The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or noncommercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.

The Effect of CO_{2} on the Activation of a Precipitated Iron Fischer-Tropsch Catalyst

Samantha Harding

Submitted to the Faculty of Engincering and the Built Environment, University of Cape Town, Cape Town in partial fulfilment of the degree of Master of Applied Science

To Ken, with all my love.

Acknowledgements

Associate Professor Eric van Steen, for his valuable guidance, insight and support.

Sasol Technology (Pty) Ltd for making my M.Sc possible and for financial support.

To Dr. Rafael Espinoza for his initial support of the project and Philip Gibson for his continued support and input.

The Catalyst Characterisation Group at Catalysis Research for their assistance and instruction. In particular, H. Dlamini, T. Motjope, G. ter Stege and L. Wedemeyer.
L. Zulu, J. Ngubane, F. Wepener and V. Bezuidenhout for their assistance during the Fischer-Tropsch synthesis experiments.

The Iron Fischer-Tropsch Group for many valuable discussions.

Abstract

The effect of CO_{2} on the activation of a precipitated iron catalyst by hydrogen and carbon monoxide was investigated. The iron-based catalyst was precipitated from a mixture of iron nitrate and copper nitrate then bound by the addition of potassium waterglass to achieve a final catalyst precursor composition of $3.8 \mathrm{~K}_{2} \mathrm{O} / 4.8 \mathrm{Cu} / 26.9 \mathrm{SiO}_{2} / 100 \mathrm{Fe}$. The activation procedures used four different gas compositions: $5 \% \mathrm{H}_{2} / \mathrm{Ar}, 0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{H}_{2} / \mathrm{Ar}$, $4.8 \% \mathrm{CO} / \mathrm{He}$ and $0.15 \% \mathrm{CO}_{2} / 4.8 \% \mathrm{CO} / \mathrm{He}$.

The catalyst was characterised by temperature-programmed reduction (TPR) of the catalyst precursor and BET surface area, transmission electron spectroscopy (TEM), Mössbauer spectroscopy (MS) and Fischer-Tropsch synthesis after isothermal reduction (16 hours at $220^{\circ} \mathrm{C}$ for H_{2} reductions and $300^{\circ} \mathrm{C}$ for CO activations).

The greatest influence was seen in the temperature-programmed reduction. The addition of CO_{2} to the reduction gas had a negative influence on the H_{2} reductions and surprisingly, a positive influence on the CO activation. It is postulated that the latter could be due to the retarding of carbon formation thereby allowing further reduction of iron species.

The conditions chosen for the isothermal reductions viz. 16 hours at $220^{\circ} \mathrm{C}$ for H_{2} reduction and 16 hours at $300^{\circ} \mathrm{C}$ for CO activation did not show any differences with respect to the catalyst characteristics when CO_{2} was present during reduction. There were however, major differences in the catalyst characteristics after the H_{2} reduction and CO activation. The CO activated catalyst sintered more and had a high degree of reduction with the major phase being χ-carbide. The H_{2}-reductions would appear not to have reduced the catalyst at all, although some sintering did occur.

The reductions prior to synthesis were performed in a higher flow rate than those before catalyst characterisation. The H_{2}-reduced catalyst initially had a lower activity when CO_{2} had been present in the synthesis gas. When CO_{2} was not present, the catalyst behaviour was stable. With CO_{2} in the reduction gas, the activity of the catalyst increased with time on stream. There was little difference in the performance during the Fischer-Tropsch
synthesis of the catalyst activated in CO and that of the catalyst activated in CO_{2}-containing CO.

Trends seen between the catalysts activated in H_{2} and CO were a lower activity for the latter with a higher methane selectivity, higher water gas shift activity (based on CO_{2} selectivity) and a higher acid value.

Table of Contents

Acknowledgements iii
Abstract iv
Table of Contents vi
Chapter 1 - Introduction 1
1.1. Historical Perspective 2
1.2. Economic Significance 4
1.3. Fischer-Tropsch Catalysts 6
1.4. Activation of Iron Catalysts 7
1.4.1. Thermodynamics 7
1.4.2. Kinetics 8
1.4.3. Parameters affecting the Activation 10
Chapter 2 - Experimental 19
2.1 Catalyst Precursor Preparation 19
2.2 Catalyst Characterisation 20
2.2.1 Iron content determination 20
2.2.2 Atomic Absorption Spectrophotometry 21
2.2.3 Determination of silica 22
2.2.4 Surface area determination 23
2.3 Effect of gas composition on the activation of the precipitated iron catalyst 24
2.3.1 Temperature Programmed Reduction (TPR) 24
2.3.2 Isothermal Reduction 26
2.3.3 Transmission Electron Spectroscopy 28
2.3.4 Mössbauer Spectroscopy (MS) 29
2,3.5 Fischer-Tropsch Synthesis 30
Chapter 3 - Results 41
3.1 Catalyst preparation 41
3.2 Surface area of catalyst precursor 43
3.3 Temperature-Programmed Reduction 44
3.4 Isothermal Reduction 50
3.4.1 BET Surface areas 50
3.4.2 Transmission Electron Spectroscopy 51
3.4.3 Mössbauer Spectroscopy 59
3.5 Fischer-Tropsch synthesis 63
3.5.1 Fischer-Tropsch synthesis using catalyst MSC3 reduced in $5 \% \mathrm{H}_{2} / \mathrm{Ar}$ 63
3.5.2 Fischer-Tropsch synthesis using catalyst MSC3 reduced in $0.15 \% \mathrm{CO}_{2} / 4.7 \%$ $\mathrm{H}_{2} / \mathrm{Ar}$ 68
3.5.3 Fischer-Tropsch synthesis using catalyst MSC3 reduced in $4.8 \% \mathrm{CO} / \mathrm{He}$ 72
3.5.4 Fischer-Tropsch synthesis using catalyst MSC3 reduced in $0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{CO} / \mathrm{He}$ 75
Chapter 4 - Discussion 79
4.1 Preparation of a precipitated iron catalyst (Ruhrchemie) 79
4.2 The effect of gas composition on reduction of a precipitated iron catalyst - CO versus H_{2} 80
4.3 Effect of CO_{2} as an impurity on the reduction of a precipitated iron catalyst 82
4.3.1 Effect of CO_{2} as an impurity on the reduction in H_{2} 82
4.3.2 Effect of CO_{2} as an impurity on the activation in CO 84
Chapter 5 -Conclusions 86
References 88
Appendix 1: 93
Appendix 2: 96
Appendix 3: 100
Appendix 4: 102
Appendix 5: 113

Chapter 1 - Introduction

Fischer-Tropsch (F-T) synthesis is the hydrogenation of carbon monoxide to form longer chain hydrocarbons such as paraffins and olefins (Storch et al. 1951). The Fischer-Tropsch reaction can be utilised to transform difficult-to-transform feedstocks (for example, coal, natural gas and biomass) into liquid hydrocarbons. The reaction can be written as follows:

$$
\begin{align*}
& (2 \mathrm{n}+1) \mathrm{H}_{2}+\mathrm{nCO} \rightarrow \mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}+\mathrm{nH}_{2} \mathrm{O} \tag{1.1}\\
& 2 \mathrm{nH}_{2}+\mathrm{nCO} \rightarrow \mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}}+\mathrm{nH}_{2} \mathrm{O} \tag{1.2}
\end{align*}
$$

The reaction is highly exothermic with $\Delta \mathrm{H}_{\mathrm{R}\left(227^{\circ} \mathrm{C}\right)}=-167.4 \mathrm{~kJ} / \mathrm{mol}$ per unit carbon formation (Jager 1998, Frohning 1980).

The most commonly used catalysts for the Fischer-Tropsch synthesis are based on cobalt and iron (Schulz et al., 1994). Nickel and ruthenium do show Fischer-Tropsch activity but the former tends to produce only methane and the latter is expensive and not readily available (Dry 1990).

The Fischer-Tropsch synthesis can be viewed as a polymerisation reaction, which takes place at the surface of the catalyst. The monomers for this polymerisation reaction are made in-situ from the reagents, carbon monoxide and hydrogen. Therefore this reaction has been named a non-trivial surface polymerisation (Schulz et al. 1988).

For the formation of the monomers in this reaction the C -O bond in carbon monoxide must by cleaved. This leads to surface oxygen species, which can be removed with H_{2} yielding water as a side product or with CO , yielding carbon dioxide as a side-product. Carbon dioxide can also be formed in a side reaction under Fischer-Tropsch conditions via the water gas shift reaction:

$$
\begin{equation*}
\mathrm{H}_{2} \mathrm{O}+\mathrm{CO} \rightleftharpoons \mathrm{H}_{2}+\mathrm{CO}_{2} \tag{1.3}
\end{equation*}
$$

This reaction is also exothermic with $\Delta \mathrm{H}_{\mathrm{R}\left(227^{\circ} \mathrm{C}\right)}=-39.8 \mathrm{~kJ} / \mathrm{mol}$ (Frohning 1980).

1.1. Historical Perspective

The main development of Fischer-Tropsch process occurred in the first half of the century. The thrust of the development took place in Germany where it was first commercialised. Due to the oil shortage during the $2^{\text {nd }}$ World War, the production of synthetic oil was very important to Germany's war effort. Two routes were followed to produce this synthetic oil: Fischer-Tropsch synthesis and coal hydrogenation. The latter contributed significantly more to the war effort.

The hydrogenation of carbon monoxide was first observed by Sabatier and Senderens in 1902 when they noted that a reduced nickel catalyst produced methane from a mixture of carbon monoxide and hydrogen (Storch et al. 1951). The first mention of longer chain hydrocarbons was in a patent filed by BASF in 1913 that claimed the conversion of CO and H_{2} to liquid products at high temperature and pressure. The catalyst used was cobalt-based.

In 1923, Frans Fischer and Hans Tropsch synthesised mainly oxygenates over alkalised iron turnings at temperatures between 400 and $450^{\circ} \mathrm{C}$ and pressures of $101-152$ bar (Storch et al. 1951). They found that the product spectrum could be shifted to olefins and paraffins with very few oxygenates by lowering the pressure to 7.1 bar. Unfortunately, the activity of the catalyst decreased sharply at the lower pressures. An iron and zinc oxide catalyst, reported in 1925, was the first catalyst to produce Fischer-Tropsch products at atmospheric pressure and a temperature of $370^{\circ} \mathrm{C}$. Mixtures of cobalt and chrome oxides were however found to be more active. Finely divided cobalt was also found to be more effective than iron, producing liquid products at temperatures $20^{\circ} \mathrm{C}$ lower than the iron.

A breakthrough in the preparation of Fischer-Tropsch catalyst came in 1931, when a nickel/thoria catalyst was made using kieselguhr as a support (Storch et al. 1951). The catalyst had a higher activity and was also stable. By 1934, a pilot scale plant had been commissioned and when nickel was found to not be commercially viable, the nickel catalyst was replaced with cobalt/thoria on kieselguhr. The standard commercial catalyst between 1937 and 1944 was $100 \mathrm{Co} / 15 \mathrm{ThO}_{2} / 8 \mathrm{MgO} / 200 \mathrm{Kieselguhr} \mathrm{S} 120$. There were three
manufacturing plants i.e. Ruhr, Brabag and Wintershall and they were an important part of the German war effort until extensive bombing in 1944 (Storch et al. 1951).

The development of the iron catalyst was continued although it was not ready for commercialisation when the war broke out. The advantage of the iron catalyst would have been availability of the metal and a greater flexibility in the product spectrum. Research into the iron catalyst intensified as the cobalt shortage became more critical. It was found in 1937 that by increasing the pressure, the activity and lifetime of the iron catalyst increased significantly. The development of the catalyst pre-treatment also played an important role in making the catalyst economically viable (Storch et al. 1951).

The U.S. Bureau of Mines and American oil industry also started a programme on ironbased Fischer-Tropsch catalysts in 1943. This led to the establishment of a fluidised -bed operation in Brownsville, Texas in 1948 based on natural gas. It was eventually closed down in 1953 due to economic reasons (Sie et cal. 1991).

The major post-war developer of Fischer-Tropsch synthesis has been South Africa. The commercial operation in Sasolburg, South Africa was based on two types of iron catalyst. The lower temperature fixed bed operation on a potassium and copper promoted precipitated iron catalyst and the higher temperature fluidised bed operation on a fused iron catalyst (Dry 1981). These plants came on line in 1955 and the higher temperature operation expanded to Secunda (Sasol 2 and 3) in the early 1980s (Dry 1990). A more recent commercial application is the high temperature Mossgas operation, also in South Africa, which came on line in 1991 (van Rensburg 1990).

The most recent commercial operation based on cobalt is Shell's fixed bed operation in Malaysia, which came on line in 1993 (Sie et al. 1991, Adesina 1996).

Both the Mossgas process and Shell's Malaysian process are based on natural gas and the current Sasol operations are based on coal as feedstock. All other Fischer-Tropsch processes start from coal as their feedstock.

1.2. Economic Significance

The discovery of huge oil deposits in the Middle East in the early sixties moved the focus away from coal based processes to crude oil. There was very little further development in the Fischer - Tropsch technology until the oil crises, the first in the early 1970s and the second in the early 1980s. This was when Sasol 2 and 3 were erected and Mobil's methanol-to-gasoline (MTG) came on line in New Zealand (Adesina 1996).

Although there is no longer a crisis in oil supply, considerable focus has recently been given to the Fischer-Tropsch process. Advances in process technology for both syngas production and utilisation have made the "gas-to-liquids" (GTL) technology more feasible. Capital costs of F-T projects have been halved through factors such as lower cost synthesis gas production and improved reactor technologies.

The most expensive part of the process is the production of synthesis gas, with coal as a feedstock being more expensive than natural gas. Even with natural gas, a recent study has shown the process to be feasible only if the natural gas has a price of $0.5 \$ / \mathrm{Mscf}$ and the oil price is between $\$ 14$ and $\$ 16 / \mathrm{barrel}$ (Gradassi 1998). Natural gas also has a demand as a fuel, particularly in developed countries. This makes it too expensive as a feedstock. However, in remote areas, where natural gas has a low value due to the high transportation costs or even a negative cost, liquid fuels from natural gas has become an interesting option. Another reason why there is renewed interest in Fischer-Tropsch technology is that there is also a greater environmental pressure to utilise the natural gas currently being flared. These gas reserves are often associated with oil fields where they are flaring the gas.

The advantage of Fischer-Tropsch will therefore have to lie in areas where the natural gas has a negative value, where there are environmental considerations or where the natural gas is situated in remote areas where there is no demand or where piping it does not make economic sense. The gas therefore has a negative value and a negative impact on the environment.

Not only can Fischer-Tropsch (F-T) synthesis be a more environmentally positive process, the F-T products can even be used to upgrade fuels produced from crude oil as they are of a better quality with respect to aromatic content, sulphur and nitrogen compounds. The product can achieve a premium due to these environmental advantages.

Two major improvements in reactor technology, which attribute to the reduction in the process costs, have been the movement from a fixed bed reactor to a slurry bed reactor and, in Sasol's Secunda operation, the shift from the circulating fluidised bed to the fixed fluidised bed (Jager 1998). Both the fixed fluidised bed and the slurry reactor are a more simple design and are therefore cheaper to construct. They also have a higher production capacity per reactor.

The advantage of the slurry bed over the fixed bed is that it facilitates easier heat removal as the liquid medium acts as a heat sink for the reaction. The catalyst particles are smaller which improves the effectiveness of the catalyst as there are no diffusion limitations. The slurry reactor also allows for catalyst addition on-line. There are advantages to the fixed bed such as ease of separation of the product from the catalyst but if this can be overcome, then the slurry bed is a better option.

Comparing the circulating fluidised bed with the fixed fluidised bed, the hydrodynamics are less severe, it is easier to operate and the cost of maintenance is lower. One of the reasons for this is the catalyst is not being circulated and therefore you have no abrasion of the standpipe.

1.3. Fischer -Tropsch Catalysts

Most transition metals have some degree of hydrogenating capability and of these metals, ruthenium, iron, cobalt and nickel are generally regarded as having Fischer-Tropsch activity (Adesina 1996). The order of hydrogenating capability decreases as you move left across the periodic table, that is nickel is more hydrogenating than cobalt and cobalt is more hydrogenating than iron (Dry 1981). In fact, nickel is so hydrogenating that it is not really suitable as a FT catalyst. It tends to form too much methane. Ruthenium is too expensive and the supply is very limited. The two most commonly used catalysts are therefore based on iron and cobalt (Dry 1981).

Cobalt as a catalyst has the advantage of being very resistant to reoxidation. Although Vannice (Vannice 1975) states that the intrinsic activity of Fe is greater than that of Co, the catalyst will not deactivate as fast as the Fe catalyst. It also has no water gas shift activity, which means that the usage ratio of the catalyst (the ratio of H_{2} converted to CO converted) will be a lot closer to the ratio of the feed composition. There will not be any conversion of CO to CO_{2} (greenhouse effect). Unfortunately, the catalyst is not very sensitive to promoters and the product spectrum is therefore not very flexible. The metal itself is very expensive.

By comparison, iron is cheap, readily available and allows for more flexibility as it can be promoted to change product selectivity and to shift the Schultz-Flory distribution (Dry 1981). It can also be operated over a broader temperature range. The disadvantage of the iron catalyst is that it deactivates more quickly but because of the cost, this can be addressed by frequent catalyst replacement. Iron catalysts do catalyse the water gas shift reaction (WGS). This may be of aid to the catalyst as it lowers the partial pressure of water and decreases the rate of reoxidation. The water gas shift reaction allows the catalyst to adjust the $\mathrm{H}_{2} / \mathrm{CO}$ ratio. Iron can therefore be more readily used with lower $\mathrm{H}_{2} / \mathrm{CO}$ ratios. Dry (Dry 1981) states WGS "is important since it means that the CO_{2} can also be
hydrogenated to oils (reverse shift followed by F-T) and that feed gases with $\mathrm{H}_{2} / \mathrm{CO}$ ratios below 2 can be utilised".

1.4. Activation of Iron Catalysts

1.4.1. Thermodynamics

The most common methods for preparing iron Fischer-Tropsch catalysts are precipitation, impregnation onto a support and fusion. The catalyst must then be activated i.e. reduced to the zero valence state by a suitable reducing agent. Two common reducing agents are hydrogen and carbon monoxide. Two stages can be seen in the reduction of iron - a fast reduction from $\mathrm{Fe}_{2} \mathrm{O}_{3}$ to $\mathrm{Fe}_{3} \mathrm{O}_{4}$ followed by a slow reduction of the latter to metallic iron, or in the case where CO is present, to iron carbide (Bukur et al. 1995(a)).

Thermodynamically, the reduction of iron by CO is more favourable (Storch et al. 1951). For the reduction of magnetite with hydrogen:

$$
\begin{equation*}
1 / 4 \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{H}_{2} \rightleftharpoons 3 / 4 \mathrm{Fe}+\mathrm{H}_{2} \mathrm{O} \tag{1.4}
\end{equation*}
$$

The equilibrium concentration of $\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}} \mathrm{P}_{\mathrm{H}_{2}}$ is 0.014 at $227^{\circ} \mathrm{C}$ (calculated with data from Chase 1985, Barin 1989 and Knacke et al. 1991). This means that if the molar ratio of water to hydrogen is larger than 0.014 , iron oxide $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$ cannot be reduced to metallic iron. Furthermore, if under reaction conditions the molar ratio of water to hydrogen is larger than 0.014 , metallic iron will reoxidise.

For the reduction of magnetite with carbon monoxide:

$$
\begin{equation*}
1 / 4 \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{CO} \rightleftharpoons 3 / 4 \mathrm{Fe}+\mathrm{CO}_{2} \tag{1.5}
\end{equation*}
$$

The equilibrium concentration of $\mathrm{p}_{\mathrm{CO}_{2}} \mathrm{p}_{\mathrm{CO}}$ is 1.92 at $227^{\circ} \mathrm{C}$ (calculated with data from Barin 1989, 1993 and Knacke et al. 1991). This means that if the molar ratio of carbon dioxide to carbon monoxide is larger than 1.92 , iron oxide $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$ cannot be reduced to
metallic iron. Comparing the values for the reduction of magnetite with hydrogen and with carbon monoxide, it can be seen that the reduction with carbon monoxide yields a higher utilisation of the reducing agent in a single-pass reduction step.

1.4.2. Kinetics

Thermodynamic data indicates that iron will be more easily reoxidised by $\mathrm{H}_{2} \mathrm{O}$ than by CO_{2}. It is generally seen that the formation of a new solid phase at the expense of another solid phase proceeds only at the interface between both phases (Boudart 1968). As such an interface must exist, the first step in the reaction is the formation of this interface. Once these reaction centres are formed, they tend to act as a "catalyst" to spread the reaction.

The shrinking core model is a general mechanism proposed for describing the reduction of metal oxide particles where the reaction proceeds at the solid reactant/solid product interface. This model, therefore, visualises a shrinking core of unconverted oxide surrounded by a growing shell of solid reaction product (see Figure 1-1). The rate of reaction can be determined by the rate of chemical reaction at the interface or it can be controlled by the rate the diffusion of the reducing gas to the phase boundary.

Figure 1-1: Schematic representation of the shrinking core model

In order to describe the kinetics of a reaction involving a solid, we need to first determine the rate at which the original reaction centres are formed. This is known as the rate of nucleation. The second aspect would be determining the rate at which the interface advances through the unconverted solid i.e. the growth of the new phase. The overall rate is
often seen to be an S-shaped curve where the interface is created, it grows and then shrinks as the reaction proceeds (Boudart 1968).

Generally, the rate of reduction of a solid by a gas to form another solid can be seen as a function of temperature and two concentration dependent terms (Wimmers et al. 1986) i.e.:

$$
\begin{equation*}
\mathrm{r}=\mathrm{d} \alpha / \mathrm{dt}=\mathrm{k}_{1}(\mathrm{~T}) f(\alpha) f^{\prime}\left(\mathrm{p}_{\text {(reactant gas) })} ; \mathrm{p}_{(\text {product gas })}\right) \tag{1.6}
\end{equation*}
$$

where α is the degree of reduction.

A number of such rate equations representing various models proposed in literature (Harrison 1969, Šestãk et al. 1971, Šestãk et al. 1973) can be seen in Table 1-1.

