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Synopsis

Linear operator theory is usually studied in the setting of normed or Banach spaces.
However , careful examination of proofs shows that in many cases the Hausdorff property
of normed spaces is not used. Even in those cases where explicit use of the Hausdorff
property is made , one cah often get around this (should one wish to work in seminormed
spaces) by suitable identification of elements and then working in the resulting normed
space. Working in seminormed spaces rather than normed spaces is especially
advantageous when dealing with quotients (which occur in linear operator theory when one
considers the factorisation of an operator through its domain space quotiented by its null
space) : when taking the quotient of a normed space by a subspace , one requires the
subspace to be closed in order for the quotient to be a normed space ; however , in the
seminormed space case the requirement that the subspace be closed is no longer necessary.
Seminorms are also important in the study of certain properties of the second adjoint of an
opetator (for example , seminorms occur in the study of operators of the Tauberian type
(see [C2]) and operators analagous to weakly compact operators (see Chapter VI)). It is
the aim of this work to generalise as much of the basic theory of unbounded linear
operators as possible to seminormed spaces. In Chaptef I, some aspects of topological
vector spacés (which will be used throughout this work) are presented , the most important
parts being the Hahn—Banach theorem and the section on weak topologies. In Chapter II ,
we resfrict our attention to seminormed spaces , the setting in which the remainder of this
work takes place. The basic theory of unbounded linear operators , their adjoints and the
relationship between operators and their adjoints is covered in Chapter III. Chapter IV
concentrates on characterising unbounded strictly singular operators while in Chapter V
operators with closed range are studied. Finally , in Chapter VI, a property corresponding
" to one of the equivalent conditions for a bounded operator to be weakly compact is studied

for unbounded operators.
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Conventions

Throughout this work , a great deal of use is made of nets in topological arguments and the
reader is referred to any of the following three sources for treatments of nets : [K] , [N] or

[Wil1).

If (X,7)1is a topological space and A ¢ X, then the closure of A w.r.t. 7 will be

denoted by A’ and the interior of A will be denoted by int A or intT(A).

If McX,then 7|y ={UnM:Ue 7} (i.e. the subspace topology).
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Chapter I Topological Vector Spaces
The definitions and results in this chapter can be found in [KN} , [RR] and [S].

1. Convez sels

Throughout this section E is a vector space over F (= CorR)and A, B CE.
Definition : A is convez iff Vte[0,1],t A+ (1—-t)AcCA.

Proposition 1.1.1: Let A, B beconvex,A€F and a, f€R
(i) A A is convex.
(ii) A + B isconvex.
(iii) If a,f>0,then(a+fA=aA+ A
(iv) If £ is a family of convex subsets of E , then N6 is convex.
(v) If £ is a directed family (i.e. VA,Be£,3Cef st. AUBCC)

of convex subsets of E, then U.4 is convex.

Proof: (i), (ii), (iv) and (v) are immediate consequences of the definition.

(iii) Suppose a, > 0.
Clearly , (a+ /)ACaA + fA.
Let x€e aA + fA.

Then Ja,beA st. x=aa+ fb.

1 o« g _ o« a
Now , —% BX =G ﬁa+a + ﬂb_—__ﬂa T a+(1———_ﬂa T )beA

since A is convex.

Thus, x € (a + f) A.
Thus, cA + fBc(a+ B A o



Note: If ACE then (by (iv)) there is a smallest convex subset of E which contains
A. This set is called the convez hull of A and is denoted by coA.

Definition : Ais balanced iff (YA eF)[|A] <1 3 MAcCA]
Proposition I.1.2 :  The intersection of a family of balanced sets is balanced.
Definition : A is absolutely convez iff it is balanced and convex.

Note: By Propositions I.1.1 and I1.1.2 there is a smallest absolutely convex subset of E

containing A. This set is denoted by I'(A) and is called the absolutely conver hull of A.
Definition : A is absorbent iff (Vx e E)(Au>0)(VAeF)[|A] <p 2 AxeA]

Note: If A is balanced ,then A is absorbent & VxeE,3p>0 s.t. px€A.




2. Topological vector spaces

Definition : A topological vector space (E,7) is a vector space E over F together with
a topology 7 s.t. the maps |
ExE—E:(x,y)—x+y

FxE—E:(A\x)— Ax are continuous.
(F has its usual topology and E x E ,F x E have their respective product topologies. )

Notation :
(i) If 7 isclear from the context then E will be written for (E,7).
(ii) The set of all neighbourhoods of a is denoted by %.

Proposition 1.2.1: Let E be a topological vector space ,A,B,UCE,a,beE and
a ¢F\{0}.

(i) Themap E— E:x+— ax + b is a homeomorphism.

(ii) U isopen & aU + b is open.

(iii) A isclosed & aA + b is closed.
(iv) a+aA=a+ah ,int(a + aA)=a+ aint(A).

(vi A+ BCcA+B.
(vi) U open 3 A + U open.
(vii) Ueuy o aU+ac?.
(viii) & is a base of neighbourhoods of O & {a+ B | Be€.2Z } isa baseof

neighbourhoods of a.

(ix) A balanced (resp. convex , absolutely convex) # A, int(A) balanced (resp.

convex , absolutely convex).



Proof :

(i)  From the definition , the map E— E: x+—— ax + b is continuous.
Themap E—E:x+— % (x —b) isits inverse and from the definition is also
continuous. |

(i), (iii) , (iv) , (vii) and (viii) follow from (i).

(v) follows from the continuity of éddition.

* (vi) follows from (ii) and A + U = UA(a + U).
ae

(ix) If A isbalanced and 0 < |A| <1, thenby (iv) A A = XA CA.

If A isconvexand t€[0,1],then tA + (1-t)A=tA+(1—t)ACA. o

Proposition 1.2.2 : Let E be a topological vector space , % a base of neighbourhoods of
O and Ue¥.
(i) U is absorbent.
(i) IVewst. V+VcU.
(iii) 3 balanced W e %, s.t. WCU.

Proof :

(i) Let a€eE.
Then the map f:F— E: A ~— A a is continuous at 0.
Thus ,3 x>0 st. {AeF:|A]| <p}ciU]
Thus , if |A| < x then AaeTU.

(ii)  Since addition is continuous at (0,0),3Vy, Vo€ ¥ s.t. Vi + Vo U.
Since % is a base of neighbourhoodsof O ,3 Ve % st. VcVinVa
Clearly, V+ V cU.



(iii)  Since scalar multiplication is continuous at (0,0),3 > 0 and
IVe st.if [A] < and x€V then AxeU.
Thus, uVen{aU:acF,|al>1}
Let W=n{aU:a€eF,|a| 21}
Then WCU and pVCW so W is a neighbourhood of O.
Let xe W,0< ]al <1 and |A| 21 '
Then I%I > 1 so that xe%U.
Thus, axe A U.
Since A was arbitrary , ax € W.

Thus , W is balanced. o

Definition : A topological vector space E is (locally) convez iff E has a base of convex

neighbourhoods of O.

Proposition 1.2.3 : A convex spéce E has a base % of neighbourhoods of O
satisfying : (a) %#+0 and U,Ve% 3 3We% st. WcUnV.

(b) Ue#,acF\{0} 2 aUew.

(c) Ue% » U is absolutely convex and absorbent.
Conversely , if % is a collection of subsets of a vector space E satisfying (a) , (b) and
(c) , then there is a unique topology on E making E into a convex space with % asa

base of neighbourhoods of O.

Proof :

Suppose E is a convex space.
. Then E has a base 7 of convex neighbourhoods of O.

YVe,let Uy=n{AV:ieF,[Al21}

It follows from Propositions I.1.1, 1.1.2 and 1.2.2 that { a Uy, : @ € F\{0} , Ve ¥ }isa
base of neighbourhoods of O satisfying (a) , (b) and (c).



Suppose % is a collection of subsets of a vector space E satisfying (a) , (b)and (c).
Let 7={VCE:VxeV,3Ue% st. x+UCV}

Then 7 is a topology on E and % is a base of neighbourhoods of O for 7.
The continuity of addition and scalar multiplication will now be verified.

Let a,beE and Ue %.

Then a + %U and b + %U are neighbourhoods of a and b respectively.
Since U is convex ,%U + %U = U.
Thus,(a+%U)+(b+%U)=a+b+%U+%U=a+b+U.

Thus , addition is continuous.

Let AeF,a€eE and Ue %.

-Since U is absorbent ,3 x>0 st.pa€U.

Let ¢€(0,4) and € (0 ’T(lll‘rﬁ)‘

If |a—A| <¢ and x€ 6§ U + a then, since U is balanced ,

ax—da=a(x—2a)+ (a—A)ae([Al +e)6U+e%Uc%U+%U=U. 5



3. Seminorms
Throughout this section , E is a vector space over F.

Definition : A function p: E—R isa seminorm on E iff

() Vx,yeE,p(x+y)<p(x)+p(y) and
(b) VxeE,VAeF,p(dx)=|A px.

Note :

(i) p(0) =p(00)=0p(0)=0.

(ii) If p(x) =0 implies x = O then p isa norm on E.

(iii) If x€ E then 0 = p(0) = p(x —x) < p(x) + p(—x) = 2 p(x).
Thus , p(x) 2 0,V x € E.

(iv) If x,y€E then p(x) = p(x—y + ) < p(x—y) + p(y)

and p(y) = p(y —x + x) < p(y —x) + p(x).

Thus,Vx,y € E, |p(x) - p(y)| < p(x—y).

Proposition 1.3.1: Let p,q be seminormson E st. (Vx€ E)[p(x) <1 2 q(x)<1].
Then Vx€E, q(x) < p(x).

Proof : | Suppose Ix € E s.t. q(x) > p(x).
Then, a€R s.t. p(x) < @< q(x).

Thus , p(-’é) <1 and q(%) > 1, a contradiction. ©

Note: If A isan absorbent subset of E thenVx€eE , 3 >0 st. px € A.
Thus ,Vx€eE,{pu>0:xepA}#0.



The properties of seminorms give the following result.

Proposition 1.3.2 :
(a) X p isaseminormon E then V a> 0 the sets
{x€eE: ﬁ(x) <a} and {xeE:p(x)<a} areabsolutely convex and absorbent.
(b) If A is an absolutely convex absorbent subset of E,then p:E — R defined by
p(x) =inf{ > 0:x€epE} is a seminormon E s.t.
{xeE:p(x)<1}cAc{xeE:p(x)<1}.

‘Note: The seminorm corresponding to an absolutely convex , absorbent set is called the

gauge of the set.

Let p bea (semi—)normon E, By = {x € E: p(x) <1} (this notation will be retained
for the remainder of this work) and % = {aBg:a>0}

Then % satisfies the conditions (a) , (b) and (c) of Proposition 1.2.3.

Thus , there is a unique topology on E making E a convex space and having % asa
base of neighbourhoods of O. |

Note that d: Ex E—R: (x,y) — p(x —y) is a (semi—)metricon E and the

topology generated by d on E is the same as that obtained from Proposition 1.2.3.
(Recall that for x € E and 1> 0,B(x,r) = {y€ E: d(x,y) <r} and the topology
generated by d is 7y = {UCE:¥x€eU,31>0 st Bxr)cU})



4. Duality and the Hahn—Banach Theorem
Throughout this section , E and F are vector spaces over F.
Definition: A mapf:E — Fis linear iff

Vx,yeE,VXeF {(Ax+y)=A1(x)+ {(y)
If {:E—F isalinear map, then the kerneloff is ker(f) = {x€ E: f(x) = O }

Note :
(i) ker(f) is a vector subspace of E.
(ii) If F=F and f islinear, theﬁ fis called a linear functional on E.
(iii) The set of all linear functionals on E is denoted by E.
(iv) E isa vector space over [ if addition and scalér multiplication are

defined pointwise.

Proposition 1.4.1: Let E and F be topological vector spaces and f: E— F linear. '

Then { is continuous & { is continuous at O.

Proof :
(2)  Clear.
(3)  Suppose f is continuous at O.
Let x € E andlet V be a neighbourhood of f(x) in F.
ThenIW e % s.t. f(x) + WcV.
Since f is continuousat O ,3Ue %, st. UcC{ W]
If zex+ U, then (z) € f(x) + f{U] c f(x) + fI{"[W]] c f(x) + W V.
ie x+UcflV].

Thus , f is continuous. o

Definition : A hyperpldne in a vector space is a maximal proper subspace.
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Note: Let M be a vector subspace of E. For x € E, denotethe coset x + M of M
by [x] and let E/M ={[x]:x€E }.
Then E/M can be made into a vector space as follows :
Forx,y€eE,let [x + y] = [x] + [y] and
for A\ eF let A [x] = [Ax].
These operations are well-defined :
If [x] =[x4] and [y] = [yi] then x—x;,y—yi1€ M.
Thus, (x +y) —(x1+ y1) = (x—x4) + (y —y1) € M.
Thus , [x + y] = [x1 + yi).

Similarly , scalar multiplication is well-defined.

Definition : If M is a subspace of E , then the codimension of M , written codim M ,

is the dimension of E/M.

Proposition 1.4.2 : Let H be a subspace of E. Then
T.F.AE.: (a) H is a hyperplane in E.
(b) 3feE \{O} s.t. H = ker(f).
(¢) codim H = 1.

Proof :
(a) 2 (b) vSuppose H is a hyperplane in E.
Let xo € E\H.
Then span({x,} U H) = E.
Deﬁné f:E—F by flaxo+y)=a (aefF,yeH).
Then f€ E \{O} and ker(f) = H.
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* .
(b) 2 (c) Suppose 3fe E \{O} s.t. H = ker({f).
Since 1# O, 3 x0€ E\H.

Let xe E.

Then x = (x—-{—g%)xo) + {—g%) Xo.
But , x—{—g)o—) xo € ker(f) = H.
Thus , [x] = [}8%) xo] € span {[xq]}.
Thus , dim E/H = 1.

(c) 2 (a) Suppose codim H = 1.
Let z€ E\H and x€ E.
Since [z] # O , E/H = span {[z]}.
Thus ,IA€F s.t. [x] = A[z] = [Az]
ieex—AzeH.

~ Thus , span({z} U H) = E.

Thus , H is a hyperplanein E. o

*
Lemmal4.3: Let fe E \{O},H =ker(f),a € E with f(a) =1,
V={xeE: |{(x)] <1} and U a balanced subset of E.
Then (a+U)nH=0 & UcCV.

Proof :
()  Suppose I x € U\V.
Then |f(x)] > 1.
Put y = —f{;) € U (U is balanced).
Then f(a+y)=0s0o a+ye(a+ U)nH
Thus, (a + U)nH # 0.
(¢) Suppose UcV.
Let x e U.
Then x €V so |f(x)]| < L
Thus , |[f(a + x)| = |f(a) + {(x)] 21— |{(x)| >0 so a + x ¢ H.
Thus,(a+ U)nH=90. o
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Note: Let E be a topological vector space and. fe Ea'= . Then
f is continuous é f is bounded on some neighbourhood of O :
()  If fiscontinuous, then f is bounded on f{AeF:|A| <1}] which
is a neighbourhood of O. |
(¢)  Suppose U is a neighbourhood of O and |f(x)| <C,Vx €U for some C > 0.
I e>0,then f{AeF: A <e}] =S {AeF:[A<CY]IET

Thus , f is continuous at O so f is continuous.
*
Proposition 1.4.4 : Let fe¢ E \{O}. Then f is continuous & ker(f) is closed.

