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Synopsis 

Linear operator theory is usually studied in the setting of normed or Banach spaces. 

However , careful examination of proofs shows that in many cases the Hausdorff property 

of normed spaces is not used. Even in those cases where explicit use of the Hausdorff 

property is made , one can often get around this (should one wish to work in seminormed 

spaces) by suitable identification of elements and then working in the resulting normed 

space. Working in seminormed spaces rather than normed spaces is especially 

advantageous when dealing with quotients (which occur in linear operator theory when one 

considers the factorisation of an operator through its domain space quotiented by its null 

space) : when taking the quotient of a normed space by a subspace , one requires the 

subspace to be closed in order for the quotient to be a normed space ; however , in the 

seminormed space case the requirement that the subspace be closed is no longer necessary. 

Seminorms are also important in the study of certain properties of the second adjoint of an 

operator (for example , seminorms occur in the study of operators of the Tauberian type 

(see (C2]) and operators analagous to weakly compact operators (see Chapter VI)). It is 

the aim of this work to generalise as much of the basic theory of unbounded linear 

operators as possible to seminormed spaces. In Chapter I , some aspects of topological 

vector spaces (which will be used throughout this work) are presented , the most important 

parts being the Hahn-Banach theorem and the section on weak topologies. In Chapter II , 

we restrict our attention to seminormed spaces , the setting in which the remainder of this 

work takes place. The basic theory of unbounded linear operators , their adjoints and the 

relationship between operators and their adjoints is covered in Chapter III. Chapter IV 

concentrates on characterising unbounded strictly singular operators while in Chapter V 

operators with closed range are studied. Finally , in Chapter VI , a property corresponding 

· to one of the equivalent conditions for a bounded operator to be weakly compact is studied 

for unbounded operators. 
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Conventions 

Throughout this work , a great deal of use is made of nets in topological arguments and the 

reader is referred to any of the following three sources for treatments of nets : (K] , (NJ or 

[Will]. 

If (X,r) is a topological space and Ac X, then the closure of A w.r.t. r will be 

denoted by A 7 and the interior of A will be denoted by int A or int
7
(A). 

lf Mc X, then rl M = {Un M: U E r} (i.e. the subspace topology). 
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Chapter I Topological Vector Spaces 

The definitions and results in this chapter can be found in [KN] , [RR] and [S]. 

1. Convex sets 

Throughout this section E is a vector space over IF ( = (or IR) and A , B c E. 

Definition: A is convex iff Vt E [0,1] , t A + (1 - t) Ac A. 

Proposition 1.1.1 : Let A , B be convex , >. E IF and a , {3 E IR. 

(i) >. A is convex. 

Proof: 

(iii) 

(ii) A + B is convex. 

(iii) If a, {3 > 0 , then (a+ {3) A = a A + {3 A. 

(iv) If A is a family of convex subsets of E , then n A is convex. 

(v) If A is a directed family (i.e. VA , B EA , 3 C EA s.t. AU B c C) 

of convex subsets of E , then U A is convex. 

(i) , (ii) , (iv) and (v) are immediate consequences of the definition. 

Suppose a , {3 > 0. 

Clearly , (a+ {3) A c a A + {3 A. 

Let x E a A + {3 A. 

Then 3 a, b EA s.t. x = a a+ {3 b. 

Now , a } {J x = a ~ {J a + ~ b = a ~ {J a + ( 1 - a ~ p) b E A 

since A is convex. 

Thus , x E (a + {3) A. 

Thus , a A + f3 B c (a + {3) A. a 
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Note: If Ac E then (by (iv)) there is a smallest convex subset of E which contains 

A. This set is called the convex hull of A and is denoted by coA. 

Definition: A is balanced iff (V A E IF) [I A I ~ 1 ::} .X A c A]. 

Proposition I.1.2 : The intersection of a family of balanced sets is balanced. 

Definition : A is absolutely convex iff it is balanced and convex. 

Note: By Propositions I.1.1 and I.1.2 there is a smallest absolutely convex subset of E 

containing A. This set is denoted by r(A) and is called the absolutely convex hull of A. 

Definition: A is absorbent iff (V x E E) (3 µ > 0) (V .X E IF) [I.XI ~ µ ::} .X x E A]. 

Note: If A is balanced , then A is absorbent ~ V x E E , 3 µ > 0 s.t. µ x E A. 
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2. Topological. vector spaces 

Definition : A topological vector space (E, r) is a vector space E over f together with 

a topology r s.t. the maps 

E x E -+ E : ( x,y) .....,_...... x + y 

f x E-+ E : (>.,x) .....,_...... >. x are continuous. 

(IF has its usual topology and E x E , f x E have their respective product topologies. ) 

Notation: 

(i) If r is clear from the context then E will be written for (E,r). 

(ii) The set of all neighbourhoods of a is denoted by ~· 

Proposition 1.2.1 : Let E be a topological vector space , A , B , U c E , a , b E E and 

a f IF\{O}. 

(i) The map E-+ E: x .....,_......ax+ b is a homeomorphism. 

(ii) U is open {::::} a U + b is open. 

(iii) A is closed {::::} a A + b is closed. 

(iv) a+aA =a+ a A , ·int(a +a A)= a+ aint(A). 

(v) A+ B c A+B. 

(vi) U open ::} A + U open. 

(vii) U E ~ {::::} a U + a E ~· 

(viii) .:fi is a base of neighbourhoods of 0 {::::} { a + B I B E .:fi } is a base of 

neighbourhoods of a. 

(ix) A balanced (resp. convex, absolutely convex) ::} A , int(A) balanced (resp. 

convex , absolutely convex). 
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Proof: 

(i) From the definition, the map E-+ E: x ._.... ax + b is continuous. 

The map E-+ E: x ._.... .!.. (x - b) is its inverse and from the definition is also a 
continuous. 

(ii) , (iii) , (iv) , (vii) and (viii) follow from (i). 

(v) follows from the continuity of addition. 

· (vi) follows from (ii) and A + U = U (a + U). 
aEA 

(ix) If A is balanced and 0 < !>.I ~ 1, then by (iv) >.A= >.Ac A. 

If A isconvexand tE[0,1),then tA+(l-t)A= tA+(l-t)AcA. o 

Proposition I.2.2 : Let E be a topological vector space , 9.t a base of neighbourhoods of 

0 ,and U E 'ii. 

(i) U is absorbent. 

(ii) 3 VE 9.t s.t. V + V CU. 

(iii) 3 balanced WE ~ s.t. W c U. 

Proof: 

(i) Let a EE. 

Then the map f : IF -+ E : >. ._.... >. a is continuous at 0. 

Thus , 3 µ > 0 s.t. { ). E IF : I>. I ~ µ} c f-1[U]. 

Thus , if I >. I ~ µ then >. a E U. 

(ii) Since addition is continuous at (0,0) , 3V1, V 2 E 'ii s.t. V 1 + V 2 c U. 

Since 9.t is a base of neighbourhoods of 0 , 3 VE 'ii s.t. V c V 1nV2. 

Clearly , V + V c U. 
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(iii) Since scalar multiplication is continuous at (0,0) , 3 µ > 0 and 

3 V E '11 s.t. if I,\ I ~ µ and x E V then ,\ x E U. 

Thus , µ V c n { a U : a E IF , I a I ~ 1 } . 

Let W = n { a U: a E IF , I al ~ 1 }. 

Then W c U and µ V c W so W is a neighbourhood of 0. 

Let x E W , 0 < I a I ~ 1 and j,\ I ~ 1. 

Then I ~I ~ 1 so that x E ~ U. 

Thus , a x E ,\ U. 

Since ,\ was arbitrary, ax E W. 

Thus , W is balanced. o 

:Definition : A topological vector space E is (locally} convex iff E has a base of convex 

neighbourhoods of 0. 

Proposition 1.2.3 : A convex space E has a base '11 of neighbourhoods of 0 

satisfying: (a) '11 :f 0 and U , VE '11 ~ 3 WE '11 s.t. W c Un V. 

(b) U E '11, aE IF\{O} ~ aU E '11. 

( c) U E '11 ~ U is absolutely convex and absorbent. 

Conversely , if '11 is a collection of subsets of a vector space E satisfying (a) , (b) and 

(c) , then there is a unique topology on E making E into a convex space with '11 as a 

base of neighbourhoods of 0. 

Proof: 

Suppose E is a convex space. 

Then E has a base r of convex neighbourhoods of 0. 

v v E r , let u v = n { ,\ v : ,\ E IF , j ,\ I ~ 1 } . 

It follows from Propositions 1.1.1, 1.1.2 and 1.2.2 that { a Uy: a E IF\{O} , VE r} is a 

baseofneighh9urhoods of 0 satisfying (a), (b) and (c). 
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Suppose U is a collection of subsets of a vector space E satisfying (a), {b)and (c). 

Let r = { V C E : V x E V , 3 U E U s. t. x + U C V } . 

Then r is a topology on E and U is a base of neighbourhoods of 0 for r. 

The continuity of addition and scalar multiplication will now be verified. 

Let a , b E E and U E '11. 

Then a+ fr U and b +fr U are neighbourhoods of a and b respectively. 

Since U is convex, fr U + fr U = U. 

1 1 1 1 
Thus , (a + '2" U) + (b + '2" U) = a + b + '2" U + '2" U = a + b + U. 

Thus , addition is continuous. 

Let ). E IF , a E E and U E U. 

Since U is absorbent , 3 µ > 0 s.t. µa E U. 

Let € E (0 , ~) and 6 E (0 , 2 (111 + €)). 

If· I a - >. I < f and x E 6 U + a then , since U is balanced , 

1 1 1 ax - >. a = a (x - a) + (a - >.) a E (I>. I + €) 6 U + f µ U c '2" U + '2" U = U. o 
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3. Seminorms 

Throughout this section , E is a vector space over f. 

Definition : A function p : E -+ IR is a seminorm on E iff 

(a) V x, y EE, p(x + y) ~ p(x) + p(y) and 

(b) V x E E , V ,\ E IF , p(,\ x) = 1-X I p(x). 

Note: 

(i) p(O) = p(O 0) = 0 p(O) = 0. 

(ii) If p(x) = 0 implies x = 0 then p is a norm on E. 

(iii) If x EE then 0 = p(O) = p(x - x) ~ p(x) + p(- x) = 2 p(x). 

Thus , p(x) ~ 0 , V x E E. 

(iv) If x, y EE then p(x) = p(x-y + y) ~ p(x-y) + p(y) 

and p(y) = p(y - x + x) ~ p(y - x) + p(x). 

Thus, Vx, y EE, jp(x)-p(y)j ~ p(x-y). 

Proposition 1.3.1 : Let p , q be seminorms on E s.t. (V x E E) [p(x) < 1 ::} q(x) ~ l]. 

Then V x E E , q(x) ~ p(x). 

Proof: Suppose 3 x E E s.t. q(x) > p(x). 

Then, 3 a E IR s.t. p(x) < a< q(x). 

Thus , p(~) < 1 and q(~) > 1 , a contradiction. o 

Note: If A is an absorbent subset of E then V x EE, 3 µ > 0 s.t. µ x E A. 

Thus , V x E E , { µ > 0 : x E µ A } '/: 0. 
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The properties of seminorms give the following result. 

Proposition 1.3.2 : 

(a) If p is a seminorm on E then V a,> 0 the sets 

{ x E E: p(x) < a} and { x E E : p(x) ~ a} are absolutely convex and absorbent. 

(b) If A is an absolutely convex absorbent subset of E , then p : E--+ IR defined by 

p(x) = inf{µ> 0 : x E µ E } is a seminorm on E s.t. 

{ x E E: p(x) < 1 } c Ac { x E E : p(x) ~ 1 }. 

Note: The seminorm corresponding to an absolutely convex, absorbent set is called the 

-gauge of the set. 

Let p be a (semi-) norm on E , BE = { x E E: p(x) ~ 1 } (this notation will be retained 

for the remainder of this work) and 'it = { a BE : a> 0 }. 

Then 'it satisfies the conditions (a) , (b) and (c) of Proposition I.2.3. 

Thus , there is a unique topology on E making E a convex space and having 'it as a 

base of neighbourhoods of 0. 

Note that d : E x E-: IR: (x,y) .,.____. p(x - y) is a (semi-)metric on E and the 

topology generated by d on E is the same as that obtained from Proposition I.2.3. 

(Recall that for x E E and r > 0 , B(x,r) = { y E E : d(x,y) < r} and the topology 
~ 

generated by dis rd={UcE:VxEU,3r>O s.t. B(x,r)cU}.) 
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,/.Duality and the Hahn-Banach Theorem 

Throughout this section , E and F are vector spaces over IF. 

Definition : A map f : E --+ F is linear iff 

't/ x , y E E , V ). E IF , f ( >. x + y) = >. f ( x) + f (y). 

If f: E--+ F is a linear map , then the kernel off is ker(f) = { x E E: f(x) = 0 } 

Note: 

(i) 

(ii) 

(iii) 

(iv) 

ker(f) is a vector subspace of E. 

If F = IF and f is linear , then f is called a linear functional on E. 

. * The set of all linear functionals on E is denoted by E . 

* E is a vector space over IF if addition and scalar multiplication are 

defined pointwise. 

Proposition 1.4.1 : Let E and F be topological vector spaces and f : E --+ F linear. 

Then f is continuous ¢:::} f is continuous at 0. 

Proof: 

(~) Clear. 

( *) Suppose f is continuous at 0. 

Let x E E and let V be a neighbourhood of f(x) in F. 

Then 3 WE ~ s.t. f(x) + W c V. 

Since f is continuous at 0 , 3 U E ~ s.t. Uc r-1[W]. 

If z Ex+ U , then f(z) E f(x) + f[U] C f(x) + f[f-1[W]] c f(x) + W c V. 

i.e. x + u c r-1[v]. 

Thus, f is continuous. o 

Definition : A hyperplane in a vector space is a maximal proper subspace. 
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Note: Let M be a vector subspace of E. For x EE, denote the coset x + M of M 

by [x] and let E/M = { [x] : x E E }. 

Then E/M can be made into a vector space as follows : 

For x , y E E , let [x + y] = [x] + [y] and 

for .X E IF let .X [x] = [.Xx]. 

These operations are well-defined : 

If [x] = [x1] and [y] = [Y1] then x - x1, y - Y1 E M. 

Thus, (x + y)-(x1 + Y1) = (x-x1) + (y-y1) EM. 

Thus , [x + y] = [x1 + Y1]. 

Similarly , scalar multiplication is well-defined. 

Definition: If M is a subspace of E , then the codimension of M , written codim M , 

is the dimension of E/M. 

Proposition 1.4.2: Let H be a subspace of E. Then 

T.F.A.E.: 

Proof: 

(a)~ (b) 

(a) 

(b) 

H is a hyperplane in E. 

* 3 f EE \{O} s.t. H = ker(f). 

(c) codim H = 1. 

Suppose H is a hyperplane in E. 

Let x0 e E\H. 

Then span( {xo} UH) = E. 

Define f : E __... IF by f( a x 0 + y) = a (a E IF , y E H). 

* Then f e E \{O} and ker(f) = H. 
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* (b) :} ( c) Suppose 3 f EE \{O} s.t. H = ker(f). 

Since f 1 0 , 3 x0 E E\H. 

Let x EE. 

Then x = (x - f(!)_ xo) + f(xJ x0• 
f(Xo) f(Xo) 

But , x _ [tl x0 E ker(f) = H. f(Xo) 
Thus , [x] = [ [tl xo] E span {[xo]}. f(Xo) 
Thus, dim E/H = 1. 

Suppose codim H = 1. 

Let z E E\H and x E E. 

Since [z] f 0 , E/H = span {[z]}. 

Thus , 3 >. E IF s.t. [x] = >. [z] = [>. z]. 

i.e. x - >. z E H. 

Thus, span( {z} UH) = E. 

Thus , H is a hyperplane in E. o 

* Lemma 1.4.3: Let f EE \{0}, H = ker(f), a EE with f(a) = 1, 

V = {x EE: lf(x)I < 1} and U a balanced subset of E. 

Then (a + U) n H = 0 ¢=> U c V. 

Proof: 

(:}) Suppose 3 x E U\ V. 

Then I f(x) I ~ 1. 

Put y = -r{x) E U (U is balanced). 

Then f(a + y) = 0 so a+ y E (a+ U) n H. 

Thus , (a + U) n H 1 0. 

( <=) Suppose Uc V. 

Let x EU. 

Then x E V so If( x) I < 1. 

Thus, lf(a + x)I = lf(a) + f(x)I ~ 1 - lf(x)I > 0 so a+ x ~ H. 

Thus, (a + U) n H = 0. o 
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* Note : Let E be a topological vector space and f E E . Then 

f is continuous ~ f is bounded on some neighbourhood of 0 : 

(~) If f is continuous , then f is bounded on r-1[ { >. E IF : I>. I ~ 1 } ] which 

is a neighbourhood of 0. 

( ¢:) Suppose U is a neighbourhood of 0 and I f(x) I ~ C , V x E U for some C > 0. 

If € > 0 ' then r-1
[ { >. E IF : I >.I ~ € } ] = c f•1

[ { >. E IF : I >.I ~ c } ] ) c u. 
Thus , f is continuous at 0 so f is continuous. 

* Proposition I.4.4: Let f EE \{O}. Then f is continuous ~ ker(f) is closed. 

Proof: 

(~) {O} is closed in IF and ker(f) = f-1[{0}]. 

