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Synopsis

Introduction

Chaotic systems may be defined as those whose behaviour is sensitively de-
pendent on initial conditions. Such systems may be made periodic using small
input perturbations, as proposed in [OGY90]; this is called Ott-Grebogi-
Yorke (OGY) chaos control. The original method used a linear model for
controller design; a later development of chaos control was [CCdF99], in
which a polynomial model is used. This dissertation proposes using local
Taylor polynomial models as a basis for chaos control.

Chaos control

Chaotic systems are deterministic, but are very sensitive to initial conditions
and often appear to be random. State trajectories of chaotic systems tend
asymptotically to a chaotic attractor, a complex region in state space. The
attractor is ergodic, which means that a single trajectory will eventually
cover the entire attractor; attractors also have embedded unstable periodic
orbits (UPQ’s), which are stabilised by chaos control.

OGY control relies on these two properties. The chaotic system is linearly
modelled in the region about a UPQO, and a linear feedback controller is
designed from this model. The control algorithm is to do nothing until the
state trajectory enters a small neighbourhood of the UPO; at this point the
linear controller is activated, the UPO is stabilised and the system becomes
periodic. Control may be achieved with very small perturbations, but the
more constrained the input the smaller the stabilisable region and the longer
the pre-stabilisation waif. Once the system is stabilised, noise may make the
state vector appear to be outside the stabilisable region causing bursts of
chaotic behaviour.

The location of the UPO and the associated linear model may be found
by analysis of experimental data; thus OGY control is viable even if no other
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model of the system is available. A fairly large amount of low-noise data is
required for model fitting.

Only a scalar output from the system is necessary for modelling and
control if delay space reconstruction is used. In this case, the model must
take into account past input values, as the mapping between delay space and
state space is dependent on the system input.

Instead of a linear model, a polynomial model may be fitted. A poly-
nomial model of form z(i + 1) = Z;‘;O(aj — bjz(i — j))x(i — j) is used in
[CCdF99] as a global model for chaos control.

Chaotic trajectories may be targeted at the stabilisable region to shorten
the pre-stabilisation wait; for a given range of input values a region of reach-
able states can be predicted by forward iterating a model of the chaotic map
from the current state; similarly, for a given target region a range of states
which will reach the target can be found by reverse-iterating the model from
the target region. The input value corresponding to the intersection of these
two regions is used for targeting.

The stabilisable region about the UPO may be estimated using a Lya-
punov function V{ax) based on the linear model of the map; however, the
Lyapunov difference is computed using a non-linear model of the map. The
stabilisable region is estimated by finding the minimum Vi, = V(z) such
that AV (x) > 0; the corresponding level curve is the boundary of the sta-
bilisable region.

Chaos control has been applied to a number of experimental systems by
other researchers; examples are

1. stabilising 1- and 2-periodic orbits in a chaotically vibrating magneto-
elastic ribbon

2. Laminarising thermally induced turbulent fluid flow

3. stabilising many different (up to 23-periodic) orbits of a chaotic diode
resonator circuit

4. controlling cardiac arrhythmia in rabbit heart tissue
5. stabilising 1- and 2-periodic orbits in an chaotic electrochemical cell

6. stabilising a fixed point of a double-linked pendulum

Local polynomial models and controllers

A chaotic map may be approximated about a point y. by g(y(i)) = Z¢,(y(i)—
Y. ), where vector y combines state and input, matrix Z is a matrix of Taylor
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coefficients and ¢, is a polynomial evaluation function. Given a UPO z(j),
a Tavlor approximation can be found for each point of the UPO giving a
sequence of coefficient matrices Z(j).

The UPO z(y) and associated coefficients Z(j) may either be solved for
directly if g is explicitly known, or may be discovered by analysing chaotic
data produced by the map.

Chaotic data yield UPO’s through the method of recurrent points, in
which almost periodic points {(m, §) points) are detected in the chaotic data;
each cluster of (m,d) points corresponds to a periodic point. The coefficients
associated with each periodic point are found by fitting the model to its
associated cluster of (m,d) points. The fitting occurs in two stages; in the
first, the coeflicients of those terms involving state components only are found
from chaotic data produced when the map is unperturbed; in the second
stage the remaining coeflicients are found from chaotic data produced when
the map is perturbed by a small random input.

A linear feedback controller can be designed from the fitted polynomial
model; the controller is based only on the linear terms of the model. When
designing the controller the state vector and past input values together form
an augmented state space; additionally, the periodic nature of the system
must be taken into account when designing the controller.

The full polynomial model can be used in an optimising controller, which
chooses an input value which minimises the predicted future distance of the
state vector from the UPO. Control is only attempted when the state vector
is relatively close to the UPO.

Chaos control of the driven pendulum

The dimensionless driven pendulum is defined by @ = wy = sin{wy) —
bwy + asin(wt), which has a chaotic regime. The system was controlled in
simulation, and control of an experimental pendulum system was attempted.

The input was deviation to driving amplitude ¢ and output was rotational
velocity ws; both are sampled with period 7' = 27 /w, in phase with the
driving signal, to give an implicit map g. In both simulation and experiment
a 2-dimensional delay space was used.

In simulation linear feedback and optimising chaos controllers successfully
stabilised the chosen 1-periodic UPO.

Simulation performance comparisons revealed that constraining the input
value degraded both performance {in terms of mean time to stabilisation)
and noise robustness. For constrained input values, a second degree poly-
nomial model optimising controller performed better than a linear feedback
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controller and a linear model optimising controller.

The experimental system could not stabilised; further observation of the
system revealed low noise levels and, relative to the noise, large parame-
ter variations. When similar noise and parameter variations were applied
to the simulated system, the modelling process failed, indicating that the
experimental system was uncontrollable by the method described in this dis-
sertation.

Conclusions
The following conclusions were reached:

1. Chaos control can stabilise unstable periodic orbits (UPO’s) using small
input perturbations.

2. Local polynomial models can be used in simulation for chaos control.

3. Chaos control performance in simulation is dependent on the constraint
on system input.

4. Modelling of the driven pendulum for chaos control is very sensitive to
measurement noise and parameter variation
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Notation

The notation used generally follows control engineering convention:

scalars and scalar-valued functions
vectors and vector-valued functions
sets of vectors and scalars

Matrices

VIR

m iterations of a function g will be denoted

¥ N
m times m times

9"y =gogo---oglz)=glg(-- g(z)--))

Although it is conventional to denote functions of discrete time as ;, the
notation z(¢) has been used instead; this is to prevent confusion with vector
component subscripts and exponent superscripts.
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Chapter 1

Introduction to chaos control

The control of chaotic systems using constrained system inputs was first
proposed in [OGY90]; since then Ott-Grebogi-Yorke (OGY) and other types
of chaos control have been applied to many experimental systems.

The simplest type of chaos control is to ensure that the operating point
of the system is not within a chaotic regime; however, this may not always
be possible. OGY control can be used when a system to be controlled is
nominally chaotic, and the input is constrained so that moving out of the
chaotic regime is not possible.

The result of OGY control is stabilisation of an unstable periodic or-
bit embedded within the chaotic attractor; this stabilisation may be done
with small input perturbations. The original OGY method used a local
linear model for controller design; in [CCdF99] a global polynomial model
is proposed. This dissertation presents results of using a different form of
polynomial model as a local approximation of the chaotic system.

This chapter touches briefly on properties of chaotic systems, and goes
on to discuss OGY control and some of its developments; the chapter ends
with a number of examples of published experimental applications of chaos
control.

Chapter 2 explains how chaotic systems may be locally modelled using
multivariate polynomials, and gives a method of fitting polynomial coeffi-
cients to experimental data from a chaotic system.

Chapter 3 presents controllers based on the models derived in chapter 2.
Two types of controller, linear feedback controllers and optimising controllers,
are considered.

Chapter 4 discusses application of chaos control to the driven pendu-
lum, both in simulation and experiment; the experimental application was
unsuccessful, and possible reasons for this are given.

Conclusions reached in the dissertation are in chapter 5.
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Appendix A lists the main symbols used in chapters 2 to 4; this chapter
uses different symbol meanings when discussing theories from literature.

Appendix B contains background information for readers unfamiliar with
chaos theory. The other appendices contain details of various points of dis-
cussion in the dissertation.

1.1 Chaotic systems

A chaotic system may be defined as one whose behaviour is very sensitive
to changes in initial condition [Lor93]. More precisely, if a chaotic system
is started from a particular state, the behaviour observed would be quite
different if the system were started from an infinitesimally different state.

Chaotic behaviour is deterministic; it does not occur because of random
effects such as noise or parametric uncertainty. The combination of chaos and
randomness is long term unpredictability; since system behaviour is sensitive
to small changes in initial condition, if this initial condition is imprecisely
known (e.g. because of measurement noise) a wide range of behaviours is
possible.

The relevance of chaos to engineering and science is still a matter of
debate [Wil97]. However, there are a number of examples of chaos occurring
in physical systems (as opposed to in simulations); section 1.3 has some
examples.

1.2 Chaos control

The term “chaos control” is usually reserved for the Ott-Grebogi-Yorke (OGY)
control method, first proposed in [OGY90], and its derivatives. The main
features of OGY are that chaotic systems become periodic, and that only
small control action is necessary to achieve control.

1.2.1 Ott-Grebogi-Yorke chaos control

OGY operates on dynamical maps; it can be applied to continuous time sys-
tems through Poincaré section (see section B.2.3) or other sampling methods.

OGQGY stabilises unstable periodic orbits (UPO’s) embedded in the chaotic
attractor; according to [OGY90] chaotic attractors typically have an infinite
number of embedded UPO’s.

UPO’s and a linear model of the map about each UPO may be found by
analysis of experimental data; OGY uses a linear model for controller design.
More detail on the modelling procedure is given in chapter 2.
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Once a suitable UPO (in terms of desired system behaviour) has been
found, a linear controller can be designed to stabilise it. The stabilisation is
only local because the map is non-linear (since it is chaotic).

In [OGY90], the controllers are designed by a method equivalent to pole-
placement; the unstable poles of the linear model are moved to the origin
and the stable poles left where they are [GL97].

The linear control law only gives local stability in some neighbourhood
(in state space) of the UPO. However, chaotic attractors are ergodic, and if
the system is run without any control action for long enough the state vector
will eventually enter the stabilisable neighbourhood.

The OGY control algorithm is thus to run the system chaotically (i.e.
without control action) until the state vector is in the stabilisable region,
and then to use the linear controller to stabilise the UPO.

Some features of OGY are (from [OGY90] and [Kap98]):

1. very small control action will stabilise the system
2. different UPQO’s can be stabilised for the same range of input values

3. it is not necessary to fully characterise the system (i.e. obtain a good
but possibly complex model) to design the control law

Two limitations of OGY are:
1. there may be a long waiting transient before the system stabilises

2. noise can destabilise the system causing bursts of chaotic behaviour

1.2.2 Chaos control in delay space

In [DN92], a modification to OGY is given which is necessary for using chaos
control in delay space. (Delay space is discussed in sections B.1.6 and B.2.5.)
The modification involves explicitly modelling the effect of past input values,
as explained below.

There exists a mapping @ from normal state space to delay space. Fle-
ments of normal space will be denoted in this section by x(7), and those of
delay space by y(7). In [DN92] it is claimed that for appropriately chosen
delay dimension d and lag time 7, @ is bijective. This is a stronger claim
than made elsewhere (e.g. [Wil97]); however, we will see that ® must be bi-
jective in at least the neighbourhood of the target UPQO for chaos control in
delay space to be viable, and it will therefore be assumed that ® is bijective.

The mapping ® is dependent on the dynamical system, and in particular
on input values u for the time interval in which the delay vector is obtained
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[SO95]. For a discrete time system in which y (i) = (i), zp(i—1),. .. zp(i—
d) the mapping is dependent on input values u(¢) back to an input history
dy = d.

When working in continuous time, the input is only changed at sampling
instants, thus a similar input history concept may be employed. In this case
the mapping is dependent on all values of input from current time ¢ to ¢ —dr,
and d;, will be the smallest natural number such that t — dy7 < ¢t — dr.

Let v(i) = (u(i),u(i—1),...,u(i—dy)); ® and 7! are then parametrised
by v(i), denoted by @, and ® .

We can now express the delay space map as

y(i+1) = Pygipn OQ(@;{E}(Q(@): u(?)) (1.1)

This map has explicit dependence on the past input values. Notice also
that if ® is not injective (and thus not bijective), i.e. if there is more than
one z such that y = ®,(z), then the map is uncontrollable in delay space
since the next valhie cannot be predicted. Bijectivity is only required in the
neighbourhood of the UPQO, since it is only then that control will be applied.

It follows from Eq. (1.1) that the system model must include the effect of
v(1) for chaos control in delay space. See sections 2.3.3 and 3.1 for details.

1.2.3 Chaos control with polynomials

In [CCdF99] a polynomial model was used to control a chaotic system. The
system input was not considered to be constrained, and the goal was to find
a global model for controller design.