Proof :

(3) {0} isclosedin F and ker(f) = £[{0}].

(¢)  Suppose ker(f) is closed.
Let H=ker(f) and V={x€eE: |f(x)] <1}
Since f#0,3a€E s.t. f(a) =1.
Since a ¢ H and H is closed , 3 balanced U € %) st (a + U)nH = 0.
By Lemma 143, U C V. |
Thus , fis bounded on U. o
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Proposition 1.4.5: Let E be a topological vector space and M a vector subspace of E.

Then M is also a vector subspace of E.

Proof :

Let x,y€M and let UE%.
ThenBVE% st. V+ VU

Since x,yeM,x+ V and y + V meet M.
Thus, (x + V) + (y + V) meets M + M = M.

Since (x+ V) + (y + V) Cx + y + U, this means that x + y + U meets M.
Thus , x + y € M.

Similarly ,if A €F and x€ M then Axe M. o
Corollary 1.4.6 : In a topological vector space a hyperplane is either closed or dense.

Proof : Let H be a hyperplane in the topological vector space E.
By Proposition 1.4.5 , H is a vector subspace of E.

If H is not closed , then H ¢ HcE sothat H=E. @
The proof of the folloWing result can be found in [RR ; p 27].
Proposition 1.4.7: Let A be an open convex suset of a convex space E and M a vector

subspace of E with A nM = @. Then there is a closed hyperplane containing M and not

meeting A.
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Theorem 1.4.8 (The Hahn—Banach extension theorem) : Let M be a vector subspace of

E,p aseminormon E and f: M —F alinear maps.t. Yx e M, |{(x)] < p(x). Then
*

3f €E st VxeM,f(x) =1(x) and Vxe E, [f;(x)] < p(x).

Proof :

Let E have the topology determined by p andlet U= {xeE:p(x)<1}.
We may assume that f# O.

Thus,3aeM s.t. f(a) = 1.

Let A=2a+ U. Then A is open (Proposition 1.2.1) and convex (Proposition I.1.1).
Now,UnMc{xeM: |f(x)|] <1} soby LemmaI.4.3,(a + U) n ker(f) = 0.
By Proposition 1.4.7 , there is a closed hyperplane H in E s.t ker(f) CH '
and AnNH=9.

Define f; : E—F by fj(aa+y)=2ca (a€F,yeH).

Then f; ¢E and VxeM,f,(x) = f(x).

By Lemma 1.4.3 , (Y x € E) [p(x) < 1 # |f;(x)] < 1].

Thus , by Proposition 1.3.1 ,¥ x € E ,|f1(x)| <p(x). o

Corollary 1.49: Let a€ E and p: E-— R aseminorm. Then
* 4
1feE st VxeE, |[f(x)]| <p(x) and f(a) = p(a).

Proof : In Theorem 1.4.8 take M = span {a} and define f: M —F by f(ea) = ap(a).
. _
Definition : The dual of a topological vector space E is E’ = {{ € E : f continuous }.

*
Note: E’ isa vector subspace of E .
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Theorem 1.4.10 (The Hahn—Banach separation theorem) : Let E be a convex space and
A and B disjoint convex subsets of E with A open. Then3f€ E’ s.t. fl[A] n{[B] = 0.

Proof : A - B isopen, convex and {O} n(A -B)=40.
By Proposition 1.4.7 , 3 a closed hyperplane H s.t. Hn(A-B) = 0.
Let a € E\H and define {:E—F by f(aa+y)=a (a€eF,yecH).
Then fe€ E* and ker(f) = H. is closed so by Proposition1.4.4 ,fe E’.
Clearly , f[A] nf[B]=90. @

Definition: A map f: X — Y where X and Y are topological spaces is open iff
(VAcX)[AopeninX 3 f[A]openinY]. ,

x
Lemmal.4.11: Let E be a topological vector space and f€ E \{O}. Then { is open.

Proof : Let A bean open subset of E and x € A.
Then A —x is an open neighbourhood of O so is absorbent.
Since {#0,3a€E st. fla) =1
Since A —x is absorbent ,3 x>0 s.t.if |A| < p,then lae A -x
If |A] <p, then f(x) + A = f(x + X a) € flA].
Thus , f[A] isopenin F. O

Corollary 1.4.12: Let B be a convex subset of a convex space E and a € E\B. Then

1feE st fa)¢ T[B].

Proof : Since a ¢ B, 3 absolutely convex U € % s-t. (a+U)nB=40.
By Theorem 1.4.10 ,3f € E’ s.t. flint(a + U)] n f{B] = 0.
But , by Lemma I.4.11 , flint(a + U)] is a neighbourhood of f(a).

Thus ,f(a) ¢ T[B]. o
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Corollary 1.4.13: Let B be an absolutely convex subset of a convex space E and

a€E\B. Then3feE’ st. f(a) >1 and Yx€ B, [f(x)| < 1.

~ Proof : By Corollary 1.4.12 ,3g€ E’ s.t.gla)¢ g[B].
Now , g[B] is absolutely convex so |g(a)| > sup{ |g(x)| : x€ B }.
Put a=sup{ |g(x)| :x€B}.

0

If a=0,then f= E:(z'zi)' g will suffice , otherwise put f = 7 gaa g

Corollary 1.4.14 : Let M be a vector subspace of a convex space E and a € E\M.
Then 3feE’ s.t. f(a) #0 and f[M] = {O}.
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5. Polar sets and weak topologies

Definition : Let E and F be vector spaces over F. A bilinear functionalon E x F is a
~mapping B:ExF —F s.t. Vx,yEE,Vz,wEF,V.a,ﬁEIF,
B(ax + fy,z) = aB(x,z) + §B(y,z)
B(x, az + fw) = a B(x,z) + fB(x,w).

Definition : A pairing is an ordered pair (E,F) of vector spaces together with a bilinear

functional on E x F.

Note :
(i) B(x,y) will be written as <x,y>.
(ii) If B is clear from the context , then explicit mention of B is omitted and
(E,F) is referred to as the pairing.

(i) I (E,F) is a pairing , then usually F C E* (e.g. F=E’ when E isa
topological vector space). Evenif F is not a subspace of E* , it can be mapped
into E* as follows :

VyeF,define y: E—F by j(x) = <x,y> (x€E).

Then each y € E and themap T: F — E y — ¥ is linear.
T isinjective & Vye F\{O},3IxeE\{O} st. <x,y> #0.
If BCF,then T[A] will be denoted by A.

Definition: Let (E,F) be a pairing, A CE and B ¢ F. Then
(a) the polarof A (in F) istheset A°={yeF:¥VxeA, |<xy>| <1}
(b) the polarof B (in E) istheset B. = {xeE:VyeB, |<xy>| <1}
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The following result is an immediate consequence of the definition.

Proposition I.5.1 : Let (E,F) be a pairingand A, A;CE. y
(i) A° is absolutely convex.
.o o]
(i) AcA”.
(i) AcA;3 A°CcA’
. 1.
(iv) I AeF\{0},then (A A)° = 3+'A® = T A°.
(v) {0}°=F.
(vi) If £ is afamily of subsets of E, then (U£)° =n{A°:Aef}.
(vii) If M is a subspace of E, then M’ is a subspace of F and
M°={yEF:VxEM,<x,y>=O}.

Note: The corresponding results hold for B ¢ F.

Notation: If M isa subspace of E, then M* is written for M°.

Similarly ,if N is a subspace of F , then Nl is written for N,-

Let (E,F) bea pairing and & = { B_: B CF, B finite }.

Then Z satisfies (a) , (b) and (c) of Proposition 1.2.3. Thus , by Proposition I.2.3 , there
is a unique topology on E making E a convex space and having 2 as a base of
neighbourhoods of O. This topology is called the weak topology (on E) and

is denoted by o(E,F).

Note :
(i) X (E,F) is a pairing , sois (F,E).
o(F,E) is then defined in a similar fashion.
(ii) If E is a topological vector space , then o(E’,E) is called the weak+ topology
on E’.

(i) o(E’;E) is Hausdorff.
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For the remainder of this section , (E,F) is a pairing.

Proposition 1.5.2 :  ¢(E,F) is the coarsest‘topology on E making E a topological vector

space s.t. Vy € F, ¥ is continuous.

Proof : If yeF,then j is bounded on {y} so is continuous.
Suppose 7 is a topology on E s.t. (E,7) is a topological vector space
and each y is continuous w.r.t. 7.
Let B CF be finite.

Then B_= n y7[{ AeF:|A] <1} isaneighbourhood of O for r.
yeB
Thus, o(E,F)CT. D

Note: Let (x,) beanetin E and xe E. Then
X, — X W.It. oESF) & VyeF, <X Y>> = <Xy>

()  Proposition 1.5.2.

(¢) Suppose YyeF, <X ¥ > — <Xy>.
Let B C F be finite.
VyeB,13 ay st. Va2 a |<xa,y> - <x,y>| < 1L
Choose f s.t. Yye B, > ay.
Then Ya>f,Vy€eB, |<xa,y>—<x,y>| <1
ie V aZﬁ,xa—xE B,

Thus , X, —x w.rt. o(E,F).
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LemmaI1.5.3: Let V bea vector space and f, f1 ) ey fn € V*.

n
CIf n ker(f) Cker(f) ,then3 A, , ..., A €F st f=
1=1 ! 8 i

1)‘i f.

Il a8

Proof : We may assume that 4 O.
First suppose n = 1.
Since. f# O, 3z € V\ker(f).
Since ker(f;) C ker(f) , 2 £ ker(f,).
Let xe V.

fl(x) fl(x)
Then x = (X—WZ) + fl—(E)-Z’.

fl(x) \
But y X — f—(E) z E ker(fl) C ker(f)

1
Thus , f(x) = % £, (x)
1

k+1
Now suppose the result holds for n =k and 0 ker(f) ker(f).
1i=1
k ,
Then, n ker(f. C ker(f .
it er(“ker(fkn)) . Iker(fk+1))

k
B tion, I A, , ., A €F, st =3 A
y assumption 1 k § ‘ker(fk_l_l)) =1 1 1|ker(fk+1)
k
k

Proposition 1.5.4 :  (E,o(E,F))’ = F.

Proof : By Proposition 1.5.2 , F ¢ (E,o(E,F))".
Let f e (E,0(E,F))".
Then 3 finite BCF s.t. B, cf{{AeF: A <1}]

This means that n ker(y) ¢ ker(f).
yeB
By Lemma 1.5.3 , f € span BcF. o
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Lemma15.5: If BCF then B  is o(E,F) closed.

Proof: B = n ker(y). o
yeB

. . o _ o(E,F
Theorem 1.5.6 (The Bipolar Theorem) : If ACE, then A" = (A) (EF)

Prdof :

By Lemma 1.5.5 and Proposition 1.5.1 , Aoo is absolutely convex , o(E,F) closed
0 o(E,F o
and A cA°, so TCATOEF) ca° .

Suppose z¢ T (A) U(E’F).
By Corollary 1.4.13 and Proposition I.5.4 ,3y € F s.t. <zy> >1
and VxeA, |<xy>| <1 s0 yeA°

Thus , z ¢ A°°. 0

Corollary 1.5.7: If M and N are subspaces of E and F respectively then

I—V-IO'(E,F) = M* and -N-O'(F,E) =Nt
n n

Proposition 1.5.8 : Let 7 be a topology on E making E into a convex topological

vector space with (E,7)’ = F. If A is a convex subset of E , then A" = A0(EF)

Proof : By Proposition 1.5.2 , o(E,F) c 7 so A" ¢ XU(E’F).

Suppose z g A'.

By Corollary 1.4.12 , 3y € F s.t. 3(z) ¢ y [A].
Thus ,36>0 s.t. Vae A, |<z—a,y>|24.

Thus , (z + g{y}o) NA=0s0 z¢ xI(EF)
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The prbof of the next result can be found in [KN ; 17.4].

Theorem 1.5.9 (Banach—Alaoglu) : If U is a neighbourhood of O in a convex space E,
then U° is oE’,E) compact.
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Chapter II Seminormed Spaces

Definition : A (semi—)normed space (X,p) is a vector space X together with a

(semi—)norm p.
Usually , X will be written for (X,p) and ||x|| will be written for p(x).

Recall that if X is a (semi—)normed space , then d: X x X — R : (x,y) = ||x —y]|
defines a (semi—)metric on X and the topology generated by d makes X a convex
space and a base of neighbourhoods of O for this topology is given by

B={aBy:a>0} where By = {x€X: x| <1}. In what follows, 7 - will

denote this topology and any topological notion in X will be w.r.t. 7 unless otherwise

Rl

stated.
Notation : Uy ={xeX:[xl<1 }.

Note: F" with coordinatewise addition and scalar multiplication and norm
1
Al 2 )E is a complete normed space.  (see for example [Kr])

=
S
=
X
=1
—
il
~
s
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1. Bounded Linear Operators

Definition : Let X and Y be vector spaces over F and T a function with domain in
X and rangein Y. Then T is a lnear operator iff its domain is a subspace of X and

for all x and y inthe domain of T andforall a€eF,T(ax +y) = a Tx + Ty.

Notation :
(i) The domainof T is denoted by D(T).

) Therangeof T is denoted by R(T).

(iii) The null space of T istheset N(T) = {xeD(T): Tx =0 }.
) The set of all linear operators with domain in X and rangein Y is .'
denoted by L(X,Y). Theset { T € L(X,Y): D(T) = X } is denoted by
L[X,Y].

(v) I TeL(X,)Y) and MCX, then TM={Tx:xeD(T)nM }.

Note that R(T) is a subspace of Y.

)
(ii) Note that N(T) is a subspace of D(T) (hence of X).
) If T is a linear operator , then TO = O.

)

A linear operator T is injective & N(T) = {O}.
For the remainder of this section , X and Y are seminormed spaces and T € L(X,Y).
Note: If (X,p) is a seminormed space and M is a subspace of X, then pIM isa

seminorm on M (this will be defined more formally in the next section). Thus , it makes

sense to discuss the continuity of T.
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The following result includes [Will ; Theoreml , p65].

Theorem II.1.1 :

T.F.AE.:

Proof:
(a) = (b)

Notation :

(i)

(a) T is continuous.
(b) Theset {[|Tx||:x¢ BD(T) } is bounded.
() IM>0 s.t. YxeD(T), ||Tx|| < M |ix||.

Suppose { || Tx|| : x € BD(T)} is not bounded.
2

Then Vnel,3x ¢ BD(T) s.t. [ Tx || > n”.
Now , [Ix /n| € %—a 0 but |T(x /n)[| >n so T is not continuous.
Suppose IM > 0 s.t. ¥x €Bp | Tx|| < M.
case (i) : ||x|| = 0.

Then YVnelN,nxe€ BD(T)’

Since T islinear ,¥n e N, n|Tx|| = [|T(nx)|| < M so [|Tx|| = 0.
case (ii) : [|x|| # O.

Then X ¢ B so T < M.
D(T 2
x| (T [

Since T is linear , ||Tx|| < M ||x]|.
Suppose 3M > 0 s.t. ¥ x € D(T), || Tx|| < M ||x].
Then T is continuous at O.

By Proposition I.4.1 , T is continuous. D

BL(X,Y) = {T e L(X,Y): T continuous }.

(i) BL[X,Y] = { T e BL(X,Y):D(T) =X }.