( ¢:) Suppose ker(f) is closed. 

Let H = ker( f) and V = { x E E : If( x) I < 1 } . 

Since f :/= 0 , 3 a E E s. t. f( a) = 1. 

Since a~ H and H is closed, 3 balanced U E ~ s.t (a + U) ri H = 0. 

By Lemma I.4.3 , U c V. 

Thus , f is bounded on U. o 
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Proposition IA.5 : Let E be a topological vector space and M a vector subspace of E. 

Then M is also a vector subspace of E. 

Proof: 

Let x , y E M and let U E 9f). 

Then 3 VE 9f) s.t. V + V c U. 

Since x , y E M , x + V and y + V meet M. 

Thus , (x + V) + (y + V) meets M + M = M. 

Since (x + V) + (y + V) c x + y + U , this means that x + y + U meets M. 

Thus , x + y E M. 

Similarly , if >. E IF and x E M then >. x E M. o 

Corollary 1.4.6 : In a topological vector space a hyperplane is either closed or dense. 

Proof: Let H be a hyperplane in the topological vector space E. 

By Proposition I.4.5 , H is a vector subspace of E. 

If H is not closed , then H ¥ H c E so that H = E. o 

The proof of the following result can be found in [RR; p 27]. 

Proposition 1.4.7: Let A be an open convex suset of a convex space E and M a vector 

subspace of E with A n M = 0. Then there is a closed hyperplane containing M and not 

meeting A. 
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Theorem 1.4.8 (The Hahn-Banach extension theorem): Let M be a vector subspace of 

E, p a seminorm on E and f: M-+ f a linear map s.t. V x EM, lf(x)I ~ p(x). Then 

* 3 f1 EE s.t. V x EM, f1(x) = f(x) and V x E E, lf1(x)I ~ p(x). 

Proof: 

Let E have the topology determined by p and let U = { x E E : p(x) < 1 }. 

We may assume that f ':/: 0. 

Thus , 3 a E M s.t. f(a) = 1. 

Let A =a + U. Then A is open (Proposition L2.1) and convex (Proposition I.1.1). 

Now ' u n Mc { x E M : I f(x) I < 1 } so by Lemma I.4.3 ' (a + U) n ker(f) = 0. 

By Proposition I.4. 7 , there is a closed hyperplane H in E s. t ker( f) c H 

and An H = 0. 

Define f 1 : E -+ IF by f1 (a a + y) = a (a E IF , y E H). 

* Then f1 EE and V x EM, f1(x) = f(x). 

By Lemma I.4.3 , (V x E E) (p(x) < 1 ~ I f1 (x) I < 1]. 

Thus , by Proposition I.3.1 , V x E E, I f1 (x) I ~ p(x). o 

Corollary 1.4.9 : Let a E E and p : E ~ IR a seminorm. Then 

* . 3 f EE s.t. V x EE, lf(x) I ~ p(x) and f(a) = p(a). 

Proof: In Theorem IA.8 take M =span {a} and define f: M-+ IF by f(a a) = a p(a). 

* Definition: The dual of a topological vector space E is E' = { f E E : f continuous }. 

* Note : E' is a vector subspace of E . 
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Theorem 1.4.10 (The Hahn-Banach separation theorem): Let E be a convex space and 

A and B disjoint convex subsets of E with A open. Then 3 f EE' s.t. f[A] n f[B] = 0. 

Proof: A - B is open, convex and {O} n (A - B) = 0. 

By Proposition I.4.7, 3 a closed hyperplane H s.t. H n (A - B) = 0. 

Let a e E\H and define f: E--+ f by f(a a+ y) =a (a E f ·' y EH). 

* Then f e E and ker(f) = H is closed so by Proposition I.4.4, f e E'. 

Clearly , f[A] n f[B] = 0. o 

Definition: A map f: X--+ Y where X and Y are topological spaces is open iff 

(V A c X ) [ A open in X :} f[ A] open in Y ] . 

* Lemma 1.4.11 : Let E be a topological vector space and f E E \ { 0}. Then f is open. 

Proof: Let A be an open subset of E and x E A. 

Then A - x is an open neighbourhood of 0 so is absorbent. 

Since f 'f 0 , 3 a E E s. t. f( a) = 1. 

Since A - x is absorbent , 3 µ > 0 s.t. if I>. I < µ, then >. a E A - x. 

If l>-1 <µ,then f(x) + >. = f(x +>.a) E f[A]. 

Thus , f[A] is open in IF. o 

Corollary 1.4.12: Let B be a convex subset of a convex space E and a E E\B. Then 

3 f E E' s.t. f(a) ¢ f [ B). 

Proof: Since a¢ B , 3 absolutely convex U e ~ s.t. (a + U) n B = 0. 

By Theorem 1.4.10 , 3 f e E' s.t. f[int(a + U)] n f[B] = 0. 

But , by Lemma 1.4.11 , f[int(a + U)] is a neighbourhood of f(a). 

Thus , f(a) ¢ f [ B] . o 
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Corollary I.4.13 : Let B be an absolutely convex subset of a convex space E and 

aEE\B. Then3fEE' s.t. f(a)>l and VxEB, lf(x)I ~l. 

Proof: By Corollary 1.4.12 , 3 g E E' s.t. g(a) t g [ B] . 

Now, g[B] is absolutely convex so lg(a)I >sup{ lg(x)I : x EB}. 

Put a= sup{ lg(x)I : x EB}. 

If a = 0 , then f = gl a) g will suffice , otherwise put f = lg~{ 1} g. o 

Corollary 1.4.14 : Let M be a vector subspace of a convex space E and a E E\M. 

Then 3 f EE' s.t. f(a) f. 0 and f[M] = {O}. 
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5. Polar sets and weak topologies 

Definition : Let E and F be vector spaces over IF. A bilinear functional on E x F is a 

mapping B : E x F --+ IF s. t. V x , y E E , V z , w E F , V a , /3 E IF , 

B(ax + f3y, z) = aB(x,z) + /3B(y,z) 

B(x, a z + /3 w) = a B(x,z) + /3 B(x,w). 

Definition : A pairing is an ordered pair (E,F) of vector spaces together with a bilinear 

functional on E x F. 

Note: 

(i) B(x,y) will be written as <x,y>. 

(ii) If B is clear from the context , then explicit mention of B is omitted and 

(E,F) is referred to as the pairing. 

* (iii) If (E,F) is a pairing, then usually F c E (e.g. F = E' when E is a 

* topological vector space). Even if F is not a subspace of E , it can be mapped 

* into E as follows : 

V y E F , define y : E --+ IF by y(x) = <x,y> (x E E). 

* * Then each y E E and the map T : F --+ E : y i----+ y is linear. 

T is injective <=> Vy E F\{O} , 3 x E E\{O} s.t. <x,y> :f 0. 

If B c F , then T[A] will be denoted by A. 

Definition: Let (E,F) be a pairing, Ac E and B c F. Then 

(a) the polar of A (in F) is the set A 
0 

= { y E F: V x E A , I <x,y> I 5 1 } 

(b) the polarofB(inE) istheset B
0

={xeE:VyeB, l<x,y>l 51}. 
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The following result is an immediate consequence of the definition. 

Proposition 1.5.1 : Let (E,F) be a pairing and A , Ai c E. 

A 
0 

is absolutely convex. 

Ac A0 
• 

0 

Ac Ai => Ai
0 

c A 
0

• 

If A E IF\ {O} , then (A At = t 'A 
0 

= P:r A 
0

• 

{0} 0 
= F. 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

If A is a family of subsets of E, then (u A)0 = n { A 0 
: A e .A }. 

If M is a subspace of E , then M
0 

is a subspace of F and 

M0 
= { y E F : V x E M , <x,y> = 0 } . 

Note : The corresponding results hold for B c F. 

Notation : If M is a subspace of E , then M.L is written for M0
• 

Similarly , if N is a subspace of F , then N is written for N . 
.L 0 

Let (E,F) be a pairing and 3J = { B
0 

: B c F, B finite}. 

Then 3J satisfies (a), (b) and (c) of Proposition I.2.3. Thus, by Proposition I.2.3, there 

is a unique topology on E making E a convex space and having 3J as a base of 

neighbourhoods of 0. This topology is called the weak topology (on E) and 

is denoted by u(E,F). 

Note: 

(i) If (E,F) is a pairing , so is (F,E). 

u(F ,E) is then defined in a similar fashion. 

(ii) If E is a topological vector space , then u(E' ,E) is called the weak* topology 

on E'. 

(iii) u(E' ;E) is Hausdorff. 
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For the remainder of this section , (E,F) is a pairing. 

Proposition 1.5.2 : o{E,F) is the coarsest topology on E making E a topological vector 

space s.t. Vy e F, y is continuous. 

Proof: 

Note: 

If y E F , then y is bounded on {y} 
0 

so is continuous. 

Suppose r is a topology on E s.t. (E,r) is a topological vector space 

and each y is continuous w.r.t. r. 

Let B c F be finite. 

Then B = n y--1[{ >. e IF : I>. I ~ 1 }] is a neighbourhood of 0 for r. 
0 

yeB 

Thus , u(E,F) c r. o 

Let (x ) be a net in E and x EE. Then a 
xa--+ x w.r.t. u(E,F) ~ Vy E F , <xa,y>--+ <x,y> : 

(::}) Proposition I.5.2. 

( ¢:) Suppose Vy E F, <xa,y> --1 <x,y>. 

Let B c F be finite. 

Vy EB, 3 ay s.t. Va~ ay, I <xa,y> - <x,y> I ~ l. 
Choose fl s.t. Vy e B , fl~ ay. 

Then V a ~ fl , V y E B , I <x a'Y> - <x,y> I ~ 1. 

i.e. V a > fl , x - x E B . - a o 

Thus , x --+ x w.r.t. o{E,F). a 
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* Lemma 1.5.3 : Let V be a vector space and f , f1 , ... , fn E V . 

n n 
If n ker(f.) c ker(f), then 3 >i1 , ... , .X E IF s.t. f = }; .x. f .. . 

1 
1 n . 1 11 

l= l= 

Proof : We may assume that f # 0. 

First suppose n = 1. 

Since. f # 0 , 3 z E V\ker(f). 

Since ker( f 
1
) c ker( f) , z ;. ker( f1). 

Let x EV. 

f1(x) f1(x) 
Then x = (x - rr;;T z) + rr.;r z. 

Ll \ Z) Ll \ Z j 

f1 (x) . 
But , x -fl(ZJ z E ker(f1) c ker(f). 

Thus , f(x) = ~ f1 (x). 

k+l 
Now suppose the result holds for n = k and n ker(f.) c ker(f). 

. 1 1 
l= 

k 
Then ' n ker(f-1 k (f )) c ker(f I k (f )). 

i = 1 1 er k + 1 er k + 1 
k 

By assumption, 3 >i 1 , ... , .Xk E IF, s.t flke (f ) = }; .X. f. Ike (f ) 
r k+l) i=l 1 1 r k+l · 

k 
Now , ker(fk+ 1) c ker(f - }; ,X. f. ). 

. 1 1 1 
l= 

k 
Thus, 3 .Xk+l E IF s.t. f- i~l\ fi = .Xk+l fk+l· o 

Proposition 1.5.4: (E,u(E,F))' = F. 

Proof: By Proposition I.5.2 , F c (E,u(E,F))'. 

Let f E (E, u(E,F))'. 

Then 3 finite B c F s.t. Bo c f- 1
[{ A E IF: I.XI~ 1 }]. 

This means that n ker(y) c ker( f). 
yEB 

By Lemma I.5.3 , f E span B c F. o 
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Lemma 1.5.5 : If B c F then B 
0 

is o{E,F) closed. 

Proof: B
0 

= n ker(y). o 
yEB 

Theorem 1.5.6 (The Bipolar Theorem): If Ac E, then A 0 

0 
= r (A) a(E,F)_ 

Proof: 

By Lemma 1.5.5 and Proposition 1.5.l , A 0 

0 
is absolutely convex, a(E,F) closed 

and A c A 0 

0 
so r ( A ) a(E,F) c A 0 

0
• 

Suppose z ¢ r ( A ) a(E,F). 

By Corollary 1.4.13 and Proposition I.5.4 , 3 y E F s.t. <z,y> > 1 

and V x E A , I <x,y> I ~ 1 so y E A 
0

• 

0 
Thus, z ¢A . o 

0 

Corollary I.5.7: If M and N are subspaces of E and F respectively then 

Ma(E,F) = M.L and Na(F,E) = N .L . 
.L .1. 

Proposition 1.5.8 : Let 7 be a topology on E making E into a convex topological 

vector space with (E, 7)' = F. If A is a convex subset of E , then A 7 = A a(E,F). 

Proof: 
-7 -a(E F) 

By Proposition 1.5.2 , o{E,F) c r so A c A ' . 

-r Suppose z ¢A . 

By Corollary I.4.12 , 3 y E F s.t. y(z) ¢ y (A]. 

Thus, 3 o > 0 s.t. Va EA, I <z - a, y> I ~ o. 

Thus, (z + 4{y}
0

) n A= 0 so z ¢ Aa(E,F)_ o 
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The proof of the next result can be found in (KN ; 17.4]. 

Theorem 1.5.9 (Banach-Alaoglu) : If U is a neighbourhood of 0 in a convex space E, 

then U0 is a(E' ,E) compact. 
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Chapter II Seminonned Spaces 

Definition: A (semi-)normed space (X,p) is a vector space X together with a 

(semi-)norm p. 

Usually, X will be written for (X,p) and llxll will be written for p(x). 

Recall that if X is a (semi-)normed space, then d: Xx X--+ IR: (x,y) i--+ llx - Yll 

defines a (semi-)metric on X and the topology generated by d makes X a convex 

space and a base of neighbourhoods of 0 for this topology is given by 

91 = { a Bx: a> 0} where Bx = { x E X : llxll ~ 1 }. In what follows , r · will 
1111 

denote this topology and any topological notion in X will be w.r.t. unless otherwise T 

1111 

stated. 

Notation: Ux = { x E X: llxll < 1 }. 

Note: g:n with coordinatewise addition and scalar multiplication and norm 

1 
n 2 2" 11(>.

1
, ... ) )II = ( ~ I .A· I ) is a complete normed space. (see for example [Kr]) n . 1 i 

I= 
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1. Bounded Linear Operators 

Definition: Let X and Y be vector spaces over IF and T a function with domain in 

X and range in Y. Then T is a linear operator iff its domain is a subspace of X and 

for all x and yin the domain of T and for all a E IF, T(a x + y) = a Tx +Ty. 

Notation: 

(i) The domain of T is denoted by D(T). 

(ii) The range of T is denoted by R(T). 

(iii) The null space of T is the set N(T) = { x e D(T) : Tx = 0 }. 

(iv) The set of all linear operators with domain in X and range in Y is 

denoted by L(X,Y). The set { T e L(X,Y) : D(T) = X} is denoted by 

L(X,Y]. 

(v) If T e L(X,Y) and M c X, then TM = { Tx: x E D(T) n M }. 

·Note: 

(i) Note that R(T) is a subspace of Y. 

(ii) Note that N(T) is a subspace of D(T) (hence of X). 

(iii) If T is a linear operator, then TO = 0. 

(iv) A linear operator T is injective {::::} N(T) = {O}. 

For the remainder of this section, X and Y are seminormed spaces and TE L(X,Y). 

Note : If (X,p) is a seminormed space and M is a subspace of X , then p I M is a 

seminorm on M (this will be defined more formally in the next section). Thus , it makes 

sense to discuss the continuity of T. 
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The following result includes (Will ; Theoreml , p65]. 

Theorem Il.1.1 : 

T.F.A.E.: (a) T is continuous. 

Proof: 

(a) => (b) 

(b) => ( c) 

(c) =>(a) 

Notation: 

(b) The set { llTxll : x e BD(T) } is bounded. 

(c) 3M> 0 s.t. V x E D(T), llTxll ~ M llxll. 

Suppose { llTxll : x e BD(T)} is not bounded. 
2 

Then V n e IH , 3 xn E BD(T) s.t'. llTxnll > n . 

Now ,_llxn/nll ~ k--1 0 but llT(xn/n)ll > n so T is not continu~us. 

Suppose 3M> 0 s.t. V x e BD(T), llTxll ~ M. 

case (i) : llxll = 0. 

Then V n e IH , n x E BD(T)· 

Since T is linear , V n E 1H , n llTxll = llT(n x)ll ~ M so llTxll = 0. 

case (ii) : llxll :f 0. 

Then ~ E BD(T) so llT~ll ~ M. 
llxll llxll 

Since T is linear , llTxll ~ M llxll. 

Suppose 3M> 0 s.t. V x E D(T) , llTxll ~ M llxll. 

Then T is continuous at 0. 

By Proposition I.4.1 , T is continuous. o 

(i) BL(X,Y) = { Te L(X,Y) : T continuous }. 

(ii) BL(X,Y] = { T e BL(X,Y) : D(T) = X }. 

If T e BL(X, Y] , then T is called bounded. 
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Note: X' = BL[X,IF]. 

Definition : If T E BL(X, Y) , then the norm of T is 

llTll = sup{ llTxll : x E D(T) , llxll S 1 }. 

Note : llTll behaves like a seminorm (in fact it will turn out to be a seminorm on 

BL[X,Y]). 

The following result generalises the corresponding normed space result to seminormed 

spaces. 