The model uses a delay vector & (¢) of dimension n where x4 (%) = z4-1(¢)
for £ > 1 and z; (i) is the current scalar output of the system. The model is
of form

x(i+1) = Ax(i) + f(x()) + culi) (1.2)
where
ay ag Gp—-y Oy 1
1 0 0 0
A - 0 1 0 0 , €= .
0 0 1 0 0
and

fulz) = Ofork>1
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Given a setpoint y(i), it is simpler to work in an error space e(i) =
x(i) — y(i). Substituting this into Eq. (1.2) and rearranging gives

e(i+1) = (A+B(@)e(i)+ Ay(i) —y i+ 1)+ fle(@)+ f(y(i)) +culz) (1.3)

where
0 0
B(i) = . :
0 .. 0

The controller is u(i) = — f1(e(d))— fi(y(?))—ke(i)+y (i+1) =7, a;y: (1),
giving e(i+1) = (A+ B(i) — ck)e(?), which is a linear time-varying system.

The setpoint y(i) is assumed to be constant or periodic, and the elements
of k are found using a Lyapunov function approach or other methods.

Some unusual features of [CCdF99] are that the delay dimension was
particularly high (n = 25) despite the relatively low dimension of the two
chaotic systems considered (3 in both cases); the delay dimension was chosen
from how well the model fitted data for different n. The model does not have
any cross-terms (e.g. z123), nor does it take into account the effect of past
input values as discussed in section 1.2.2.

The method was tested in simulation on Duffing’s oscillator and success-
fully stabilised both a fixed point and a 1-period cycle.

1.2.4 Other developments of chaos control

This section discusses two chaos control extensions which are not of direct
relevance to the dissertation but considered by the author to be of interest.

Targeting chaotic trajectories

Chaotic trajectories can be directed to targets using constrained inputs [SOGY90,
KGOY93]. In the case of chaos control such a target would be the stabilisable
region about a UPO.

A trajectory starting from a given initial condition will eventually enter
any chosen target region on the chaotic attractor. However, the number
of iterations required for this to occur may be long; targeting can reduce
the number of iterations needed. In [SOGY90] a trajectory which would
otherwise reach its goal in about 6000 iterations does so in 12 with targeting,
and in [KGOY93] a target is reached in 35 iterations instead of an estimated
101,
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The papers cited employ slightly different methods, but both rely on the
controller being able to predict system behaviour by iterating the chaotic
map forwards and backwards in time. The method described below is from
[SOGY90L

Given a two-dimensional chaotic map g{z (1), u(2)), |u(2)| < Umax for small
Umax the possible values of (i + 1) will lie on a small almost straight line
segment containing and roughly centred on g(z(7},0). This segment is iter-
ated forward in time through g for p iterations, at which time its length is
of the same order as the attractor size. The number of forward iterations p
is estimated from the positive Lyapunov exponent of the map.

The target region is similarly iterated backwards, also growing in size
until one of the reverse images intersects with the forward iterated image;
the u(i) value corresponding to the intersection is the value which will direct
the trajectory to the target.

Targeting was found to be robust to small noise and modelling errors if
the control value was recomputed at every iteration of the process [SOGY90].

Although [SOGY90] claims the model used for forward and backward
iteration need not be exact, and could in principle be derived from data, it
is clear that a simple linear model would be insufficient; given the nature of
chaotic systems (nearby trajectories diverging exponentially) it is likely that
quite good models would be needed for targeting.

Estimating the stabilisable region

OGY control guarantees stability for a small neighbourhood about the UPO
and for small input values; [Vin97] gives a method to estimate the stabilisable
region. In [Vin97] both continuous and discrete time cases with multiple
inputs are presented, but here only the discrete time single input case will
be discussed.

As in OGY it is assumed that the input is constrained and a linear model
x(i+ 1) = Azx(i) + Bu(i) is used to design a controller u(i) = —Ka(i) (in
[Vin97] DLQR is used to design K).

A Lyapunov function V(x) = Pz’ is constructed from the controlled
linear system. P is the solution to the discrete Lyapunov equation P =
M'PM+ L, M =A -~ BK and L a positive definite matrix.

This Lyapunov function may be used with the original non-linear map
Flx(2), w(i)); if we let h{z(i)) = f(x(i), —K=z(i)), the system is stabilisable
for a region defined by V(z) < Via if, for the entire region,

AV (z,m) = V(R™ (x(i))) - V() < 0

The number of iterations m is used to predict further into the future and
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find larger stabilisable regions than for single iterations; in this sense if is
similar to the targeting method previously discussed.

The parameter defining the region, V., may be maximised by finding
the minimum value V' (z) such that AV {(z,m) > 0; [Vin97] notes that this
optimisation is in general non-trivial.

The final control law is of the form

u(i) = { —Kax(i) Vie) < Vi
0 otherwise

This approach has been used with the Hénon map in simulation and with
a bouncing ball and a double pendulum system in experiment; the double
pendulum system is further discussed in section 1.3.6.

The estimation of V., requires a non-linear model (the linear model
would be stable up to input constraints); it is not clear how sensitive Vjax is
to model inaccuracies.

1.3 Applications of chaos control

Chaos control has been successfully applied in a number of fields; this section
includes examples from mechanics, electronics, chemistry and biology. All the
examples are experimental, none having direct practical application.

1.3.1 Chaos control of a magneto-elastic ribbon

The first published application of chaos control used OGY and was to a
magneto-elastic ribbon [DRS90]. The elasticity (Young’s modulus) of magneto-
elastic material is sensitive to small changes in magnetic field H.

In the experiment, the ribbon was mounted vertically and clamped at its
base, and a vertical magnetic field H = a+ bcos(27 ft) was applied to it; the
ribbon buckled because of gravity, and moved because of changing elasticity.

The system input was deviation Aq in the mean strength a of the mag-
netic field. The system output was the ribbon’s curvature (an indication of
position), which was measured by a sensor at the ribbon’s base; the output
was sampled at frequency f.

For appropriate a, b and f, the curvature changed chaotically. Within
such a chaotic regime, Ditto et al. were able to stabilise 1- and 2-periodic
UPO’s, found by data analysis. Control was achieved with |Aa| < 0.01 Oe,
a = 0.112 Oe, b = 2.050 Oe and f = 0.85 Hz. (Oersteds (Oe) are a measure-
ment of magnetic field strength [The73].)

The experiment had relatively low noise; the standard deviation was
about 0.005 V over an output range of 2 V.
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1.3.2 Laminarising of fluid flow

The second published application of chaos control was to a thermal convec-
tion loop and did not use OGY [SWB91].

In this experiment a thin pipe filled with water was joined end-to-end
to form a torus which was stood in the vertical plane. The lower half of
the torus was uniformly heated while the upper half was kept at a constant,
uniform cool temperature; the temperature gradient induced fiuid motion.
The system output was the temperature difference between positions at 6
and 12 o’clock on the torus (to use the terminology of [SWB91]), and the
system input was the heating rate.

For low heating rates, below 190 W, the fluid flow was steady and unidi-
rectional. Above 190 W the system entered a chaotic regime, and the fluid
flow was chaotic, in particular chaotically reversing direction. The flow be-
came once more relatively smooth and undirectional when under control.

The control algorithm used was on-off: if the output exceeded a pre-
chosen value, the heating rate (nominally at 600 W) was changed to 625 W,
and if it went below this value, the heating rate was set to 575 W; these
values are well within the chaotic regime.

The controller successfully rejected test disturbances; details of the dis-
turbances and of noise and the method of choosing controller parameters
were not given in [SWB91].

1.3.3 Stabilising a diode resonator

Hunt used an OGY based technique to control a diode resonator [Hun91].
The diode resonator circuit comprised a diode, inductor and voltage source
connected in series; the voltage source produced a sinusoidal signal. The
diode used was a 1N2858; the inductor was 100 mH with 25 Q direct current
(DC) resistance and the driving signal had a frequency of 53 kHz (the signal
amplitude was not given in the paper).

The system output was the current, sampled at local maxima (presumably
using peak detection, although this is not indicated in [Hun91]) and the input
was deviation to the driving amplitude.

The control method was effectively OGY, but UPQO’s were not found by
data analysis. The controller had three adjustable parameters, namely offset
(corresponding to UPO position), a window about the offset in which control
was activated, and feedback gain. The UPQO’s were found by experimentally
scanning through the settings; in this way UPO’s for most periods between
1 and 23 were found.

The scanning method was practical because the system was fast (about
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0.2 ms between current peaks); [Hun91] notes that there was no systematic
method for finding UPO’s of a particular period, although each UPQ, once
found, could be reproduced by reproducing the settings recorded when the
UPO was discovered.

To stabilise low period UPQO’s, only small changes in the amplitude on
the order of 0.5 % were needed; for the higher periods up to a 10 % change
was required. The controller was also robust to input disturbances; changes
of 10 % to the driving amplitude did not destabilise the system in the low
periodic case.

1.3.4 Controlling cardiac arrhythmia

Control of chaotic arrhythmia in rabbit heart tissue is described in [GSDW92].

The experimental apparatus was a section of rabbit heart tissue, peri-
odically stimulated through electrodes. This stimulus caused spontaneous
electrical activity in the tissue, recordable as beats. The system input was a
shortening in the pulse interval, and the system output was the time between
beats (the inter-beat interval). The pulse interval could only be shortened
because the effect of pulse lengthening was very sensitive to external factors.

Chaos was chemically induced in the system, which would cease beating
several minutes after the onset of chaos.

The control method used a 2-dimensional delay space comprising the
current and last inter-beat intervals.

The controller operated in two phases. First was a learning phase, of
between 5 s and 60 s, during which the controller detected and characterised
a l-periodic UPO. The characterisation was simplified by the assumption
that a shortening of the pulse interval would result in an identical shortening
of the inter-beat interval.

After this learning phase was a control phase, during which chaos control
was applied. The chaos control algorithm used was based on OGY.

Despite finding 1-periodic UPQO’s in the learning phase, the controller
typically stabilised 3-periodic orbits. If @(i) was inside the controllable re-
gion, the controller would set u(é) to place (i + 1) on the stable manifold of
the UPO. However, because of model inaccuracy, (i + 1) would typically be
near but not on the stable manifold. The next point ({4 2) would typically
land outside the controllable region, but still be near the stable manifold,
and (i + 3) would typically be near x(i + 1), restarting the 3-cycle.

It is unclear why the point (i + 2) ended up outside the controllable
region; it may be that the delay space adaptation of [DN92], not used, would
have solved this problem.

Chaos control was successfully applied in 8 out of 11 experimental runs.
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The arrhythmia studied does not have direct medical relevance; how-
ever, the authors speculated that if other types of cardiac arrhythmia are
also chaotic, advanced pacemakers might be able to employ chaos control to
stabilise the heart when such arrhythmias occur.

1.3.5 Electrochemical chaos control

Chaos control of an electrochemical system is described in [KGNP97|, fol-
lowing a similar experiment in [PSRD93].

The apparatus was an electrochemical cell containing ortho-phosphoric
acid with a copper rotating disk anode, a platinum cathode and a reference
electrode. The system input was change in the nominal voltage between the
anode and cathode, and the system output was the current through the cell;
the system was sampled at 200 Hz. For a disk speed of 1800 rpm and a
nominal voltage of 532 mV the system was chaotic.

A straight-line Poincaré section was used in a two-dimensional delay space
to give a one-dimensional chaotic map (for the delay space, 7 = 0.5 s).

1- and 2-periodic UPO’s (found by data analysis) were successfully sta-
bilised using a variant of OGY for one-dimensional maps, with absolute max-
imum input set to 0.5 mV or about 0.1% of the nominal voltage. In the
1-periodic case, the absolute input voltage settled down to less than 0.1 mV
after the UPO was stabilised, but in the 2-periodic the input voltage varied
in a 0.5 mV range. This was probably because the input value was only
changed every second iteration of the map (according to [KGNP97]), which
this author speculates made the control less robust. The approach described
in [SO95] or section 3.1, in which the input value is computed every map
iteration even for multi-periodic orbits, might have helped in this situation.

Control failed after many hours of experimentation because of significant
changes in system dynamics, although it is not clear how large a parameter
variation was involved.

1.3.6 Control of a double linked pendulum

The control of a double linked pendulum is described in [Vin97].

A double pendulum is a normal pendulum with a second arm attached
to the bottom of the first, as shown in Fig. 1.1.

In the experimental setup described in [Vin97], both joints were driven by
DC motors and the position and angular velocity of both arms was directly
measured. The system input was the driving voltage to the two motors, and
the output was all four state variables.
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Figure 1.1: The double pendulum

The control target was to have the system at rest with the first arm
pointing downwards (#; = 0) and the second arm pointing upwards (6, = 7);
this is different from the other examples in this section since this is not
stabilisation of a UPO but of an unstable fixed point.

The motors used were quite weak; from a downward rest position the mo-
tors could only hold the joint angles at less than 20 ° at full torque. When
the first motor provided an appropriate sinusoidally varying torque, the sys-
tem behaved chaotically: in this regime, the second pendulum swung right
around its axis, although the first did not.

The controller was designed by analysis of a differential equation model of
the system. The system was linearised about the target point and from this
a linear controller was synthesised by LQR; the stabilisable neighbourhood
of the target point with this controller was conservatively estimated using
a Lyapunov function. Control was only applied when the state vector was
within the controliable region.

The system was deliberately operated in a chaotic regime so that the state
vector came close enough to the target point. The chaotic regime chosen was
safe; while the method could also target the position of both arms upright
(6, = 7, B, = 0), the (different) chaotic regime which could have reached this
fixed point would have caused very high rotational velocities in the second
pendulum.

Open-loop optimal control could have achieved the same goal, but [Vin97]
remarks that chaos control was more robust. If, after reaching the target, the
second arm were bumped, the optimal controller would have to restart from
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a pre-chosen initial condition (e.g. both arms at rest pointing downwards);
the chaos controller would return to chaotic operation until the stabilisable

region were entered again.



