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ABSTRACT

The stringent specifications of modern tracking sysﬁems demand
antennas of high performance. For this reason arrays are finding

increasing application as monopulse antennas.

A new exact procedure is introduced for the synthesis of optimum
difference distriputions for linear arrays of discrete elements, with
a maximum sidelobe level specification. The method 1is Based on the
Zolotarev polynomial, and is precisely the difference mode equivalent
of the Dolph~“Chebyshev synthesis for sum patterns. When the
. interelement spacings are a half-wavelength or larger the element
excitations are obtained in a very direct manner from the Chebyshev
series expansion of the Zolotarev polynomial. For smaller spacings, a
set of recursive equations is derived for finding the array excitation
set. Efficient means of performing all the computations associated
with the above procedure are given in full. In addition, a set of
design tables 1is presented for a range of Zolotarev arrajs of

practical utility.

A novel technique, directly applicable to arrays of discrete elemehts,
for the synthesis of high directivity difference patterns with
arbitrary sidelobe envelope tapers is presented. This is done by
using the Zolotarev space factor zeros and correctly relocating these

in a well-defined manner to effect the taper.



A solution to the direct synthesis of discrete array sum patterns with
arbitrary sidelobe envelope tapers is introduced. In this case the

synthesis is also done by correct placement of the space factor zeros.

The above techniques enable high excitation efficiency, low sidelobe,
sum and difference ' patterns to be synthesized independently.
Contributions to the simultaneous synthesis of sum and difference
patterns, subject to specified array feed network complexity
constraints, are also given. These utilise information on the
excitations and space factor zeros of the independently optimal

solutions, along with constrained numerical optimisation.

The thesis is based on original research done by the author, except

where explicit reference is made to the work of others.
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PREFACE

The purpose of this preface is not to supplant Chapter 1 which
provides a general overview of the individual chapters contained in
this thesis. It is intended rather to direct the reader towards the

main emphases of the thesis.

The essential points of the thesis are contained in the abstract,
Chapter 1, Section 3.7, and Chapter 9. The detailed workings that
support ﬁhe central themes may be found in Chapters 4 to 8. Chapters
2 and 3 have been included to place the thesis as a whole in the
context of other research in its relevant field, and to derive certain

expressions not readily available in the literature.
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CHAPTER 1

INTRODUCTION

1.1 THE MONOPULSE CONCEPT

The function of a tracking radar is to select a particular target and
follow its course ih range and angle. An essential requirement is the
measurement of the angle of arrival of the received signal using a
directive antenna beam which is pointed towards the target. The
characteristics of the antenna must be such that errors in pointing
are measured and made available as error signals to control the

positioning servos of the antenna.

Tracking radars may be divided into two general types -~ sequential
lobing and simultaneous lobing (monopulse) [1]. The simultaneous
lobing technique is referred to as "monopulse" since it permits in
principle the extraction of complete error information from each

received pulse.

A monopulse antenna has three ports: the sum channel (I), elevation
difference channel (A,) and azimuth difference channel (4A,). This is
illustrated schematically in Fig. 1.1. If a plane wave is incident
on the antenna and the radiation pattern of the antenna measured at
the sum port, the form of the pattern Es(e) will be as shown in
Fig. 1.2 for any spatial plane in which the measurement is performed.
Here 6 is the angle measured with respect to the boresight direction
of the antenna. - Should the pattern be measured in the -elevation
(azimuth) plane at the elevation difference port (azimuth difference
port), the form will be that Iin Fig. 1.3. The essential’
considerations for both elevation and azimuth difference patterns are

the same.



When coupled to the transmitter of the monopulse radar system, the sum
mode provides illumination of the distant target; when coupled to the
receiver 1t provides range information and a reference signal. The
azimuth and elevation difference ports are coupled to receivers whose
signals, when combined with (normalised with respect to) the received
reference sum signai, provide azimuth and elevation angle information,
respectively. Although only the sum mode actuélly exists in
transmission, it is common préctice to consider all three modes in
transmission for ease of analysis; by reciprocity [2] the antenna

patterns are the same whether obtained in transmission or reception.

With each difference signal (Eda or Ede), one lobe must be in-phase
with the sum signal (ES) and the other 180° out of phase with it. The
beamforming network must ensure that this requirement is satisfied in

order to provide the correct servo information.

Assume that a target has been illuminated and a return from the target
is incident on the monopulse radar antenna. If the antenna is
pointing directly at the target (that is, the antenna boresight is
aimed at the target), there will be no signal at either the azimuth or
elevation difference ports, since these ports have patterns which have
nulls on boresight. If the antenna boresight is off target, a signal
Wwill appear at either the elevation or azimuth difference channels, or
both. The phase difference between non-zero Ede and/or Egar and the
sum signal ES (either 0° or 180° in the case of the ideal monopulse
antenna) provide information on the direction of offset in the
elevation and azimuth difference planes independently. - This
information is used to drive servos to re-=align the antenna boresight

on the target. Thus complete tracking capability may be achieved.

To summarise then, the amplitudes of the difference channels in
comparison with that of the sum are a measure of the displacement of
the target from the radar axis and the relative phase of the signals

indicates the direction of this displacement.
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1.2 ARRAY ANTENNAS

A source of electromagnetic radiation may take many different forms.
It could be a conducting wire, horn radiator, waveguide slot, or one
of many other possibilities. The radiation pattern of a single
element is fixed for a given frequency of excitation and consists, in
general, of a main beam and a number of smaller sidelobes. 1In many
applications there is a need for improving the performance above that
obtainable with a single radiating element. There are, broadly
speaking, two methods available for this purpose. One technique uses
a properly shaped reflector or lens fed by a radiating element, and
the other employs a number of radiating elements correctly arranged in
space to form an antenna array. Whether the reflector or array option
is to be used depends on a multitude of factors related to particular

applications and environments in which the antenna is to operate.

Array antenna development c¢an be divided 1into three stages:
specification, synthesis and realisation. These should not be taken as
clear=cut divisions, however, as there is a considerable amount of
overlap between the 1last two stages. Means of unambiguously
specifying the required performance of a monopulse antenna are
discussed in the following chapter. rThe synthesis problem involves
the determination of the excitations and spacings of the array
elements required to obtain desired radiation characteristics.
Synthesis is usually performed subject to a set of constraints. The
latter may set bounds on certain radiation pattern characteristiecs
(e.g. sidelobe levels), but may also include constraints on other
quantities in an attempt to allow easier practical realisability. This
second kind of constraint may include factors such as the sensitivity
of the array performance to imperfections, or constraints on the
complexity of the feed network. It is in the setting down of
constraints that engineering judgement must be exercised in the midst

of the mathematical techniques.



The final step in the design of an antenna array is the actual
establishment of the determined excitations in the form of hardware.
The realisation of the array includes the selection of the radiating
elements to be used, though this would no doubt have been kept in mind
during the synthesis stage. The realisation phase would further
involve the determination (theoretically or experimentally) of the
element radiation characteristics and the coupling between elements,
both externally and internally via the feed network. This information
is then used to establish the correct excitation determined from the

synthesis procedure.



1.3 OVERVIEW OF THE THESIS
This thesis deals exclusively with array synthesis.

Chapter 2 first summarises the definitions of numerous factors used in
the 1literature to specify the performance of monopulse antennas.
Thereafter essential information on array analysis pertinent to this
work is"givén. This includes expressions for the performance indices
associated with symmetrically and anti-symmetrically excited 1linear
arrays, which (as far as can be established) do not appear to be given
explicitly in the literature. Hence their inclusion in some detail

here.

In Chapter 3 the development of the synthesis of sum patterns is
reviewed, followed by a review of the state of difference pattern
synthesis. Thirdly, an overview is given of the problem of
simultaneous sum and difference pattern synthesis. The chapter
concludes (Section 3.7) with a summary of synthesis problems which
have not been adequately dealt with in the literature, and which form

the subject of this thesis.

Chapters 4, 5, 6, 7 and 8 contain the principal contributions of the
present work to the theory of monopulse array synthesis. A more
detailed indication of the contents of these chapters Iis more
appropriate after the limitations of existing synthesis techniques has
been gauged; this is therefore postponed until the end of the third
chapter (Section 3.7).

Finally, some general conclusions are reached in Chapter 9, and the

research reported herein put into perspective.

Appendix I contains a summary of concepts from the mathematical
theories of approximation and optimisation referred to in the thesis,
in order to make the latteﬁ more self~contained( Appendix II contains
tables of design data relating to the synthesis procedure developed in

Chapters 4 and 5.
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CHAPTER 2

MONOPULSE ARRAY SPECIFICATION AND ANALYSIS

2.1 MONOPULSE ANTENNA SPECIFICATIONS
2.1.1 Preliminary Remarks

The primary goal of an antenna design is the establishment of a
radiation pattern with specified characteristics. Except for its
terminal (circuit-like) properties such as impedance, impedance
bandwidth, conversion efficiency, and so on, the parameters which
characterize the performance of an antenna are all based on the shape
of the radiation pattern. Performance optimisation is therefore the
process of maximisation or minimisation of certain pattern performance
indices subject to constraints on others. Before such a process can
be effected, it 1is of course necessary that these measures of

performance be precisely defined.

For monopulse antennas there is a/ plethora of such specifications
[11-[7], some related not only to the antenna as a separate unit and
measured at the radio frequencies (RF), but to the response with the
antenna already connected to intermediate frequency circuitry. Such
specifications are commonly referred to as pre-comparator and
post-comparator parameters, though this is somewhat of a misnomer.
Here only the pre—comparator specifications will be of interest. These
are those measured at the output of the essential RF stages at which
sum and difference output can be observed for the first time. These
are usually the outputs of the RF comparators, and will henceforth be

accepted as such here.
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Though all of the performance specifications considered are applicable
to monopulse antennas of any physical type, the terminology here is
specifically directed toward arrays. In what follows, the angle 8
will be measured with respect to the direction broadside to the array.
Under normal conditions, the maximum of the sum pattern will be in the
8 = 0 direction. Terms of the form Eg(8) or E4(8) will represent

"yoltage" values of the radiation pattern.

2.1.2 Sum Pattern Specifications

The directivity Dg(6) in a direction 6 is defined as the ratio of the
radiation intensity (radiated power per unit solid angle) in the
direction 6 to the average radiation intensity [2]. Let the maximum
directivity of the sum pattern (in the direction of the sum pattern
peak or boresight direction) of the given array be denoted by D:.
Furthermore, let Dgax be the maximum possible directivity obtainable
with the given array; this will be that obtained when the elements
have identical excitations (in both amplitude and phase). Then the

excitation efficiency is defined as

n - Dm/Dmax (1 )

Here the conversion efficiency is assumed to be unity, so that gain

and directivity Ds(e) are identical.

Further specifications relating to the sum pattern are illustrated in
Fig., 2.1. All sum pattern sidelobe levels are measured relative to
the sum pattern maximum. The sidelobe ratio (SLR) is the reciprocal
of the sidelobe level. 1In decibels therefore the sidelobe level will
be a negative number and the sidelobe ratio positive. In the above

discussion, the subscript "s" signifies a sum mode quantity.



RELATIVE POMER LEVEL (DB)

LEVEL (DB)

RELATIVE POMER

1

" SUM PATTERN
MAXIMUM AT 8 = 0

]
|
[
1
| SIDELOBE ENVELOPE TAPER :
!
¥

' ——————— ¢
|
|

2 x FIRST NULL BEAMWIDTH

|
t
|
|
!
t
|

FIRST SIDELOBE LEVEL

I

FIGURE 2.1

ANGLE OFF BROADSIDE (DEG.)

SUM PATTERN SPECIFICATIONS

SIDELOBE
ENVELOPE TAPER

i e

T -r — 0 —r

DIFFERENCE PATTERN
PEAK AT 6 = 8

¢ FIRST NULL BEAMWIDTH

FIRST SIDELOBE LEVEL

FIGURE 2.2

ANGLE OFF BROADSIDE (DEG.)

DIFFERENCE PATTERN SPECIFICATIONS



12

2.1.3 Difference Pattern Specifications

The difference pattern, illustrated in Fig. 2.2, has -a null on
boresight (the 8 = 0 direction), two maxima either side (8§ = ieo) of
the boresight direction and thereafter a number of sidelobes. These
sidelobe levels (sidelobe ratios) will usually be measured relative to
the difference pattern maxima. In some instances, however, it'is
preferable to measure these with respect to the maximum level of the
sum pattern of the same array. Unless otherwise stated, the former
.convention is implied. As for the sum pattern, it is possible to
define the directivity Dd(e), excitation efficiency N4 and quantities

m max
Dd and Dd

For monopulse antennas an additional class of parameters have been
introduced in order to represent some measure of the slope of the
difference pattern in the boresight (8 = 0) direction. Since there
has- not been complete standardisation in the literature, a number of
different slope parameters. are defined here, and their relationships

shown.

Let Ed(e) be the "voltage™ pattern (space factor) of the array
operating in the difference. mode, and a = kL sin® the normalised
angle, In this expression k is the free space wavenumber and L the
total length of the array. Furthermore, let D4(6) represent the
directivity of the difference pattern as a function of 8. The several
boresight slope parameters currently in use can then be defined as

shown below.

(i) The difference slope is given by Rhodes (4] as,

3E ,(8)
K, = B (2)



(ii)

(iii)

(iv)

13

The normalised difference slope used by Kirkpatrick [5] is,

K=T (3)

ir Ké is the maximum value of K possible with a given array of
co-phasal excitations and K the actual value for the array,

then the difference slope ratio is,
K = K (W)

Several other boresight slope quantities are also in use, but
these involve sum pattern qualities as well. For instance,

Ricardi and Niro [6] define angular sensitivity as,
K = D K ' (5)

with D:ax as defined for the sum pattern in the previous
section. As figures of merit for the difference pattern, Hannan

[7] defines the relative difference slope,

(6)

and a further quantity,



1)

where Dz and are the main beam directivity and half-

%348
power beamwidth of the sum pattern, respectively, of the array

in question. The tracking sensitivity is often taken to be

This is also called the normalised angular sensitivity by
Kinsey [3]. Finally, Rhodes [4] deals with two further
quantities, the slope-sum ratio Kd/ES(O) and the slope-sum

product KdES(O).

The above slope parameters are all RF parameters, measured at the
output of "the beamforming network, and are of importance at the
éynthesis stage. While they are all clearly interrelated, for
comparing the boresight slope performance of array distributions only
Kd, K and Kr are required. The others are more important from an

overall tracking system point of view.

When an array antenna is realised in hardware, imperfections in the
practical componénts necessitate the introductioh of parameters to
measure their effect. Boresight error results, for example, because
of the non-idealness of the RF comparator; the difference pattern null
is raised and shifts off the boresight direction by a small amount.
The array elements will also have cross-polarised field components
(8], and therefore the allowable cross~polarisation levels of the

array must be specified.
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2.2 LINEAR ARRAY ANALYSIS
2.2.1 Introduction

If the elements of an array all lie along a common straight line, they
form a linear array. This geometry is not only important in its own
right, but is also an essential building block of the majority of
planar arrays. The synthesis of such linear arrays is therefore

fundamental to all array design.

Before a synthesis problem can be attempted, means of analysing a
linear array must be available. Such analyses are treated in some
detail in [9], [10] and [11], and a complete treatment is not intended
here. Instead, only the most relevant material will be considered,
certain new expressions presented, and some concepts written in a more
concise form. In what follows, the background to any statements made

without proof can be found in the above references.