Proposition II.1.2: Let TE BL(X,Y). 

(a) V x E D(T) , llTxll S llTll llxll. 

(b) llTll =inf{ M > 0: V x E D(T) , llTxll SM llxll }. 

(c) If 3 x E D(T) s.t. llxll :/= 0, then llTll = sup{ llTxll : x E D(T) , llxll = 1 }. 

Proof: 

(a) 3M> 0 s.t. V x E D(T) , l!Txll SM llxll. 

Let x e D(T). 

case (i) : llxll = 0. 

0 S llTxll S M llxll = 0 so llJ'xll = 0. 

case (ii) : llxll # 0. 

11_!....ll = 1 S 1 so llT_!....11 S llTll. 
llxll llxll 

Thus , llTxll S llTll llxll. 
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(b) Let A·= { M > 0: V x E D(T), l!Txll ~ M llxll }. 

If llTll = 0 , then V x E D(T) , l!Txll = 0 so inf A = 0. 

Assume lfTll > 0. ·· --

. By (a) , llTll EA so inf A~ llTll. 

V M E A , llTll ~ M so llTll ~ inf A. 

( c) Suppose 3 x E D(T) s.t. llxll -f 0. 

Let B = { llTxll : x E D(T) , llxll ~ 1 } and C = { llTxll : x E D(T) , llxll = 1 }. 

Then , 0 -f C c B. 

Thus, sup C ~sup B = llTll. 

Let x E D(T) with 0 < llxll ~ 1. 

Then, 11~11=1 so llT~ll ~sup C. 
!!xii llxll 

Thus , l!Txll ~ (sup C) llxll ~ sup C. 

Since x was arbitrarily chosen , llTll ~ sup C. o 

Definition : 

(i) A sequence (xn) in X is a Cauchy sequence iff 

V E > 0 , 3 N E IN s.t. V m , n ~ N , llxn - xmll < E. 

(ii) X is complete iff every Cauchy sequence in X converges. 

Note: Let M be a subspace of X (where M is considered as a seminormed space in its 

own right). Then 

(i) X complete , M closed ::} M complete. 

(ii) X normed , M complete ::} M closed. 

Note that if N = { x E X : l!xll = 0 } , then every subset of N is complete but no proper 

nonempty subset of N is closed. Thus (ii) fails if X is not normed. 
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n 
Definition: Let (xn) be a sequence in X and x E. X. V ~ E IN , let s = ~ · x .. n . 

1 
1 

I= 

ro 
Then the series ~ x~ converges to x iff s -+ x m X. 

n=l n 
ro 

The series is absolutely convergent iff ~ llx II converges in IR. 
n=l n 

The following proposition generalises the well known characterisation of completeness for 

normed spaces to seminormed spaces. 

Proposition II.1.3 : 

T.F.A.E.: 

Proof: 

(a) ::? (b) 

(b)::? (a) 

(a) X is complete. 

(b) Every absolutely convergent series in X converges in X. 

Suppose X is complete. 

ro 
Let ~ xn be an absolutely convergent series in X. · 

. n=l 
n 

V n E IN , let s = ~ x .. n . 
1 

1 
I= 

n+k · ro 

For n , k E IN , lls +k - s II = 11 ~ x-11 ~ ~ llx· 11 -+ 0 as n -+ ro. n n . 1 1 . 1 1 
1=n+ 1=n+ 

Thus , (s ) is a Cauchy sequence in X. 
n 

Suppose every absolutely convergent series in X converges in X. 

Let (xn) be a Cauchy sequence in X. 

1 
3 n1 E IN s.t. V m, n ~ n1 , llxm - xnll < 2· 

In particular , llx +l - x II < k. 
. nl nl £. 

For k ~ 2, 3 nk > nk-l s.t. llxnk+l -xnkll < 2-k. 

ro ro k 
Now , ~ llx + 1 - x II ~ ~ 2- < ro. 

k=l nk nk k=l 
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k-1 
Since x -x = }-; (x +l -x ) for k ~ 2, it follows from the nk n1 . 1 n. n. 

1 = 1 1 

assumption that (x ) converges. 
Ilk 

But , (xnk) is a subsequence of the Cauchy sequence (xn) so (xn) must 

also converge. a 

Definition : A complete normed space is a Banach space. 

™ ™ ro Example: Let c
0 

= { (xn) E IF : xn-1 0} and l1 = { (xn) E IF : n!
1

1xn1 < ro }. 

Under coordinatewise addition and scalar multiplication , c and l1 become vector spaces. 
0 

If 1111
00 

and 1111 1 are defined on c
0 

and l1 respectively by 

ll(xn)llro =sup{ lxnl : n E ™} { (xn) E c0 ) 

ro 
ll(xn)ll1 = n!

1
1xn1 ( (xn) E l1) 

then c
0 

and l1 become Banach spaces. {See (Kr] for details.) 

Definition: Let S E L(X,Y). Then the operator T + S in defined as follows : 

T + S E L(X,Y) , D(T + S) = D(T) n D(S) , V x E D(T + S) , (T + S)x = Tx + Sx. 

Proposition II.1.4: S , TE BL(X,Y) :? T + SE BL(X,Y) and llT + Sii ~ llTll + llSll. 

Note: BL[X,Y] is a vector space. 

Proposition II.1.5 : 

(a) BL[X,Y] is a seminormed space. 

{b) Y normed :? BL[X,Y] normed. 

(c) Y a Banach space :? BL[X,Y] a Banach space. 
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Proof: 

(a) llTll defined earlier is a seminorm on BL[X,Y]. 

(b) Suppose Y is normed. 

Let T E BL[X,Y] with llTll = 0. 

By Proposition II.1.2 , V x E X, llTxll = 0. 

Since Y is a normed space, this means that V x EX, Tx = 0 , i.e. T = 0. 

( c) Suppose Y is a Banach space. 

Q) 

Let (T ) be a sequence in BL[X,Y] s.t. }; 11Tn11 < ro. 
n n=l 

Q) Q) 

V x EX , }; llTnxll ~ ( }; llTnll ) llxll < ro. (1) 
n=l n=l 

Q) 

Since Y is a Banach space , T : X -+ Y can be defined by Tx = }; T nx. 
n=l 

Note that T is linear and by (1) , TE BL[X,Y]. 

Let n E IN , x E Bx· 

n ro ro ro 
Then II }; T.x - Txll = II }; T.x 11 ~ }; !IT.xii ~ }; llT·ll· 

·11 . 11 . 11. 11 l= l=n+ l=n+ l=n+ 
n ro 

Since x was arbitrarily chosen, 11. };
1
Ti -Tll ~ . h 

1
11Till-+ 0 as n-+ ro. 

l= 1=n+ 

By Proposition II.1.3 , BL[X,Y] is complete. o 

Corollary II.1.6 : X' is a Banach space. 

Definition: Let T be injective. Then the inverse T-1 of T is defined as 

follows : T-1 E L(Y,X) , D(T-1) = R(T) and V x E D(T) , T-1(Tx) = x. 

Proposition II.l. 7 : Let T be injective. Then 

T-1 is continuous ~ 3 m > 0 s.t. V x E D(T) , m llxll ~ llTxll. 

Proof: 

(:}) Suppose T-1 is continuous. 

By Theorem II.1.1, 3M> 0 s.t. V x E D(T) , llT-1(Tx)ll ~ M l!Txl!. 
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Put m = M" 

Then V x E D(T), m llxll ~ llTxll. 
" - . -·· 
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({:) Suppose 3 m > 0 s.t. V x E D(T), m llxll ~ llTxll. 

Then V x E D(T), llT-1(Tx)ll = llxll ~ ~ llTxll· 

By Theorem II.1.1 , T-1 is continuous. o 

Corollary II.1.8: Let X be normed. Then 

T.F.A.E. (a) T is injective and T-1 is continuous. 

(b) 3 m > 0 s.t. V x E D(T), m llxll ~ llTxll. 

Note: The example T = 0, with llxll = 0 for all x, shows that (b)::} (a) of 

Corollary II.1.8 fails if X is allowed to be a seminormed space. 

Definition: Let Z be a seminormed space and S E L(Z,X). Then the operator TS is 

defined as follows : 

. TS E L(Z,Y) , D(TS) = { z E D(S) : Sz e D(T) } and V z E D(TS) , (TS}z = T(Sz). 

Proposition II.1.9: TE BL(X,Y) , S E BL(Z,X) ::} TSE BL(Z,Y) and llTSll ~ llTll llSll· 

Proof: V z E D(TS) , llTSzll ~ llTll l!Szll ~ llTll llSll llzll. o 
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2. Subspace , Quotient , Product 

Definition : Let (X,p) be a ( semi-)normed space and M a vector subspace of X. 

Then, (M,plM) is a (semi-)normed space and is called a subspace of (X,p). 

The map J~: M--+ X: m ...,__.. m is called the canonical injection (of M into X). 

We take J~ to be an element of L(M,X). 

x Note: JM E BL(M,X]. 

Definition : Let X be a seminormed space and M a vector subspace of X. 

V x E X , let ll(x]ll = d(x,M) = inf{ II x - m II : m E M }. Then 1111 is a seminorm 

on X/M and X/M together with this seminorm is called the quotient of X by M. 

The map Q~ : X --+ X/M : x i--+ (x] is called the canonical quotient map. 

We take Q~ to be an element of L(X,X/M). 

Note: ll(x]ll = inf{ llYll : y E (x] } 

If ll(x] - (z]ll < E ( f > 0) , then 3 v E (z] s.t. !Ix - vii < f. 

In the next three results , X is a seminormed space and M a subspace of X. 

Proposition II.2.1 : Q~ E BL(X,X/M] and Q~ is open. (cf. (KN ; 5. 7]) 

Proof: 

V x E X , llQ~xll = ll(x]ll ~ llxll so Q~ E BL(X,X/M]. 

Let (x] E UX/M' 

Then 3 y E (x] s.t. llYll < l. 
x x 

Now , (x] = (y] = QMy E QMUX. 
x 

Thus, UX/M c QMUX. a 
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Proposition 11.2.2 : X/M is normed {::::} M is closed. (cf [KN ; 5. 7]) 

Proof: 

(~) Suppose X/M is normed. 

Let x EM. 

Then d(x,M) = 0. 

i.e. II [x]ll = 0. 

Since X/M is normed , [x] = 0. 

i.e. x EM. 

(<=) Suppose M is closed. 

Let II [x111 = 0. 

Then d(x,M) = 0 so x E M = M. 

Thus , [x] = 0. o 

Proposition 11.2.3: X complete ~ X/M complete. 

Proof: 

Suppose X is complete. 
<X> 

Let (xn) be a sequence in X s.t. E ll[xn]ll < oo. 
n=l 

V n E IN, 3 Yn E [xn] s.t. llYnll < ll[xn]ll -f 2-n. 
<X> 

Now , !: llY II < co. 
n=l n 

n 
Since X is complete, it follows from Proposition II.1.3 that 3 x E X s.t. !: Yi--+ x. 

i=l 
n n n n 

V n E IN, II E [x.] - [x]ll = II E [y.] - [x]ll = II[ E Y· - x111 ~ II E Y· - xii --+ 0. 
·11 ·11 ·11 ·11 l= l= l= l= 

By Proposition II.1.3, X/M is complete. o 
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Notation: Let X be a seminormed space. Write NX = { x EX: llxll = 0 }. 

Note: 

(i) NX = TOJ. 
(ii) Since Nx is closed , X/Nx is a normed space. 

(iii) It will follow from theorem II.4.2 and the fact that N X = X' that X' 

and (X/N x)' may be identified. 

Proposition II.2.4: Let X be a seminormed space, (xn) E XIN and x EX. Then 

xn ---+ x in X ¢:::} [xn] ---+ {x] in X/N x· 

Proof: 

(::}) 

( <=) 

QX is bounded. 
NX 

Suppose [xn] ---+ [x] in X/N x· 

V n E IN , 3 zn E NX s.t. llxn - x + znll < ll(xn] - [x]ll + k· 
llxn -xii 

= llxn - x + zn - znll 

~ llxn -x + znll + llznll 

< ll[xn] - [x]ll + k 
---+ 0. 

Thus , xn ---+ x in X. o 

Corollary 11.2.5 : x - x 
For A c X , QN A = QN A. x x 

Corollary 11.2.6 : X is complete ¢:::} X/N X is complete. 
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Definition : Let X and Y be ( semi-)normed spaces. 

For {x,y) , (u,v) E X x Y and a E IF , let 

(x,y) + (u,v) = {x + u, y + v) 

a ( x,y) = (a x , a y) 

ll(x,y)ll = max{ llxll , llYll }. 

Then , under these operations , X x Y is a ( semi-)normed space called the product of 

X and Y. 

The maps Ilx: X x Y--+ X: {x,y) ...__. x and Ily: Xx Y--+ Y: (x,y) ...__. y are called 

the projections of X x Y onto X and Y respectively. 

We take Ilx and Ily to be elements of L(Xx Y,X) and L(Xx Y,Y) respectively. 

Note: 

{i) X and Y complete :} Xx Y complete. 

(ii) Ilx E BL[Xx Y,X] and Ily E BL[Xx Y,Y]. 

Note that the definitions given here are consistent with the usual definitions of 

General Topology {i.e. the subspace seminorm generates the subspace topology, the 

quotient serninorm generates the quotient topology where the equivalence relation 

is given by x p y iff x - y E M and the product seminorm generates the product 

topology). 
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9. Finite dimensional Normed Spaces 

In this section , we derive some properties of finite dimensional 

seminormed spaces from those of finite dimensional normed spaces. 

Note that in [Will ; pp192,193] it is shown that the topology of a 

finite dimensional seminormed space is uniquely determined by NX. 

Definition : A linear map from a seminormed space into a seminormed space is an 

isomorphism iff it is continuous and has a continuous inverse. Two seminormed spaces 

are isomorphic iff there is an isomorphism from the one space onto the other. 

Theorem 11.3.1 : Let X be an n dimensional normed space over IF. Then X is 

isomorphic to lfn. (cf. for example [Gol ; 1.4.2]) 

Proof: 

Let {x1 , ... , xn} be a basis for X. 

n 
Define T : lfn--+ X by Ta= ~ a. x. (a= ( a1, ... ,a ) E lfn). . 

1 
1 1 n, 

1= 

Then T is linear and surjective. 

n n 
llTall = II ~ a. x.11 ~ ~ I a. I llx·ll ~ n ( max I a. I ) ( max llx-11 ) ~ n ( max llx·ll ) llall . 

. 1 1 1 . 1 1 1 1< '( 1 1< '( 1 1< .< 1 1= I= _1_n _1_n _1_n 

Thus , T is continuous. 

Define f: fn--+ IR by f( a) = II Tall (a E lfn). 

Then f is continuous. 

Now , K = { a E lfn : II all = 1 } is compact so f[K] is compact. 

Thus , 3 I E K s. t. V a E K , f( a) ~ f( 1). 

Also , f( -y) > 0. (f( -y) = 0 => llT11l = 0 => T-y = 0 => 'Y = 0 , a contradiction.) 

For a E f\{0} , _.!!__EK so f(_.!!_) ~ f( 1). 
II all II all 

i.e. l!Tall ~ f( 'Y) II all. 

By Corollary II.1.8 , T has a continuous inverse. o 
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Since isomorphisms take closed bounded sets onto closed bounded sets and since a set in 

lFn is compact if and only if it is closed and bounded , the following corollary is obtained. 

Corollary II.3.2: A closed bounded set in a finite dimensional normed space is compact. 

Corollary II.3.3 : A closed bounded subset of a finite dimensional seminormed space is 

compact. 

Proof: 

Let X be a finite dimensional seminormed space and A a closed bounded subset of X. 

x By Corollary II.2.5 , QN A is a closed bounded subset of X/Nx which is a finite 
x 

dimensional normed space. 

x 
By Corollary II.3.2 , QN A is compact in X/Nx. 

x 
Since A is closed , it follows from Proposition II.2.4 that A is 

compact in X. o 

For the remainder of this section X and Y are seminormed spaces. 

Proposition II.3.4: If X is complete and X and Y are isomorphic , 

then Y is complete. 

Proof: 

Suppose X is complete and T : X-+ Y is a surjective isomorphism. 

Let (y n) be a Cauchy sequence in Y. 

Since T-1 is bounded, V m, n E IN, llT-1yn - T-1Ym11 ~ llT-111 llYn - Ymll· 

Thus , (T-1y ) is a Cauchy sequence in X. 
n i 

Since X is complete, 3 x EX s.t. T-1yn--+ x. 

Since T is continuous, Yn = TT-1yn--+ Tx. o 
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Corollary 11.3.5: Any two normed spaces of the same finite dimension over the same field 

~!e isomorphic. 

Corollary 11.3.6 : Every finite dimensional seminormed space is complete. 

Corollary 11.3.7: A finite dimensional subspace of a normed space is closed. 

Note : If X is not normed , then Corollary II.3. 7 fails since { 0} is not closed. 

Theorem 11.3.8: Let M and N be subspaces of X with M closed and N 

finite dimensional. Then M + N is closed. (cf. [Will ; p192]) 

Proof: 

Since M is closed , X/M is a normed space. 

Since N is finite dimensional and Q~ is linear , Q~N is finite dimensional. 

By Corollary II.3.6 , Q~N is closed in X/M. 

Since Q~ is continuous , M + N = Q~ -1q~N is closed in X. o 

The following is a partial generalisation of the corresponding normed space result. 