Table 1-1: Functions of Different Reduction Models

Reduction Model	$f(\alpha)$
Three-dimensional nucleation according to Avrami-Erofeev	$(1-\alpha)(-\ln (1-\alpha))^{2 / 3}$
Two-dimensional nucleation according to Avrami- Erofeev	$(1-\alpha)(-2 \ln (1-\alpha))^{1 / 2}$
Two-dimensional phase boundary	
Three-dimensional phase boundary,	$2(1-\alpha)^{1 / 2}$
Three-dimensional diffusion according to Jander	$3(1-\alpha)^{1 / 3}$
Unimolecular decay	$3 / 2(1-\alpha)^{1 / 3}\left((1-\alpha)^{-1 / 3}-1\right)^{-1}$
U, Shrinking core model ${ }^{\text {b. }}$. Chemical reaction rate determining\quad c. Diffusion rate determining	

Wimmers (Wimmers et al. 1986) showed that the best model to fit the reduction of small $\mathrm{Fe}_{2} \mathrm{O}_{3}$ particles (diameter: $0.3 \mu \mathrm{~m}$) was the three-dimensional nucleation model of AvramiErofeev. They did this by calculating theoretical TPR curves from the various proposed models and then finding the best fit to experimental data.

It has been found, however, that with increasing particle size or reduction temperature, the rate determining step changes. The rate determining step in small particles tends to be either the diffusion of the gas molecule generated over the surface (due to high curvature and therefore surface energy) (Themelis and Gauvin 1962) or nucleation. As the particle size increases, this shifts to topochemical effects i.e. the reaction at the phase boundary or the rate diffusion through the product layer (Themelis and Gauvin 1963, Turkogdan and Vinters 1972). A good correlation with kinetics based on a mixed-control mechanism
where both the reaction rate at the phase boundary and the rate of diffusion of the gaseous reactants and products through the metal shell are taken into account, has been described (Barañski et al. 1972).

Another model proposed to explain deviations from the simple shrinking core mechanism, is that of a crackling core. Park and Levenspiel (Park and Levenspiel 1975) initially view the particle as non-porous. This non-porous solid then begins to fissure and crackle as it begins to react with the gaseous component. This fissuring and crackling moves progressively inwards to form a grainy material as the reaction proceeds further. This allows the gaseous reactant to move inward without any diffusional constraint. It is then able to react with the grainy material according to the shrinking core model.

1.4.3. Parameters affecting the Activation

The earlier development of Fischer-Tropsch was reviewed by Storch, Golumbic and Anderson in 1951 (Storch et al. 1951). As early as 1937, The Kaiser Willhelm Institut fur Kohlenforschung reported that reduction of the precipitated iron catalyst using hydrogen at $360^{\circ} \mathrm{C}$ was unsuccessful in activating the catalyst for medium pressure synthesis. They then concentrated their efforts on the pretreatment of iron catalysts, focussing on CO and $\mathrm{CO} / \mathrm{H}_{2}$ mixtures. The aim of the pretreatment was to achieve the best balance between the highest possible activity while maintaining the desired selectivity and stability during the FischerTropsch synthesis.

1.4.3.1 Effect of Promoters

Copper is well known as a promoter for the reduction of iron catalysts. Wielers (Wielers et al. 1990) showed that copper facilitates the reduction of ferric ions to zero-valent iron. They suggested that hydrogen migration from the reduced copper atoms to the ferric ions could be responsible for the reducibility of these ferric ions. O'Brien (O^{\prime} Brien et al. 1997) has shown that promotion with copper lowered the reduction temperature and increased the Fischer-Tropsch activity regardless of whether the catalyst was pretreated in hydrogen,
syngas or carbon monoxide. The evidence was thought to support the fact that the reduction of iron proceeds via a nucleation mechanism. Copper (II) oxide reduces at $\sim 150-200^{\circ} \mathrm{C}$ lower than iron oxide (O^{\prime} Brien et al. 1997) and can therefore act as a nucleation site to accelerate the reduction of the iron oxide. The reduction was also accelerated with increasing levels of copper. It would seem that a reduction promoter such as copper creates the small islands, which catalyse the reduction process. In the case of hydrogen this may be aided by spillover effects of atomic hydrogen onto the metal oxide. Carbon monoxide is however not able to spill over, but the metallic centres can be an aid in creating the starting point of reduction.

1.4.3.2 Effect of Pressure

In 1940, Pichler (Pichler and Merkel, 1949) reported the results of such pretreatment studies using CO or $\mathrm{CO} / \mathrm{H}_{2}$ mixtures. He concluded that activation at elevated pressures was undesirable. Catalyst pretreated at atmospheric or even sub-atmospheric pressures yielded a catalyst with a high activity. He ascribed this to the fact that lower pressures favour carbide formation over free carbon deposition (Table 1-2). With increasing pressure the amount of free carbon increases dramatically, whereas the amount of carbon incorporated as carbide actually decreases.

Table 1-2: Effect of pressure on carbide and free carbon formation for an alkalized iron catalyst after 25 hour pretreatment at $325^{\circ} \mathrm{C}$ (Storch et al. 1951)

Pressure (bar)	Grams carbon per 10 g Fe	
	Free Carbon	Carbide
0.1	2.21	0.45
1.0	4.23	0.34
15.2	Not determined	0.10

1.4.3.3 Effect of Temperature

The study by Pichler (Pichler and Merckel 1949) also looked at the effect of activation temperature on the activity of the catalyst. The catalyst became more active with increasing activation temperature with a maximum activity and stability being reached at $315-325^{\circ} \mathrm{C}$. Catalysts activated at temperatures lower than $300^{\circ} \mathrm{C}$ showed more pronounced deactivation with time on stream. Free carbon showed a sharp increase above $325^{\circ} \mathrm{C}$. Bukur (Bukur et al. 1989) obtained similar trends with respect to temperature and pressure as those observed by Pichler, although not all his results could be explained. The study by Bukur also included reducing the precipitated iron catalyst at various temperatures using H_{2}. In contrast to the CO and syngas activations, the higher temperature reduction produced a less active catalyst. This can be attributed to the higher partial pressure of water at higher temperatures, which not only inhibits the reduction of the iron catalyst, but also enhances sintering. This will lead to a loss of active metal surface area. Dry (Dry, 1981) states that low temperature ($180-220^{\circ} \mathrm{C}$) and high space velocities are required to avoid this loss of surface area after reduction.

1.4.3.4 Effect of gas composition

1.4.3.4.1 Stability

Catalysts activated in H_{2} tended to show a higher stability than those activated in CO or syngas but this at the expense of activity. A possible explanation for this was put forward by Bukur (Bukur et al. 1995(b)). He suggested that the concentration of hydrogen on the surface of the catalyst during F-T synthesis plays an important role in stabilising the catalyst. If the rate of hydrogenation of the surface carbon species is equal to the rate of dissociation of the CO on the surface, then there will be very little chance of carbon deposition on the surface.

This may agree with the competition model proposed by Niemandtsvedriet (Niemantsvedriet and van der Kraan 1980, 1981) which states that the carbon species found
on the surface of the catalyst as a result of CO dissociation can be consumed via three competing reactions viz. migration into the metal to form carbides, reaction with hydrogen to form hydrocarbons or conversion to graphitic carbon which will poison the catalyst. If a catalyst is pretreated in CO or syngas and, if carbides are the active phase, then you would expect a more active catalyst with such pretreatment. However, the catalyst would also deactivate more strongly as there is less carbon reacting to form carbides and therefore more carbon available for conversion to graphitic carbon. According to this model, catalysts reduced in hydrogen should show an initial increase in activity as iron is converted to iron carbide, followed by a decline in activity once carbiding of the catalyst is complete (Bukur et al. 1995(b)). The CO-activated catalyst was more stable and active than the catalyst activated in CO-rich syngas.

The same research group (Bukur et al. 1995(a)) analysed the activation of a standard Ruhrchemie catalyst by CO at $280^{\circ} \mathrm{C}$ and found that more CO_{2} was produced than could be accounted for by both reduction of the iron oxide and the formation of carbides. They concluded that the excess CO_{2} was probably due to the formation of carbonaceous deposits on the catalyst via the Boudouard reaction viz.

$$
\begin{equation*}
2 \mathrm{CO} \rightleftharpoons \mathrm{C}+\mathrm{CO}_{2} \tag{1.7}
\end{equation*}
$$

1.4.3.4.2 Selectivity

Apart from the effect of gas composition on activity and stability as discussed above, it has been found that activation using the different gas compositions also led to differences in selectivity. In ongoing studies by Bukur (Bukur et al. 1989, 1995(b)), reduction in H_{2} leads to higher methane selectivity and therefore lower C_{5+} selectivity. The catalysts activated in H_{2} also tended to have a higher water gas shift selectivity. Later work done by the same group (Bukur et al. 1997) shows apparently conflicting results where the methane selectivity of the CO and syngas activated catalysts is initially higher than that of the $\mathrm{H}_{2}-$ activated catalyst. Although no explanation is given for the differences, the earlier work was performed in a fixed bed reactor and the later work in a slurry reactor.

1.4.3.4.3 Phase Composition

The following phases have been noted in an activated, precipitated iron catalyst:
a. Metallic iron is often not present in the carbided catalyst i.e. one that has been activated in CO or $\mathrm{H}_{2} / \mathrm{CO}$. This indicates that, if carbides are formed from the zerovalent state of iron, it must be a very fast reaction (the thermodynamics would appear to be the driving force for this). Metallic iron is believed to be active for FischerTropsch as evidenced by the fact that there is an initial activity for H_{2}-reduced catalysts.
b. Iron carbide, viz. ε '-carbide $\left(\mathrm{Fe}_{2.2} \mathrm{C}\right)$ and χ-carbide ($\mathrm{Hägg}-\mathrm{Fe}{ }_{2.5} \mathrm{C}$). ε^{\prime}-carbide has a hexagonal structure and is metastable at FT conditions. There is speculation that ε^{\prime} carbide may be a more active phase than the monoclinic χ-carbide. One of the articles referring to this is a study published in 1998 by Jin and Datye (Jin and Datye 1998) on an active and deactivated catalyst. It was found that the deactivated catalyst contained only χ-carbide, whereas the active catalyst contained both ε '-carbide and χ-carbide.
c. Magnetite is either due to the partial reduction of hematite or the reoxidation of the iron. This was seen in by Bukur (Bukur et al. $1995(\mathrm{a})$). Samples of catalyst withdrawn from the inlet of a fixed bed reactor consisted only of ε^{\prime}-carbide whereas samples taken further down the reactor (where the gas composition is more oxidising due to reaction products) contained both ε^{\prime}-carbide and magnetite.

Reymond (Reymond et al. 1982) among others have speculated that magnetite may be the active phase.
d. Hematite that has not undergone reduction.

There is, up to now, no general agreement on which phase is the most active phase for the Fischer-Tropsch synthesis. Metallic iron and iron carbide both seem to be active as a catalyst for this reaction.

It would appear that the gas composition during reduction has a large effect on the phases present in the iron catalyst.

Tau (Tau et al. 1984) has shown that the addition of a small quantity of H_{2} during activation in CO aids the formation of carbides. Bukur (Bukur et al. 1995(a), 1995(b)) found that catalysts reduced in hydrogen formed ε^{\prime}-carbide during Fischer-Tropsch synthesis whereas those activated in syngas formed χ-carbide. Similar conclusions can be drawn from in-situ X-ray diffraction (XRD) studies by Jung (Jung and Thomson 1992, 1993). They did, however, show some correlation between particle size and carbide phase formed, with smaller iron particles (16 nm) forming ε^{\prime}-carbide and larger particles (30 nm) forming χ-carbide at 523 K when activated in CO . Higher carburisation temperatures tended to favour χ-carbide, even for prereduced catalysts but this is expected as the ε 'carbide is metastable. Deactivation of the catalyst was also related to this conversion viz:

$$
\begin{equation*}
2.5 \mathrm{Fe}_{2.2} \mathrm{C} \rightarrow \quad 2.2 \mathrm{Fe}_{2.5} \mathrm{C}+0.3 \mathrm{C} \tag{1.8}
\end{equation*}
$$

The resultant formation of this free carbon on the surface not only blocks active sites but is thought to act as nucleation sites for further buildup of inactive carbon.

1.4.3.4.4 Reaction Products

The concentration of the reaction products of a reversible reaction will have an effect on the rate of reaction (le Chatelier's principle). From the thermodynamic data (Section 1.4.1), we would expect very low partial pressures of $\mathrm{H}_{2} \mathrm{O}$ to inhibit the rate of reduction of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ by H_{2}. This is indeed the case Wimmers (Wimmers et al. 1986) found that the addition of 3% $\mathrm{H}_{2} \mathrm{O}$ increased the required reduction temperature of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ to iron by $75-95^{\circ} \mathrm{C}$ (depending on heating rate). They also found a shift to greater reduction temperatures with increasing sample sizes in their "dry" runs. They ascribed this to the effect of the product $\mathrm{H}_{2} \mathrm{O}$.

Even more importantly, the reoxidation of the surface of an iron ammonia synthesis catalyst was found to occur at ratios of $\mathrm{pH}_{2} \mathrm{O} / \mathrm{pH}_{2} 1000$ times smaller than that required to form bulk-phase oxides (Almquist and Black, 1926). This is thought to occur because of the difference in free energy between the crystalline iron and the surface iron atoms.

Very little work has been done on the effect of CO_{2} on the rate of reduction or activation of the iron catalyst. One study described in Storch (Storch et al. 1951) showed the addition of $\mathrm{H}_{2} \mathrm{O}$ effected the rate of reduction of a fused iron catalyst reduced at $550^{\circ} \mathrm{C}$. This effect was even more pronounced when CO_{2} and CH_{4} were also present in the feed gas (Figure 1-2). It seems unlikely that CH_{4} would have an effect on the rate of reduction. Figure $1-2$ also shows that small impurities of CO can also effect the rate of reduction slightly at $550^{\circ} \mathrm{C}$.

Figure 1-2: Rate of reduction of fused iron catalyst at $550^{\circ} \mathrm{C}$ (Unpublished work of U.S. Bureau of Mines as published in Storch et al. 1951 - p299)
CO_{2} is a reaction product in both CO -activated catalysts and those activated in syngas. For those iron Fischer-Tropsch catalysts activated in syngas, the water gas shift reaction viz.

$$
\begin{equation*}
\mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CO}_{2}+\mathrm{H}_{2} \tag{1,9}
\end{equation*}
$$

may also play a role in the formation of $\mathrm{CO}_{2} . \mathrm{CO}_{2}$ may also be found as an impurity in the H_{2} used to reduce commercial catalysts. This seemed to be the reason for studies done by Ruhrchemie on the effect of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ on the reduction of an alkali promoted cobalt catalyst in H_{2}. Their results are shown in Figure 1-3.

Figure 1-3: Rate of reduction of cobalt catalysts: Effect of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ (Storch et al. 1951-p205)

The reoxidation of cobalt by CO_{2} is even less thermodynamically likely than the reoxidation of iron. The equilibrium ratio of $\mathrm{p}_{\mathrm{CO}_{2}} / \mathrm{p}_{\mathrm{CO}}$ for the $\mathrm{Co} / \mathrm{CoO}$ system is 1.75 X 10^{4} at $227^{\circ} \mathrm{C}$ (as compared to 1.92 for the $\mathrm{Fe} / \mathrm{Fe}_{3} \mathrm{O}_{4}$ system). Methane was noted in the product stream during the reduction with $3 \% \mathrm{CO}_{2}$. There was also less CO_{2} and it was thought that the CO_{2} was probably hydrogenated according to the following reaction:

$$
\begin{equation*}
\mathrm{CO}_{2}+4 \mathrm{H}_{2} \rightleftharpoons \mathrm{CH}_{4}+2 \mathrm{H}_{2} \mathrm{O} \tag{1.9}
\end{equation*}
$$

The product of the reaction is two moles of water per mole of CO_{2} reacted.

The Ruhrchemie commercial, cobalt-based operation included a synthesis reactor, which converted the CO_{2} in the effluent from the reduction reactor $\left(2 \mathrm{~g} / \mathrm{m}^{3}\right)$ to methane. The gas was then dried and recycled to the reduction unit. This gives an indication of how important the removal of CO_{2} was to the commercial reduction of the cobalt catalyst.

From the work of Almquist (Almquist and Black 1926), it has been shown that the ratio of $\mathrm{p}_{\mathrm{H}_{2} \mathrm{O}} / \mathrm{p}_{\mathrm{H}_{2}}$ required to oxidise the surface of an iron catalyst is a lot lower than that
calculated thermodynamically. Although CO_{2} is thermodynamically less likely to reoxidise metallic iron, it has also been shown that CO_{2} has an effect on the reduction of both iron and cobalt by H_{2} (Storch et al. 1951).

The most probable mechanism for the lowering of the reduction rate in the above studies is the reoxidation of the newly created Fischer-Tropsch sites by the product water formed through the hydrogenation of the CO_{2} or the effect of this $\mathrm{H}_{2} \mathrm{O}$ on the kinetics of the reduction. If this were the case, then one would not expect to see a large negative effect of small quantities of CO_{2} on the CO activation. The surface of the iron catalyst is very different to the bulk composition, so reoxidation may occur when it was not thermodynamically expected. The aim of this study is to see what the effect of CO_{2} will be on the reduction of a precipitated iron catalyst by both CO and H_{2}.

Chapter 2 - Experimental

2.1 Catalyst Precursor Preparation

The catalysts prepared were based on the Ruhrchemie catalyst viz.
$100 \mathrm{Fe} / 5 \mathrm{Cu} / 5 \mathrm{~K}_{2} \mathrm{O} / 25 \mathrm{SiO}_{2}$. The preparation procedure is described in Frohning (Frohning et al. 1977).

An attempt was made to dissolve the iron in concentrated nitric acid (55% by volume) as described in the above reference but the reaction proved difficult to control due to the exothermic nature of the dissolution. For this reason, a solution of iron (III) nitrate and copper (II) nitrate was prepared by weighing out 578 g of $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} .9 \mathrm{H}_{2} \mathrm{O}$ (AR grade Merck) and 15 g of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} .3 \mathrm{H}_{2} \mathrm{O}(\mathrm{AR}$ grade - Merck) and dissolving the iron in sufficient distilled water to make a two-litre solution. This gave a final solution of 40 g Fe/l and $2 \mathrm{~g} \mathrm{Cu} /$. The sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ solution was made such as to allow a stoichiometric precipitation with the $\mathrm{Fe} / \mathrm{Cu}$ solution. This was achieved by dissolving 235 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (99.5% - Promark Chemicals) in enough distilled water to make two litres of solution. The final solution was therefore $117.5 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{l}$ (as opposed to the $100 \mathrm{~g} / \mathrm{l}$ required by Frohning).

Both solutions were heated to $85^{\circ} \mathrm{C}$ and then the $\mathrm{Fe} / \mathrm{Cu}$ nitrate solution was added to the $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution as rapidly as possible. Constant stirring was maintained throughout the precipitation. The final pH requirement was between 7 and 8 . After completing the precipitation, the solution was allowed to age for 15 minutes. The slurry was then filtered and the remaining solids were washed with heated, distilled water in order to remove the remaining sodium nitrate $\left(\mathrm{NaNO}_{3}\right)$. Washing was continued until the conductivity of the filtrate was less than $120 \mu \mathrm{~S}$. The precipitate was dried for 20 minutes by passing highpressure air (3 bar) through the filter.

A sample of the precipitate was analysed for Fe content (see 2.2.1). This allowed for accurate addition of the potassium waterglass.

The potassium waterglass used was Silchem K 2250 (Silicate and Chemical Industries). This solution contained $20.9 \% \mathrm{SiO}_{2}$ by mass and the $\mathrm{SiO}_{2}: \mathrm{K}_{2} \mathrm{O}$ ratio was $2.5: 1$. This meant that in order to achieve to the correct ratio of $\mathrm{SiO}_{2}: \mathrm{Fe}$, an excess of $\mathrm{K}_{2} \mathrm{O}$ is added. Concentrated nitric acid was added to the solution to form potassium nitrate $\left(\mathrm{KNO}_{3}\right)$ and this facilitated the removal of the excess potassium.

The $\mathrm{Fe} / \mathrm{Cu}$ precipitate was reslurried in distilled water. This was done at room temperature. The calculated amount of potassium waterglass silica was then added to the slurry. A stoichiometric amount of nitric acid (calculated on the amount of excess potassium) was added and the slurry filtered to remove the filtrate.

The resulting catalyst precursor was dried in an oven at $120^{\circ} \mathrm{C}$ and atmospheric pressure. The dried precursor was crushed and sieved into two fractions viz. $38-250 \mu \mathrm{~m}$ and $250-$ $500 \mu \mathrm{~m}$.

2.2 Catalyst Characterisation

2.2.1 Iron content determination

The sample (precipitate or catalyst sample) was dissolved in concentrated hydrochloric acid (HCl) after which a slight excess of stannous chloride $\left(\mathrm{SnCl}_{2}\right)$ was added to reduce the Fe^{3+} to Fe^{2+}. Excess stannous chloride was removed as a precipitate by the addition of mercury chloride $\left(\mathrm{HgCl}_{2}\right)$. The ferrous ion was then titrated against potassium dichromate $\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$ using sodium diphenylamine sulphonate as indicator.

Approximately 5.0 g of catalyst sample (accurately weighed out) was dissolved in 40 ml of a 6.5 N HCl solution (prepared from GR Grade for Analysis - Merck). The solution was boiled under reflux for one hour to dissolve the sample. This solution was made up to 500 ml in a volumetric flask and filtered. 25 ml of this solution was pipetted into a 500 ml Erlenmeyer flask. 25 ml of a $\mathrm{HCl}(10 \mathrm{~N})(\mathrm{CP}-\mathrm{CJ}$ Chemicals): deionised water (1:1) solution
was added to the flask and the solution was brought to the boil. Stannous chloride (AR min 98% - Glassworld) was added dropwise until the solution just went clear. A further two drops were then added. The solution was cooled under CO_{2}. A 10 ml volume of HgCl_{2} (AR $\min 99.9 \%$ - Glassworld) was added to the solution and the solution was allowed to stand for a further three minutes. 50 ml of a phosphoric acid-sulphuric acid mixture (prepared by mixing 500 ml of $98 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ (AR min 98% - Merck) and 400 ml of $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ (A.C.S. Grade - Aldrich) and made up to 5000 ml) was then added and the solution was made up to approximately 300 ml . Two drops of diphenylamine sulphonate indicator (prepared from sodium diphenylamine sulphonate (CP - Unilab)) was added and the solution titrated against a $0.05 \mathrm{~N} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution ((prepared from $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ ($\mathrm{AR} \min 99.5 \%$ - Glassworld)) until a light red colour.

