore there is an increase in the use of the fore-limb bones during flying.  

 

Ontogenetic variability 

Spheniscus demersus 

There are some differences between the bone microstructure of the hatchling, juvenile 

and adult penguins. The hatchling fore-limbs and hind limb bones show that active growth phase 

is occurring as bone deposition is very fast and disorganized resulting in rapid extension of 

compact bone over the filling of the mid-cortex with primary osteon (de Margerie, 2004). The 

juvenile fore-limb and hind limb bones show that active growth has stopped. Osteosclerosis is 

taking place as the bone trabeculae in the juvenile fore-limb bones are slowly replaced by the 

compact bone. In the adult fore-limb and hind limb bones, the bone trabeculae is completely 

replaced by compact bone and therefore the bone wall thickness of the adult penguin increases. 

Adult penguins have a less compact bone as compared to hatchling and juvenile due to their 

lifestyle adaptation. Hatchling and juvenile are primarily terrestrial during the early stages of 

their life cycle. Therefore, when maturing into adults, their bones becomes more compact since 

land animals that have re-adapted themselves to an aquatic lifestyle bears osteosclerosic 

conditions (de Ricqlès and Buffrenil, 2001).  

 

 

Univ
ers

ity
 of

 C
ap

e T
ow

n



42 

 

Morus capensis 

 The fore-limb and hind limb bones of the juvenile and adult gannet do not show much 

difference in the bone micro-structure. All the juvenile hind-limb autopod bone have some 

resorption cavities which is probably linked to the extensive usage of this bone during terrestrial 

locomotion when they venture out of their colonies and are therefore left to fend for themselves. 

According to Jarvis (1972), the young juveniles have 10 days to learn to forage otherwise they 

will starve to death. The presence of resorption cavities in the tarsometatarsus could be a result 

of physiological stress due to starvation; thus causing calcium to be relocated. Canoville 

(unpublished paper) has found the same pattern in the femur and/or the tibiotarsus of two adult 

King penguins (Aptenodytes patagonicus) which were attributed to physiological stress at the 

time of their death. The presence of circumferential canals in the mid-cortex of the humerus, ulna 

and femur of the adult gannet is related to their bimodal locomotion. These are the main bones 

used during flight and underwater propulsion under water as these bones all possess torsion-

resistant features as described by de Margerie et al (2005). The laminarity of the bone combined 

with the low compactness and the large hollow medullary cavity of the bone wall confers 

properties that allows for buoyancy and waterdrag control when underwater.  

 

Inter-specific variability 

The Cape gannet fore-limb and hind limb bones have a large hollow medullary cavity and 

a thin-walled cortex which is relative to the findings of other sub-aquatic birds with bimodal 

locomtion by Habib and Ruff (2008). De Margerie et al. (2005) attribute this to the 

biomechanical adaptation to flying since the humerus, ulna and femur micro-structural properties 

confer torsional resistance. In contrast, the flightless African penguins, which are exclusively 

aquatic in their adult phase, possess very compact bone due to partial osteosclerosis of the 

medullary cavity. This coincides with the findings in other exclusive marine birds like the 

Hesperornis regalis (Chinsamy et al, 1998) and the Phalacrocorax harrisi (Habib and Ruff, 

2008).  
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Physiological implications 

Morus capensis 

As seen in the foraging behaviour of the Cape gannet (previously described in the 

Material and methods section), these birds travel far distances at sea to reach their feeding sites 

(Grémillet et al, 2004). Therefore, an efficient flying apparatus is needed to achieve long-

distance travel. The thin-walled bones and the type of vascularizations confers structural 

properties that is torsion-resistant against wind pressure on their wings especially since the air 

current above the ocean can be very unpredictable (de Margerie et al, 2005). Furthermore, this 

species exhibit both flying and aquatic locomotion (Ashmore, 1971). Cape gannets plunge-dive 

into the ocean to catch their prey and when into the water, they use both forelimbs and hind 

limbs for underwater propulsion. However, previous studies have shown that the gannets do not 

dive very deep; they dive to about 3.6 metres into the water due to their low breathing retention 

time of 4.3 seconds (Grémillet et al, 2004; Ropert-Coudert et al, 2004). This implies that gannets 

must have a way to control their buoyancy so as to ensure that they stay close to the surface in 

the water column. The presence of a large medullary cavity and less compact bones provides 

buoyancy to some extent as it decreases the overall body mass of the birds.  

 

Spheniscus demersus 

African penguins exhibit sub-aquatic locomotion by means of fore-limbs propulsion 

underwater. Penguins dive deeper than the Cape gannets (average 17 meters) and remain 

underwater far longer (2.5 minutes) (Wilson and Wilson, 1995). Since penguins dive so deep, a 

large amount of energy is required by the muscles to overcome such water pressure (Schmidt-

Nielsen, 1997). The hind limbs are especially adapted for such deep diving. The flattened 

morphology of the bones offers low resistance to movement in the water. This provides an 

efficient way to conserve energy. In order to dive to such depths, penguins need to be heavy 

enough to reduce buoyancy. Therefore the medullary cavity is greatly reduced so as to reduce the 

air spaces which promote buoyancy. The high level of compactness of the bone wall provides 

weight to the skeletal structure. 
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CONCLUSION 

There is a definite difference between the microanatomy and histology of the fore-limb 

and hind limb bones of the African penguin (Spheniscus demersus) and the Cape gannet (Morus 

capensis) based on their aquatic lifestyle adaptations and the type of locomotion. The 

ontogenetic stage of the species greatly affects the bone micro-structure. In the penguins, the 

bone compactness increases with maturation of the birds. In the gannets, the juvenile bones have 

the same bone wall thickness as the adult suggesting that the bone matures very fast. Some 

individuals exhibit intra-specific variability due to physiological stresses (active growth, molt, 

injuries). Inter-skeletal variability occurs in the fore-limb and hind limb bones across the 

stylopod, zeugopod and autopod with the stylopods and zeugopods being the bones that are most 

affected by sub-aquatic locomotion. 