Proposition 11.3.9: Let X be normed and finite dimensional. Then L[X,Y] = BL[X,Y]. 

Proof: 

Suppose X is normed and {e1 , ... , en} is a basis for X. 

Let TE L[X,Y] s.t. 3 i with llTeill :/: 0. 

n n 
Define II 11 1 on X by II ~ a. e-11 1 = ~ I a. I max llTe.11 . 

. 111 . 1 1 1<"< 1 l= l= _I_n 

Then II 11 1 is a norm on X. Let X1 = (X,1111 1). 
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By considering the map in Theorem II.3.1 , it can be seen that idx: X-+ x 1 is an 

isomorphism. 

Thus, 3 C > 0 s.t. V x EX, llx11 1 ~ C llxll. 

n n n n n 
Now, llT( ~ a:. e.)11 =II ~ a:. Te.II~ ~ I a:. j max llTe.11 = II ~ a:. e-11 1 ~ C II ~ a:. e-11· 

. 1 1 1 . 1 1 1 . 1 1 1< "< 1 . 1 1 1 . 1 1 1 l= l= l= - l _n l= 1= 

Thus , T E BL(X,Y]. o 

Example: Proposition II.3.9 need not hold if X is not normed. 

Let X be a finite dimensional space and x E X with llxll = 0 and llTxll j 0. 

Then T ~ BL(X,Y]. 

The next result is a partial generalisation to seminormed spaces of exercise 20.1 in [Jam]. 

Corollary 11.3.10: Let Y be normed and finite dimensional and R(T) = Y. Then T is 

open. 

Proof: 

Let {yl' ... ,yn} be a basis for R(T). 

For 1 < i < n , 3 x. E D(T) s.t. y. = Tx .. - - 1 1 1 
n n 

Define S : R(T) --+ D(T) by S( ~ a:. y.) = ~ a:. x .. 
·111 ·111 l= l= 

Then S is linear and V y E Y , TSy = y. 

By Proposition II.3. 9 , S is continuous. 

Thus , s-1B~(T) is a neighbourhood of 0 m Y. 

Now' TBD(T)) Tss-
1
BD(T) = s-

1
BD(T)" 

Thus , T is open. o 
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Example : Corollary II.3.10 need not hold if ,Y is not normed. 

Let n E IN\ {1} and for 1 ~ i ~ n , define the seminorm II Iii on fn 

by llalli = I ail (a= (al' ... ,an) E fn). 

Let 1 ~ i < j ~ n , X = (fn,11 Iii) , Y = (fn,11 llj) and T = idv:n. 

Then Ux = {a E fn: I ail < 1} and Uy= {a E fn: I ajl < 1 }. 

Since i :/= j, there is no r > 0 s.t. r Uy c TUX so T is not open. 

Definition : Let M and N be subspaces of X. Then X is the direct sum of M and 

N , written X = M e N , iff X = M + N and M n N = { 0}. 

For the remainder of tfus section M is a subspace of X. 

Proposition 11.3.11 : If dimX/M < co , then there is a finite dimensional subspace F of 

X s.t. X =Me F. 

Proof: If {[x1],. . .,[xn]} is a basis for X/M , then X = Me span{xl' .. .,xn}. o 

Definition: A projection of X onto M is a linear map P : X--+ X s.t. R(P) = M 

2 and P = P. 

Proposition 11.3.12: Let X normed and dim M <co. Then there is a bounded 

projection P of X onto M and X = N(P) e M. 

Proof: 

Let B = {x1, ... ,x } be a basis for M. . n 

By the Hahn-Banach theorem, for 1 ~ i ~ n, 3 xj EX' s.t. for 1 ~ i , j ~ n, xixj = oij' 

n 
Then the map P : X-+ X : x 1----+ ~ x~ (x) x. has the required properties. o 

. 1 1 1 
I= 

L__ ____ _ 
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,/. Dual Spaces 

Definition: Let X and Y be seminormed spaces and TE L(X,Y). Then T is 

an isometry iff 't/ x E D(T) , llTxll = llxll. 

Note: 

(i) If T is an isometry , then D(T) is complete ¢=> R(T) is complete. 

(ii) Unlike in the normed space case, an isometry need not be injective. 

Definition : Two normed spaces X and Y are equivalent , written X = Y , iff there is 

a linear isometry from the one space onto the other. 

(We reserve = for normed spaces.) 

Example: c' :: l1 where for (a ) E l1 the corresponding f E c' is given 
o n o 

(X) 

by f( (A ) ) = }; A an ( (An) E c
0 

) . 
n n=l n 

(See [Kr] for details.) 

y 
Note : If X :: Y , then the linear isometry from X onto Y is denoted by I . 

x 
y x 

Note that (I t 1 = I . x y 

For the remainder of this section, X is a seminormed space and M is a subspace of X. 

Notation: If x' EX' , then x' IM will be denoted by xM:. Clearly, xM: EM'. 

Lemma II.4.1: Let m' EM'. Then 3 x' EX' s.t. xM: = m' and llx' II = llm' 11· 

Proof: 

Since m' EM', 't/ m EM, lm'ml ~ llm'll llmll. 

Now take f = m' and p(x) = llm' II llxll in Theorem I.4.8. o 
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Theorem II.4.2 : 

(a) X' / M.L:: M'. 

(b) (X/M)' :: M.L. (cf. for example [Gol2; II.2.1]) 

Proof: 

( ) If X , E X' d ' ' M.t th ' ' M.t \.I M ' ' a an y E x + , en x - y E so v m E , x m = y m. 

Thus , U: X' / M.L--+ M' can be defined by U[x'] = x:M. 

Note that U is linear. 

If m' EM' then, by Lemma II.4.1, 3 x' EX' s.t. x:M = m'. 

Thus , U is surjective. 

Let x' EX'. 

Then Vy' E [x'] , llU[x']ll = llU[y']ll = llYM:ll ~ lly' II so llU[x']ll ~ ll[x']ll

By Lemma II.4.1 , 3 v' EX' s.t. vM = xM and llv' II = llxM:ll· 

Now, v' E [x'] so ll[x']ll ~ llv' II = llxM:ll = l!U[x']ll. 

Thus , U is an isometry. 

(b) Let z' E (X/M)'. 

Define x', : X--+ IF by x', (x) = z' [x]. z z 

Then x~, is linear and V x EX, lx~,xl = lz'[x]I ~ llz'll ll[x]ll ~ llz'll llxll 

I X' so xz I E • 

Also , V m E M , x' , m = z' [ m] = z' 0 = 0 so x' , E M.l. z z 

Define V: (X/M)'--+ M.L by Vz' = x~'· 

Then, V is linear and V z' E (X/M)' , l!Vz' II ~ llz' 11-

Let z' E (X/M)' and x E X. 

Then VyE [x], lz'[x]I = lz'[y]I = l(Vz')yl ~ l!Vz'll llYll so 

lz'[x]I ~ l!Vz'll ll[x]ll. 

Thus , llz' II ~ llVz' II so V is an isometry. 
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Let x' E M.L. 

Define z' : X/M -+ IF by z' [x] = x' x. (Note that z' is well-defined.) 

Then,z' islinearand VyE[x],lz'[x]I = lz'[y]I =lx'yl~llx'llllYll· 

Thus , z' E (X/M)'. 

Also, Vz' = x' so V is surjective. o 

Theorem II.4.3: Let M be dense in X, Y a Banach space and A E BL[M,Y]. 

Then 3! A E BL[X,Y] s.t. AIM= A and llAll = llAll· 

Also, M' : X'. (cf [Gol2; II.2.1]) 

Proof: 

Let x EX. 

3 (xn) E MIN s.t. xn-+ x. 

V m, n E IN, llAxn -Axmll ~ llAll llxn -xmll· 

Thus, (Axn) is a Cauchy sequence in Y. 

Since Y is a Banach space, 3! y E Y s.t. Ax -+ y. n 

Let ( zn) be any sequence in M. with zn -+ x. 

Then llAzn - Yll ~ llAll llzn - xii + llAll llx - xnll + llAxn - Yll -+ 0 as n-+ ro. 

Thus , y does not depend on the sequence chosen. 

Thus , A can be defined by Ax = li m Ax . 
n n 

Clearly , A is a linear extension of A to X. 

V x EX, llAxll = lim llAxnll ~ llAll lim llxnll = llAll llxll so llAll ~ llAll. 
n n 

Since A is an extension of A, llAll ~ llAll. 

It is easy to see that A is unique. 

If Y = f , then the above shows that M' -+ X' : Ai--+ A is a surjective 

linear isometry. o 
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5. The Second Dual of X 

Theorem Il.5.1 : V x EX , llxll = sup { Ix' xi : x' E Bx' }. 

Proof: 

Let x EX. 

V x' E Bx', lx'xl ~ llx'll llxll ~ llxll so sup{ lx'xl : x' E Bx'}~ llxll. 
By Corollary I.4.9, 3 x' E Bx' s.t. x'x = llxll. 

Thus, llxll ~sup { lx'xl : x' E Bx' }. o 

Let x EX. 

Define x: X' -+IF by ix' = x' x. 

Then x is linear and V x' EX', l:X:x' I = lx'xl ~ llx'll llxll so x EX". 

By Theorem II.5.1 , llxll = llxll. 
X" Thus , the map J X : X -+ X" : x i--+ x is an isometry. 

X" 
From the remark on page 41 , this means that X is complete ¢:::} JX X is complete. 

Note: 

(i) J~
11 

is injective ¢:::} X is normed. 
. X" 

(ii) If A c X then A or A will be written for JX A. 

(iii) X is a Banach space. 

(iv) J~
11 

: (X , cr(X,X')) -+ (X" , cr(X" ,X')) is continuous. 

Definition : X is called the completion of X and is denoted by X. 
X" 

(We do not use the definition in [Gol2; p31] as JX need not be injective.) 
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Lemma 11.5.2 : Bx,, is u(X" ,X') compact. In particular , Bx" is u(X",X') closed. 

Proof : Immediate by the Banach-Alaoglu theorem. o 

Theorem 11.5.3 ( Goldstine's Theorem) : Bx is u(X" ,X') dense in Bx". (cf for 

example [DS ; p424]) 

Proof: 

7 u(X" ,X') 
Let Bl= Bx . 

Since J~
11 

is an isometry and Bx,, is u(X" ,X') closed , B 1 c Bx,,. 

Let z" ¢ B1. 

By Corollary I.4.13, 3 x' EX' s.t. I z"x' I > 1 and V x" E B1 , lx"x' I ~ 1. 

Since Bx c B1 , this means that V x E Bx, lx'xl ~ 1 so llx'll ~ 1. 

Since jz"x' I > 1, llz"ll > 1. 

• II dB i.e. z ~ x"· 0 

Corollary 11.5.4: V x" E X" , 3 a bounded net (xa) in X s.t. 

o{X" ,X'). 

Definition : X is semirefleX'ive iff J~
11 

is surjective. 

A semireflexive normed space is called reflexive. 

A II x --1 x a w.r.t. 
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The next result generalises a well known characterisation of reflexivity for normed spaces 

(see for example [DS ; p425]) to seminormed spaces. 

Theorem Il.5.5: X is semireflexive {::::} Bx is u(X,X') compact. 

Proof: 

( ~) Suppose X is semireflexive. 

Let (x
0

) be a net in Bx· 

Since Bx" is u(X" ,X') compact , there is a subnet (x ) of (x ) and there is 
a.{3 a 

II B A II t (X" x I ) an x E X" s.t. xa.{3--+ x . w.r. . u , . 

Since X is semireflexive , J~,, Bx = Bx" so 3 x E Bx s.t. :X: = x". 

Clearly , x --+ x w.r.t. u(X,X' ). 
a.{3 

( <=) Suppose Bx is u(X,X') compact. 

Then J~,, Bx is u(X" ,X') compact , hence u(X" ,X') closed since u(X" ,X') is 

Hausdorff. 

IT(X" ,X') X" ---=x:-.11..---v 

Thus , Jx Bx = J x Bx = Bx"· a 

Corollary Il.5.6 : Let X be semireflexive and M be a closed subspace of X. Then M 

is semireflexive. 

Proof: 

Let (x
0

) be a net in BM. 

Then (xa) is a net in Bx. 

Since X is semireflexive, (xJ has a u(X,X') convergent· subnet (x ) with limit 
'-" a.{3 

xe Bx· 

-u(X X') -Now x E M ' = M = M. 
' 

Thus , xa--+ x w.r.t. u(M,M') and x E BM. a 
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Note: Let N = Nx. 

Since N.l = X' , it follows from [KN; 16.11, 17.13] that a(X/N,(X/N)') = a(X/N,X') 

where for x E X and x' E N.L , <[x],x' > = x' x. This means that if (x ) is a net in X a 

and x EX, then xa ---1 x w.r.t. a(X,X') ~ [xJ-1 [x] w.r.t. a(X/N,(X/N)'). Thus, 

if A c X is closed ( = a(X,X') closed) , then A is a{X,X') (sequentially) compact if and . 
only if Q~A is a(X/N ,(X/N)') (sequentially) compact. It is well known that for a 

Banach space X , X is reflexive if and only if X' is reflexive. Also , if two normed 

spaces are isomorphic , then the one space is reflexive if and only if the other space is 

reflexive. Thus , we obtain : 

Theorem 11.5.7: Let X be complete. Then 

T.F.A.E.: (a) X is semireflexive. 

(b) X/N X is reflexive. 

(c) (X/Nx)' is reflexive. 

(d) X' is reflexive. 

Note: It has been shown (see for example [F ; 3.10]) that in a normed space , a set is 

weakly compact if and only if it is weakly sequentially compact. Thus , the following 

result is obtained : 

Theorem 11.5.8 : A seminormed space is semireflexive ~ every bounded sequence has a 

weakly convergent subsequence. 
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Chapter III Linear Operaf;ors and their Adjoints 

In this chapter we start off by examining closed linear operators. The adjoint of a linear 

operator is then defined (note that the definition given here differs from that given in 

[Gol2 ; II.2.2]) and the relationship between an operator and its adjoint is studied. Most of 

the work will concentrate on generalising results in [Gol2 ; II] to seminormed spaces. We 

also introduce three states for linear oper-ators which correspond to those given in [Gol2 ; 

p58] when X is normed and state diagrams are produced which have the same form as 

those obtained in [Goll]. 

Throughout this chapter, X and Y are seminormed spaces and TE L(X,Y). 
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1. Closed Linear Operators 

Definition : 

(a) The graph of T is G(T) = { (x,Tx) : x E D(T) } c Xx Y. 

(b) Tis closed (as an element of L(X,Y)) iff G(T) is closed in Xx Y. 

Note : Since T is linear , G(T) is a subspace of X x Y. 

Proposition ID.1.1: 

(i) Tis closed {::} (V (xn) E D(T)!N) [xn-+ x, Txn--+ y => x E D(T) , Tx = y]. 

(ii) T injective , closed => T-1 closed. 

(iii) T closed => N(T) closed. 

(iv) Y normed , D(T) closed, T continuous => T closed. 

Proof: 

(i) (=>) Suppose T is closed. 

Let (x ) be a sequence in D(T) s.t. x --+ x and Tx --+ y. n n n 

Then (xn,Txn) is a sequence in G(T) with (xn,Txn)--+ (x,y). 

Since G(T) is closed in X x Y , (x,y) E G(T). 

Thus , x E D(T) and y = Tx. 

IN Suppose (V (xn) E D(T) ) [xn--+ x, Txn--+ y => x E D(T) , y = Tx ]. 

Let (x,y) E G ( T). 

IN Then 3 (xn) E D(T) s.t. (xn,Txn)--+ (x,y). 

Note that xn--+ x and Txn--+ y. 

By assumption , x E D(T) and y = Tx. 

i.e. (x,y) E G(T). 
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(ii) Suppose T is injective and closed. 

Let (yn) be a sequence in D(T-1) = R(T) s.t. y -i y and T-ly -ix. n n 

Then, T-1y -ix and T(T-1y ) = y -i y. n n n 

Since T is closed , x E D(T) and y = Tx. 

i.e. y E D(T-1) and x = T-1y. 

(iii) Suppose T is closed. 

Let (xn) be a sequence in N(T) with xn -ix. 

V n E IN , Txn = 0 so Txn -i 0. 

Since T is closed, x E D(T) and Tx = 0. 

i.e. x E N(T). 

(iv) Suppose Y is normed, D(T) is closed and T is continuous. 

Let (xn) be a sequence in D(T) s.t. xn -ix and Txn -i y. 

Since D(T) is closed , x E D(T). 

Since T is continuous , Txn ~ Tx. 

Since Y is normed , y = Tx. a 

Lemma ID.1.2 : Let X be complete and T be closed, and suppose there is an r > 0 

s.t. r Uy c TBD(T)· Then r Uy c TBD(T)· (cf (Gol2; II.1.7]) 

Proof: 
1 

Note that it is sufficient to prove that V E E (0,1) , r Uy c l-E TBD(T)· (1) 

[Then, if y E r Uy, 3 EE (0,1) s.t. l:E y E r Uy. 
1 1 

From (1) , 3 x E BD(T) s.t. I=f y = l-t Tx. 

Thus , y = Tx E TBD(T)· 
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Let E > 0 and y E r Uy 

n n- n 
Note that v n E IN u {O} 'r f Uy c f TBD(T) :::·T ( f Brf( T) ). 