In order to be cleaf on exactly which aspects of antenna array
analysis are pertinent to the matters at hand here, it is perhaps best
to state clearly what categories are not of concern. Firstly, arrays
with non-uniform element spacing and those which can be classified as
thinned arrays (certain elements removed for various reasons), will
not form part of the discussion. Electronically scanned and general
shaped-beam array synthesis will also be set aside. Of prime
importance 1is the "design of monopulse 1linear arrays with high
directivity (narrow beamwidth) and low sidelobes, for both sum and
difference patterns. In all cases the main beam of the sum pattern
and null of the difference pattern coincide, and this in the direction
broadside to the array. Thus endfire arrays, for example, will not be
considered. Although this may seem overly restrictive, such is not
really the -case, While 1linear arrays have a long history of
development and have achieved a certain 1level of maturity, the
synthesis problem is not yet complete, as will be pointed out in
Chapter 3, and there 1s much scope for research in this area.
Furthermore, this type of array is that of greatest concern for

practical monopulse tracking systems.
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2.2.2 Preliminary Considerations

If the radiation patterns of the individual elements of an array are
broad (as is most often the case since the elements usually have low
directivity), the significant features of the array pattern are
controlled by what is known as the array factor [10]. This latter
factor is the pattern of an array of isotropic radiators, with
spacings identical to those between the phase centres of the actual
elements, and with relative complex (amplitude and phase) weighting or
excitations equal to those of the actual array elements. The
synthesis problem deals with the array factor. Henceforth, if the
"radiation pattern'" of an array is mentioned, it is the array factor

that is being referred to.

Consider the linear array geometry shown in Fig. 2.3, consisting of 2N
elements with uniform element spacing d. The complex excitation of

the n-th element is a and the discrete distribution of excitations

n)
is called the aperture distribution of the array. The array factor
(also called the space factor) is a superposition of contributions

from each element, and is given by [9, p. 14217,

-1 j(2n+1) %9 sing
. E(8) = Y a_e

n

n=-N

N j(2n-1) %Q sinsg

+ ) a_ e . (n

n

n=1

where k is the free-space wavenumber.
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It is convenient to define an additional variable ¢ = kd sind. The
latter will be used interchangeably with 6 to denote the pattern

angle. If this new variable is used, an alternative expression for

the array factor is

-1 jtenety £y jen-1) ¥
E(y) = Y a_ e + ) a_ e ' (8)
- n n
- n=-N n=1
Distributions for which |a_ | = |a,| are of particular importance;
reasons will be given in the next chapter.
With symmetrical excitation,.agn = ap, and the array factor becomes
(9, p. 14217,
v v
E(p) = 2 ) a_ cos [(2n-1) £ ] (9)
S n 2
n=1
while for anti-symmetrical (difference) excitation, a_n = -a,, in
which case
\ v
E(y) = 2j ) a_ sin [(2n-1) £ ] (10)
d n=1 n 2

Recall that the array factor expressions given apply to an array of 2N
elements (an even number). An array of 2N+1 elements (an odd number)
is not suited to anti-symmetric (difference pattern) operation because
of the central element. Hereafter all arrays considered in this
thesis will be assumed to have an even number of elements, and to be

either symmetrically or anti-symmetrically excited.
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Expressions for array performance can be concisely written through use

of matrix notation. The excitation vector is therefore defined as,

(11)

for an array of 2N elements. The radiation vector is defined as,

cos [w/Z]

(F.] = cos [§¢/2] - (12)

cos [(2N-1)p/2]

for symmetric (sum excitation), and as

sin [w/2]

[r,] - sin [§¢/2] (13)

sin [(2N-1)y/2]

for anti-symmetric (difference) excitation. The corresponding array
factors are then, from equations (9) and (10),

E_(¥)

1]
n
[ |
vy
—_

—
[ |
[
e

s QL))

Ed(w)

1l
N
o
r
23]
[o%
—
—
r
[
e

(15)
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where [ ]T denotes the Hermitian transpose or adjoint (transpose of
the conjugate). In the present case the vectors [FS] and [Fd] are

real, so that this simply reduces to the transpose.

The subscript or superscript "s" ("d") has been used to designate
quantities associated with sum (difference) excitation. This practice
will be continued throughout; when such subscripts and superscripts
are omitted, a result applicable to both types of excitation is
implied. The terms symmetric (anti-symmetric) and sum (difference)

excitation are synonomous.

The following five subsections will define further, and give

expressions for, various array performance factors.

2.2.3 Directivity

For an array of isotropic elements the directivity 1s governed
entirely by the array factor. In the case of a linear array with
array factor E(8), the expression for the directivity in a direction 6

reduces to [111],

*
2 E(8) E (8)

D(8) = -5 (16)

[

* ] \] 1
J E(6 ) E (0 ) coso de
=“m/2

While Cheng [12] and Collin and Zucker [11] give expressions for D(8)
in terms of ﬁatrices (quadratic forms), this is only done for arrays
with quite general excitation. The fact that an array Iis
symmetrically or anti-symmetrically excited should obviously be
.exploited‘in order to lower the dimension of any analysis or synthesis
work. It is surprisingly cumbersome to attempt to simplify the

general results in [11] and {12] to the present special case.
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A direct first principle approach applying expressions (9) and (10) to
(16) yields the required results with 1less effort. Explicit
expressions for these desired quantities do not appear to be available

in the literature, and are therefore derived here.

Consider the case of symmetrical excitation. From (9), the power

density term

I 2

1 a: cos [(2n-1) % ] 1

L}
by
o~

a  cos [(2n-1) % 111

*
E,(WE_ (y) : .

: * -y ¥ -1y ¥
1 aa cos [(2m-1) 5 ] cos [(on-1) 5 ] an

o~

]
[ e 7=

m=1 n

If an NxN matrix [AS] = {as } with m,n = 1,2,+++N, with elements given

mn
by ain = cos[ (2m-1) % Jeos[ (2n-1) % ], is defined, then (17) can be
written as
* T
ESWE(w) = [3]'[a][s] (18)

The result (17) can be used in the denominator of (16). Thus,

w/2

' N N
r ' * ' [} [ * 5
| E_(6 JE(® Jeose do = m§1 nz1 a a b
-7/2 -
with
,1r/2 ] 1
s : ] '
o2 - { cos[ (2m-1) X428 Joos[(2n-1) KEZME Jeose'as (19)

-n/2
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Expansion of the 1indexed cosine terms as the sums of complex

exponentials enables the integral to be evaluated in closed form as,

bS

- sinc[(n+m=1)kd] + sinc[(n-m)kd] (20)

where sinc x = sin x/X.

A matrix [Bs] is now defined to be [Bs] = {b;n}’ m,n = 1,2,¢++N. The
directivity of this symmetrically excited linear array of 2N elements,
in direction 6 (or equivalently ¢ = kd sin®), can therefore be written

as the ratio of quadratic forms,

Ds(e) = (21)

For the case of an anti-symmetrically excited array the derivation
follows the same lines as that just completed, except that the cosine
functions with indexed arguments in (17) and (19) are replaced by sine

functions. Hence, with

hg] = {2}

(8] = {vd}

al = sin[(am-1) £ ] stn[(an-1) ¥ ]

bn‘:n - sine[(n-m)kd] ~ sinc[(n+m-1)kd] (22)

m,n = 1,2,++*N
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The directivity in direction 6 for the anti-symmetrically excited

array is given by,

(23)

The matrices [A] in either of the above cases can be written in terms

of the radiation vectors as,

2.2.4 Power Pattern and Excitation Efficiency

The symmetric excitation will always produce a pattern with a peak at

) = eo = 0, the anti-symmetric excitation a pattern with peaks at

8 = 6 the eo value depending on the particular excitations and

o!
element spacings selected. If [AO] is the matrix [A] evaluated at

6 =96 then the normalised power pattern is,

ol
T
o g1 [a]ld] o0
P(e = 2
T
317 [a°][4]
Since for the symmetric case the pattern peak occurs at 8 = 0, the
peak'directivity is found from examination of (17) and (21) to be,
N 2
2 Z a,
m n=1
D = ——m———- (25)
T
° [s]"[B,][s] -
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If the array is uniformly excited, the elements of the excitation
vector are all unity, and the numerator of (25) becomes 2N2. The
denominator reduces to a sum of all the elements of [Bs]’ and (25)

therefore becomes,

AU ) VD W W (26)

m=1 n=1

The excitation efficiency is then,

m max (27)

A similar quantity can be defined for the difference pattern. 1In this
¢ase the. co-phasal excitation set which, for a given array size,
provides the maximum possible value for the directivity of the
difference pattern peak, is not a uniform distribution. But suppose

that this maximum value is Dmax and occurs at an angle 6 = 6 Then

d ol
if the maximum directivity of the array being evaluated is DE at
6 = eo, the excitation efficiency is
m , max
ng = Dd/Dd (28)

It 1s also possible to define an excitation efficiency for the
difference érray in terms of D:ax for a uniform sum array of the same

size as,

m,.max
Ngs = Dd/Ds (29)
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2.2.5 Array Excitation Tolerance Sensitivity

In the engineering design problem "an important question is that
concerning the sensitivity of a particular array excitation
synthesised. Since the practical realisation of the excitation [J] is
never exact, it is important to ascertain how such imperfections will
effect the array factor E(y). If the smallest error in.[J] shifts the
resulting E(y) far off the desired one, then the synthesis is not an

acceptable one from an engineering point of view, even if it is exact.

The tolerance sensitivity S is defined as the ratio,

It is important to realise that, since [A] is dependent on 6, so is S.

The minimum value of S possible is 1/2N [11, p. 1971].

2.2.6 Array Q-Factor

The Q-Factor of an array is defined by [11, p. 200]

Q = — _ (30)

From this definition it follows that Q = SD. Since it is proportional
to S, and yet independent of pattern angle, it is widely used as a
measure of array realisability. A constraint on the Q-factor to a
reasonably low value is equivalent to restricting the desigﬁ within a
practical tolerance [12]. A very complete discussion on the concept
of a Q-=factor for antennas is given by Rhodes [13], who shows that the
array Q is proportional to the "observable" time-average electric and
magnetic stored energies. By "observable" 1s meant those portions of

the stored energies which are not identical at all frequencies.
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Thus a large Q implies excessive stored energy. For co=phasal
excitations and inter-elements greater than half a wavelength, the
Q=factors are all fairly close to unity. It can however increase

rapidly to high values for smaller spacings.

2.2.7 Difference Slope Parameters
As with directivity, for an array of isotropic sources, the boresight

slope is entirely dependent on the array factor,

N
Ed(w) = 2 nZ1 a sin[(2n-1) % ]

The total length of an array of 2N elements and interelement spacing d
is L = (2N~-1)d. The normalised angle o defined in Section 2.1.3 is
therefore o = (2N-1)kd sin6. So the relationship between y and o is

simply o = (2N-1)y.

From equation (2), and the expression for the array factor Ed(w), the

difference slope is

o 2
d oo o =0
I A
] o v =0
N
= ) (2n-1) a_ / (2N-1)
n=1 n
T )
Hence K, = [k]'[J] : (31)
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— — N
3
: v 1 7
where [K] = N : (32)
(2N-1)

Similarly, an expression for the normalised difference slope can be
derived from equations (3) and (23). It then follows, after some

mathematical manipulation that,

N
Y (2n-1) a
n=1
K =
(en-1) / 2[3]"(s,][5]
[x]" (4]
Therefore K = ' (33)

Inspection of equation (31) then reveals that the two slope parameters

are related as,

K = (34)

This gives a normalised difference slope factor for discrete arrays
which is consistent with the original definition given by Kirkpatrick
[5] for continuous line~source distributions. The equation (33) can
also be used to find, for a given element number 2N and spacing d (the
effects of.spacing d being represented in matrix [Bd]), that set of
excitations which provides the maximum value of K possible. If this
maximum value is Ko, the value of K. for any prescribed set of

excitations on the same array is then simply

Kr = K/Ko (35)
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Equations (31) to (34) prove to be extremely convenient for evaluating
the difference distributions to be discussed later in this thesis. As

they are not set down or derived elsewhere in the open literature,

they have been described in some detail here.
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CHAPTER 3

REVIEW OF MONOPULSE ARRAY SYNTHESIS

3.1 INTRODUCTORY REMARKS

The antenna array synthesis problem can be succintly stated as one of
finding the excitation [J] that will produce a rédiation-pattern E(y)
with certain performance indices maximised or constrained, and subject
to specified (e.g. sidelobe level) constraints on the pattern and even
the excitations themselves. Such constraints cannot be completely
arbitrary of course, and must be consistent with the basic physical

properties of the array.

As was previously stated, the general shaped beam synthesis problem is
not being considered here. Here E(y) must for the sum pattern caée
have a single main lobe, while for the difference mode two adjacenﬁ
beams separated by a deep broadside null are required. In both

instances high directivity and low sidelobes is the objective.

As far as high efficiency, low sidelobe array distributions are -
concerned, a number of important general rules can be stated. Although
these arise from the studies reported in literature to be reviewed in
the remaining sections of this chapter, they will nevertheless be

highlighted at this stage:

(1) It is the zeros of the array space factor that control both the

sidelobe level and envelope.

(i1) The aperture stored energy or Q (and the accompanying
sensitivity to errors) depends on the shape of the aperture

distribution and not just the edge taper (pedestal height).
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(iii) A low Q, low tolerance sensitivity distribution requires an
array space factor with a far out sidelobe envelope taper of
1/u, where u = (d/))sineé. A more shallow taper gives a higher
Q and tolerance sensitivity, while envelope decays faster than
1/u can only be obtained at the cost of increased beamwidth and

lower directivity (decrease in excitation efficiency).

(iv) Aperture distributions which begin to increase in amplitude
near the array edges ("edge brightening") are undesirable and

difficult to implement.

Array synthesis is, from a mathematical point pf view, a problem of
optimisation theory, and much current work adopts this approach. It
can on the other hand in certain cases also be approached from the
point of view of approximation theory. The early work (before the
advent of the ubiquitous computer) was based almost entirely on such
cénsiderations, and research in this area continues. Optimisation and
approximation theory are disciplines which are of course inextricably
linked, though this connection is not always recognised in the array
antenna area. The present chapter will therefore use formulations
which serve to demonstrate this connection, in addition to providing
an overall review of applicable synthesis methods. In order that this
thesis be somewhat self=contained, a summary of pertinent concepts

from optimisation and approximation theory is given in Appendix I.
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3.2 SUM PATTERN SYNTHESIS
3.2.1 Maximum Directivity for Fixed Spacing and Element Number

Consider an array with a given number of elements and a fixed spacing
between elements, and assume that the element excltations [J]
necessary for maximisation of the directivity in the broadside
direction afe desired. The directivity can be written as the ratio of
two quadratic forms [Chap. 2, Eqn. (21)]1, with matrices [AS] and [BS]
Hermitian, and [Bs] in addition positive-definite. Such properties
enable the desired excitations to be obtained directly as the solution

of,

B 1{g] = [F.] (1)

with [Fs] evaluated in the broadside direction. Results of such
computations have been considered by Cheng [1], Ma [2] , Pritchard
[3], Lo et.al. [4], and Hansen [5]. Hansen [5, Fig. 2] has shown that
for spacings above a half-wavelength, the maximum directivity is
almost identically that obtained with the elements excited with
uniform amplitude and phase. For smaller spacings the maximum
directivity obtainable is greater than that of a uniform array; this
phenomenon is called superdirectivity. However, the excitations are
extremely large, have large oscillatory variations in amplitude and
phase from one element .to another [2, p. 162], and are always
associated with an enormously large Q [4] and hence tolerance
sensitivity. For this reaéorl fabrication difficulties are wusually
prohibitive; and superdirectivity avoided in most 1instances.
Experimentally it is simply not easy to produce an array. with a

directivity much in excess of that produced by a uniform array.
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3.2.2 Dolph~=Chebyshev Synthesis

Rather than maximise the directivity of the array, consider instead
the problem of minimisation of beamwidth; the twd approaches are not
necessarily equivalent, Beamwidth minimisation subject to a
constraint on the sidelobe ratio is the classic array synthesis
problem_solyed_by C.L. Dolph in his monumental 1946 paper [6]. The
underlying argument behind Dolph's approach has been put concisely by

Hansen [51:

"A symmetrically tapered (amplitude) distribution over the
array ....... 1s associated with a pattern having 1lower
sidelobes than those of the uniform (amplitude) array.
Lowering the sidelobes broadens the beamwidth ...... Some
improvement in both beamwidth and efficiency is obtained by
raising the farther out sidelobes. Intuitively one might
expect equal level sidelobes to be optimum for a given

sidelobe levelY.