To further prove that aquatic lifestyle adaptation and the type of locomotion affects the 

bone micro-structure, the inclusion of another species is essential. The most appropriate species 

is the Cape cormorant (Phalacrocorax capensis) as this species also exhibit bimodal locomotion 

just like the Cape gannet, but unlike the African penguin which is a fore-limb propelled diver, 

this species is a hind limb propelled diver. Additionally, a more in depth studies could be 

achieved pertaining to the intra-specific gender differences of the species with the addition of a 

bigger number of males and females in the biological sample. Particular attention should be 

given in future studies into the possible presence of lines of arrested growth (LAGs) in the bone 

cortex, an important ontogenetic feature that was not observed in our sample and yet have been 

found in numerous bird species in other studies. In order to gain a complete understanding of the 

interspecific and intraspecific differences of the birds in this study, an accurate examination of 

the bird foraging behaviour and life-cycle with relation to physiological implications of the bone 

micro-structure should be conducted. Only after these aims have been fulfilled, a more in depth 

comprehension into the effect of the micro-structure of long bones of marine aquatic birds with 

respect to their aquatic adaptations would be promising. 
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APPENDIX  

Table A1: The complete data relevant to the biological samples (Compiled by Dr. Nola Parsons, SANCCOB). Note: The head 

length was measured for the penguins and the beak length (mm) was measured for the gannets. 

Species 
Bird 

N° 

Date 

admit 
Area from 

Date 

died 
Age Gender 

Head 

length 

(mm) 

Weight 

(kg) 
Condition 

Cause of Death 

(PTS = Put to sleep / DOA = 

Dead on arrival) 

A
fr

ic
a
n

 p
e
n

g
u

in
 

064 19.2.12 Boulders 24.2.12 Hatchling Male 91.1 1.25 Moderate PST - Fractured leg 

466 5.12.11 Betty's Bay 3.4.12 juvenile Female 115.8 2.40 Good PTS-Poor feather+bumble foot 

116 2.4.12 Boulders 2.4.12 juvenile Male 121.7 2.00 Poor PTS - Fractured beak 

241 30.7.12 Robben Is. 1.8.12 juvenile Male 108.1 1.40 Poor Died - Weak, thin, enteritis 

146 25.4.12 Kalk Bay 25.4.12 Adult Male 121.9 2.38 Good DOA - Wounds + peritonitis 

191 20.6.12 Boulders 19.6.12 Adult Male 127.2 2.80 Good DOA - Ruptured intestine 

192 20.6.12 Boulders 19.6.12 Adult Male 127.7 3.00 Good DOA - Blood loss (trauma) 

167 23.5.12 Betty's Bay 23.5.12 Adult Female 115.5 2.56 Good PTS - leg + abdominal wounds 

231 20.7.12 Betty's Bay 20.7.12 Adult Female 112.4 2.42 Good PST - Fractured leg 

524 19.9.12 Betty's Bay 19.9.12 Adult Female 118.1 3.55 Fat PST - Fractured leg 

C
a

p
e 

g
a

n
n

e
t 

G04 27.2.12 Muizenberg 27.2.12 juvenile Male 92.8 1.60 Poor PTS - Fractured wing 

G17 2.4.12 Muizenberg 2.4.12 juvenile Female 90.8 1.38 Poor PTS - Fractured wing 

G19 5.4.12 Fishhoek 10.4.12 juvenile Male 91.8 1.78 Moderate PTS - Fractured wing 

G20 10.4.12 Robben Is. 12.4.12 juvenile Female 87.7 1.38 Poor Died - Necrotic eneritis 

G59 1.9.12 Llandudno 1.9.12 Adult Male 83.4 2.25 Good PTS - Fractured wing 

G61 27.9.12 Fish hoek 18.9.12 Adult Male 91.4 2.10 Thin H 

G24 25.4.12 Muizenberg 8.5.12 Adult Female 89.3 2.20 Good PTS - not standing 

G56 21.5.12 Fishhoek 21.5.12 Adult Female 78.8 1.90 Thin DOA - perforated intestine 

G57 21.5.12 Fishhoek 21.5.12 Adult Female 88.8 1.55 Emaciated Died - Emaciation 
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Table A2: Measurements of the fore-limb bones of Spheniscus demersus and Morus capensis as shown on Figure 3 (Materials 

and Methods). Some bones have not been sampled because they were broken. All measurements are in millimeters (mm). 

[Abbreviations: BL: Bone length; PW: Proximal width; DW: Distal width; MSD: Mid-shaft diameter]. 

 

 

Bird N° Humerus Radius Ulna Carpometacarpus 

 
BL PW DW MSD BL PW DW MSD BL PW DW MSD BL PW DW MSD 

064 59.68 11.99 12.35 10.95 33.84 6.74 6.43 8.13 37.86 6.36 7.40 8.61 - - - 
 

466 65.12 17.39 16.43 10.27 47.42 7.54 8.17 10.03 45.54 7.95 7.79 11.97 36.56 11.82 12.33 12.33 

116 75.67 21.81 16.83 13.58 50.36 8.51 8.74 12.09 52.96 8.65 8.04 16.27 44.42 14.62 15.13 15.67 

241 68.28 20.63 16.26 12.79 47.82 9.09 7.65 10.81 49.46 7.88 8.46 12.79 41.06 14.94 14.26 13.03 

146 69.54 18.26 15.94 12.95 47.23 8.04 7.68 11.43 49.21 8.26 8.35 13.54 41.02 13.42 15.02 14.88 