2.2.2 Atomic Absorption Spectrophotometry

In flame atomic absorption (AA) spectrophotometry, atomisation of the sample is carried out in the flame. The vapour from the sample is then interposed into the light path of a spectrophotometer. The location of the absorption lines can identify the elemental components in a sample and the absorbence of a line is generally proportional to the concentration of the absorbing species. The instrument is usually calibrated with a series of known concentrations of the element of interest. For a further description of atomic absorption spectrophotometry, Fundamentals of Analytical Chemistry (Skoog and West 1982) discusses the subject in more detail.

Atomic absorption spectrophotometry was used to quantify the Na, K and Cu in the catalyst samples. The instrument used was a Varian SpectraAA-10. For the sodium analysis a wavelength of 589 nm was used and a slit width of 0.5 nm . The potassium analysis used a wavelength of 766.5 nm and a slit width of 1.0 nm . The copper analysis was performed using a wavelength of 324.8 nm and a slit width of 0.5 nm .

The analyses were performed on the solution prepared in the first step of Chapter 2.2.1. The solution was filtered to remove the SiO_{2} which could cause blockages within the
instrument. The sample is then diluted to contain 0.18 g Fe and $45 \mathrm{~cm}^{3}$ of 0.5 N HCl (based on the known concentration of iron in the sample).

The absorption is measured with the AA by using a standard solution containing the same concentration of Fe and HCl and a known amount of the element to be analysed. The blank also contained these concentrations of Fe and HCl .

The potassium analyses used a blank and standard that also contained $\mathrm{CsCl}(\mathrm{AR} \min 99.5 \%$ - SAARChem). This was to improve the sensitivity of the reading. This was prepared by diluting $10 \mathrm{~cm}^{3}$ of a $1000 \mathrm{mg} / \mathrm{dm}^{3} \mathrm{CsCl}$ solution to $500 \mathrm{~cm}^{3}$. The preparation of the standard solution ($4.5 \mathrm{mg} \mathrm{K} / \mathrm{dm}^{3}$) involved first dissolving 5.1 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ in $72.0 \mathrm{~cm}^{3}$ of 6.5 N HCl . The blank solution for the sodium analyses was prepared by dissolving approximately 3.6 g of iron wire in 72.0 ml 6.5 N HCl and 30 ml of deionised water. Water was used as the blank for copper.

2.2.3 Determination of silica

The silica in the catalyst samples was determined by a gravimetric method. The sample was dissolved in HCl , the bulk of the water carefully evaporated and the sample dried at $110^{\circ} \mathrm{C}$ for one hour at atmospheric pressure. The soluble salts are further dissolved in dilute HCl and the insoluble fraction filtered off using ashless filter paper. The insoluble fraction is then recovered by heating the sample to $940^{\circ} \mathrm{C}$. This fraction is weighed and wet with concentrated sulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$. Concentrated hydrofluoric acid (HF) is then added to the wet sample to form SiF_{4}. This is volatile and will vaporise as the solution is heated. The remaining insoluble fraction is heated to $940^{\circ} \mathrm{C}$ and then weighed. The difference in mass between the insoluble fraction before the addition of HF and after the addition of HF is the mass of the silica in the sample.

The initial dissolution was performed using approximately 1.0 g of catalyst precursor, accurately weighed and wet with 20 ml of deionised water. A 50 ml volume of $\mathrm{HCl}(10 \mathrm{~N})$ was added to the sample and the sample was heated until the soluble fraction was dissolved. The filtration used a Whatman 42 filter paper due to the fineness of the silica.

The fraction remaining on the filter paper was initially washed using a $5 \% \mathrm{HCl}$ solution and then was washed using deionised water. The sample was ashed at $940^{\circ} \mathrm{C}$ for approximately 90 minutes. The sample obtained after after ashing was wet with a $1: 1 \mathrm{H}_{2} \mathrm{SO}_{4}$:deionised water (by volume) solution and then 15 ml of $48 \% \mathrm{HF}$ (GR - Merck) was added. The volatile fraction was vaporised by heating and the remaining fraction was again placed in an oven for 90 minutes at $940^{\circ} \mathrm{C}$ at atmospheric pressure.

2.2.4 Surface area determination

The surface area (SA) and total pore volume (TPV) are important physical properties of the catalyst. This property is measured by using the physical adsorption of gases on solid surfaces due to van der Waals-London forces. For multilayer adsorption, the BET equation developed by Brunauer, Emmet and Teller is used to calculate the surface area of the solid and the pore volume is calculated from the total adsorption. Scholten (Scholten, 1993) describes the derivation of the BET equation.

The surface area was measured using a Micromeretics Tristar. The adsorbing gas was N_{2} and the adsorption took place at $-195.8^{\circ} \mathrm{C}$. The sample was prepared by degassing the catalyst at $240^{\circ} \mathrm{C}$ for 16 hours. Atmospheric pressure was 0.88 bar and the adsorption points (relative pressures) can be seen in Table 2-1.

Table 2-1: Relative pressures of adsorption points

Point Number	Relative pressure
1	0.080
2	0.100
3	0.120
4	0.160
5	0.180
6	0.200
7	0.250
8	0.550
9	0.995

Where the relative pressure is $\mathrm{P} / \mathrm{P}_{0}$ and P_{0} is atmospheric pressure.

The BET equation is relevant until $P / P_{0}=0.3$ where it is linear. Points 8 an 9 are included for the calculation of the pore volume.

2.3 Effect of gas composition on the activation of the precipitated iron catalyst

The objective of this study was to determine the effect, if any, of a CO_{2} impurity in the reducing gas stream on the extent and rate of reduction of the precipitated iron catalyst. This would be further extended to the Fischer-Tropsch performance of the catalyst.

An impurity of $3 \% \mathrm{CO}_{2}$ was added to each of the reducing gases viz. hydrogen and carbon monoxide. The gases were supplied by Fedgas. Four gas compositions were used (see Table 2-2).

Table 2-2: Composition of reducing gases

	Gas composition (vol \%)
1.	$5 \% \mathrm{H}_{2} / \mathrm{Ar}$
2.	$0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{H}_{2} / \mathrm{Ar}$
3.	$4.8 \% \mathrm{CO} / \mathrm{He}$
4.	$0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{CO} / \mathrm{He}$

As previously commented on, Wimmers (Wimmers et al. 1986) showed that the addition of $3 \% \mathrm{H}_{2} \mathrm{O}$ affected the temperature required to reduce small $\mathrm{Fe}_{2} \mathrm{O}_{3}$ particles. Storch (Storch et al. 1951) reported that a 3% impurity of CO_{2} severely affected the reduction of a cobalt Fischer-Tropsch catalyst in a mixture of $75 \% \mathrm{H}_{2}$ and $25 \% \mathrm{~N}_{2}$ (see Figure 1-3).

2.3.1 Temperature Programmed Reduction (TPR)

Temperature programmed reduction (TPR) is a thermal technique that is used to measure the reducibility of a metal oxide. The basic principle is that a reducing gas is passed over a metal oxide while the temperature is increased according to a linear programme. The quantity of the reducing gas consumed is measured by the difference between the inlet gas
and the outlet gas concentrations. The most common method of analysing this difference is by the change in thermal conductivity (Kapteijn, et al. 1993). TPR can provide both qualitative and quantitative data.

The inert gases that formed the balance of the gas compositions were chosen based on their thermal conductivities relative to N_{2} (see Table 2-3). The thermal conductivity of the inert gas should not be close to that of the reactant gas as the change in thermal conductivity of the overall gas composition with the consumption of reactant would not be great enough to be measurable if it were.

Table 2-3: Thermal conductivities of common gases (relative to N_{2}) (Lide 1998)

Gas	Thermal conductivity
Ar	0.68
$\mathrm{~N}_{2}$	1.00
He	5.84
H_{2}	7.07
CO	0.97
CO_{2}	0.62
CH_{4}	1.29

The reaction products will interfere with the thermal conductivity detector due to either the thermal conductivity e.g. CO_{2} (see Table 2-3) or due to the sensitivity of the detector to the gas e.g. $\mathrm{H}_{2} \mathrm{O}$. Therefore, they need to be removed from the gas stream before analysis. An explanation of how these products were removed is contained in Appendix 1.

The temperature-programmed reductions were performed on a Micromeretics Autochem 2910. The instrument was first calibrated for each gas type. Details of the calibration are contained in Appendix 2.

In our experiments, approximately 0.050 g of sample (MSC3) was accurately weighed into a sample tube (see Table 2-4). The gas flow rate was $50 \mathrm{ml}(\mathrm{STP}) / \mathrm{min}$ and the temperature was ramped from $50^{\circ} \mathrm{C}$ to between either 800 or $900^{\circ} \mathrm{C}$. The heating rate was $10^{\circ} \mathrm{C} / \mathrm{min}$.

Table 2-4: Details of TPR experiments

TPR	Gas Composition	Mass catalyst (g)
MSC3-T1	$5 \% \mathrm{H}_{2} / \mathrm{Ar}$	0.0493
MSC3-T2	$0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{H}_{2} / \mathrm{Ar}$	0.0495
MSC3-T2R	$0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{H}_{2} / \mathrm{Ar}$	0.0510
MSC3-T3	$4.8 \% \mathrm{CO} / \mathrm{He}$	0.0497
MSC3-T4	$0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{CO} / \mathrm{He}$	0.0494
MSC3-T4R	$0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{CO} / \mathrm{He}$	0.0496

2.3.2 Isothermal Reduction

The catalyst (MSC3) was reduced isothermally to determine the effect of different gas compositions on the surface area, phase composition and morphology of the catalyst. The reductions using the gases containing H_{2} and CO respectively were not done at the same temperature, but rather at a temperature that is more optimal for each gas type. Dry (Dry 1981), in his review of the Fischer-Tropsch synthesis, points out that reduction in H_{2} at temperatures between $180^{\circ} \mathrm{C}$ and $220^{\circ} \mathrm{C}$ produced active catalysts. Reduction at $300^{\circ} \mathrm{C}$ gave poor results. High linear space velocities are also required to give high surface areas after reduction. Anderson (Anderson, 1956) describes the optimum conditions for CO activation as 0.1 bar and $325-345^{\circ} \mathrm{C}$. Free carbon formation, however, has been noted as showing a sharp increase above $325^{\circ} \mathrm{C}$ (Storch, 1951).

Catalyst ($2 \mathrm{~g}, 38 \mu \mathrm{~m}-250 \mu \mathrm{~m}$ fraction) was reduced according to the following temperature programme:

1. $\quad 1^{\circ} \mathrm{C} / \mathrm{min}$ until $220^{\circ} \mathrm{C}$ (H_{2} reductions) or $300^{\circ} \mathrm{C}$ (CO reductions)
2. 16 hrs at $220^{\circ} \mathrm{C}\left(\mathrm{H}_{2}\right.$ reductions) or 16 hrs at $300^{\circ} \mathrm{C}$ (CO reductions)
3. Cooling sample to room temperature.

The flow of the gas was set at $78 \mathrm{ml} / \mathrm{min}$ which corresponds to $39 \mathrm{ml}(\mathrm{STP}) /(\mathrm{g} . \mathrm{min})$ catalyst.

Figure 2-1: A schematic representation of the reduction apparatus

Figure 2-1 is a schematic representation of the reduction apparatus. Sufficient catalyst was loaded to completely fill the base of the glass reactor. This ensured there was no preferential flow over the catalyst bed. A glass wool plug prevented catalyst loss. The heating mantle was filled with sand to ensure proper distribution of the heat. Flow was set using a bubble flow controller.

Four reductions were performed. Table2-5 summarises the reduction conditions.

Table2-5: Reduction conditions for the isothermal reduction ($\mathrm{t}_{\text {Reduction }}=16 \mathrm{hrs}$; WHSV $=39 \mathrm{ml}(\mathrm{STP}) /(\mathrm{g} \cdot \mathrm{min}))$

Reduction Run Reference	Gas Composition	Temp $\left({ }^{\circ} \mathrm{C}\right)$
MSC3-R0	None	
MSC3-R1	$5 \% \mathrm{H}_{2} / \mathrm{Ar}$	220
MSC3 - R2	$0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{H}_{2} / \mathrm{Ar}$	220
MSC3 -R3	$4.8 \% \mathrm{CO}^{\circ} \mathrm{He}$	300
MSC3 - R4	$0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{CO} / \mathrm{He}$	300

The catalyst sample was then unloaded under argon (Ar). Roughly half of the sample was unloaded into molten wax, the remaining catalyst was unloaded onto a dry ice $\left(\mathrm{CO}_{2}\right)$ bed and then covered with dry ice in order to passivate the catalyst. The samples were submitted for Mössbauer and TEM analysis respectively.

2.3.3 Transmission Electron Spectroscopy

Transmission electron microscopy (TEM) is used to determine catalyst morphology with a resolution tunable in the range of $10^{-4}-10^{-10} \mathrm{~m}$ and to obtain structural information by lattice imaging and microdiffraction techniques. This gives valuable information as to the microstructure of the catalyst that cannot be obtained from a bulk technique such as Mössbauer spectroscopy. A more detailed description of TEM is given by Gallezot (Gallezot and Leclercq 1994).

The images were taken using a Philips CM200 Transmission Electron Microscope. The microscope was fitted with a lanthanum hexaboride $\left(\mathrm{LaB}_{6}\right)$ filament and operated at 200 kV . The condenser aperture used was a 50 micron platinum aperture and the objective aperture was a 40 micron platinum aperture. The sample was mounted on a copper grid with a holey carbon mesh (lacey formvar) by dipping the grid into the catalyst powder. The bright field images were taken on a charge collecting device (CCD) camera.

The following techniques were applied to aid in the identification of the phases:
a. lattice imaging (physical measurement of the lattice fringes)
b. fast Fourier transformation (FFT) plot
c. X-ray diffractogram

In all three techniques, the results are related to the d-spacings of the observed crystal phase. Energy dispersive X-ray spectroscopy analysis (EDS) was also used to help characterise the catalyst.

2.3.4 Mössbauer Spectroscopy (MS)

Mössbauer spectroscopy (MS) is a bulk technique that provides information on the oxidation states, the magnetic field and the lattice symmetry of a number of elements including iron. Bussière (Bussière 1994) gives a more detailed description of Mössbauer spectroscopy.

The Mössbauer experiments were performed with a $50 \mathrm{mCi} \mathrm{Co} ~ \$ ~ s o u r c e ~ i n ~ a ~ r h o d i u m ~$ matrix. The spectrometer was operated in a symmetric constant acceleration mode with $100 \mu \mathrm{~s}$ dwell time per channel. The spectra were collected over 1024 channels in a mirror image format.

Approximately 80 mg of the sample was ground to a fine powder and thereafter mixed with a Mössbauer inert material. This amount of sample gave a mass to area of $\mathrm{ca} .30 \mathrm{mg} / \mathrm{cm}^{2}$ when loaded into the sample holder. This allowed for a Mössbauer signal with minimal distortion due to secondary effects. The experiments were performed at either $25^{\circ} \mathrm{C}$ or $196^{\circ} \mathrm{C}$ (i.e. using liquid nitrogen) and the data collected over 36 hours to obtain a minimum of 500000 counts per channel.

The data was analysed using a least-square fitting routine that models spectra as a combination of quadrupole doublets and sextuplets based on a Lorentzian line-shape profile. The spectral components were identified based on their isomeric shift (δ), quadrupole splitting (Δ) and hyperfine magnetic field (H). The isomeric shift values are reported relative to metallic iron ($\alpha-\mathrm{Fe}$) and the iron content of each phase is determined from their relative peak areas.

Both a fresh sample (MSC3-R0) and MSC3-R1 to R4 (see Table2-5) were submitted for analysis. For MSC3-R1, both the sample unloaded in wax and the sample passivated in CO_{2} were submitted (called MSC3-R1(a) and -R1(b) respectively). This was to ascertain whether the method of passivation played a role in the results obtained.

2.3.5 Fischer-Tropsch Synthesis

The fact that different reducing gases and conditions lead to different activities, selectivities and stablilities of a particular catalyst during Fischer-Tropsch synthesis is well documented in the literature. Fischer-Tropsch synthesis runs were therefore included determine what the effect of CO_{2} in the reducing gas had on the performance of the reduced catalyst. The Fischer-Tropsch runs were performed in a fixed bed reactor.

2.3.5.1 Reactor operation

A flow diagram of the experimental set up for Fischer Tropsch reaction is shown in Figure 2-2.

From Figure $2-2$ it can be seen that three mass flow controllers supplied the various gases to the reactor. These were Brooks mass flow controllers. MFC1 was attached to the reducing gas and had a $120 \mathrm{nl} / \mathrm{hr}$ capacity, MFC2 was attached to the argon that was used as an internal standard and had a $30 \mathrm{n} / \mathrm{hr}$ capacity. MFC 3 controlled the flow of the synthesis gas and had a capacity of $18 \mathrm{nl} / \mathrm{hr}$. The mass flow controllers were calibrated using a bubble flow controller and a stopwatch accurate to a hundredth of a second. The temperature and atmospheric pressure were noted and the flows normalised to standard temperature and pressure. All the flow controllers were calibrated at atmospheric pressure. The calibrations are contained in Appendix 3.

The schematic diagram of the reactor is shown in Figure 2-3. Section 1 was filled with carborundum to act as a preheating zone. Section 2 was the catalyst bed. The temperature was controlled by the heating mantle while a thermocouple monitored the internal temperature of the catalyst bed.

Figure 2-3: Schematic representation of the fixed bed reactor used during Fischer-Tropsch synthesis

Fischer-Tropsch synthesis runs were performed on the catalyst reduced under different conditions. Table 2-6 is a summary of these conditions. The reductions were carried out
using the same temperature programmes as the isothermal reductions for each respective gas composition. The flow rates were higher due to limitations of the mass flow controller (i.e. $100 \mathrm{ml} / \mathrm{g} / \mathrm{min}$ versus $39 \mathrm{ml} / \mathrm{g} / \mathrm{min}$ at STP for the isothermal runs).

Table 2-6: Reduction conditions for the in-situ reduction prior to Fischer-Tropsch synthesis $\left(t_{\text {Reducion }}=16 \mathrm{hrs} ; \mathrm{WHSV}=100 \mathrm{ml}(\mathrm{STP}) /(\mathrm{g} . \mathrm{min})\right)$

Synthesis Run Reference	Gas Composition	ReductionTemp $\left({ }^{\circ} \mathrm{C}\right)$
MSC3-S1	$5 \% \mathrm{H}_{2} / \mathrm{Ar}$	220
$\mathrm{MSC} 3-\mathrm{S} 2$	$0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{H}_{2} / \mathrm{Ar}$	220
$\mathrm{MSC} 3-\mathrm{S} 3$	$4.8 \% \mathrm{CO}^{\mathrm{He}}$	300
$\mathrm{MSC} 3-\mathrm{S} 4$	$0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{CO} / \mathrm{He}$	300

The reductions were carried out in situ i.e. in the Fischer-Tropsch reactor.

The catalyst bed (Section 2 - see Figure 2-3) was loaded with 2 ml of MSC3 ($250 \mu \mathrm{~m}$ $500 \mu \mathrm{~m}$ fraction) and diluted with 2 ml of quartz ($149 \mu \mathrm{~m}-420 \mu \mathrm{~m}$ fraction). After reduction (as described above), the pressure was slowly increased to 20 bar under argon. Once this pressure had been obtained, the gas flow was switched over to synthesis gas (in the case of CO reductions, the reactor was first cooled to $220^{\circ} \mathrm{C}$). The Fischer-Tropsch reaction was carried out at $220^{\circ} \mathrm{C}$.

The synthesis gas was obtained from the commercial Fischer-Tropsch synthesis plant and the $\mathrm{H}_{2} / \mathrm{CO}$ ratio fluctuated. For this reason daily inlet samples were analysed when calculating the conversions. The space velocity of synthesis gas was $2.51(\mathrm{STP}) / \mathrm{g} / \mathrm{hr}$. A low flow of argon (approximately 10\%, accurately measured) was maintained as an internal standard. The hot trap, outlet sample point and the connecting lines were maintained at a temperature of $200^{\circ} \mathrm{C}$. The cold trap was at room temperature. Sampling of the outlet stream included a gas sample just after the hot trap and drainings from the hot trap and cold trap.

Gas samples were taken using a glass ampoule system where the glass ampoule is prepared under vacuum.

2.3.5.2 Data evaluation

2.3.5.2.1 Conversions, yields and selectivities

The gas samples were analysed by gas chromotography (GC) using both a TCD (thermal conductivity detector) to measure the permanent gases and a FID (flame ionisation detector) to detect the hydrocarbons.

The TCD measurements were performed using two different gas chromatograms (GowMac GC Series 580). Both systems used two columns in series. The first was a Porapak Q followed by a Molecular Sieve 13X. The flow in both systems was reversed before the CO_{2} reached the second column. This allowed for separation of the gas without the CO_{2} sticking to the molecular sieve.

The difference between the two GC systems was in the carrier gas used. First the sample was analysed using argon as the carrier gas. This allowed for a more accurate measurement of the H_{2} and then there was a switch by the detector to the second system where helium was used as the carrier gas in order that the other gases could be measured (see Table 2-3 for the relative thermal conductivities). The flow of the carrier gases was $20 \mathrm{ml} / \mathrm{min}$ and the temperature was maintained at $50^{\circ} \mathrm{C}$.

The system was calibrated by analysing a gas mixture of known concentrations. The internal standard, argon was included in this gas mixture. The flow of a particular gas in a sample was then calculated using the following formula:
$(\text { Molar flow })_{\mathrm{i}}=(\text { Molar flow })_{\mathrm{Ar}} \cdot\left(\frac{\% \mathrm{i}}{\% \mathrm{Ar}}\right)_{\text {in catibration mix }} \cdot\left(\frac{\text { peak area } \mathrm{Ar}}{\text { peak area i }}\right)_{\text {calibration }} \cdot\left(\frac{\text { peak area } \mathrm{i}}{\text { peak area } \mathrm{Ar}}\right)_{\text {sample }}$

The H_{2} and CO conversion were then calculated using these flows:

$$
\begin{equation*}
X_{i}=\frac{(\text { Molar flow })_{i \text { inlet }}-(\text { Molar flow })_{i, \text { outtet }}}{(\text { Molar flow })_{i, \text { inlet }}} \cdot 100 \% \tag{Equation2.2}
\end{equation*}
$$

Both the methane and CO_{2} yields $\left(\mathrm{Y}_{\mathrm{CO}_{2}}\right.$ and $\left.\mathrm{Y}_{\mathrm{CH}_{4}}\right)$ and selectivities $\left(\mathrm{S}_{\mathrm{CO}_{2}}\right.$ and $\left.\mathrm{S}_{\mathrm{CH}_{4}}\right)$ were also calculated from the TCD data:

$$
\left.\begin{array}{l}
Y_{i}=\frac{(\text { Molar flow })_{i, \text { inlet }}-(\text { Molar flow })_{i, \text { outlet }}}{(\text { Molar flow })_{\text {Co,inlet }}} \cdot 100 \% \quad \text { in mol.-\% }
\end{array} \quad \text { (Equation 2.3) }\right)
$$

The FID analyses were performed on a Perkin Elmer Autosystem XL. The column used was a Petrocol DH150 and the carrier gas was hydrogen. The velocity of the hydrogen was $27 \mathrm{~cm} / \mathrm{s}$. The temperature was started at $-60^{\circ} \mathrm{C}$, where it was held before being ramped at $45^{\circ} \mathrm{C} / \mathrm{min}$ to $-20^{\circ} \mathrm{C}$. From $-20^{\circ} \mathrm{C}$ to $220^{\circ} \mathrm{C}$, the temperature was ramped at $2^{\circ} \mathrm{C} / \mathrm{min}$. The lower temperature allowed for better separation of the C_{2} hydrocarbons.