In_ order to synthesize such a pattern for broadside arrays with
interelement spacing greater than or equal to a half-=wavelength, Dolph
made use of the Chebyshev polynomials. The latter, denoted by Tm(x),
where m is the order of the polynomial, have oscillations of unit
amplitude in the range <1 < x < 1, while outside this range they
become monotonically large. Furthermore, Tm(x) has m zeros, all
within the range =1 < x < 1. In order to obtain a correspondence
between the polynomial and array space factor, part of the x > 1
region is mapped onto one side of the main beam while the oscillatory
portion of the polynomial is mapped out once onto the sidelobes on one
side of the main beam. Since an array of m elements has m~1 zeros, a
Chebyshev polynomial of order m#1 must be used. The ﬁransformation

from T .;(x) to array space factor ES(y) is x = xjcos(y/2), where

o)
¥ = kd sin6. If the sidelobe ratio is denoted by SLR, then
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»
i

cosh | E;T n [SLR + v SR =1 ]} (2)

cosh—1(SLR) }

cosh { 1

and the array space factor is,

ES(W) = T _, [xocos(w/z)] (3)

From these, expressions for computing the required excitations may be
derived. Such formulas have been derived by Stegen [8,12], van der
Maas [9], Barbiere [10] and Bresler [17]. With current computational

capabilities those due to Stegen [8] can be used directly.

For an array of m = 2N elements, the excitations are given by [8],

N=1

1 2“1
a_ = 5 {SLR + 2 pZ1 TZN;1[XO°°S( gﬂ ) Jeos | L—gﬁ_lEE 11w

=4

for n = 1,2,¢s¢reN. Care should be taken with the computations and
evaluation of the Chebyshev pqunomials. For large arrays or low

sidelobes multiple precision is required in performing the summation
in (4).

Dolph was able to prove [6] that the array so synthesised is optimum
in the sense that for the specified sidelobe ratio and element number,
the beamwidth (between first nulls) is the narrowest possible.
Alternatively, for a specified first-null beamwidth, the sidelobe
level is the lowest obtainable from the given array geometry. This
means that it 1s impossible to find another set of excitation
coefficients yielding better performance, in_ both beamwidth and

sidelobe ratio, for the given element number and uniform spacing d.
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It represents a closed form solution to the optimisation problem of
beamwidth minimisation subject to sidelobe constraints. The pattern
of a 20=element Dolph=Chebyshev with a 30 dB sidelobe ratio is
illustrated in Fig. 3.1.

The original work of Dolph [6] is only valid for the case

=1
cos ( 1/x0)

A2 < d <
m

Though this is possibly the most widely used case, it should be added
that Riblet [7] showed how this restriction can be lifted, but only
for an array of an odd number of elements. Dolph's transformation is
such that for d < A/2 the pattern no longer contains the maximum
possible number of sidelobes (the complete oscillatory region |x| < 1
is not utilised) and hence the beamwidth will not be at its minimum.
The alternative transformation between x and ¢, due to Riblet,
rectifies this matter. Algorithms for determining the excitations of
such arrays have been given by Brown [11,13], Drane [14,15] and Salzer

[16].

The Dolph-Chebyshev theory is indispensable and serves as a firm
foundation for sum pattern synthesis. It provides a means of
understanding array principles and indicates upper bounds on the
performance that can be achieved. However,'it does have a number of
drawbacks as regards its use as a practical distribution. These are

discussed below.

Consider a Dolph~Chebyshev array of 2N = 20 elements. The reqhired'
excitations, obtained using equation (4), are shown in Table 3.1 for
sidelobe ratios of 20 dB, 30 dB and Lo dB. These indicate the
tendency of equal sidelobe level distributions such as the
Dolph-Chebyshev to have large peaks at the array ends (a non-monotonic

distribution) for certain element number/SLR combinations. For a given
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number of elemerits 2N there will be a certain SLR for which the
distribution of excitations is "just" monotonic. If the number of
elements 1is increased but this same SLR 1is desired, the required
distribution will be non-monotonic. Increasing the SLR (lower
sidelobes) will allow a monotonic distribution once more. For the
example shown in Table 3.1, the distribution is already non-monotonic
for a sidelobe ratio of 30 dB, while for a 20 dB sidelobe ratio the
edge excitation is larger than the centre one. The peaks in the
distribution at the array ends are not only disadvantageous in that
they are difficult to implemént and make an .array which is realised
more susceptible to edge effects, but they are also indicative of an

increase in the Q and tolerance sensitivity [24].

Optimum beamwidth arrays do not necessarily provide optimum
directivity, especially if the array is large [18, p. 91]. To see
this, consider a Dolph-Chebyshev array with a fixed sidelobe ratio.
Lét the array siie increase (increase the element number with the
spacing held fixed), at each stage keeping the sidelobe ratio constant
and normalising the radiation pattern. This is permissible because
the directivity to be found at each stage is only dependent on the'
angular distribution of the radiation and not on any absolute levels.
It is then observed that the denominator of the directivity expression
is dominated by the power in the sidelobes after a certain array size
is reached, and remains roughly constant thereafter. Thus it is found
that the Dolph-Chebyshev distribution has a directivity 1limit [12]
because of its constant sidelobe level property, and for a given array
size and maximum sidelobe level, may not be optimum from a directivity
point of view. To remove this limitation a taper must be incorporated
into the far-out sidelobes. Array distributions which will do this
are taken up in the following two sections. It should be mentioned
that there may be other reasons, in addition to that given above, why
low tapering sidelobes are desired, especially if the antenna is to

operate in a hostile environment [19].
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Element

excitations
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for Dolph~Chebyshev distributions

providing the sidelobe ratios indicated,

20 elements.

for an array of

SLR 20 dB 30 dB 40 dB

a 1.00000 | 1.00000 | 1.00000
a, 0.98146 | 0.97010 | 0.95869
as 0.94516 | 0.91243 | 0.88030
a, 0.89261 | 0.83102 | 0.77266
ag 0.82596 | 0.73147 | 0.64612
ag 0.74789 | 0.62034% | 0.51211
aq 0.66149 | 0.50461 | 0.38166
ag | ©0.57004 | 0.39104 | 0.26408
ag 0.47689 0.28558 0.16597
ajo | 1.02812 | 0.32561 | 0.11820
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3.2.3 Continuous Line-Source Distributions for Sum Patterns

Although arrays of discrete radiating elements are being dealt with in
this work, no review of synthesis techniques would be complete without
reference to similar work on the synthesis of continuous line-source
distributions, especially the work. of Taylor [20]. Line=source
synthesis 1is important in the array context for several reasons,.
Firstly, géneral principles <can be learned which are equally
applicable to arrays (see Section 3.1). Secondly, continuous
distributions can be sampled for use with arrays. Furthermore, the
direct discrete array synthesis methods to be discussed in the
following sub-section have developed out of the theory on continuous

distributions.

Perhaps the most startling result on continuous distributions is that
obtained by Bouwkamp and de Bruyn [21], who showed that with a
continuous line~source of fixed length it is possible (in theory) to
achieve any desired directivity. However, though this implies that
there is no limit to the directivity, any directivity increase above
that obtained from the aperture when it is uniformly excited is
accompanied by a sharp increase in the nett reactive power required at
the source to produce it [22], and thus a large Q and sensitivity.
Practical considerations therefore make it unacceptable, as in the
case of the unconstrained maximisation of the directivity of the
discrete array (Section 3.2.1). To be realisable physically, some
constraint has to be placed on the proportion of reactive to radiative

power, or equivalently on the Q.

It is customary, when dealing with continuous line-source
distributions, to use the variable u = (L/A)sin®, where L is the

length of the source. This practice will be followed here.
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The next question regarding continuous distributions is that of the
distribution which provides the narrowest beamwidth for a given
sidelobe level, and vice versa. This was answered by Taylor [20], who
used the Dolph-Chebyshev theory as starting point. It was indicated
in Section 3.2.2 that the Chebyshev polynomial Tm_1(x) could be used
to find the set of excitations which results in the optimum
relationship between beamwidth and sidelobe ratio for an array of m
elements. Using an asymptotic relationship for the Chebyshev
polynomials given by van der Maas [9], Taylor derived the continuous
equivalent of the Dolph=Chebyshev distribution. This distribution has
a pattern with all sidelobes of equal level, and is optimum in the
sense that it provides the narrowest beamwidth for a given sidelobe

ratio of any non-superdirective distribution.

Taylor called this the "ideal" 1line=source distribution. "Ideal"
because of the fact that it 1s unrealisable, having a singularity at

each end; a feature indicated by the non®decaying sidelobe 1levels.

A solution to this problem was devised by Taylor [20], who recognised
(and appears to be the first to have done so). that the synthesis
problem is one of correctly positioning the zeros of the space factor
(radiation pattern). Taylor observed that close=in =zeros should
maintain their spacings to keep the close-in sidelobes suitably low,
and keep the beamwidth narrow. But at the same time further out
sidelobes should decay as 1/u [18, p. 55]. Such sidelobe decay is
found in the space factor sin wu/mu of a uniform line-source
distribution, which has zeros at u = +1,+2,+¢¢s+ [18, p. 48]. Suppose
now that the ideal line-source has zeros at u = tu,, N = 1,2,3,%0%0e,
What Taylor did was to stretch the u scale slightly by a dilation
factor ¢ slightly greater than wnity (so that the close~in zero
locations are not shifted much) and chosen such that a some point, a
shifted zero u, is made to coincide with an integer, say n = n. From
this transition point, the zeros of the ideal line-=source are replaced
by those of the uniform line-source. That is, the zeros of the new

pattern are,

=+
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with ¢ us = n. This pattern has n roughly equal sidelobes, with a 1/u
sidelobe decay beyond u = n. The corresponding aperture distribution
is then found as a Fourier series obtained from the above information
on the zeros [18, p. 58]. The final result is a distribution (the
Taylor-a distribution) which for a given sidelobe ratio gives both a
narrower beamwidth and higher directivity than any comparable (i.e.
those with a sidelobe taper) continuous line-source distribution.
Information relating the sidelobe ratio, dilation factof and H values
has been given by Hansen [18, p. 57]. Also given are expressions for
the aperture distribution itself [18, p. 58]. Too large a value for
n (exactly how large depends on the specified sidelobe ratio) implies
that the ideal 1line-=source distribution 1s "being approached too
closely". The aperture distribution then becomes non-monotonic with
peaks at the aperture ends (though the singularities of the ideal
source do not occur), with an accompanying increase in excitation
tolerances. Usually the n value is selected on the basis of the

aperture distribution shape and tolerances.

The Taylor n distribution was generalised by Rhodes [22, pp. 129-137]
to one dependent on the parameter n and an additional one, say v,
which controls the taper rate of the sidelobe envelope for a given n.
A value of v = =1 corresponds to the "ideal" line-source case. If
v = 0, the original Taylor ; distribution res&lts, while v > O
provides sidelobe envelope tapers more rapid than that of the v = O

case.

A third continuous distribution due to Taylor is his one-parameter
line-source distribution [18, p. 58]. Beginning with the sin wu/wu

space factor of a uniform line-source, with zeros at W, = in, a new

set of zeros were defined as u, = v n2 + B2 where the "one-parameter"
B is real and greater than zero. From this altered set of zeros a low
Q distribution is obtained which has a sidelobe taper of 1/u, starting
at the very first sidelobe, whose level is determined by the value of
B selected. The decay rate (which is expectéd, sSince W, > in for

large n) is the same as that of the Taylor n line-source distribution.
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Though the zeros of the Taylor one-parameter and n distributions are
never identical (except for the trivial case when these both reduce to
the uniform distribution, B = 0 and n = 1, respectively), the n
distribution roughly speaking selects a design between the ideal and
one-parameter cases. However, for the same first sidelobe ratio, the
n distribution has a higher excitation efficiency (and hence
directivity), and is therefore used more often. The reason for this
is that the n distribution tends to flatten out at the ends of the

line source while the one-parameter case does not.

The Taylor one-parameter distribution was generalised by Bickmore and
Spellmire, whose work has been reported in [23] and [24], into a
two-parameter continuous 1line-source distribution. One of the
parameters (c¢), like the B above, selects the starting sidelobe ratio,
.while the other (say v) selects the rate of decay of the sidelobes.
These two parameters are completely independent and the space factor

(radiation pattern) is the Lambda function

A value of v = % yields the Taylor one—parametér distribution and

v o= = % the Taylor "ideal" line-source, while v =D % gives sidelobe
envelope tapers more rapid than 1/u and 1is correspondingly less

efficient.

Hansen [25] comments that for a given set of high directivity/low
sidelobe requirements, the above distributions are always better than
the earlier distributions such as cosine-on-a-pedestal, Hamming, and

so on, and the latter should be regarded as obsolete.
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3.2.4% Tapered-Sidelobe Sum Pattern Distributions for Discrete Arrays

It is clear from the previous section that the theory of continuous
aperture line-=source distributions for'sum patterns is extensive and
well-developed. If these are to be used with arrays of discrete
élements, some form of discretisization process must be performed.
The earliest methods simply sampled the continuous distributions at
the element'locations. Unless the arrays are very large, however, a
badly degraded pattern may be obtained. An alternative technique was
proposed by Winter [26]. The initial array element excitations are
determined by sampling of the continuous distribution and then
iteratively adjusting these through Newton-Raphson minimisation of an
error expression comprised of the sum of the squares of the
differences between calculated (discrete) and specified (continuous)

levels for a selected number of sidelobes.