If TeBL[X,Y],then T iscalled bounded.
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Note: X' = BL[X/F].

Definition : If T € BL(X,Y), then the norm of T is
Tl = sup{ [Tx]| : x e D(T) , [Ix]| < 1 }.

Note: |[|T|| behaves like a seminorm (in fact it will turn out to be a seminorm on

BL[X,Y]).

The following result generalises the corresponding normed space result to seminormed

spaces.

Proposition I.1.2: Let T € BL(X,Y).

(a) VxeDT), |Tx] < [Tl .

(b) |IT]l = inf{ M > 0:V xe D(T), [ITx]| < M |lx] }.

() If 3xeD(T) s.t. ||x|] #0, then ||T|| = sup{ ||Tx||:x € D(T), ||x|| =1}

- Proof :

(@) 3IM>0 st.VxeD(T),|Tx| <M |x|.
Let x € D(T).
case (i) : ||x|| = 0.
0 <[ Tx|| < M|[[x]| = 0 so [|Tx]| =o.
case (ii) : ||x|| # 0.
=l =1¢1 so [T < [IT]I

[l e8]
Thus , |Tx|| <[|T]| }ix]]-
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(b) Let A={M>0:¥xeD(T), x| <M |x]| }
If |T|j=0,then VxeD(T), ||Tx|| =0 so infA =0.
Assume |[T]| >0. 7
By (a), ||T|| € A so inf A <||Tl.
YMeA,|T| <M so ||T|| <inf A.
(c)  Suppose 3 x € D(T) s.t. ||x|| #O.
Let B = { |Tx||:x € D(T), [lxll <1} and C = { |Txl| : x e D(T) , I}l = 1 }.
Then , 9 # C C B.
Thus , sup C < sup B = ||Tj.
Let x € D(T) with 0 < [|x]] < 1.
~ Then, ||| =1 so ||| < sup C.

[1x] [l
Thus , || Tx| < (sup C) [|x]| < sup C.

Since x was arbitrarily chosen , ||T|| ¢ sup C. o

Definition :
(i) Asequence (x ) in X isa Cauchy sequence iff
Ve>0,3NelN st. Vm,n2 N, fix —-x [l <e

(ii) X is complete iff every Cauchy sequence in X converges.

Note: Let M be asubspace of X (where M is considered as a seminormed space in its
own right). Then

(i) X complete, M closed 3 M complete.

(ii) X normed ,M complete # M closed.
Note that if N = {xeX: |x|| =0}, then every subset of N is complete but no proper

nonempty subset of N is closed. Thus (ii) fails if X is not normed.
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. _ _ n
Definition : Let (x_) beasequencein X and x €X. Vnel,let 5, = 3 x,.

. m B -
Then the series ¥ X, converges to x iff s, — X in X.

n=1

© _
The series is absolutely convergent iff ¥ ||xn|| converges in R.
n=1

<

The following proposition generalises the well known characterisation of completeness for

normed spaces to seminormed spaces.

Proposition I1.1.3 :
T.F.AE.: (a) X is complete.

(b) Every absolutely convergent series in X converges in X.

Proof :

(a) = (b) Suppose X is complete.

o
Let % x bean absolutely convergent series in X.
n=1
: n
Ynel,let 8, = R X;.
i=1
n+ ©
For n,keNN, ”sn+k_sn” = 2 xll¢< ¥ xl|l—0a n—o

i=n+1 1=n+1
Thus , (s,) is a Cauchy sequencein X.

(b) = (a) Suppose every absolutely convergent series in X converges in X.
Let (x ) bea Cauchy sequence in X.

1
In, el st Vm,n>n,[lx —x |l <3

) 1
In particular , ||x111+1 — xnlll <3
' %
For k>2,3n, >n , s.t. ||xnk+1 —xnk|| <2
Now, % | l¢< 2%
ow , X - X < < o
k=1 MtL T T o
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k—

Since X, —X, = I

k 1 i=1

assumption that (xIl ) converges. - : .
k

But , (xnk) is a subsequence of the Cauchy sequence (x ) so (x,) must

1

(x,. +1- x, ) for k22, it follows from the
i i

also converge. 0O
Definition : A complete normed space is a Banach space.

) )

o]
Example: Let ¢ ={(x )¢€F :x,— 0} and h={(x)€F :ngllxnl <o}

Under coordinatewise addition and scalar multiplication , ¢_ and /; become vector spaces.

Il and || |, are defined on c_ and respectively by
ol = sup{ Ix | sm €M} ((x)€c,)

o]
el = nEllxnl ((xp)eh)

then ¢ and l; become Banach spaces. (See {Kr] for details.)

Definition : Let S € L(X,Y). Then the operator T + S in defined as follows 3
T+SeLX)Y),D(T+S)=D(T)nD(S),¥xeD(T +S), (T + S)x =Tx + Sx.

Proposition I.1.4: S, T e BL(X,Y) # T + S € BL(X,Y) and |IT + S|| < |T]| + |IS]}.
Note: BL[X,Y] is a vector space.

Proposition I1.1.5 :

(a) BL[X,Y] is a seminormed space.

(b) Y normed » BL[X)Y] normed.
(c) Y aBanach space 2 BL[X,Y] a Banach space.
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Proof :

(a)  lIT|| defined earlier is a seminorm on BL[X,Y].
(b)  Suppose Y is normed. | - o
Let T € BL[X,Y] with ||T]| = 0.

By Proposition I1.1.2 ,Vx € X, || Tx|| = 0.

Since Y is a normed space , this means that Vxe X, Tx = 0O ,i.e. T = O.

(c)  Suppose Y is a Banach space.

®
Let (T ) beasequencein BL[X,Y] sit. % T, <o
n=1

® ®
VxeX, B [T x| <( 2 T () lIxll <« (1)
n=1 n=1

®
Since Y is a Banach space, T: X — Y can be defined by Tx = X T x.
n=1

Note that T is linear and by (1), T € BL[X,Y].
Let nem,xeBX.

n ® ® ®
Then || 2 Tx-Tx| =] © Txf¢ S ITxl< S |Tyl.

i=1 i=n+1 i=n+1 i=n+1

’ n ®
Since x was arbitrarily chosen , | 2 T, =T ¢ % [Ty —0 as n —o.
i=1 i=n+1

By Proposition I1.1.3 , BL[X,Y] is complete. @O
Corollary 1.1.6 : X’ is a Banach space.

Definition : Let T beinjective. Then the inverse T of T is defined as
follows : T € L(Y,X), D(T) = R(T) and Vx € D(T), T Tx) = x.

Proposition I1.1.7 : Let T beinjective. Then

T is continuous & Im >0 s.t. Vx€D(T), m ||x|| < ||Tx|-

Proof :
(#)  Suppose T<! is continuous.

By Theorem IL.1.1,,3M > 0 s.t. Vx € D(T), ||T(Tx)|| < M || Tx|.



31

_ 1
Put m = M
Then V x € D(T), m ||x|| < |Tx||.
(¢) Supposedm >0 s.t. Vx & D(T), m ||x|| <|Tx|.
Then Y x € D(T), IT(Tx)|| = ||x|| 5% I Tx||.

By Theorem II.1.1 , T™! is continuous. o

Corollary II.1.8 : Let X be normed. Then
T.F.AE. (a) T isinjectiveand T is continuous.

(b)) Im>0 st VxeD(T),mlx| < |Tx|.

Note: Theexample T = O, with ||x|| = 0 for all x, shows that (b)= (a) of

Corollary I1.1.8 fails if X is allowed to be a seminormed space.

Definition : Let Z be a seminormed space and S € L(Z,X). Then the operator TS is

defined as follows :

TS € L(2,Y), D(TS) = {z€ D(S) : Sz € D(T) } and ¥z € D(TS) , (TS)z = T(Sz).
Proposition I.1.9: T € BL(X,Y), S € BL(Z,X) » TS € BL(Z,Y) and ||TS|| < | T]l [ISI.

Proof : VzeD(TS), |TSz]| < T [ISzll < T IS} ||zl o /
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2. Subspace , Quotient , Product

Definition : Let (X,f)) be a (semi—)normed space and M a vector subspace of X.
Then , (M,ply,) isa (semi—)normed space and is called a subspace of (X,p).

The map JI)\(/[ :M — X :m+— m is called the canonical injection (of M into X).
We take JI)\(/[ to be an element of L(M,X).

Note: Jar € BL{M,X].

Definition : Let X be a seminormed space and M a vector subspace of X.
VxeX,let ||[x]| = d(x,M) =inf{ || x—m | :meM}. Then ||| isa seminorm
on X/M and X/M together with this seminorm is called the quotient of X by M.
The map Qﬁ : X — X/M : x+— [x] is called the canonical quotient map.

We take Qﬁ to be an element of L(X,X/M).

Note: ||[x]l| = inf{ ||yl :ye€[x]}
If ||[x]—[z]]] <e€e(e>0),thenIve(z] st. ||x—v[| <e

In the next three results , X is a seminormed space and M a subspace of X.
" . aX X . ,
Proposition I.2.1:  Qy € BL[X,X/M] and Q) is open. (cf. [KN ;5.7])

Proof :
X X B M
VxeX, 1QXx = Il ¢ Il so QX € BLEX,X/M]
Then 3ye€[x] s.t. |yl <1
- nX X
Now , [x] = [y] = QMY € QMUX.
Thus , UX/M C QI}\(/IUX' 0
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Proposition I1.2.2:  X/M is normed & M is closed.

Proof :

(2)  Suppose X/M is normed.

Let x € M.
Then d(x,M) = 0.
ie. ||[x]|| =o0.
Since X/M is normed , [x] = O.
ie. xe M.
(¢)  Suppose M is closed.
Let ||[x]]| = o.

Then d(x,M) =0 so xe M =M.
Thus, [x] = 0. o

Proposition I1.2.3 : X complete 3 X/M complete.

Proof :

Suppose X is complete.

@®
Let (x,) beasequencein X s.t. I [[x ]l <e.
‘ n=1

Vael, 3y €lx] st llygll < lbx il + 27

@®
Now, X "yn" < .
n=1

(cf [KN;5.7))

Since X is complete , it follows from Proposition II.1.3 that 3x € X s.t.

n n ‘ n n
VoeW, | 2 (k] -l =12 [y -&I =02 y;-xll <l 2 y; —xl| — 0.
i=1 1=1 i=1 i=1

By Proposition I1.1.3 ; X/M is complete. o

T yi—x
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Notation : Let X be a seminormed space. Write Ny = {x€X:[x|| =0}

Note :
(i) Ny=TOF.
(ii) Since Ny isclosed , X/Ny is a normed space.
(iii) It will follow from theorem II.4.2 and the fact that N;{ = X’ that X’
and (X/Ny)" may be identified.

Proposition I.2.4: Let X be a seminormed space , (x_) € X" and x € X. Then

x,—x in X & [x ]—[x] in X/Ny.

Proof :

(2) Q)Ié is bounded.
X

(¢)  Suppose [x ] — [x] in X/Ny.
1

Vnel,3z €Ny st |lx —x+z | < fIx] -l + 5
llx, =l |
= |lx, —x + 2~z
Sy —x + 2|l + [zl

1
<l ] - &l + 5
— 0.

Thus y Xp — X in X. o

Corollary IL2.5: For ACX,Qk A=QF A.
X X

Corollary I1.2.6 : X is complete & X/NX is complete.
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Definition : Let X and Y be (semi—)normed spaces.
For (x,5),(u,v) € X xY and a€f,let
(x,y) + (u,v) =(x+ u , y+v)
a(xy) = (ax, ay)
Gyl = max{ |Ix] , liv]l }-
Then , under these operations , X x Y is a (semi—)normed space called the product of
X and Y. v |
The maps Iy : X x Y — X: (xy)—x and Iy, : Xx Y —Y:(xy)—y are called
the projections of X x Y onto X and Y respectively.
We take Ily and Il to be elements of L(XxY,X) and L(XxY,Y) respectively.

Note :
(i) X and Y complete 3 X x Y complete.
(i) Ty € BL[XxY,X] and Il € BL{XxY,Y]

Note that the definitions given here are consistent with the usual definitions of
General Topology (i.e. the subspace seminorm generates the subspace topology , the
quotient seminorm generates the quotient topology where the equivalence relation

isgiven by x py iff x —y € M and the product seminorm generates the product

topology).
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3. Finite dimensional Normed Spaces

In this section , we derive some properties of finite dimensional
seminormed spaces from those of finite dimensional normed spaces.
Note that in [Will ; pp192,193] it is shown that the topology of a

finite dimensional seminormed space is uniquely determined by NX'

Definition : A linear map from a seminormed space into a seminormed space is an
1somorphism iff it is continuous and has a continuous inverse. Two seminormed spaces

are isomorphic iff there is an isomorphism from the one space onto the other.

Theorem I1.3.1: Let X be an n dimensional normed space over F. Then X is

isomorphic to F". (cf. for example [Gol ; 1.4.2])

Proof :

Let {x1 ) e s xn} be a basis for X.

n
Define T:F'— X by Ta= % ax (a=(apa)€cF)
o 11 4 n/
Then T is linear and surjective.
n n
IToll =1 2 oy xll ¢ T |egl [Ix;ll ¢ n( max [e;] ) ( max |lx;|| ) ¢ n( max [jx;]|) |ie]l.
i=1 i=1 1<i<n 1<i<n 1<i<n

Thus , T is continuous.

Define f:F* —R by f(a) = |Ta| (acF").

Then f is continuous.

Now,K={aeF":|e| =1} is compact so fK] is compact.

Thus , 3 7€ K s.t. VaeK , f(@) 2 ().

Also,f(7)>0. (f(7) =02 Ty =02Ty=0= 9= 0, a contradiction.)

For aeF\{0},-% €K so f(-%)> (7).
[l [l
Le. [|Tefl 2 £(7) liol-

By Corollary I1.1.8 , T has a continuous inverse.
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Since isomorphisms take closed bounded sets onto closed bounded sets and since a set in

FN s compact if and only if it is closed and bounded , the following corollary is obtained.
Corollary I1.3.2 : A closed bounded set in a finite dimensional normed space is compact.

Corollary I1.3.3 : A closed bounded subset of a finite dimensional seminormed space is

compact.

Proof :
Let X be a finite dimensional seminormed space and A a closed bounded subset of X.

By Corollary 11.2.5 , Q§ A is a closed bounded subset of X/NX which is a finite
X .

dimensional normed space.

By Corollary IL3.2, Q& A is compact in X/Ny.
X

Since A is closed , it follows from Proposition I1.2.4 that A is

compactin X. O
For the remainder of this section X and Y are seminormed spaces.

Proposition TL3.4: If X is completeand X and Y are isomorphic,

then Y is complete.

Proof :

Suppose X is complete and T : X — Y is a surjective isomorphism.

Let (yh) be a Cauchy sequence in Y.

Since T-! is bounded ,Vm ,neN, 1Ty, = Ty STy = vl
Thus (T"yn) is a Cauchy sequence in X.

Since X is complete,Ix€ X s.t. T"yIl — X.

Since T is continuous ,y = TT"yIl —Tx. 0
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Corollary II.3.5 :  Any two normed spaces of the same finite dimension over the same field

are isomorphic.

Corollary II.3.6 :  Every finite dimensional seminormed space is compléte.
Corollary I1.3.7 : A finite dimensional subspace of a normed space is closed.
Note: If X is not normed , then Corollary I1.3.7 fails since {O} is not. closed.