191 70.95 20.34 16.38 14.21 49.87 8.05 8.98 10.57 50.79 7.54 8.56 13.78 - - - - 

192 72.73 21.42 25.01 13.98 49.87 8.66 8.81 12.35 52.22 8.73 8.92 14.59 42.03 13.88 16.26 15.45 

167 67.68 16.19 21.47 11.69 48.33 8.31 8.66 10.59 48.48 7.35 8.37 13.39 39.53 13.60 14.94 14.10 

231 70.10 20.90 16.42 12.73 45.52 7.89 8.43 10.55 47.53 7.32 7.29 12.77 40.06 13.38 15.54 13.44 

524 63.44 17.74 16.09 12.13 47.51 7.64 8.27 11.34 44.78 9.44 7.59 11.94 37.20 12.62 14.10 14.34 

G04 221.15 29.15 22.89 10.07 190.25 7.67 11.99 5.62 195.74 16.49 15.96 8.38 93.22 19.04 13.02 6.28 

G17 207.97 27.62 22.36 10.49 185.76 7.82 15.30 5.73 185.29 16.31 16.13 8.02 91.36 12.31 13.54 7.37 

G19 217.37 27.77 21.26 9.07 185.54 7.99 13.66 5.57 190.71 15.71 16.30 8.13 90.26 18.55 12.98 6.59 

G20 216.55 27.55 21.96 9.79 186.76 8.21 14.77 5.08 190.36 16.79 16.56 7.56 88.36 18.73 12.14 5.69 

G59 212.53 27.28 20.89 10.57 179.92 7.17 11.26 5.04 183.18 15.23 16.07 8.24 85.76 17.94 14.19 6.81 

G61 224.60 29.47 22.77 10.87 190.09 7.93 11.84 5.85 202.75 16.86 16.62 8.89 88.26 18.98 12.88 6.93 

G24 223.39 27.34 22.24 11.28 191.99 8.57 13.68 5.15 197.36 16.17 15.44 7.69 91.89 18.95 14.54 6.56 

G56 198.4 29.32 22.07 10.47 170.55 8.32 11.92 5.44 173.19 15.83 16.41 8.08 79.91 17.79 11.67 6.59 

G57 208.24 29.11 22.41 10.73 181.16 7.98 12.27 5.51 185.77 15.98 17.61 7.89 87.18 18.58 13.83 7.09 
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Table A3: Measurements of the hind limb bones of Spheniscus demersus and Morus capensis as shown on Figure 3 (Materials 

and Methods). Some bones have not been sampled because they were broken. All measurements are in millimeters (mm). 

[Abbreviations: BL: Bone length; PW: Proximal width; DW: Distal width; MSD: Mid-shaft diameter]. 

Bird N° Femur Tibiotarsus Tarsometatarsus Phalanx 

 BL PW DW MSD BL PW DW MSD BL PW DW MSD BL PW DW MSD 

064 67.78 14.48 12.99 7.08 87.96 16.73 13.88 7.09 31.27 15.87 16.79 14.25 - - - - 

466 67.74 14.71 14.18 7.42 98.49 17.88 13.61 6.62 29.83 16.03 18.90 14.84 - - - - 

116 76.57 17.19 16.07 7.61 117.28 17.67 14.09 7.63 35.16 16.26 20.44 15.67 25.38 10.09 6.91 5.94 

241 71.52 15.66 16.68 7.90 103.18 18.92 14.60 6.88 32.89 16.31 19.76 15.23 - - - - 

146 74.95 15.88 16.53 7.64 109.34 17.36 13.99 7.66 33.42 15.09 20.28 15.94 23.01 8.72 6.58 6.13 

191 - - - - 111.69 21.62 14.43 7.33 34.57 15.27 20.26 15.25 - - - - 

192 - - - - 112.25 21.82 14.52 8.81 34.55 17.36 20.47 15.93 - - - - 

167 71.66 16.24 13.97 7.18 103.02 21.24 13.24 6.11 33.25 14.41 19.69 17.65 - - - - 

231 - - - - 103.68 18.10 13.44 6.64 31.85 14.87 19.68 13.91 - - - - 

524 61.21 14.45 14.02 6.86 99.25 17.16 14.66 6.98 30.04 15.24 18.91 14.28 - - - - 

G04 73.04 15.67 15.93 6.87 107.69 20.76 14.12 7.23 62.04 15.02 16.92 8.92 - - - - 

G17 70.22 15.09 14.81 6.58 104.07 18.75 13.76 7.26 59.78 14.36 17.64 8.16 - - - - 

G19 71.82 13.97 16.73 6.97 108.94 16.55 13.18 7.65 62.97 14.03 16.79 8.28 - - - - 

G20 72.05 14.65 16.80 7.42 107.11 18.13 14.09 7.38 59.43 14.68 16.81 8.34 - - - - 

G59 69.81 13.92 15.36 6.58 103.41 20.37 12.74 7.76 57.04 14.73 16.64 8.20 - - - - 

G61 72.58 15.56 16.93 7.91 109.37 19.18 14.58 7.85 59.85 14.69 18.03 8.52 - - - - 

G24 72.42 14.61 16.74 7.71 105.69 18.82 15.22 7.93 61.15 14.08 17.41 8.23 - - - - 

G56 69.29 13.29 15.77 8.32 100.63 16.43 13.49 8.13 56.83 14.01 17.09 8.68 - - - - 

G57 69.03 14.13 15.96 7.32 103.84 19.65 12.35 7.43 58.50 13.51 18.02 8.57 - - - - Univ
ers

ity
 of
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ow
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Table A4: Measurements and calculation of the average diameter of the whole bone cross-section (at the midshaft level) and 

the average diameter of the medullary cavity as described in Figure 5 in the Material and methods section in order to calculate 

the k parameter. All measurements are in millimeters (mm). [Abbreviations: B: Bone; Sd: Section diameter; MCd: Medullary 

cavity diameter; Avg Sd: average section diameter; Avg MCd: average medullary cavity diameter; Ca: Carpometacarpus; Fe: 

Femur; Hu: Humerus; Phalanx: Px; Radius: Ra; Ta: Tarsometatarsus; Ti: Tibiotarsus; Ul: Ulna]. 