A more sophisticated yet direct alternative method was devised by
Elliott [27]. This method matches zeros. Instead of sampling the
continuous aperture distribution, one requires that the pattern zeros
of the continuous case also occur in the starting pattern of the
discrete case. If the resulting pattern does not meet the design
goal, a perturbation procedure has to be applied to the discrete
distribution in order to bring the final pattern within specification.
As recently as 1982 Hansen [24] could correctly state that there were
"no discrete distributions that yield a highly efficient tapered
sidelobe pattern'" directly and that in designing most arrays a
continuous distribution had to be quantised in some manner. For the
narrow beam, low sidelobe sum pattern, this is no longer the case as a
result of an ingenious approach devised by Villeneuve [28]. The method
utilises the important principle of synthesising aperture
distributions = that of correct positioning of the space factor zeros.
‘The Villeneuve distribution is the discrete equivalent of the highly
desirable Taylor n distribution. The array element excitations can be
obtained in a direct manner without the need for any form of
approximation, sampling or perturbation procedures. In order to

describe the Villeneuve procedure, consider an array of 2N elements



45

with the maximum sidelobe level specified. The first step consists of
determining the space factor zeros for a Dolph-Chebyshev distribution
with the same sidelobe level. Let the zeros of this Chebyshev
distribution be denoted by ¢ ,, n = #1, 2, «-- +(N-1),N. Furthermore,
let Yon be the zeros of a uniform array of 2N elements, given by
Yon = nn/N, for the same range of n as above. Now move the zeros of
the Chebyshev pattern so that for n > ﬁ, where n is some selected
zero, they coincide with those of the uniform array won' In addition,
multiply each of the first n-1 Chebyshev zeros by a dilation factor

.0 = ; 2m/2N wﬁ . Thus the final zeros of the array are,

Vo= (5)

From these altered zeros, the final element excitations are obtained.
Villeneuve [28] has devised efficient ways of doing this. These
excitations are those of a discrete "Taylor-like" distribution, with
the close=in sidelobes close to the design maximum specified, ahd the
further out ones decreasing at the rate 1/u (u = d/X sin® for the
discrete case) in amplitude as their position becomes more remote from
the main begm. As with the continuous Taylor distribution, n is a
design variable. The Villeneuve distribution is of course also
applicable to the case of an odd number (2N+1) of array elements.
A comparison of the excitation efficiencies of the Villeneuve
(discrete) and Taylor (continuous) distributions has been published by

Hansen [29].

For an array of 2N elements, with a first sidelobe ratio SLR, the
symmetrical element excitations ap, p = 1,2,+++N, are determined as

follows [287:
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The above technique 1is now generally referred to as the Villeneuve n

distribution [29]. An example of such a distribution, along with its

associated radiation pattern, is shown in Fig. 3.2 for the purposes of

illustration.
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3.3 DIFFERENCE PATTERN SYNTHESIS
3.3.1 Introduction

Most of the voluminous literature on the synthesis of linear arrays
deals with sum patterns. Many of these principlés apply equally well
to the synthesis of difference patterns of course. However,
additio;él berformance indices (e.g. difference slope) are important,
and alternative array distributions are required to provide high
performance difference patterns. Preferably, a sequence of results
paralleling that for sum patterns, analogous to Dolph—-Chebyshev
synthesis and the Villeneuve ; distribution method, is desired. Up to
the present time such has not been the case, difference pattern array
synthesis not having reached the same level of completeness as that
.for the sum mode, especially from an antenna theory point of view. In
spite of this, useful work has been reported; this will be reviewed in

the following three short subsections.

3.3.2 Maximum Directivity for Fixed Spacing and Element Number

One figure of merit of a difference pattern is the directivity in the
direction of the beam maxima. Such a maximisation, using a method
similar to that discussed in Section (3.2.1) for sum patterns, has
been briefly mentioned by Ma [2, p. 17d] but no details have been
published. As in that case, however, this is a case of unconstrained
synthesis with its associated problems. Once more, no control over
the sidelobes is possible, making it unsuitable for most applications

for which monopulse arrays are needed.
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3.3.3 Discrete Array Synthesis Subject to Sidelobe Constraints

A difference pattern is called optimum "in the Dolph-Chebyshev sense"
if it has the largest normalised slope on boresight (i.e. in the
direction of the pattern null) and narrowest beamwidth for é specified
sidelobe ratio, given the fixed number of array elements and
interelement spacing. Price and Hyneman [30] demonstrated that array
difference batterns with equal amplitude sidelobes are optimum in this
senée, in that they display both the lowest sidelobe ratio for a given
difference lobe beamwidth as well as the largest slope on boresight.
They then proceeded to list the properties required of a polynomial
which could be used to find the element excitations for such an
optimum difference pattern.' Having concluded that "no known
polynomial has the required characteristies" [30,- p. 5691, they
proceeded to develop a method based on a modification (which they
called a transmutation) of a Dolph=Chebyshev excitation function for
sum patterns. The result is, however, a pattern with below=-optimum

performance.

More recently, Balakrishnan and Ramakrishna [31], in the 1light of
appropriate polynomials not being available, devised a numerical
method to obtain difference mode patterns with an equiripple sidelobe
structure. They reduce the problem of obtaining the optimum
excitations to a minimax problem, and solve this using a modified

Remes exchange algorithm.

The above two papers appear to be the only ones available which
attempt to tackle specifically the discrete array difference pattern

problem directly.
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3.3.4 Continuous Line-Source Distributions for Difference Patterns

‘Clearly work on the synthesis of discrete array_distributions for
difference patterns has been scarce in the open literature. Somewhat
more has appeared on the subject of continuous aperture distributions.
Kirkpatrick [32] in 1953, by a straightforward application of the
calculus of variations, showed that the maximum normalised difference
slope (K) on boresight is produced by a lineQSource with a linear odd
distribution such as that shown in Fig. (3.3). Thereafter Hannan [33]
showed that the real line-source distribution which provides maximum
peak directivity of the difference .beam is a truncated sine curve
having an edge taper of 2.15 dB relative to its maximum value. This
distribution is illustrated in Fig. 3.4. Furthermore, it was shown
that the directivity of the 1line-source with this difference
distribution is 2.15 dB below that of the same line-source operated
for maximum directivity in the sum mode (uniform distribution). Nester
{347 considered the maximisation of the sensitivity factor (KS),
assuming that the difference distribution was obtained from that for
the sum by a simple phase reversal of one half of the sum distribution
(i.e. a two#module feed network). The line-source distribution which

maximises this factor is given [34] in Fig. 3.5.

Powers [35] obtained a difference space factor L, o(uw) by
1

[26] differentiating the Bickmore-Spellmire space factor

2 2
A uT - et ),

where u = (L/))sin6é, L being the length of the continuoué line source.
The rate of sidelobe decay for large u, as well as the space factor
zero positions (and hence difference 1lobe beamwidths), can be
controlled by adjusﬁing v and ¢, though these are not independent. The
synthesis of the line-source distribution is carried out by taking the
Fourier transform of the space factor Lv’c(u) f35]. The linear odd
distribution of Kirkpatrick [32] is a special case of the present
distribution, though its property would not be obvious from the

analysis of Powers had it not been known previously anyway.
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In essence the Powers distribution allows one to draw up curves of
slope at boresight, and sidelobe ratio, versus the two parameters v
and c. At no stage however 1s one assured that, for a required
sidelobe ratio, the distribution gives the maximum boresight slope or

difference lobe beamwidths, or vice versa.

By far the most wuseful (and most used) continuous line source
distributions for difference patterns are those due to Bayliss
[36]. Bayliss took the derivative of Taylor's "ideal" (sum)

line~-source space factor, to obtain a space factor

u sinc(mnv u2 - A2)

In order to obtain from this a difference space factor with the first

n sidelobes close to some specified level, after which the sidelobes
taper off as 1/u, Bayliss undertook a parametric study in which the
zeros and A wére numerically adjusted for a number of sidelobe ratio
values. Fourth order fitted polynomials for A, the difference lobe
peak position, and the first four zeros (thé others following from
these) as functions of the required sidelobe ratio were obtained from
" the numerical data [36]. The Bayliss distribution- can be obtained
from the final space factor zero positions in the form of a Fourier
series, and gives near-optimum boresight difference slope for the
specified sidelobe level. It is the difference pattern analogue of
the Taylor distribution, though not as elegant Dbecause of the
numerical ‘root adjustment required for each new sidelobe ratio

specified.
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Finally, Lopez [32] has reported a method of obtaining the line=source
distribution which provides maximum difference slope ratio (defined as
the ratio the normalised difference slope of the line source to that
of the linear odd excitation of Fig. 3.3), and this subject to a

sidelobe ratio constraint. The method is entirely numerical.

Should any of the above continuous distributions be used with discrete
arrays, some form of sampling, as discussed for sum distributions in

Section 3.2.4, has to be used, and with the associated problems.
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3.4 SOME GENERAL METHODS OF ARRAY SYNTHESIS

Numerous methods have been devised for handling the
arbitrarily-shaped=beam array synthesis problem. These are all of a
numerical nature, involving some form of  iterative procedure. In most
cases they utilise for the array problem some general mathematical
constrained optimisation technique. Such methods differ principally
in the following respects:

(

) The way in which the array problem is formulated as such an

(=N

optimisation problem (e.g. the choice of performance indices to

be minimised or maximised).

(ii) The type of constraints which are applied (e.g. limited Q,
maximum sidelobe levels allowed).

{(iii) The particular optimisation algorithm wused (e.g. 1linear
programming, quadratic programming, use of ratios of Hermitian

quadratic forms).

A good summary of such methods has been given by Hansen [24,
pp. 48-54]. Detailed overviews have also been given by Cheng [1] and
Lo et. al. [4], as well as Sanzgiri and Butler [38]. In order to make
this brief section yet complete, a number of further papers deserve or
require special reference. Those by Elliott et. al. [39,40], though
of a numerical nature, are firmly based on the important principle of
correct space factor zero placement mentioned in Section 3.2. Those
by Einarsson [41], Owen and Mason [Y42], and Ng et. al. [43] are

relevant to later sections of this work.

Any of the above numerical methods dould be used for the synthesis of
sum and difference patterns with high directivity and low sidelobes.
But more direct methods are preferred, if they are indeed available.

Reasons for this are presented in Section 3.6.
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3.5 SIMULTANEOUS SYNTHESIS OF SUM AND DIFFERENCE PATTERNS
3.5.1  The Problem of Simultaneous Synthesis

Assume for the moment that‘it is possible to synthesise separatelyv
both sum and difference array distributions with performance that can
be classified as optimum. If feed networks of the type shown in Fig.
3.6(a) are available for providing independent excitations for the two
modes of operation, then these separate optimum distributions should
be utilised. (The network shown should be regarded as schematic. Its
realisation in hardware, though providing the same desired response,
is more often as shown in Fig. 3.6(b), which is called a tandem feed
network [447). The latter allows both modes to be independently
optimised, but its realisation and fabrication is expensive). Such
networks will henceforth be referred to here as independent feed
networks. They repreéent.the upper bounds as regards the monopulse
array pérformance, and will be referred to as the "“ideal" solutions.
In many cases the performance requirements of an array are such that
the complexity and expense of such feed networks are justified. But
there are a large number of applications and/or array types (e.g.
slotted waveguide arrays) for which a simpler (rélatively speaking)
feed network is desirable which cannot provide independent sum and
difference excitations. In such cases there has to be a compromise
between the sum and difference performance, the ideal solution not

being achievable.

If the feed network of Fig. 3.6 is at one extreme, then the two-module
network of Fig. 3.7 1is at the other. It does not allow any
independence between sum and difference excitations. Once the sum
excitations are selected, the difference distribution is fixed, and
vice versa. While the two-module feed arrangement is attractive
because of its simplicity, the resulting antenna pattern performance

may leave much to be desired, and is in many cases unacceptable.
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In order to illustrate this, consider a 1linear array distribution
designed for good sum pattern performance. In particular, observe the
pattern of a 20 element, 30 dB sidelobe ratio, Villeneuve no=4 array
with interelehent spacing d = A/2, shown in Fig. 3.8(a). The
corresponding difference pattern obtained with these element
excitations is shown in Fig. 3.8(b). This difference pattern has
high sidelobes. Similarly, Fig. 3.9 shows the patterns of a 20 element
array designed for a desired difference pattern performance, using a
30 dB sidelobe ratio, modified = Zolotarev (n = 4) distribution.
_(These are developed in Chapter 6). The poor sum pattern performance

is obvious.

Also shown in the above figures are the element -excitations
appropriate to each pattern. The reason for the bad difference and
sum performance in the above two cases, respectively, is clear if
these excitations are examined. Consider the case in Fig. 3.8(b).
There 1s an abrupt discontinuity at the array centre for this
distribution, resulting in the high difference pattern sidelobes.
Likewise, for the sum distribution of Fig. 3.9(b) there are dips in
the excitations at the array centre, which fnevitably leads to high

sum pattern sidelobes.
At this point two options are available:

(a) That a feed network of complexity intermediate between the
indepeﬁdent and two=module types be ﬁsed, in order to allow some
degree of indepehdence (though restricted) between the
excitations of the two modes of operaticon. In this manner it may
be possible to obtain a performance compromise which 1is

sufficiently close to ideal.

(b) That the two-module feed be used and a compromise reached to
obtain less than ideal but yet marginally acceptable sum and

difference pattern performance.
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3.5.2 The Two-=Module Feed Network Compromise Solution

Nester [34] considers what 1s equivalent to the two-module feed
network case, but which applies to continuous apertures
(line~sources). The angular sensitivity K (product of sum
directivity and difference slope) is maximised using a variational
technique, withgut constraints. Optimum performance in this instance
is provided by the distributions shown in Fig. 3.5. The difference
slope factor Kd is 0.3 dB below the maximum obtainable with a line
source (see Section 3.3.4), and the sum pattern directivity is 0.3 dB
less than its maximum value. More severe, as far as low sidelobe
array synthesis is concerned, is the fact that the'sum sidelobe ratio
is only 8.4 dB, while the largest sidelobe of the difference pattern
is only 11.3 dB below the difference peak. Furthermore, when applying
these cbntinuous distributions to discrete arrays, the same
quantisation problems will arise as described in Section 3.2. This is

clearly not a solution to the simultaneous synthesis problem at hand.

A compromise solution also involving a two-=module feed network is that
discussed by Schaffner et. al. [45]. The design of a monopulse
slotted waveguide array 1is examined. Although ‘the solution is
specifically meant for this type of array configuration, the procedure
adopted is effectively one of taking the average of the excitations

.Wwhich separately provide optimal sum and difference patterns.

While both [34] and [45] consider particular compromise solutions, no
definite procedure for finding the best compromise when using the

two-module network is given.
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3.5.3 Intermediate Network Solutions

By intermediate networks is meant those of complexity lying between
the completely independent and two=module types. One such 1is the
four-module network mentioned by Lopez [44], and illustrated
schematically in Fig. 3.6(b). Clearly, such a network attempts to
"smooth out" the central discontinuity of the difference distribution
in a stair step sense. To do this each half of the network is divided
into two sub-arrays, with different sub-array weightings for the sum
and difference modes. This is equivalent to saying that the increased
network complexity allows a limited degree of independence. Extending
this sub-“arraying process by increasing the number of modules will
naturally increase the degree of independence achievable. If the
number of modules equals the number of elements complete independence
between the sum and difference excitations is obtained; but this is

then just the independent network of Fig. 3.6 anyway.

.As with the two-module compromise solution, no information on a design
algorithm for an n=module, or equivalent, intermediate network has

appeared in the literature. This problem is taken up in Chapter 8.
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3.6 EXACT (CLOSED FORM) VERSUS NUMERICAL TECHNIQUES

In engineering, just what iIs meant by exact or closed form as opposed
to numerical techniques is seldom precisely defined. The traditional
approach is to consider to be exact any techniq&e described entirely
in terms of accepted mathematical functions irrespective of how
obscure the latter may be. When it comes to obtaining answers from
such methods of course, some form of numerical manipulation (which may
be of a reasonably complex nature) is required for evaluating, and
determining the properties of the functions involved. Indeed, even if
the above-defined "exact" method uses only the sine function, the
evaluation of which is performed on a computer using some series
expansion, it would be equally valid (albeit mundane) to claim that

the method is a numerical one.