Chapter 2

Modelling systems for chaos
control

This chapter discusses how to obtain a local polynomial model of a chaotic
system, with a view to stabilizing an unstable periodic orbit (UPO). The
discussion focuses on a chaotic map g; it is assumed that this is a map in
delay space. g is implicit, and represents either a normal (i.e. non-delay)
space map, or a continuous time system through Poincaré or stroboscopic
section.

Chaos control stabilises unstable periodic orbits embedded in a system’s
chaotic attractor; with this in mind, the models used for chaos control contain
the location of a target UPO and an approximation of the system’s behaviour
near the UPO.

Following the use of (non-Taylor) polynomials in [CCdF99], Taylor poly-
nomials were chosen as the approximations to be studied. The model for a
particular m-periodic UPQO will thus consist of a set of m points comprising
the UPO, and the m corresponding Taylor approximations.

The main disadvantages of using a polynomial model are that such models
are more complex, making controller implementation more expensive, and
that the model fitting is more difficult, since there are more coeflicients to
be fitted than in the linear case.

Appendix A has a list of symbols used in chapters 2 to 4.

2.1 Taylor polynomials of vector functions

Taylor polynomials can be used to approximate scalar-valued vector func-
tions, and a set of such polynomials contained in a vector function may be
used to approximate a vector-valued function.

13
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The pth degree Taylor polynomial approximating a scalar-valued function
[ :R? — R about a point y, is (from [Bra58])

o~ 3 (S 2

=0 f==1

Y=Y
which is a generalisation of Taylor polynomials in a single variable.

Higher degree polynomials usually give better approximations over a
larger area of the function’s domain than a lower order polynomial. Polyno-
mials cannot always give a global fit; consider any finite-order Taylor poly-
nomial of cos(z). For this reason the polynomial models are considered to
be local.

The number of coefficients needed to represent an multivariate polynomial
in ¢ variables of degree pis r = q;'i" . It is impractical to deal with a large
number of coefficients; because of the combinatorial growth of » the author
has not gone beyond degree 2 for chaos control.

A particular Taylor polynomial can be expressed as the dot product of
two vectors. One is a vector of coefficients and the other a “polynomial
evaluation vector” of degree p, which has form

Gp(y) = (Lyn, Uzs - U Yo Y1¥2s - 1 Yoa e e o Yhr e oo YD) (2.2)

Both vectors are of length r; ¢, is taken to be a column vector.
The Taylor coefficients of an vector function f : R? — R" about a point
Y, can be contained in an n X r matrix Z, giving a complete approximation

Fy) = Zgy(y — i) (2.3)

Taylor approximations of chaotic maps

To approximate a chaotic map in the general delay space case, we will identify
delay space dynamical map g(x(z), v(7)) with f(y(7)). The delay input vector
v(i) is v{i) = (u(i),u(i — 1},...,u(i — dy)), where dj is the input history.
From [SO95], d), is the smallest natural number such that any value in a
delay state vector (i) is measured at the same time or later than i — dj,. It
is also possible for g to be a normal space map, in which case d;, = 0 and
v(i) = u(i).

The identification means that y(4) is the concatenation of () and v(7),
ie. yp(i) = 2(d) for 1 < k < mand yp = vg-n(%) for n+1 < k < r, where
r=mn+d,-+1. For a given m-periodic UPO 2(j) there will be a sequence of
coefficient matrices Z(5).
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The coeflicients of the Taylor polynomial may be obtained by direct eval-
uation of Eq. (2.1) if the defining equations are known, or they may be fitted
by analysing data produced by the chaotic system.

2.2 Symbolic modelling for chaos control

Symbolic analysis is conceptually simple, but does require that the equations
defining the chaotic system be known; this knowledge may be difficult to
obtain for a physical system [OGY90].

All points of an m-periodic embedded UPO will satisfy =, = g™ (z,,0),
and solving this equation for @, will reveal such an orbit (if one exists).
Solving for a UPO may be an extremely difficult problem, possibly doable
only by numerical means or not at all; since the entire symbolic analysis is
somewhat idealised, this complication will be ignored. :

A chosen embedded m-periodic UPQ, if one exists, will be denoted by
z(j) where z(j + 1) = g(2(4),0) and z(j +m) = 2(j) for all ;. The Taylor
coefficients Z(j) for each point of z(j) are found by differentiation, from
Eq. (2.1).

When considering a continuous time system, all differentiations must be
approximated by finite differences.

Examples of symbolic analysis of the Hénon and driven pendulum systems
are given in appendix C.

When the equations of the system are not available, the models must be
found by analysis of the data produced by the system.

2.3 Modelling from data for chaos control

If the equations of the system are unknown, the Taylor coefficients must be
fitted to the data; the result will obviously be less accurate than the ideal
symbolic case. While more practical than the ideal case, the fitting does
require a large quantity of relatively low-noise data.

2.3.1 Finding embedded UPQO’s by data analysis

The method of recurrent points [LK89], described below, reveals UPO’s em-
bedded in the attractor. The method operates on a vector sequence x, (%)
generated by a chaotic map g such that =,(: + 1) = g(w,(7), v(d)) where
u(%) = 0 for all 4. (The u subscript denotes an unperturbed sequence.)
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Points in the neighbourhood of an m-periodic point @, of a map g will
be almost m-periodic; that is, if ||z, — z||, is small then Hg<m> (x) — :cHg will
also be small.

The method of recurrent points assumes the converse, that points which
are almost m-periodic are near m-periodic points. The (m, §) data points are
all x,,(¢) for which ||z, (i +m) — @, (i)||, < J. For small § it is assumed that
the (m, §) data points will be grouped around m-periodic points, including
those points comprising m-periodic UPQO’s.

The (m,d) data points are divided into clusters (for details of the clus-
tering method, see appendix F') and the mean of the points in each cluster is
taken to be the corresponding m-periodic point; the set of m-periodic points
thus found will be denoted a(j).

2.3.2 Characterising embedded UPQ’s by data
analysis

For a particular m-periodic point, Taylor coefficients may be found from the
behaviour of its associated cluster of data points. Initially we will only find
coeflicients related to the state vector; in other words the function f(y(7))
is identified with g(e(7),0) and coeflicients for v(i) will not be computed.
This analysis uses the data =,(i) and clusters of (m,d) data points of the
previous section.

For a particular m-periodic point a{j.), let ae(k) (K = 1,...,q) be the
(m, é) points from x, (i) clustered about a(j.) recentred about 0 (i.e. offset
by —a{j.)). Let B(k) be the next-points of the a(k) in x,(z), that is if ¢,
corresponds to k., then a(k,) = x,(i.) — a(j.) and B(k.) = z(s. + 1); or,
equivalently, B(k) = g(a(k) + a(j.),0).

The Taylor coeflicients Y (j,) of g about a(j,) can be fitted by least
squares; from Eq. (2.3) we have

g(a(é)} ﬁi(g
b, ((zx{ ) Y7(5) = B 5( ) 2.0
¢, (a(q)) 87(q)

in which Y (j.) replaces Z used in Eq (2.3); Y (j.) is a part of the complete
matrix of coefficients Z(j,). Eq. (2.4) can be solved for Y (4,) by the usual
least squares method [PTVF92]. This is done for each m-periodic point a(j),
giving a complete set of coefficients Y (j).

The zeroth order coefficients, that is the first column of each Y (5), are
the images of a(j) under g; by matching these up with the points of a(j)
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m-periodic UPO’s can be identified.
A chosen m-periodic orbit will be labelled z(j), and Y '(j) is redefined (or
rather, relabelled) to be the corresponding matrices of Taylor coeflicients.

2.3.3 Input characterisation by data analysis

The model is completed by finding coefficients of terms involving v.

Another data series x,(i) = g(x,(i), v(i)) must be generated, but this
time u(7) is a small random perturbation signal.

As in section 2.3.1, clusters of (m, §) data points are found in from @, (7);
each point of the UPO must have a corresponding cluster for coefficients to
be fitted.

For a point z(j,) of the UPO, let a(k) be the corresponding cluster of
(m, &) points from x, (i), offset by —2z(j.). Let B(k) and w(k) be the corre-
sponding next points from x,(7) and next input values from v(7) respectively.

A subset of the complete matrix of Taylor coefficients, Z(j, ), has already
been computed and is contained in Y (j.). What remains to be computed,
X (J«), are coefficients of all terms involving elements of v. Let ¢,(v,z) be
a function generating a polynomial evaluation vector of all terms involving
v; Yy(v, &) is ¢p(y) with all the components in ¢,(x) removed.

The problem may now be expressed as

Tb%:(‘wg% a(l)) 3T§1) ¢>§“(a(;))

w(2), a2 . (2 T2 ,

¥, ( (;) (2)) X1 = B ;\ )| p‘\zt )) Y7()
Py (w(q), o{g)) B (q) b, (ae(q))

which can again be solved using least squares. X (j.) is computed for each
point on the UPO.

The coefficients contained in X (j) and Y'(j) can now be combined to
form the complete set of Taylor coefficient matrices Z(j). The combination
requires correctly interspersing the columns from X (j) and Y (5); for details
see the source code on the attached CD-ROM.



Chapter 3

Design of chaos controllers

Two types of controller are presented: linear feedback controllers (LFC’s)
where the input is a simple linear combination of the state vector, and op-
timising controller {OC’s) which minimise the predicted future error of the
state vector.

3.1 Linear feedback controllers

The controller design method presented here is based on [SO95].
Linear feedback controllers are all of the form u(i) = —k(j)(xa (1) — z.(5))-
x,(7) is an augmented form of x(i):

or y(1) with the w(i) component removed; z,(7) is a corresponding augmented
form of the UPO, with the last d;, elements of z,(j) equal to 0.

The vector sequence k(j) is found from linear augmented models; these
models are

T(t+ 1) — 2,(5 + 1) = Au(@a(7) — 2(7)) + ba(F)u(?)

where j is such that z(j) is the closest point in the UPO to z(i). The
linear coefficients A,(7) and b, may be derived from the previously computed
polynomial coefficients Z,(3).

From Eq. (2.2) and (2.3}, we can see that the first element of ¢,(y) is 1
which will be multiplied by the first column of Z(j). The first column thus
comprises the zeroth coefficients, and thus corresponds to z(j + 1).

The next ¢ elements of ¢,(y) are y, and the corresponding columns of
Z(j) contain the linear coefficients.

18
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The vector ¢ is divided into a state vector @ and an input vector v; the
input vector in turn is composed of the current input value and past input
values, if any are used. Each matrix Z{j) may thus be divided as

Z(j)=(2G+1)| AG) | b() | CU) | Zro(d) )

where 2(j-+1) contains the zeroth coefficients (the match between 2(j+1) and
z(j-+1) may not be exact), A(7), b(j) and C{j) contain the linear coefficients
corresponding to the state, current input and past inputs respectively, and
Z\,(7) contains the higher order coefficients. All have n rows; A(j) has n
columns and C(j) has d,, columns.

From the definition of x,, the augmented matrices are

A() Cl) [ b(5)

0 0 0 0 1

10 - 00 | 0
A,J) = o | 01 0o |»b0)= 0
g0 - 10 0

These are the linearisations of chaotic map g. To stabilise the UPO,
we need the linearisations of g™, which can be obtained by combining the
individual linearisations above. Recall that z(j) = z(j+m) and similarly for
Z(j), A.(J), etc. Let ©(4,k) = ngl A,(j — q); the full-cycle linear model
(As(5), be (7)) is

Bi(j) = (O —1Lm—-1b()|O( - 1,m—2)b,(j + 1)
o |Ba(f+m - 1)

u(i)
i+ m) - 2400) = A (el - 20+ By | T
u(i + m -1)
For each point z,(j) a controller K (j) must be found so that the eigen-
values of A¢(j) — Be(j)K(j) are in the unit circle. K (j) provides future
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input values {(u(i+1) etc.); since u(i) will be recomputed at every 7, only the
first row of the K (7) is needed; this is the control law k(7).

The author has used the discrete linear quadratic regulator (DLQR) K (j)
(and hence k(7)); this is also used in [Vin97], though only in normal space
for 1-periodic systems. In [SO95], on which the above is based, the control
law is obtained from the requirement that the UPO is reached in m steps;
this yields a unique solution for the k(7).

The control value u(i) is constrained by |u{i)| < uUmay; additionally, con-
trol is only applied if [l&(f) — 2(j)[l, < &, where x is an experimentally
chosen constraint (usually of the same order as 4, used to select (m, ) points
in forming the model).

3.2 Optimising controllers

These controllers use a model of the system to predict the future system
behaviour; the input value is found by minimising a cost function over future
input values u(4), u(i+1),...,u(i+h), where h is the prediction horizon. In-
creasing h increases the dimension of the search space, and thus the difficulty
of minimisation. Although the general case is presented below, for simplicity
only the case of h = 0 was fully investigated in application.

The polynomial model derived in chapter 2 is used below, but any model
of the chaotic system could be used in its place.

The cost function is based on the sum of the distances between the UPO
and the current and predicted future states. To find these distances, shift
the indices of UPO z(j) so that that z(0) is the point closest to current state
vector x(1).