 B Sd 1 
MCd 

1 
Sd 2 

MCd 

2 
Sd 3 

MCd 

3 

Avg 

Sd 

Avg 

MCd 
B Sd 1 

MCd 

1 
Sd 2 

MCd 

2 
Sd 3 

MCd 

3 

Avg 

Sd 

Avg 

MCd 

0
6

4
 Fe 6.33 2.25 6.13 2.05 5.57 2.07 6.01 2.12 Ta 12.78 3.54 3.84 1.18 4.32 0.92 6.98 1.88 

Hu 10.53 0.20 3.53 0.64 7.18 0.00 7.08 0.28 Ti 7.24 0.52 5.72 0.49 7.10 0.56 6.69 0.52 

Ra 7.22 0.00 2.62 0.10 4.50 0.00 4.78 0.03 Ul 7.70 1.92 2.86 1.02 5.29 2.14 5.28 1.69 

4
6

6
 

Ca 8.12 4.22 2.91 0.58 5.55 1.49 5.53 2.10 Ta 5.33 2.23 10.53 3.53 3.44 1.42 6.43 2.39 

Fe 12.32 4.93 10.99 4.67 12.30 5.33 11.87 4.98 Ti 6.82 2.58 6.33 3.08 6.11 2.22 6.42 2.62 

Hu 9.25 2.74 6.90 0.99 4.85 0.83 7.00 1.52 Ul 11.13 0.00 7.68 1.49 2.80 0.00 7.20 0.50 

Ra 9.00 2.53 3.31 0.86 5.34 1.30 5.88 1.57          

1
1

6
 

Ca 9.99 1.45 1.94 0.00 5.33 0.00 5.75 0.48 Ra 11.65 0.00 3.47 0.09 5.76 0.00 6.96 0.03 

Fe 7.67 2.73 7.56 2.69 7.43 2.38 7.56 2.60 Ta 4.59 0.90 5.53 1.63 1.30 0.00 3.81 0.84 

Hu 13.77 0.00 4.55 0.00 10.09 0.46 9.47 0.15 Ti 7.30 2.39 7.01 2.15 6.44 2.45 6.92 2.33 

Px 5.30 3.81 5.57 3.67 4.59 1.02 5.15 2.83 Ul 15.23 0.00 3.36 0.00 11.29 0.38 9.96 0.13 

2
4

1
 

Ca 16.50 5.14 3.36 0.61 6.54 1.70 8.80 2.49 Ta 4.15 1.52 3.68 1.61 3.94 0.00 3.92 1.04 

Fe 12.74 3.85 10.59 3.58 11.91 4.37 11.75 3.93 Ti 6.38 1.86 5.30 0.00 6.02 2.57 5.90 1.48 

Hu 12.20 3.29 4.50 0.00 7.35 0.00 8.02 1.10 Ul 10.10 4.91 2.99 0.75 6.24 0.00 6.45 1.89 

Ra 16.61 4.83 4.95 1.12 6.41 1.60 9.32 2.52          

1
4
6
 

Ca 9.39 5.40 2.82 0.57 5.95 0.83 6.06 2.27 Ra 10.83 5.35 3.23 0.75 6.23 0.75 6.76 2.28 

Fe 7.51 2.71 6.69 2.63 7.30 3.23 7.17 2.86 Ta 4.27 2.62 4.01 1.98 3.76 1.61 4.01 2.07 

Hu 12.17 2.66 3.66 0.00 7.58 0.98 7.80 1.21 Ti 8.20 4.37 6.74 4.02 7.24 3.97 7.39 4.12 

Px 6.98 6.09 6.02 5.50 4.77 2.50 5.92 4.70 Ul 13.13 5.36 3.35 0.82 5.41 0.90 7.30 2.36 

1
9
1
 Hu 15.47 6.42 7.22 1.49 9.11 1.48 10.60 3.13 Ti 6.38 2.86 6.91 2.84 6.04 2.50 6.44 2.73 

Ra 9.87 1.98 3.19 0.61 5.02 0.00 6.03 0.86 Ul 12.56 0.00 3.12 0.48 7.40 0.00 7.69 0.16 

Ta 3.71 1.10 2.11 0.00 4.98 0.00 3.60 0.37          

1
9
2
 Ca 9.45 0.37 3.00 0.00 5.60 0.00 6.02 0.12 Ta 6.15 3.84 14.64 10.11 7.25 2.58 9.35 5.51 

Hu 11.42 4.56 5.15 1.00 7.11 1.32 7.89 2.29 Ti 11.77 5.73 10.74 4.47 11.79 5.52 11.43 5.24 

Ra 15.68 4.37 5.38 0.30 7.81 0.85 9.62 1.84 Ul 16.53 6.21 4.31 0.33 8.83 0.88 9.89 2.47 

1
6

7
 

Ca 3.41 1.12 5.79 1.90 5.40 1.26 4.87 1.43 Ta 13.90 2.71 13.99 10.49 5.33 3.52 11.08 5.57 

Fe 11.52 4.71 11.29 4.82 11.42 5.14 11.41 4.89 Ti 6.41 2.97 5.69 2.60 6.53 2.74 6.21 2.77 

Hu 16.61 3.32 6.63 0.74 10.35 0.97 11.20 1.67 Ul 11.98 4.37 3.28 0.62 6.31 0.49 7.19 1.83 