In order to strengthen the above definition of an exact method,
restrictions might be placed on the subsequent numerical opérations
"allowed" by the definition, That is, a list of allowed elementary
operations, (e.g. solution of a set of simultaneous linear equations,
roots of a polynomial, and so on) can be spedified aé being within the
domain of definition of an exact method. However, this does not make

the definition less arbitrary.

Clearly, the above possibilities, while perhaps valid descriptions of
exact methods prior to the advent of computers, are no longer so. This
difficulty 1is compounded by the fact that the aim of much of modern
analysis is to reach a point where computational techniques are
viable, and the distinction between "“exact" and "“numerical" cannot
perhaps be made clear-cut in general, but only for particular cases.
For the present work therefore, dealing specifically with array
synthesis, a definition is proposed which does not depend on the
amoﬁnt of numerical computation involved but rather focuses on the

nature of the algorithm itself.
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A synthesis method will be regarded as exact if:

(i) Only on termination of the algorithm is the complete set of

excitations available, and it is the final answer.

(ii) No initial guesswork on the part of the user of the technique

is required.

(iii Any adjustment of array space factor zeros is done in a

predetermined manner.

In other words, at no stage with an exact method is it necessary to
take an intermediate complete set of excitations, test it to see
whether the initial bounding specifications are met, and either
terminate the algorithm or compute a new set of excitations in some
prescribed fashion. Observe also that while exact methods may
iteratively determine the excitation df a particular element from
those previously computed, the full set of excitations is only
available on termination of the algorithm. Finally, condition (ii)
eliminates from the menu of exact methods any algorithms which require
an initial estimate of sidelobe maximum positions, for example, with

the latter possibly having to be altered at the next stagé.

This definition can be "tested" on the synthesis techniques discussed
in the preceding sections of this chapter. if this is done, the

following are "found" to be exact methods for sum synthesis:

(a) Unconstrained directivity maximisation of discrete arrays.
(b) Dolph=Chebyshev synthesis of discrete arrays.
(¢) Taylor synthesis of continuous line-source distributions.

(d) Synthesis of Villeneuve distributions for discrete arrays

while for difference patterns the only exact method 1is the

near-optimum synthesis of Price and Hyneman.
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All the other methods fall into the, class of numerical synthesis
procedures. And these are in fact what are usually considered in the
antenna community to be exact and numerical synthesis algorithms,
respectively, thus establishing the wvalidity of the definitions

adopted.

The ideal situation is that for which some, albeit restricted, exact
synthesis techniques are  available in addition to numerical
approaches- For . instance, though the numerical constrained
optimisation methods of Section 2.2.5 ‘are extremely powgrful, it is
the study of array behaviour via the exact solutions of Dolph [6],
Taylor [20] and Villeneuve [28] which gives an indication of how
varjious constraints must be specified in the first place and from

which the array physics can be learned.

Furthermore, exact methods set bounds on the array performance
obtainable. A numerical optimisation method applied to a particular
synthesis problem may, for example, appear not to be able to bridge
some performance limitation. The availability of an exact solution
"close" to such a problem will indicate whether this is due to some
physical limitation or whether the constraints have simply not been

properly posed or have been overly restrictive.

For all numerical methods, some set of initial estimates on the
optimisation variables 1s needed. Here the existence of '"close"
closed form solutions provides a "warm start”"” for the optimisation

process.

Most important alsc is the fact that exact solutions facilitate the
observance of trends in the performance of an array, a crucial part of
any design process. General conclusions can be drawn.  For example,
Hansen [29] was able to make useful broad inferences regarding the
effects of finite source/receiver separation distance on the
measurement of low sidelobe patterns, since it could confidently be

stated that "the Taylor n distribution is the only one that needs to

be considered" for drawing such conclusions.
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Finally, in defence of the usefulness of exact methods the present
author would venture to state that, had the computer (necessity that
it is) been invented before the definition of such elementary "closed
form" functions as the trigonometric ones, our intuition, so essential
for innovation, would have been severely limited. There is perhaps a
parallel here with the comment made by Deschamps [46] with regard to
the relatively simple geometrical nature of light having been

recognised before its more complex wave nature:

".... if the (wave) nature of light and Maxwell's equations had
been known earlier, optical instruments would not have been

invented so readily!"
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3.7 MONOPULSE ARRAY SYNTHESIS TECHNIQUES DEVELOPED IN THIS THESIS

The conventional synthesis methods have been treated in the previous
sections. Those dealt with in- this thesis are summarised here. A
knowledge of the unconstrained maximum directivity or the maximum
normalised boresight slope of a difference array of given number of
discrete elements is wuseful for evaluating the effectiveness of
distrib;tiohs providing patterns with sidelobe constraints. The first
part of Chapter Y4 examines these topics and compares the results with

those for continuous line=sources.

There has up to the present time, for difference patterns, been no
equivalent of the Dolph=Chebyshev sum pattern synthesis technique.
This method provides the information on space factor zeros which is
crucial to sum array synthesis by correct zero positioning. In
addition, it provides information on the upper bounds of array
performance. Chapter 4 of this thesis develops such an exact
procedure for difference patterns, which utilises the Zolotarev
polynomials, and which is the difference analogue of Dolph-Chebyshev
sum synthesis. For a specified sidelobe 1level and array size, this
technique provides the set of element excitations giving maximum
normalised boresight élope and minimum difference lobe beamwidths. It
also provides information on space factor zero locations central to
the difference synthesis problem in general. Chapter 5 considers the
computational details assoclated with Zolotarev polynomial synthesis
and discusses a number of design tables of practical use given in

Appendix II.

The Zolotarev polynomial distribution proves to have a number of
characteristics similar to its Dolph=Chebyshev counterpart. The space
factor has sidelobes all at the same level, with the accompanying
directivity limiting. Constant sidelobes may also not be the envelope
desired. Furthermore, for certain element number/sidelobe 1level
combinations the distribution has an undesirable upswing near the
array'edges. Now sidelobes can be raised or lowered by adjusting the

relevant space factor zeros. But if some sidelobes are lowered by
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moving zeros closer together, others will be raised and/or the.ﬁain
beam will broaden. The.adjustment of zeros to taper the sidelobes (and
at the same time remove the other unwanted features) cannot be done
arbitrarily. Chapter 6 develops a method of correct pattern =zero
adjustment (using the Zolotarev space factor =zeros as a starting
point), enabling direct synthesis of discrete difference distributions
yielding tapered sidelobe envelopes. Arbitrary sidelobe taper rates
can be obtained with minimal beamwidth increase and decrease in
directivity. A special case of the general method is that providing
the 1/u taper, and which can be considered the discrete equivalent of

Bayliss synthesis of continuous distributions.

For some applications a taper other than 1/u is desired for the sum
pattern as well. Chapter 7 generalises the Villeneuve distribution for
discrete arrays to a form which allows the_direct synthesis of sum
patterns with arbitrary sidelobe tapers. As such it is to a certain
extent the discrete equivalent of the continuous 1line-source

generalised Taylor distribution.

A further problem of importance in the design of ménopulse arrays is
that of simultaneous synthesis of high performance sum and difference
patterns. Practical considerations related to array feed network

complexity restrictions often prohibit complete independencé of sum

and difference excitations. In such cases some "best" compromise
between the individual optimum performances 1s required. The
inclusion of feed network constraints is essential. Some

prescriptions have been offered in the literature, but the majority of
them are of an ad hoc nature. A contribution towards the solution of
this problem is presented in Chapter 8. A knowledge of the
excitations and/or the space factor zeros of the independently optimal
sum and difference distributions, synthesised using the methods of the

earlier chapters, is used together with numerical optimisation.
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CHAPTER 4

OPTIMUM DIFFERENCE PATTERN SYNTHESIS

4.1 MAXIMUM DIFFERENCE PATTERN DIRECTIVITY AND NORMALISED SLOPE

411 Motivation

The maximum possible sum directivity Dzax of an array of a given
number of elements is obtained when (superdirectivity excluded) the
element excitations are all of equal amplitude and phase. This of
course gives an array space factor with relatively high sidelobe
levels. Nevertheless, a knowledge of D:ax allows a meaningful
evaluation of a low sidelobe distribution such as that of Villeneuve,
discussed in Section 3.2.4. A set of excitations which satisfies a
required sidelobe specification and yet provides a directivity D:
close to Dzax (i.e. has a high excitation efficiency ns) is an example
of a good design. So too for the difference moder a knowledge of the

excitation efficiency,

for a given set of excitations is desirable. 1In this case the maximum
max
d

unfortunately not as easily acquired as for the sum case. Although

possible value of the directivity D of the pattern peak 1is
Hannan [1] has considered this problem for continuous 1line~-source
distributions, the corresponding information does not appear to be
available in the literature for the discrete distributions under study
here. This is therefore considered in Section 4.1.2 and some results

are tabulated for later use.
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In a similar manner the angular sensitivity -properties of a given set
of excitations should be evaluated by determining the relative
difference slope Kr of its associated space factor on boresight. But
since Kp = K/Ko, not only must the normalised difference slope K
provided by the given excitation set be determined, but the maximum
possible value (Ko) obtainable with the given array size must be
known. Once more, while Kirkpatrick [2] has shown what this is for
the continuous 1line-source, that for discrete distributions is

unavailable. This will thus be dealt with in Section 4.1.3.

max

4,1.2 Determination of Dd

An expression for the directivity, as a function of pattern angle, is

given by equation (23) of Chapter 2 for the difference mode as,

D, = (1

where the matrices [J], [Ad] and [Bd] are defined by equations (11)
and (22) of Chapter 2. Determination of the excitation vector [J]
which maximises Dy (without constraints) in the direction of the
difference pattern peaks can be done in a manner almost identical .to
that described by Cheng [3] for the sum pattern case. The method uses
a theorem of matrix algébra (4] which states that if a quantity is
expressible as a ratio of two quadratic forms, as is Dd in (1), then
the vector [J] which maximises this quantity is given directly by the

solution of the set of simultaneous equations

Is,1l0) = [r,] (2)
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But this is only valid if [Ad] and [Bd] are both Hermitian, and [Bd]
in addition non-singular and positive=definite [4]. An examination of
the equation set (22) of Chapter 2 confirms that this is indeed the
case, The elements of vector [Fd] are defined by equation (13) of

Chapter 2.

The -elements of [Fd] are functions of the angle Yo in which the
directivity is to be maximised. For the sum case this is simply the
known value Vo = 0. On the other hand, for the difference case both
the [J] required to maximise the peak directivity and the resulting
direction of the peak, are unknowns. Consequently (3) has to be
solved iteratively. A value for Vo is estimated (from that obtained
with the elements uniformly excited in the difference mode) and the
elements of [Fd] computed. The linear system of equations (3) is
solved for [J] and the actual value of 1y, obtained with this
excitation vector determined. This new by is used to obtain an
updated [Fd] and (2) solved once more for a new [J]. The above
process is repeated until convergence (negligible difference between
assumed and computed Y, values) is achieved. On the order of 5 or so

iterations is all that is required to achieve this.

Computations performed using the above procedure are tabulated below,
principally for later use Iin evaluating low sidelobe difference

distributions.

In the cases considered only real excitations were allowed. If this
is not done, the high Q factor problem will arise. Should an attempt
be made to restrict this phenomenon by performing a maximisation
subject to a constraint on the Q, the question arises as to what
largest value of Q is to be allowed. Such arbitrariness is not
acceptable as a standard. It is for this reason that excitation
efficiency for continuous 1line-source distributons for difference
patterns'is also determined by comparison to the real distribution
which maximises the peak directivity for the same length line source
C11]. So too with the sum pattern case. Hence the use of . real

excitations here as well.
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Although the primary purpose of this section 1is the devising of
methods to establish a set of standards (Dgax) against which to
measure the effectiveness of the synthesis procedures developed in
following sections, a number of interesting observations are worth

noting regarding the maximum directivity discrete distributions.

Unless otherwise stated, directivities are not quoted in decibels.

Consider first an array of 20 elements. Table 4.1 shows the
excitations which provide maximum directivity for spacings d = 0.4 2,
d = 0.5 X and d = 0.7 A respectively. The associated array space
factors are shown in Figs. 4.1(a), (b) and (e¢). It is immediately
clear that the excitations are spacing dependent. Those for the
smaller spacing of 0.4 A are oscillatory, with accompanying large Q
factor. Sets of excitations and Dgax values for other array sizes
with 0.5'X and 0.7 A spacings are given in Tables 4.2 and 4.3. Two
typical sets of excitations for an array of 2N = 40 elements, are
plotted in Figures 4.2(a) and (b), with the discrete excitations
simply joined by straight line segments. Observe that for half
wavelength spacing the shape of the distribution is similar to that
derived by Hannan [1] for the continuous line-source, and which is
illustrated in Fig. 3.4. This is also found to be the case for the
other array sizes with d = 0.5 A. Note however, that unlike the
continuous case, for the discrete situation the edge taper is not a
constant independent of array size. From Table 4.2 this edge taper can
be seen to decrease with increasing array size. A plot of edge
excitation for increasing array size, with d = 0.5 A, is given in Fig.
4.3, and reveals that this factor tends to that of the
continuous~source as 2N becomes large. At the same time the

excitatiohs of the two centre elements tend to zero.

The maximum directivity distribution for d = 0.7 A shown in Fig.
4,2(b) is typical of that for spacings greater than a half-wavelength.
While theAdistribution shape is similar to that of the continuous case
over the initial few elements, it departs from it near the edges of

the array.
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TABLE 4,1 : Element excitations for maximum directivity difference

space factors for an array of 2N = 20 elements.

d 0.4 ) 0.5 A . 0.7 A
ay ~1.00000 0.11287 0.11942
a, 0.96311 0.33291 0.33576
as =0.8H491 0.53620 0.52134
ay 0.75584 >O.712H9 0.70273
ag -0.56741 0.85290 0.85854
ag 0.47530 0.95038 0.93574
aq -0.28305 1.00000 0.96343
ag 0.23052 0.99927 1.00000
ag -0.08339 0.94823 0.96105
asg 0.08102 0.84945 0.72557
Q 517.0495 1.00000 {.3910

Dgax 10. 3434 12. 8450 17.8463

An examination of the tabulated data shows that the excitation
efficiency factor Nds (ratio of maximum difference directivity to the
maximum sum directivity) 1is always less than 65%. Fig. 4.4 1is

illustrative of the behaviowur of Dgax

as a function of the number of
elements in the array. As intuitively expected, this maximum

directivity increases with array size. In order to gauge the effect

of element spacing on Dgax’ Fig. 4.5 has been included. It can be
seen that~Dmax peaks, for a given number of array elements, somewhere

d
between d = 0.8 X and d = 1.0 i, depending on the precise value of 2N.