Theorem 11.3.8: Let M and N be subspaces of X with M closed and N
finite dimensional. Then M + N is closed. (cf. [Will ; p192])

Proof :

Since M is closed , X/M is a normed space.

Since N is finite dimensional and QI)\(/I is linear QI)\(/IN is finite dimensional.
By Corollary IL3.6 , Qi¢N is closed in X/M.

Since Ql)\(li is continuous , M + N = QI)\(/I-IQI\)/(IN is closed in X. o
The following is a partial generalisation of the corresponding normed space result.
Proposition 11.3.9 : Let X be normed and finite dimensional. Then L[X,Y] = BL[X,Y].

Proof :
Suppose X is normed and {e;,..,e,} isa basis for X.

Let T eL[X,Y] s.t. 31 with ||Te]l # O.
n n .
Define || |; on X by | 2 aelfl; = % |a| max [Te.
i=1 i=1 1<i<n

Then || f|; isanormon X. Let X; = (X[ [l})-
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By considering the map in Theorem II.3.1 , it can be seen that dy : X — X, isan
isomorphism.

Thus,3C >0 st. VxeX, [x]|; < C x|
n n n n n

Now , [IT( 2 o e)li =l ¥ o Tell< ¥ |y max [Tefl =[| 2 ael;<C| % o e
i=1 i= i=1 <i<n i=1 j=1 11!

Thus, T € BLX,Y]. o

'Example: Proposition II.3.9 need not hold if X is not normed.
Let X be a finite dimensional space and x € X with ||x]| = 0 and ||Tx|| # 0.
Then T ¢ BL[X,Y].

The next result is a partial generalisation to seminormed spaces of exercise 20.1 in [Jam)].

Corollary I.3.10 : Let Y be normed and finite dimensional and R(T) = Y. Then T is

open.

Proof :
Let {yl,...,yn} be a basis for R(T).
For 1<i<n,3x € D(T) st. y; = Tx;.

. X..

n
Define S : R(T) — D(T) by (% ay,) = 4 %
i=1 i=1

1

I a2

Then S islinearand VyeY, TSy =y.

By Proposition I1.3.9 , S is continuous.

Thus , S-IBD(T) is a neighbourhood of O in Y.
-1 — q-l

Thus , T isopen. @
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Example : Corollary I1I1.3.10 need not hold if Y is not normed.
Let n e N\{1} andfor 1<i< n, define the seminorm || ||. on F*
_ _ n
by [lef; = || (a=(ay,a)) €F).
Let 1¢i<j<n, X =@ 1), Y =] and T =idgn
n
Then Uy ={a€F : g < 1} and UY={a€|Fn: Iajl <1}

Since i ¢ j,thereisno r> 0 s.t. r Uy, C TUy so T is not open.

Definition : Let M and N be subspaces of X. Then X is the direct sum of M and
N, written X =MeN,iff X=M + N and MnN = {O}.

For the remainder of this section M is a subspace of X.

Proposition I.3.11 : If dimX/M < o, then there is a finite dimensional subspace F of
X st. X=MePF.

Proof: If {[x;},...,[x ]} is a basis for X/M, then X = Mespan{x;,..x }. @O

Definition : A projectionof X onto M isalinearmap P:X— X s.t. R(P)=M
and P2 = P.

Proposition I1.3.12: Let X normed and dim M < o. Then there is a bounded
projection P of X onto M and X = N(P)e M.

Proof : -
Let B = {x,..,x } bea basisfor M.

By the Hahn—Banach theorem , for 1 <i<n, 3 xi €eX’ st.for 1<i,j<n, x{xj = 6ij'

: n
Then themap P: X = X:x+— % X} (x) x; has the required properties. O

i=1
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4. Dual Spaces

Definition : Let X and Y be seminormed spaces and T € L(X,Y). Then T is
an isometry iff Vx e D(T), | Tx|| = [|x||.

Note :
(i) If T is anisometry, then D(T) is complete & R(T) is complete.

(ii) Unlike in the normed space case , an isometry need not be injective.

Definition : Two normed spaces X and Y are equivalent, written X =Y, iff thereis
a linear isometry from the one space onto the other.

(We reserve = for normed spaces.)

E'ia.mple: ¢, = l; where for (an) € l; the corresponding f € c/ is given

by ()= T A s ((A)ec). (See[Ki for details)

Y
Note: If X =Y, then the linear isometry from X onto Y is denoted by I .
_ X

Y X
Note that (I )'=1 .
X Y

For the remainder of this section , X is a seminormed space and M is a subspace of X.
Notation : If x” € X', then x’ |M will be denoted by xl\l/I' Clearly , xl\l/I € M'
LemmaIl.41: Let m’ € M". Then 3x’ €X' s.t. xy=m’ and |x’[] = flm” ||
Proof :

Since m’ € M’ ,YmeM, |m'm| < |m’|| |[ml].

Now take f = m’ and p(x) = ||m’|| ||x|| in Theorem I.4.8. o
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Theorem I1.4.2 :
(a) X'/M'=M".
(b) (X/M)" =M"'. (cf. for example [Gol2 ; I1.2.1])

Proof :
(2) If x’€eX and yex’ +M',then x'—~y €eM' so YmeM,x'm=y'm.
Thus , U: X'/ M*— M’ can be defined by U[x'] = xpy.
Note that U is linear.
If m” € M’ then, by Lemma I1.4.1,3x" € X’ s.t. XI\’/I =m’.
Thus , U is surjective.
Let x" € X".
Then ¥y’ € [x'}, U]l = Ul ]l = llyggll <yl so U1 < b}l
By Lemma I1.4.1,3v" € X' s.t. vy = xyr and [[v/ ]| = [[xyl.

Now , v € [x'] so lx'Il < IV’ = Ixggll = U1

Thus , U is an isometry.

(b) Let z’" € (X/M)".
Define x/, : X —F by x,(x) = z’ [x].
Then x,. islinearand Vx € X, [x /x| = |[z"[x]| <|2"{| |I[x]]} < [lz"]} ]|
so x, . €X',
Also,¥meM,x m=2"[m]=2"0=0 so x,. € M".
Define V:(X/M)’ —M" by Vz’ =x’..
Then , V islinear and Yz’ € (X/M)", ||Vz’

<z |l-

Let z" € (X/M)’ and x € X.

Then Vye([x], |z'[x]| = |2'[y]| = [(Vz")y] <|[Vz’} |ly]] so
|2" [x]| < [IV2"|] II[x]ll-

Thus, ||lz°]| < |Vz’|| so V is an isometry.
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Let x" e M™.
Define z" : X/M —F by z’[x] = x'x. (Note that z’ is well-defined.)

Then , z’ islinearand Vy € [x], |z'[x]| = |2'[y]] = Iy ll-

x'y| < |Ix’
Thus , z’ € (X/M)".

Also, Vz’ = x" so V issurjective. D

Theorem I.4.3: Let M bedensein X, Y a Banach spaceand A € BL[M,Y].

Then 3! A € BL[X,Y] s.t. KlM = A and ||A]| = ||A].
Also , M’ =X’. (cf [Gol2;II.2.1])

Proof :

Let x e X.

3 (x,) € MY s.t. X, — X.

Vi, me N, [lAx, = Axpll < JAT x, = xg -

Thus (Axn) is a Cauchy sequence in Y.

Since Y isa Banachspace,3!y€Y st. Ax — .

Let (z_) beany sequencein M with z —x.

Then [|Az_ — vl < Al llz, - xll + Al x —x_ + [Ax, ~y] =0 as 0 —o.

Thus , y does not depend on the sequence chosen.

Thus , A can be defined by Ax =lim Ax_.
n

Clearly , A is a linear extension of A to X.

VxeX, [Ax] = lim [[Ax || <[|A]l tim [lx || = [|A]] x| so [[A]] <[IA]l.
n n

Since A is an extension of A, ||A] < [|A]].
It is easy to see that A is unique.

If Y =F, then the above shows that M’ — X’ : A —— A is a surjective

linear isometry. O
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5. The Second Dual of X
Theorem I1.5.1: VxeX, [x|| =sup { |x'x| : x" € By~ }.

Proof :

Let x € X.

Vx' €By., [xx| <[x|| llxll <llxll so sup{ |x'x| :x" € By} <|ix]l.
By Corollary 1.4.9 , 3x” € By, s.t. x'x = |jx||.

Thus , ||x|| ¢sup { [x'x| :x" €By/ }. O

Let x € X.

Define x: X’ —F by xx’ = x'x.

Then % islinear and Vx’ € X', |&x"| = |x'x| <|Ix"|| lIx|| so % € X".
By Theorem I1.5.1, ||%|| = ||x]|.

Thus , the map J%E”: X — X” : x —— X is an isometry.

7

From the remark on page 41 , this means that X is complete & J§ X is complete.

Note :

i) 3% isinjective ¢ X is normed.
X
X//A

(i) If AcX then A or A" will be written for J

(iii) X is a Banach space.

(iv) X ¢ (X, o(X,X")— (X", o(X" X)) is continuous.

Definition : X is called the completion of X and is denoted by X.

”

(We do not use the definition in [Gol2 ; p31] as J§ need not be injective.)
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Lemma I.5.2: By« is o(X",X") compact. In particular , By~ is o(X",X") closed.
Proof : Immediate by the Banach—Alaoglu theorem. o

Theorem I1.5.3 (Goldstine’s Theorem) : ]§X is o(X”,X") dense in By (cffor
example [DS ; p424])

Proof :
-:—U(X”,X,)
1 = X :

Since J% is an isometry and By, is o(X”,X") closed , By C By,

Let B

Let 2 ¢ B.

By Corollary 1413 ,,3x” € X" s.t. [2°x"| > 1 and Vx" € B, [x"x"| < 1.
Since BX C By, this means that Vx € By , |x'x[ <1 so [|x"[| < 1.

Since |z”x"| > 1, |z"|| > 1.

ie. z ¢BX,,. a

Corollary I1.5.4: Vx” € X”, 3 a bounded net (xa) in X s.t. %, — x” w.r.t.
G'(X’,’X’).
Definition : X is semireflezive iff J§ is surjective.

A semireflexive normed space is called reflezive.
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The next result generalises a well known characterisation of reflexivity for normed spaces

(see for example [DS ; p425]) to seminormed spaces.
Theorem IL.5.5: X is semireflexive & By is o(X,X) compact.

Proof :
(*)  Suppose X is semireflexive. _ .
Let (xa) be a net in By.

Since By is o(X”,X’) compact , thereis a subnet (x_ ) of (xa) and there is

o
B
an x” € Bys st X, —x” wrt. oX"X").

g
Since X is semireflexive , Jgg BX = By 80 Ixe By s.t. x=x".

Clearly ,xaﬂ—»x w.r.t. o(X,X").

(¢)  Suppose By is o(X,X") compact.

Then J;(( By is o(X”,X") compact , hence o(X”,X") closed since o(X",X") is
Hausdorff.

X” —X”—'—O'(X” ,X ! )
Thus, Jy By = J3 By =By.. O

Corollary I.5.6 : Let X be semireflexive and M be a closed subspace of X. Then M

is semireflexive.

Proof :
Let '(xa) be a net in By,
Then (xa) isanet in By.

Since X is semireflexive , (x ) has a o(X,X") convergent subnet (x, ) with limit

X € BX'

Now,xeﬁa(x’x)=M=M.

Thus , x , — x W.I.t. o(M,M’) and x€ By, @O
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Note: Let N = NX'

Since N* = X’ , it follows from [KN ; 16.11 , 17.13] that o(X/N,(X/N)’) = o(X/N,X")
where for x € X and x’ € N*, <[x],x"> = x'x. This means that if (xa) isanetin X
and x € X, then x — x w.rt. o(X,X") & [x ) — [x] wrt. oX/N,(X/N)"). Thus,
if AcXisclosed (= a(}g,X’) closed) , then A is o(X,X") (sequentially) compact if and
only if QﬁA is o(X/N,(X/N)’) (sequentially) compact. It is well known that for a
Banach space X, X is reflexive if and only if X’ is reflexive. Also , if two normed

spaces are isomorphic , then the one space is reflexive if and only if the other space is

reflexive. Thus , we obtain :

Theorem I1.5.7: Let X be complete. Then
TF.AE.: (a) X is semireflexive.
(b) X/Ny is reflexive.
(c)

(

d) X’ is reflexive.

(X/Ny)" is reflexive.

Note : It has been shown (see for example {F ; 3.10]) that in a normed space , a set is
weakly compact if and only if it is weakly sequentially compact. Thus , the following

result is obtained :

Theorem I1.5.8 : A seminormed space is semireflexive < every bounded sequence has a

weakly convergent subsequence.
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Chapter III Linear Operators and their Adjoints

In this éhapter \;re start off by examining élosed liné‘ar operatofs. The agl:]'oiﬁt of a linear
operator is then defined (note that the definition given here differs from that given in

[Gol2 ; 11.2.2]) and the relationship between an operator and its adjoint is studied. Most of
the work will concentrate on generalising results in [Gol2 ; II] to seminormed spaces. We
also introduce three states for linear operators which correspond to those given in [Gol2 ;
p58] when X is normed and state diagrams are produced which have the same form as

those obtained in [Goll].

Throughout this chapter , X and Y are seminormed spaces and T € L(X,Y). |
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1. Closed Linear Operators

Definition :
(a) The graphof T is G(T) = { (x,Tx) :xe D(T) } c X x Y.
(b) Tis closed (as an element of L(X,Y)) iff G(T) isclosedin X x Y.

Note: Since T is linear , G(T) is a subspace of X x Y.
Proposition II1.1.1 :

(i) Tisclosed & (V(x,)€ D(T)m) [x, —x,Tx, —y » x¢€ D(T), Tx = y].

(ii) T injective, closed T closed.

(i) T closed = N(T) closed.
(iv) Y normed, D(T) closed , T continuous » T closed.
Proof :

(i) ()  Suppose T is closed.
Let (x_) be asequence in D(T) s.t. x, —x and Tx —y.
Then (x,Tx ) is a sequence in G(T) with (x_,Tx )— (x,y).'
Since G(T) isclosedin X x Y, (x,y) € G(T).
Thus , x € D(T) and y = Tx.
(¢)  Suppose (V¥ (x.) € D(T)M) [x, —x, Tx, —y2x€eD(T),y = Tx]
Let (x,y)€G(T).
N
Then 3 (x_) € D(T)" s.t. (xTx ) — (x,)-
Note thgt X, —X and Tx11 —y.
By assumption , x € D(T) and y = Tx.
ie. (xy)€ G(T).
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(i)

(iv)
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Suppose T is injective and closed.

Let (y,) be asequencein D(T) = R(T) s.t. y, —y and Ty, —x
Then , T"'y — x and T(T‘lyn) =y, —7V-

Since T is closed , x € D(T) and y = Tx.

ie. yeD(T?) and x = T.

Suppose T is closed.

Let (x,) be a sequence in N(T) with X, — X

VoeN,Tx =0 so Tx —O.

Since T is closed ,x € D(T) and Tx = O.

ie x€eN(T).

Suppose Y is normed , D(T) is closed and T is continuous.
Let (x ) be a sequence in D(T) s.t. x, —x and Tx —7y.
Since D(T) is closed , x € D(T).

Since T is continuous , Txn — Tx.