An internal hydrocarbon standard was not included in or added to the synthesis gas. Instead the known flow of methane from the TCD results was used to calculate the flows of the higher hydrocarbons. This was done using the following equation:

$$
\begin{equation*}
(\text { Molar flow })_{\mathrm{HC}}=(\text { Molar flow })_{\mathrm{CH}_{4}} \cdot \frac{\mathrm{RF}_{\mathrm{CH}_{4}}}{\mathrm{RF}_{\mathrm{HC}}} \cdot \frac{(\text { Peak area HC }) / \mathrm{N}_{\mathrm{C}}}{\text { Peak area } \mathrm{CH}_{4}} \tag{Equation2.5}
\end{equation*}
$$

where N_{c} is the number of carbons in the hydrocarbon molecule.

The hydrocarbon selectivity was calculated relative to the CO that was converted to hydrocarbons (i.e. excluding the CO converted to CO_{2}):
$\mathrm{S}_{\mathrm{i}}=\frac{\left((\text { Molar flow })_{\mathrm{HC}, \text {,outet }}-(\text { Molar flow })_{\mathrm{HC}, \text { inllet }}\right) \cdot \mathrm{N}_{\mathrm{C}}}{\left((\text { Molar flow })_{\mathrm{CO}, \text { inlet }}-(\text { Molar flow })_{\mathrm{CO}, \text { outrlet }}\right)-\left((\text { Molar flow })_{\mathrm{CO}_{2} \text {,outlet }}-(\text { Molar flow })_{\mathrm{CO}_{2} \text {, innlet }}\right)} \cdot 100 \% \quad$ in C-
(Equation 2.6)

The C\% yield of the hydrocarbons was calculated relative to the total CO flow into the reactor system using an equation similar to 2.4 . The mol- $\%$ yield could be calculated by converting the flow to moles.

A typical FID GC chromatogram is shown in Figure 2-4.

Figure 2-4: Typical GC chromatogram obtained from the FID analyses (MSC3 reduced in $0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{H}_{2} / \mathrm{Ar}$ for 16 hours at $220^{\circ} \mathrm{C}$ - after 24 hours of FischerTropsch synthesis)

2.3.5.2.2 Carbon balance

The total carbon balance of the system was calculated from the above data:

$$
\begin{equation*}
\text { Carbon balance }=100-\left(\mathrm{X}_{\mathrm{CO}}-\mathrm{Y}_{\mathrm{CO} 2}-\mathrm{Y}_{\mathrm{CH} 4}-\mathrm{Y}_{\mathrm{C} 2+}\right) \tag{Equation2.7}
\end{equation*}
$$

The C_{2+} yield included the wax produced. The $\mathrm{C} \%$ yield was calculated by converting the mass wax to an equivalent "carbon flow" and then using equation 2.4.

2.3.5.2.3 Chain growth probability (α)

The chain growth probability (α) of the products is based on the fact that the FischerTropsch catalyst is a polymerisation reaction and is calculated by an application of the Schultz-Flory equation (Dry 1981):

$$
\begin{equation*}
\log \left(\frac{n_{i}}{\sum_{i=1}^{\infty} n_{i}}\right)=N_{C} \cdot \log \alpha+\log \left(\frac{(1-\alpha)^{2}}{\alpha}\right) \tag{Equation2.8}
\end{equation*}
$$

where n_{i} is the mole fraction and N_{c} is the number of carbons.

This is known as the Anderson-Schultz-Flory equation. By plotting the \log of the mole fraction versus the carbon number, we get a linear plot with the slope equal to $\log \alpha$. From this we can calculate the chain growth probability.

2.3.5.2.4 Acid value

The acid value was measured by titrating the reaction water against a 0.05 N KOH solution. The solution was prepared from AR Grade KOH pellets (85% min - Merck).

The acid value was calculated as $\mathrm{mg} \mathrm{KOH} /$ (g reaction water).

Chapter 3 - Results

3.1 Catalyst preparation

Three catalyst precursors (MSC1, MSC2 and MSC3) were prepared in order to try and achieve the required $\mathrm{K}_{2} \mathrm{O}$ level. The catalysts were prepared by adding an iron and copper nitrate solution to a sodium carbonate solution. The initial pH of the $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution was 11.04. The metal nitrate solution was added over a period of approximately 30 minutes. The long addition times were due to foaming. Addition of the metal nitrate solution was discontinued once the pH of the slurry reached 7.0. In each of these preparations, the reaction was not stoichiometric. 270,500 and 420 ml of the $\mathrm{Fe} / \mathrm{Cu}$ nitrate solution remained for MSC1, MSC2 and MSC3 respectively. The pH of the slurry increased by $\sim 0.10-0.15$ units on ageing.

In Table 3-1, the obtained elemental compositions of the catalyst precursors are given. The oxygen content is based on the difference in sample mass and the mass calculated from the elemental compositions. Any hydrogen still in the precursor as a hydroxide group is neglected. From molar content (Table 3-1B), it is clear that in the catalyst precursor the molar ratio $\mathrm{O} / \mathrm{Fe}=2.06 \pm 0.09$, assuming that Cu is present as $\mathrm{CuO}, \mathrm{Si}$ as $\mathrm{SiO}_{2}, \mathrm{~K}$ as KOH and Na as NaOH . This indicates that iron is present as $\mathrm{Fe}(\mathrm{OOH})$ in the catalyst precursor.

During filtration, MSCl did not form an even layer on the filter cloth. Although the precipitate was washed until the conductivity of the filtrate was less than $120 \mu \mathrm{~S}$, the sodium content of the catalyst (measured in the final catalyst) was still high (see Table 3-1). The mass of washed precipitate recovered was 647 g of which 57 g was calculated to be iron. The catalyst was reslurried with 450 ml of distilled water and to this was added 70 g of K-waterglass and 5 ml of HNO_{3} (55% by volume). An additional 200 ml of water was added to rinse out the flask due to bittiness (i.e. precipitate that had not reslurried). The results in Table 3-1 show that the $\mathrm{K}_{2} \mathrm{O}$ level was lower than expected.

Table 3-1: Chemical compositions of the precipitated catalyst precursors
A: Composition on mass basis

Catalyst	Fe (wt.-\%)	Cu $(\mathrm{wt}. . \%)$	Si $(\mathrm{wt}. . \%)$	K (wt.-\%)	Na $(\mathrm{wt}. . \%)$	O^{1} $(\mathrm{wt}. . \%)$
MSC1	51.9	2.8	5.3	1.4	0.7	37.8
MSC2	50.6	2.8	6.0	2.8	<0.1	37.8
MSC3 (Catalyst)	50.1	2.4	6.3	1.6	<0.1	39.6

${ }^{1}$ Calculated value based on difference

B: Composition on molar basis

Catalyst	Fe $(\mathrm{mol}-\%)$	Cu $(\mathrm{mol}-\%)$	Si $(\mathrm{mol}-\%)$	K $(\mathrm{mol}-\%)$	Na $(\mathrm{mol}-\%)$	O^{1} $(\mathrm{~mol}-\%)$
MSC1	25.9	1.2	5.3	1.0	0.8	65.8
MSC2	25.2	1.2	6.0	2.0	<0.1	65.7
MSC3 (Catalyst)	24.4	1.0	6.1	1.1	<0.1	67.4

${ }^{1}$ Calculated value based on difference

C: Composition of the catalyst precursors on mass basis relative to iron

Catalyst	Cu $\mathrm{g} / 100 \mathrm{~g} \mathrm{Fe}$	SiO_{2} $\mathrm{~g} / 100 \mathrm{~g} \mathrm{Fe}$	$\mathrm{K}_{2} \mathrm{O}$ $\mathrm{g} / 100 \mathrm{~g} \mathrm{Fe}$	Na $\mathrm{g} / 100 \mathrm{~g} \mathrm{Fe}$
MSC1	5.4	22.0	3.3	1.3
MSC2	5.5	25.4	6.7	<0.1
MSC3 (Precipitate)		29.0	8.4	
MSC3 (Catalyst)	4.8	26.9	3.8	<0.1

The slurry for MSC2 and MSC3 was filtered through a $250 \mu \mathrm{~m}$ mesh after the addition of the K-waterglass and nitric acid. This not only prevented bittiness but also ensured a more homogeneous catalyst.

Only 285 g of washed precipitate was recovered during the preparation of MSC2 due to a leaking filter unit. The iron was calculated to be 31 g and 250 ml of distilled water was used to reslurry the precipitate. A mass of 37 g of K -waterglass and 3 ml of $\mathrm{HNO}_{3}(55 \%$ by volume) was added to the slurry. Thus, MSC2 also had a stoichiometric quantity of HNO_{3} added to the slurry but no further water was added once the precipitate had been reslurried. In this case, the $\mathrm{K}_{2} \mathrm{O}$ level was too high ($6.7 \mathrm{~K}_{2} \mathrm{O} / 100 \mathrm{Fe}$).

For MSC3, 458 g of precipitate was recovered, of which 55 g was iron. 430 ml of distilled water was used to reslurry the precipitate. The calculated mass of 68 g of K -waterglass was added to the slurry but 10 ml of HNO_{3} (55% by volume; ca. 25% more nitric acid than stoichiometrically required) was added. The objective was to try and lower the $\mathrm{K}_{2} \mathrm{O}$ even further. The precipitate obtained from this second step was sent in for $\mathrm{K}_{2} \mathrm{O}$ analysis prior to the catalyst precursor being dried. The $\mathrm{K}_{2} \mathrm{O}$ level was even higher than MSC2, at 8.4 $\mathrm{K}_{2} \mathrm{O} / 100 \mathrm{Fe}$. This is probably due to the fact that the amount of precipitate recovered from the first step was greater than for MSC2. The removal of the $\mathrm{K}_{2} \mathrm{O}$ by filtration was therefore more difficult. This precipitate was then reslurried in distilled water and filtered. The final $\mathrm{K}_{2} \mathrm{O}$ level was $3.8 \mathrm{~K}_{2} \mathrm{O} / 100 \mathrm{Fe}$.

3.2 Surface area of catalyst precursor

The surface area of the catalyst precursors was determined. Results are shown in Table 3-2. Despite the differences experienced during the catalyst preparation, the surface area, pore volume and thus the average pore size are comparable. This can be attributed to the fact that the catalyst is mainly made up of porous iron oxyhydrate prepared under comparable conditions. The slightly different K and SiO_{2}-levels do not seem to significant;y affect the surface area and pore properties of the catalyst precursor.

Table 3-2: BET results of the precipitated catalysts

Catalyst	Surface Area $\left(\mathrm{m}^{2} / \mathrm{g}\right)$	Pore volume $\left(\mathrm{cm}^{3} / \mathrm{g}\right)$	Average pore diameter (\AA)
MSC1	344	0.54	63
MSC2	327	0.53	64
MSC3	329	0.51	61

3.3 Temperature-Programmed Reduction

Although the catalyst MSC3 had a slightly lower potassium content than the Ruhrchemie catalyst, it was decided to investigate the influence of the reduction atmosphere with this catalyst.

Figure 3-1 shows the temperature-programmed reduction profiles of the reduction in $5 \% \mathrm{H}_{2} / \mathrm{Ar}$ and $0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{H}_{2} / \mathrm{Ar}$ mixture. The quantitative evaluation of these TPRexperiments are given Table 3-3. The TPR of MSC3 reduced in H_{2} shows three peaks. The first peak contains a shoulder on the low temperature side, which may be due to the reduction of the copper oxide. The first peak is usually associated with the reduction of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ to $\mathrm{Fe}_{3} \mathrm{O}_{4}$ (Bukur et al. $1995(\mathrm{a})$). This is highly favoured thermodynamically and the rate of reduction is fast, as can be seen from the sharpness of the peak. The second peak is normally associated with the reduction of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ to Fe (Bukur et al. 1995(a)). This rate of reaction is much slower as indicated by the peak shape corresponding to a much lower thermodynamic driving. The third peak could be due to reduction of an iron silicate species (Dry 1981).

For the first peak to be associated with the reduction of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ to $\mathrm{Fe}_{3} \mathrm{O}_{4}$, one would expect the H_{2} consumed to be 11.1% of the total H_{2} consumed by complete reduction. This is derived from the following two reactions:

$$
\begin{align*}
& 3 \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \rightleftharpoons 2 \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{O} \tag{3.1}\\
& 3 \mathrm{Fe}_{2} \mathrm{O}_{3}+9 \mathrm{H}_{2} \rightleftharpoons 6 \mathrm{Fe}+9 \mathrm{H}_{2} \mathrm{O} \tag{3.2}
\end{align*}
$$

Figure 3-1: Temperature-programmed reduction of catalyst MSC3 in hydrogen-containing atmospheres $\left(5 \% \mathrm{H}_{2} / \mathrm{Ar}\right.$ and $0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{H}_{2} / \mathrm{Ar}$, reduction conditions see Chapter 2.3.1)

Table 3-3: Quantitative evaluation of temperature programmed reduction of catalyst MSC3 in H_{2}-containing atmospheres

Gas composition	$5 \% \mathrm{H}_{2} / \mathrm{Ar}$	$0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{H}_{2} / \mathrm{Ar}$	$\begin{gathered} 0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{H}_{2} / \mathrm{Ar} \\ \text { (repeat) } \end{gathered}$
$\mathrm{T}_{\text {reduction start, }}{ }^{\circ} \mathrm{C}$	170	- 180	180
$\mathrm{T}_{\text {max }}{ }^{15 t}$ maximum, ${ }^{\circ} \mathrm{C}$	274	279	284
$\mathrm{T}_{\max 2}{ }^{\text {nd }}$ maximum,${ }^{\circ} \mathrm{C}$	606	608	621
$\mathrm{T}_{\text {max }} 3^{\text {rd }}{ }_{\text {maximum }}{ }^{\circ}{ }^{\circ} \mathrm{C}$	733	752	730
$\mathrm{H}_{2 \text {, consumed total, }} \mathrm{mmol} / \mathrm{g}$	12.62	10.35	9.95
H_{2} consumed list paak, $\mathrm{mmol} / \mathrm{g}$	4.10	3.43	3.63
H_{2}, consumed $/ \mathrm{Fe}$, mol/mol	1.41	1.15	1.11
$\%$ reduction 1	97	74^{2}	71^{2}

${ }^{1}$ The amount of hydrogen used for the reduction of copper has been subtracted
${ }^{2}$ Assumed that all H_{2} is used for catalyst reduction and not CO_{2} hydrogenation

For catalyst MSC 3 the reduction of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ to $\mathrm{Fe}_{3} \mathrm{O}_{4}$ would correspond to a hydrogen consumption of $1.87 \mathrm{mmol} / \mathrm{g}$ (including the reduction of CuO to Cu). In fact, the approximately 33% of total hydrogen consumed agrees more with the following reaction:

$$
\begin{equation*}
3 \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \rightleftharpoons 6 \mathrm{FeO}+3 \mathrm{H}_{2} \mathrm{O} \tag{3.3}
\end{equation*}
$$

If one looks at the phase diagram of iron/oxygen, FeO is not considered a stable phase at the temperatures at which the first reduction peak occurs and it is not seen as a separate phase in a reduced catalyst. It may be possible that the first peak, while corresponding to the reduction (3.3) is in fact a summation of two reduction steps (3.1) and (3.3) i.e.

$$
\begin{aligned}
& \mathrm{Fe}_{2} \mathrm{O}_{3} \rightleftharpoons \mathrm{Fe}_{3} \mathrm{O}_{4} \\
& \mathrm{Fe}_{3} \mathrm{O}_{4} \rightleftharpoons \mathrm{FeO} .
\end{aligned}
$$

This would be supported by the shoulder on the left hand side of the peak which cannot correspond only to the reduction of copper oxide i.e.

$$
\begin{equation*}
\mathrm{CuO} \rightleftharpoons \mathrm{Cu} \tag{3.4}
\end{equation*}
$$

The hydrogen consumed due only to the shoulder ($\sim 7 \%$) is already too much.

The addition of CO_{2} to the reduction gas does not seem to alter the reduction behaviour. Although the TPR profiles look very similar, the quantitative evaluation of the TPR experiment shows some differences. The observed degree of reduction when CO_{2} is present in the reduction gas mixture is significantly different, although the maximums observed in the TPR-spectra are not shifted much. It was speculated that CO_{2} would have no or a negative effect on the reduction in a H_{2} atmosphere, therefore the negative effect of the CO_{2} on the H_{2} reduction is not unexpected. The difference between the reduction in $\mathrm{H}_{2} / \mathrm{Ar}$ atmosphere and in an atmosphere containing CO_{2} is depicted in Figure 3-2. For comparison the TPR-profile of MSC3 is depicted in a 0.1x magnification as well. At the start of the reduction, more hydrogen is consumed in a reducing atmosphere without carbon dioxide. At ca. $275^{\circ} \mathrm{C}$ the hydrogen consumption in the atmosphere containing carbon dioxide is higher. The first reduction step(s) are shifted towards a higher temperature. At higher temperatures the difference spectrum follows the TPR-profile of the catalyst indicating a lower rate of reduction. This might be ascribed to reoxidation of the newly created FischerTropsch sites by CO_{2}. This is thermodynamically not likely for bulk oxidation but could be possible on the surface. The product of such a reaction would have been CO and this would not really have been picked up by the TCD analysis (due to the similarity of the thermal conductivity of Ar and CO).

Figure 3-2: Difference of the TPR-profile of MSC3 reduced in $5 \% \mathrm{H}_{2} / \mathrm{Ar}$ and the TPRprofile of MSC 3 reduced in $0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{H}_{2} / \mathrm{Ar}$ (reduction conditions see Chapter 2.3.1). For comparison the TPR-profile of MSC3 in $5 \% \mathrm{H}_{2} / \mathrm{Ar}$ is depicted in a $0.1 \times$ magnification as well.

Under the reduction conditions applied, it is principally possible that CO_{2} is hydrogenated. This would result in hydrogen consumption, but not in reduction of the catalyst. Furthermore, this would have increased the partial pressure of the $\mathrm{H}_{2} \mathrm{O}$, which would retard the reduction (Storch ef al. 1951). Unfortunately, the exit gases from the TPR were not analysed so it was not possible to tell if there was hydrogenation of the CO_{2}.

One other possibility that needs to be considered is the fact that CO_{2} might adsorb on metallic copper. This might lower the amount of H_{2} available for the reduction reaction due to the lower surface area now available for H_{2} dissociation and spillover. It would be interesting to see if CO_{2} would have a similar effect on the TPR of a catalyst not promoted with copper.

Figure 3-3 shows the temperature-programmed reduction profile of the catalyst precursor MSC3 reduced in carbon monoxide-containing atmospheres. The addition of carbon dioxide to the reducing gas mixture does not seem to change the TPR-profile. The magnitude of CO -consumption is, however, in the presence of CO_{2} larger than that without CO_{2}. A quantitative evaluation of the TPR-experiments is given in Table 3-4.

Figure 3-3: Temperature programmed reduction of catalyst MSC3 in carbon monoxide containing atmospheres $\left(5 \% \mathrm{CO} / \mathrm{He}\right.$ and $0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{CO} / \mathrm{He}$, reduction conditions see Chapter 2.3.1)

The TPR of MSC3 reduced in CO shows only two peaks. These peaks are not as clearly defined as in the H_{2} reductions. This could be an indication that there are diffusion limitations associated with the reduction of the precipitated catalyst precursor in CO or could be due to carbide formation.

Again, the first peak is associated with the reduction of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ to $\mathrm{Fe}_{3} \mathrm{O}_{4}$ and the second with the reduction of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ to Fe . Above ca. $565^{\circ} \mathrm{C}$, the TPR profile of MSC 3 in a $\mathrm{CO} / \mathrm{CO}_{2}$ atmosphere indicates a negative consumption of CO (i.e. CO is being produced). A possible explanation is the reverse carbidisation of iron carbide ($\mathrm{Fe}_{\mathrm{x}} \mathrm{C}+\mathrm{CO}_{2} \rightarrow \mathrm{Fe}+2 \mathrm{CO}$) or, but due to thermodynamic constraints less likely, due to the reverse Boudouard reaction i.e.

$$
\begin{equation*}
\mathrm{C}+\mathrm{CO}_{2} \rightleftharpoons 2 \mathrm{CO} \tag{3.5}
\end{equation*}
$$

The reaction of iron carbide with carbon dioxide might be feasible at higher temperatures for small carbide particles. The reaction of free carbon with carbon dioxide is thermodynamically highly unfavoured.

Table 3-4: Quantitative evaluation of temperature-programmed reduction of catalyst MSC3 in CO-containing atmospheres

Gas composition	$5 \% \mathrm{CO} / \mathrm{He}$	$4.7 \% \mathrm{CO} / 0.15 \% \mathrm{CO}_{2} / \mathrm{He}$	$0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{CO} / \mathrm{He}$ (repeat)
$\mathrm{T}_{\text {reduction start, }}{ }^{\circ} \mathrm{C}$	100	86	86
$\mathrm{T}_{\text {max }}{ }^{\text {st maximum, }}$, ${ }^{\circ} \mathrm{C}$	236	237	236
$\mathrm{T}_{\text {max } 2}{ }^{\text {nd }}$ maximum, ${ }^{\circ} \mathrm{C}$	365	379	377
$\mathrm{CO}_{\text {consumed total, }} \mathrm{mmol} / \mathrm{g}$	6.78	11.56	11.69
$\mathrm{CO}_{\text {consumed 1st peak, }} \mathrm{mmol} / \mathrm{g}$	1.91	3.21	3.43
$\mathrm{CO}_{\text {consumed }} / \mathrm{Fe}, \mathrm{mol} / \mathrm{mol}$	0.76	1.29	1.30
$\%$ reduction ${ }^{\text {l }}$	48	83^{2}	83^{2}

${ }^{1}$ The amount of CO used for the reduction of copper has been subtracted
${ }^{2}$ Assumed that all CO is used for catalyst reduction and CO_{2} was not transformed into CO

It can be seen from the quantitative evaluation that CO_{2} enhances the consumption of CO dramatically. It was speculated that CO_{2} would have no or a negative effect on both the H_{2} and CO reductions. The positive effect of CO_{2} on the TPR of the catalyst reduced in CO was completely unexpected. The reduction of the catalyst precursor MSC3 in the presence of CO does not go to completion. The observed degree of reduction is less than 50%. This indicates that there are severe diffusion constraints or unavailability of iron for reduction, since the reduction with CO is even more favoured than the reduction with H_{2}.