The overall behaviour is comparable to similar curves for maximum

directivity sum patterns (i.e. uniform excitations).
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TABLE 4.2 : Element excitations. for maximum directiviﬁy difference
- patterns (d = 0.5 1), :
2N 10 20 30 40 50 60
a, 0.22354 | 0.11287 | 0.07485 | 0.05623 | 0.04493 | 0.03746
a, | 0.62593 | 0.33291 | 0.22287 | 0.16799 | 0.13441 | 0.11218
ag 0.90323 | 0.53620 | 0.36589 | 0.27762 | 0.22281 | 0.18627
ay 1.00000 | 0.71249 | 0.50072 | 0.38376 | 0.30942 | 0.25931
ag 0.89691 | 0.85290 | 0.62432 | 0.48505 | 0.39352 | 0.33090
ag 0.95038 | 0.73394 { 0.58023 | 0.u47445 | 0.40063
aq 1.00000 | 0.82711 [ 0.66809 | 0.55155 | 0.46812
ag 0.99927 0.90174 0.74752 0.62420 0.53298
aq 0.94824 | 0.95617 { 0.81753 | 0.69180 | 0.59486
aqg 0.84946 | 0.98917 | 0.87723 | 0.75382 | 0.65340
ajyy ' 1.00000 { 0.92586 { 0.80976 { 0.70827
aj, 0.98843 | 0.96282 | 0.85916 | 0.75918
a3 0.95470 | 0.98764 | 0.90162 | 0.80582
aqy 0.89958 | 1.00000 | 0.93681 | 0.84795 |
ag 0.82431 0.99975 0.96443 0.88533
ayg 0.98689 | 0.98426 { 0.91774
ayq 0.96159 | 0.99615 | 0.94500
ag 0.92416 | 1.00000 { 0.96697
ajg 0.87507 { 0.99577 | 0.98352
asg 0.81495 | 0.98351 | 0.99455
as 0.96331 | 1.00000
s, 0.93532 | 0.99985
ay3 0.89979 | 0.99409
asy 0.85700 { 0.98275
3o 0.80728 | 0.96591
asg 0.94365
ayq 0.91610
asg 0.88342
ang 0.84578
azg 0.80339
"gs 0.64711 | 0.64225 | 0.64135 | 0.64103 | 0.64088 | 0.64080
Dgax 6.4711 12.8450 | 19.2404 | 25.6411 | 32,0440 | 38.4481
v, 0.45087 | 0.22486 | 0.14984 | 0.11236 | 0.08988 | 0.07490
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TABLE 4.3 : Element excitations for maximum directivity difference
patterns (d = 0.7 A).

2N 10 20 30 40 50 60
a 0.22686 | 0.11942 | 0.06976 | 0.05962 | 0.04155 | 0.03998
a, 0.60385 | 0.33576 | 0.21981 | 0.16850 | 0.13238 | 0.11278
a, 0.91625 | 0.52134 | 0.37271 | 0.26982 | 0.22634 | 0.18153
a, 1.00000 | 0.70273 | 0.50122 | 0.38007 | 0.30817 | 0.25804
as | 0.75936 | 0.85854 | 0.61617 | 0.48553 | 0.38823 | 0.33205
ag 0.93574 | 0.736Y43 | 0.57145 | 0.47556 | 0.39566
a, 0.96343 | 0.83402 | 0.65649 | 0.55296 | 0.u46261
ag 1.00000 | 0.89171 | 0.74506 | 0.61777 | 0.53295
aq 0.96105 | 0.94718 | 0.81084 | 0.68837 | 0.59120
aig 0.72557 | 1.00000 | 0.85931 | 0.75661 | 0.64458
ay; 0.99498 | 0.91643 | 0.80491 | 0.70496
a5 0.95871 | 0.95987 | 0.85047 | 0.75722
a3 0.96318 | 0.96776 | 0.90284 | 0.79584
ajy 0.92649 | 0.97907 | 0.93583 | 0.83977
ajs 0.71237 | 1.00000 | 0.95183 | 0.88393
316 0.97340 | 0.97987 | 0.90925
a” 0.92253 1.00000 0.9317"1
ag 0.92358 | 0.98727 | 0.96356
aqg 0.89626 0.98111 0.97882
a0 0.69835 | 0.99102 | 0.97783
8o 0.95801 | 0.99104
ass 0.90335 1.00000
a,s 0.90631 | 0.97794
a5 0.88673 | 0.96410
355 0.697uk4 | 0.96995
asg 0.935T1
357 0.88114
asg 0.88693
a5 0.87364
asg 0.69189
Nds 0.6480 0.6uu7 0.6425 0.6422 . | 0.6416 0.6416

'Dzax 8.8687 | 17.8463 | 26.7769 | 35.7577 | 44.7082 | 53.6862
u 0.458806| 0.226761| 0.150668| 0.112823] 0.090175| 0.075102
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§.1.3 Determination of Ko

The normalised slope of the difference pattern on boresight (¢ = Q) is

given by equation (33) of Chapter 2 as,

- K = . (3)

with all terms as defined in Section 2.2.7. The present question is
that of finding the [J] which maximises K for a given number of array
elements, without any constraints on the pattern or other performance
indices of the array. This is a non-linear unconstrained optimisation
problem and a relatively straightforward procedure 1like that of
Section U4.1.2 is not possible. Gill et. al [5, p. 116] give a
quasi-Newton algorithm for solving this type of optimisation problem.
Its implementation in [18] has been used here. Once more, for the

reasons given earlier, only real excitations have been permitted.

Consider first the case of half-wavelength spacing. Use of the
algorithm for this spacing and a wide range of array sizes confirms
that the excitation is simply a direct sampling of the continuous
line*source linear odd distribution derived by Kirkpatrick [2] and
shown in Fig. 3.3. The equation of the 1linear odd continuous
distribution, when sampled at the array element positions, gives the

element excitations as,

2n - 1 v
a, T N <=7 n = 1,2, <+ N ()

for an arfay of 2N elements. Furthermore, the array space factor of
such an array is just the derivative (with respect to the angular
variable) of the space factor of a uniformly excited array operated in

the difference mode. This is easily found as,
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2N cos(Ny)sin(y/2) - sin(Ny)cos (y/2)

E.(y) =
d sin2(¢/2)

The above maximum slope results hold only for d = 0.5 A. For other
spacings the discrete distributions do not follow the linear odd shape
exactly. To illustrate this, consider the maximum normalised slope
excitations given in Table 4.4 for the three spacings indicated.
These were obtained using the numerical optimisation algorithm. The
excitations for the d = 0.5 X case are identical to those obtained Qia
equation (4). Plots of these sets of excitations for d = 0.5 X and
d = 0.7 XA are shown in Fig. 4.6, and their associated space factors
plotted in Figs. 4.7(a) and (b). The maximum slope patterns always
have higher sidelobes than the maximum directivity patterns, but a
narrower first null beamwidth. The distribution for the d = 0. 7 A
has a rippled shape passing just above that for d = 0.5 A, and this is
typical of cases for which 4 > 0.5 A, When d < 0.5 i, as for
d = 0.4 ), the distribution obtained has a number of definite zero
excitations, resulting in a type of thinned array. An example of such
a case is that shown in the first column of Table 4.4, Since the
excitations for d = 0.5 X are easily obtained from equation (U), they
are not tabulated here at all. Instead, only the values of Ko'are
given for a selection of array sizes in Table 4.5. On the other hand,
Table 4.6 gives the excitations, which provide maximum normalised

boresight slope, for the case d = 0.7 A.

In order.to indicate the overall behaviour of Ko as a function of
element spacing and the number of array elements, Figs. 4.8(a) and (b)

have bee plotted. The variation of Ko with 2N or d/A is seen to be
max
Dd .

similar to that of
Iﬂ is noted that as for the continuous case the excitations providing
maximum directivity for a discrete array is not the same as that which

gives the largest normalised difference slope on boresight.
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TABLE 4.4 : Element excitations for maximum normalised boresight slope

for an array of 2N = 20 elements.

d 0.4 2 0.5 A 0.7 A
a; -~ 0.21702 0.05263 0.06426
a, 0.00000 0.15790 0.17412
as 0.15943 0.26316 0.26596
ay 0.40141 0.36842 0.38376
ac 0.00000 0.47368 0.51974
ag 0.80177 0.57895 0.61105
a, 0.00000 0.68421 0.69153
ag 1.00000 0.78947 0.85588
ag 0.14561 0.89474 1.00000
ayg 0.98473 1.00000 0.90964
K, 1.2605 1.3572 1.5857
Q 1.3796 1.00000 1.3734
Dg 9.5310 11.4472 15.8892
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TABLE 4.5 : Maximum normalised difference slope (Ko) values.

NUMBER OF ELEMENTS KO FOR SPACING Ko FOR SPACING
(2N) d = 0.5 A d = 0.7 A

8 0.9258 1.0658
10 1.0092 1.1628
12 | 1.0871 1.2604
14 1.1602 1.3498
16 1.2293 1.4312
18 1.2948 1.5126
20 1.3572 1.5857
22 1.4170 1.6585
oY 1.474Y 1.7272
26 1.5297 1.7926
28 1.5831 1.8576
30 1.6348 1.9182
32 1.6818 1.9787
31 ' 1.7335 2.0367
36 1.7809 2.0927
38 1.8270 2.148Y
40 1.8720 2.2013
50 2.0825 2.4519
60 2.2737 2.6792
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TABLE 4.6 : Element excitations for maximum normalised boresight slope
for spacing (d = 0.7 A).

2N 10 20 30 40 50 | 60
a, 0.11502 0.06426 0.02895 0.03038 0.01621 0.02001,
a, | 0.36534 | 0.17412 | 0.10121 | 0.07952 | 0.05843 | 0.05156
as 0.68076 0.26596 0.18339 0.12183 0.10586 0.07887
ay 0.96883 0.38376 0.24656 0.17919 0.14078 0.11692
ag 1.00000 0.51974 0.30567 0.23713 0.17635 0.15383
ag 0.61105 0.38886 0.27840 0.22478 0.18022
aq 0.69153 0.46657 0.32686 0.26611 0.21326
ag 0.85588 0.51625 0.39082 0.29711 0.25391
aq 1.00000 0.58688 0.43869 0.34120 0.28346
aqg 0.90964 0.68504 0. 47645 0.38994 0.31076
aqq 0.73834 0.53898 0.42147 0.35130
2y, 0.77473 | 0.60063 | 0.45699 | 0.38709
aq3 0.89598 0.63142 0.57019 0.41090
aqy 1.00000 0.68081 - 0.5u4891 0.Lu66M
ag 0.87834 | 0.76101 | 0.57477 { 0.48909
arg 0.79686 | 0.62547 | 0.51430
ayq 0.81325 | 0.67760 | 0.54162
ag 0.91446 | 0.69766 | 0.58776
arg 1.00000 | 0.73495 | 0.62041
a5, 0.86407 | 0.80467 | 0.63868
asy 0.83051 0.68169
255 0.83549 | 0.72755
ayg 0.92510 | 0.74070
asy . 1.00000 0.77016
a,s 0.85593 | 0.83302
asg 0.85236
asq 0.84996
3,9 0.93200
asg 1.00000
asg 0.85066

KO 1.1628 1.5857 1.9182 2.2013 2.4519 2.6792
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4.1.4 Discussion

The previous two subsections have determined the maximum possible
max
d

an array of a' given number of elements, without constraints placed on

values of Dd and K, denoted D and Ko, respectively, achievable from
the sidelobe levels of the space factor obtained with the associated
~sets of excitations. Application of sidelobe constraints will result
in an altered set of excitations for which the pattern will have a
directivity and normalised difference slope somewhat less than these
maximum attainable values. Once again, a good design is that.which
satisfies the necessary sidelobe constraints and yet achieves a
directivity and slope close to these maximum values. The remainder of
this chapter and the two following it will discuss a new class of

distributions which can be used to accomplish this exactly.
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4.2 OPTIMUM POLYNOMIALS FOR DIFFERENCE PATTERNS WITH MAXIMUM
SIDELOBE LEVEL CONSTRAINTS

Consider the class C(a) of odd, real polynomials of degree n,
(x) = a,x +a,x ; coe +a X0
Pn h n

defined over x €(-=,»), and which have the following properties:

(i) The zeros of all p,(x) of C(a) are real, and all lie in the

interval (=1,1).

(i1) All the pn(x) of C(a) have maxima on either side of x = 0 which

are of equal magnitude AO, say.

(iii) All the pn(x) of C(a) have their second largest maxima in
(-1,1) at unity magnitude, the others all lying between zero

and unity or at unity.

Then the theorem and corollary givenAbelbw can be established. These
were originally stated by Price and Hyneman [6], who were however not
aware of the existence of a class of polynomials with the above
properties. The proof of the theorem is elaborated.on here and the
existence of polynomials of the class C(a) demonstrated in Section

b, 3.
Theorem

If q,(x) is a member of C(a) but has the additional property that all
subsidiary maxima (i.e. all those besides the innermost maxima) in the
interval (-1,1) are of magnitude unity, then q,(x) has the smallest

distance from the origin to the first zeros on either side of x = 0.
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Proof

Form the difference polynomial fn(x) = qn(x) - pn(x) between the
general member pn(x) of C(a) and the specific subclass qn(x) with the

additional property.

Since pn(x) and qn(x) are of order n, fn(x) must be a polynomial of

order less than or equal to n.

Assume now that the above theorem is not true. That is, if ixq are
the first zeros of qn(x) on either side of x = 0, and ixp those for
P, (x), then Xq > Xpe

Now since no subsidiary maxima of pn(x) may exceed unity, and all the
subsidiary maxima of qn(x) are exactly at unity, it follows that since

X Pp(x) and q,(x) must intersect at not less than n+2 points.

q Z *p»
This implies that f (x) has n+2 zeros. But this is not possible since
fn(x) is of, at most, degree n. Hence it follows that fn(x) =0 and

hence p,(x) = q,(x). This proves the theorem.
Corollary

The polynomial subclass q,(x) defined in the above theorem has the

largest normalised slope at x = 0 of all those in C(a).
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4.3 THE ZOLOTAREV POLYNOMIAL FUNCTION
§,.3.1 Introduction

P.I. Chebyshev considered the problem of approximation to zero, in the
minimax sense, over a single continuous interval. The work of
Chebyshev‘ was developed further by his student E. Zolotarev [T].
Zolotarev's work was described in detail and extended further by
Achieser [8,9]. Building on the work of Zolotarev, Achieser
considered the problem of best approximation to zero (in the minimax
sense) in the intervals -1 < x <'-x3 and X3 < x < 1 by means of an odd
polynomial. The result was a unique class of optimum odd polynomials
22n+1(X)’ giving equiripple approximation to =zero in the above
intervals. These are now known as the Zolotarev polynomials.
Mathematical details of their derivation by Achieser [8,9] have been
reproduced in the engineering literature by Levy [10], who used them
in the microwave circuit design context. These derivations will not
be given here. Instead, only the essential results derived in
[8,9,10] which are necessary as the starting point for application of
these mathematical ideas to the array synthesis problem, are given.
The notation used here is different from that in the above references,

but more suitable for the array problem.

4.3.2 Definition of the Zolotarev Polynomial

The Zolotarev polynomial of order (2n+1) is defined by

cosh [( n + % ) &n {

H(M + v,k) }] (5)

(x) H(M - v,k)

Z2n+1

(i) % = sn(M,k)en(v, k) | )

/[;hz(M,k) - snz(v,k)

kK X
(i1) X, = I ' )
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(111) Moo= _ggg (8)
. , _ en(M,k)z(M,k)

(iv) Xy = X3 ﬂ sn(M,k)dn(M,K) (9)
(v) x3 = sn(=M,k) (10)

(vi) k = 1 -k 1)

(vii) X(k) is the complete elliptic integral of the first kind, to
modulus k [11, p. 12].