Ra 9.45 4.10 3.24 0.66 6.01 1.47 6.24 2.08          
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Continued…   
 B Sd 1 

MCd 

1 
Sd 2 

MCd 

2 
Sd 3 

MCd 

3 

Avg 

Sd 

Avg 

MCd 
B Sd 1 

MCd 

1 
Sd 2 

MCd 

2 
Sd 3 

MCd 

3 

Avg 

Sd 

Avg 

MCd 

2
3

1
 Ca 16.30 7.47 3.39 0.49 5.79 1.21 8.49 3.06 Ta 17.50 5.84 7.25 2.80 9.68 4.54 11.48 4.39 

Hu 11.00 4.28 8.33 1.84 4.84 1.05 8.06 2.39 Ti 8.40 3.80 8.10 3.63 8.68 4.19 8.39 3.87 

Ra 10.38 2.49 5.95 0.00 3.01 0.50 6.45 1.00 Ul 11.75 0.00 5.85 0.00 3.04 0.78 6.88 0.26 

5
2

4
 

Ca 8.21 3.14 3.10 0.49 5.08 2.18 5.46 1.94 Ta 14.85 4.39 4.91 1.90 3.30 0.88 7.68 2.39 

Fe 7.90 3.77 6.68 3.06 7.64 3.49 7.41 3.44 Ti 6.65 2.60 6.86 2.90 6.29 2.78 6.60 2.76 

Hu 10.81 2.64 6.36 0.00 4.67 0.00 7.28 0.88 Ul 17.93 5.65 10.22 1.72 5.38 0.89 11.18 2.75 

Ra 17.37 8.71 5.99 0.75 7.42 1.05 10.26 3.51          

G
0

4
 

Hu 8.69 6.32 9.19 6.68 9.68 7.99 9.19 7.00 Fe 6.72 5.36 7.12 5.59 7.51 5.95 7.12 5.63 

Ra 4.84 3.46 5.33 3.82 5.05 3.63 5.07 3.63 Ti 6.61 4.81 5.23 3.60 7.21 5.11 6.35 4.50 

Ul 7.76 5.83 7.67 6.30 7.98 6.16 7.80 6.10 Ta 8.05 6.50 4.49 3.04 7.56 5.44 6.70 4.99 

Ca 6.12 4.39 5.70 4.18 5.23 4.89 5.68 4.49          

G
1

7
 

Hu 13.23 10.31 10.74 7.35 10.94 7.74 11.64 8.47 Fe 10.37 7.73 10.21 7.77 9.36 7.21 9.98 7.57 

Ra 4.56 3.50 3.88 2.62 4.79 3.52 4.41 3.21 Ti 10.36 7.86 7.87 5.60 8.08 5.53 8.77 6.33 

Ul 6.11 4.22 7.40 5.62 7.37 5.51 6.96 5.12 Ta 15.15 11.70 12.25 7.53 7.84 4.51 11.75 7.92 

Ca 10.23 7.20 9.50 7.29 8.59 6.82 9.44 7.10          

G
1

9
 

Hu 8.21 5.72 9.32 7.52 9.93 8.29 9.15 7.18 Fe 11.49 9.04 10.95 8.58 10.86 8.08 11.10 8.57 

Ra 4.80 3.53 4.99 3.68 4.71 3.56 4.83 3.59 Ti 13.18 10.13 9.30 6.27 11.70 8.43 11.39 8.27 

Ul 11.36 9.00 11.05 8.90 10.91 9.10 11.11 9.00 Ta 8.07 6.22 6.07 4.09 3.62 1.82 5.92 4.04 

Ca 8.45 7.01 10.07 7.53 9.80 7.27 9.44 7.27          

G
2

0
 

Hu 9.80 7.72 8.26 5.46 9.60 6.80 9.22 6.66 Fe 6.49 4.96 7.19 5.53 6.78 4.84 6.82 5.11 

Ra 4.81 3.63 4.90 3.65 4.90 3.71 4.87 3.66 Ti 7.32 5.80 5.98 3.91 5.46 3.64 6.26 4.45 

Ul 7.39 5.86 7.71 5.80 7.53 5.72 7.55 5.79 Ta 8.15 6.67 3.28 1.96 8.20 6.32 6.54 4.98 

Ca 5.33 4.24 6.10 4.07 6.22 4.41 5.88 4.24          

G
5
9
 

Hu 13.04 10.53 11.56 7.93 10.63 6.60 11.74 8.35 Fe 7.18 5.47 5.94 4.60 6.36 4.90 6.49 4.99 

Ra 4.86 3.51 5.01 3.54 4.79 3.62 4.89 3.56 Ti 6.85 5.43 5.82 4.59 5.19 3.94 5.96 4.65 

Ul 10.95 8.50 10.58 7.95 10.66 8.36 10.73 8.27 Ta 7.68 3.96 7.44 5.93 3.37 2.04 6.16 3.98 

Ca 6.14 4.41 5.87 4.20 5.15 4.18 5.72 4.26          

G
6
1
 

Hu 8.61 6.07 10.42 8.66 9.89 7.32 9.64 7.35 Fe 7.33 5.97 7.39 5.79 7.03 5.79 7.25 5.85 

Ra 4.96 3.78 5.47 4.03 5.25 3.91 5.23 3.91 Ti 9.97 6.75 7.02 5.81 6.19 5.08 7.73 5.88 

Ul 8.13 6.64 8.04 6.52 7.95 6.62 8.04 6.59 Ta 8.03 7.09 7.56 4.70 3.28 2.14 6.29 4.64 

Ca 5.82 4.86 6.65 4.88 6.00 4.84 6.16 4.86          

G
2

4
 

Hu 13.14 9.10 13.20 10.16 10.78 7.12 12.37 8.79 Fe 9.73 7.50 10.51 8.29 9.94 7.84 10.06 7.88 