Since Y isnormed ,y = Tx. ©

Lemma III.1.2 : Let X be complete and T be closed , and sﬁppose thereisan 1 > 0

Proof :

Note that it is sufficient to prove that ¥V e € (0,1),r Uy C 1_15 TBD(T)' (1)

. ‘ 1
[Then , if y(—:rUY,f-]eE(O,l) st. 1=y €1 Uy

1 1
From (1) , Ixe€ BD(T) s.t. T_—_Ey = 1‘_—6' Tx.

Thus ,y = Tx € TBD(T)' ]
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Let ¢ >0 and yErUY.

n n & v_.‘. Nn . .
Note that VnEINU{O},IE UYCE TBD(T)—-T(E BD(T))

Thus ; 3 x, € BD(T) s.t. ly — TxOH <re iey—TxjereUy.

2 . 2
Also,3x; € BD(T) s.t. |y —Txy = x|l <re’. iey- Txy—Tx; ere” Uy
. - . . . . n
Continuing in this way , a sequence (x_) is obtained s.t. ¥nel, x, €€ BD(T)

e n+1
and fly— ¥ Txfl<re ™" (2)

i=
. 1
Now , ¥ ”Xn” < T=¢ < .
n=0
n

Since X is complete,Ix€e X s.t. ¥ X; — X.
i=0

1
Note that ”x” SE
n
By (2), T( oni) —y.
o=
Since T is closed , x € D(T) and y = Tx € T_ltg TBD(T)‘ Q
Definition : A topological space X is of the second category iff whenever (An) is a

(0]
sequence of subsets of X s.t. X = U

n_1An ,3n s.t. int An $90.

The proof of the following result can be found in [K ; p200].

Theorem ITI.1.3 (Baire Category Theorem) : If X is a complete semimetric space , then

X is of the second category.
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Theorem II1.1.4 (Open Mapping Theorem for Seminormed Spaces) : Let X be
complete and Y be of the second category , T closed and R(T) =Y. Then T is open.

Proof :
By Lemma II1.1.2 , it is sufficient to prove that 3r>0 s.t. 1 Uy C ﬁD(T)'

®
Since Y=R(T)= Un TBD(T) and Y is of the second category ,d n s.ti.

n=1

Thus , J y € int nTBD(T)'

Thus ,36>0 s.t. y+ Uy C nTBD(T)‘
Let V =y (y+48Uy) and U=V-V.
Then , U is open and O € U. v

1w 1%

Thus y dr>0 st r UY C -’ITED(T) 0O

Theorem III.1.5 (Closed Graph Theorem for Seminormed Spaces) : Let X be normed , X
and Y complete, D(T) = X and T closed. Then T is continuous.

Proof :

Since X and Y arecomplete, X x Y is also complete.

Since G(T) is a closed subspace of X xY , it is complete.

Note that HXI G(T) is bijective.

We now show that it is closed.

Suppose (x,Tx )— (x,y) and x_ = Hle(T)(xn,Txn) — z.

Since G(T) is closed , (x,y) € G(T).

Also,x — X §0 z2=X= Iy| G(T)(x,y) since X is normed.

By the open mapping theorem , HXI G(T) is open so (HXI G(T))-l is continuous.
Thus, T = HY(Hle(T))-l is continuous. D
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We now consider a seminormed space which will be used in the proof of the next result.

Let F#0 beasetand B(F,Y)={f:F—=Y:3C>0 st. YxeF, [f(x)|<C}.
For f,ge B(F,Y) and X €F, define

f+g:F—>Y by (f+g)x)=1(x) +g(x) (xeF)

AM:F=Y by(A)(x)=Xr1f(x) (x€eF)

Il = sup{ [If(x)ll : x € F }.

Under these operations , B(F,Y) becomes a seminormed space.

Note :
(i) i —fin B(F,Y), then Vx€F,f (x) — f(x) in Y.
(i) Y normed » B(F,Y) normed.
(iii) Y normed, complete » B(F,Y) complete.
Proof of (iii) : '

Let (f ) be a sequencein B(F,Y) with 2 Il <
n=1

VxeF, I I, ()| < .
n=

Since Y is normed and complete ,f: F — Y can be defined

t48

by f(x) = f(x) (xe F).

n=1

®
VxeF,[l{x) < 2 JIE|l so feB(FY).

n=1
n @
Also,Vx€F, |5 £ 1l =1l T £eI¢ T 5.
i=1! i= n+1 i=n+1
[e4] . .
Thus [ 3 -1l < 3 Jigl—o.
i=1 i=n+1

By Proposition 11.1.3 , B(F,Y) is complete. 0
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Theorem III.1.6 (Principle of Uniform Boundedness for Seminormed Spaces) : Let X be

complete and F ¢ BL[X,Y] and suppose that ¥ x € X, sup [|Tx|| < .
- TeF

Then sup ||T|| < o
TeF

Proof :
Let xe X.

Y Y
Define { :F—Y by f(T) =Jy Tx.
Then VT e F, |[f (T)[| = ITx|| < sup ||Tx]| < .
' TeF

Thus , {_€ B(F,Y).

Suppose x ,z € X with |x —z| = 0.

VTEF, [£(T) - £,(T)] = |Tx~Tal < I T lx—2ll = 0 so £ =1,
Define A:X —B(F,Y) by Ax=1{  (x€X).

Then A € L[X,B(F,Y)].

We now show that A is closed.

Suppose in — x and Afcn — 1.

Then X, — X

Thus, ¥ T € F, {(T) = lim (A% )(T) = lim J3 Tx, = I Tx = (AX)(T) so f= A%
: ‘

n

By the closed graph theorem , A is continuous.
VT eF,V¥xeX,|Tx| = |(AR)(T)|| < [|AX]] < [|AJ I = (A] [Ix])
Thus , sup T < Al o

- TeF

Cbro]lary I0.1.7: Let K ¢ X and suppose that Vx" € X’ , x"[K] is bounded. Then K

is bounded.

Proof : K ¢ BL[X'F] and Vx’ € X, sup |kx'| <o
keK

By Theorem II1.1.6 , sup ||| = sup ||k <o. o
keK keK
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2. The Adjoint of a Linear Operator

Adjoints are usually defined for densely defined operators. Here we extend

the notion to arbitrary linear operators.

Definition : The adjoint T of T is defined as follows :
T e L(Y’,D(T)),D(T")={y €Y :yTeD(T) } and Vy € D(T"), T’y =y'T.

Note: The definition given above coincides with the definition of the conjugate of

TJ’S(T) given in [Gol2 ; I1.2.2].

Theorem I.2.1 [C1]: G(T’) is closed in (Y’,o(Y",Y)) x (D(T)",o(D(T)",D(T))).

Proof :
Let (y;) beametin D(T’) s.t. y;x—’y' w.r.t. o(Y’)Y) and T'y&—’x' w.I.t.
o(D(T)",D(T)).

VxeD(T),y Tx=limy Tx=lim (T'y )x =x'x.
4! 4!

Thus,y € D(T') and x" =T'y’. O
Corollary IT1.2.2 : N(T') is o(Y’,Y) closed.

Proof :

Let (y/) beanetin N(T") with y, —y " w.rt. o(Y',Y).
Then,Va,T’y&:O. |

Thus , T'y&—’ 0.

By Theorem I11.2.1,,y" € D(T’) and T'y’ = O.

ie. y €N(T"). o
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Since o(Y’,Y) x o(D(T)",D(T)) is weaker than the norm topology on Y x D(T)" , we

obtain :
Corollary II.2.3: T’ is closed.
Theorem II.2.4: T’ is o(D(T’),Y)—-o(D(T)",D(T)) continuous.

Proof :
Suppose y&——’y' w.r.t. o(D(T"),Y).

VxeD(T),T'y’x =y Tx=1limy, Tx=1lim (T'y&)x.
o o

Thus, T'y’ — T'y’ w.r.t. o(D(T)",D(T)). O
o

Theorem IML.2.5: D(T’) =Y’ & T is continuous , in which case T’ is bounded and

Tl = T}l (cf [Gol2; L.2.8])

Proof :

()  Suppose D(T’)=Y".
Then Vy’ €Y’ ,theset { |y Tx|:xE€ BD(T) } is bounded.
By Corollary 111.1.7 , the set { [ Tx|| : x € BD(T) } is bounded.
Thus , T is continuous.

(¢)  Clear.

Suppose T is continuous.

Then Yy’ € Y’ ,VxeD(T), |T'y'x| = [y Tx| <lly" Il ITI li=l

Thus , T’ is bounded and ||T’|| < ||T]|.

VxeD(T), |Tx]| = sup |y'Tx| = sup [T'y’x| < sup Ty Il llxll = N0 fil-
y EBY, y EBY, y GBY,

Thus , T < |T7]l. ©
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Definition : F ¢ X’ is total iff Vx € X\{O},3x" € F st. x'x#0.

Note :

Let F be a subspace of X. Then

(i) Fistotal & F = {0}.

(i) F total » F *=X".

(i) If X isnormed,then F istotal & F *=X’. (see Corollary 1.4.9)

Definition : T is closable iff 3 closed S € L(X,Y) s.t. G(T) c G(S).

Theorem IT1.2.6 :

T.F.AE.

"Proof :

(2) = (b)

(a) T is closable.

(b) (VyeY)[y#0 » (Oy)¢G(T)I.
(c) D(T’) is total.

(d) T has a minimal closed linear extensio

Suppose T is closable.

n.

Then 3 closed S € L(X,Y) s.t. G(T) ¢ G(S).

Since G(S) is closed , G(T) ¢ G(S).
Let y € Y\{O}.
Since S is linear , (O,y) ¢ G(S).

Thus, (0,y) £G(T).

(cf [Gol2; I1.2.11])
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Suppose (Vy € Y)[y#0 = (O,y)¢G(T)).
Let we Y\{O}.

Then (O,w)¢G(T).

By Corollary 1.4.14 , 32" € (X x Y)” s.t. z'(O,w) # 0 and z’[G(T)] = {0}.
The maps x’ : X —F:x+—2"(x,0) and y' : Y —F :y+—27(0,y) are
in X’ and Y’ respectively.

VxeD(T),0=12"(x,Tx)=x"x + y'Tx so y’ € D(T").
Also,y’'w=12"(0,w) #0.

Thus , D(T’) is total.

Suppose D(T’) is total.

Let yeY with (0,y) €eG(T).

Then 3 (x)) € D(T)‘N st. x, — O and Tx —y.

Vy eD(T’),y'y=limy Tx =limT'y'x =0
n n
Since D(T’) istotal ,y = O.
Suppose (Yy e Y)[y#0 # (O,y) ¢ G(T)].
Define T as follows :
TeLX,Y),DT)={xeX:3z€Y st.(x2)eG(T) } and Tx =1z
where (x,2) € G(T).
It follows from the assumption that T is well—deﬁned.
Since G (T) isasubspaceof X xY,T islinear.
Also, G(T)c G(T) = G(T) so T is a closed linear extension of T.

If S is any other closed linear extension of T , then G(T) = G(T ) ¢ G(S)

so T is the minimal closed linear extension of T.

Clear. o



59

Corollary III.2.7 [Gol2 ; 11.2.12] : Let X and Y be Banach spaces and let D(T) = X.
Then T € BL{X,Y] & D(T’) is total.

Proof :
(#)  Suppose T € BL[X,Y].

Then D(T’) = Y’ which is total since Y is normed.
(¢)  Suppose D(T’) is total.

By Theorem I11.2.6 , T is closable.

Since D(T) = X, this means that T must be closed.

By the closed graph theorem , T is continuous. o

Note :
(i) X normed , complete and Y complete were not needed for ().

(i) Y normed was not needed for (¢).
- Theorem IMI.2.8 : T’ is continuous & D(T’) is closed.

Proof :
(*)  Suppose T’ is continuous.
Let (y,) € D(T")" with y, —y".
VxeD(T), |y'Tx| = lim |y Tx| = lilm | Ty x| Sl:lm IT A Nyl =l =

IT W lly" N lixll so y” € D(T").

(¢)  Closed graph theorem. o
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3. States of Linear Operators

“The aim of this section as well as the next section is to obtain the
Taylor—Halberg—Goldberg state diagrams (see [TH] , [Gol2 ; I1.3.14 , 11.4.11])

in our more general setting. For the most part , the proofs are simple modifications
of the corresponding results in [Gol2 ; I1.3, II.4]. Since the state diagrams

obtained coincide with those in [Gol2] , the examples in [Gol2 ; I1.5] show that they

are complete.

The following states for T will be considered :
I:R(T)=Y
I:R(T)#Y,R(T) =Y
HI:R(T)+Y
1’:3m>0 s.t. VxeD(T), m|x|| <|Tx|| (T is bounded below)
2’ :N(T)* =D(T)" , Tg1’
3 :N(T)* # D(T)’

If T isin state 1’ then this will be written as T € 1”.
If T isin state II and in state 3’ , then this will be writtenas T € II3,.
Similar notation is used for the other possible states of T.

Note that if T € 1, then N(T)* = D(T)’.

In [Gol2 ; I1.3] , the following states are considered instead of 1* , 2 and 3" :
1:T injective , T! continuous
2: T injective , T"! not continuous
3:T not injective

Note that if X is normed , then these are exactly the same as 1’ , 2" and 3°.

(When X is normed , T is injective & N(T)' = D(T)’)
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Theorem III.3.1: T’ €1” 3 R(T’) closed.

Proof :
Suppose T  €1’.
Then 3¢>0 st. Yy eD(T"),clly’ll <IITy’|-
Let x’ e R(T ).
7 N ’ ’
Then 3 (y;) € D(T)" s.t. T'y; —x’.
Vm,neWl,cly; -yl <IT7y] - Tyl
Thus , (yl’l) is a Cauchy sequencein Y’.
Since Y’ iscomplete,Iy €Y’ s.t. yl’l—’y’.
Since T’ isclosed,y” € D(T’) andx” =T'y’ e R(T’). o

Corollary 1.3.2: T’ ¢11,..

Theorem I11.3.3 :
(i) R(T)"=N(T").

() R(T) =N(T'),.
In particular , T has dense range < T’ is injective.

(ie. TEIVII & T €102

| Proof :

(i) y eR(T) & VxeD(T),yTx=0 & y’ € N(T").

(ii) R(T) = R(T)*, = N(T") .
Finally , note that N(T") = {O} & N(T") =Y. o
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Theorem IM1.3.4 :  (Here the pairing considered is (D(T),D(T)").)
(i) N(T)cR(T"),.
(i) D(T’) total » N(T)=R(T") .

i) ®T YOI ¢ N(T):  (In particular, T € TUTI3 T e 17 U2°).
(iv) X normed,R(T’) total 3 T injective.

()  xeN(T) s Vy eD(T'),(T'y)x=y (Tx)=y'0=0 3 xeR(T'),.
(ii) Suppose D(T’) is total.
Then ,x ¢ N(T) 2 Tx#0 2 3y e D(T’) st. yTx#0 2 xg R(T")

@)  RCTYOPEPI) gyt onmyt

4

K
(iv) Immediate from (iii). o

X

Theorem IM1.3.5: Let T and T’ beinjective and T,=TJ
D(T)

. Then

R(T) =Y’ and (T;1) = 18D prgD(T)"

Y’ D(T)"’

Proof :

By Theorem I11.3.3 ,R(T) =Y so R(T) =Y".
Let 2° € D((T)").

Then z'T" e R(T)".