As was expected from thermodynamics, the reduction in CO started at a lower temperature than the reduction in H_{2}. The overall degree of reduction, however, was lower for the CO reduced catalyst. There could be a number of mechanisms to explain this. Copper is known to be a reduction promoter in hydrogen atmospheres. Hydrogen may dissociate on copper and spill over to the iron particles, which then reduce. A spill-over effect with carbon
monoxide is not likely to occur. Furthermore, CO is also a larger molecule than H_{2} and therefore the lower total degree of reduction could be due to kinetic constraints, if the reaction is kinetically controlled due to diffusion constraints. It may also be possible that the deposition of free carbon could limit the diffusion of CO through the metallic outer core towards the solid/solid interface where the reaction takes place. The positive effect of CO_{2} in the reduction in CO-containing atmospheres can then be explained by the inhibition of the formation of free carbon, which may block reaction sites or pores through which the gases may diffuse more easily.

It is possible that the degree of reduction for the CO-activated catalysts may be even lower still if one considers the fact that not all the CO is consumed by the reduction of the iron oxide. A percentage may be consumed by the formation of iron carbides and carbon.

3.4 Isothermal Reduction

It was noted that after the reduction of the catalyst in CO , there was a marked decrease in volume after the reduction of the catalyst. This could not be quantified as a portion of the catalyst was unloaded into wax, but it is probably due to sintering of the catalyst and the difference in density between the iron oxide and metallic iron or iron carbides (5.27, 7.87 and 7.60 respectively). The catalyst samples reduced in H_{2} did not show this decrease in volume, but the reduction was specifically carried out at a low temperature to prevent sintering and loss of surface area. The results obtained from the characterisation of the catalyst after various reductions are presented below.

3.4.1 BET Surface areas

Table 3-5 summarises the results obtained from the BET-surface area measurement. The catalysts reduced in CO -containing atmospheres (and at higher temperatures viz. $300^{\circ} \mathrm{C}$) lost more surface area and pore volume than the catalysts which were reduced in $\mathrm{H}_{2}-$ containing atmospheres at lower temperatures. All the reduced catalysts showed a lower
surface area and pore volume than the catalyst precursor. This is in agreement with previous work done by Bukur (Bukur et al. 1995(b)). He also noted that a catalyst reduced in H_{2} at $280^{\circ} \mathrm{C}$, lost less surface area than during the activation in CO . He speculated that this might be due to carbonaceous products blocking the pores of the catalyst. The overall decrease in surface area can be attributed to a partial collapse of the porous iron oxide matrix (Bukur et al. 1995(b)). This is supported by the pore size distributions of the catalyst before and after reduction. One can see that there is an increase in the larger pores at the expense of the smaller or micropores.

Table 3-5: BET results of the reduced catalyst MSC3 in different reduction atmospheres

Reduction atmosphere	$\mathrm{T}_{\text {reduction }}$ $\left({ }^{C} \mathrm{C}\right)$	Surface Area $\left(\mathrm{m}^{2} / \mathrm{g}\right)$	$\mathrm{V}_{\text {pore }}$ $\left(\mathrm{cm}^{3} / \mathrm{g}\right)$	$\mathrm{d}_{\text {pore }}$ (A)
Unreduced catalyst	-	329	0.51	61
$5 \% \mathrm{H}_{2} / \mathrm{Ar}$	220	159	0.44	111
$0.15 \% \mathrm{CO}_{2} / 5 \% \mathrm{H}_{2} / \mathrm{Ar}$	220	162	0.43	106
$4.8 \% \mathrm{CO}^{2} / \mathrm{He}$	300	97	0.21	87
$4.7 \% \mathrm{H}_{2} / 0.15 \% \mathrm{CO}_{2} / \mathrm{He}$	300	94	0.21	91

3.4.2 Transmission Electron Spectroscopy

3.4.2.1 Catalysts reduced in H_{2}

The morphology of the catalyst MSC3 after reduction in hydrogen-containing atmospheres (with and without carbon dioxide) is shown in Figures 3-4 and 3-5. The catalyst consists of a collection of small crystallites. The crystallites that can be measured would appear to be approximately 6 nm or smaller in diameter. There also seems to be very little difference in the morphology of the catalyst when reduced in $5 \% \mathrm{H}_{2} / \mathrm{Ar}$ and when reduced in $0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{H}_{2} / \mathrm{Ar}$. Higher magnification does not further elucidate the morphology.

There are a number of different possibilities for the iron phase in the precipitated MSC3 catalyst. Appendix 4 contains the d-spacings of both the possible phases of the unreduced catalyst as well as of the reduced catalyst (both in H_{2} and CO). It can be seen from these spacings that it is very difficult to differentiate between similar phases based purely on the
lattice fringes. It is also possible to get distortion of the measured lattice fringe if the image is exactly in focus.

Figure 3-4: TEM micrograph of catalyst MSC3 reduced in $5.0 \% \mathrm{H}_{2} / \mathrm{Ar}$ at $220^{\circ} \mathrm{C}$ for 16hrs (reduction conditions see Chapter 2.3.2)

Looking at the lattice fringes of the crystallites, measurements in the region of $2.2 \AA, 3.0 \AA$, $3.6 \AA, 4.2 \AA, 4.5 \AA$ and $5.6 \AA$ were seen. A fast Fourier-transformation in the squared off region of Figure 3.4 gave $2.20 \AA, 3.00 \AA$ and $3.54 \AA$. It could be possible that one of

Figure 3-5: TEM micrograph of catalyst MSC3 reduced in $0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{H}_{2} / \mathrm{Ar}$ at $220^{\circ} \mathrm{C}$ for 16 hrs (reduction conditions see Chapter 2.3.2)
the iron phases may be maghemite. There was no direct evidence for any reduced phases of iron oxide such as magnetite, wüstite or alpha-iron.

Unfortunately, confirmation could not be obtained from X-ray diffraction measurements. The images were too indistinct to measure the spacing accurately. Bulk XRD measurements of the catalyst would also have added to this part of the study as it could have limited the number of possible phases. There was insufficient sample to perform these measurements.

3.4.2.2 Catalysts reduced in CO

The image of the catalyst reduced in $4.8 \% \mathrm{CO} / \mathrm{He}$ and that of the catalyst reduced in $0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{CO} / \mathrm{He}$ can be seen in Figure 3-6 and 3-7 respectively. Again, the slight CO_{2} impurity seems to have little effect on the final morphology of the catalyst when the catalyst was reduced in CO . The crystallite sizes were measured between 10 and 60 nm . Higher magnification of these crystallites shows a "cherry-like" nodule in an amorphouslike matrix and surrounded on the surface by layered structures.

The main lattice fringe found in the nodule was in approximately $4.9 \AA$. This can only be ascribed to magnetite. The layered structure would appear to be a "graphitic" carbon that has been deposited on the surface (lattice fringe measured in the vicinity of $3.3 \AA$). No evidence for carbides was seen as we were unable to measure the lattice fringes in the region required (i.e. $2 \AA$) due to the low resolution of the microscope. Fast Fourier transformations of the area within the nodule confirmed that the lattice fringes matched those of an iron oxide phase and not of a carbide $(4.68 \AA, 4.03 \AA, 3.24 \AA$ and $2.01 \AA$).

EDS analyses were performed on each of the areas represented in Figures 3-6 and 3-7.

Figure 3-6: TEM micrograph of catalyst MSC3 reduced in $4.8 \% \mathrm{CO} / \mathrm{He}$ at $300^{\circ} \mathrm{C}$ for 16hrs (reduction conditions see Chapter 2.3.2)

Figure 3-7: TEM micrograph of catalyst MSC3 reduced in $0.15 \% \mathrm{CO}_{2} / 4.8 \% \mathrm{CO} / \mathrm{He}$ at $300^{\circ} \mathrm{C}$ for 16 hrs (reduction conditions see Chapter 2.3.2)

Carbon was found in all the areas, although in varying quantities. In Figure 3-6, area 6 appeared the most oxidic and area 3 , the most carbonaceous. The most silica was seen in area 6 and the least in area 3. Areas 4,6 and 7 contained potassium. The potassium peak
was relatively small. In Figure 3-7, areas 3 and 4 appeared more oxidic while areas 1 and 2 had higher carbon content. Again, the areas higher in oxygen also appeared to be higher in silica. Potassium was seen in all the areas measured. Areas 5 and 6 gave a very high copper content. Area 6 in particular showed a high relative copper, silica and oxygen content. A possible explanation for this is that the segregation of copper to the catalyst surface can occur during CO activation. This could be due to the low solubility of copper in the iron carbide phase as has been noted before (Sault and Datye 1993). It must also be noted, however, that the grid used was a copper grid and these were the areas measured on the periphery of the catalyst sample.

Figure 3-8 shows some examples of the more unusual structures seen on the catalyst MSC3 reduced in carbon monoxide-containing atmospheres. The structures are probably due to outward growth due to carbon incorporation (as carbides) or deposition (as graphitic carbon).

Figure 3-8: TEM micrograph of catalyst MSC3 reduced in $4.8 \% \mathrm{CO} / \mathrm{He}$ at $300^{\circ} \mathrm{C}$ for 16 hrs showing carbonaceous filaments (reduction conditions see Chapter 2.3.2)

3.4.3 Mössbauer Spectroscopy

Mössbauer spectra of the reduced catalyst MSC3 (reduced in various atmospheres) were collected. The spectra of the reduced catalyst are given in Figures 3-9 -3-14.

Figure 3-9: Mössbauer plot of MSC3, unreduced

Figure 3-10: Mössbauer plot of MSC3 reduced in $5 \% \mathrm{H}_{2} / \mathrm{Ar}$ at $220^{\circ} \mathrm{C}$ for 16 hours - sample unloaded in wax, spectrum at $25^{\circ} \mathrm{C}$ (for reduction conditions see chapter 2.3.2)

Figure 3-11: Mössbauer plot of MSC3 reduced in $5 \% \mathrm{H}_{2} / \mathrm{Ar}$ at $220^{\circ} \mathrm{C}$ for 16 hours - Sample unloaded in CO_{2}, spectrum at $25^{\circ} \mathrm{C}$ (for reduction conditions see chapter 2.3.2)

Figure 3-13: Mössbauer plot of MSC reduced in $4.8 \% \mathrm{CO} / \mathrm{He}$ at $300^{\circ} \mathrm{C}$ for 16 hours (for reduction conditions see chapter 2.3.2)

The quantitative evaluation of the Mössbauer experiments are given in Table 3-6.

Table 3-6: Mössbauer results of MSC3 reduced under different conditions

Sample	$\begin{gathered} { }^{a_{\mathrm{IS}}} \\ \left(\mathrm{mms}^{-1}\right) \mathrm{Fe} \end{gathered}$	$\begin{gathered} \mathrm{a}_{\mathrm{QS}} \\ \left(\mathrm{mms}^{-1}\right) \end{gathered}$	${ }^{\text {b }}$ BHF (T)	RA^{*} (Intensity)	Phase
$\begin{aligned} & \text { MSC3-R0 } \\ & \left(-196^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	0.40	1.01	-	39.7	Fe^{3+}
	0.40	0.56	-	60.3	Fe^{3+}
$\begin{aligned} & \mathrm{MSC} 3-\mathrm{R} 1(\mathrm{a}) \\ & \left(25^{\circ} \mathrm{C}\right) \end{aligned}$	0.36	1.23	-	39.1	Fe^{3+}
	0.35	0.69	-	60.9	Fe^{3+}
$\begin{aligned} & \text { MSC3-R1(a) } \\ & \left(-196^{\circ} \mathrm{C}\right) \end{aligned}$	0.38	1.24	-	35.4	Fe^{3+}
	0.38	0.71	-	64.6	Fe^{3+}
$\begin{aligned} & \text { MSC-R1(b) } \\ & \left(25^{\circ} \mathrm{C}\right) \end{aligned}$	0.36	1.25	-	38.8	Fe^{3+}
	0.36	0.70	-	61.2	Fe^{3+}
$\begin{aligned} & \text { MSC } 3-\mathrm{R} 2 \\ & \left(25^{\circ} \mathrm{C}\right) \end{aligned}$	0.35	1.23	-	39.2	Fe^{3+}
	0.35	0.70	-	60.7	Fe^{3+}
$\begin{aligned} & \text { MSC3-R3 } \\ & \left(25^{\circ} \mathrm{C}\right) \end{aligned}$	0.24	0.09	21.6		
	0.20	0.05	19.6		
	0.26	0.16	11.2	52.2	$\chi^{\prime}-\mathrm{Fe}_{2.5} \mathrm{C}$
	0.18	0.05	18.0	17.1	$\varepsilon^{\prime}-\mathrm{Fe}_{2.5} \mathrm{C}$
	1.08	2.09	-	2.3	Fe^{2+}
	0.33	0.98	-	28.4	Fe^{3+}
$\begin{aligned} & \text { MSC3-R4 } \\ & \left(25^{\circ} \mathrm{C}\right) \end{aligned}$	0.24	0.08	21.4		$\begin{gathered} \chi^{\prime}-\mathrm{Fe}_{2.5} \mathrm{C} \\ \varepsilon^{\prime}-\mathrm{Fe}_{2.5} \mathrm{C} \\ \mathrm{Fe}^{2+} \\ \mathrm{Fe}^{3+} \\ \hline \end{gathered}$
	0.19	0.06	19.6		
	0.24	0.13	11.7	52.0	
	0.18	0.05	17.8	17.1	
	1.06	2.05	-	2.8	
	0.34	0.98	-	30.1	

$\mathrm{a} \pm 0.02 \mathrm{mms}^{-1}, \mathrm{~b} \pm 0.1 \mathrm{~T}, *$ abundance in $\%$ of Fe

The above results show that both the catalyst reduced in $5 \% \mathrm{H}_{2} / \mathrm{Ar}$ at $220^{\circ} \mathrm{C}$ and that reduced in $0.15 \% \mathrm{CO}_{2} / 4.8 \% \mathrm{H}_{2} / \mathrm{Ar}$ in fact, did not reduce. If the catalyst reoxidised, there should have been some Fe^{2+} present as the oxidation of magnetite to hematite is not very favourable. Two passivation methods were used viz. MSC3-R1(a) unloaded into wax and MSC3-R1(b) passivated in CO_{2} and both these samples showed no reduction. Reduction in H_{2} at $220^{\circ} \mathrm{C}$ is well known in the literature (Dry 1981 and Bukur 1995(b)). A possible explanation is that the partial pressure of hydrogen was too low due to the fact that a $5 \% \mathrm{H}_{2} / \mathrm{Ar}$ gas mixture was used (see Table 2-2).

The reduction of the precipitated iron catalyst in $4.8 \% \mathrm{CO} / \mathrm{He}$ and in
$0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{CO} / \mathrm{He}$ at $300^{\circ} \mathrm{C}$ resulted in the formation of Fe^{2+}, a mixture of carbides viz. $\varepsilon^{\prime}-\mathrm{Fe}_{2.2} \mathrm{C}$ and $\chi-\mathrm{Fe}_{2.5} \mathrm{C}$ and some unreduced Fe^{3+}. The overall percentage of reduction was very similar for both gas mixtures, being in the order of 70%, of which 52% was as carbides. There was no metallic iron present.

3.5 Fischer-Tropsch synthesis

The Fischer-Tropsch synthesis over catalyst MSC3 was evaluated in various ways. The conversion of CO and H_{2} and the yield of the various products were monitored over a period of four days. At low conversion (ca. 20\%) the determination of the yield of methane and carbon dioxide could be inaccurate due to the fact that both these compounds are present in the feedgas. The yield of these compounds had to be determined using the difference between the content in the product gas stream and the feed gas stream. The volatile products were analysed (up to C_{15}) using a GC fitted with an FID.

3.5.1 Fischer-Tropsch synthesis using catalyst MSC3 reduced in $5 \% \mathrm{H}_{2} / \mathrm{Ar}$

The results of the FT-synthesis using catalyst MSC3 reduced in $5 \% \mathrm{H}_{2} / \mathrm{Ar}$ at $200^{\circ} \mathrm{C}$ for 16 hrs are shown in Table 3-7. The yield of the organic product compounds after 24 and 96 hrs on stream could not be obtained, due to problems with the GC analysis. A carbon balance could thus not be obtained at these times on stream. The carbon balance after 48 and 72 hrs on stream was closed to within 8%. The difference might be ascribed to error in the analyses.

Table 3-7: Results of the Fischer-Tropsch synthesis using catalyst MSC3 reduced in $5 \% \mathrm{H}_{2} / \mathrm{Ar}$ at $220^{\circ} \mathrm{C}$ for 16 hrs

Time on stream (hrs)	24	48	72	96
$\left(\mathrm{H}_{2} / \mathrm{CO}\right)_{\text {inlet, }} \mathrm{mol} / \mathrm{mol}$	2.19	2.15	1.91	2.24
$\left(\mathrm{H}_{2} / \mathrm{CO}\right)_{\text {usage }}, \mathrm{mol} / \mathrm{mol}$	1.67	2.11	2.10	3.55
X_{CO}, mol-\%	32.3	24.6	25.3	22.3
$\mathrm{X}_{\mathrm{H} 2}, \mathrm{~mol} \%$	27.0	25.9	26.5	39.6
$\mathrm{Y}_{\mathrm{CO}, 2} \mathrm{~mol}$ \%	2.9	3.9	4.1	-6.8
$\mathrm{Y}_{\mathrm{CH} 4,} \mathrm{~mol} \%$	-0.8	4.4	3.9	-31.5
$\mathrm{Y}_{\mathrm{C} 2+}, \mathrm{mol}$ \%	-	7.9	13.7	-
Wax (mg/h)	2.0	18.3	9.1	4.3
C-balance (\%)	-	92	96	-
$\mathrm{H}_{2} \mathrm{O}$ acids ($\mathrm{mg} \mathrm{KOH} / \mathrm{g}$)	-	3.00	2.90	3.08
Chain growth probability, α^{1})	-	0.72	0.80	-

${ }^{1}$ Chain growth probability determined from the ASF-plot of the hydrocarbons in the range of $\mathrm{C}_{7}-\mathrm{C}_{9}$ hydrocarbons and assuming α_{1}

The CO-conversion showed a significant drop between the samples after 24 and 48 hrs on stream. In the period between 48 and 96 hrs the activity remained almost constant.

The H_{2}-conversion follows the same trend as the CO -conversion. The determination of the H_{2}-conversion after 96 hrs on stream seems to be flawed. The usage ratio is 3.98 (based on an inlet $\mathrm{H}_{2} / \mathrm{CO}$ of 2.24). The negative CO_{2} yield would be an indication of reverse water gas shift. Reverse water gas shift would lead to a higher usage ratio as H_{2} is consumed and CO produced via the following reaction:

$$
\begin{equation*}
\mathrm{CO}_{2}+\mathrm{H}_{2} \rightleftharpoons \mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \tag{3.4}
\end{equation*}
$$

The inlet flows did indicate a higher $\mathrm{CO}_{2} / \mathrm{CO}$ ratio.

The theoretical usage ratio (assuming reverse water gas shift) was calculated as follows:
theoretical usage ratio $=\frac{\left(2 \cdot \mathrm{CO} \text {-consumption }+3 \cdot \mathrm{CO}_{2} \text {-consumption }\right)}{\mathrm{CO} \text {-consumption }}$

The second part of the numerator accounts for the H_{2} consumed in forming CO from CO_{2} then that CO reacting with H_{2} to form Fischer-Tropsch products. The theoretical usage ratio was determined to be 2.92 . The experimentally determined usage ratio was much higher. Thus, the reverse water gas shift alone cannot account for the results obtained after 96 hrs on stream. The carbon balance for this sample is quite good. The error might therefore lie in the determination of the hydrogen content in the feed and/or product gas stream.

The carbon dioxide yield increased steadily over the duration of the Fischer-Tropsch synthesis. The negative value obtained after 96 hrs might indicate CO_{2}-conversion. However, CO_{2}-conversion in the presence of CO on iron-based catalysts is generally low (Riedel et al. 1999). A more plausible explanation might be an error in the analysis, since CO_{2}-yield was determined by the difference in the content in the inlet and outlet flows. Only the product analysis after 48 hrs and 72 hrs on stream yielded positive methane yields. Based on these two values the methane yield did not change much.

The chain growth probability (α) was calculated from the Anderson-Schulz-Flory plot (see Figure 3-15). The ASF plot of the sample after 72 hrs on stream deviates from the normal ASF plot. Repeating the analysis gave the same result. It is possible that product that had "knocked out" in the bubbler of the ampoule system could have vaporised during sampling (the ampoule is under vacuum) and it would have been included in the product spectrum thus causing a deviation in the heavier fraction. Subsequently, the water in the bubbler was replaced regularly.

Methane does not follow the Schultz-Flory distribution. This is usually seen in FischerTropsch synthesis and might indicate additional reaction pathways for methane formation. The chain growth probability (α) of the hydrocarbons increased between 48 hrs and 72 hrs on stream from 0.72 to 0.80 (see Table 3-7). This may not be significant as the ASF plot for the sample taken after 72 hours showed an anomalous product spectrum. Although not included in the table, the alpha value for the oxygenates after 48 hours on stream was 0.61 . A lower chain growth probability for the oxygenates is usual in Fischer-Tropsch (Erich 1990).

Figure 3-16 shows the olefin content in the fraction of hydrocarbons as a function of carbon number for the products obtained after 48 hrs on stream. The total olefin content is high for all the carbon numbers except C_{2}. This is due to the reactivity of the ethane, which thus may undergo secondary reactions (e.g. hydrogenations) fast (Schulz and Claeys 1999). At higher carbon numbers, the olefin content decreases slightly with increasing carbon number. The high value at C_{9} must be ascribed to an error in the analysis.