(viii) H(v,k) is the Jacobi eta function [12, p. 411]. A

(ix) sn(v,k), cn(v,k) and dn(v,k) are the Jacobi elliptic functions
[111 P 1].

(x) 2z(v,k) is the Jacobi zeta function [12, p. U05].

In elliptic function terminology, k is called the Jacobi modulus, and
kJ the complementary modulus. While the expression (5) is the correct
formal expression for 22n+1(x), it should not be used directly for
computational purposes. Such numerical aspects are dealt with in

detail in Chapter 5.

Although k is used in the array literature (and in this thesis) to
denote the free space wavenumber, its use as the Jacobi modulus of the
elliptic functions 1is too entrenched to be denoted otherwise. Its
meaﬁing at any stage will usually be clear from the context; if not,

specific note will be made as to its interpretation.
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Finally, just as the Chebyshev polynomial satisfies a differential
equation, the Zolotarev polynomial 22n+1(x) satisfies the non-linear

differential equation,

L
2
g Tt 1B - )
= Z2n+1(X) = (2n+1) 5 5 55 5 (12)
X - 1)(x - x3)(x - x1)

4,.3.3 Properties of the Zolotarev Polynomial

An example of the Zolotarev polynomial defined formally in equation
(5) is shown in Fig. 4.9. The polynomials are defined throughout the
region x €(~«,), but only the region x €[~1,1] is relevant to the
array synthesis application. A Zolotarev polynomial 22n+1(x) of
specified order is a function of both x and k. Here it will be
considered to be a function of x, with k as a parameter determining
the amplitudes of the maxima on either side of x = 0 relative to the
peak value. Although it is possible to prove rigorously [10] that the
definition (5) is a real polynomial, it is not pdssible to directly
write 22n+1(x) in standard polynomial form. Use of the secondary
variable v, related to x via the transformation (6), makes the form ofr
the polynomial more manageable. This transformation is illustrated in

Fig. 4.10. Although v is complex, X and 22n+1(X) are always real.

The points x,, X, and x3, given by relations (7), (9) and (10},
respectively, are significant. As x increases from 0 to X1 22n+1(x)
increases from 0 to 1. 1In the region Xy < x < X3, the polynomial is
greater than unity, with a maximum value Ao occurring at x = X0, the
magnitude of Ao depending on the Jacobi modulus k. At x = X3,
Z2n+1(X) = 1. From X3 to 1 it oscillates (n+1) times alternately
between +1, and there are n zeros in this interval. This behaviour is
mirrored in the region =1 < x < 0, so that together with the zero at
‘x = 0, 22n+1(x) has‘ all (2n+1) zeros real and 1lying in the
interval |x| < 1. For |x| > 1, the magnitude of Zon4q(x) increases
indefinitely, becoming infinite at x = t» (which is equivalent to the

point v = -M in Fig. 4.10).
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Consideration of the properties of_22n+1(x) given above leads to the

conclusion that the Zolotarev polynomials are exactly the class of odd

polynomials identified in Section 4.2 as being optimum for difference

pattern synthesis. The next step then is to determine hdw these

polynomials may be used to synthesize an optimum set of array element

excitations.
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4.4 ARRAY ELEMENT EXCITATIONS FOR SPACINGS GREATER THAN OR EQUAL
TO HALF A WAVELENGTH

§.4.1 " The Difference Space Factor as a Chebyshev Series
Consider a linear array of 2N elements, excited anti-symmetrically so

as to obtain a difference pattern. The space factor is given by

equation (10) of Chapter 2 as (ignoring the constant factor 2j),

¥ v
Ed(w) = nE} a_ sin [(2n-1) Z ] (13)

The sine function in (13) can be expanded as [13, p. 28]

' 2 . ,2 .
sin[(2n-1) % ] = (2n-1) { sin % - [(2n-1;! =1 sin3 %
[(2n-1)2 —"12][(2n-1)2— 32] 5
+ =7 sin % - el (1)

Elliott [14, p. 566] gives a general expression for the Chebyshev

. polynomial of odd order 2n-1 as,

n m=2
_pynmm 2~ (2n=1) ( nem=ly 201
T, g (X) mz1 (-1) ey (opey ) X (15)

A comparison of (13) and (14) reveals that,

sin[ (2n-1) % ] = (-1) T2n41(sin g ) v (16)
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It thus follows that (13) can be written as

nle

N .
Eg(¥) = E a (-N"1, ., (sin %) (17

n=1

a series of Chebyshev polynomials of argument sin /2. From (17) it
is also clear that for the array of 2N elements in question, Ed(w) is

‘a polynomial of order 2N-1 ih sin /2.

y,y,2 Zolotarev Polynomial as a Chebyshev Series

The correspondence between the space factor Ed(w) and the Zolotarev
polynomial 22n+1(x) must be established to enable the desirable
properties of the latter to be utilised for array synthesis. This is

best done by expanding the Zolotarev polynomial as a Chebyshev series,

Z (x) = b1T1(x) + b2T3(x) + ses + D (x) (18)

2n+1 n+1T2n+1

The use of such a form is not only useful as an artifice here, but the
use of Chebyshev series is also advantageous from a numerical analysis
point of view [15]. A discussion thereof and means of computing the
series coefficients in (18) will be postponed to Section 5.3.5 in

order not to obscure the essence of the theory being developed here.

If such a Chebyshev series expansion is used, then for a Zolotarev

polynomial of order 2N-1 it will be,

(x) (x)

]

ZZN_1 b1T1(x) + b2T3(x) + eee 4 bNTQN,_1

(x) : : (19)
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y, 4.3 Correspondence of Zolotarev and Space Factor Polynomials

For the case of half-wavelength spacing between array elements,
¢/2 = (w/2)sin6. Therefore, as 6 varies over the range of observation
angles from =-7w/2 to w/2, the term sin(y/2) goes from =1 to 1. If the
spacing. d is greater than a half-wavelength, the term sin(y/2) also
always ;eaches =1 and 1 in the visible range =w/2 < 6 < /2. Thus a

correspondence x = sin(y/2) can be made, so that (17) becomes
N
Eq(x) = Yoa (=1 T, . (x) ' (20)

Comparison of (19) and (20) clearly shows that the required optimum
array coefficients {an} are simply related to the expansion

coefficients {bn} of the Chebyshev series for ZZN*1(X) by,

a = (-D%0p (21)
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4.5 ARRAY ELEMENT EXCITATIONS FOR SPACINGS LESS THAN HALF A
WAVELENGTH

For spacings less than a half-wavelength the determination of the
array coefficients is not as straightforward. If the correspondence
x = sin(y/2) is made for some general spacing, then for
“ﬁ/Z <.8 < w/2, the corresponding x variation Iis ~“sin(kd/2) < x <
sin(kd/2), Where k is the free space wavenumber. For example, for a
spacing of 0.4 of a wavelength, the range of x values 1is only
=0.951 < x < 0.951, with the result that the pattern does not have as

many secondary lobes as are possible, and is therefore non-~optimum.

This can be remedied by setting,

(22)

but then the Chebyshev expansion (in x) of the space factor given in
equation (20) is not possible. For spacing d less than a halfd_
wavelength, then, a more direct and tedious approach must be used. 1In

what follows, let Xy = sin(kd/2).

Assume then that the Zolotarev polynomial is available in the standard

polynomial form,

Zyy(X) = b X+ boXT 4 eee + byx - (23)

Methods of obtaining the b, are discussed in Section 5.3.5.
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The ekpansion given in (14) can after some manipulation be written in

the form,

& 2(n-1)+1 N
sin[(2n-1)yp/2] = ¥ g, (n)[sin y/2] (21)
i=1
where gi(n) = (_1)n(_1)i+122(n~i)[ %%E% 1( 22:% ) (25)
p _ p(p=1) -+« (p-n+1)
( n ) = 1.2 s+ n (26)
(2) =1 (27)

Thus, for each term in the series (13),
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aNsin[(ZN—1)w/2] = a8, (M (sin 4;/2)2N'1

+ aNgZ(N)(sin 11;/2)2N”3

+ aNg3(N)(sin 11;/‘2)2N-5

. 1
+ aNgN(N)(51n Y/2)

. oy _ » . 2N-3
aNA151n{[2(N N-11y/2} = aNa1g1(N 1) (sin y/2)

s 2N-5
aN;1g2(N 1) (sin ¢/2)

N (as 2N-7
aN;1g3(N 1) (sin $/2)

. 1
aN:1gN41(N-1)(51n Y/2)

sin{[2(N-2)-11y/2} = (N-2) (sin p/2)°N

=2 an=28

o\ (s 2N-T7
aNung(N 2)(sin $/2)

_ . 2N~9
aN42g3(N 2)(sin y/2)

. 1
aN4ZgN~2(N 2) (sin ¢/2)

a1sin p/2 = a1g1(1)(sin ¢/2)1
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sin(y/2)
X

Comparing (13) with (23), and letting x = it follows that

o)

2N-1
By = a8 (N xg
_ B 2N-3
bN*1 = [aNgZ(N) + aN=1g1(N 1)] X
2N~-5

byop = [y (M) +ap. g, (N-1) +ay g (N-2)] x]

b1 = [aNgN(N) + aN;1gN_1(N—1) AR a1g1(1)] X
Thus the array element excitations are given by,

]
ay = bN/g1(N)
[ . )
ay_, = [bN;1 = aNgz(N)]/g1(N—1)
[ 1
ayo = Loy, - aNgB(N) - aN=1g2(N~1)]/g1(N-2)
. . N
a, = [brl - y ajgp(J) | g, (n) (28)
J=n+1
where p' = j~-n+1
' 2n-1
brl = bn/xo
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In this manner, the array excitations can be obtained for some general
element spacing. For the case of half-wavelength spacing (28) and

(21) give identical excitations of course.



4.6 SYNTHESIS PROCEDURE

While details of a computational procedure are left until Chapter 5,
the steps in the synthesis procedure just developed are summarised

here.

Suppose that the number of array elements (2N) and the required
sidelobe ratio (SLR) have been specified. A Zolotarev polynomial of
order 2N-1 is then required. The first step of the synthesis

procedure is the solution of the equation,

Zpa1 (xz) = SLR (29)

for the required Jacobi modulus k, since X5 is the position of the
maximum of the polynomial. The quantities X5 and k are of course
related through (8), (9) and (10). With the order 2N-=1 and Jacobi
modulus ¥k known, the polynomial 22N41(x) is complétely determined. Its
expansion in the form of a Chebyshev series or conventional polynomial
form, depending on whether the spacing 1is greater than a
half=wavelength 6r not, 1is then carried out, for the set of
coefficients {bi}, i=1,2,3, »+¢« N. If d > 0.5 i, the excitations
follow .directly from (21). For d < 0.5 A, specification of the

which together with the b

spacing d serves to determine x i

o)
coefficients is used in (28) to find the array excitations {a,},
n = 1,2,3, =<++ N. Once these have been found any other array
performance indices can be evaluated using the expressions given in

Chapter 2.

As an example, consider an array of 20 elements with a sidelobe ratio
of 30 dB and half-wavelength spacing. Since 2N = 20 in this case, a
polynomial 219(x) is required. Solution of equation (29) gives the
value of Jacobi modulus k = 0.999971042. The normalised array element
excitations are found as given in Table 4.7. The corresponding array

pattern is shown in Fig. 4.11, along with a plot of the excitations.



TABLE 4.7 :

Array element excitations for a 20 element,

ratio,

12

Zolotarev array.

n [ a

n
1 0.180205
2 0.515913
3 0.782293
b 0.947927
5 1.000000
6 0.945505
7 0.808179
8 0.622164
9 0.424087
10 0.329244

30 dB sidelobe
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4.7 CONCLUSIONS

The form of the real distributions providing (without sidelobe
constraints) either the maximum directivity or maximum normalised
boresight slope that is/ possible with a given number of array elements
and spacings has been established using unconstrained numerical
optimisation. For half wavelength interelement spacings these are
similar to those of the corresponding continuous distributions. The
tables of data on Ko and Dgax can be used as the standards against
which to evaluate distributions providing array space factors with

constrained sidelobe levels.

A difference pattern can be defined as optimum in the Dolph-Chebyshev
sense if° it has the narrowest first- null beamwidth and 1largest
>normalised difference slope on boresight for a specified sidelobe
level constraint. Such patterns will have sidelobes all at the same
required level. The principal contribution made in this chapter is
the development of a new‘exact synthesis method for determining the
1inear array excitations which will provide such optimum performance.
The method wuses Zolotarev polynomials, and is analogous to the
Chebyshev polynomial synthesis of sum patterns. The identification of
the appropriate polynomials here, and the subsequent development of
the synthesis technique (methods of obtaining the element excitations)
completes this aspect of array antenna theory in a satisfactory and
satisfying manner. Preliminary work has been published by the author
{16,171,
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CHAPTER 5

COMPUTATIONAL ASPECTS OF ZOLOTAREV POLYNOMIAL ARRAY SYNTHESIS

5.1 ' INTRODUCTION

The concept of Zolotarev polynomial synthesis is by itself important
from an antenna theorist's point of view. However, the utility of the
method rests on the computational tasks involved. The present chapter
will consider in detail such computational aspects as the algorithms

for elliptic function generation, series évaluation, and root finding.

On the basis of these considerations a highly efficient interactive
computer code has been developed. Given the number of array elements,
required sidelobe ratio, and element'spaéing, the code finds the array
element excitations and space factor zeros. In the second portion of
this chapter some tables of such information generated by the code and
presented in Apgendix,II, are discussed. These have, of necessity,
been restricted to those cases considered either particularly

illustrative or most common in practice.

After presentation of the tables, a number of properties of the
Zolotarev distribution are highlighted. This leads logically to the
subject of Chapter 6 - that of direct synthesis of difference patterns

with tapered sidelobe heights.
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5.2 DERIVATION OF EXPRESSIONS SUITABLE FOR COMPUTATION

5.2.1 Introduction

A comment was made in Chapter 4 that the formal definition (5) given
there should not be used for computational purposes. The aim of the
present section therefore 1is to arrange the formulations of the

previous chapter into a form suitable for numerical computation.

In order to do this, the domain 0 < x < 1 is divided into three

regions:
(a) Region I for which 0 < x < X4

(b)  Region II  for which x,

(WaY
=
[PaY
=
w

(¢) Region III for which x3 < x <1

which can easily be identified in Fig. U4.10. The region for which
|x[ > 1 is of no interest as far as the array syntﬁesis problem is
concerned, and will not be considered. 1t is Dbecause of the symmetry
of the polynomial that only the positive portion of the domain

x| < 1.