Let y' € Y’ beanextensionto Y of z°TL
Then Vx€ D(T),y Tx=2"T'Tx =3z"x

Thus,y’ € D(T") and T'y" = zfy .
D(T)’

ie. I 2’ € R(T’) = D(T’ ).
D(T)’
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Let x" € D(T"™") = R(T") and let *" € D(T)" beanextensionof x’ toD(T).
Then, 3y’ € D(T') st. x" =T'y".
- VxeD(T),xTTx=xx=T"y'x =y Tx.

(r, T z’)Tx = (T"‘z]’)(T))Tx = (T'T"‘z]’)(T))x =z'x=2"TTx

We now define an injective operator associated with T and which has a number of
properties in common with T. This will be useful in what follows as a number of results
are proved for injective operators and then by using this operator the correspondimg results

are deduced for T.

Definition : The induced injective operator T is defined as follows :
T € L(X/N(T),Y) , D(T) = D(T)/N(T) and Y x € D(T), T[x] = Tx.

Note :
(i) T is well defined since if [x] = [z] then x —z € N(T) so that Tx = Tz.
(ii) This generalises the definition in [Gol2 ; 11.4.6] — here N(T) is no longer
required to be closed.
(iii) R(T) = R(T).
iv) T= TQ}I‘%(T)

(v) The induced injective operator associated with T’ will be denoted by (T’) .
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Theorem IT1.3.6 :

-

(i) T iscontinuous < T is continuous in which case ||T|| = ||T.
(ii)) T isclosed & T is closed.
(i) Tel” s Tel’
L
(iv) T = Jgggl L) .
(D(T)/N(T))
Proof :
(i) () Suppose T is continuous.
Let x € D(T).
Vy e, 1T = 1T = 1Tyl < 1Tl lvll
Thus , | Tx]]| < |T]l 1)1l
Thus , T is continuous and ||T|| < ||T.
(¢)  Follows from the fact that Q)Ié(T) is bounded.
Also , [T = QX )l < 1T QR 7ol € T
(ii) (3) Suppose T is closed.
Let (x ) beasequencein D(T) s.t. [x ] — [x] and Tx, —y.
3(v,) € N(T)IN s.t. x +v, —x
Since T is closed and T(x_ + v )= Tx —vy,x€D(T) and
y = Tx = T[x].
(¢)  Suppose T is closed.
Let (x ) beasequencein D(T) s.t. x, —x and Ticn —y.
Then [x ]| — [x] and T[xn] —y.
Since T is closed , [x] € D(T) and y = T[x].
Thus , x € D(T) + N(T) ¢ D(T) and y = Tx.
(iii)  Suppose T €1’ |
Then3im >0 s.t. Vx€ D(T), m x| < |ITx]|.
VxeD(T), m [l <m x| ¢ [Tx]| = T[]
Thus, Te1’.
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Let y" € D(T’) and x € D(T).

Vael[x], |y T| = |y'Tlzl| = |y Tz < [ly"T|f |lz])-

Thus , y* € D(T").

Let y’ € D(T).

Then VxeD(T), |y"Tx| = |y Tx]| < ly" Tl I[x]ll < lyTl I=]-

Thus , y’ € D(T).

If yeD(T’) and x € D(T), then (et T’y )x

pry N(T*
g (D(T)/N(T))’

= (F'y W =y Ex =y Tx = (T'y)x. o

LemmaIII.3.7: If T ¢ 1", then thereis a sequence (x ) in D(T) s.t. [x [[— o

and ||Tx || — 0.

Proof :

Suppose T ¢1°.
Then Vm > 0,3 x.€ D(T) s.t. m ||x]| > ||Tx|}.

1
Thus,Vn €N, 3z €D(T) st. ol =1 and ||Tz | < L.
1

VneW,let x, = [Tz, %, if [Tz, #0 and nz otherwise.

n

Then (xn) has the required properties. 0

Theorem IMI.3.8: T '€l & Tel’.

Proof :

(#) Suppose T €I but T¢1’.

By Lemma IT1.3.7 , 3 (x_) € D(T)

Den(m¥ st x| — o and Tx — 0.

Yy €D(T'), T'y'x, =y Tx —0.

Since T" €I,Vx" € D(T)" ,x'x, —0
Thus,Vx" € D(T)" , theset {x'x_ :ne€N} is bounded.

By Corollary III.1.7 , the set { x,:n €N} is bounded which contradicts

the fact that [|x || — .
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(¢) Suppose Tel’.
By Theorem IIL.3.6 , Tei’.
Let z’ € (D(T)/N(T))".
Then z'T™ e R(T)".
Let y’ € Y’ be an extension of z’T! to Y‘.
VxeD(T),y Tlx] = 2’ T'T[x] = z’[x].
Thus,y’ € D(T’) and T'y’ =2’
Thus , R(T*) = (D(T)/N(T))"
By Theorem II1.3.6 , R(T*) = N(T)".
Since T € 1’ , N(T)* = D(T)".
Thus, T €l. o |

Theorem M.3.9: Te (IVI);, & T €l;..

Proof :
(3)  Suppose T € (IUII),,.
By Theorem I11.3.3 , T" € 1" U2’.
By Theorem II1.3.8 , T" € L.
Since D(T)’ is normed and complete , it follows from the closed graph theorem
that T' € 1°.
(¢) Suppose T’ €I,..
By Theorem IT1.3.3, T € IUII and by Theorem IIL.3.8, Tel’. o
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Theorem I1.3.10 : Let Y be complete. Then Tel 3 T’ €1”.

Proof :

Suppose Tel but T ¢ 1°.

By Lemma I1L3.7 , 3 (y/) € D(T*)"

st. |yl = o and T'y, — O.
Since TEI,VyEY,yI’Iy-—-oO.

Thus ,VyeY,sup |y1’1y[ < o
n

By Theorem IIL.1.6 , sup ||y, || < =, a contradiction. &
n

Note: If TEII, and T’ EII3

similar notation is used for the other possible states of (T,T”). The preceding theorems |

. , then this is written as (T,T") € (I,.,1I,.) and

show that certain states for (T,T’) cannot occur. These results are summarised in the
state diagram on the next page where eliminated states are indicated by shaded squares.
Additional states are eliminated if Y is assumed to be complete. These are indicated by
placinga Y ‘in the appropriate squares. That the blank spaces can occur is shown by
means of examples in [Gol2 ; IL.5]. Note that the diagram obtainéd has the same form as

that obtained in [Goll ; II1.3.14].
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4. States of Closed Linear Operators

In this section , we obtain the analogues of the results in Section II.4

of [Gol2] necessary to establish our state diagram for closed linear operators.

Lemmalll4.1: T €el’ 3 rUY C TBD(T) where 1 = "T/-xu'

Proof : Suppose 3y € T Uy \ TB—D(T)'
Then 3y’ €Y’ st. Vxe€ BD(T) , |y"Tx| < |y’y| sothat y’ € D(T’).

Now,tlly’ | <IT'y'll = sup |y’ Tx| < |yl < lly“ Il Iyl
Thus , ||y|] > r which contradicts y €rUy. O

Lemma ITT4.2: Suppose 31> 0 s.t. 1UyC TBD(T) and N(T)* = D(T)".
Then T €1’ and Vx e D(T), 1 ||x]| < || Tx].

Proof :
Let x € D(T).
case(i) : ||Tx|| = 0.
VnelN, T(nx) €r Uy
Thus ,Vnel,3z € BD(T) st T(nx) = Tz,
Since N(T)* = D(T)’ ,VneN,Vx’ e D(T)" ,x"(nx) = x"z,.

By Proposition IL5.1,Vn € N, n ||x|| = [lnx]| = |z | < 1.
Thus , ||x]| = 0.
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case(ii) : ||Tx|| # 0.
Let €€ (0,1).
Then L =€) T Txe,y

Y-
ITx| o)zt
Thus,,3z € B sl — €)Xy
D(T
(T) x|
Since N(T)* = D(T)" ,¥x’ € D(T)" , x' (L =L LX) = 57y

Thus , (1 — €) 1 ||x|| = [|Tx]] l|z]] < | Tx]}.
Since € was arbitrary , r [|x|| < ||Tx]|.

Thus,Tel” and Vxe D(T),r|x|| <||Tx||]. o

Theorem I1.4.3: Let X be complete, T closed and T’ € 1°. Then

(a) Uy CTBy where r= :
I =4

(b) N(T)'=D(T)’ » Tel’ and VxeD(T),r x| < ||Tx].
Proof : Lemmas I11.1.2,111.4.1 and IT1.4.2 ©.
Corollary IIL.4.4 :  Under the same hypotheses as Theorem 11143, Tel and T 1s open.

Theorem II.4.5: Let Y be complete and T closed. If T’ continuous , then D(T) is
closed. If , in addition , X is a Banach space , then
T.F.AE. (a) T’ is continuous.

(b) T is continuous and D(T) is closed.

(c) D(T’) is closed.

Proof :

First assume that T is injective.
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Yoo yapX and § =T,
R(T) D(T)

Then S isclosedand Se L(R(T),D(T))=L(D(S),R(S)).

Let T; =(J

By Theorem I11.3.3 , S’ is injective.

D(T)’ D(S)’ D(T)’ D(S)’
By Theorem II1.3.5 , S 1 =1 (S1'1 =1 ;1 (5) .
D(T)’ D(S)’ D(T)” "D(S)’

Now , T, is also continuous so this means that S” € 1.

By Corollary I1I.4.4 ,S € L.

Thus, D{T) = R(S) = D(T).

If T is not injective , then T is closed and by Theorem III.3.6 , T’ is continuous.

By the above , D(T) = D(T)

Thus , D(T) = D(T).

The rest of the theorem follows from the closed graph theorem. o
Corollary IIT.4.6 : T” continuous & T’ continuous.
Lemma III.4.7: If T is closed and injective , then X and Y are normed.

Proof : If T is closed and injective , then {O} = N(T) is closed in X and
{0} = N(T) is closed in Y.

Note: If X isa reflexive normed space and F is a subspace of X, then

F istotal & F =X’ (see p57). Thus,if Y is a reflexive normed space , then T is
closable & D(T’) is densein Y’.
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Theorem II1.4.8 : Let X be semireflexive, T be closed and N(T)* = D(T)’.
Then R(T’) is dense in D(T)".

Proof :
First assume that T isinjective.

By Lemma II1.4.7 , X and Y are normed.
X

D(T)

Then R(T") = R(T;) and Ty isinjective.

BRGNS

IS

Now D(T) isreflexive and T, is closed so D((T;™)") is dense (_ﬁTTY)P’.
Thus , R(T") = R(T}) = D(T;™) is dense in D(T)".

If T isnot injective , then T is closed and injective.

— (1Y -1

- By Theorem IIL.3.5, (T;)" =T

Also , X/N(T) is reflexive.
[Let ([x_]) bea bounded sequencein X/N(T).
Voel,3z €fx ] st |z || <[llx ]l + 1.

Since X is semi—reflexive , (z,) has a convergent subsequence (z_ ).
' I

Clearly , ([x_ ]) convergesin X/N(T).]

. T ’
By the preceding argument , R(T) is densein (D(T)/N(T))".
By Theorem I11.3.6 , R(T’) is densein N(T)* = D(T)’. =&

Note :
(i) The state diagram for closed linear operators appears on the following page.
Note that it has the same form as that obtained in [Gol1].

(ii) For examples of states , see [Gol2 ; IL.5].
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Chapter IV  Strictly Singular Operators
In this chapter , only a brief study of strictly singular operators is made in order to make
certain results available for the next chapter. For a more indepth study of continuous
strictly singular operators in normed spaces and their relationship with precompact
operators , see for example [Gol2 ; III]. Unbounded strictly singular operators in normed

spaces are dealt with in [C1], [C3], [C4] , [C6] , [CT7], [CL1] and [CL2]. Here we consider

strictly singular operators in seminormed spaces.
Throughout this chapter , X and Y are seminormed spaces and T € L(X,Y).

Definition : A subset A of X is totally bounded iff ¥ ¢ > 0,3 finite FC A
s.t. ACF + eBy.

Definition : T is precompact iff TBX is totally bounded in Y.

T is compact iff ﬁX is compact in Y.
Note: T precompact = T continuous.
We state the following result from [RR ; p60] without proof.

Theorem IV.1: A ¢ X is compact & A istotally bounded and A is complete.
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Proposition IV.2: T € BL(X,Y), dim R(T) < o 3 T precompact.

Proof :

Suppose T € BL(X,Y) and dim R(T) < o.
By Corollary I1.3.3,, TBy n R(T) is compact in R(T).
By Theorem IV.1.1, TBy n R(T) is totally bounded.

‘Since TBy ¢ TBy NR(T), TBy is totally bounded. o

LemmaIV.3: Let (Kn) be a sequence of precompact operators with Kn — K in
BL[X,Y]. Then K is precompact. (cf [Gol2 ; III.1.5])

Proof :

Let ¢ > 0.

Then IN €N s.t. [Ky - K[| < -?6;

Since KN is precompact , 3 finite F C BX s.t. KNBX C KNF +3 By.
Let x € By. |
Then 3z€F s.t. [[Kyx —Kyzf < -?6;

{IKx — Kz||

<HKx - KNx|| + ||KNx - KNz|| + I|KNz — Kz||
C2[[K-Kyll + l[Kyx — Kzl

$2-§+§=e. 0

Notation: J(X) ={M:M a subspace of X, dimM = « }
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Theorem IV.4: Suppose that for every closed finite codimensional subspace M of X,
T{yf#1". Then Ve>0,3MeJ(D(T)) s.t.

(a) Mn NX = {0}.

(b) T|yq is precompact.

() [NT[yll €& (cf [Gol2;1IL.1.9], [Ka2])

Proof :

Let ¢ > 0.

Since T#1°,3x; €X st. x;ll =1 and [|Tx || <37 e

Ix] €X' st xjx; = |xfll = Iyl = L.

: . , _ | -2
Since codim N(x;) =1,3x, € N(x;) s.t. [xof] =1 and [Txfl <3~ “ e

Ixp € X' st xpxy = x5l = llxyll = 1.

Since codim (N(x7) N N(x5)) < @, 3 x4 € N(x;) N N(x5) s.t. lixgll = 1 and

ITxgll < 37 3.

Continuing in this way , sequences (xn) and (x;) areobtainedin X and X’

respectively s.t. :
n—1

Voel,x x =[x || =[xl =1 and x_e ip-l N(x;).

n
Suppose that || 3 ax|| = 0.
i=1

n
Then 0 = xl(izlaixi) = .

: n
0= x2(i£2aixi) = 0.

n
0=x(ax)=a soi§lozixi = 0.

Thus , the set {xl,x2,...} is linearly independant.

Put M = span {x .}. Then M €J(D(T)).

1%ge
It follows from the above argument that M n Ny = {O}.
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We now verify that ||T{,]| < e

m
Let x= ¥ a x. € M.
i=1 ' !

It follows by induction that for 1<k<m, [o] ¢ ok~ 1 IIx]|-
£ B ogi—1g—i

Thus, [ Txf ¢ 3 faf [Tl ¢ B 2137 ] ¢ e .
i=1 i=1

We now show that T]M is precompact.

¥ nel, define TIZI :M—Y tobe T on span {x,..x } and O on span {xy 1+
Then each Tlf is linear , has finite dimensional range and is bounded , hence , by
Proposition IV.2 | is precompact.