Thus ; 3 x0 E BD(T) s.t. !IY - Tx011 < r E. i.e. y - Tx0 E r E Uy 

Also, 3 x1 E f BD(T) s.t. Jly -Tx0 - Tx111 < r E
2

. i.e. y - Tx0 - Tx1 Er E2 Uy. 

Continuing in this way , a sequence (xn) is obtained s.t. V n E IN, xn E En BD(T) 

and llY - ~ Tx.11 < r fn+l. (2) 
. 0 I I= 

CD 1 
Now, ~ llxnll ~ l-E < ro. 

n=O 
n 

Since X is complete, 3 x E X s.t. ~ x. -+ x. 
. 0 I I= 

Note that llxll ~ l~( 
. . 

n 
By (2) , T( ~ x.)-+ y. 

. Q I 
. I= 

1 
Since T is closed , x E D(T) and y = Tx E l-E TBD(T)" o 

Definition: A topological space X is of the second category iff whenever (An) is a 

ro 
sequence of subsets of X s.t. X = u An, 3 n s.t. int An f 0. 

n=l 

The proof of the following result can be found in [K ; p200]. 

Theorem ID.1.3 (Bai.re Category Theorem): If X is a complete semimetric space, then 

X is of the second category. 



52 

Theorem ill.1.4 (Open Mapping Theorem for Seminormed Spaces): Let X be 

complete and Y be of the second category, T closed and R(T) = Y. Then T is open. 

Proof: 

By Lemma III.1.2 , it is sufficient to prove that 3 r > 0 s.t. r Uy c TBD(T)" 

<Xl 

Since Y = R(T) = U n TBD(T) and Y is of the second category, 3 n s.t. 
n=l 

int n TBD(T) 4: 0. 

Thus , 3 y E int n TBD(T)" 

Thus, 3 8 > 0 s.t. y + 8 Uy c n TBD(T)" 
. 1 

Let V = 2n ( y + 8 Uy ) and U = V - V. 

Then, U is open and 0 EU. 

1- 1- -
Also , U = V - V c 2 TBD(T) + 2 TBD(T) = TBD(T)" 

Thus , 3 r > 0 s.t. r Uy c TBD(T)" o 

Theorem ill.1.5 (Closed Graph Theorem for Seminormed Spaces): Let X be normed, X 

and Y complete, D(T) = X and T closed. Then T is continuous. 

Proof: 

Since X and Y are complete , X x Y is also complete. 

Since G(T) is a closed subspace of X x Y , it is complete. 

Note that Ilx I G(T) is bijective. 

We now show that it is closed. 

Suppose (xn,Txn) ~ (x,y) and xn = IIxl G(T)(xn,Txn) ~ z. 

Since G(T) is closed , (x,y) E G(T). 

Also, xn-+ x so z = x = IIxl G(T)(x,y) since X is normed. 

By the open mapping theorem , Ilx I G(T) is open so (Ilx I G(T))-
1 

is continuous. 

Thus , T = Ily(IIx I G(T))-1 is continuous. o 
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We now consider a seminormed space which will be used in the proof of the next result. 

Let F * 0 be a set and B(F,Y) = { f: F--+ Y: 3 C > 0 s.t. V x E F , llf(x)ll ~ C }. 

For f, g E B(F,Y) and >. E IF , define 

f + g : F--+ Y by (f + g)(x) = f(x) + g(x) (x E F) 

). f: F--+ Y by (>. f)(x) = >. f(x) (x E F) 

llfll = sup{ llf(x)ll : x E F } .. 

Under these operations , B(F,Y) becomes a seminormed space. 

Note: 

(i) If fn-+ f in B(F,Y) , then V x E F , fn(x)-+ f(x) in Y. 

(ii) Y normed => B(F,Y) normed. 

(iii) Y normed, complete => B(F,Y) complete. 

Proof of (iii) : 
ro 

Let (fn) be a sequence in B(F,Y) with 1: llfnll < ro. 
n=l 

ro 
V x E F , 1: II fn ( x) II < ro. 

n=l 

Since Y is normed and complete , f: F--+ Y can be defined 

ro 
by f(x) = 1: fn(x) (x E F). 

n=l 
ro 

V x E F , llf(x)ll ~ 1: llfnll so f E B(F,Y). 
n=l 
n ro ro 

Also, V x E F, lli~/i(x) -f(x)ll = lli=~+/i(x)ll \=~+ 1 11fill· 
n ro 

Thus , II 1: f. - fll ~ 1: llf-11 --+ 0. 
. 11 . 1 1 l= I=n+ 

By Proposition II.1.3 , B(F,Y) is complete. o 
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Theorem ID.1.6 (Principle of Uniform Boundedness for Seminormed Spaces) : Let X be 

complete and F c BL[X,Y] and suppose that V x E X , sup llTxll < ro. 
TEF 

Then sup llTll <CD. 
TEF 

Proof: 

Let x E X. 
- Y" 

Define fx: F--+ Y by f)T) = Jy Tx. 

Then VT E F , llf (T)ll = llTxll ~ sup llTxll < CD. 
x TEF 

Thus, fx E B(F,Y). 

Suppose x, z EX with llx - zll = 0. 

VT E F , llfx(T) - fz(T)ll = llTx - Tzll ~ llTll llx - zll = 0 so fx = fz. 

Define A : X --+ B(F ,Y) by Ax = fx (x E X). 

Then A E L[X,B(F,Y)]. 

We now show that A is closed. 

Suppose xn --+ x and Axn --+ f. 

Then x --+ x. n 
Y" Y" 

Thus, VT E F, f(T) = lim (Axn)(T) = lim Jy Txn = Jy Tx = (Ax)(T) so f = Ax. 
n n 

By the closed graph theorem , A is continuous. 

v TE F 'v x Ex' llTxll = ll(Ax)(T)ll ~ llAxll ~ llAll llxll = llAll llxll. 

Thus , sup llTll ~ llAll. o 
TEF 

Corollary ID.1.7: Let K c X and suppose that V x' E X' , x' [K] is bounded. Then K 

is bounded. 

Proof: KC BL[X' ,IF] and V x' EX' , sup I kx' I < ro. 
kEK 

By Theorem III.1.6 , sup llkll = sup llkll < ro. o 
kEK kEK 
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2. The Adjoint of a Linear Operator 

Adjoints are usually defined for densely defined operators. Here we extend 

the notion to arbitrary linear operators. 

Definition : The adjoint T' of T is defined as follows : 

T' E L(Y' ,D(T)'), D(T') = { y' E Y' : y'T E D(T)' } and Vy' E D(T'), T'y' = y'T. 

Note: The definition given above coincides with the definition of the conjugate of 

TJ£(T) given in [Gol2 ; II.2.2]. 

Theorem ID.2.1 [Cl] : G(T') is closed in (Y' ,o-(Y' ,Y)) x (D(T)' ,o-(D(T)' ,D(T))). 

Proof: 

Let (y~) be a net in D(T') s.t. y~ -1 y' w.r.t. o-(Y' ,Y) and T'y~ -1 x' w.r.t. 

o-(D(T)' ,D(T)). 

V x E D(T), y'Tx = lim y~Tx = lim (T'y~)x = x'x. 
a a 

Thus, y' E D(T') and x' = T'y'. o 

Corollary ID.2.2: N(T') is o-(Y' ,Y) closed. 

Proof: 

Let (y~) be a net in N(T') with y;-1 y' w.r.t. o-(Y' ,Y). 

Then , V a , T' y; = 0. 

Thus, T'y;-1 0. 

By Theorem III.2.1, y' E D(T') and T'y' = 0. 

i.e. y' E N(T' ). o 
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Since u(Y' ,Y) x u(D(T)' ,D(T)) is weaker than the norm topology on Y' x D(T)' , we 

obtain: 

Corollary ID.2.3 : T' is closed'. 

Theorem ID.2.4: T' is u(D(T'),Y)-u(D(T)' ,D(T)) continuous. 

Proof: 

Suppose y~-+ y' w.r.t. u(D(T'),Y). 

V x E D(T), T'y'x = y'Tx =limy' Tx = lim (T'y' )x. 
a a a a 

Thus, T'y~-+ T'y' w.r.t. u(D(T)' ,D(T)). o 

Theorem ID.2.5: D(T') = Y' ~ T is continuous, in which case T' is bounded and 

!IT'ii = llTll. (cf [Gol2; II.2.8]) 

Proof: 

(:}) Suppose D(T') = Y'. 

Then Vy' e Y' , the set { ly'Txl : x E BD(T)} is bounded. 

By Corollary III.1.7 , the set { llTxll : x E BD(T) } is bounded. 

Thus , T is continuous. 

( ¢:) Clear. 

Suppose T is continuous. 

Then Vy' E Y' , V x E D(T) , I T'y'xl = I y'Txl ~ llY' 11 llTll !lxll. 

Thus , T' is bounded and llT' II ~ llTll. 

V x E D(T) , l!Txll = sup I y'Txl = sup I T'y'xl ~ sup llT'y' 11 llxll = llT' 11 llxll. 
y'EBy, y'EBy, y'EBy, 

Thus , llTll ~ llT' II· D 
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Definition: F c X' is total iff V x E X\{O}, 3 x' E F s.t. x'x -J 0. 

Note : Let F be a subspace of X. Then 

(i) F is total ~ F = {0} . 
.l 

(ii) F total ~ F .L = X' . 
.l 

(iii) If X is· normed, then F is total ~ F .L = X'. (see Corollary I.4.9) 
.l 

Definition: T is closable iff 3 closed S E L(X,Y) s.t. G(T) c G(S). 

Theorem ID.2.6 : 

T.F.A.E. 

Proof: 

(a.)~(b) 

(a) T is closable. 

(b) (V y E Y) [y -J 0 ~ ( 0 ,y) t G ( T ) ] . 

(c) D(T') is total. 

(d) T has a minimal closed linear extension. (cf [Gol2; II.2.11]) 

Suppose T is closable. 

Then 3 closed S e L(X,Y) s.t. G(T) c G(S). 

Since G(S) is closed , G ( T) c G(S). 

Let y E Y\{O}. 

Since S is linear , (O,y) t G(S). 

Thus , { 0 ,y) t G ( T ) . 



(b) => ( c) 

(b) => ( d) 

(d) =>(a) 
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Suppose (VyEY)[y/0 => (O,y)tG(T)]. 

Let w E Y\{0}. 

Then ( 0, w) t G ( T ) . 

By Corollary 1.4.14, 3 z' E (Xx Y)' s.t. z'(O,w) f 0 and z'[G(T)] = {O}. 

The maps x' : X -+ f : x i--+ z' ( x, 0) and y' : Y -+ IF : y i--+ z' ( 0 ,y) are 

in X' and Y' respectively. 

V x E D(T), 0 = z'(x,Tx) = x'x + y'Tx so y' E D(T'). 

Also, y'w = z'(O,w)'/ 0. 

Thus , D(T') is total. 

Suppose D(T') is total. 

Let y E Y with (O,y) E G ( T). 

IN Then 3 (xn) E D(T) s.t. xn ---t 0 and Txn ---t y. 

Vy' E D(T'), y'y = lim y'Txn = lim T'y'xn = 0. 
n n 

Since D(T') is total, y = 0. 

Suppose (Vy E Y) [y f 0 => (O,y) t G ( T) ]. 

Define T as follows : 

T E L(X,Y) , D(T) = { x E X : 3 z E Y s.t. (x,z) E G ( T) } and Tx = z 

where (x,z) E G ( T). 

It follows from the assumption that T is well-defined. 

Since G ( T) is a subspace of Xx Y, T is linear. 

Also, G(T) c G ( T) = G(T) so T is a closed linear extension of T. 

If S is any other closed linear extension of T , then G(T) = G ( T) c G(S) 

so T is the minimal closed linear extension of T. 

Clear. o 
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Corollary ill.2.7 [Gol2; 11.2.12]: Let X and Y be Banach spaces and let D{T) = X. 

Then T E BL(X, Y] {;:} D{T') is total. 

Proof: 

{=>) Suppose T E BL(X,Y]. 

Then D(T') = Y' which is total since Y is normed. 

( ¢:) Suppose D(T') is total. 

By Theorem III.2.6 , T is closable. 

Since D(T) = X , this means that T must be closed. 

By the closed graph theorem , T is continuous. a 

Note: 

{i) X normed , complete and Y complete were not needed for(=>). 

(ii) Y normed was not needed for ( ¢:). 

Theorem m.2.8: T' is continuous ¢:} D(T') is closed. 

Proof: 

(=>) Suppose T' is continuous. 

Let (y~) E D(T')IN with y~ -i y'. 

V x E D{T), ly'Txl = lim ly~Txl = lim IT'y~xj ~ lim llT'll llY~ll llxll = 
n n n 

JIT'll llY'll llxll so y' E D(T'). 

( ¢:) Closed graph theorem. a 



60 

S. States of Linear Operators 

·The aim of this section as well as the next section is to obtain the 

Taylor-Halberg-Goldberg state diagrams (see [TH] , [Gol2 ; II.3.14 , II.4.11]) 

in our more general setting. For the most part , the proofs are simple modifications 

of the corresponding results in [Gol2 ; II.3, II.4]. Since the state diagrams 

obtained coincide with those in [Gol2] , the examples in [Gol2 ; II.5] show that they 

are complete. 

The following states for T will be considered : 

I: R(T) = Y 

II : R(T) "/: Y , R ( T ) = Y 

III:R(T) "/:Y 

1' : 3 m > 0 s. t. V x E D(T) , m llxll ~ llTxll (T is bounded below) 

2' : N(T).l = D(T)' , T ¢ 1' 

3' : N(T).l f D(T) I 

If T is in state 1' then this will be written as T E 1'. 

If T is in state II and in state 3' , then this will be written as T E n3,. 

Similar notation is used for the other possible states of T. 

Note that if T E 1' , then N(T).l = D(T)'. 

In [Gol2; II.3], the following states are considered instead of 1' , 2' and 3' : 

1 : T injective , T-1 continuous 

2 : T injective , T-1 not continuous 

3 : T not injective 

Note that if X is normed , then these are exactly the same as 1' , 2' and 3'. 

(When X is normed , T is injective ¢:::} N(T).l = D(T)') 
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Theorem ID.3.1 : T' E 1' ~ R(T') closed. 

Proof: 

Suppose T' E 1'. 

Then 3 c > 0 s.t. Vy' E D(T'), c llY'll ~ llT'y'll· 

Let x' E R ( T' ) . 

Then 3 (y~) E D(T' )IN s.t. T' y~ -1 x'. 

V m, n E IN, c llY~ -y~ll ~ llT'y~ -T'y~ll· 

Thus , (y') is a Cauchy sequence in Y'. n 

Since Y' is complete, 3 y' E Y' s.t. y~ -1 y'. 

Since T' is closed, y' E D(T') and x' = T'y' E R(T'). o 

Corollary ID.3.2 : T' t n1, . 

Theorem ID.3.3 : 

(i) R(T).l = N('r'). 

(ii) R(T) =N(T') . .l 

In particular, T has dense range ~ T' is injective. 

(i.e. T E I u II ~ T' E 1' u 2') 

Proof: 

(i) y' E R(T).l ~ V x E D(T), y'Tx = 0 ~ y' E N(T'). 

(ii) R ( T) = R(T).l = N(T') . .l .l 

Finally, note that N(T') = {O} ~ N(T') .l = Y. o 
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Theorem ill.3.4: (Here the pairing considered is (D(T),D(T)').) 

(i) N(T) c R(T') . 
.L 

(ii) D(T') total => N(T) = R(T') . 
.L 

(iii) R ( T ' ) u(D(T)' ,D(T)) c N(T).L (In particular , T' E I U II => T E 1' u 2' ). 

(iv) X normed , R(T') total => T injective. 

Proof: 

(i) 

(ii) 

x E N(T) => Vy' E D(T'), (T'y')x = y'(Tx) = y'O = 0 => x E R(T') . 
.L 

Suppose D(T') is total. 

Then,x¢N(T) => TxjO => 3y' ED(T') s.t. y'TxjO => xjR(T').L. 

(iii) 

(iv) 

R( T' ) u(D(T)' ,D(T)) = R(T') .LC N(T).L. 
.L 

Immediate from (iii). o 

Theorem ill.3.5: Let T and T' be injective and T1 =TJX 
=-n...,...,,,( T,,.....) 

Proof: 

By Theorem III.3.3 , R ( T) = Y so R(T)' : Y'. 

Let z' E D((Ti 1)'). 

Then z'T-1 E R(T)'. 

Let y' E Y' be an extension to Y of z'T-1. 

Then V x E D(T), y'Tx = z'T-1Tx = z'x. 

Thus , y' E D(T') and T' y' = zD(T)" 
D ( T) I 

i.e. I z' E R(T') = D(T' -1). 
D ( T) I 

Then 
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Let x' E D(T' -1
) = R(T') and let x' E D { T)' be an extension of x' to D ( T). 

Then, 3 y' E D(T') s.t. x' = T'y'. 

V x E D(T), x'T-1Tx = x'x = T'y'x = y'Tx. 

D ( T) I 

Thus , I x' = x' E D((T i1)' ). 
D ( T) I 

V x E D(T), V z' E D((Ti 1
)'), 

R(T)' D ( T) I . 

(I T '-1I z')Tx (T'-1z' )Tx (T'T'-1z' )x z'x 'T-1T 
I = D(T) = D(T) = = z x 

Y D(T)' 

= ((Ti 1)'z'}Tx. o 

We now define an injective operator associated with T and which has a number of 

properties in common with T. This will be useful in what follows as a number of results 

are proved for injective operators and then by using this operator the correspondimg results 

are deduced for T. 