Recall that y(4) is a vector containing all the components of state vector
x (i) and the input vector v(i); let z.(j) be z(j) with dj, + 1 zeroes appended,
so that each vector in z.(j) is the same length as y(i). Also, define

[ Z(G)

g 0 0 0
_ 10 00
Z(j) =1 9 1 00

\0 0 -~ 10/
Now, let §(j) be the predicted future deviation from the UPO for inputs
u(t), ..., u{i+ h); that is,

o y(1) — z:(0) 7=
g(j) = { ZG -G -1 ~2() 1<
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and i1 (7) = uli + ).
Now, let £(j) be the first n components of g(j) (i.e. the state compo-
nents); cost function ¢ is then

Qud), .. uli+h)) =3 _ (1&G), + eluli + 1))
where . (i)
. u(t)] < Umax
eluli)) = { luli}] othérwise

c{u(t)) is a reflection of the saturation of u(i) in the cost function.

Control is only applied if the minimum cost ) < k, analogously to the
linear case.

The primary problem with the OC is that it is not (to the author’s knowl-
edge) provably stable; however, simulations indicate that it works for a range
of chaotic systems. The intuitive justification is that if the state-vector can
be driven closer to the UPO on the next step, it can be driven even closer
on the following one and so on.



Chapter 4

Controlling the driven
pendulum

The driven pendulum was chosen as an experimental system to test chaos
control. Simulations were used to test and develop the control algorithms
previously presented; after success in simulation, control of an experimental
pendulum was attempted.

In both the simulated and experimental systems the goal was to stabilise
a l-periodic UPQ; a 1-periodic orbit was chosen for simplicity.

4.1 Description of the driven pendulum

The driven pendulum was chosen as an example for chaos control because: it
has previously been in simulation used to study chaos control [Bak95]; it is
a relatively simple system; the author has had some experience with similar
systems; and because of the availability of an experimental pendulum system.

This driven pendulum is different to the one described in section 1.3.6 in
a number of ways: this system is a single pendulum; the goal is to stabilize
a UPO not a fixed point; the system is to be controlled with a scalar out-
put while the double pendulum system was controlled with full state output;
and the controller is to be designed without using the actual driven pendu-
lum equations while the double pendulum controller was designed using the
equations of motion of the system.

The driven pendulum is depicted in Fig. 4.1. It is a simple pendulum in
the vertical plane to which an external torque may be applied.

In Fig. 4.1 4 is the angular position, with clockwise positive orientation
and 0 rad at the downward position. Mass m has weight W = mg; L is the
distance to the pendulum’s centre of mass and 7 is the external torque.

22
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Figure 4.1: The driven pendulum

The applied torque is periodic, 7 = asin(yt), where « is the torque
amplitude and 1) is the frequency. The torque due to gravity is —mgLsinf
and that due to friction is —36 (where § is a coefficient of friction); the
effective torque is the sum of all of these giving

Ji = —mgLsin® — 80 + asin(yt) (4.1)

where .J is the rotational inertia of the system.

The equation can be non-dimensionalised with respect to time by sub-
stituting ¢ = s/+/mgL/J; from this it follows that § = d8/ds - \/mgL/J
and § = d*G/ds* - mgL/J. If, after substitution of these equalities, s, § and
df/ds are relabelled ¢, wq and w, respectively, the dimensionless state-space

equation is
W} 2w,
( (5 ) a ( —sin(wy ) — bwy + asin(wt) ) (4.2)

where b = 8/mgL, a = a/mgL and w = ¥/J/mgL.

The system input is torque amplitude a, and output is rotational velocity
weq; choice of output was dictated by the experimental setup.

In principle the driving frequency w could also have been used as an input,
but it was simpler to implement the simulated and experimental systems with
a fixed sample frequency w, at some integer multiple of the driving frequency.

For appropriate values of b, ¢ and w the system is chaotic. Such chaotic
behaviour can be tested for by looking at the system’s attractor or by deter-
mining the system’s Lyapunov exponents.

Although this system has only two states, it is non-autonomous; time is
an implicit third state, and the system thus has three states as needed for
chaos (see section B.1.5).
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4.2 Control of the pendulum in simulation

Sirnulations were performed using a fourth-order Runge-Kutta algorithm ap-
plied to Eq. 4.2. For b = 1/3.9, ¢ = 1.5 and w = 2/3, the system is chaotic
[Bak95]; the simulation step-size was fixed at At = T/100, where T = 27 /w.
An example time series plot of wo () is shown in Fig. 4.2.

0 Gt 10 15 20 25 30 35 40 45 50

Figure 4.2: A sample time series of the simulated driven pendulum

4.2.1 Establishing experimental parameters

The experimental parameters are the sampling time and method, and the
delay space lag-time and dimension.

A chaotic map, necessary for chaos control, is obtained by sampling the
system in phase with the driving torque (i.e. with period T' = 27 /w). Fig-
ure 4.3 shows the attractor for this chaotic map.

The autocorrelation function of we was used to choose a lag-time; Fig. 4.4
shows this function computed from a simulation run of 100 000 time steps.
The first zero crossing is at 7 = 32A¢, which was chosen as the lag-time.

For this lag-time the correlation dimension for delay dimensions 1 to 4 is
shown in Fig. 4.5. The delay dimension is taken from the knee of the graph,
at d = 2. From this and + = 32Af¢ it follows that the input history is d; = 1.

The continuous time system with state w(t) is thus converted to a discrete
system with state x(i) where z;(i1) = wo(100¢At) and z2(i) = wo((100i —
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Figure 4.3: Chaotic attractor of the simulated driven pendulum
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2.2 : ;

Figure 4.5: Correlation dimensions of w,

32)At). The system input is only changed in phase with the driving signal;
in other words Aa(t) = u(z) for i < ¢/T < i+ 1.

4.2.2 Data analysis and controller design

Analysis was performed on an unperturbed data sequence @, (1) with u, (i) =
0 for all 4 and a perturbed data sequence x,(%) with input signal »,(¢) a nor-
mally distributed random variable with mean 0 and standard deviation 0.01;
both sequences were of length 50 000, corresponding to 5 000 000 simulation
time steps.

The first 5 000 points are shown in Fig 4.6 as a representation of the
chaotic attractor in delay space.

Also shown in Fig. 4.6 are the 100 points with the smallest next dis-
tance; there are a few isolated points, but most of them are clustered near
(1.84,8.93E—3) (62 points) and (—0.409, —3.22) (30 points).

The first point was stabilisable using an optimizing controller with i =1
(using first or second degree models), but could not be stabilised using a
simple linear feedback controller, or an optimizing controller with h = 0. It
is not clear why this is so; the possibility that the mapping between normal
and delay space is not bijective (see section 1.2.2) at and around this UPO
is ruled out by the fact that the UPO may be stabilised at all.

To allow performance comparison between linear feedback controllers and
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attractor - {m,d) points  +

Figure 4.6: Delay space attractor of the simulated driven pendulum

optimizing controllers, the second point was chosen for further investigation,
thus the UPO is z = (~0.409, —3.22). (Since m = 1, there is no need to
write this as z(7).)

The coefficients were fitted twice, once for a linear model only, i.e. with
polynomial degree p = 1, and once for p = 2.

The fitted linearisation was

-6.02 1.00 297

A,=| —1.43 0222 0.657
0 0 0

771

B,= | —251

1.00

Matrix A (which is the first two rows and columns of A,) has eigenvalues
-0.0158 and -5.78, indicating a saddle point as expected. The controller k is
synthesised as described in chapter 3 using DLQR (although for m = 1, as in
this case, the procedure is quite simple), with @ = I and R = 1; this gives

k=(0740 —0.123 —0.365 ) (4.3)

Other values of @ and R were not tried; generally the DLQR perfomance
was similar to the linear optimising controller (see below), and it was not
thought necessary to optimally tune this controller.
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1 % Yo Ys Y4
1 -0.416076 -5.90395 0.95584 -7.65546 2.88989
" 56.1658 -17.2869 166.472 -54.3135
Yo 0.229587 -27.5758  7.733
Y3 116.667 -82.8505
Y4 14.1244

Table 4.1: Coefficients from first row of Z

1 W Yo Y3 Yq
1 -3.21901 -1.42048 0.21523 -2.48563 0.650798
U1 2.50284 -0.528976 10.1979 -2.29959
Yo -0.228832 -1.7456  0.111297
Y3 6.2394 -5.23734
Ya 3.705751

Table 4.2: Coeflicients from second row of Z

The polynomial coeflicient matrix Z is shown in Tables 4.1 and 4.2; in
total 2 (*7?) = 30 coefficients were required.

Chaos control was successful with both the linear feedback controller k
and the optimizing controller based on Z. The next section discusses the
relative performance of these controllers.

4.2.3 Measuring controller performance

Two types of performance were measured: ideal performance and noise ro-
bustness.

The measurements were taken with three controllers, namely a DLQR,
a linear optimising controller (LOC) and a polynomial optimising controller
(POC). The DLQR was the controller described in section 3.1 with k given
in Eq. (4.3). The LOC and POC were the controllers described in section 3.2,
the LOC using only linear and the POC using all terms of Table 4.1 and 4.2
(in other words, the LOC uses only the first row of both tables).

The LOC is included to test whether performance differences between the
DLQR and POC should be attributed to differences in the model or to the
optimisation used in the LOC and POC.
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4.2.4 Controller ideal performance

Ideal performance of chaos controllers is measured in terms of mean time to
stabilisation, following [OGY90]. The system is simulated from j different
initial conditions on the chaotic attractor, and for each the time to stabili-
sation is measured; the system is assumed to be stable when it is within A\
(an experimentally chosen value) of the target UPO for k iterations of the
map. The ideal performance is the mean of these times. This measures ideal
performance since no noise or disturbances are introduced into the system.

The test was run for each of 10 uy.y and 10 & values, giving 100 points in
total; the uma, values were logarithmically spaced between 0.01 and 0.1, and
the k values were logarithmically spaced between 0.05 and 0.5. The tests
were done with 7 =40, & = 10 and A; = 0.1,

The mean value of time to stabilisation for the DLQR is shown in Fig. 4.7,
for the LOC in Fig. 4.8 and for the POC in Fig. 4.9. Both the uy., and &
axes are logarithmically scaled in all figures in this section. The results are
also tabulated in appendix E.

E(gdlqr)

4000
3000
2000
1000

Figure 4.7: Mean time to stabilisation for the DLQR

From these figures, general trends are visible: in all three cases, per-
formance obviously improves with increasing wyay. For higher wup., values
performance also improves with increasing «, and for the POC performance
noticeably improves for low uy,., and high « values.
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To examine the difference between POC and DLQR and POC and LOC
more closely, relative performance values are shown in Figures 4.10 and 4.11.
These figures show the difference of the DLQR and LOC to the POC perfor-
mance respectively; high positive values indicate better POC performance.

P(tpom tdiqs‘)

3000 p
2000
1000

0
-1000

0.01

Figure 4.10: POC performance relative to DLQR

The comparative figures highlight the better performance of the POC for
small v,y and large x values. Figures 4.10 and 4.11 are similar, indicating
that performance differences may be attributed to the polynomial model
rather than other differences in the control algorithm.

The improved performance of POC for large « is expected since the POC
should be able to predict the behaviour of the pendulum over a greater region
of state space about the UPQO; however, the advantage of the polynomial
model is offset by the improvement caused by higher wu,,,, values evident in
all three controllers.

From this it follows that using a POC will be advantageous when i,y
is strongly constrained by external factors; however, if the input is relatively
unconstrained the simpler DLQR. controller offers similar performance.

4.2.5 Controller noise performance

Noise robustness was measured by the ratio of time the system was within A,
(again experimentally chosen) of the UPO when additive Gaussian noise with
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P(tpoc: tiecj
2000 -
1000

Figure 4.11: POC performance relative to LOC

standard deviation ¢ was introduced. For this test system was started very
near the UPO to remove variations already measured by ideal performance.

Interpreted by itself this measure is misleading, since even without con-
trol the state vector will at times come arbitrarily close to the UPO; the
importance is in the difference in the measure for different noises levels and
between different controllers.

Noise performance was measured at three different points in (Umax, &)
space, namely (0.01,0.03), (0.01,0.5) and (0.1,0.5). These values were cho-
sen from results of the ideal performance test; the two wuy,x = 0.01 points
were chosen to investigate noise effects in the region where the POC has a
performance advantage, and the up,, = 0.1 case was chosen to compare noise
robustness at a higher v, value.

For each point, the performance was measured for 30 ¢ values logarith-
mically spaced between 3E—4 and 3E—3 in the first two cases and 1E—3
and 0.1 in the third case. In all cases Ay was set at 0.1. The test simulations
were run for 10 000 map iterations each.

Noise performance is shown in Fig. 4.12, 4.13 and 4.14. In these figures
a higher value indicates better noise performance.

For (tmax, #) at (0.01,0.05) and {0.01,0.3) (Fig. 4.12 and 4.13), the POC
and LOC have a slight advantage over the DLQR; the difference seems to
be because of the optimisation in the POC and LOC. The control is very
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Figure 4.12: Noise performance for (tmax, ) = (0.01,0.05)
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Figure 4.13: Noise performance for (uy.x, <) = (0.01,0.5)
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Figure 4.14: Noise performance for (umay, x) = (0.1, 0.5)

sensitive to noise, which starts having an effect for ¢ between 5E —4 and
8E—4.