Ra 5.07 3.66 4.55 3.27 4.86 3.39 4.83 3.44 Ti 9.62 7.47 8.07 6.00 7.35 5.42 8.35 6.30 

Ul 12.25 9.22 11.24 8.97 11.33 8.64 11.61 8.94 Ta 7.79 6.45 4.62 2.97 7.46 5.70 6.62 5.04 

Ca 10.21 7.10 7.85 6.25 10.24 7.20 9.44 6.85          
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Continued…  
 B Sd 1 

MCd 

1 
Sd 2 

MCd 

2 
Sd 3 

MCd 

3 

Avg 

Sd 

Avg 

MCd 
B Sd 1 

MCd 

1 
Sd 2 

MCd 

2 
Sd 3 

MCd 

3 

Avg 

Sd 

Avg 

MCd 

G
5

6
 

Hu 10.51 8.56 8.60 5.96 9.52 7.37 9.54 7.30 Fe 7.71 6.27 6.93 5.54 6.71 5.57 7.12 5.80 

Ra 5.28 3.76 5.21 3.94 5.27 3.87 5.25 3.86 Ti 11.31 8.76 9.87 7.72 8.21 6.28 9.80 7.59 

Ul 8.06 6.14 7.94 6.30 7.55 5.35 7.85 5.93 Ta 8.15 6.74 7.53 5.10 4.25 3.18 6.64 5.01 

Ca 8.43 6.08 8.37 6.04 7.91 6.20 8.24 6.11          

G
5

7
 

Hu 14.47 11.18 12.54 8.33 11.43 6.99 12.82 8.83 Fe 9.25 6.87 10.18 7.57 10.07 7.73 9.83 7.39 

Ra 5.04 3.48 5.12 3.28 4.99 3.22 5.05 3.33 Ti 7.40 5.55 4.98 3.47 5.15 3.69 5.84 4.23 

Ul 9.92 7.47 10.41 7.06 10.18 7.12 10.17 7.22 Ta 8.53 6.84 7.64 4.43 3.25 2.02 6.47 4.43 

Ca 8.61 5.54 8.32 5.40 6.79 5.14 7.91 5.36          
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Table A5: Values for the k index (Currey and Alexander, 1985) for all the African penguin and Cape 

gannet bones. (AF: African penguin; CG: Cape gannet).  

Age Species No Gender Humerus Radius Ulna 
Carpo-

metacarpus 
Femur 

Tibio-

tarsus 

Tarso-

metatarsus 

Hatchling AF 064 Male 0.04 0.01 0.32 - 0.35 0.08 0.27 

Juvenile AF 466 Female 0.22 0.27 0.07 0.38 0.42 0.41 0.37 

Juvenile AF 116 Male 0.02 0.00 0.01 0.08 0.34 0.34 0.22 

Juvenile AF 241 Male 0.14 0.27 0.29 0.28 0.33 0.25 0.27 

Adult AF 146 Male 0.16 0.34 0.32 0.37 0.40 0.56 0.52 

Adult AF 191 Male 0.30 0.14 0.02 - - 0.42 0.10 

Adult AF 192 Male 0.29 0.19 0.25 0.02 - 0.46 0.59 

Adult AF 167 Female 0.15 0.33 0.25 0.29 0.43 0.45 0.50 

Adult AF 231 Female 0.30 0.15 0.04 0.36 - 0.46 0.38 

Adult AF 524 Female 0.12 0.34 0.25 0.35 0.46 0.42 0.31 

Juvenile CG G04 Male 0.76 0.72 0.78 0.79 0.79 0.71 0.75 

Juvenile CG G17 Female 0.73 0.73 0.74 0.75 0.76 0.72 0.67 

Juvenile CG G19 Male 0.78 0.74 0.81 0.77 0.77 0.73 0.68 

Juvenile CG G20 Female 0.72 0.75 0.77 0.72 0.75 0.71 0.76 

Adult CG G59 Male 0.71 0.73 0.77 0.75 0.77 0.78 0.65 

Adult CG G61 Male 0.76 0.75 0.82 0.79 0.81 0.76 0.74 

Adult CG G24 Female 0.71 0.71 0.77 0.73 0.78 0.75 0.76 

Adult CG G56 Female 0.76 0.73 0.76 0.74 0.81 0.77 0.75 

Adult CG G57 Female 0.69 0.66 0.71 0.68 0.75 0.72 0.68 
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Table A6: Complete bone histological description for the African penguin (Spheniscus demersus) observed under normal and polarized 

light at ×40, ×100 and ×400 magnification. [Abbreviations: B: Bone; OCL: Outer circumferential layer; ICL: Inner circumferential layer; 

a: absent; p: present; pp: present in some regions; c: circumferential; l:longitudinal; r: radial; o: reticular; po: primary osteons; so: 

secondary osteons; rc: resorption cavities; svc: simple vascular canals; wbm: woven bone matrix; lb: lamellar bone; Ca: 

Carpometacarpus; Fe: Femur; Hu: Humerus; Px: Phalanx; Ra: Radius; Ta: Tarsometatarsus; Ti: Tibiotarsus; Ul: Ulna]. 