Figure 3-17 shows the 1 -olefin content in the fraction of linear olefins as a function of carbon number for the products obtained after 48 hrs on stream. The 1 -olefin content in the range of $\mathrm{C}_{4}-\mathrm{C}_{9}$ is high (ca. $93 \mathrm{~mol} \%$). At carbon numbers larger than 9 the 1 -olefin content decreases rapidly. This could be due to the higher probability for re-adsorption of the longer chains, which will lead to secondary reactions such as double bond isomerisation (Schulz and Claeys 1999).

Figure 3-17: 1-olefin content in the fraction of linear olefins after 48 hrs on stream obtained using catalyst MSC3 reduced in $5 \% \mathrm{H}_{2} / \mathrm{Ar}$ at $220^{\circ} \mathrm{C}$ for 16 hrs

The oxygenate content in the product as a function of carbon number is depicted in Figure 3-18. Oxygenates are alcohols, aldehydes and ketones. Acids are not included in the oxygenates, since these figures are solely based on the GC-FID results. The oxygenate content is low and shows a sharp maximum at C_{2}. Above C_{6}, any oxygenates present were below the detection limit of the GC.

Figure 3-18: Oxygenate content in the Fischer-Tropsch product after 48 hrs on stream obtained using catalyst MSC3 reduced in $5 \% \mathrm{H}_{2} / \mathrm{Ar}$ at $220^{\circ} \mathrm{C}$ for 16 hrs

3.5.2 Fischer-Tropsch synthesis using catalyst MSC3 reduced in $0.15 \% \mathrm{CO}_{2} / 4.7 \%$ $\mathrm{H}_{2} / \mathrm{Ar}$

The results of the synthesis run are summarised in Table 3-8.

Table 3-8: Results of the Fischer-Tropsch synthesis using catalyst MSC3 reduced in $0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{H}_{2} / \mathrm{Ar}$ at $220^{\circ} \mathrm{C}$ for 16 hrs

Time on stream (hrs)	24	48	72	96
$\left(\mathrm{H}_{2} / \mathrm{CO}\right)_{\text {inlet, }}$, $\mathrm{mol} / \mathrm{mol}$	1.94	1.94	1.96	1.90
$\left(\mathrm{H}_{2} / \mathrm{CO}\right)_{\text {ussge, }}, \mathrm{mol} / \mathrm{mol}$	0.83	0.92	1.50	1.55
$\mathrm{X}_{\mathrm{CO}}, \mathrm{mol}$ \%	11.3	6.4	12.0	19.2
$\mathrm{X}_{\mathrm{H} 2}, \mathrm{~mol} \%$	4.8	3.0	9.2	15.6
$\mathrm{Y}_{\mathrm{CO2}, \mathrm{~mol} \text { - } \% \text { }}$	3.9	3.7	3.2	2.7
$\mathrm{Y}_{\mathrm{CH} 4}$, mol-\%	8.3	10.4	7.1	3.5
$\mathrm{Y}_{\mathrm{C} 2+}$, mol-\%	4.0	8.8	9.6	5.2
Wax (mg/h)	-	14.7	28.7	31.6
C-balance (\%)	105	116	108	92
$\mathrm{H}_{2} \mathrm{O}$ acids ($\mathrm{mg} \mathrm{KOH} / \mathrm{g}$)	-	2.70	2.71	2.53
Chain growth probability, α^{1})	0.77	0.77	0.79	0.80

Chain growth probability determined from the ASF-plot of the hydrocarbons in the range of $\mathrm{C} 3-\mathrm{C}_{9}$ hydrocarbons and assuming α_{1}

The experimentally measured activity of the catalyst after 48 hrs on stream (as measured by the CO conversion) does not fit the overall trend of an increasing activity with time on stream. The carbon balance of this sample is much too high ($116 \mathrm{C}-\%$). This might be due to a problem during sampling or the GC analysis. In general, the CO conversion increases from 11.2% to 19.2% between 24 hrs and 96 hrs on stream. This would indicate that the catalyst is still in its induction phase. Over the same four periods, the methane yield decreased from 8.3% to 2.7% and the chain growth probability increases from 0.77 to 0.80 . This can be seen in the wax yield. The increase in the chain growth probability may cause a maximum in the yield of volatile C_{2+} - product compounds.

The CO_{2} yield decreases with time on line. This indicates a decrease in the water gas shift reaction. As increasing water gas shift reaction is often associated with a deactivating catalyst, this supports the conclusion that the catalyst is still in the induction phase.

Figure 3-19 shows the Anderson-Schulz-Flory distribution of all organic product compounds. With increasing time on stream an increase in the chain growth probability was observed.

Figure 3-20 shows the olefin content in the fraction of hydrocarbons after 24 hrs on stream. The olefin content did not change significantly with time on stream (see Appendix 5). The olefin content shows the usual behaviour, low at C_{2}, passing a maximum at C_{3} and decreasing with increasing carbon number. The olefin content in the fraction of $\mathrm{C}_{2^{-}}$ hydrocarbons is surprisingly high ($70 \mathrm{~mol} \%$). This might indicate a low extent of secondary reactions in this system.

Figure 3-20: Olefin content in the fraction of hydrocarbons after 24 hrs on stream obtained using catalyst MSC3 reduced in $0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{H}_{2} / \mathrm{Ar}$ at $220^{\circ} \mathrm{C}$ for 16 hrs

Figure 3-21 shows the 1-olefin content in the fraction of linear olefins as a function of carbon number after 24 hrs on stream for catalyst MSC3 reduced in $0.15 \% \mathrm{CO}_{2} / 5 \% \mathrm{H}_{2} / \mathrm{Ar}$ at $220^{\circ} \mathrm{C}$ for 16 hrs. The 1 -olefin content did not change much with time on stream (see Appendix 5). The 1-olefin content is constant between C_{4} and C_{7} (ca. $90 \mathrm{~mol} \%$). The 1olefin content decreases for larger carbon numbers, due to the higher probability for readsorption leading amongst others, to double bond isomerisation.

The oxygenate content in the product after 24 hrs on stream as a function of carbon number is shown in Figure 3-22. The oxygenate shows a typical behaviour (van Steen 1993), low at C_{1}, high at C_{2}, passing a minimum at C_{3}, followed by a maximum at $C_{5 / 6}$. The $C_{(n+1)}$ aldehyde is formed by the additon of CO (Dictor and Bell 1986) to the adsorbed C_{n} alkyl species and is in equilibrium with the $\mathrm{C}_{(\mathrm{n}+1)}$ alcohol (Dry 1981). We therefore have a direct relationship between the C_{n} hydrocarbon and the $\mathrm{C}_{\mathrm{n}+1}$ oxygenates selectivity.

Figure 3-22: Oxygenate content in the fraction of organic product compounds after 24 hrs on stream obtained using catalyst MSC3 reduced in $0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{H}_{2} / \mathrm{Ar}$ at $220^{\circ} \mathrm{C}$ for 16 hours

3.5.3 Fischer-Tropsch synthesis using catalyst MSC3 reduced in $4.8 \% \mathrm{CO} / \mathrm{He}$

The results of the Fischer-Tropsch synthesis using catalyst MSC3 reduced in $4.8 \% \mathrm{CO} / \mathrm{He}$ at $300^{\circ} \mathrm{C}$ for 16 hours are shown in Table 3-9.

Table 3-9: Results of the Fischer-Tropsch synthesis using catalyst MSC3 reduced in $4.8 \% \mathrm{CO} / \mathrm{He}$ at $300^{\circ} \mathrm{C}$ for 16 hrs

Time on stream (hrs)	24	48	72	96
$\left(\mathrm{H}_{2} / \mathrm{CO}\right)_{\text {iniet }}$, $\mathrm{mol} / \mathrm{mol}$	2.12	2.14	2.27	2.22
$\left(\mathrm{H}_{2} / \mathrm{CO}\right)_{\text {usage, }} \mathrm{mol} / \mathrm{mol}$	1.59	1.20	4.20	2.33
$\mathrm{X}_{\text {Co, }}$ mol-\%	23.1	21.0	6.0	16.7
$\mathrm{X}_{\mathrm{H2} 2}$, mol-\%	17.4	11.8	11.1	17.6
$\mathrm{Y}_{\mathrm{CO} 2}, \mathrm{~mol}$ \% $\%$	6.6	6.5	-6.7	4.8
$\mathrm{Y}_{\mathrm{CH} 4, \mathrm{~mol} \text { \% } \%}$	7.6	8.0	-18.5	8.0
$\mathrm{Y}_{\mathrm{C} 2+}, \mathrm{mol}$ \%	12.7	15.2	3.3	6.1
Wax (mg/h)	0.0	0.4	0.0	5.5
C-balance (\%)	104	109	72	97
$\mathrm{H}_{2} \mathrm{O}$ acids (mg KOH/g)	4.08	4.51	3.68	3.58
Chain growth probability, α^{1})	0.64	0.67	0.79	0.80

Chain growth probability determined from the ASF-plot of the hydrocarbons in the range of $\mathrm{C}_{3}-\mathrm{C}_{9}$ hydrocarbons and assuming α_{1}

The results of after 72 hrs on stream do not fit the overall trend of the run. A negative CO_{2} and methane yield was obtained, due to the low conversion. The mass balance is also very poor. If we do not include this analysis in our run then the trend is a slight decrease in CO conversion with time. The catalyst is deactivating. The usage ratio after 96 hrs on stream is 2.33 compared to 1.59 after 48 hrs on stream (based on gas flows). A usage ratio of higher than two would imply that we should have reverse water gas shift. This is not the case, as the CO_{2} yield is positive. The methane yield remains constant throughout the run while the chain growth probability (α) increases substantially with time. This is not reflected in the C_{2+} yield due to the decreasing CO conversion of the catalyst.

No to very little wax was collected in the hot trap during the run. It has also been noted in the previous runs that very little wax is collected during the first 48 hrs . This does not necessarily mean that less wax is being produced during this time than later in the run, but is more likely due to the fact that the wax is filling the pores of the catalyst and the catalyst bed. It is just more clearly seen in this run as the wax yield is lower due to lower chain
growth probability. The wax colour in this run was visually very poor (darkish brown) and the acid values were higher than in the previous two runs.

The hydrocarbon analyses are shown in Figures 3-23-3-29.

Figure 3-23: Anderson-Schulz-Flory distribution of all organic product compounds at various times on stream obtained using catalyst MSC3 reduced in $4.8 \% \mathrm{CO} / \mathrm{He}$ at $300^{\circ} \mathrm{C}$ for 16 hrs

Figure 3-24: Olefin content in the fraction of hydrocarbons after 24hrs on stream obtained using catalyst MSC 3 reduced in $4.8 \% \mathrm{CO} / \mathrm{He}$ at $300^{\circ} \mathrm{C}$ for 16 hrs

Figure 3-25: 1-olefin content in the fraction of linear olefins after 24 hrs on stream obtained using catalyst MSC3 reduced in $4.8 \% \mathrm{CO} / \mathrm{He}$ at $300^{\circ} \mathrm{C}$ for 16 hrs

Figure 3-26: Oxygenate content in the fraction of organic product compounds after 24 hrs on stream obtained using catalyst MSC 3 reduced in $4.8 \% \mathrm{CO} / \mathrm{He}$ at $300^{\circ} \mathrm{C}$ for 16 hrs

Both the olefin content and the 1-olefin content are high. There is a decrease in olefin content with increasing carbon number but this is not as evident in the 1 -olefin content. The oxygenate content is low with the exception of C_{2} which is extremely high relative to the other carbon numbers. This trend was particularly obvious in the last 48 hours. Again, there is an increase then decrease in oxygenate content with increasing carbon number.

3.5.4 Fischer-Tropsch synthesis using catalyst MSC3 reduced in $0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{CO} / \mathrm{He}$

The results of the Fischer-Tropsch synthesis using catalyst MSC3 reduced in $0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{CO} / \mathrm{He}$ at $300^{\circ} \mathrm{C}$ for 16 hours are shown in Table 3-10.

Table 3-10: Results of the Fischer-Tropsch synthesis using catalyst MSC3 reduced in $0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{CO} / \mathrm{He}$ at $300^{\circ} \mathrm{C}$ for 16 hrs

Time on stream (hrs)	24	48	72	96
$\left(\mathrm{H}_{2} / \mathrm{CO}\right)_{\text {inlet }} \mathrm{mol} / \mathrm{mol}$	2.38	1.98	2.01	2.09
$\left.\mathrm{H}_{2} / \mathrm{CO}\right)_{\text {usase, }} \mathrm{mol} / \mathrm{mol}$	10.85	0.75	1.76	1.58
$\mathrm{X}_{\mathrm{CO}}, \mathrm{mol} \%$	2.4	31.1	50.7	30.1
$\mathrm{X}_{\mathrm{H} 2}, \mathrm{~mol}-\%$	11.1	11.8	44.4	22.9
$\mathrm{Y}_{\mathrm{CO} 2}, \mathrm{~mol} \%$	-7.9	10.8	4.9	9.6
$\mathrm{Y}_{\mathrm{CH} 4}, \mathrm{~mol} \%$	-24.9	13.2	-5.0	12.2
$\mathrm{Y}_{\mathrm{C} 2}$, mol-\%	19.0	18.0	13.9	6.3
Wax $(\mathrm{mg} / \mathrm{h})$	-	5.4	24.7	34.2
C -balance $(\%)$	84	111	63	98
$\mathrm{H}_{2} \mathrm{O}$ acids $(\mathrm{mg} \mathrm{KOH} / \mathrm{g})$	-	4.31	4.51	4.34
Chain growth probability, $\left.\alpha^{1}\right)$	0.63	0.64	0.66	0.67

${ }^{1}$ Chain growth probability determined from the ASF-plot of the hydrocarbons in the range of $\mathrm{C}_{3}-\mathrm{C}_{9}$ hydrocarbons and assuming α_{1}

The mass balances of this synthesis run are very poor with only the result after 96 hours being within $90-110 \%$. The analysis after 24 hours gave a negative CO_{2} yield and both the analyses after 24 hours and 48 hours gave negative methane yields. The mass balances for these two analyses were particularly bad (84 and 63% respectively). If one were to accept the result after 96 hours, then the conversion at this point is higher than the previous run (catalyst reduced at $300^{\circ} \mathrm{C}$ in $4.8 \% \mathrm{CO} / \mathrm{He}$ for 16 hours). The methane yield is higher than in the previous run and the chain growth probability (α) starts low as in the previous run but does not increase substantially with time on stream.

The initial TCD analysis of this run did not give good results. The problem was traced to an incorrect composition given for the calibration gas.

Again, the wax colour in this run was visually very poor (darkish brown) and the acid values were even higher than in the previous run.

Figure 3-27 shows the Anderson-Schulz-Flory distributions of the organic compounds with time on stream.

Figure 3-27: Anderson-Schulz-Flory distribution of all organic product compounds at various times on stream obtained using catalyst MSC3 reduced in $0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{CO} / \mathrm{He}$ at $300^{\circ} \mathrm{C}$ for 16 hrs

Figure 3-28 shows the olefin content in the fraction of hydrocarbons after 48 hrs on stream. The olefin content did not change significantly with time on stream (see Appendix 5). The olefin content shows the usual behaviour, low at C_{2}, passing a maximum at C_{3} and decreasing with increasing carbon number.

Figure 3-28 Olefin content in the fraction of hydrocarbons after 96 hrs on stream obtained using catalyst MSC 3 reduced in $0.15 \mathrm{CO}_{2} / 4.7 \% \mathrm{CO} / \mathrm{He}$ at $300^{\circ} \mathrm{C}$ for 16 hrs

The l-olefin content in the total linear alpha olefins is again very high (see Figure 3-29). There is some scatter in the data but there would appear to be no definite decrease in 1 olefins with increasing carbon number.

Figure 3-29: 1-olefin content in the fraction of linear olefins after 96 hrs on stream obtained using catalyst MSC 3 reduced in $0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{CO} / \mathrm{He}$ at $300^{\circ} \mathrm{C}$ for 16 hrs

The oxygenate content is low (see Figure 3-30) with the same trend seen as in the previous runs.

Chapter 4 - Discussion

4.1 Preparation of a precipitated iron catalyst (Ruhrchemie)

The results indicate that the preparation of a precipitated Ruhrchemie catalyst precursor is not straight forward (see Chapters 3.1 and 3.2). The addition time was difficult to control in the laboratory due to the foaming of the slurry. It would appear that CO_{2} is evolved during the precipitation. This could be due to the following reaction:

$$
\begin{equation*}
2 \mathrm{Fe}^{3+}+3 \mathrm{CO}_{3}^{2-}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Fe}(\mathrm{OH})_{3}+3 \mathrm{CO}_{2} \tag{4.1}
\end{equation*}
$$

This may also explain the non-stoichiometry of the reaction. If the CO_{2} dissolves in the solution, it could react with the $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the following reaction:

$$
\begin{equation*}
\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow 2 \mathrm{NaHCO}_{3} \tag{4.2}
\end{equation*}
$$

This could decrease the effective alkalinity of the solution.

The filtration of the slurries also needs to be carefully controlled, particularly during the second filtration where it is very difficult to control the amount of $\mathrm{K}_{2} \mathrm{O}$ removed. It may be an option to consider using a different source of silica as binder and adding the potassium as a salt such as KNO_{3}. This would allow for much better repeatability of the catalyst precursor preparation as it can be seen that even the amount of precipitate to be filtered or the volume of water added has an effect on the final $\mathrm{K}_{2} \mathrm{O}$ levels. What is interesting to note is that even if a stoichiometric amount of HNO_{3} is added, too low levels of $\mathrm{K}_{2} \mathrm{O}$ can be obtained. This would indicate that the potassium is not only being removed as KNO_{3} but possibly also as K -waterglass. This is supported by the fact that the SiO_{2} levels of MSC1 are slightly low. The silica level of MSC3 also decreased after it was reslurried and filtered the second time to lower the $\mathrm{K}_{2} \mathrm{O}$ level.

4.2 The effect of gas composition on reduction of a precipitated iron catalyst - CO versus H_{2}

The TPR profiles of the catalyst reduced in H_{2} and CO show that the reduction of the catalyst precursor proceeds differently. These reductions are discussed in Chapter 3.3. Suffice to say that the overall reduction of the catalyst was greater with H_{2} activation than when CO was used. Although it could be said that this was due to the reverse Boudouard reaction above approximately $550^{\circ} \mathrm{C}$, limiting reduction to the lower temperatures, we were still able to achieve 86% reduction when CO_{2} was present. It is therefore principally possible to get a higher degree of reduction with carbon monoxide as a reducing agent.

From the isothermal reductions, a different picture is drawn. Here the degree of reduction is higher for the CO-activated catalyst relative to the catalyst reduced in hydrogen. This trend is not surprising as we chose what has been considered optimum conditions in the literature for each gas type. Therefore, the CO activation was performed at a much higher temperature than the H_{2} reduction. What was surprising from the Mössbauer results, however, was the complete lack of reduction at $220^{\circ} \mathrm{C}$ when the catalyst was reduced in H_{2}. There was a definite change in colour of the catalyst from reddish-brown to nearly black and the surface area decreased from $346 \mathrm{~m}^{2} / \mathrm{g}$ to $159 \mathrm{~m}^{2} / \mathrm{g}$. There must have been some sintering of the catalyst. The TEM micrographs do show a lattice fringe in the $4.8 \AA$ region. Both magnetite and maghemite have a d-spacing in this region ($4.87 \AA$ and $4.82 \AA$ respectively - see Appendix 4) but the colour of magnetite is known to be black and that of maghemite to be light brown (Schwertmann and Cornell 1991). It is possible that there may have been some reduction but the sample reoxidised during the sample preparation for Mössbauer analysis. The samples were crushed in air during this preparation and not crushed for the TEM analyses. The CO-activated sample showed a high degree of reduction i.e. $\sim 70 \%$ of which 52% was in the form of carbides. The TEM micrographs of the catalyst reduced in CO showed a high surface carbon formation.

There are also differences in behaviour when comparing the behaviour of the two catalysts during Fischer-Tropsch synthesis (see Chapters 3.5.1 and 3.5.3). The activity of the catalyst reduced in H_{2} is slightly higher than that of the catalyst activated in CO (based on the CO
conversion and omitting 72 hours on stream for the CO-activated catalyst - see Figure 4 1). The activity of both catalysts, however, would appear to be deactivating slightly.

Figure 4-1: Comparison between the CO conversion with time on stream of a catalyst reduced in $5 \% \mathrm{H}_{2} / \mathrm{Ar}$ at $220^{\circ} \mathrm{C}$ for 16 hours and a catalyst activated in $4.8 \% \mathrm{CO} / \mathrm{He}$ at $300^{\circ} \mathrm{C}$ for 16 hours

The methane yield and selectivity is also higher (almost double) for the CO activated catalyst when compared to the H_{2} reduced catalyst and in the CO-activated catalyst, this yield and selectivity increases with time on stream.

The chain growth probability (α) is also lower in the CO-activated catalyst but it does, however, increase with time. We are unable to compare this to the H_{2}-reduced catalyst due to incomplete hydrocarbon analyses.

The water gas shift activity (based on the CO_{2} yield and selectivity) of the catalyst activated in CO is higher than that of the catalyst reduced in H_{2} and the acid formation is higher. It would appear that acid formation is may be linked with the water gas shift activity. The
water gas shift reaction is known to occur on the oxidised sites of a catalyst. If the link is due to the active site on the catalyst (i.e. both WGS and acid formation occurring on oxidised sites), then we can speculate that the CO-activated catalyst is more oxidised than the H_{2}-reduced catalyst or that more oxidised sites are available for reaction on the COactivated catalyst than on the H_{2}-reduced catalyst. A possible explanation could be that, while the H_{2}-reduced catalyst is further reduced in synthesis gas during the first 24 hours of synthesis, the CO catalyst is not (possibly due to diffusion constraints and blockage of the oxidised sites by carbon formation).

The trends above i.e. lower activity (based on CO conversion), higher methane selectivity, water gas shift activity and acid formation are not in general agreement with literature when H_{2}-reduction and CO-activation are compared (Bukur et al. 1989, 1995(b)).