When (tmax, ) = (0.1,0.5) the POC performs worse than the LOC and
DLQR, which have similar results; in this case differences can be attributed to
the polynomial model. Performance is far better than for either uy,,, = 0.01
case; noise only effects the POC for ¢ > 1E~3 and the LOC and DLQR for
o> 5E~—3.

Prediction of system behaviour is obviously worse in the presence of noise;
additionally, noise may cause the state erroneously to appear to be outside
the controllable region about the target UPQO, in which case control is not
attempted (or abandoned). If the noise is great enough that this occurs often,
chaos control becomes useless.

It is expected that noise would have a worse effect when using a polyno-
mial model since the higher order terms will tend to amplify the error; this
is visible in Fig. 4.14. In Fig. 4.12 and 4.13 it appears that the small value
of Upay is a more significant factor, though the reason for this is unclear.

From the ideal performance and noise results above, it can be seen that
constrained ., values lead to degraded ideal performance and noise robust-
ness; if Unay 1S constrained by external factors, a polynomial model may offer
improved performance over a linear model.
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4.3 Attempted control of the pendulum in
experiment

The attempt to control an experimental pendulum unfortunately failed at
an early stage in the experimental procedure, during modelling. This sec-
tion presents results of modelling data from the experimental system and
speculation on the cause of the failure.

The experimental system comprised an armature controlled DC motor,
the pendulum arm and mass, a tachometer, a computer for measurement and
control and electronics connecting the computer to the motor and tachome-
ter. Details are given in appendix D.

Comparing this setup to Eq. 4.1, it is obvious that the DC motor will be
providing the driving torque. It is assumed that the electrical time constant of
the motor (from coil inductance and resistance) is negligible compared to the
mechanical time constant (from inertia). The motor was voltage controlled;
the effect of back EMF is lumped with the friction factor 5.

4.3.1 Establishing experimental parameters

In terms of Eq. 4.1, the accessible parameters are mass m, distance to centre
of mass L, driving amplitude a and driving frequency . To find a chaotic
regime it was simplest to fix m and L and try different values of driving
amplitude and frequency; from this search driving frequency 1.1 Hz and am-
plitude 6.0 V were chosen as an operating point.

For analysis and control, the system was sampled at 110 Hz. The sig-
nal from the tachometer was anti-aliased by a low-pass filter with a cut-off
frequency of about 48 Hz before being digitised.

The autocorrelation of 100 000 samples is shown in Fig. 4.15, and a power
spectrum (from a discrete Fourier transform of 2'® samples) in Fig. 4.16.

In Fig. 4.15, the integer value closest to the first zero crossing is j = 30;
this will be the lag-time used for delay space reconstruction.

A digital filter was used to compensate for the quantisation introduced by
the 12-bit analog to digital converter. If the sampled signal is w;, (7) and the
filter output w(7), the filter used is w(j) = 0.3wi, () + 0.7w(y — 1). This is
a low-pass filter with cut-off at about 6 Hz; from Fig. 4.16 the spectrum has
already dropped off to less than 1E—4 of the peak power at this frequency.

Correlation dimension for embedding dimensions 1 to 5 are shown in
Fig 4.17; this was computed using 10 000 points of the filtered signal w(j)
with a lag-time of 30 sample steps.

There is no clear knee in Fig. 4.17 (compare with Fig. 4.5). Delay di-
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Figure 4.15: Autocorrelation of experimental data
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Figure 4.17: Correlation dimensions of experimental data

mension d = 2 was chosen because control was successful in simulation for
d = 2, and because higher delay dimensions would require a large number
of coefficients (e.g. with p = 2, d = n = 3, and thus d; = 1, 63 polynomial
coefficients would be required). From d = 2 and lag-time 30, dj, = 1.

The process input is only changed at the start of each driving cycle; the
sampled process input is a(j) = (6.0+ Aa(y)) sin(277/110) and Aa(j) = u(d)
for 1 < /110 <4+ 1.

Analysis was performed in a delay space with lag-time 30 and dimension
2; thus state vector (i) = (w(1107),w(1107—30)) where w(j) is the digitally
filtered velocity measurement.

4.3.2 Data analysis and controller design

Analysis was performed on a unperturbed data sequence @, (i) of size 63 200
with u(z) = 0 for all ¢ and on a perturbed data set @,(i) of the same size
for input wy(7) a normally distributed random variable with zero mean and
standard deviation 0.05.

The first 5 000 points of @, (7) are shown in Fig. 4.18 as a representation
of the chaotic attractor. Also shown are the (m,§) = (1,0.137) points; § was
chosen to select 35 points.

The attractor depicted in Fig. 4.18 is noticeably fuzzier than that of
Fig. 4.3; this is probably because of noise or parameter variation.



4. CONTROLLING THE DRIVEN PENDULUM 38

attractor - {m,8) points  +

Figure 4.18: Delay space attractor of the experimental driven pendulum

In Fig. 4.18 there are two large clusters of points, one of 9 points near
(=3.5,~1), and one of 2 points near (1,1). The first cluster was chosen as
the control target because it is less spread out; the UPO for this cluster is
z = (—3.65, —~0.870).

From z,(i) 100 (m, 6) points with § = 0.198 were found, giving a cluster
of 11 points near the chosen cluster from z(¢); from these points the linear
and polynomial models were computed. They were computed separately to
compare the linear terms in the models.

The linear model is

0.590 0.147 0.359 0.384
A, = 1.18 0.860 0.633 |, By= | 0.650 (4.4)
0 0 0 1.00

and the polynomial coeflicients are given in Tables 4.3 and 4.4.
Comparing the two models it is already evident that there are some prob-
lems; the linear coefficients do not match at all.

4.3.3 Attempted control of the experimental system

Applying DLQR to Eq. 4.4 with @ = I and R = 1 gives k = {0.723, 0.388, 0.408).
The system was not stabilised by either the linear or polynomial con-
troller; control was attempted for a number of different u.,., and & values
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1 () Yo Y3 Ya
1 -3.68 293 -0.493 187 -4.34
Y1 -38.4 894 -174 -137
v 184 182 19.9
Ys 984 111
Yy 41.5

Table 4.3: Polynomial coefficients from the first row of Z for experimental

model
1 (' Yo s Y4
1 -0.927 2.17 0.478 298 4.21
¥ -4.47 836 (0.498 -10.6
Yo 1.58  5.58 19
Y3 -41.4  -7.39
Ya -1.67

Table 4.4: Polynomial coefficients from the second row of Z for the experi-
mental model

without success. A typical run is shown in Fig. 4.19 for uy., = 0.2 and
Kk =0.2.
4.3.4 Possible causes of controller failure
Possible causes of failure are
1. measurement noise
2. parameter variation
3. experimental or modelling error
4. control implementation error

While errors in the modelling and implementation cannot be ruled out,
experimental and simulation evidence given below suggest that the measure-
ment noise and parameter variation prevent chaos control, or the variant
thereof presented in this dissertation, from being successful.

Two experiments were performed to estimate measurement noise and
parameter variation, as described below.
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Figure 4.19: Attempted control of the experimental pendulum

Estimating measurement noise and parameter variation (1)

The first experiment was a constant speed experiment; the system was run
without the pendulum attached at a constant input voltage. It was expected
that the motor should run at a constant speed, and that the output voltage
from the tachometer should be constant.

The system was sampled at 110 Hz, and driven at a constant input of
6.0 V. The analog gain on the tachometer signal was reduced to 1 from 10
for this experiment only, since its output was substantially higher than when
the pendulum arm was attached. The experiment was run for 100 000 sample
steps.

Figures 4.20 and 4.21 show a section from measurements recorded in the
first experiment; Fig. 4.20 shows wi,(j), and Fig. 4.21 is the corresponding
part of the digitally filtered signal w(7).

The quantisation and the effect of the digital filter are clearly visible in
Fig. 4.20 and 4.21; in Fig. 4.21 the signal is no longer quantised (although
the effects of quantisation are still visible).

The mean of wi,(j) and w(j) (excluding the first 20 points which are
transients) is 2.00; the standard deviation of both signals is 0.013, 0.65 % of
the mean.



4. CONTROLLING THE DRIVEN PENDULUM

win{J)

w(j)

2.025

2.02

2,015

2.01

2.005

1.995

2.02

2.018 k£

2.0186

2.014 =

2.012

2.01
2.008
2.006
2.004
2.002

2000

4000 6000 8000 10600
J

Figure 4.20: Unfiltered measurement of constant speed wiy(j)
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Estimating measurement noise and parameter variation {2)

The second experiment was a periodic response experiment. It was run with
the pendulum attached; the input was driven periodically but outside the
chaotic regime. In this case periodic behaviour, in phase with the driving
signal, was expected.

The experiment was performed for two different operating points: ampli-
tude a = 3.0 V and driving frequency fy; = 1.1 Hz, and amplitude ¢ = 4.0V
and driving frequency f; = 2.0 Hz. In both cases the system was sampled at
100 times the driving frequency, and run for 100 000 sample steps. Digitally
filtered output values in phase with the driving signal (i.e. for i = 1107 or
i = 2007) are shown in Fig. 4.22 and 4.23.

The digital filter of section 4.3.1 was used; the change in sampling fre-
quency shifts the cut-off of the digital filter to about 12 Hz in the f; = 2.0 Hz
case, but this does not significantly affect the results.

0.7 | — 1 | 1 1 T I l
0.6 p- R ' . -
0.5 |- S
04 b
— 0.3
" 0.2
0.1
0
..0‘1 o
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Figure 4.22: Response to periodic input for a =3.0V,f; = 1.1 Hz

Figure 4.22 shows that the system behaviour is not simply periodic as
expected; between time ¢ = 0 and + = 500, the process seems to be occa-
sionally periodic and occasionally either random or chaotic; after that there
are three different phases of periodic behaviour. The final low amplitude was
confirmed was visual observation: at the end of the run the pendulum was
sweeping an arc of less than 20 °. This behaviour was attributed to the low
voltage being applied to the motor, as the signal amplitude at the motor
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Estimating measurement noise and parameter variation (2)

The second experiment was a periodic response experiment. It was run with
the pendulum attached; the input was driven periodically but outside the
chaotic regime. In this case periodic behaviour, in phase with the driving
signal, was expected.

The experiment was performed for two different operating points: ampli-
tude a = 3.0 V and driving frequency f; = 1.1 Hz, and amplitude ¢ = 4.0V
and driving frequency fy; = 2.0 Hz. In both cases the system was sampled at
100 times the driving frequency, and run for 100 000 sample steps. Digitally
filtered output values in phase with the driving signal (i.e. for ¢ = 1105 or
i = 2007) are shown in Fig. 4.22 and 4.23.

The digital filter of section 4.3.1 was used; the change in sampling fre-
quency shifts the cut-off of the digital filter to about 12 Hz in the f; = 2.0 Hz
case, but this does not significantly affect the results.
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Figure 4.22: Response to periodic input for a =3.0V,f; = 1.1 Hz

Figure 4.22 shows that the system behaviour is not simply periodic as
expected; between time ¢ = 0 and ¢ = 500, the process seems to be occa-
sionally periodic and occasionally either random or chaotic; after that there
are three different phases of periodic behaviour. The final low amplitude
was confirmed was visual observation: at the end of the run the pendulum
was sweeping an arc of less than 20 °. This behaviour was attributed to the
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Figure 4.23: Response to periodic input fora =4.0V,f; = 2.0 Hz

terminals was about 1.5 V (the signal was attenuated in buffer electronics;
see Fig D.3) . Higher amplitudes for f; = 1.1 Hz were in the chaotic regime,
which is why a different driving frequency was used for further tests.

Figure 4.23 shows results which better match expectations; the system
is almost periodic for the entire run, although the signal appears to have
more deviation than shown in the constant speed experiment. The standard
deviation of this signal is 0.10, which is 7.9 % of the absolute value of the
mean.

Under the assumption that the measurement noise remains the same as in
the constant speed experiment, the results indicate relatively large parameter
variation.

The difference between the results of the constant speed and periodic
response experiments are thought to be because the system is moving rela-
tively slowly in the second experiment, well below the motor’s usual operating
speeds; however, the chaotic system also operates at these speeds. This sug-
gests that parameter variation might be reduced if a gearing system were
used, but this was not investigated.

The effect of measurement noise and parameter variation was tested in
simulation. The models are very simple, and only indirectly reflect the exper-
imental observations above, but they do give some insight as to how sensitive
the modelling process is.
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Modelling the effect of measurement noise

To test the effect of measurement noise on modelling, part of the fitting
process for the simulated driven pendulum was repeated with Gaussian noise
added to the simulated data set.

The modelling was done with a dataset @, (i) = &, (i) +on(i) where n; (i)
and ny(7) are independent, normally distributed random variables with mean
of 0 and standard deviation of 1; @, (i) is the true simulated value.

The noise not only affects the fitting of coefficients, but also the selection
and clustering of {m, §) points.

The estimation of linear coefficients is more sensitive to noise than the
estimation of the fixed point, but should be less sensitive than fitting second
(or higher) degree polynomial coeflicients. The accuracy of the modelling
was determined by how well the fitted linear coefficients A* matched the
previously computed A; A is presumed to be close to the true linearisation.
The modelling accuracy is measured as the sum ¢ = 7,5 |4; — A%
smaller values of { indicate a better match.

The error estimate ¢ was computed for two different noise levels and two
data set sizes.

The first noise standard deviation, o1 = 0.046, is 0.65 % of the full range
of the velocity signal of 7.0. 0.65 % is the standard deviation from the
constant speed experiment. The second noise level was 0y = 7.0E~4, used
for comparison.