Bird 

No 
B OCL 

OCL 

thickness 
ICL 

ICL 

thickness 

Mid-cortical layer- 

Type of vascularization 

Mid-cortical layer - 

Type of osteons 

Mid-cortical layer- 

Type of bone tissue 

064 Hu a - a - r,l po ,svc wbm 

064 Ra a - a - r,l po,svc wbm 

064 Ul a - a - l po,svc wbm 

064 Fe a - a - r,l po,svc wbm 

064 Ti a - a - r,l po,svc wbm 

064 Ta a - a - r,l po,svc wbm 

466 Hu pp thin pp thin l,o,r po,so,svc wbm 

466 Ra pp thin a - l,o,r po,svc wbm 

466 Ul pp  pp  l,o,r po,few svc wbm 

466 Ca pp thin pp thin l,o po,few so,few svc wbm 

466 Fe a - pp thin l,o po,few svc wbm 

466 Ti a - pp thin l,o po,few svc wbm 

466 Ta a - pp thin l,o po,few svc wbm 

116 Hu a - a - c,l,o po,few so wbm, few lb 

116 Ra pp thin a - l,o,r po,few so,few svc wbm, few lb 

116 Ul a - a - c,l,r few po,few svc wbm 

116 Ca a - pp thin l,o few po,few so,svc wbm, few lb 

116 Fe a - a - l,o,r po, few rc wbm 

116 Ti a - a - l,o few po,so,few rc, svc wbm, few lb 

116 Ta a - pp thin l few po,so,few rc, hc wbm 

116 Px a - a - l po,svc wbm 

241 Hu a - pp thin l,o,r po,svc wbm 

241 Ra a - a thin r po,svc wbm, few lb 

241 Ul a - a - l,o few po,svc wbm, few lb 

241 Ca a - a - l,o few po,svc wbm 

241 Fe a - a thin r,l po,svc wbm 

241 Ti a - pp thin l,o,r po,few svc wbm 

241 Ta a - pp thin l po,svc wbm, few lb 

146 Hu a - a - l,o,r po,so,rc wbm, few lb 

146 Ra a - pp thin l,o po,so,rc wbm, few lb 

146 Ul a - pp thick l,o,r po,so wbm 

146 Ca a - pp thin l,o po,rc wbm 
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Continued…        

146 Fe p thin p thin c,l,o few po,so,rc wbm, few lb 

146 Ti pp thin p thick l,o po,so,rc wbm 

146 Ta a - a - c,l,o po,so,rc, svc wbm 

146 Px a - a - o po,rc wbm 

191 Hu pp thin p thin l,o,r svc,po,so,few rc wbm 

191 Ra pp thin pp thin l,o po,so,rc wbm 

191 Ul a - a - l,o po,so wbm 

191 Ti p thin p thick l,o,r po,svc wbm 

191 Ta pp thin pp thin l po,so,rc, svc wbm, few lb 

192 Hu p thin pp thin l,o po,few so,few rc wbm 

192 Ra pp thin pp thin l,o po,so,rc, few svc wbm, few lb 

192 Ul p thin a - l,o po,so,rc, few svc wbm, few lb 

192 Ca pp thin a - l,o po,so wbm 

192 Ti p thin p thin o po,svc wbm 

192 Ta pp thin pp thin l,o po,svc wbm 

167 Hu a - a - o po,few so wbm, few lb 

167 Ra pp thin pp thin l po,so wbm 

167 Ul a - pp thin l po wbm, few lb 

167 Ca pp thin p thin l,o,r po,so wbm 

167 Fe p thin p thick l,o po,few so wbm, few lb 

167 Ti p thin p thick l,o,r po,few so wbm 

167 Ta pp thin p thick l,o po,so wbm 

231 Hu pp thin pp thick l,o po wbm 

231 Ra a - pp thick l,o po wbm 

231 Ul pp thin pp thick l,o po,svc wbm 

231 Ca p thin p thick l,o po,so wbm, few lb 

231 Ti p thin p thick l,o po,few so wbm 

231 Ta pp thin a - l po wbm 

524 Hu pp thin pp thick l,o po wbm, few lb 

524 Ra pp thin pp thick l,o po wbm, few lb 

524 Ul pp thin pp thick l,o po,so wbm 

524 Ca p thin p thin l,o po,so wbm 

524 Fe p thick p thin l,o po,so wbm, few lb 

524 Ti p thin p thick l,o,r po,few so wbm 

524 Ta pp thin pp thick l,o few po,svc wbm 
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Table A7: Complete bone histological description for the Cape gannet (Morus capensis) observed under normal and polarized light at ×40, 

×100 and ×400 magnification. Abbreviations: B: Bone; OCL: Outer circumferential layer; ICL: Inner circumferential layer; a: absent; p: 

present; pp: present in some regions; c: circumferential; l:longitudinal; r: radial; o: reticular; po: primary osteons; so: secondary osteons; 

rc: resorption cavities; wbm: woven bone matrix; lb: lamellar bone; Ca: Carpometacarpus; Fe: Femur; Hu: Humerus; Phalanx: Px; 

Radius: Ra; Ta: Tarsometatarsus; Ti: Tibiotarsus; Ul: Ulna]. 