4.3 Effect of CO_{2} as an impurity on the reduction of a precipitated iron catalyst

4.3.1 Effect of CO_{2} as an impurity on the reduction in H_{2}

The temperature programmed reduction experiments reducing the catalyst in $5 \% \mathrm{H}_{2} / \mathrm{Ar}$ and $0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{H}_{2} / \mathrm{Ar}$ respectively, show that while the CO_{2} did not affect the profile of the TPR, it did have a negative effect on the overall degree of reduction. Again, these reductions are discussed in Chapter 3.3.
CO_{2} had no effect on the measured characteristics of the catalyst after reduction in H_{2}. There was no difference in the BET surface area, the transmission electron microscope images or in the degree of reduction (as measured by Mössbauer electron spectroscopy) after reduction. This may be attributable to the fact that no reduction was seen and would imply that even if there were to be a difference, we would not have seen it with the reduction conditions we used viz. $220^{\circ} \mathrm{C}$ for 16 hours. The difference in the degree of reduction that we saw in TPR was over a much shorter time span and over a temperature range.

Although no differences were seen in the characteristics of the catalyst after the isothermal reduction, there was still a noted difference in the behaviour of the catalyst during FischerTropsch synthesis (see Sections 3.5.1 and 3.5.2). The first is in the activity of the catalyst (see Figure $4-2$). The activity of the catalyst reduced in the $0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{H}_{2} / \mathrm{Ar}$ initially had a much lower activity (based on CO-conversion) than the catalyst reduced when there was no CO_{2} impurity present.

While the methane selectivity was higher for the catalyst reduced in the presence of CO_{2}, it decreased with time on stream. The chain growth probability (α) was stable.

Similarly, the water gas shift reaction (based on CO_{2} selectivity and not yield), decreased with time on stream. This is not significantly reflected in the acid value. Again, the final CO_{2} selectivity is similar to that of the catalyst reduced in $5 \% \mathrm{H}_{2} / \mathrm{Ar}$.

The behaviour of the catalyst reduced in $0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{H}_{2} / \mathrm{Ar}$ would appear to be that of a catalyst less reduced than that of the catalyst reduced when no CO_{2} was present. This is concluded from the fact that the synthesis performance, while poorer initially, is very similar after 96 hours on stream. Synthesis runs of longer duration would be required to confirm this.

A possible explanation could be that flow of both reducing gas mixtures was higher during the reduction before synthesis than the reduction before characterisation due to limitations of the equipment (see Chapter 2.3.5). It may be possible that the effect seen during the TPRs manifested itself during the reductions before synthesis.

4.3.2 Effect of CO_{2} as an impurity on the activation in CO

The temperature programmed reduction experiments reducing the catalyst in $4.8 \% \mathrm{CO} / \mathrm{He}$ and $0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{CO} / \mathrm{He}$ respectively, again showed that the CO_{2} did not affect the profile of the TPR. Surprisingly, it did however have a positive effect on the overall degree of reduction. This result is discussed in Chapter 3.3.

The characteristics of the catalyst after isothermal activation (16 hours at $300^{\circ} \mathrm{C}$) were also very similar regardless of whether CO_{2} was present in the activating gas or not. In this case it may be that the activating conditions were too severe or of too long a duration to reflect the advantage that was seen in the temperature-programmed reductions when CO_{2} was present. One parameter that was not measured was that of carbon formation. There was no obvious difference in carbon formation when looking at the TEM micrographs, but transmission electron microscopy is more qualitative than quantitative.

Major differences in Fischer-Tropsch synthesis performance when CO_{2} is absent and present during activation is not evident (see Chapters 3.5.3 and 3.5.4). This is in contrast to the reductions in H_{2} when CO_{2} is absent and present. The activity of the catalyst activated in $0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{CO} / \mathrm{He}$ is slightly higher than the catalyst activated in $4.8 \% \mathrm{CO} / \mathrm{He}$ (based on CO conversion - see Figure 4-3). The analyses after 24 and 72 hours on stream are not included in this discussion due to the poor mass balances.

Although the methane yield is higher when the CO_{2} was present in the activating gas, there is very little difference in the methane selectivity. Similarly, there is little difference in the water gas shift activity (based on CO_{2} selectivity). The acid values are marginally higher.

The only difference that may have some significance is the fact that the chain growth probability (α) does not increase when CO_{2} has been present as an impurity in the activating gas. It might be speculated that the catalyst reduced in carbon monoxide/carbon dioxide mixture will result in a final catalyst structure, which is physically identical with a working Fischer-Tropsch catalyst.

Chapter 5 - Conclusions

CO_{2} as an impurity in the activating gas was found to have an influence on the activation of precipitated iron catalysts.

The greatest influence was seen in the temperature-programmed reduction where it had a negative influence on the H_{2} reductions and surprisingly, a positive influence on the CO activation. It is postulated that the latter could be due to the retarding of carbon formation thereby allowing further reduction of iron species.

The conditions chosen for the isothermal reductions viz. 16 hours at $220^{\circ} \mathrm{C}$ for H_{2} reduction and 16 hours at $300^{\circ} \mathrm{C}$ for CO activation did not show any differences with respect to the catalyst characteristics when CO_{2} was present. In the case of the H_{2} reduction, this probably due to the fact the conditions were too mild. The converse i.e. too severe conditions is probably true for the CO-activation. There were however, major differences in the catalyst characteristics after the H_{2} reduction and CO activation. The CO -activated catalyst sintered more and had a high degree of reduction with the major phase being χ-carbide. The $\mathrm{H}_{2}{ }^{-}$ reductions would appear not to have reduced the catalyst at all, although some sintering did occur.

The reductions prior to synthesis were performed in a higher flow than those before catalyst characterisation. The H_{2}-reduced catalyst initially had a lower activity when CO_{2} had been present in the synthesis gas, but this increased with time on stream while the methane and CO_{2} selectivity decreased. When no CO_{2} was present, the catalyst behaviour was stable. There was little difference in the synthesis performance of the catalyst activated in CO and that of the catalyst activated in CO_{2}-containing CO .

The fact that there is so little difference between the synthesis performance when CO_{2} is present during the CO activation and yet there is quite a significant difference in synthesis performance when CO_{2} is present during the H_{2} reduction is probably due to the fact that
with the H_{2} reduction, the conditions were not reducing enough. This allowed for further reduction to occur. With the CO activations, the conditions were too severe.

Trends seen between the catalysts activated in H_{2} and CO were a lower activity for the latter with a higher methane selectivity, higher water gas shift activity (based on CO_{2} selectivity) and a higher acid value. This could be due to the fact that the H_{2}-reduction was performed at a low temperature viz. $220^{\circ} \mathrm{C}$.

References

Adesina, A.A., Hydrocarbon synthesis via Fischer-Tropsch reaction: travails and triumphs, Applied Catalysis A: General, 138, (1996), 345-367

Almquist, J. A. and Black C. A., The poisoning action of oxygen on iron catalysts for ammonia synthesis, Journal of the American Chemical Society, 48, (1926), 2814-2820 Anderson, R.B., Catalysts for the Fischer-Tropsch Synthesis in Catalysis VII:

Hydrocarbons Synthesis, Hydrogenation and Cyclization, (P.H. Emmet, Ed.), Reinhold Publishing Corporation, New (1956)

Barañski, A., Bielañski, A., and Pattek, A., Kinetics of the reduction of iron catalysts for ammonia synthesis, Journal of Catalysis, 26, (1972), 286-294

Barin, I., Thermochemical Data of Pure Substances, VCH Verlag Gesselschaft, Weinheim (1989)

Barin, I., Thermochemical Data of Pure Substances, VCH Verlag Gesselschaft, Weinheim, (1993)

Boudart, M., Kinetics of Chemical Processes, Prentice-Hall, Englewood, New Jersey (1968)

Bukur, D.K., Lang, X. J., Rossin, A., Zimmerman, W.H., Rosynek, M.P., Yeh, E.B., and Li, C., Activation studies with a promoted precipitated iron Fischer-Tropsch catalyst, Industrial Engineering Chemistry Research, 28, (1989), 1130-1140

Bukur, D. B., Okabe, K., Rosynek, M.P., Li, C., Wang, D., Rao, K.R.P.M., and Huffman, G.P., Activation studies with a precipitated iron catalyst for Fischer-Tropsch synthesis I.

Characterization studies, Journal of Catalysis, 155, (1995(a)), 353-365
Bukur, D.B., Nowicki, L., Manne, R.K., and Lang, X., Activation studies with a precipitated iron catalyst for Fischer-Tropsch synthesis, Journal of Catalysis, 155, (1995(b)) 366-375

Bukur, D.B., Lang, X., and Ding, Y., Effect of pretreatment on catalyst activity and selectivity during Fischer-Tropsch synthesis in a slurry bed reactor, Preprints of the American Chemical Society Division of Fuels Chemistry, 42(2), (1997), 623-627

Bussière, P., Mössbauer spectroscopy - nuclear gamma resonance, in Catalyst
Characterization: Physical techniques for solid materials, (B. Imelik and J.C. Verdrine, Eds.) Plenum Press, New York, 1994, 215-246
Chase M.W. et al. (Eds), JANAF Thermochemical Tables, $3{ }^{\text {rd }}$ Edition, Journal of Physical and Chemical Reference Data, 14, (1985)

Dictor R.A. and Bell, A.T., Studies in Fischer-Tropsch synthesis over a fused iron catalyst, Applied Catalysis, 20, (1986), 145-162

Dry, M.E., The Fischer-Tropsch Synthesis, in Catalysis - Science and Technology, (J.R. Anderson and M. Boudart, Eds.), Springer-Verlag New York (1981)

Dry, M.E., The Fischer-Tropsch process - commercial aspects, Catalysis Today, 6, (1990), 183-206

Erich, E., Ph.D thesis, University of Karlsruhe, 1990
Frohning, C.D., Rottig, W. and Schnur, F., in Chemirohstoffe aus Kohle, (J. Falbe, Ed.), Thieme, Stuttgart, 1977

Frohning, C.D., Hydrogenation of the Carbon Monoxide, in New Syntheses with Carbon Monoxide (J. Falbe, Ed.), Springer-Verlag, Berlin (1980)

Gallezot, P. and Leclercq, C., Characterization of catalysts by conventional and analytical electron microscopy, in Catalyst Characterization: Physical techniques for solid materials, (B. Imelik and J.C. Verdrine, Eds.) Plenum Press, New York, (1994), 509-557

Gradassi, M.J., Economics of gas to liquids manufacture in Studies in Surface Science and Catalysis, 119, (1998), 35-44

Harrison, L.G., in "Comprehensive Chemical Kinetics", 2, (C.H. Bamford, and C.F.H. Tipper, Eds.), Elsevier, Amsterdam (1969)
Jager, B., Development in Fischer-Tropsch technology, Studies in Surface Science and Catalysis, 119, (1998), 25-34

Jin, Y and Datye, A.B., Characterisation of bubble column slurry phase iron FischerTropsch catalysts, Studies in Surface Science and Catalysis, 119, (1998), 209-214 Jung, H. and Thomson W.J., Dynamic X-ray diffraction study of an unsupported iron catalyst in Fischer-Tropsch synthesis, Journal of Catalysis, 134, (1992), 654-667 Jung, H. and Thomson, W.J., Dynamic X-ray diffraction study of an unreduced iron oxide catalyst in Fischer-Tropsch synthesis, Journal of Catalysis, 139, (1993), 375-382 Kapteijn, F., Moulijn, J.A. and Tarfaoui, A., Temperature programmed reduction and sulphiding, in Catalysis:An integrated approach to homogeneous, heterogeneous and
industrial catalysis, (J.A. Moulijn, P.W.N.M. van Leeuwen and R.A. van Santen, Eds.) Elsevier, Amsterdam, (1993)

Knacke O., Kubaschewski, O. and Heeselmann, K., Thermochemical Properties of Inorganic Substances., Springer-Verlag, Berlin (1991)
Lide, D.R. (Ed.-in-chief), CRC Handbook of Chemistry and Physics, 79 ${ }^{\text {th }}$ Edition, (19981999), CRC Press, New York, (1998)

Niemantsverdriet, J.W. van der Kraan, A.M., Behaviour of metallic iron catalysts during Fischer-Tropsch synthesis studied with Mössbauer spectroscopy, X-ray diffraction, carbon content determination and reaction kinetic measurements, Journal of Physical Chemistry, 84, (1980), 3363-3370

Niemantsverdriet, J.W. and van der Kraan, A.M. On the time-dependent behaviour of iron catalysts in Fischer-Tropsch synthesis, Journal of Catalysis, 72 (1981), 389-391

O'Brien, R.J., Xu, L., Spicer, R.L., Boa, S., Milburn, D.R. and Davis, B.H., Activity and selectivity of precipitated iron Fischer-Tropsch catalysts, Catalysis Today, 36, (1997), 325334

Park, J.Y. and Levenspiel, O., The crackling core model for the reaction of solid particles, Chemical Engineering Science, 30, (1975), 1207-1214

Perry, R.B. and Green, D., Perry's Chemical Engineer's Handbook (Sixth Edition), McGraw-Hill, New York, (1984)
Pichler,H. and Merkel, H., U.S. Bureau of Mines Tech. Paper, 718, (1949) as cited in Storch, H.H., Golumbic, N., and Anderson, R.B., The Fischer-Tropsch and Related Syntheses, John Wiley and Sons Inc., New York (1951)

Reymond, J.P., Mériaudeau, P. and Teichner, S.J., Changes in the surface structure and composition of an iron catalyst of reduced and unreduced $\mathrm{Fe}_{2} \mathrm{O}_{3}$ during the reaction of carbon monoxide and hydrogen, Journal of Catalysis, 75, (1982), 39-48

Riedel, T., Claeys, M., Schulz, H., Schaub, G., Nam, S.-S., Jun, K.-W., Choi, M.-J., Kishan, G. and Lee, K.-W., Comparative study of Fischer-Tropsch synthesis with $\mathrm{H}_{2} / \mathrm{CO}$ and $\mathrm{H}_{2} / \mathrm{CO}_{2}$ syngas using Fe - and Co-based catalysts, Applied Catalysis A: General, 186, (1999), 201-213

Sault, A.G. and Datye, A.K., An Auger electron spectroscopy study of the activation of iron Fischer-Tropsch catalysts II. Carbon monoxide activation, Journal of Catalysis, 140, (1993), 136-149

Scholten, J.J.F., The use of adsorption methods for the assessment of the surface area and pore size distribution of heterogeneous catalysts, in Catalysis:An integrated approach to homogeneous, heterogeneous and industrial catalysis, (J.A. Moulijn, P.W.N.M. van L Leeuwen and R.A. van Santen, Eds.) Elsevier, Amsterdam, 1993

Schulz, H., Beck K. and Erich, E., The Fischer-Tropsch CO-hydrogenation: A non-trivial polymerization - selectivity of chain branching, Proc. $9^{\text {th }}$ Int. Congress on Catalysis, 2, (1988)

Schulz, H., van Steen, E. and Claeys, M., Selectivity and mechanism of Fischer-Tropsch synthesis with iron and cobalt catalysts., Studies in Surface Science and Catalysis, 81, (1994), 455 - 460

Schulz, H. and Claeys, M., Reactions of α-olefins of different chain length added during Fischer-Tropsch synthesis on a cobalt catalyst in a slurry reactor, Applied Catalysis A: General, 186, (1999), 71 - 90

Schwertmann, U. and Cornell, R.M., Iron Oxides in the Laboratory - Preparation and Characterisation, VCH Verlagsgesellschaft mbH, Weinheim, (1991)

Šestãk, J. and Berggren, G., Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures, Thermochimica Acta, 3, (1971), 1-12
Šestãk, J., Šastava, V., and Wendtland, W.W., The study of heterogeneous processes by thermal analysis, Thermochimica Acta, 7, (1973), 333-426

Sie, S.T., Senden, M.M.G., and van Wechem, H.M.H., Conversion of natural gas to transportation fuels via the Shell Middle Distillate Synthesis Process (SMDS), Catalysis Today, 8, (1991), 371-394

Skoog, D.A. and West, D.M., Fundamentals of Analytical Chemistry- Fourth Edition, HoltSaunders, Tokyo, (1982)

Storch, H.H., Golumbic, N. and Anderson, R.B., The Fischer-Tropsch and Related Syntheses, John Wiley and Sons Inc., New York, (1951)

Tau, L.M., Borcar, S., Bianchi, D. and Bennet, C.O., Investigation of supported iron Fischer-Tropsch synthesis catalysts by Mössbauer spectroscopy, Journal of Catalysis, 87, (1984), 36-54

Themelis, N. J. and Gauvin, W. H., Reduction of iron oxide in gas-conveyed systems, American Institute of Chemical Engineers Journal, 8, (1962), 437-444

Themelis, N. J. and Gauvin, W. H., A generalized rate equation for the reduction of iron oxides, Transactions of the Metallurgical Society of AIME, 227, (1963), 290-300

Turkogdan, E. T. and Vinters, J. V., Gaseous reduction of iron oxides: Part III. Reductionoxidation of porous and dense iron oxides and iron, Metallurgical Transactions, 3 (1972), 1561-1574
van Rensburg, S.T.J., The Mossgas Gas to Fuels process, ChemSA, (February 1990), 41-42 van Steen, E., PhD Thesis, University of Karlsruhe, 1993

Vannice, M.A., The catalytic synthesis of hydrocarbons from $\mathrm{H}_{2} / \mathrm{CO}$ mixtures over the Group VIII metals I. The specific activities and product distributions of supported metals, Journal of Catalysis 37, (1975), 449-461
Wielers, A.F.H., Hop, C.E.C., van Beijnum, J., van der Kraan, A.M. and Geus, J.W., On the properties of silica-supported bimetallic $\mathrm{Fe}-\mathrm{Cu}$ catalysts Part I. Preparation and Characterization, Journal of Catalysis, 121, (1990), 364-374

Wimmers, O.J., Arnoldy, P., and Moulijn, J.A., Determination of the reduction mechanism by temperature programmed reduction: Application to small $\mathrm{Fe}_{2} \mathrm{O}_{3}$ particles, Journal of Physical Chemistry, 90, (1986), 1331-1337

Appendix 1:

The reaction products will interfere with the thermal conductivity detector due to either the thermal conductivity e.g. CO_{2} (see Table 2-3) or due to the sensitivity of the detector to the gas e.g. $\mathrm{H}_{2} \mathrm{O}$. Therefore, they need to be removed from the gas stream before analysis.

Table Al gives the boiling points of the gases that are found or could be found as part of our TPR analyses.

Table A1: Boiling points of common gases (Lide 1998)

Gas	Boiling point $\left({ }^{\circ} \mathrm{C}\right)$
Ar	-185.9
$\mathrm{~N}_{2}$	-195.8
He	-268.9
H_{2}	-252.9
CO	-191.5
$\mathrm{H}_{2} \mathrm{O}$	100.0
CO_{2}	-78.4^{*}
CH_{4}	-161.4

*sublimation point
In the case of $\mathrm{H}_{2} / \mathrm{Ar}$, a dry ice/acetone bath was used as a trap for the product $\mathrm{H}_{2} \mathrm{O}$. Based on boiling points of the gases, a liquid nitrogen trap would also knock out the CO_{2} and possibly any CH_{4} that may be formed. This was desired but argon's boiling point is $10^{\circ} \mathrm{C}$ higher than that of N_{2}. There was a strong possibility that the Ar would be knocked out. This was proved true by running the gas through an empty cell at room temperature until a stable baseline was obtained. First an acetone/dry ice bath was placed on line. Despite an initial jump (probably due to the initial change in temperature affecting the flow), the baseline stabilised at the same point. The dry ice acetone bath was then replaced with a liquid nitrogen trap. There was a definite shift upwards in the baseline and the run had to eventually be discontinued due to an unacceptable pressure build up in the cold trap. The results are shown in Figure A1(a).

Figure A1(a): Baseline check for $\mathrm{H}_{2} / \mathrm{Ar}$ gas mixtures

The conclusion was that while the acetone/dry ice bath was not expected to knock out CO_{2}, the liquid nitrogen trap knocked out the Ar . The acetone/dry ice bath was used for the H_{2} reductions.

One would expect that liquid nitrogen could also knock out CO which has a boiling point $5^{\circ} \mathrm{C}$ greater than N_{2}. A similar baseline experiment was done on the $\mathrm{CO} / \mathrm{He}$ mix as Bukur (Bukur 1995(a)) has reported using a liquid nitrogen trap for $\mathrm{CO} / \mathrm{He}$ TPRs. There was no shift in the baseline on the addition of a liquid nitrogen trap to the experiment (see Figure $\mathrm{Al}(\mathrm{b}))$. A liquid nitrogen trap was therefore used in the CO TPRs. In this way, the product CO_{2} was knocked out.

Figure A1(b): Baseline check for $\mathrm{CO} / \mathrm{He}$ gas mixtures

This is due to the difference in partial pressure of the two gases, where Ar is 95% of the gas mixture and CO only 4.8%, that allows us to use a liquid nitrogen for the CO TPRs but not for the H_{2} TPRs. The boiling point of CO at 0.052 bar (i.e. equivalent to a $5.2 \% \mathrm{CO} / \mathrm{He}$ mixture) would be $-210.0^{\circ} \mathrm{C}$, which is below the temperature of liquid nitrogen (Perry 1984). It is only likely to be trapped from levels of 52% in the gas mixture. Ar , on the other hand, could already be knocked out from levels of 26%.

Appendix 2:

The Autochem 2910 was calibrated for each individual gas mix. The calibration was performed using an empty sample cell. The calibration programme can be seen in Table A2.

Table A2: Calibration programme

Step	Inert gas flow (nml/min) (1. Ar or 2. He)	Gas mixture flow (nml/min) $\left(1 . \mathrm{H}_{2} / \mathrm{Ar}\right.$ or 2. $\left.\mathrm{CO} / \mathrm{He}\right)$
1.	50	0
2.	45	5
3.	40	10
4.	35	15
5.	30	20
6.	25	25
7.	20	30
8.	15	35
9.	10	40
10.	5	45
11.	0	50

A dry ice/acetone cold trap was used during the $\mathrm{H}_{2} / \mathrm{Ar}$ calibrations and a liquid nitrogen cold trap during the $\mathrm{CO} / \mathrm{He}$ calibrations. This was to ensure the same conditions as during the TPR analyses.

Figure A2(a) is an example of such a calibration where the TCD signal is shown with time. This was for the $5 \% \mathrm{H}_{2} / \mathrm{Ar}$ gas mixture.

Figure A2(a): TCD signal vs time $\left(5 \% \mathrm{H}_{2} /\right.$ Ar calibration)

The final calibration graphs obtained were plotted as the flow of the gas mixture versus time. Thus the TCD signal could be related to the flow of the reducing gas in the total gas flow. The calibration graphs can be seen in Figures A2(b) - A2(e).