The data set lengths were 50 000 and 500 000; additionally, { was com-
puted for different number of (m, J) points in the cluster about the UPO.

Results are shown in Tables 4.5 and 4.6, as well as Fig. 4.24

Cluster size
o 25 100 200 500 1000 2000
0.046 | 15.8 1.76 2.03 4.65 4.6  4.57
7.0E~4 l 1.83 0.281 0.206 0.743 2.42 3.76

Table 4.5: ¢ for measurement noise with 50 000 points

In all cases o, produces large errors. For the smaller noige level, the
estimate initially improves with cluster size but finally becomes worse; this
is because, as cluster size increases, points which are further away from the
UPO which fit the linear model poorly are used in the computation of A*.

It appears that the modelling method cannot tolerate the noise level of oy;
increasing the amount of data used does not seem to help, but merely shifts
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[ Cluster size
o | 25 100 200 500 1000 2000
0.046 | 581 932 994 887 867 845
70E—4|1.21 098 0531 0.392 0.116 0.164

Table 4.6: ¢ for measurement noise with 500 000 points
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Figure 4.24: ( for different noise levels and numbers of points
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the minimum ¢ value. It is speculated that a more sophisticated method of
choosing points for the cluster would yield better results.

Modelling the effect of parameter variation

For the purposes of testing the effect of parameter variation, Eq. 4.2 was
modified to be

() = (om0 b sty ) 69

where by, (t) is a Gaussian random variable with mean 0 and standard devi-
ation 1; it is band-limited by the simulation step size. Other parameters are
unchanged from before.

Modelling accuracy was measured as in the previous section, by compar-
ing the summed absolute differences between the linear coeflicients previ-
ously computed and linear coefficients fitted to data obtained by simulating
Eq. (4.5). ¢ was determined for o = 0.01 and o5 = 0.1, and data set lengths
of 50 000 and 500 000 for various cluster sizes.

When the driving amplitude is lowered to @ = 0.5, the system becomes
periodic (other parameters are the same as in section 4.2); for measurements
taken in phase with the driving signal, the velocity signal has a standard
deviation of about 0.702 % (relative to the mean) for o7 and 6.77 % for 0.
Results are given in Tables 4.7 and 4.8.

Cluster size
o 25 100 200 500 1000
0.01 l 470 1.03 028 247 3.98

0.1 | 11.95 831 6.45 592 6.20

Table 4.7: ( for parameter variation with 50 000 data points

Cluster size
o ]100 200 500 1000 2000
0.01 517 214 2.36 1.88%8 0.921
0.1 JSA? 853 9.2 9.02 8.89

Table 4.8: { for parameter variation with 500 000 data points

The trend for parameter variation is similar to that observed previously
with measurement noise; for small parameter variation, it is possible to obtain
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Figure 4.25: ( for different parameter variation levels and numbers of points

a reasonably good model if the cluster size is correct, but for larger parameter
variation the modelling error is very large. Also similarly to measurement
noise, increasing the size of the data set does not seem to help.

From the experimental data above, it is clear that there is noise or param-
eter variation in the process, likely both. Although the simulations performed
used approximate models of these two factors, it is clear that the coefficient
fitting procedure is very sensitive to both noise and parameter variation.

Given the levels of noise and parameter variation present, no further
attempts were made to control the experimental pendulum.



Chapter 5

Conclusions

From the arguments presented in this dissertation, the following conclusions
have been reached:

1. Chaos control can stabilize unstable periodic orbits (UPO’s) using small
input perturbations.

This was established in [OGY90]; the basic method developed there
has been extended to be used in delay space and for higher periodic
orbits.

Chaos control is not just a theoretical or simulated curiosity, it has been
successfully applied to experimental systems by other researchers. It
has not yet, to this author’s knowledge, been applied to an industrial
systerm.

2. Local polynomial models can be used in simulation for chaos control.

It has been demonstrated that local polynomial models can be used
to stabilize UPQ’s in chaotic systems. These models can be fitted by
analysing data from the system, and work in delay space.

Additionally, when tested with the simulated driven pendulum, poly-
nomial based control had a performance advantage over linear based
control when the input was strongly constrained.

3. Chaos control performance in simulation is dependent on the constraint
on system input.

Performance of linear and polynomial controllers was strongly depen-
dent on the input constraint; both performance in terms of mean time
to control and noise robustness were far better when the input was less
constrained.

48
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4. Modelling of the driven pendulum for chaos control is very sensitive to
measurement noise and parameter variation.

Chaos control of an experimental driven pendulum was unsuccessful;
simulating the effects of noise and parameter variation revealed that the
modelling process is very sensitive to measurement noise and parameter
variation.

It is possible that parameter variation could have been reduced by
operating the motor at a higher speed using a gearing system. Robust
model-fitting for chaos control should be further investigated.
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Appendix A
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Appendix B

Basic dynamical systems
concepts

This appendix serves as a reference to basic concepts in the study of non-
linear dynamics which are relevant to this dissertation. More formal treat-
ments can be found in [Gle94] and [HW91] among many others. A pictorial
introduction to dynamical systems is [AS92].

This appendix is based on [Gle94], except where otherwise noted.

B.1 Continuous time dynamics

If time is considered as a continuous value in a system, i.e. time ¢t € R,
differential equations are often used to model the system. A system in which
dynamics occur are with respect to time only may be modelled with ordinary
differential equations.

B.1.1 Ordinary differential equations

Any nth-order differential equation can be written as n first-order equations;
such a system may be represented in vector form as

) Ji(m, w9, 00, 20, 1)
Za . f?(xl:xgre“'z*rnit>
Tn, Falzi, ma, oo, 20, )
which may be written as & = f(x,t), with £ = (z1,29,...,2,) and f =

(fl:f?;--wfn)'
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The vector x is the state of the system; it is an element of the system’s
state space, also called the phase space.

It is possible for each element of the state vector to have some meaning,
such as position, velocity or acceleration; transformation of the equations
often prevents such simple {and useful) interpretations.

The state space is normally R™ or a subset thereof, but in general it can be
more complicated. Each element of the state-vector may occupy a particular
one dimensional space (e.g. the real line or the unit circle) and the state
space is then the Cartesian product of the space of each of the elements of
x.

B.1.2 Solutions to ordinary differential equations

A curve x(t) satisfying the differential equations is a solution to the equa-
tions. The curve this solution traces out in state space is called a solution
trajectory.

If f is continuously differentiable in & and ¢, then a solution z(¢) cor-
responding to an initial condition x(fy) = =g exists and is unique: this
important result means that solution trajectories do not cross each other or
meet,.

The requirement that f be continuously differentiable leads to the useful
uniqueness result but it does exclude some important systems, e.g. power
electronics and other switched systems in which chaos control has been ap-
plied [TS98, YBOY98, IN98]. In this dissertation it is assumed that f is
continuously differentiable.

For low order systems (one, two or three dimensions) it is possible and
often illuminating to plot solution trajectories for a number of initial con-
ditions; this is usually termed a phase portrait. Time is shown on such
diagrams by an arrow on each trajectory showing which direction it moves
in. For examples see Table B.1.

A system of equations & = f(x, ) is said to be autonomous if f has no
explicit dependence on time, otherwise it is non-autonomous. An autono-
mous system may be written as € = f(x).

An n-dimensional non-autonomous system can be converted to an equiv-
alent (n + 1)-dimensional autonomous one by including time in the state
vector; this is done by adding an equation %,,; = 1 and substituting all
occurrences of £ in f by z,.1.

The solutions z(¢) for different initial conditions form a flow ®(x,?) in
the state space. ®{xg,1y) is the value of the solution with initial condition
z(0) = zq at time #;.
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A point z, is said to be a stationary point of a system if ®(x.,1) = x.
for all ¢, or equivalently if f(z,,t) = 0 for all ¢.

An operating point in conventional control design is usually a stationary
point.

A point x, is periodic with period T if ®(x,,1) = ®{z,,t + T) for all
¢t and there is no 5,0 < s < T such that ®(x,,t) = ®(x,,t + 5). A solu-
tion with initial condition =(0) = x, is a periodic solution—the trajectories
corresponding to these solutions are closed curves in state space.

Limit cycles are a type of periodic solution. The goal of chaos control is
often the stabilisation of such periodic behaviour.

A solution is quasi-pertodic if it has frequency components which are ir-
rational multiples of each other, e.g. ®(t) = (sin(t), sin(7t))—these solutions
form n-toruses in state space. Quasi-periodic solutions are mentioned for
completeness only.

Finally, any bounded solution (defined below) which is not stationary,
periodic or quasiperiodic but is locally divergent (i.e. solutions starting close
together diverge) is chaotic.

B.1.3 Stability of solutions

There are many different varieties of dynamical stability (at least 57, ac-
cording to [Gle94]); three of the more commonly used are Lyapunov, quasi-
asymptotic and asymptotic stability:

A point @ is Lyapunov stable iff for all € > 0 there exists 6 > 0 such that
if lz -y, <4 then || ®(z,t) - @(y,1)||, < e

A point x is quasi-asymptotically stable iff there exists 6 > 0 such that if
|z — yll, <& then ||[®(x,t) - B(y,t)||, 0 as ¢t — oc.

A point is asymptotically stable iff it is both Lyapunov and quasi-asymp-
totically stable. This is what is meant by “stability” in this dissertation.

Stability of a stationary point «, of £ = f(x) may often (but not always)
be determined by the linearisation of f about x.. =z, is stable if all the
eigenvalues of 0f /Ox evaluated at @, have strictly negative real parts.

The eigenvalues of the linearisation may be used to classify the stationary
point; some stationary points of interest are shown in Table B.1.

The table shows a node and vertex which are stable; phase portraits of
unstable nodes and vertices may be obtained by reversing time. Time reversal
changes the sign of the eigenvalues—notice that this does not change the
nature of a saddle.

Stability of limit cycles can be analysed through Poincaré section; this is
discussed in section B.2.3.
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phase plot

continuous time

discrete time

stable node

A, €R
A1<)\2<:0

A, A ER
0< A <A<l

stable vertex

7N\

)\1;)‘26@ )\1,)\26@
/\19’\2¢R Ah)\g QR
R(N) <0 | < 1

saddle node

)‘*13)\2GR )\1,)\26]&
)\1<O</\2 0</\1<1<)&2

Table B.1: Important types of stationary and fixed points
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Boundedness is a concept related to stability; a solution is bounded iff
there exists « such that ||®(x,%)||, < a for all t > 0.

B.1.4 Attractors, repellors and saddles

An attractor is a region of state space which attracts nearby trajectories.
Asymptotically stable bounded solutions are attractors; one may thus have
point attractors, periodic attractors (limit cycles), quasi-periodic attractors
and chaotic attractors.

An attractor has an associated basin of attraction: this is the set of
all initial conditions giving rise to trajectories which tend to the attractor.
An asymptotically stable linear system would have a point attractor with
the entire state space as its basin of attraction:; in non-linear systems it is
possible to have multiple attractors each having its own basin of attraction.

A repellor is an attractor in negative time; repellors repel nearby trajec-
tories. Once again one may have point, periodic, quasi-periodic and chaotic
repellors,

There are also regions of state space which both attract and repel; an
obvious example is the saddle node of Table B.1 but one may also have peri-
odic, quasi-periodic and chaotic solutions with this attracting and repelling
behaviour. Saddle cycles (i.e. saddle periodic trajectories) are of particular
interest in chaos control because chaos control is often used to stabilise such
cycles.

If post-transient experimental (real-world) data is analysed, only attrac-
tors and saddle structures can usually be detected.

B.1.5 Chaos in continuous time dynamical systems

If f{z) is continuously differentiable, then necessary conditions for chaos in
the trajectories of £ = f(x) are a state space of dimension 3 or greater and
non-linearity of f with respect to & [Moo092].

In the vicinity of chaotic attractors, trajectories are locally divergent al-
though they remain globally bounded.

The chaotic attractor is ergodic: given a point xy on the attractor, a
trajectory near the attractor will eventually get arbitrarily close to @y. This
means that a single trajectory will visits the neighbourhood of every point
in the entire attractor. The way a trajectory “fills” a region of state space
is similar to the behaviour of a random process and allows for statistical
analysis of chaotic systems.

Two statistically based global properties of the attractor are the correla-
tion dimension and the Lyapunov exponents.
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Correlation dimension

Chaotic attractors are often fractals—geometrically complex objects which
are assigned non-integer dimension. A discussion of this generalisation of
dimension can be found in [Wil97] and references therein. Correlation di-
mension, originally defined in [GP83], is often used in the study of chaos
because it is easy to compute and is not purely geometric—it contains dy-
namical information as well.

Given a trajectory x(t), let y(¢) be the sampled time series y(i) = x(ir)
of length N. The correlation integral is then defined as

Cr) = Tim — 3" 00— (i) - ()l,) (B.1)

where ¢ is the unit step (Heaviside) function.

The correlation integral is the probability of two points in state space
being within distance r of each other; this is a good example of how statistical
methods are used to analyse chaotic data.

For small r, [GP83] claims that C(r) behaves as a power law, i.e. C(r) «
r¥. The correlation dimension v is then

v = lim %leg(c)

r—0t dlog(r) (B:2)

(adapted from [Spr00]).
Correlation dimension is useful for estimating the correct embedding di-
mension for a delay space—see section B.1.6 for more on this.