Bird 

No 
B OCL 

OCL 

thickness 
ICL 

ICL 

thickness 

Mid-cortical layer-Type 

of vascularization 

Mid-cortical layer- 

Type of osteons 

Mid-cortical layer-

Type of bone tissue 

G04 Hu pp thin a - l,o po wbm 

G04 Ra  pp thin a - l,o po wbm 

G04 Ul pp thin a - l,o po wbm 

G04 Ca pp thin a - l,o po wbm 

G04 Fe p thin p thin l,o po wbm 

G04 Ti p thin a - l,o po wbm, few lb 

G04 Ta p thin p thin l,o,r po,few so,few rc wbm 

G17 Hu p thin pp thin o po wbm 

G17 Ra  p thin pp thin l po wbm 

G17 Ul p thick pp thin l,o po wbm 

G17 Ca p thin pp thin l,o po wbm 

G17 Fe p thin p thin l,o po wbm 

G17 Ti p thin pp thin l po wbm 

G17 Ta p thin pp thin o po,few so,few rc wbm 

G19 Hu p thin p thin l,o po wbm 

G19 Ra  p thin p thin l po wbm 

G19 Ul p thin p thin o po wbm 

G19 Ca p thin p thin o po wbm 

G19 Fe p thick p thin o po wbm 

G19 Ti p thin pp thin l,o,r po wbm, few lb 

G19 Ta p thin p thick l,o po,few so,few rc wbm, few lb 

G20 Hu p thin pp thin o po wbm 

G20 Ra  p thin a - o po wbm 

G20 Ul p thin pp thin l po wbm 

G20 Ca pp thin  pp thin o po wbm 

G20 Fe p thick p thick o po wbm 

G20 Ti p thin p thin l po wbm 

G20 Ta p thin p thick o po,few so wbm 

G59 Hu p thin p thick c,l,o po,few rc wbm 

G59 Ra  p thick p thick l po wbm 

G59 Ul p thick p thick c,l po wbm 

G59 Ca p thick p thick l po wbm 
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Continued…       

G59 Fe p thin p thick c,l po wbm 

G59 Ti p thin p thick o po wbm 

G59 Ta p thin p thin l po,few so,few rc wbm 

G61 Hu p thick p thick c,l,o po wbm 

G61 Ra  p thin p thick l po wbm 

G61 Ul p thick p thick c,l,o po wbm 

G61 Ca p thick p thick l,o po wbm 

G61 Fe p thin p thick c,l,o po wbm 

G61 Ti p thin p thin l po,few so,few rc wbm 

G61 Ta p  thin p thin l,o po wbm 

G24 Hu p thin p thick c,l,o po wbm, few lb 

G24 Ra  p thick p thick l po wbm 

G24 Ul p thin p thick o po wbm 

G24 Ca p thin p thick c,l,o po wbm, few lb 

G24 Fe p thick p thick c,o po wbm, few lb 

G24 Ti p thin p thick l,o po wbm 

G24 Ta p thin p thick l po wbm 

G56 Hu p thin p thick c,l,o po,few so wbm, few lb 

G56 Ra  p thin p  thick l po,few rc wbm 

G56 Ul p thin p thick c,l po wbm 

G56 Ca p thin p thick l po wbm 

G56 Fe p thin p thick c,l,o po wbm, few lb 

G56 Ti p thin p thick o po wbm 

G56 Ta p thin p thin l,o po,few so,few rc wbm, few lb 

G57 Hu p thin p thick c,o po wbm 

G57 Ra  p thin p thick l,o po wbm 

G57 Ul p thin p thin c,l,o po wbm 

G57 Ca p thin p thick l po wbm 

G57 Fe p thin p thin c,o po wbm 

G57 Ti p thin p thick l po wbm 

G57 Ta p thick p thick l,o po,few so wbm Univ
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Table A8: Descriptive statistics for the k index averages for the different bones of African penguin specimens. CI: Confidence 

interval at 95%. 

  AFRICAN PENGUIN    CAPE GANNET 

Type of bone Age 
 

Mean 
Standard 

deviation 

Lower 

CI 

Upper 

CI 

 
Mean 

Standard 

deviation 

Lower 

CI 

Upper 

CI 

HUMERUS 
Juvenile  0.13 0.10 0.01 0.38  0.75 0.03 0.70 0.79 

Adult  0.22 0.09 0.13 0.31  0.73 0.03 0.69 0.77 

RADIUS 
Juvenile  0.18 0.16 0.01 0.57  0.74 0.01 0.71 0.76 

Adult  0.25 0.10 0.15 0.35  0.72 0.03 0.67 0.76 

ULNA 
Juvenile  0.12 0.15 0.01 0.49  0.78 0.03 0.73 0.82 

Adult  0.19 0.13 0.06 0.32  0.77 0.04 0.72 0.81 

CARPOMETACARPUS 
Juvenile  0.25 0.15 0.02 0.63  0.76 0.03 0.71 0.81 

Adult  0.28 0.15 0.09 0.46  0.74 0.04 0.69 0.79 

FEMUR 
Juvenile  0.36 0.05 0.24 0.49  0.77 0.02 0.74 0.79 

Adult  0.43 0.03 0.36 0.50  0.78 0.03 0.75 0.82 

TIBIOTARSUS 
Juvenile  0.33 0.08 0.13 0.53  0.72 0.01 0.70 0.73 

Adult  0.46 0.05 0.41 0.52  0.76 0.02 0.73 0.78 

TARSOMETATARSUS 
Juvenile  0.29 0.08 0.10 0.48  0.72 0.05 0.64 0.79 

Adult  0.40 0.18 0.21 0.59  0.72 0.05 0.66 0.78 
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Figure A1: Fore-limb bones of the African Penguin (Spheniscus demersus) sampled for 

histological study. The bones are presented with their proximal side on the left. The 

specimens are arranged based on their ontogenetic stage and gender (male ♂, female ♀). 

(Scale bar: 5cm). 
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Figure A2: Hind limb bones of the African Penguin (Spheniscus demersus) sampled for 

histological study. The bones are presented with their proximal side on the left. The 

specimens are arranged based on their ontogenetic stage and gender (male ♂, female ♀). 

(Scale bar: 5cm). 

 

Univ
ers

ity
 of

 C
ap

e T
ow

n



67 

 

 

Figure A3: Fore-limb bones of the Cape gannet (Morus capensis) sampled for histological 

study. The bones are presented with their proximal side on the left. The specimens are 

arranged based on their ontogenetic stage and gender (male ♂, female ♀). (Scale bar: 5cm). 
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Figure A4: Hind limb bones of the Cape gannet (Morus capensis) sampled for histological 

study. The bones are presented with their proximal side on the left. The specimens are 

arranged based on their ontogenetic stage and gender (male ♂, female ♀). (Scale bar: 5cm). 
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