Definition : The induced injective operator T is defined as follows : 

TE L(X/N(T),Y) , D(T) = D(T)/N(T) and V x E D(T) , T[x] = Tx. 

Note: 

(i) T is well defined since if (x] = [z] then x - z E N(T) so that Tx = Tz. 

(ii) This generalises the definition in [Gol2 ; II.4.6] - here N(T) is no longer 

required to be closed. 

(iii) 

(iv) 

(v) 

R(T) = R(T). 
A x 

T = TQN(T)' 

The induced injective operator associated with T' will be denoted by (T') A. 
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Theorem ill.3.6 : 

(i) T is continuous {:::} T is continuous in which case llTll = llTll· 

(ii) T is closed {:::} T is closed. 

(iii) T E 1' :} T E 1'. 

(iv) T' =JD(T):IN(T).L T'. 
N(T) (D(T)/N(T))' 

Proof: 

(i) 

(ii) 

(:}) 

( ~) 

(:}) 

Suppose T is continuous. 

Let x E D(T). 

VY E [x) , llT[x)ll = llT[y)ll = llTyll ~ llTll llYll· 

Thus, llT[x]ll ~ IJTll ll[x)ll· 

Thus , T is continuous and llTll ~ llTll· 

Follows from the fact that Q~(T) is bounded. 
A x A x A 

Also, llTll = llTQN(T)ll ~ llTll llQN(T)ll ~ llTll. 

Suppose T is closed. 

Let (xn) be a sequence in D(T) s.t. [xn) ---1 [x) and Txn ---1 y. 

3 (vn) E N(T)IN s.t. xn + vn ---1 x. 

Since T is closed and T(xn + v n) = Txn ---1 y , x E D(T) and 

y = Tx = T[x). 

( ~) Suppose T is closed. 

Let (xn) be a sequence in D(T) s.t. x ---1 x and Tx ---1 y. n n 

Then [xn) ---1 [x) and T[xn) ---1 y. 

Since T is closed, [x) E D(T) and y = T[x). 

Thus , x E D(T) + N(T) c D(T) and y = Tx. 

(iii) Suppose T E 1'. 

Then 3 m > 0 s.t. V x E D(T) , m llxll ~ llTxll· 

V x E D(T) , m II [x]ll ~ m llxll ~ llTxlJ = llT[xJll. 
' A , 

Thus, TE 1 . 
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(iv) Let y' E D(T') and x E D(T). 

V z E [x], ly'T[x]I = ly'T[z]I = ly'Tzl ~ lly'Tll llzll. 

Thus , y' E D(T' ). 

Let y' E D(T'). 

Then VxE D(T), ly'Txl = ly'T[x]I ~ lly'Tll ll[x]ll ~ llYTll llxll. 

Thus , y' E D(T' ). 

, N(T).L 
If y' E D(T') and x E D(T), then (J~(p .LI .T'y')x 

( ) ( D ( T)/N(T))' 

= (T'y')[x] = y'T[x] = y'Tx = (T'y')x. o 

Lemma ID.3. 7 : If T ¢ 1' , then there is a sequence (xn) in D(T) s. t. llxnlr-+ ro 

and llTxnll-+ 0. 

Proof: Suppose T ¢ 1'. 

Then V m > 0, 3 x.E D(T) s.t. m llxll > llTxll. 

Thus , V n E IN , 3 z E D(T) s.t. llz II = 1 and llTz 11 < !. n n n n 
1 

V n E IN, let x = llTz II- 2z if llTz II 'f 0 and n z otherwise. . n n n n n 

Then (xn) has the required properties. o 

Theorem ID.3.8: T' E I <=> TE 1'. 

Proof: 

(~) Suppose T' EI but T ¢ l'. 

IN By Lemma III.3.7, 3 (xn) E D(T) s.t. llxnll-+ ro and Txn-+ 0. 

Vy' E D(T'), T'y'xn = y'Txn-+ 0. 

Since T' EI, V x' E D(T)' , x'xn-+ 0 

Thus , V x' E D(T)' , the set { x' xn: n E IN} is bounded. 

By Corollary III.1.7 , the set { xn: n E IN} is bounded which contradicts 

the fact that llxnll -+ ro. 



(~) Suppose TE 1'. 

By Theorem lII.3.6 , T E 1 '. 

Let z' E (D(T)/N(T))'. 

Then z'T-1 E R(T)'. 
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Let y' E Y' be an extension of z'i'-1 to Y. 

V x E D(T) , y'T[x) = z'T-1T[x) = z' [x). 

Thus, y' E D(T') and T'y' = z'. 

Thus, R(T') = (D(T)/N(T))'· 

By Theorem lII.3.6, R(T') = N(T)J.. 

Since T E 1' , N(T)J. = D(T)'. 

Thus , T' E I. o 

Theorem ill.3.9 : T E (l U II)1, ~ T' E 11,. 

Proof: 

(::}) Suppose TE (l U II)1,. 

By Theorem III.3.3 , T' E 1' U 2'. 

By Theorem III.3.8 , T' EI. 

Since D(T)' is normed and complete, it follows from the closed graph theorem 

that T' E 1'. 

( ~) Suppose T' E 11,. 

By Theorem lII.3.3 , T E l U II and by Theorem III.3.8 , T E 1'. o 
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Theorem ill.3.10 : Let Y be complete. Then T E I ::} T' E 1'. 

Proof: 

Suppose T E I but T' i 1'. 

By Lemma 111.3.7, 3 (y') E D(T')IN s.t. llY'll--+ ro and T'y'---+ 0. n n n 

Since TE I, Vy E Y, y~y---+ 0. 

Thus , Vy E Y, sup I y~y I < ro. 
n 

By Theorem 111.1.6 , s~p llY~ll < ro, a contradiction. D 

Note: If TEI1, and T' Ell3, ,thenthisiswrittenas (T,T')E(I1,,n3,) and 

similar notation is used for the other possible states of ( T, T'). The preceding theorems 

show that certain states for (T,T') cannot occur. These results are summarised in the 

state diagram on the next page where eliminated states are indicated by shaded squares. 

Additional states are eliminated if Y is assumed to be complete. These are indicated by 

placing a Y in the appropriate squares. That the blank spaces can occur is shown by 

means of examples in (Gol2 ; 11.5]. Note that the diagram obtained has the same form as 

that obtained in (Goll ; 11.3.14]. 
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State diagram for linear operators 

- - - - - - -- y y - - - -II - - - -- - - - - - - -- y - - - - - -- - - - - - - - -
. i - - - - - - - -- - .m - - - - - -· 

- - - - - - -
T ___. 

Y : Cannot occur if Y is complete 
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../. St4tes of Closed Linear Operators 

In this section , we obtain the analogues of the results in Section II.4 

of [Gol2] necessary to establish our state diagram for closed linear operators. 

Lemma ID.4.1: T' E 1' ~ r Uy c TBD(T) where r = -
1
- . 

llT' -ill 

Proof: Suppose 3 y E r Uy\ TBD(T)· 

Then 3 y' E Y' s.t. V x E BD(T), ly'Txl < ly'yl so that y' E D(T'). 

Now, r llY'll ~ llT'y'll =sup I y'Txl ~ ly'yl ~ llY'll llYll· 
xEBD(T) . 

Thus , llYll ~ r which contradicts y E r Uy- o 

Lemma ID.4.2: Suppose 3 r > 0 s.t. r Uy c TBD(T) and N(T).1. = D(T)'. 

Then TE 1' and V x E D(T), r llxll ~ llTxll. 

Proof: 

Let x E D(T). 

case(i) : llTxll = 0. 

V n E IN, T(nx) E r Uy-

Thus , V n E IN , 3 zn E BD(T) s.t. T(nx) = Tzn. 

Since N(T)J. = D(T)' , V n E IN, V x' E D(T)' , x'(nx) = x'zn. 

By Proposition II.5.1 , V n E IN , n llxll = llnxll = llznll ~ 1. 

Thus , llxll = 0. 
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case(ii) : l!Txll f. 0. 

Let f E (0,1). 

Then ( 1 - f ) r Tx E r U . 
llTxll y 

Thus , 3 z E BD(T) s.t. (l - f) r Tx = Tz. 
llTxll 

Since N(T).l = D(T)' , V x' E D(T)' , x'(..._(l_-_f_,_)_r_x) = x'z. 
llTxll 

Thus , (1 - f) r llxll = llTxll llzll ~ llTxll. 

Since f was arbitrary , r llxll ~ llTxll. 

Thus, TE 1' and V x E D(T), r llxll ~ llTxll. o 

Theorem ffi.4.3 : Let X be complete , T closed and T' E 1'. Then 

1 
(a) r Uy c TBx where r = --

llT' -ill 

(b) N(T).l = D(T)' :} TE 1' and V x E D(T), r llxll ~ llTxll· 

Proof: Lemmas III.1.2 , III.4.1 and III.4.2 o. 

Corollary ID.4.4: Under the same hypotheses as Theorem III.4.3 , T E I and T is open. 

Theorem ffi.4.5 : Let Y be complete and T closed. If T' continuous , then D(T) is 

closed. If , in addition , X is a Banach space , then 

T.F.A.E. 

Proof: 

(a) T' is continuous. 

(b) T is continuous and D(T) is closed. 

( c) D(T') is closed. 

First assume that T is injective. 
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Let T = (J y t 1TJX and S = T 
1-1• 

l R(T) D(T) 

Then S is closed and S E L(R ( T) ,D ( T)) = L(D ( S ),R ( S ) ). 

By Theorem III.3.3 , S' is injective. 

D(T)' D(S)' D(T)' D(S)' 
By Theorem III.3.5, s'-1 =I (S-1)'1 =I TiI 

D(T)' D(S)' D(T)' D(S)' 

Now , Ti is also continuous so this means that S' E 1'. 

By Corollary III.4.4 , S E I. 

Thus, D ( T) = R(S) = D(T). 

If T is not injective, then T is closed and by Theorem III.3.6 , T' is continuous. 

By the above , D(T) = D(T) 

Thus , D(T) = D ( T ) . 

The rest of the theorem follows from the closed graph theorem. o 

Corollary ill.4.6: T" continuous ¢::::} T' continuous. 

Lemma ill.4. 7 : If T is closed and injective , then X and Y are normed. 

Proof: If T is closed and injective, then {O} = N(T) is closed in X and 

{O} = N(T-1) is closed in Y. 

Note: If X is a reflexive normed space and F is a subspace of X , then 

F is total ¢::::} F = X' (see p 57). Thus, if Y is a reflexive normed space, then T is 

closable ¢::::} D(T') is dense in Y'. 
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Theorem ID.4.8: Let X be semireflexive, T be closed and N{T).L = D(T)'. 

Then R{T') is dense in D{T)'. 

Proof: 

First assume that T is injective. 

By Lemma III.4. 7 , X and Y are normed. 

Let Tl = {J~(T))-1TJX . 
D(T) 

Then R(T') = R(Ti) and Ti is injective. 
D ( T) I 

By Theorem III.3.5, (T1 -
1)' = Ti-1 I 

(D(T))' 

Now D ( T) is reflexive and T1-1 is closed so D((T1-1)') is dense (D ( T) )'. 

Thus, R(T') = R(Ti) = D(Ti-1) is dense in D(T)'. 

If T is not injective , then T is closed and injective. 

Also , X/N(T) is reflexive. 

[Let ([xn]) be a bounded sequence in X/N(T). 

V n E IN, 3 zn E [xn) s.t. llznll < ll[xnJll + 1. 

Since X _is semi-reflexive, (zn) has a convergent subsequence (zn ). 
r 

Clearly , ([xn)) converges in X/N(T).] 

By the preceding argument , R(T') is dense in (D(T) /N(T))'. 

By Theorem III.3.6 , R(T') is dense in N(T).L = D(T)'. o 

Note: 

(i) The state diagram for closed linear operators appears on the following page. 

Note that it has the same form as that obtained in [Goll). 

(ii) For examples of states , see [Gol2 ; II.5). 
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II3, 

II2' 

II1' 

13, 

i 
12' 

T' 
11, 
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State diagram for closed linear operators 

- - - - - II - X-S-c 

- y y - X-S-c - - -X-S-c 

- X-c - X-c X-c - - -- - - - - - - -- y - - - - - -- - - - - - - - -- - - - - - - -- - - - - - - - -- - X-c - - - - -1
1

, 1
2

, 1
3

, n
1

, II2, 113, lil1, IIl2, lII3, 

T --+ 

Y : Cannot occur if Y is complete 

X--c : Cannot occur if X is complete and T is closed 

X-S--c: Cannot occur if X is semirefl.exive and T is closed. 

/ 
" 
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Chapter IV StricUy Singular Operators 

In this chapter , only a brief study of strictly singular operators is made in order to make 

certain results available for the next chapter. For a more indepth study of continuous 

strictly singular operators in normed spaces and their relationship with precompact 

operators , see for example [Gol2 ; III]. Unbounded strictly singular operators in normed 

spaces are dealt with in [Cl] , [C3] , [C4] , [C6] , [C7] , [CLl] and [CL2]. Here we consider 

strictly singular operators in seminormed spaces. 

Throughout this chapter, X and Y are seminormed spaces and TE L(X,Y). 

Definition : A subset A of X is totally bounded iff V E > 0 , 3 finite F c A 

s.t. A ( F + f Bx. 

Definition: T is precompact iff TBx is totally bounded in Y. 

T is compact iff TBx is compact in Y. 

Note: T precompact :::} T continuous. 

We state the following result from [RR; p60] without proof. 

Theorem IV.l : A c X is compact {::} A is totally bounded and A is complete. 
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Proposition IV.2: TE BL(X,Y) , dim R(T) < ro ~ T precompact. 

Proof: 

Suppose T E BL(X, Y) and dim R(T) < ro. 

By Corollary II.3.3 , TBx n R(T) is compact in R(T). 

By Theorem IV.1.1 , TBX n R(T) is totally bounded. 

Since TBx c TBx n R(T) , TBx is totally bounded. o 

Lemma IV.3: Let (Kn) be a sequence of precompact operators with Kn-+ K in 

BL[X,Y). Then K is precompact. ( cf[Gol2 ; III.1.5]) 

.Proof: 

Let c > 0. 

Then 3 NE IN s.t. llKN - Kii < i· 
Since KN is precompact , 3 finite F c Bx s.t. KNBX c KNF + i By. 

Let x E BX. 

Then 3 z E F s.t. llKNx - KNzll ~ i· 
lJKx-Kzll 

~ HKx-KNxll + llKNx- KNzll + llKNz -Kzll 

~ 2 JIK - KNll + llKNx - KNzll 
€ € 

~ 23 + ! = €. 0 

Notation : ..J(X) = { M : M a subspace of X , dimM = ro } 
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Theorem IV.4: Suppose that for every closed finite codimensional subspace M of X , 

TIM t 1'. Then V f > 0, 3M EJ(D(T)) s.t. 

(a) Mn Nx = {O}. 

(b) TIM is precompact. 

(c) llTI Mii ~ f. (cf [Gol2; III.1.9] , [Ka2]) 

Proof: 

Let f > 0. 

Since T t 1', 3 x1 EX s.t. llx111=1 and 11Tx111<3-l f. 

3xi EX' s.t. xix1 = llxill = llx111=1. 

Since codim N(xi) = 1 , 3 x2 E N(xi) s.t. llx211 = 1 and 11Tx211 < 3- 2 
f. 

3 x2 EX' s.t. x2~ = llx211 = llx211 = 1. 

Since codim (N(xi) n N(x2)) < ro, 3 x3 E N(xi) n N(x2) s.t. llx311 = 1 and 

11Tx311 < 3- 3 
f. 

Continuing in this way , sequences (xn) and (x~) are obtained in X and X' 

respectively s.t. : 

n-1 
V n E IN, x~xn = llx~ll = llxnll = 1 and xn E i ~l N(xj). 

n 
Suppose that II }; a.x.11 = 0. 

. 1 1 1 
l= 

n 
Then 0 = x1' ( }; a.x.) = a1. 

. 1 1 1 
l= 

n 
0 = x2' ( }; a.x.) = a,,. . 

. 211 .L: 
l= 

n 
O=x'(ax )=a so}; a.x.=0. 

n n n n i=l 1 1 

Thus, the set {xl'x2, ... } is linearly independant. 

Put M = span {xl'x2,. .. }. Then M E J(D(T)). 

It follows from the above argument that Mn Nx = {O}. 



We now verify that llT I Mii ~ t:. 

m 
Let x = ~ a. x. E M. 

. 1 1 1 
I= 
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It follows by induction that for 1 ~ k ~ m , I ak I ~ 2k - 1 llxll. 

m m . 
1 

. 
Thus , llTxll ~ ~ I a. I llTx.11 ~ ~ 21 

- 3- 1 
f llxll ~ f llxll. 

. 1 1 1 . 1 
I= I= 

We now show that TIM is precompact. 
M . 

V n E IH, define T n : M--+ Y to be T on span {x1, ... ,xn} and 0 on span {xn+l' ... }. 

Then each T~ is linear , has finite dimensional range and is bounded , hence , by 

Proposition IV.2 , is precompact. 