Lyapunov exponents

Lyapunov exponents are a generalised stability measure and are in some sense
a generalisation of the eigenvalues of a stationary point [Kap98]. Most defini-
tions of Lyapunov exponents are a little involved-—see for instance [WSSV85],
[ER85] and [Kap98]. The definition below is adapted from [ER85].

Given a trajectory x(t) let y(i) be the sampled discrete time series y(i) =
x(it). Defining a matrix L as

N

.1 of
L=fim v 2 5

(B.3)

a=y(1)

and defining «; as the eigenvalues of exp(L), the Lyapunov spectrum A; is

A = 10%2(!“3’!) (B.4)

T
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ordered such that A\; > A;4;. Using a base 2 logarithm the Lyapunov expo-
nents are measured in bits per unit time—one could use base e to measure
in nats per unit time.

B.1.6 Reconstruction of the state space

Most of this section is based on [Kap98| and [Wil97].

It is common to have access only to a scalar measurement of a system
rather than the full state. From a time series of scalar values it is possible
to form a time series of vectors; these vectors are in a delay space which has
some properties in common with the state space. Most importantly for this
dissertation, the delay space vector often provides sufficient information for
chaos control.

Given a scalar function of time z(¢) which is the output of a system with
n states, the delay vector at time ¢ is (2(¢), 2(t—7), ..., z(t—(m—1)7)) where
m is the dimension of the delay space (also called the embedding dimension)
and 7 is the lag time. The invariance of certain characteristic properties of the
system, e.g. Lyapunov exponents and correlation dimension, is guaranteed
for m > 2n + 1, although it is common for smaller values of m to give
acceptable results.

Choosing 7 and m

7 may be set to the smallest value of time for which the time series being
investigated has zero autocorrelation; other techniques of choosing 7 are given
in [Wil97].

The embedding dimension m can be estimated by considering the correla-
tion dimension v for increasing m; v will increase with m until the embedding
dimension is sufficiently large to contain the entire attractor.

B.2 Discrete time dynamics

Any system which is sampled at intervals is a discrete time system—in such
a system, time may be regarded as an integer denoted .

B.2.1 Dynamical maps

A dynamical map is a system of the form

y(i+1) = gly(i), u(@))
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where y{(i) is the state vector and u(i) the input value at time ¢. The state
vector is an element of the system’s n-dimensional state space D. Although
scalar inputs are used in this dissertation, in general one can work with
multi-input maps.

A trajectory of a discrete time system is a sequence y(¢) generated by the
map g; for low-dimensional systems these points may be plotted to give the
discrete time analogy to a phase portrait. It is possible to join consecutive
points in the sequence, but for chaotic systems this tends to obscure the
diagram.

B.2.2 Features of dynamical maps

A fized point of a map g is a point y,. such that y, = g(y., 0). The stability
of fixed points may often be determined by linearisation of the map about
the fixed point. The eigenvalues of this linearisation correspond to z-plane
poles of control theory.

Some types of fixed point and corresponding eigenvalues of linearisation
for a two-dimensional state space are shown in Table B.1. The phase portraits
in the table apply to continuous time systems only, but one can imagine a
discrete systemn obtained by sampling a continuous system at a very high
rate; this would give the corresponding appearance of continuity in a phase
portrait.

More generally, an m-periodic point vy, is one such that y, = g™ (y,, 0).
An m-periodic orbit is a sequence of points y.(0), y.(1),...,y.(m — 1) such
that

7.(0) = g(y.(m),0)
Yyt +1) = g(y.(i),0)for0<i<m
y.(i) # g% (y.(1),0) forall k < m

Notice that while every point in an m-periodic orbit is an m-periodic
point, not every m-periodic point is a member of an m-periodic orbit (at
least, not as the terms have been defined above) since any point which is
m-periodic will also be {(pm)-periodic (where p =1,2,3,...).

Stability of an m-periodic orbit may (usually) be determined from the
linearisation of the map g™ about a point in the orbit; it is possible to
compute this Jacobian using the chain rule:

_171%

Y=y (0)u=0  p=1| oy

9 m
dy

The eigenvalues of this linearisation determine stability as for the fixed
point {or 1-periodic orbit) case.

(B.5)

gy (m—k}u=0
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B.2.3 Poincaré sections and maps

By generalising the concept of sampling a signal at regular time intervals, a
discrete map may be extracted from a continuous time system—this type of
map is called a Poincaré map.

In a n-dimensional state space D, the map is created by considering how
trajectories pierce an (n — 1)-dimensional surface. The Poincaré section is
given by the piercings, while the Poincaré map is the map between successive
piercings.

Let & = f{x) be a first order system of differential equations with n-
dimensional state space D and corresponding flow ®(z,t). Let p(x) = 0 be
an (n — 1)-dimensional surface in D; the Poincaré section P is defined by

P={xeD: ple)=0and f(z) Vp(z) > 0}

p(z) must satisly f(z}-Vp(x) # 0; this means that the trajectory cannot
have a turning or inflection point in the surface of section p.

Since P is {n - 1)-dimensional, we can express its elements in a new (n-
1)-dimensional space F; to convert between the spaces define a one-to-one
mapping ¥ : P — E. The Poincaré map I' can then be defined as

I = {(w@)yli+1) e ExE:yli+1)=T(2(T (y(1), )
such that ¢, is the smallest ¢ > 0 for which ®(¥'(y(:)),1) € P}

K

The importance of Poincaré maps is that they transform periodic solu-
tions in continuous time to periodic orbits in discrete time; a periodic solution
is stable if its corresponding periodic orbit is stable.

Example B.1: Poincaré section in R?

Figure B.1 shows trajectory @(t) = (exp(—t/10) sin(¢), exp(—¢/10) cos(t))
for 0 <t < 50; this trajectory satisfies

et (L)

Also shown in Fig. B.1 is the Poincaré surface of section p(z) = z,
and the elements of the section itself, marked by x. Notice that only
the upward going intersections are taken, corresponding to the condition
that f(x) - Vp(z) = —z( — £2/10 > 0; evaluated at p(x) = 2, = 0 this
gives the condition z < 0. .

Figure B.2 shows the corresponding Poincaré map, obtained by set-
ting y(i) = ¥(z) =z,. O
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Example B.2: Periodic time sampling as a special case of the
Poincaré section

Given a trajectory x(t) € R", define a new state vector
z(t) = (z(t), sin(wt)) € R

The Poincaré section p(z) = z(n-+1) and transformation y(i) = ¥(2(t)) =
(21,22, .., 2,) with ¢ = 27t /w give a sequence y(¢) which is @ () sampled
with period T = 27 /w. O

B.2.4 Chaos in discrete time dynamics

Discrete time chaos has properties similar to continuous time chaos. Chaos
can occur in non-linear discrete maps with state space of any dimension,
unlike the continuous time case; however, in both cases one finds chaotic
attractors (see e.g. Fig. C.1).

The correlation dimension of the attractor (Eq. (B.1)) may be computed
in the obvious way for the discrete time case.

Lyapunov exponents are computed by a simple alteration of the method
used for continuous time systems: if ; are the eigenvalues of L of Eq. (B.3)—
not of exp(L), as before—the Lyapunov exponents are \; = logz(|&,]), mea-
sured in bits per iteration (or bits per cycle).

B.2.5 Reconstruction of the state space

Delay space reconstruction may be employed on discrete time data. If the
scalar time series is z(4), the delay space vector will simply be (2(i), 2(i —
p),...,2z(i — mp)) where m is the delay space dimension and p is the delay
lag; p is usually 1.

B.3 Bifurcations in dynamical systems

A bifurcation is a qualitative change in a solution to a differential (or dif-
ference) equation which occurs because of a small parametric change to the
system’s defining equation.

Consider for instance the logistic map ([Lor93])

y(i+1) = ay()(1 —y(0)) (B.6)

for an initial condition 0 < y(0) < 1. The steady-state behaviour for different
values of ¢ is shown in Fig. B.3.
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Figure B.3: Bifurcation diagram for the logistic map (Eq. B.6

Figure B.3 shows the chaotic attractor for different values of a. The
diagram is obtained by computing a time series y(¢) for a particular value of
a and plotting the points (a, y(7)) for ¢ > ¢, where ¢ is large enough that no
transients are included, and repeating the procedure for different values of a.

For 1 < a < 3 the logistic map has a single stable fixed point at (a—1)/a;
however, at a = 3 a bifurcation occurs and a stable 2-periodic orbit is “born”.
As ¢ increases, the periodicity of the stable attractor keeps doubling and the
distance between successive doubling points becomes smaller and smaller
until the system becomes chaotic, as seen in Fig. B.3.

Bifurcation patterns of this sort are very common in non-linear systems.
A range of parameters for which the system is chaotic is called a chaotic
regime; for chaos control to be applicable, the nominal control value (as well
as all other system parameters) must be within such a chaotic regime.

Bifurcation diagrams may be used when designing systems to either pur-
posefully avoid or cause chaos; in a sense the simplest form of “chaos control”
is to ensure that system parameters are outside the chaotic regimes.



Appendix C

Chaos control worked examples

This chapter presents a worked example of chaos control of the Hénon map,
with modelling by symbolic and data analysis, and an example of how to
approximate symbolic analysis on the driven pendulum system.

C.1 Analysis and control of the Hénon map

The Hénon map was used in the seminal chaos control paper [OGY90], and
as an example for chaos control in [Vin97].
The Hénon map may be defined as

ri(t+1) \ [ —14z3() + 0.3z(¢) + 1+ uld) | _ N
( zo(i + 1) ) = ( 21(3) ) = g(x(i), u(i))
(C.1)
This form is slightly different to that used in [OGY90] and [Vin97].
The Hénon map is particularly simple to work with; the second order
Taylor approximation is the map itself, and the delay space (z1(2), z1(i — 1))
is the same as the normal space (both facts are evident from Eq. C.1).

C.1.1 Symbolic analysis of the Hénon map

Solving for 1-periodic orbits is straightforward. From x = g(z,0) we have
1 = z2 in the second row; substituting this into the first row gives the
second order polynomial —1.42% — 0.7z, + 1 = 0. This has two solutions,
71 = 29 = (v/609 % 7)/28, or approximately 0.631 and —1.131.

Both I-periodic points are shown on Fig. C.1; only one is embedded in
the attractor, namely z, = (0.631, 0.631).

The 2nd degree approximation about this point can be found by direct
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1.5

attractor - 2-periadic orbit X
1-periodic orbits + 4-periodic orbit ¥

Figure C.1: The Hénon attractor and 1-, 2- and 4-periodic points of the
Hénon map

differentiation, yielding

7 _ 0.631 -1.767 0300 1 —-14 0 0 0 O ©
" 0631 1 0o 0 0o 0 00¢00O0

The approximation about any point is similar; only the zeroth and the
dg/0z1 = —2.8x; terms differ.

Finding 2-periodic points requires solving & = g'*(x,0); four solutions
were found using the MAXIMA computer algebra system (CAS). Two of
these solutions are the 1-periodic points already found; the other two form a
2-periodic orbit z;(j), with z;(1) = (—0.476,0.976) and 2:(2) = (0.976, —0.476).

No 3-periodic orbits could be found by any means. The author could not
find 4-periodic orbits using MAXIMA: however, one was discovered by the
method of recurrent points (as discussed below). The 4-periodic orbit found
is

z(1) = (—0.707,1.125)
z(2) = (0.638,—0.707)
z(3) = (0.218,0.638)
z(4) = (1.125,0.218)
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C.1.2 Data analysis of the Hénon map

Data analysis was performed on two data sequences, ®(i) and @,(7) with
z(i+1) = g(x(:),0) and x,(i + 1) = g(x,(2), up(7)) for 1 < i < 50E3. (i)
is a sequence of independent normally distributed random values with mean
0 and variance 1E~3.

The (m, §) clusters of (i) for m = 1, 2, 3,4 are shown in Fig. C.2; in each
case & was chosen to select 100 points.
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Figure C.2: Hénon attractor showing (a) (1,4), (b) (2,6), (¢) (3,4) and (d)
(4,6) points

In Figure C.2 we can see that among the (2,6) points are some (1,4)
points, and among the (4,4) points are both (2,§) and (1,§) points. The
(3,6) points appear to all be (1,d) points, hence the assumption that there
are no 3-periodic orbits embedded in the attractor.

Deciding on numbers of clusters is quite straightforward; 1, 3 and 7 for the
1-, 2 and 4-periodic cases respectively. The coefficient fitting is performed
exactly as described in section 2.3.2; since the model is a perfect fit, the
parameters are extremely close to their actual values.

C.1.3 Results of control of the Hénon map

Figure C.3 shows the results of chaos control for the three different UPO’s
found; the controller was a POC with & = tma. = 0.1.
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Chaos control is successful in all cases. Figures C.4, C.5 and C.6 show
mean time to stabilisation from 20 different initial conditions on the chaotic

1.5

15 : . . :
U ) U -
15 : ' : '
0 10 20 30 10 50
i
oI TUUTTIU LTI U U UL
0 10 20 30 10 5
1.5 . — :
AU I TR
15 : : ' '
0 10 20 30 10 50

i

Figure C.3: Chaos control of the Hénon map

attractor for the DLQR, LOC and POC.
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Figure C.4: Mean time to stabilisation for DLQR
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Figure C.6: Mean time to stabilisation for POC

The values of the two unplotted points in Fig. C.4 are very large; this is
because the chaotic attractor has a relatively small basin of attraction, out-
side which the Hénon map is unstable; it is thus possible for the controller to
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make the system uncontrollable, and the corresponding time to stabilisation
is set to the maximum simulation time (20 000 in this case).