Also, TM — TJ% in BLM,Y] so by LemmaIV.3, T|y, is precompact. G
Definition : T is strictly singular iff for every subspace M of D(T) we have

’dim M/(MNNy) < o whenever T|,c€ 1"

Note: This definition coincides with the classical one (see [Ka2]) when T is bounded

and X and Y are Banach spaces.

The following result is exercise 8 on page 193 of [Will].

LemmaIV.5: If M is a finite dimensional subspace of X ,then M =M + Ny

Proof :

By Theorem I1.3.8 , M + Ny is closed so M ¢ M + Ny.
Let xEM+NX. Then ElmEM,EInENX st. x=m + n.

Now , |lx —m|| = ||n}| = 0 so d(x,M) = 0.

Thus,xeM. o
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Lemma IV.6: By totally bounded 3 dim X/Ny <o

Proof :
Suppose BX is totally bounded.

. 1
Then 3 finite F C BX s.t. BX CF+3 By.

Let M = span F.

1 1 k

. 1 1oy _ _
VkeIN,BXcM+§BXcM+§(M+§Bx)_M+ZBXc....cM+2 B

Xo
Thus,BXCM S0 X=M=M+NX.

Since dim M < o, dim X/Ny <o. O

Theorem IV.7: T precompact 3 T strictly singular. (cf [Gol; III.1.3])

Proof :

Suppose that T is precompact.
Let M be a subspace of D(T) s.t. T{y €1’

Since T is precompact , TBy, is totally bounded in Y.

Since TIM €17, By is totally bounded in M.
By Lemma IV.4 , dim M/MNNy = dim M/NM <o O

LemmaIV.8: Let M and E be subspaces of X with codim E < o. Then thereis a
finite dimensional subspace F of X st. M=(MnE)eF.

Proof: Themap M/MNE —X/E:m + MNE+—m+E (meM) isinjective. 0
Definition : T is partially continuous iff there is a finite codimensional subspace M of

X s.t. T|y is continuous..

(See [C3] , [CL2] and [Lal])
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Notation : || [l will denote the norm on D(T) defined by [\x[lp = [IxIl + | 'Tx]|-
X will denote (D(T),|l ||T). The operator G € L(Xp,X) is defined
by Gx=x (x€Xq) '

LemmaIV.9: T is partially continuous & VEeJ(X),3F €J(E) st. T|p is

continuous .  (cf [C4])

Proof :

(#)  Suppose T is partially continuous.
Then there is a finite codimensional subspace E of X s.t. TIE is continuous.
Let M eJ(X). "
By Lemma IV.8 , 3 a finite dimensional subspace F of X s.t. M = (MNE)eF.
Thus , M NE €J(M) and T|y.p is continuous.

(¢) Suppose VE € J(X),3F e J(E) s.t. T{p is continuous.
Let E € J(D(T)).
Then 3 F € J(E) s.t. T{p is continuous.
VxeF,|Gk%| = ||x|| + |ITx]] < (1 + (| T) gl [Ix]| so G|y is an isomorphism.
Thus , G has no precompact restriction on any infinite dimensional subspace M
of its domain satisfying M n NXT = {O}.
By Theorem IV.4 , there is a closed finite codimensional subspace M of XT
st Glyp €1’
Thus , T| gy 1s continuous.
Let N be such that X = D(T) @ N.

Then codim(GM @ N) < @ and T|qgp ey 18 continuous. O
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We now come to the main result of this chapter in which unbounded strictly singular

operators are characterised.

‘Theorem IV.10 [C6] : Let X be a normed space and Y a Banach space. Then

T.F.AE.

Proof :
(a) 2 (b)

() T is an unbounded strictly singular operator.
(b) There is a continuous strictly singular operator A and an unbounded

finite rank operator F s.t. T=A + F.

Suppose T is an unbounded strictly singular operator.

Then dim D(T) = o and by Theorem IV.4, Y F ¢ J(D(T)), 3 M ¢ J(F)
s.t. T|M is precompact.

By Lemma IV.7, T is partially continuous so 3 a finite codimensional

subspace E of D(T) s.t. T|p is continuous.
Since Y is complete , T|; extends to a continuous operator T; on E.
Now , codim E < o so there is a finite dimensional subspace N of D(T)

st. D(T)=EeN.
Let B = {xl"”’xn} be a basis for N.
For 1<i<n,let N, = span(B\{x;}).

By Theorem I11.3.8 , E + N; is closed.
For 1<¢i¢n,3x{ €D(T)’ st x{x;=1and YxeE + N, x{x = 0.

Define Q : D(T) — D(T) by Qx = g x{ (x) x;.
i=1

1=
Then Q is bounded , R(Q) = N and N(Q) = E.
Let A=Ty(I1-Q) and F=T-A.

Then A and F have the required properties.
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(b)2(a) - Suppose T = A + F where A is a bounded strictly singular operator and
F is an unbounded finite rank operator.
Let M be a subspace of D(T) s.t. T|y,€1".
Then T'MnN(F) = AIMnN(F) has a bounded inverse.
Since A is strictly singular , dim(M N N(F)) < . (D(T) c D(A))
Now , dimD(F)/N(F) = dimR(F) < o. (F: D(F)/N(F) — R(F) is bijective)
Since D(T) ¢ D(F), this means that dim M < w.
Thus , T is strictly singular.

Since A is bounded and F is unbounded , T is unbounded. o

Corollary IV.11: T strictly singular 2 T partially continuous.
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Chapter V Operators with Closed Range

In this chapter , operators with closed range are studied and again the emphasis is on
generalising results in [Gol ; IV] to seminormed spaces. At the end of the chapter a partial
generalisation of an important stability result of Kato to unbounded strictly singuiar
operators is presented.

Note that a number of results in this chapter which are proved in the setting of Banach

spaces in [Gol ; IV] have been generalised to normed spaces in [La2].

Throughout this chapter , X and Y are seminormed spaces and T e L(X,Y).
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1. The Minimum Modulus of T

Lemma V.1.1: Let X and Y be complete and T closed. Then

T has a continuous inverse & T is injective and R(T) is closed. (cf [Gol ; IV.1.1])

Proof :
(2)  Suppose T€1l..

Then T is injective.

Let ye R(T).
Then 3 (y )€ R(T)[N st y, —7.
Vm,m e, [Ty, ~ Tyl < ITY v v
Thus , (T'y,) is a Cauchy sequencein X.
Since X is complete, 3 x€ X s.t. ’l"‘yn — X.
Since T is closed , T™! is Also closed.
Thus , y € D(T") = R(T).
(¢)  Suppose T is injective and R(T) is closed.
By Lemma I11.4.7 , Y is normed.
Since R(T) is closed , D(T™) = R(T) is complete.

Thus , by the closed graph theorem , T™! is continuous. O
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Theorem V.1.2: Let X and Y be complete and T closed. Then

T.F.A.E.

Proof :
(a)=(b)
(a) 2 (c)

(a) R(T) is closed.
(b) R(T)=N(T"),.
(¢) R(T") = N(T)".
(d) R(T’) isclosed. (cf [Gol;IV.1.2])

Theorem II1.3.3.

Suppose R(T) is closed.

Then R(T) is closed so by Lemma V.1.1, Tel.
By Theorem I11.3.8, T" € L.

By Theorem I11.3.6 , R(T") = N(T)".

Clear.

Suppose R(T’) is closed.

Let T, =(0_)"'T.
R(T)

Then T, is closed.

We now show that ’1‘1 is surjective.
By Theorem III.3.3, Ti is injective.
Now R(T{) = R(T’) which is closed.

By Lemma V.1.1, T7 € L.

1
By Corollary I11.4.4 , T1 €l

ie. R(T) =R(T)) = R(T). o
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Definition : The minimum modulusof T is

AT) =sup{ v20:VxeD(T), ||Tx|| 2 vd(x,N(T)) }.

Note :

(i) This generalises the definition in [Gol 2].

(i) HT)=o & N(T) nD(T) = D(T).
(i) AT) = D).
(iv) A«T)>0 & Tel.

(v) 0<AT)<w 3 T = -2

“ . AT)
Ter, T +0 5 oT) = =1
11

Definition : T is relatively open iff (JE(T))'IT is open.
Theorem V.1.3: +(T) >0 & T isrelatively open. (cf [La2])

Proof :
(*)  Suppose (T) > 0.
Then 3 >0 s.t. YxeD(T), [|Tx|| > v ||I[x]ll-
We now show that « UR(T) C TBD(T)'
Let yey UR(T)‘
Then Ix € D(T) s.t. y="Tx.
If ||[x]] 21, then [[Tx|| > v ll[x]|| > v a contradiction.
Thus, ||[x]ll <1 so y€ TUD(T)/N(T)'
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(¢) Suppose T is relatively open.
Let x € D(T).
case (i) : ||Tx|| = O.

Voel, [T(nx)|| =0 so T(nx)e€ 7UR(T)'

Thus ,¥nelN,3z ¢ BD(T) s.t. T(nx) =Tz .
VoeW,n Il = liin =l = iz )ll < Izl <1 so il = o.

case (ii) : || Tx|| # 0.
Let €€ (0,1). Then

(L —||';‘)| 7 Tx 7UR(T) so 3z € BD(T) s.t. T(ﬁl—_”é)TLf) = Taz.
Thus,n[Jl = )T X <l < 1 so (1= ) 7 [l < Tl

ITx]
Since € was arbitrary , 7 ||[x]]| < | Tx]|-

Thus , 9(T)>y>0. 0
Corollary V.1.4: Y normed , dim R(T) < o 2 9(T) > 0.

The next result generalises [Jam ; 20.2] to seminormed spaces and provides an alternative

proof.
Theorem V.1.5: N(T) closed , dim R(T) <o # T continuous.

Proof :

Suppose N(T) is closed and dim R(T) < o.
Then dim R(T) < o

Since T is injective , dim D(T) < w.

Since N(T) is closed , X/N(T) is normed.
By Theorem I1.3.9 , T is continuous.

Thus, T is continuous. 0
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The next result follows from Lemma V.1.1 and (iv) of the remark on page 85.

Theorem V.1.6: Let X and Y becomplete and T closed. Then
R(T) isclosed & AT)>0. (cf [Gol2;IV.1.6])

Theorem V.1.7: Let N(T) and R(T) be closed and let 9(T) > 0. Then

T is closed.

Proof :

Let (x_) be asequencein D(T) st. x, —x and Tx —y.
Since R(T) isclosed,3z € D(T) s.t. y = Tz.

Since ¢(T)>0,39>0 s.t. YxeD(T), [|Tx| > v/||[x]l.
b=zl < 7l —x I + 7l =2l € vl = x| + [ Tx, -yl —o.

Thus ,x—z€ N(T) =N(T) so xeD(T) and y=Tz=Tx. 0O

The next result generalises [Gol2 ; IV.1.8] ; in particular , N(T) is not required to be

closed.
Theorem V.1.8: +(T)>0 3 AT) = 1(T’) and R(T’) isclosed. (cf [La2;2.7])

Proof :
Suppose 4(T) > 0.
case (i) : Y(7T) = o.

Then N({T) nD(T) = D(T).
¥y’ € D(T’),y T[N(T)] = {0} so y'T = O.

Thus , T = O so (T') = w.
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case (ii) : (T) < .
oY v X
Then T;) = «T)>0 so T, €l,.
By Theorem I11.3.9, T; € I,.
Y’ /R(T)*

From Y’/N(T’)=Y’/R(T)" =1 (1) R(T)’ it follows that
R(T)’

D((T*)) = D(T{) where for [y’] € D((T’)") , the corresponding element in
D(T}) is Y7y
Vy €D(T),¥YxeD(T),y T[x] = yI,{(T)Tl[X] 50
¥y eD(T), |17y ] = ITjygmll

By Theorem I11.3.6 ,V y’ € D(T'), |IT'y’|l = "TinII(T)"
By Theorem II1.3.5 , (T; )" = (T])™ -
Thus, (T = (279N = 1T
AT’) =sup{ 720:Vy e D(T), Ty’ | 2 7 lly’lll }

=sup{ 720:Vy e D(T)), 175y’ N2 71y’ Il }

=1 1 _yh)=oT,) = A(T)
e e Y T =

Corollary V.1.9: Let X and Y be complete and T closed. Then
A{T) = f(T’). (cf [Gol2;IV.1.9])

Proof :

If «(T)> 0, then the result follows from the preceding theorem.

Otherwise , it follows from Theorems V.1.2 and V.1.6 that

AT) =0 & R(T) is not closed < R(T’) is not closed & 1T’)=0. o
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Theorem V.1.10: Let X and Y becompleteand T closed. If T maps closed
bounded subsets of X onto closed subsets of Y , then R(T) is closed. If dimN(T) < w,
then the converse also holds.  (cf (Gol2 ; 1V.1.10])

Proof :
Suppose T maps closed bounded sets onto closed ‘sets but that R(T) is not closed.
Then /(T) = 0 s0 3 (x_) e D(T) st. Ve, |lx ]l =1 and Tx; —O.
Let (z,) bea sequence (in D(T))st. Ynel,z ¢ [x,] and Iz ll < 2.
case (i) : (z,) has no convergent subsequence.
Then {z :neMN } is closed and bounded.
By the assumption , { Tz :n €N } is closed.
Since Tz = Tx, — O, this means that 3n s.t. Tz = 0.
Thus , ||[x ]Il = [zl = 0 which contradicts the fact that [[[x ]|l = 1.

case (ii) : (z;) has a convergent subsequence (z_ ) with limit z.
I

Since Tz — o, TznI — 0.

Since T is closed ,z € D(T) and Tz = O.

Thus , [x, | = [z, 1 — [O] which is also a contradiction.
I I

Thus , R(T) is closed.
Now suppose dim N(T) < » and R(T) is closed.

Let S be a closed , bounded subset of X andlet y € TS.
Then there is a sequence (xn) in SND(T) s.t. Tx —y.
Since R(T) is closed ,3x € D(T) s.t. Tx =y.

Also, T el (LemmaV.l.1)so [x ] = T“Txn — [x].

Now , 3 (z,) € N(T)" st x; + 2, —x.

Since (x ) is bounded , this means that (z ) is bounded.

Since dim N(T) < o, (z;) has a convergent subsequence (z, ) Wwithlimit z € N(T).
I

Now ,x —Xx—2z€ SnD(T). (Sis closed.)
I

Thus ,y = Tx = T(x-2z)€TS. o




90

2. Normally Solvable Operators
Definition : T is normally solvable iff T is closed and R(T) is closed.

LemmaV.21l: Let X and Y be complete and T normally solvable. If M isa
subspace of X s.t. M + N(T) is closed , then TM is closed.
In particular ,if M is closed and dimN(T) < o, then TM is closed. (cf [Gol ; IV.2.9])

Proof : Suppose M is a subspace of X s.t. M + N(T) is closed.
Let Ty = Tlp(T) n (M + N(T))
Then T, is closed and N(T,) = N(T).
Thus , (T;) 2 «(T) > 0 so R(T,) is closed (Theorem V.1.6).

i.e. TM isclosed. 0o

Theorem V.2.2: Let X and Y be complete, T normally solvable , dim N(T) < o, Z
a seminormed space and B € L(Z,X). Then
(a) B closed » TB closed.

{b) B normally solvable » TB normally solvable.