M X Also, T n--+ TJM in BL[M,Y] so by Lemma IV.3, TIM is precompact. o 

Definition: T is strictly singular iff for every subspace M of D(T) we have 

dim M/(MnNx) < ro whenever TIME 1'. 

Note: This definition coincides with the classical one (see [Ka2]) when T is bounded 

and X and Y are Banach spaces. 

The following result is exercise 8 on page 193 of [Will]. 

Lemma IV.5: If M is a finite dimensional subspace of X, then M = M + Nx. 

Proof: 

By Theorem II.3.8, M + Nx is closed so Mc M + Nx. 

Let x E M + Nx. Then 3 m E M , 3 n E Nx s.t. x = m + n. 

Now, llx-mll = llnll = 0 so d(x,M) = 0. 

Thus, x EM. o 
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Lemma IV.6: Bx totally bounded ~ dim X/Nx < m. 

Proof: 

Suppose Bx is totally bounded. 

1 
'l'hen 3 finite F c Bx s.t. Bx c F + 2" Bx· 

Let M =span F. 

·v k E IN ' Bx c M + ~ Bx c M + ~ (M + ~ Bx) = M + i Bx c ... c M + 2- k Bx· 

Thus 'Bx c M so x = M = M + Nx· 

Since dim M < m , dim X/N X < m. o 

Theorem IV.7: T precompact ~ T strictly singular. (cf [Gol; III.1.3]) 

Suppose that T is precompact. 

l~~t M be a subspace of D(T) s.t. TIM E 1'. 

Since T is precompact , TBM is totally bounded in Y. 

Sine~ TI M E 1' , BM is totally bounded in M. 

)3.y L~mma IV;.4 , dim M/MnNX = dim M/NM < m. o 

Lemma IV.8: Let M and E be subspaces of X with codim E < m. Then there is a 

finite dimensional subspace F of X s.t. M = (Mn E) EDF. 

Proof: The map M/MnE-+ X/E: m + Mn E ........... m + E (m EM) is injective. o 

l}efinition : T is partially continuous iff there is a finite codimensional subspace M of 

X s. t. TIM is continuous .. 

(See [C3] , [CL2] and [Lal]) 
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Notation: 11 llT will denote the norm on D(T) defined by llxllT = llxll + llTxll· 

XT will denote (D(T),11 llT). The operator G E L(XT,X) is defined 

by Gx = x (x E XT). 

Lemma IV.9 : T is partially continuous {::::} VE E J(X) , 3 F E J(E) s.t. TI F is 

continuous. (cf [C4]) 

Proof: 

(:}) Suppose T is partially continuous. 

Then there is a finite codimensional subspace E of X s.t. TIE is continuous. 

Let M EJ(X). 

By Lemma IV.8 , 3 a finite dimensional subspace F of X s.t. M = (Mn E) e F. 

Thus , M n E E J(M) and TI MnE is continuous. 

( <=) Suppose VE E J(X) , 3 F E J(E) s.t. TI F is continuous. 

Let E E J(D(T) ). 

Then 3 FE J(E) s.t. TI F is continuous. 

V x E F, llG-1xll = llxll + llTxll ~ (1 + llTIFll) llxll so G-11F is an isomorphism. 

Thus , G has no precompact restriction on any infinite dimensional subspace M 

of its domain satisfying M n Nx = {O}. 
T 

By Theorem IV.4 , there is a closed finite codimensional subspace M of XT 

s.t. GIM El'. 

Thus , TI GM is continuous. 

Let N be such that X = D(T) e N. 

Then codim(GM e N) <co and TI GMeN is continuous. o 
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We now come to the main result of this chapter in which unbounded strictly singular 

operators are characterised. 

Theorem IV.10 [C6]: Let X be a normed space and Y a Banach space. Then 

T.F.A.E. 

Proof: 

(a) :> {b) 

(a) T is an unbounded strictly singular operator. 

{b) There is a continuous strictly singular operator A and an unbounded 

finite rank operator F s.t. T =A + F. 

Suppose T is an unbounded strictly singular operator. 

Then dim D(T) = co and by Theorem IV.4, VF E J(D(T)) , 3M E J{F) 

s.t. TIM is precompact. 

By Lemma IV. 7 , T is partially continuous so 3 a finite codimensional 

subspace E of D{T) s.t. TIE is continuous. 

Since Y is complete , TIE extends to a continuous operator T 1 on E. 

Now , codim E < co so there is a finite dimensional subspace N of D(T) 

s.t. D{T) = E e N. 

Let B = {x1, ... ,xn} be a basis for N. 

For 1 ~ i ~ n, let Ni= span{B\{xi}). 

By Theorem II.3.8 , E + Ni is closed. 

For 1 < i < n, 3 x! E D{T)' s.t. x!x. = 1 and V x E E + N. , x!x = 0. 
- - 1 11 1 1 

n 
Define Q : D{T) -+ D(T) by Qx = ~ x! (x) x .. 

. 1 1 1 
l= 

Then Q is bounded, R{Q) = N and N{Q) = E. 

Let A= T 1{I - Q) and F = T -A. 

Then A and F have the required properties. 



(b):} (a) 
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Suppose T = A + F where A is a bounded strictly singular operator and 

F is an unbounded finite rank operator. 

Let M be a subspace of D(T) s.t. TIM E 1'. 

Then TI MnN(F) = A I MnN(F) has a bounded inverse. 

Since A is strictly singular , dim(M n N(F)) < CD. (D(T) c D(A)) 

Now , dimD(F)/N(F) = dimR(F) <CD. (F : D(F)/N(F)---+ R(F) is bijective) 

Since D(T) c D(F) , this means that dim M < CD. 

Thus , T is strictly singular. 

Since A is bounded and F is unbounded , T is unbounded. o 

Corollary IV.11 : T strictly singular => T partially continuous. 
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Chapter V Operators with Closed Range 

In this chapter , operators with closed range are studied and again the emphasis is on 

generalising results in [Gol ; IV] to seminormed spaces. At the end of the chapter a partial 

generalisation of an important stability result of Kato to unbounded strictly singular 

operators is presented. 

Note that a number of results in this chapter which are proved in the setting of Banach 

spaces in [Gol; IV] have been generalised to normed spaces in [La2]. 

Throughout this chapter, X and Y are seminormed spaces and TE L(X,Y). 
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1. The Minimum Modv.lv.s of T 

Lemma V.1.1: Let X and Y be complete and T closed. Then 

T has a continuous inverse <=> T is injective and R(T) is closed. (cf [Gol; IV.1.1]) 

Proof: 

(~) Suppose T E 1. 

Then T is injective. 

Let y ER ( T). 

Then 3 (yn) E R(T)IH s.t. Yn ~ y. 

V m, n E IN, l1T-1yn - T-1Ym11 ~ l1T-11111Yn-Ym11· 

Thus, (T-1yn) is a Cauchy sequence in X. 

Since X is complete, 3 x EX s.t. T-1yn ~ x. 

Since T is closed , T-1 is also closed. 

Thus , y E D(T~1) = R(T). 

( ¢:) Suppose T is injective and R(T) is closed. 

By Lemma III.4. 7 , Y is normed. 

Since R(T) is closed, D(T-1) = R(T) is complete. 

Thus , by the closed graph theorem , T-1 is continuous. o 



84 

Theorem V.1.2: Let X and Y be complete and T closed. Then 

T.F.A.E. 

Proof: 

(a)~(b) 

(a):) (c) 

(c):) (d) 

(d):) (a) 

(a) R(T) is closed. 

(b) R(T) = N(T') i· 

(c) . R(T') = N(T)i. 

(d) R(T') is closed. (cf [Gol; IV.1.2]) 

Theorem III.3.3. 

Suppose R(T) is closed. 

Then R(T) is closed so by Lemma V.1.1 , TE 1. 

By Theorem III.3.8 , T' EI. 

By Theorem III.3.6, R(T') = N(T)i. 

Clear. 

Suppose R(T') is closed. 

Let Tl = (J y )-1T . 
R(T) 

Then T 1 is closed. 

We now show that T 1 is surjective. 

By Theorem III.3.3 , Ti is injective. 

Now R(Ti) = R(T') which is closed. 

By Lemma V.1.1 , Ti E 1. 

By Corollary III.4.4 , T 1 E I. 

i.e. R(T) = R(T 1) = R ( T). o 
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Definition : The minimum modulus of T is 

'Y(T) = sup{ 'Y .~ 0 : V x E D(T) , l!Txll ~ 'Y d(x,N(T)) }. 

Note: 

(i) This generalises the definition in [Gol 2]. 

(ii) 'Y(T) = ro {::::} N ( T) n D(T) = D(T). 

(iii) 'Y(T) = 'Y(T). 

(iv) 'Y(T) > 0 {::::} T E 1. 

(v) 0 < 1(T) < ro => llT-111 = -
1 

· 
'Y(T) 

T E 1 ' 11±-
1

11 * 0 ::} 'Y(T) = A 

1 

llT- 111 

Definition : T is relatively open iff ( J x(T))-1T is open. 

Theorem V.1.3 : 1(T) > 0 {::::} T is relatively open. (cf [La2]) 

Proof: 

(=>) Suppose 1(T) > 0. 

Then 3 'Y > 0 s.t. V x E D(T) , llTxll ~ 'Y ll[x]ll· 

We now show that 'Y UR(T) c TBD(T)· 

Let y E 'Y UR(T)· 

Then 3 x E D(T) s.t. y = Tx. 

If ll[x]ll ~ 1 , then llTxll ~ 'Y ll[x]ll ~ 'Y a contradiction. 

Thus, ll[x]ll < 1 so y E TUD(T)/N(T)· 
A A x 

Thus , 'Y UR(T) c TUD(T)/N(T) c TQN(T)BD(T) = TBD(T)· . 

.. 
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( <=) Suppose T is relatively open. 

Then 3 'Y > 0 s.t. 'Y UR(T) c TBD(T)· 

Let x E D(T). 

case (i) : llTxll = 0. 

V n E IN , llT(n x)ll = 0 so T(n x) E 'Y UR(T)" 

Thus , V n E IN , 3 zn E BD(T) s.t. T(n x) = Tzn. 

V n E IN, n ll[x]ll = ll[n x]ll = ll[zn]ll ~ llznll ~ 1 so ll[x]ll = 0. 

case (ii) : llTxll :/: 0. 

Let f E (0,1). Then 

(l - f) 1 Tx E 'YUR(T) so 3 z E BD(T) s.t. T((l - £) 'Y x) = Tz. 
llTxll llTxll . 

Thus , 11[(1 - f) 'Y x]ll = ll[z]ll ~ llzll ~ 1 so (1 - £) 'Y ll[x]ll ~ llTxll. 
l!Txll 

Since f was arbitrary, 1 ll[x]ll ~ llTxll. 

Thus , 'Y(T) ~ 1 > 0. o 

Corollary V.1.4 : Y normed , dim R(T) < ro => 'Y(T) > 0. 

Tl\e. :µext result generalises [Jam ; 20.2] to seminormed spaces and provides an alternative 

Theorem V.1.5 : N(T) closed , dim R(T) < ro => T continuous. 

Proof: 

Suppose N(T) is closed and dim R(T) < ro. 

Then dim R(T) < ro. 

Since T is injective , dim D(T) < ro. 

Since N(T) is closed , X/N(T) is normed. 

By Theorem Il.3.9 , T is continuous. 

Thus , T is continuous. o 
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The next result follows from Lemma V.1.1 and (iv) of the remark on page 85. 

Theorem V.1.6: Let X and Y be complete and T closed. Then 

R(T) is closed ~ r(T) > 0. (cf [Gol2 ; IV.1.6]) 

Theorem V.1.7: Let N(T) and R(T) be closed and let r(T) > 0. Then 

T is closed. 

Proof: 

Let (xn) be a sequence in D(T) s.t. xn--+ x and Tx--+ y. 

Since R(T) is closed, 3 z E D(T) s.t. y = Tz. 

Since 'Y(T) > 0, 3 'Y > 0 s.t. V x E D(T) , llTxll ~ 'Y ll[x]ll. 

'Y ll[x - z]ll ~ 'Y ll[x - xnJll + 'Y ll[xn - z)ll ~ 'Y llx - xnll + llTxn - Yll --+ 0. 

Thus , x - z E N ( T ) = N(T) so x E D(T) and y = Tz = Tx. o 

The next result generalises [Gol2 ; IV.1.8] ; in particular , N(T) is not required to be 

closed. 

Theorem V.1.8 : 'Y(T) > 0 => r(T) = 'Y(T') and R(T') is closed. (cf [La2 ; 2. 7)) 

Proof: 

Suppose r(T) > 0. 

case (i) : 'Y(T) = CD. 

Then N ( T ) n D(T) = D(T). 

Vy' E D(T'), y'T[N(T)) = {O} so y'T = 0. 

Thus, T' = 0 so 'Y(T') = CD. 
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case (ii) : 'Y(T) < m. 

Let Tl = (J~(T))-1TJ~(T): 
Then 'Y(T1) = 'Y(T) > 0 so T1 E11. 

By Theorem 111.3.9, Ti E 11. 

Y' /R(T).l 
From Y' /N(T') = Y' /R(T).l =I R(T)' it follows that 

R(T) I 

D((T')A):: D(Ti) where for [y'] E D((T')A), the corresponding element in 

D(Ti) is yR(T)" 

Vy' E D(T'), V x E D(T), y'T[x] = YR(T)T1[x] so 

Vy' E D(T'), llT'y'll = llTiyR(T)ll• 

By Theorem 111.3.6 , Vy' E D(T') , llT'y' II = llTiYR(T)ll· 

By Theorem 111.3.5 , (T 1-1)' = (Tit1• 

Thus, ll(Tit111 = ll(Ti 1
)' II = 11Ti111· 

'Y(T') =sup{ 'Y ~ 0: Vy' E D(T') , llT'y' II ~ .'Y ll[y']ll } 

=sup{ 'Y ~ 0: Vy' E D(Ti), llTiy'll ~ 'Y llY'll} 
1 1 A 

= -ll(T-A l-)--111 = llT 1 -111 = 'Y(T 1) = 'Y(T 1) = 'Y(T). 0 

Corollary V.1.9 : Let X and Y be complete and T closed. Then 

'Y(T) = 'Y(T'). (cf (Gol2; IV.1.9]) 

Proof: 

If 'Y(T) > 0 , then the result follows from the preceding theorem. 

Otherwise , it follows from Theorems V.1.2 and V.1.6 that 

'Y(T) = 0 ~ R(T) is not closed ~ R(T') is not closed ~ 'Y(T') = 0. a 
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Theorem V.1.10: Let X and Y be complete and T dosed. If T maps closed 

bounded subsets of X onto closed subsets of Y, then R(T) is closed. If dimN(T) <co, 

then the converse also holds. (cf [Gol2 ; IV.1.10]) 

Proof: 

Suppose T maps closed bounded sets onto closed sets but that R(T) is not closed. 

Then '}{T) = 0 so 3 (xn) E D(T)IN s.t. V n E IN , ll[xn]ll = 1 and Txn-+ 0. 

Let (zn) be a sequence (in D(T)) s.t. V n E IN, zn E [xn] and llznll ~ 2. 

case (i) : (zn) has no convergent subsequence. 

Then { zn : n e IN } is closed and bounded. 

By the assumption , { Tzn : n e IN } is closed. 

Since Tzn = Txn-+ 0 , this means that 3 n s.t. Tzn = 0. 

Thus , II [xn]ll = II [zn]ll = 0 which contradicts the fact that II [xn]ll = 1. 

case (ii) : (zn) has a convergent subsequence (zn ) with limit z. 
r 

Since Tzn -+ 0 , Tznr -+ 0 · 

Since T is closed, z e D(T) and Tz = 0. 

Thus , [xn ] = [zn ] -+ [O] which is also a contradiction. 
r r 

Thus , R(T) is closed. 

Now suppose dim N(T) < co and R(T) is closed. 

Let S be a closed , bounded subset of X and let y e T S . 

Then there is a sequence (xn) in S n D(T) s.t. Txn-+ y. 

Since R(T) is closed, 3 x E D(T) s.t. Tx = y. 

Also , TE 1 (Lemma V.1.1) so [xn] = ±-1Txn-+ [x]. 

IN 
Now , 3 (zn) E N(T) s.t. xn + zn-+ x. 

Since (xn) is bounded , this means that (zn) is bounded. 

Since dim N(T) < co, (zn) has a convergent subsequence (zn) with limit z E N(T). 

Now, xnr-+ x - z E Sn D(T). (Sis closed.) 

Thus, y = Tx = T(x--z) E TS. a 
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2. Normally Solvable Operators 

Definition : T is normally solvable iff T is closed and R(T) is closed. 

Lemma V.2.1: Let X and Y be complete and T normally solvable. If M is a 

subspace of X s.t. M + N(T) is closed, then TM is closed. 

in particular, if M is closed and dimN(T) < oo, then TM is closed. (cf [Gol; IV.2.9]) 

Proof: Suppose M is a subspace of X s.t. M + N(T) is closed. 

Let Tl= Tln(T) n (M + N(T))• 

Then T
1 

is closed and N(T1) = N(T). 

Thus , ;(T 
1
) ~ 1(T) > 0 so R(T 1) is closed (Theorem V.1.6). 

i.e. TM is closed. o 

Theorem V.2.2 : Let X and Y be complete , T normally solvable , dim N(T) < oo , Z 

a seminormed space and BE L(Z,X). Then 

(a.) B closed :} TB closed. 