Except for these isolated cases, the results are fairly similar; the neither
the DLQR, LOC or POC have any clear advantage.

C.1.4 Effect of measurement noise on modelling

For comparison with the results of measurement noise on modelling the driven
pendulum, below are similar results for the Hénon system.

In this test measurement additive noise of the form @, (i) = x(i) + on(i)
was used, where n(i) and ny(7) were normally distributed random variables.
This ignores the fact that z9(7) = 2, (i — 1), which could be used in modelling
to improve the results below.

The error measurement ( is, as before, the sum of the absolute value
of the elements of the difference between the true linearisation, A and the
linearisation obtained from the noisy data; data sets of length 50 000 and
500 000 were used. The results are shown in Tables C.1 and C.2.

Cluster size

o | 200 500 1000 2000 5000 10000
0.01 | 1.59 0.787 0.199 0.0857 0.0532 1.8
0.1 !4.18 3.68 3.34 2.82 2.35 2.03

Table C.1: ¢ for 50 000 data points

Cluster size
o | 200 500 1000 2000 5000 10 000
0.01}4.67 414 3.42 246 0.827 0.343

0.1 14.95 495 491 484 46 4.22
Table C.2: ¢ for 500 000 data points

The results are similar to those of the driven pendulum; too much noise
makes modelling impossible, and increasing the size of the dataset does not
improve results.

-
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C.2 Symbolic analysis of the driven pendu-
lum

This section briefly demonstrates how to model a continuous time system in
normal space by “pseudo-symbolic” analysis. It is assumed that the equations
describing the system are known; the approach is to use numerical methods
to approximate a chaotic map, and to find fixed points and derivatives from
this map. The author has only investigated this method for normal space
(i.e. non-delay space), but it should be extendable to delay space.

The driven pendulum system used is as defined in Eq. (4.2), with b =
1/3.9, a = 1.5 and w = 2/3 as in section 4.2.

The state vector is &(2) = w(iT); the system input is as before deviation
in driving amplitude, changed only at times i7" and denoted wu(é). This
implicitly defines map x(¢ + 1) = g(«(2), u(7), which will be approximated
by numerically solving the underlying differential equations.

To find a 1-periodic UPO we must solve z, = g(z.,0); one obvious
approach is to refine a UPO found by recurrent points (section 2.3.1) by
using it as an initial estimate in minimizing ||z, — g(z., 0)]],.

In normal space, the method of recurrent points yields two UPO’s, one
of which is z, = (1.977038, 1.846086); the refinement describes above yields
zy = (1.997501, 1.846086).

The linear coefficients may be found by approximating the derivative. In
this case this yields

A, — [ —149175 —3.41586 g, - [ —1.15438
P70 —1.86090 —4.32097 /77 T L —1.08132

The linearization obtained by fitting the model to chaotic data is

A = —1.49943 —3.39697 B — —1.14265
¢\ —1.88312 —4.27279 ;7%\ —1.11378

The recurrent points solution is not far from the refined solution (pre-
sumed to be more accurate).



Appendix D

Technical details of the driven
pendulum system

This appendix presents details of the experimental pendulum system.

The pendulum system is shown in Fig. D.1 and D.2.

The motor used was a Maxon Motor model S 2332-966-51.276-200, which
is a DC motor with an integrated tachometer. Some relevant specifications
are:

Specification Unit Value
Motor speed constant rpm/V 415
Power W 12
Nominal voltage A% 12
Maximum speed rpm 9200
Tachometer output V/rpm 5.2E—4
Tachometer peak-to-peak ripple 6%

The rod was 130 mm long; the mass, which was a hexagonal nut, was
20 mm in diameter and its centre was 116 mm from the motor shaft. The
rod’s mass was 18.9 g and the nut’s 19.8 g.

The motor was connected to a computer via some buffer electronics, de-
picted in Fig. D.3.

In the Fig. D.3, Vpac and Vape are the connections to the digital to
analog (DAC) and analog to digital (ADC) connections on the computer,
respectively. Vmoror and Vracno are the connection to the motor and
tachometer. The circuitry to the right of the dashed line was built by another
student for a separate project. The simple electronics to the left of the
dashed line are to scale the DAC output down, and to scale and filter (for
anti-aliasing) the tachometer output. It is this scaling which is changed in
the constant speed experiment (by replacing the 33 k{2 resistor with one of
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Figure D.1: Front of pendulum system, showing rod and mass

Figure D.2: Back of pendulum system, showing tachometer
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Figure D.3: Schematic of electronics linking computer to experimental system
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330 k2). Notice that the tachometer output is already amplified by about 3
when it reaches this filter.

The computer used had a Intel Celeron processor running at 333 MHgz;
the DAC and ADC connections were provided by a Data Translation DT302
card, which has 12 bit resolution. The control software was run on Microsoft
Windows NT 4.0.



Appendix E

Simulation performance results

Below are the tabulated results of the ideal performance tests, as described
in section 4.2.4.

umax

1.00E-2 1.29E-2 1.67E-2 215E-2 2.78E-2
5.00E—-2 | 3.59E4 3.63E4 3.35E4 3.68E4 2.49E4
6.46E—-2 | 2.80E4 2.82E4 2.71E4 2.97E4 1.70E4
834E-2 | 2.92FE4 2.56E4 2.22F4 2.07E4 1.29E4
0.11 1.80Ek4 1.64E4 1.82E4 1.26E4 9.65E3
0.14 1.34E4 1.21FE4 1.50E4 1.36E4 8.13E3
0.18 1.30E4 1.01E4 9.91E3 7.25E3 7.24F3
0.23 1.30E4 9.76E3 7.31E3 5.48E3 6.19E3
0.30 1.30E4 9.76E3 717E3 5.36E3 4.16E3
0.39 1.30E4 9.76E3 7.17E3 5.06E3 3.60E3
0.50 1.30E4 9.76E3 7.17E3 5.06E3 3.59E3

Table E.1: Mean time to stabilisation for DLQR part 1
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Umax

3.59E~2 4.64E—-2 5.99E-2 7.74E-2 0.10
5.00E-2 | 3.12E4 3.6414 3.26E4 3.24E4 2.94E4
6.46E—-2 | 2.11E4 2.00E4 1.78E4 1.77E4  1.35E4
8.34E—-2| 9.49E3 1.12E4 9.09E3 1.02E4 1.05E4
0.11 7.93E3 7.80E3 8.04E3 7.43E3  5.98E3
0.14 6.31E3 6.02E3 6.20E3 6.49E3 4.03E3
0.18 4.72E3 541E3 5.21E3 3.98E3  3.85E3
0.23 4.64E3 3.95E3 3.58E3 3.36E3  3.35E3
0.30 3.56E3 3.32E3 2.25E3 2.28E3  1.93E3
0.39 2.47E3 1.89E3 1.54E3 1.54E3  1.36E3
0.50 2.18E3 1.55E3 1.18E3 1.09E3 1.01E3

Table E.2: Mean time to stabilisation for DLQR part 2

Umax

1.00E—-2 1.29E-2 1.67E-2 2.15E-2 2.78E-2

5.00E—2 | 3.20E4 3.55E4 3.52E4 3.20E4 2.76E4
6.46E—-2 | 3.08E4 2.91E4 2.73E4 2.40E4 1.84F4
8.34E—-2 | 2.75E4 2.95E4 2.48E4 2.09E4 1.19E4
0.11 1.72E4 1.65E4 1.53E4 1.42E4 9.91E3
0.14 1.37E4 1.19E4 1.21E4 1.19E4 1.07E4
0.18 1.30E4 1.01E4 1.02E4 7.72E3 5.92E3
0.23 1.30E4 9.76E3 7.57E3 5.71E3 5.14E3
0.30 1.30E4 9.76E3 7.24E3 5.41E3 4.38E3
0.39 1.30E4 9.76E3 T.17E3 5.06E3  3.100E3
0.50 1.30E4 9.76E3 717E3 5.06E3 3.92E3

Table E.3: Mean time to stabilisation for LOC part 1
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umax

3.59E~2 4.64dE—2 5.99E-2 7.74E-2 0.10
5.00E-2 | 2.19E4 2.04E4 24584 2.84F4 2.27E4
6.46E—2 | 1.94FE4 2.16E4 1.68E4 1.65E4 1.73E4
8.34E-2 | 1.13E4 7.72E3 1.25B4 1.08E4 8.64E3

0.11 6.72E3 7.68E3 7.48E3 8.55E3 6.8613
0.14 6.41E3 6.50E3 6.66E3 6.30E3 4.46E3
0.18 5.19E3 4.53E3 4.29E3 5.22E3 5.76E3
0.23 5.28E3 4.29E3 3.48E3 3.60E3 3.02E3
0.30 3.55E3 3.23E3 2.59E3 2.36E3 1.86E3
0.39 2.603E3  1.100E3  1.64E3 1.39E3 1.18E3
0.50 2.19E3 1.62E3 1.26E3 1.07E3  976.00E2

Table E.4: Mean time to stabilisation for LOC part 1

Yimax

1.00E-2 1.29E-2 167E—-2 215E—-2 2.78E-2

5.00E—-2

6.46E—2

8.34E-2
0.11
0.14
0.18
0.23
0.30
0.39
0.50

3.20E4
3.08E4
2.75E4
1.63E4
1.56E4
1.84E4
1.78E4
1.55E4
1.64E4
1.54E4

3.55E4
2.73E4
2.65E4
1.82F4
1.42FE4
1.39E4
1.38E4
1.17E4
1.51E4
1.02E4

3.34E4
2.67E4
2.35E4
1.55E4
1.45E4
1.25E4
1.16E4
8.46E3
8.95E3
7.64E3

3.51E4
2.71E4
2.26E4
1.48E4
1.31E4
1.12E4
8.05E3
6.17E3
6.98E3
6.32E3

1.86E4
1.94E4
1.16E4
1.14E4
9.10E3
8.44E3
6.94E3
5.21E3
5.22E3
4.95E3

Table E.5: Mean time to stabilisation for POC part 1
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u‘max
3.59E—-2 4.64E-2 599E-2 7.74E-2 0.10
5.00E-2 | 1.21E4 1.48k4 1.18E4 1.08E4 1.26E4
6.46E—-2 | 8.32E3 1.05E4 1.13E4 1.13E4  1.05E4
8.34E—-2 | 7.09E3 8.50E3 6.86E3 9.30E3  7.75E3
0.11 6.96E3 6.58E3 5.89E3 6.18E3  5.13E3
0.14 7.74E3 6.29E3 4.98E3 4.76E3  4.62E3
0.18 9.34153 6.59E3 5.58E3 7.06E3 6.33E3
.23 7.49E3 5.63E3 4.83E3 3.97E3  3.17E3
0.30 3.50E3 3.12E3 3.68E3 2.57E3  2.66E3
0.39 3.06E3 2.08E3 1.75E3 1.71E3  1.54E3
0.50 2.69E3 1.93E3 1.51E3 1.23E3  1.09E3

Table E.6: Mean time to stabilisation for POC part 1
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Appendix F

Clustering points

This discussion describes the two methods used to separate (m, ¢) points into
clusters, each presumed to correspond to an m-periodic point.

The first method is, given a list of (m,d) points, simply to find the all
(m, §) points within distance 5 of the first available point, using the Euclidean
norm. All points thus selected are removed from the list of available points
and the procedure repeated. This method is simple, but it is not obvious
how to choose n; for 2-dimensional systems plotting the (m,d) points can
help.

A method which gives guidance in choosing a clustering threshold is de-
scribed below. This method could not be used for large numbers of (m,d)
points because of computational complexity.

Given a vector sequence x(i), the n (m,d) points may be indexed by an

integer sequence a(p), p=1,...,n.
Let B(p) be a rearrangement of «(p) such that
1 B(1) = a(1)

2. itp< g, thenforallr <p
l2(8(r)) — 2 (B, < [l=(8(r)) — =(B(a))],

The sequence 3(p) is constructed sequentially; the next index to be added
is always the index of the (m, §) point not yet in the sequence closest to points
already in the sequence. In this way points close to {#(1)) are found early in
the sequence, and in general points which are close together will be clustered
in the sequence 3({p).

To separate the clusters, define y(¢q) = ||lz(8(¢+1)) — z(B(g)ll,, ¢ =
1,...,n—1. To divide 8(p) into k clusters, find the k — 1 largest values in
v(g); let the corresponding indices be ¢y, . .., gy ordered by ¢; < ¢; for ¢ < j
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and let g = 0 and g, = n. The ith cluster is then indexed by #(g;—1 + 1)
through 5{g;).

The value & may be chosen by examining the v(g) values sorted by de-
creasing magnitude; if the clusters are far apart relative to distances between
points in the clusters, there should be a clear threshold in this sequence which
indicates the number of clusters.



Appendix G

Source code

Source code for simulations, controller code, and the EIEX source for this
document are on the included CD-ROM. The simulations were run on a
GNU/Linux system using Octave; they may work on other systems. The
control code requires a Microsoft Windows NT system with a Data Transla-
tion DT302 card. I[nstructions for building and running the code are on the
CD-ROM.

C code for the Nelder-Mead simplex optimisation was taken from [Hut97].

83