Proof :
(a) Suppose B is closed.
Let (z) be a sequence in D(TB) s.t. z,—z and TBz —7y.
Since T is normally solvable , 1{T) > 0 so ([Bz ]) is a Cauchy sequence in
D(T)/N(T).
Since X/N(T) is complete , 3x € X s.t. [Bz ] — [x].
Also, 3 (x ) € N(T)[N st. Bz +x —x
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We now show that (x_) is bounded.
Suppose (xn) is unbounded.

Then (x_) has a subsequence (x .) st. |lx /|| — o

an/ + Xn/
Note that —— — O.
[y -
Xn/
Since ( ) is a bounded sequence in the finite dimensional seminormed
lI%4 -l
X
space N(T), (x,-) has a subsequence (x ) s.t. — v for some v € N(T).
”Xn//
BZ ” ) Z_»n
Now , — —v and — O.
[~ [~

Since B is closed , —v = BO = O which is impossible as ||v|| = 1.
Thus , (x,) is bounded.

Since dim N(T) <o, (x_) has a convergent subsequence (x, ) with limit
r

w e N(T).

Now , an — X —W.
r
Since B isclosed ,z € D(B) and x —w = Bz

Since T is closed and TBz —y,BzeD(T) and TBz = y.
r

Thus , TB is clbsed.
If BZ is closed , then by Lemma V.2.1 R(TB) = TBZ isclosed. o

For the remainder of this chapter, X and Y are normed.

The proof of the following portion of a perturbation result due to Kato[Ka2] can be found

in [Gol ; V.2.1].

Theorem V.2.3: Let X and Y be complete and T normally solvable with

dim N(T) < o. If B is a continuous strictly singular operator with D(T) c D(B),

then T + B is normally solvable and dim N(T + B) < «.
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We now generalise this partially to include unbounded strictly singular operators.

Theorem V.2.4: Let X and Y be complete, T normally solvable with dim N(T) < w.
If B is an unbounded strictly singular operator with D(T) ¢ D(B), then

(a) dim N(T + B) < o.

(b) J a finite codimensional subspace N of D(T) and a normally solvable operator S
s.t. D(S) = D(T) and S|y = (T + B)|y. (i.e. T + B is "almost" normally solvable.)

Proof :

(a) By Theorem IV.10, there is a continuous strictly singular operator A and an
unbounded finite rank operator F s.t. B=A + F.
By Theorem V.2.3, T + A is normally solvable with dim N(T + A) < w.
Now , N(T + A + F) ¢ D(F) and dim D(F)/N(F) < o so by Lemma IV.6 , there
is a finite dimensional subspace M of D(F) s.t.
NT+A+F)=NT+A+F)NnNF)eM=N(T +A)e M.
Thus , dim N(T + A + F) < o.

(b) - Asalready noted , T + A is normally solvable.
Examination of the construction in Theorem IV.10 shows that D(T) = D(F).
Thus , dim D(T)/N(F) = dim D(F)/N(F) = dim R(F) < o.

Finally , (T + A)IN(F) = (T + B)lN(F) o
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Chapter VI Operators analagous to Weakly Compact Operators

Very little seems to be known about the second adjoint of an arbitrary linear operator. A |
recent paper in which the second adjoint is studied is {C2] which deals with operators of the
Tauberian type. This chapter is , therefore , to be seen in the light of a broader study of

the second adjoint of a linear operator.

In the classical case ,if X and Y are Banach spaces and T € BL[X,Y], then T is

weakly compact iff —’ITX is o(Y,Y’) compact. In this case , the following
characterisation is obtained (see [Con] or [DS] or [HP]) :
T.F.A.E. (a) T is weakly compact.
| (b) T’ is weakly compact.
(c) T is o(Y',Y)~o(X’,X") continuous.
(d T X“cY.
The purpose of this chapter is to characterise those operators (not necessarily bounded) for

which a property corresponding to (d) holds.

For the remainder of this chapter , X and Y are seminormed spaces and T € L(X,Y).

The following notations will be used :
D(T ! ) ! ” ’ ” ”
Y D(T Y
I=1 Q=Q INL J =J E 3 Jv=Jv .
YI

Note that Vy” € Y* ,IQy" = y”JD(T')'

The author believes all the results in this chapter to be his own.
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- We first prove a few properties of T”.

Proposition VI.1:

(a)
(b)

Proof :

(a)

Proposition VI.2 : T”BD(T”) C IQ(TBD(T))

Proof :

Corresponding to a fixed T, T” is the only o(D(T”),D(T)")—a(D(T")",D(T"))

continuous operator from D(T”) into D(T')" satisfying (a).

VxeD(T),Vy eD(T'),xT'y" =y Tx = (Tx) y’ =1Q(Tx) y".

Thus , D(T) ¢ D(T”) and T”JD(T) = 1QJ,T. |

By Theorem II1.2.4 , T” is ¢(D(T"),D(T)")~o(D(T")’,D(T")) continuous.
Suppose that S : D(T”) — D(T’)" isa o(D(T”),D(T)")—a(D(T")",D(T"))
continuous operator satisfying SJ D(T) =1QJ YT.

Let x” € D(T”).

By Goldstine’s theorem , 3 a net (x ) in D(T) s.t. X —x" w.r.t.
o(D(T)”,D(T)").

By assumptidn , 8%, — Sx” w.r.t. o(D(T")",D(T")).

Thus, Sx” = lim S% = lim IQ(Tx ) =1lim T"% = T"x". 0
o : o o '

~

o(D(T")",D(T"))

Let x € BD(T”).

By Goldstine’s theorem , 3 a net (xa) in BD(T) st X, —x

w.r.t. o(D(T)",D(T)").

Since T” is a(D(T”),D(T)’)—a(D(T’)’,D(T")) continuous , -
-o(D(T")",D(T"))

T//x// —_ l(ilm T”ia = l(ilm IQ(TXa)A € IQ(TBD(T))
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Proposition VI.3: Let YCEc Y”. Then
T'D(T") cIQE & T is o(D(T"),E)-o(D(T)’,D(T”)) continuous.

Proof :

(3)  Suppose T”D(T") c IQE.
Let (y,) beanetin D(T') s.t. y, —y" wrt. o(D(T'),E).
Let x” € D(T”).

By assumption ,3y” € E s.t. T"x" = IQy”.
X'T'y =Ty =y"y" =limy"y, =lim TX"y = lim x"T"y ..
o o o
Thus , Ty, — Ty’ wrt. o(D(T)’,D(T")).
(¢) - Suppose T is o(D(T"),E)—o(D(T)’,D(T")) continuous.
Let x" € BD(T”)
. By assumption , 3 finite FCE s.t. F ¢ T [{x"} ] (seepl8).
We now show that 0 ker(z") ¢ ker(T"x").
z’ €eIQF
~ Let y” € D(T")\ker(T"x").

I

Put w = —2 1
T”x”y,

Then |[x"T'w’'| =2>1s0 T'w’ ¢{x"} .

Thus , w’ ¢ T"[{x"} ]2 F 2> N ker(y").

y €F

Thus,y" ¢ 0 ker(y”) so 3y” € F s.t. y'y" #0.
y €F :

Since y” € D(T’), this means that IQy“y” # 0.

By Lemma 1.5.3 , T”x” € spanIQF c IQE. o

Definition : A subset of a topological space is relatively compact iff every net in the set

has a convergent subnet.
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Proposition VI.4: Let YCEcY”.
(a) (TBD(T))‘ relatively o(E,D(T’)) compact = T”“D(T”) ¢ IQE.
(b) If T’ is continuous, then

(TBD(T))A relatively o(E,D(T’)) compact & T”D(T”) c IQE.

Proof :
(a)  Suppose (TBD(T))‘ is relatively o(E,D(T’)) compact.
Let x € BD(T”).

By Proposition V1.2, 3anet (x_) in BD(T) 5.t. IQ(Txa)‘ — T"x” w.r.t.

oD(T’)’ ,D(T")). |
Since (TBD(T))‘ is relatively o(E,D(T’)) compact , (x o) has asubnet (x a)

5.t (Txaﬂ)‘ —y” wrt. o(E,D(T’)) for some y” € E.
Now,IQ(Txaﬂ)“—.IQy” w.r.t. o(D(T’)’,D(T")).
Since IQ(Txaﬁ)“—.T"x” w.rt. o(D(T’)’,D(T")) and o(D(T’)",D(T")) is

- Hausdorff , T"x” = IQy” € IQE.
(b)  Suppose T’ is continuous and T”D(T”) ¢ IQE.
Then D(T”) = D(T)".
Let (xa) be a net in BD(T)‘
Then (ia) is a net in BD(T”) = BD(T)”.

Since BD(T)” is o(D(T)”,D(T)’) compact , (x,) hasa subnet (xaﬂ) 5.t
x, —x" wrt. o(D(T)",D(T)") for some x” € B

aﬁ D(T)ll.
Since T'D(T”)cIQE,3y” € E st. T"x” = IQy”.
Now T%, — T’x" w.rt. o(D(T’)’,D(T")).
8
Vy eD(T'),y"y =1Qy'y’ =1lim (T"%, )y’ =lim (Tx, )y’
B B 8
Thus , (Txa ) —y" wrt. o(E,D(T)). @
8
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Definition : || ”D(T') is defined on Y” by |y”|D(T') =sup { [y'y'| : y" € By D(T") }-
Note : i) | ”D(T’) is a seminorm on Y.
(ii) V yl/ E Yll , Iyll (T,) S ”yll”

Notation : Let E be a subspace of Y’ and F asubspaceof Y’.

EP(T") will denote the closure of E w.r.t. the D(T’) seminorm.
F'|p will denote theset {(y') |p:y €F}.

ED(T’) will denote E equipped with the D(T’) seminorm restricted to E.

Proposition VI.5: Let E be a subspace of Y”. Then (D(T" ))IE C (ED(T’)),’

Proof :

Let y' e D(T )\{O}.

Then 3 (y) € D(T)¥ s.t. y/ —y and Vnel,y #O.
. ” y, ” |
vy e 1)y <dim 30 )] < gy
lly“ n [l

Thus, ¥y € E, |(') ¥ <1 I I lippey 50 ) g € (Bppey)” o

Proposition VI.6: Let YCEcY”.
(a) D(TI)A|E= (ED(T’)), 3 T’ is continuous.
. =D(T")
(b) X YCEcY ,then D(T’) g = (E D(T’)), & T’ is continuous.
Proof :
(a)  Suppose D(T’)AlE = (ED(T’))I'
By Proposition VL5, D(T') |p = D(T ) |g.

Since YCE,D(T’)=D(T ) so T’ is continuous. (Theorem 111.2.8)
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(b)  Suppose YCEcCY” and T’ is continuous..

Define y' : Y —F by y'y=2'y (yeY).

Let z" € (E

VyeX, Iy'yl =123 <l lHFlperey < IS = N1 Dyl so v € Y

VxeD(T), |y Tx| < lz"]] II(TX)“IID(TI) = IIZ'II,y§161g 1y Tx] < ll2” ) T fx]
| D(T’)

so y € D(T").
Let y” € E.
By assumption , 3 (y ) € Y s.t. [[y - y””D(T’) — 0.
Now , y’y’ =lim y'yn =lim z'jrn =z'y".
n

Thus,z’ = (y') |g € D(T') |g ©

| . —=D(T") |
Corollary VI.7: Let YCECY and let T’ be continuous. Then BD(T’) is

o(D(T’),E) compact.

Proof :
By Proposition VI.6 , (ED(T,))’ =D(T) |-
Weﬁrst show that B(ED(T/)), = (BD(T/)) |E
Let z” € B '

(ED(TI))
Then ||z'[| <1 and 3y’ € D(T') st. 2" =(y') |
Let y e By.

Then [p py <1 50 Iy'yl = |21 <1
Thus,y’ € BD(T')‘

-

Let z” € (BD(T,))‘|E. Then 3y’ € Bpypry st 2" = (v') |p:

Vy"€Bp ]2yl = |y'y | <1so [lz']| < 1.
D(T’)

Thus , B(ED(T'))' = (BD(T,))“ g

By the Banach—Alaoglu theorem , B(ED(T’)), is U((ED(T’))',ED(T’)) compact.

From the preceding discussion , BD(T’) is o(D(T’),E) compact. @
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. ZD(T")
Corollary VI.8: Let YCECY and let T’ be continuous (so D(T") = D(T)").

If T is a(D(T'),E)—-a(D(T)',D(T")) continuous , then T’BD(T’) is o(D(T)",D(T)")

compact.

=D(T")
Proposition VI.9: Let E=Y and T’ be continuous.

If TIBD(T’) is ¢(D(T)’,D(T)") compact , then (TBD(T))A is relatively o(E,D(T"))

compact.

Proof :

Suppose T/BD(T’) is o(D(T)’,D(T)") compact.

Let S=T" and E; = (D(T)") .

By Proposition V1.4, $”D(S") € IQE1 , where I and Q have the appropriate meanings.
By Proposition V1.3 , S’ is a(D(S'),El)—a(D(S)',D(S”)) continuous.

S is continuous so S’ is continuous.

By Corollary VI8, S,BD(S’) is o(D(S)’,D(S)”) compact.

ie. T'B is o(D(T")",D(T’)") compact.

D(T”)
Let (x,) bea netin BD(T)'

Then 3 a subnet (xaﬂ) of (xa) ,3x" € BD(T”) 5.t.

T'%, — T'x" wrt. o(D(T")",D(T’)").
Ji |
" n U( (T ) ,D(T ) ) 'y Ym ~ i ” ”
Now  T"’x” € IQY —IQYsoEy)E 5.t. IQy — T"x".
By the Hahn—-Banach theorem , 3y” € Y” s.t. IQy” =y JE(T =T
155 =¥ lIp(ry = sug ly'y, =¥y | = 1Q¥y, —-IQy"]| — 0.
D(T")
Thus , y” € E.

Vy eD(T"),yy =T%"y = liﬂm (-Txaﬁ)ky' SO (Txaﬂ)A —y” w.rt. o(E,D(T")).
Thus , (TBD(T))“ is relatively o(E,D(T”)) compact. o
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=D(T")

Proposition VI.10: Let E=Y and let T be continuous. Then
TFAE  (a) (TBD(T))” is relatively o(E,D(T’)) compact.

(b) T“D(T”) c IQE.

(c) T’ is o(D(T’),E)-o(D(T)’,D(T)”) continuous.

(d) T’BD(T’) is o(D(T)",D(T)”) compact.
| . =D(T")
Corollary VI.11: Let T’ becontinuous. If Y=Y , then
T.F.A.E. (a TBD(T) is relatively o(Y,D(T")) compact.

(b
(c) T’ is o(D(T’),Y)~a(D(T)’,D(T)") continuous.
(d) T’BD(T’) is o(D(T)",D(T)”) compact.

)
) T"D(T”) c IQY.

Note: Condition (d) in the preceding two results is exactly the requirement for T’ to
be weakly compact. Thus , Theorem VI.10 and Corollary VI.11 provide characterisations

of operators with weakly compact adjoints.

It is well known that in the setting of Banach spaces a continuous operator is weakly

compact if either the domain space or the range space are relexive. Also ,if Y is

. =D(T")
semireflexive , then Y=Y and by Theorem I1.5.7 Y’ is reflexive.

Thus , we obtain :

Proposition VI.12: Let Y be semireflexive and T’ continuous. Then
(a) T’ is weakly compact.

(b) TBD(T) is relatively o(Y,D(T")) compact.

(c) R(T")cIQY.

(d) T’ is o(D(T’),Y)—o(D(T)",D(T)") continuous.
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