Figure A2(c): Calibration graph of $0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{H}_{2} / \mathrm{Ar}$

Figure A2(d): Calibration graph of $4.8 \% \mathrm{CO} / \mathrm{He}$

Figure A2(e): Calibration graph of $0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{CO} / \mathrm{He}$

Appendix 3:

The mass flow controllers were calibrated at atmospheric pressure. Figures A3(a)-A3(d) are the calibrations. The flows were converted are expressed at standard temperature $\left(0^{\circ} \mathrm{C}\right)$ and pressure (1 bar).

Figure A3(c): Calibration of MFC2 for argon

Figure A3(d): Calibration of MFC3 for synthesis gas

The mass flow controller regulating the flow of the reducing gas i.e. MFC1 was only calibrated for $5 \% \mathrm{H}_{2} / \mathrm{Ar}$ and $4.8 \% \mathrm{CO} / \mathrm{He}$. It was assumed that the gas mixtures containing the $0.15 \% \mathrm{CO}_{2}$ would have the same flows as those without CO_{2}.

Appendix 4:

33-0664							Wavelength $=1.78897$			
Fe 2 O 3	$d(A)$	Int	h	k	I	$d(A)$	Int	h		
Iron Oxide	3.684	30	0	1	2	. 8392	3	3	30	
	2.70	100	1	0	4	. 8089	4	3	210	
	2.519	70	1	1	0	. 8014	4	2		
Hematite, syn	2.292	3	0	0	6					
Rad.: CuKa1ג: 1.540598 Filter: Mono d-sp: Diff.	2.207	20	1	1	3					
Cut off: Int.: Diffract. I/Icor.: 2.4	1.8406	40	0	2	4					
Ref: Nati. Bur. Stand. (U.S.) Monogr. 25, 18, 37 (1981)	1.6941	45	1	1	6					
Ref. Nat. Bur. Stand. (U.S.) Monogr. 25, 18, 37 (1981)	1.6367	1	2	1						
	1.6033	5	1	2	2					
	1.5992	10	0	1	8					
Sys.: Rhombohedral S.G.: R $\overline{3} \mathrm{c}$ (167)	1.4859	30	2	1	4					
$a: 5.0356(1) \mathrm{b}: \quad \mathrm{c}: 13.7489(7) \mathrm{A}: \quad \mathrm{c}: 2.7303$	1.4538	30	3	0	0					
	1.4138	<1	1	2	5]					
$\alpha: \quad \beta: \quad \gamma: 3$ Z: 6 mp: 1350-13601	01.3497	3	2	0	8					
Ref: Ibid.	1.3115	10	1		10					
Ref. ibid.	1.3064	6	1	1	9					
	1.2592	8	2	2	0					
$\mathrm{Dx}: 5.270 \mathrm{Dm}$: 5.260 SS/FOM: $\mathrm{F}_{30}=69((1.0111,39)$	1.2276	4	3	0	6					
Dx. 5.270 Dm. 5.260 SS/FOM. $\mathrm{F}_{30}=69(.0111,39)$	1.2141	2	2	2	3					
$\varepsilon \alpha: 2.94 \quad \eta \omega \beta$ 3.22 S\%: Sign:- 2V:	1.1896	5	1	2						
	1.1532	5	0	2	10					
Ref: Dana's System of Mineralogy, 7th Ed., 1, 529 (1944)	1.1411	7	1	3	4					
	1.1035	7	2	2	6					
	1.0768	2	0	4	2					
Color: Dark reddish brown	1.0557	7	2	1	10					
Pattern taken at 25 C. Sample from Pfizer, Inc., NY, USA,	1.0428	<1	1	1	12					
heated at 800 C for 3 days. CAS \#. 1309-37-1. Opaque	1.0393	3	4	0	4					
mineral optical data on specimen from Elba, R1R0=30.2,	. 9892	4	3	1	8					
RR2Re=26.1, Disp. $=16, \mathrm{VHN}=1038$ (mean at 100, 200,	. 9715	<1	2	2	9					
300), Color values=1 .299, .309, 29.8, $2.299, .309,25.7$,	. 9606	5	3	2						
Ref.: IMA Commission on Ore Microscopy QDF. Pattern	. 9581	4	0	1	14					
reviewed by Syvinski, W., McCarthy, G., North Dakota State	. 9516	5	4							
Univ., Fargo, ND, USA, ICDD Grant-in-Aid (1990). Agress	. 9318	2	4	1	3					
well with experimental and calculated patterns. Additional weak	. 9206	2	0	4	8					
reflection [indicated by brackets] was observed. Also called:	. 9081	5	1		310					
crocus mantis. Also called: venetian red. Also called: ferrite.	. 8998	1	3		12					
Also called: indian red. Also called: crocus. A12 O3 type.	. 8954	3	2		14					
Corundum group, corundum subgroup. Also called: burnt ochre.	. 8789	6	4	1	6					
Also called: rouge. Silver used as an internal stand. PSC:	. 8648	1	2	3	8					
hR10. To replace 13-534 and validated by calculated pattern	. 8543	3	4		10					
24-72. Mwt: 159.69. Volume[CD]: 301.93.	. 8436	5	1		14					

[^0]

Ref: Chukhrov, F. et al., Izv. Akad. Nauk SSSR, 23 (1973)
Sys.: Hexagonal
S.G.: P
a: 5.08
b:
c: 9.4
A:
C: 1.8504
α :
$\beta:$
$\gamma:$
Z: 1 mp:

Ref: Van der Giessen, J. Inorg. Nucl. Chem., 28, 2155 (1966)
Dx: 3.796 Dm: 3.800 SS/FOM: $F_{6}=2[(0.109,27)$

Color: Yellow, dark brown

Prepared by slow hydrolysis of ferric salts at $\mathrm{pH}>3$, and below 9.5. Measured density and color from Am. Mineral., 60485 (1975). PSC: hP26. To replace 22-1117. Mwt: 480.30. Volume[CD]: 210.08.
fltern $10 D^{\text {으 }} 1998$ JCPDS-International Centre for Diffraction Data. All rights reserved PCPDFWIN V. 2.00

```
46-1315
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathrm{FeO}(\mathrm{OH})\) & \(d(A)\) & Int & h & k & 1 \\
\hline \multirow[t]{3}{*}{Iron Oxide Hydroxide} & 4.70 & 54 & 0 & 0 & 2 \\
\hline & 3.13 & 89 & 0 & 0 & 3 \\
\hline & 2.52 & 14 & 1 & 1 & 0 \\
\hline Ferrihydrite, syn & 2.23 & 2 & 1 & 1 & 2 \\
\hline Rad.: CoKa 2: 1.7902 Filter: Graph Mono d-sp: Diff. & 1.98
1.88 & 100 & 1 & 1 & 5 \\
\hline Cut off: Int.: Diffract. |/lcor.: & 1.72 & 1 & 1 & 1 & 4 \\
\hline \multirow[t]{2}{*}{Ref: Eggleton, R., Fitzpatrick, R., Clays Clay Miner., 36, 111 (1988)} & 1.51
1.46 & 2 & 1 & 1 & 5 \\
\hline & 1.46
1.33 & 1 & 1 & & 6 \\
\hline \multirow[b]{2}{*}{Sys.: Hexagonal S.G.:} & 1.27 & 5 & 2 & & 0 \\
\hline & 1.18 & 3 & [ 3 & & 2 \\
\hline & 1.07 & 5 & 3 & - & 6 \\
\hline
\end{tabular}
\begin{tabular}{lllll} 
a: 5.08 & b: & c: 9.4 & A: & \\
\(\alpha:\) & \(\beta:\) & \(\%:\) & z: & mp
\end{tabular}
Ref: Ibid.
Dx: Dm: SS/FOM: \(F_{13}=2[(0.140,60)\)
Prepared by slow hydrolysis of \(\mathrm{Fe}\left(\mathrm{NO} \mathrm{O}_{3}\right) 3 \cdot 9 \mathrm{H} 2 \mathrm{O}\) in deionized water at 75 C . Mwt: 88.85. Volume[CD]: 210.08.
\#ICDO 1998 JCPDS-International Centre for Diffraction Data. All rights reserved PCPDFWIN v. 2.00
```

29-0713					Wavelength $=1.7902$	
$\mathrm{FeO}(\mathrm{OH})$	$d(A)$	Int	h k	1		
Iron Oxide Hydroxide	4.98	12	02	0		
	4.183	100	11	0		
	3.383	10	12	0		
Goethite	2.693	35	13	0		
Rad.: CoKa $\lambda: 1.7902$ Filter: d-sp:	2.583	12	02	1		
Cut off: Int.: Diffract. 1/1cor:	2.527 2.489	4 10	$\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}$	1		
	2.450	50	11	1		
Ref: Harrison, R. et al., Bull. Geol. Surv. G.B., 52, 51 (1975)	2.303	1	20	0		
	2.253	14	12	1		
	2.190	18	14	0		
Sys.: Orthorhombic S.G.: Pbnm (62)	2.089	1	22	0		
$\begin{array}{lllll}\text { a: } 4.608 & \text { b: } 9.956 & \text { c: } 3.0215 & \text { A: } 0.4628 & \text { C: } 0.3035\end{array}$	2.011	2	1 1 0 1 1	1		
	1.802	6	21	1		
Ref: Ibid.	1.7728	1	14	1		
Ref. Ibid.	1.7192	20	22	1		
	1.6906	6	24	0		
Dx: 4.258 Dm: 4.000 SS/FOM: $\mathrm{F}_{30}=47(1.0155,41)$	1.6593	3	0 2 2	0		
	1.5637	10	2 1	1		
$\varepsilon \alpha: 2.260$ пор: 2.393 ¢F: 2.398 Sign:- 2V: 15(15 ${ }^{\circ}$	1.5614	8	16	0		
Ref: Dana's System of Mineralogy, 7th Ed., 1, 680	1.5091	8	0	2		
	1.4675	2	32	0		
	1.4541	5	06	1		
Color: Dark brown	1.4207	2	11	2		
Specimen from Hindlow quarry, Derbyshire, England, UK	1.3936	3	33	0		
(E35891). Chemical analysis (wt.\%): Si O2 1.84, Fe2 O3	1.3694	2	30	1		
86.30, H2 O (<105C) 10.79, H 2 O (< 105C) 0.86, and minor	1.3590	3	17	0		
$\mathrm{MgO}, \mathrm{CaO}, \mathrm{CO} 2$ and organic C . Lead nitrate used as	1.3459	1	26	0		
internal standard ($a=7.8568$). Dx for Fe3.88 Six (OH)4.31	1.3173	3	13	2		
03.69 ($x</=0.012$), formula from chemical analysis	1.2921	<1	04	2		
with impurities deducted. Opaque mineral optical data on	1.2654	,	33	1		
specimen from Restornel, Cornwall, England, UK:	1.2437	1	14	2		
R1Ro=17.5, RR2Re $=15.6$, Disp. $=16, \mathrm{VHN}=667$ (mean at	1.1994	1	34	1		
100, 200, 300), Color values=1 .291, .296, 17.5, 2.294,	1.1506	1	08	1		
.299, 15.5, Ref.: IMA Commission on Ore Microscopy QDF.	1.1445	1	41	0		
Diaspore group. PSC: oP16. To replace 17-536. Mwt 88.85. Volume[CD]: 138.62.	1.1263	1	24	2		

FeFe204	$d(A)$	Int	h	k	1
Iron Oxide	4.852	8	1	1	1
	2.967	30	2	2	0
	2.532	100	3	1	1
Magnetite, syn	2.4243	8	2	2	2
Rad.: CuKa1ג: 1.54056 Filter: Ni Beta d-sp:	2.0993	20	4	0	0
Cut off Int. Diffract I/Icor. 490	1.6158	30	4	2	2
	1.4845	40	4	4	0
Ref: Nati. Bur. Stand. (U.S.) Monogr. 25, 5, 31 (1967)	1.4192	2	5	3	1
	1.3277	4	6	2	0
	1.2807	10	5	3	3
Sys.: Cubic S.G.: Fd3m (227)	1.2659	4	6	2	2
$a: 8.396$ b: ci A. C.	1.2119	2	4	4	4
a. 8.396 b. c. A. c.	1.1221	4	6	4	2
$\alpha: \quad \beta: \quad \gamma: 3$ Z: 8 mp:	1.0930	12	7	3	1
Ref Ibid.	1.0496	6	8	0	0
Ref. Ibid.	. 9896	2	6	6	0
	. 9695	6	7	5	1
Dx: 5.197 Dm: 5.176 SS/FOM: $\mathrm{F}_{26}=58(1.0132,34)$. 9632	4	6	6	2
	. 8952	2	6	6	4
$\varepsilon \alpha: \quad \eta ¢ \beta: 2.42$ ¢: Sign: 2V:	. 8802	6	9	3	1
Ref: Dana's System of Mineralogy, 7th Ed., I, 698	. 8569	8	8	4	4
	. 8233	4	10	2	0
	. 8117	6	9	5	1
	. 80	4	10	2	2
Pattern taken at 25 C . Sample obtained from the Columbian Carbon Co. New York, NY, USA.					
Spectrographic analysis showed the following major impurities: 0.01 to $0.1 \% \mathrm{Co}, 0.001$ to $0.01 \% \mathrm{Ag}, \mathrm{Al}, \mathrm{Mg}$,					
Mn , Mo, Ni, Si, Ti and Zn . Other data 25-1376. Opaque					
RR2Re=20.1, Disp. $=16, \mathrm{VHN100}=592$, Color values=.311, .314, 20.1, Ref.: IMA Commission on Ore					
Microscopy QDF. See also 26-1136. $a=8.3967$ refined in					
1975. Al2 Mg O4 type. Spinel group, spinel subgroup.					
Tungsten used as an internal stand. PSC: CF56. To replace 11-614. Mwt: 231.54. Volume[CD]: 591.86.					

Pattern taken at 25 C . Sample obtained from the
pectite 0.01 nalio 0.1%
Ti 0.10 , 0.001 to 0.01%
mineral optical data on specimen from Braastad, Norway
RR2Re $=20.1$, Disp. $=16$, VHN100 $=592$, Color values $=.311$,
20.1, Ref.: IMA Commission on Ore
ascopy QDF. See also 26-1136. $a=8.3967$ refined in
Tungsten used as an internal stand. PSC: cF56. To replace 11-614. Mwt: 231.54. Volume[CD]: 591.86.

Cut off: Int.: Diffract. |/|cor.:

Ref: Swanson et al., Natl. Bur. Stand. (U.S.), Circ. 539, IV, 3 (1955)

Color: Gray, light gray metallic
Pattern taken at 25 C. CAS \#: 7439-89-6. The iron used was an exceptionally pure rolled sheet prepared at the NBS, Gaithersburg, MD, USA., [Moore, G., J. Met., 51443 (1953)]. It was annealed in an H 2 atmosphere for 3 days at 1100 C and slowly cooled in a He atmosphere. Total impurities of sample $<0.0013 \%$ each metals and non-metals. γ-Fe (fcc) $=(1390 \mathrm{C}) \delta-\mathrm{Fe}$ (bcc). Opaque mineral optical data on specimen from Meteorite: RR2Re=57.7, Disp. $=16$, $\mathrm{VHN}=158$ (mean at 100, 200, 300), Color values=.311, .316, 57.9, Ref.: IMA Commisssion on Ore Microscopy QDF. W type. Iron group, iron subgroup. Also called: ferrite.PSC: cl2. Mwt: 55.85. Volume[CD]: 23.55.

36-1248						Wavelength $=1.78897$					C
x-CFe2.5	$d(A)$	Int	h	k	1	$d(A)$	Int	h	k	1	
Iron Carbide	3.3221	<1	1	1	$\overline{\text { f }}$	1.6894	3	0	2	2	
	2.9309	<1	3	1	0	1.6884	8	5	1	2	
	2.8654	2	4	0	0	1.6616	3	2	2	$\overline{2}$	
	2.6522	10	3	1	1	1.6406	1	4	2	1	
Rad.: CoKa1^: 1.7890 Filter: d-sp: Calculated	2.5063	10	0	0	2	1.6279	8	6	0	$\overline{2}$	
Rad.. Cokalג. 1.7890 Filer. d-sp. Calculated	2.4245	10	3	1	1	1.5820	21	2	2	2	
Cut off: Int.: Calculated I/Icor.:	2.4181	6	2	0	$\overline{2}$	1.5820	21	1	1	3	
	2.2864	22	0	2	0	1.5291	1	1	1	3	
Ref: Dirand, M., Afqir, Acta Metall., 31, 1089 (1983)	2.2070	34	1	1	$\overline{2}$	1.5291	1	7	1	1	
	2.1906	27	2	0	2	1.5203	2	3	1	3	
	2.1134	19	1	1	2	1.5163	4	4	2	2	
Sys.: Monoclinic S.G.: C2/c (15)	2.0800	66	0	2	1	1.5006	2	5	1	2	
$\begin{array}{llll}\text { a: } 11.563 & \text { b: } 4.573 & \text { c: } 5.058 & \text { A: } 2.5285\end{array}$	2.0493	100	5	-	0	1.4477	<1	6	2	1	
a. 11.563 b. 4.573 A. 2.5285 C. 1.1001	2.0253	26	4	0	2	1.4397	2	1	3	1	
$a: \quad \beta: 97.7$ \% Z: 4 mp:	2.0096	35	3	1	$\underline{2}$	1.4325	1	8	0	0	
Ref: Senateur, J. et al., C. R. Seances Acad. Sci. (Paris),	1.9914	13	2	2	$\frac{1}{1}$	1.4297	<1	5	0	2	
$255,1615(1962)$	1.9818	18	5	1	$\overline{1}$	1.4235	1	7	1		
	1.9217	25	2	2	1	1.4009	3	4	2	2	
$D \mathrm{D}: 7.600 \mathrm{Dm:} \mathrm{SS/FOM:} \mathrm{~F}_{30}=138(. .0062,35)$	1.9097 1.8215	5	6	0	0	1.3807	9	$\overline{3}$	3	1	
	1.8148	21	3	1	2						
	1.7873	2	4	2	0						
Peak height intensity. 82 Pd5 type. Also called: Hagg carbide PSC. mc28 To replace 20-509 Mwt 30326	1.7724	15	4	0	2						
Volume[CD]: 265.04.	1.7297	12	4	2	$\overline{1}$						

CAS \#: 12011-66-4. Pattern used chromium and cobalt radiation. Crystal system pseudo-hexagonal with Fe in approx. h.c.p. array. Iron catalyst extracted after use in the Fischer-Tropsch process for the synthesis of hydrocarbons from CO and H 2 . May contain some oxygen. C.D. Cell: $a=2.794, b=4.360, c=2.755, \beta=119.54, a / b=0.6408$, $c / b=0.6319$, S.G. $=$. Mwt: 123.71. Volume[CD]: 29.20.

26-1079				
c	$d(A)$	Int	h	k I
Carbon	3.348	100	0	03
	2.081	11	1	01
	1.958	9	0	12
Graphite-3R, syn [NR]	1.674	6	0	06
Rad.: Cuka $\lambda: 1.54178$ Filter: d-sp: Calculated	1.623 1.460	4	1	$\begin{array}{ll}0 & 4 \\ 1 & 5\end{array}$
Cut off: Int.: Calculated I/Icor.:	1.228	4	1	10
Ref: Holcombe, Private Communication, (1974)	1.190	1	1	07
	1.153	6	1	13
	1.116	1	0	09
	1.081	1	0	18
Sys.: Rhombohedral S.G.: R3 (146)	. 9902	4	1	16
a: 2.456 b: c: 10.044 A: C: 4.0896	. 83	1	0	012
$\begin{array}{llll}\text { a. } 2.456 & \text { b. } 10.044 ~ A: ~ c . ~\end{array} .0896$. 8259	4	1	19
$\alpha: \quad \beta: \quad \gamma: 3: 6$. 8014	1	2	11
Ref: Holcombe, U.S. AEC Oak Ridge Y-12 Plant, Report Y1887, (1973)	. 7938	1	1	22
Dx: 2.281 Dm: SS/FOM: $\mathrm{F}_{16}=721(1.0093,24)$				

Peak height intensity. CAS \#. 7440-44-0. C type. PSC: hR2.
Mwt: 12.01. Volume[CD]: 52.47.

Appendix 5:

Tables A5(a) -A5(d) contain a summary of the product distribution in the $\mathrm{C}_{1}-\mathrm{C}_{15}$ fraction of the hydrocarbon products with time on stream.

Table A5(a): Product distributions of the Fischer-Tropsch synthesis using catalyst MSC3 reduced in $5 \% \mathrm{H}_{2} / \mathrm{Ar}$ at $220^{\circ} \mathrm{C}$ for 16 hrs

Time on Stream (hrs)	24	48	72	96
Olefin content (mol\% hydrocarbons)	-	70.8	65.3	-
1 -olefin content (mol\% olefins)	-	94.8	98.1	-
Oxygenate content (mol \% hydrocarbons)	-	2.5	9.9	-

Table A5(b): Product distributions of the Fischer-Tropsch synthesis using catalyst MSC3 reduced in $0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{H}_{2} / \mathrm{Ar}$ at $220^{\circ} \mathrm{C}$ for 16 hrs

Time on Stream (hrs)	24	48	72	96
Olefin content (mol\% hydrocarbons)	69.5	69.9	71.0	65.8
1-olefin content (mol\% olefins)	93.9	93.2	93.5	93.7
Oxygenate content (mol \% hydrocarbons)	6.4	6.1	6.0	10.5

Table A5(c): Product distributions of the Fischer-Tropsch synthesis using catalyst MSC3 reduced in $4.8 \% \mathrm{CO} / \mathrm{He}$ at $300^{\circ} \mathrm{C}$ for 16 hrs

Time on Stream (hrs)	24	48	72	96
Olefin content (mol\% hydrocarbons)	70.7	69.9	76.2	65.8
1 -olefin content (mol\% olefins)	94.1	94.1	93.3	93.7
Oxygenate content (mol \% hydrocarbons)	5.5	5.2	6.5	10.5

Table A5(d): Product distributions of the Fischer-Tropsch synthesis using catalyst MSC3 reduced in $0.15 \% \mathrm{CO}_{2} / 4.7 \% \mathrm{CO} / \mathrm{He}$ at $300^{\circ} \mathrm{C}$ for 16 hrs

Time on Stream (hrs)	24	48	72	96
Olefin content (mol\% hydrocarbons)	69.1	73.9	69.7	69.4
1 -olefin content (mol\% olefins)	91.0	93.9	94.7	91.4
Oxygenate content (mol \% hydrocarbons)	4.5	3.3	6.0	6.5

[^0]: ICDD 1998 JCPDS-International Centre for Diffraction Data. All rights reserved PCPDFWIN v. 2.00