(b) B normally solvable :} TB normally solvable. 

Proof: 

(a) Suppose B is closed .. 

Let (zn) be a sequence in D(TB) s.t. zn --1 z and TBzn --1 y. 

Since T is normally solvable , ;(T) > 0 so ([Bzn]) is a Cauchy sequence in 

D(T)/N(T). 

Since X/N(T) is complete , 3 x E X s.t. [Bzn] --1 [x]. 

IN Also, 3 (xn) E N(T) s.t. Bzn + xn --1 x. 



We now show that (xn) is bounded. 

Suppose (xn) is unbounded. 
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Then (xn) has a subsequence (xn') s.t. llxn' II -i ro. 

Bz , + x , 
Note that n n -i O. 

llxn / II 
X I 

Since ( n ) is a bounded sequence in the finite dimensional seminormed 
llxn'll 

X II 

space N(T) , (xn') has a subsequence (xn") s.t. n -iv for some v E N(T). 
1lxn11 11 

Bz ,, 
n Now, -i-V 

llxn"ll 

Zn" 
and ---i 0. 

llxn"ll 

Since B is closed , - v = BO = 0 which is impossible as llvll = 1. 

Thus , (xn) is bounded. 

Since dim N(T) < ro , (xn) has a convergent subsequence (xn ) with limit 
r 

w E N(T). 

Now, Bznr -iX-w. 

Since B is closed , z E D(B) and x - w = Bz. 

Since T is closed and TBznr -i y, Bz E D(T) and TBz = y. 

Thus , TB is closed. 

(b) . If BZ is closed, then by Lemma V.2.1 R(TB) = TBZ is closed. o 

For the remainder of this chapter , X and Y are normed. 

The proof of the following portion of a perturbation result due to Kato[Ka2] can be found 

in [Gal; V.2.1]. 

Theorem V.2.3: Let X and Y be complete and T normally solvable with 

dim N(T) < co. If B is a continuous strictly singular operator with D(T) c D(B) , 

then T + B is normally solvable and dim N(T + B) < ro. 
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We now generalise this partially to include unbounded strictly singular operators. 

Theorem V.2.4: Let X and Y be complete, T normally solvable with dim N(T) < ro. 

If B is an unbounded strictly singular operator with D(T) c D(B) , then 

(a) dim N(T + B) < ro. 

(b) 3 a finite codimensional subspace N of D(T) and a normally solvable operator S 

s.t. D(S) = D(T) and SIN = (T + B) IN' (i.e. T + B is "almost" normally solvable.) 

Proof: 

(a) By Theorem IV.10 , there is a continuous strictly singular operator A and an 
.. 

unbounded finite rank operator F s.t. B = A + F. 

By Theorem V.2.3, T + A is normally solvable with dim N(T + A)< ro. 

Now , N(T + A + F) c D(F) and dim D(F)/N(F) < ro so by Lemma IV.6 , there 

is a finite dimensional subspace M of D(F) s.t. 

N(T + A + F) = N(T + A + F) n N(F) e M = N(T + A) e M. 

Thus , dim N(T + A + F) < ro. 

(b) As already noted , T + A is normally solvable. 

Examination of the construction in Theorem IV.10 shows that D(T) = D(F). 

Thus , dim D(T)/N(F) = dim D(F)/N(F) = dim R(F) < ro. 

Finally, (T + A) I N(F) = (T + B) I N(F)· o 

j 
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Chapter VI Operators analagou.s to Weakly Compact Operators 

Very little seems to be known about the second adjoint of an arbitrary linear operator. A 

recent paper in which the second adjoint is studied is (C2) which deals with operators of the 

'):.'a.uberian type. This chapter is , therefore , to be seen in the light of a broader study of 

~he second adjoint of a linear operator. 

In the classical case , if X and Y are Banach spaces and T E BL(X, Y) , then T is 

weakly compact iff TBx is O"(Y,Y') compact. In this case , the following 

characterisation is obtained (see (Con) or (DS) or (HP]) : 

T.F.A.E. (a) T is weakly compact. 

(b) T' is weakly compact. 

( c) T' is O"(Y' ,Y)-O"(X' ,X") continuous. 

( d) T" X" ( Y. 

The purpose of this chapter is to characterise those operators (not necessarily bounded) for 

which a property corresponding to ( d) holds. 

Fo~ the remainder of this chapter, X and Y are seminormed spaces and TE L(X,Y). 

The following notations will be used : 

D(T I) I Y" 
I= I Q = QD(T').i. 

Y" /D(T').i. 

Note that Vy" E Y" , IQy" = y" J~(T' )· 

The author believes all the results in this chapter to be his own. 
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We first prove a few properties of T". 

Proposition VI.I : 

(a) T"JD(T) = IQJyT. 

(b) Corresponding to a fixed T, T" is the only o{D(T"),D(T)')-u(D(T')' ,D(T')) 

continuous operator from D(T") into D(T')' satisfying (a). 

Proof: 

(a) V x E D(T), Vy' E D(T') , xT' y' = y'Tx = (Tx( y' = IQ(Tx( y'. 

Thus , D(T). c D(T") and T" JD(T) = IQJyT. 

(b) By Theorem III.2.4, T" is u(D(T"),D(T)')-u(D(T')' ,D(T')) continuous. 

Suppose that S: D(T")-+ D(T')' is a u(D(T"),D(T)')-u(D(T')' ,D(T')) 

continuous operator satisfying SJD(T) = IQJyT. 

Let x" E D(T"). 

By Goldstine's theorem , 3 a net (x
0

) in D(T) s.t. xa--+ x" w.r.t. 

u(D(T)" ,D(T)' ). 

By assumption, Sxa--+ Sx" w.r.t. u(D(T' )' ,D(T' )). 

Thus, Sx" = lim Sx = lim IQ(Tx ). = lim T"x = T"x". o a a a a · a a 

· . u(D(T')' ,D(T')) 
Proposition VI.2: T"Bn(T") c IQ(TBD(T)) 

Proof: Let x" E BD(T")· 

By Goldstine's theorem , 3 a net (xa) in BD(T) s.t. xa--+ x" 

w.r.t. u(D(T)" ,D(T)' ). 

Since T" is u(D(T"),D(T)')-u(D(T')' ,D(T')) continuous, 

• . u(D(T' )' ,D(T')) 
T" x" = li m T" x = li m IQ(Tx ) IQ(TB ) o 

a a a a E D(T) 
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Proposition Vl.3 : Let Y c E c Y". Then 

T"D(T11
) c IQE <=? T' is cr(D(T' ),E)-cr(D(T)' ,D(T")) continuous. 

Proof: 

(~) Suppose T 11 D(T11 ) c IQE. 

Let (y~) be a net in D(T') s.t. y~-+ y' w.r.t. cr(D(T'),E). 

Let x11 
E D(T11 ). 

By assumption , 3 y11 
E E s.t. T 11 

x
11 = IQy11

• 

II TI I T" II I II I 1 . II I i · T" II I 1 . II T I , x y = xy =yy = 1myya= 1m xy = 1mx y. 
a a a a a 

Thus, T'y~-+ T'y' w.r.t. a(D(T)' ,D(T11 )). 

( {:) Suppose T' is cr(D(T' ),E)-cr(D(T)' ,D(T11

)) continuous. 

Let x
11 

E BD(T11) . 

. By assumption, 3 finite F c E s.t. F 
0 

c T' -1[{x
11

} 
0

) (see p18). 

We now show that n k er(z') c ker(T
11

x
11

). 

z' EIQF 

Let y' E D(T')\ker(T11x11

). 

2 , 
Put w' = _ __.Y_ 

T 11 x11 y' 

Then I x11T' w' I = 2 > 1 so T' w' ¢ {x
11

} 
0

. 

Thus, w' ¢ T' -1[{x11
} ] J F J n ker(y11

). 

o o y11 EF 

Thus, y' ¢ n ker(y11
) so 3 y11 

E F s.t. y
11

y' :/= 0. 
y11 EF · 

Since y' E D(T'), this means that IQy11 y' :/= 0. 

By Lemma 1.5.3 , T 11 x11 
E spanIQF C IQE. o 

Definition : A subset of a topological space is relatively compact iff every net in the set 

has a convergent subnet. 
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Proposition VI.4: J,et Y c E cY". 

(a) (TBD(T)) relatively o-(E,D(T' )) compact ~ T"D(T") c IQE. 

{b) If T' is continuous , then 

(TBD(T)) A relatively a(E,D(T' )) compact {::::} T"D(T") c IQE. 

Proof: 

(a) Suppose (TBD(T)) is relatively a(E,D(T')) compact. 

Let x" E BD(T")· 

By Proposition Vl.2, 3 a net (xo:) in BD(T) s.t. IQ(Txo:) A --1 T"x" w.r.t. 

o-{D(T')' ,D(T')). 

Since (TBD(T)f is relatively a(E,D{T')) compact , (x
0

) has a subnet (xa.{3) 

s.t. (Tx )A --1y" w.r.t. a(E,D(T')) for some y" EE. 
a.{3 

Now, IQ(Tx f ---+ IQy" w.r.t. a(D(T' )' ,D(T' )). 
a.{3 

Since IQ(Tx f --1 T"x" w.r.t. a(D(T')' ,D(T')) and a(D(T')' ,D(T')) is 
a.{3 

Hausdorff , T" x" = IQy" E IQE. 

{b) Suppose T' is continuous and T"D(T") c IQE. 

Then D(T") = D(T)". 

Let (xo:) be a net in BD(T)· 

Then (xo:) is a net in BD(T") = BD(T)"· 

Since BD(T)" is a(D(T)" ,D(T)') compact , (xa.) has a subnet 

X.a.{3 --1 x" w.r.t. a(D(T)" ,D(T)') for som~ x" E BD(T)"· 

Since T"D(T") c IQE , 3 y" E E s.t. T" x" = IQy". 

Now T"x --1 T"x" w.r.t. o-{D(T')' ,D(T')). 
0:{3 

(x ) s.t. 
a.{3 

V,y' E D(T') , y"y' = IQy"y' = lim (T"x )y' = lim (Tx ) A y'. 
{3 a: {3 {3 a {3 

Thus, (Txa. f---+ y" w.r.t. o-{E;D(T')). o 
{3 
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Definition: 11 lln(T') is defined on Y" by llY"lln(T') =sup { ly"y' I : y' E BD(T') }. 

Note: (i) 11 lln(T') is a seminorm on Y". 

(ii) Vy" E Y" , llY"lln(T') ~ llY"ll 

Notation: Let E be a subspace of Y" and F a subspace of Y'. 

ED(T') will denote the closure of E w.r.t. the D(T') seminorm. 

FA I E will denote the set { (y' f I E : y' E F } . 

ED(T') will denote E equipped with the D(T') seminorm restricted to E. 

Proposition VI.5: Let E be a subspace of Y". Then (D ( T' ) ) A IE c (ED(T' )) '. 

Proof: 

Let y' E D(T' )\{O}. 

Then 3 (y') E D(T')IN s.t. y' --i y' and V n E IN, y' :/= 0. n . n n 
. I 

I A y 
Vy" E Y", lfL.l y"I = lim ly"(~ )I~ llY"lln(T')· 

lly' II n llY~ll 

Thus , Vy" e E, I (y' f y" I ~ llY' 11 llY"lln(T') so (y'f IE e (ED(T' ))'. o 

Proposition VI.6 : Let Y c E c Y". 

(a) D(T') A IE = (ED(T' ))' ::} T' is continuous. 

(b) 
A -:-D(T') A 

If Y c E c Y , then D(T') IE = (ED(T, ))' {:::) T' is continuous. 

Proof: 

(a) Suppose D(T'f IE= (ED(T'))'. 

By Proposition Vl.5, D(T'f IE= D ( T' ) A IE· 

Since Y c E, D(T') = D ( T' ) so T' is continuous. (Theorem Ill.2.8) 
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(b) Suppose Y c E c Y" and T' is continuous .. 

Let z' E (ED(T' )) '. 

Define .. y' : Y--+ IF by y' y-= z' y (y-E Y). 

v y E y ' I y I y I = I z I y I ~ II z I II II y II D (TI ) ~ II z I II 11 y II = II z I II II y II so y I E y I • 

V x E D(T), ly'Txl ~ llz'll ll(Txflln(T') = llz'll. ~up I y'Txl ~ llz'll llT'll llxll 
. y EBD(T') 

so y'ED(T'). 

Let y" EE. 

By assumption, 3 (yn) E Y s.t. llYn -y"lln(T') --1 0. 
N ,, , r , r /A , ,, 

ow , y y = ~ m y y n = ~ m z y n = z y . 

Thus, z' = (y') IEE D(T')A IE" o 

A 7D(T') 
Corollary VI.7: Let Y c E c Y . and let T' be continuous. Then BD(T') is 

u(D(T' ),E) compact. 

Proof: 

By Proposition Vl.6 , (ED(T' ))' = D(T' f IE· 

We first show that B(E )' = (BD(T')f IE· 
D(T') 

Let :z,/ E B(ED(T')r· 

Then llz'll ~ 1 and 3 y' E D(T') s.t. z' = (y') IE· 

Let y E By 

Then llY'lln(T') ~ 1 so ly'yl = lz'yl ~ 1. 

Thus, y' E BD(T')· 

Let z' E (BD(T'))A IE· Then 3 y' E BD(T') s.t. z' = (y') IE· 

Vy" EBE , lz'y"I = ly"y' I~ 1 so llz'll ~ 1. 
D(T') 

Thus , B(E )' = (BD(T, )) A IE· 
D(T') 

By the Banach-Alaoglu theorem , B(ED(T' ))' is u((ED(T' ))' ,ED(T' )) compact. 

From the preceding discussion, BD(T') is u(D(T'),E) compact. o 
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A 7D(T') 
Corollary VI.8: Let Y c E c Y and let T' be continuous (so D(T11 ) = D(T)"). 

If T' is a(D(T'),E)-a(D(T)' ,D(T
11

)) continuous, then T'Bn(T') is a(D(T)' ,D(T)") 

compact. 

7D(T') 
Proposition VI.9: Let E = Y and T' be continuous. 

If T'Bn(T') is a(D(T)' ,D(T)") compact, then (TBD(T)) is relatively a(E,D(T')) 

compact. 

Proof: 

Suppose T' BD(T') is a(D(T)' ,D(T)") compact. 

Let S = T' and E1 = (D(T)') ·. 

By Proposition VI.4 , S11 D(S11

) c IQE1 , where I and Q have the appropriate meanings. 

By Proposition VI.3 , S / is a(D(S' ),E1)-a(D(S)' ,D(S
11

)) continuous. 

S is continuous so S' is continuous. 

By Corollary VI.8 , S' BD(S,) is a(D(S)' ,D(S)
11
) compact. 

i.e. T 11 BD(T11) is a(D(T' )' ,D(T' )
11

) compact . 

. Let (x0) be a net in BD(T)· 

Then 3 a subnet (xaf) of (xa) , 3 x
11 

E BD(T11) s.t. 

T 11x -+T 11 x 11 w.r.t. a(D(T')',D(T')"). 
a/3 

-. a(D(T')' ,D(T')") -. . 
Now, T 11 x11 E IQY = IQY so 3 (yn) E ylN s.t. IQyn-+ T

11

x
11

• 

B h H hn B h h 3 II y11 IQ II 11JY

1 

Tll II y t e a - anac t eorem , y E s. t. y = y D ( T') = x . 

llYn -Y
11

lln(T') = ~up I y'yn -Y
11

Y
1 I = llIQyn - IQy

11
ll-+ 0. 

y EBD(T') 

Thus , y11 E E. 

Vy' E D(T'), y 11 y' = T 11 x11
y

1 = lim (·Tx f y' so (Tx ) -+ y 11 w.r.t. a(E,D(T')). 
{3 ap ap 

Thus, (TBD(T)) • is relatively a(E,D(T')) compact. o 
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7 D(T') 
Proposition VI.10: Let E = Y and let T' be continuous. Then 

T.F.A.E. (a) (TBD(T)f is relatively o"(E,D(T')) compact. 

(b) T"D(T") c IQE. 

(c) 

(d) 

T' is a(D(T' ),E)-a(D(T)' ,D(T)") continuous. 

T'Bn(T') is a(D(T)' ,D(T)") compact. 

A -:--D(T') 
Corollary VI.11 : Let T' be continuous. If Y = Y , then 

T.F.A.E. (a) TBD(T) is relatively a(Y,D(T')) compact. 

(b) T"D(T") c IQY. 

( c) T' is a(D(T' ),Y)-a(D(T)' ,D(T)") continuous. 

(d) T'Bn(T') is a(D(T)' ,D(T)") compact. 

Note: Condition ( d) in the preceding two results is exactly the requirement for T' to 

be weakly compact. Thus , Theorem VI.10 and Corollary VI.11 provide characterisations 

of operators with weakly compact adjoints. 

It is well known that in the setting of Banach spaces a continuous operator is weakly 

compact if either the domain space or the range space are relexive. Also , if Y is 

A -:--D(T') 
semire:flexive , then Y = Y and by Theorem II.5. 7 Y' is reflexive. 

Thus , we obtain : 

Proposition VI.12: Let Y be semireflexive and T' continuous. Then 

(a) T' is weakly compact. 

(b) TBD(T) is relatively a(Y,D(T')) compact. 

(c) R(T") c IQY. 

(d) T' is o"(D(T'),Y)-a(D(T)' ,D(T)") continuous. 
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