For convenience, the expreséién defining the Zolotarev polynomial of

order 2n+l1 is repeated here,

(x) = cosh[(n + 1 Jan {

H(M + v,k)
L Jgn{ B+ wak) g (1)

Z2n+1 H(M ~ v,k)

In addition to the special-functions K{(k), sn(v,k), cn(v,k), dn{v,k),
z(v,k), and H(v,k) defined and referenced in Section 4.3.2, two
further ohes will be used in this chapter. These are the second
Jacobi eta function Hy(v,k) and the Jacobi theta function 0(v,k),

whose relationships to H(v,k) are given in references [2] and [4].
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Only the first five of the above functions need eventually to be
numerically evaluated individualiy. The advantage of the introduction
of the eta and theta functions is the considerable simplification
effected in the mathematical manipulation of the Zolotarev
polynomials. When working with these functions use is made of a

quantity gq called the nome [1], and defined by

e*nK'(k)/K(k)

The complementary nome q' is defined as,

-

o - e—nK(k)/K'(k)

5.2.2 Region I (0 < x < x4)

It is observed in Fig. 4.10 that for this range of x, the variable v

is a complex quantity given by,

~ K(k) + j¢ (2)

<
]

where ¢ is real, 0 < ¢ < K (k), k being the Jacobi modulus. Therefore,

H(M + v, k) _ HM = K + jo,k) (3)
H(M - v,k) — HMM + K - jo,k)

Gibbs [4, p. 188] gives the relationships between the first Jacobi eta

function H(u,k) and the second Jacobi eta function H1(u,k) as,

H1(u,k) H(u + K,k)

H1(u,k) - H(u - K,k)
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It therefore follows that the right hand side of (3) becomes,

H1(M + jo,k)

H1(M - jé,k) (4)

7

since e 47 = -1,

From Abramowitz and Stegun [2, ﬁ. 577] the natural logarithm of the
ratio of two such second Jacobi eta functions is conveniently given by

the series expansion,

H (b + U,k) . CoSs M.E
zn{—L-———} = m — 2K
H1(b - u,k) cos (b - um
2K
L r r
(=1) q ._rtb . rm
+ 4 ) - 5o sin 4= sin % (%)
r=1 1 -
where q is the nome.
For the case of equation (4), b = M and u = j¢.
Consequently,
(b +wn _ (M+ jé)m
2K - 2K (6)
Use of (6) and the identity,
cos(a + jB) - e;j 2tan-1(tana tanhg)

cos{a - jB)
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reduces the logarithm term in (5) to,

- § 2tan” (37 Jtann( 32 ) (7

In the series terms of (5), substitution of u = j¢ leaves

It

sin( 5%5 ) j sinh( E%ﬂ ) ‘ (8)

Therefore, from (3), (4), (5), (7) and (8) it follows that,

pn{ M KL} yr -5 2tan” [tan( 22 Jtann( 22 )]

HM - v,k) 2K 2K
® r_or '
+ ju Y ( l) = sin( r;M )sinh( 3%2 ) (9)
r=1 1-q
= 2j h(M,¢,k) (10)
where for convenience,
I S =1 ma b
h(a,b,k) = 5 = tan [:Fan[ KT Jtann| A03) ]:]
_ (-1)" er . rra . rab’ 1,
+ 2PE1 = [ 14q2r ]sin| 0] ]sinh] 0 JI&RD

and which is real for real a and b.
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From (1) then,

. 1 ,
oo (X) = cosh{j 2(n + > Jh(M,0,k)]
= cos[(en + 1)n(M,,k)] o (12)
‘for this reg;on. With v = =K + j¢, use of the properties of the

Jacobian elliptic function [6, p. 914] reduces expression (6) of

Chapter 4, the transformation between x and v, to the fornm,

1
. 2
1 = dn2(¢,k )
1= sn®(M,k)dn2(¢,k )

x = sn(M,k) (13)

This gives x once ¢ is specified. In order to find the inverse
transformation, sn(¢,k') is made the subject of expression (13),

utilising the elliptic function identities [6, p. 916], to give

x en(M,k)

sn(¢,k') -
T - x2 k' sn(M,k)

Now the incomplete elliptic integral of the first kind [2, p. 589] is

defined as,

F(a,b)

]

a ey l. L
f [(1 - VA - b2v2)] 2 av GRS
0

It then follows that since [1, p. 3921,

sn '(a,b) = F(a,b)



123

the desired inverse transformation is,

F(t,k') (15)

©
1]

x en(M,k)

]
J1 - x2 k sn(M,k)

where ‘ t =

If x is given, the corresponding ¢ can be found from (15).

5.2.3 Region II (x1 <x< x3)

From Fig. 4.10, for X4 <x < X35 the variable v is a complex quantity

vV =gs+ jK'(k), where s is real and -K(k) < s < 0. Thus,

H(M + v,k) HM + s + JK k)
= : (16)

H(M - v,k) HM - s - jK ,k)

Copson [1, p. U11] gives an expression relating the eta and theta

functions,

R §
o STy Yz wK
H{u + jK ,k] = j q e o(u,k)

It therefore follows that (16) can be written as,

-jm(1 + M/K) oM + s,K)
e oM = 5. K) : (N
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and therefore, in this region,

an| g%%—;—%fg% ] = - (1 + % j + n %%%%%}fiﬁ%% (18)

But from equation (8) of Chapter u,
g
For this reason then,
-an(r 2 ) = =gl 2]
Thus, from (1)
Zyneg (%) = cosh[- jnm+ (o + 5 Jin{ ML 2Kl ]
= cos[nn]cosn[(n + % Jan{ %%g—;—zfg% }H (19)

Let fla,b,k) = gn { X3 2D,y (20)

Instead of first computing the thHeta functions, direct series
expansions are available [2,3,5] for f(a,b,k) in terms of either q or
its complement q'. For most of the antenna synthesis problems k is
near to 1; so that K(k) is very large, and q close to unity, while q'
is small. Series in terms of q' are then more rapidly convergent and
are preferred if many computations are required. For this reason use

is made of the expansion



mab cosh (a;i)ﬂ
f(a,b,k) = - —~ + 4n (a=b)m

KK cosh

2K
o r '2r '
-1 . rma . rwb
-4 ) ( r) 9 5 sinh { —17 ) sinh { —ET ) (21)
r=1 1-q K K .

Therefore (19) can be written in compact form as,

yA (x) = cos(nm)cosh [(n + %

one1 )£ (M,s,k) ] (22)

The transformations between x and s for this region are found using a
procedure similar to that applied for region I. Starting with
expressions (6) of Chapter Y4, substitution of v = s + jK' leads .to the

result,

sn{M,k)dn(s,k)
X = (23)

/en? (M,k) + sn2(M,K)dn2(M,K)

The inverse transformation 1is similarly found in terms of the

incompiete elliptic integral as,

F(p,k) (21)

0]
L]

|-

sn2(M,k) - x2

sn’(M,K) (1 = x°)

. 1
b= X
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5.2.4 Region III (x3 <x<1)

For this range of x values, v is entirely imaginary, being given by

v = j¢, where ¢ is real, and 0 < ¢ < K'(k). In this case, then,

H(M + v,k) i H(M + j¢,k) (25)
HM =~ v,K) H(M ~ j¢,k)
- '
An expansion in terms of q - is given in [5, Eq. 72] as,
(bt wr
H (b + u,k) sinh !
ln{ T } - - Tbu wn 2K
-— 1 A -~
H (b u,k) KK sinh (b ?)v
2K
S o ' b
. rm . rmu
=y ¥ = ) —E—TEF sinh{ == Jsinh{ — ) (26)
r=1 1-q K K

In the case of (25), b = M and u = j¢.

1] t
Thus (b % u)w/2K (M + jo)m/2K

I+

1]
M)m/2K

+1

= j(¢
Using the fact that sinh[j(d + jB)] = j sin(a + jB), and the identity,

sin(a = jB) _ ej2tan;1(tana/tanh8)
sin(a + jB)

the logarithm term in (26) reduces to

\]‘2t:an;1 [tan ( 137 ) 7/ tanh ( ™ )] (27)

2K - 2K
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In the series term in (26), with u = jo¢,

sinh ( EE% ) = j sin ( 31$ ) (28)
K

K

So, if the function g(a,b,k) is defined for notational convenience as,

gla,b,k) = = E§$ 2tar1_1 2K
KK tanh [ 13- ]
2K
O q rer rma rmb
-4 z F [ ) ]51nh[ ey ] [ — ] (29)
r=1 1-q K K

which is real for real a and b, then from (25), (26), (27) and (28)

H(M + v,k) }

Q'n{ H(M - \),k) = j g(M’d),k) / (30)

Substitution of (30) into (1) gives,

Zyne1(X) = cosh [§ (n +.% ) g(M,¢,k)]

= cos [(n+3 ) gM,0,0] (31)

All that remains 1s tc relate x to ¢ in the region. Once again, as
for regions I and II, the derivation is relatively straightforward but
tedious. Use of the transformation (6) of Chapter 4 and the elliptic
function identities, with v = j¢, leads finally to the following

relationships,
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sn(M,k)
x = (32)

//sn2(M;k)cn2(¢,k') + sn2(¢,k')

and its inverse,

¢ = F(r,k) | (33)

sn (M,k) | 1= x
en(M,k) X

5.2.5 Relating Jacobi Modulus k to the Sidelobe Ratio

The maximum value of the Zolotarev polyncmial (position of the

difference peak) occurs at x = X5, With

yA (x,) = SLR : (34)

2N=1""2

since the Zolotarev polynomial as defined in (1) gives sidelobe levels

of unity. This maximum occurs in region II, so that with

>
i

« //[; _ en(M,k) z(M,K)
2 73 sn(M,k)dn(M,k)

s, = F(p2,k)
1
2 2 2
; 1 sn” (M,k) X,
2 KL s - 1)
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equation (34) can be written as,

cos[nrlcosh[(n + 1 JF(M,s.,k)] = SLR

2 2’

Given the order (2n+1) of the polynomial, and the sidelobe ratio SLR,
this equation can be solved for the value of the modulus k required to

give such a sidelobe ratio.
5.2.6 Finding the Zeros of the Zolotarev Polynomial

A knowledge of the zeros of the Zolotarev polynomial will be required

in Chapters 6 and 8.

The zeros of the Zolotarev polynomial all lie in Region III in which,

22n+1(X) = cos[[n + % )g(M,¢,k)] v (36)

This is the "equiripple" region, and the =zeros of 2Z (x) can be
“2n+) .

found from
(n+ 3 e, 6,00 = (m+ % )n @3

form = 0,1,2,¢°-

Solution of this equation gives the zeros in terms of ¢, from which

the x values are found from equation (32).
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5.3 COMPUTATIONAL ASPECTS
5.3.1 Introductory Remarks

Centrai to the numerical problem is the accurate computation of the
special functions used. Three further numerical topics are the
summation of the series and finding the zeros of a function. Each of
the above aspects is considered separately in the sections that
follow. Routines available in high quality mathematical software

libraries have been used wherever possible.

5.3.2 The Elliptic Integrals of the First Kind .

For the usual range of sidelobe ratios of interest the Jacobi modﬁlus
k lies between 0.9 and 1.0, being closer to 1.0 in most cases. An
array of 20 elements, for example, requires k = 0.999895316 for a
sidelobe ratio of 25 dB and k = 0.999971042 for a sidelobe ratio of
30 dB. Accurate computation of the elliptic integrals for this range

of modulus k values is consequently of the utmost importance.

Fortunately, a very accurate routine S21BBF for doing just this is
available in the NAG library [8]. This routine calculates an

approximation to the intégral,

_ 1
Ro(x,y,2) = L[+ +yc+2)] 2at

O +~——38

where x, ¥y, z > 0 and at most one is zero, and which is referred to as
the symmetrised elliptic integral of the first kind [9,10]. The
result is accurate to within a small multiple of machine precision

(81, and uses the algorithm of Carlson [9,10].
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If the following terms are defined,

1 - b2a2

<
1

then the incomplete elliptic integral of the first kind, defined in
equation (14), is simply given by [8],

F(a,b) = a RF(w,v,1.O)

and the complete elliptic integral of the first kind by,

2

K(k) = R'F(o.o,1—k ,1.0)

Computation of the elliptic integrals in this manner has been found to

- be very satisfactory.

5.3.3 Computation of the Jacoblan Elliptic Functions sn, cn and dn

The functions sn, cn and dn were computed using routines based on the
algorithms given by Bulirsch [71]. These are available as FORTRAN
subroutines JELF and DJELF (single- and double<precision versions,
respectively) in the IBM Scientific Subroutine Package [11]. All
three Jacobian elliptic functions are computed simultaneously by the

above routines.
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5.3.4 Convergence of Series

The series used for evaluation of the functions in expressions (11),
(21) and (29) are all three very rapidly convergent. No special
methods are required for their evaluation and a simple term-by-term

convergence test is suitable.

5.3.5 Generation of the Polynomial Forms of Z,,,q(X)

The coefficients of either the Chebyshev series in equation (18) of
Chapter 4, or of the conventional polynomial form in equation (23) of
Chapter 4, are necessary for the determination of the array
excitations, depending on whether the element spacing d > 0.5 X or

d < 0.5 A.

Consider first the Chebyshev series expansion,

22N¥1(X) = b1T1(x) + b2T3(x)'+ s+ by T2N&1(X) (38)

In order to find the set of coefficients {bi}, a set of N values of x
are selected in the interval 0 < x < 1. Enforcement of equation (38)
at each of these points X9:Xp, Xy results in a set of linear

simulataneous equations,

B — — —

B XY e
T () Talxg) Ton=1(%¢) b Zon= (%

= | Zoyay (X)) (39)

T1(x2) T3(x2) ceees T 5

T1(XN) seesssccssssae T2N—1(XN) LbN Z2N-—1(XN)

b— —
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which can be solved for the expansion coefficients. The sample points
X3 selected must be chosen such that the matrix is well-conditioned.

This will be so if the X; are evenly spaced throughout the region,

with one of them at the position of the maximum.

The advantage of representing a polynomial as a Chebyshev series has
been pointed out by Fox and Parker [12]. They also warn that
. Straightforward use of the above method in finding the coefficients of

the conventional polynomial form directly in -powers of x,
Z.....(x) = b.,x +b_x” + ees + Db _ X (40)

leads to a seriously ill-conditioned matrix if the coefficients by
have 1large numerical values. Since this 1is the case with the
Zolotarev polynomials, the following alternative 1least squares

procedure has been found to work well:

{(a) Select a set of points
{x1,x2, ) xM} , M >N

fairly e?enly spaced over the interval.

(b) Set up a system of equations as was done in (39). Here, however,
there will be M equations in the N unknowns coefficients, with
M > N. The system of equations is then solved in a least squares

sense.
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5.3.6 Root Finding

Determination of the zeros of a function is required for relating the
Jacobi modulus k to the sidelobe ratio, and for determining the zeros
of the Zolotarev array space factor. The mathematics for these tasks
has been given in Sections (5.2.5) and (5.2.6), respectively. For the
presentﬁ case in which the functions have complicated forms, root
- finding proeedures which do not require derivatives are desirable.
Routines for doing this are ayailable in most mathematical subroutine
libraries. In the computations used to draw up the tables presented
in Appendix II, the IMSL [13] routine ZFALSE was used. ZFALSE uses
the M"regula falsi" technique to find the solution of an equation
f(x) = 0 and requires as input values of x known to be to the left and
right of the root. For the computations required in Section 5.2.6 the
routine is called successively until all the zeros have been found.
The 1left and right bounds are found in all cases by simply
incrementing the independent variable in sufficiently small steps and

detecting a sign change in the particular function f(x).

5.3.7 Computer Code

Based on the above considerations, an interactive computer code has
been developed. The code has been found to be very flexible and easy
to use, and has been used to assemble the design tables given in
Appendix II. It has been used with single-precision arithmetic on a
CDC Cyber 174 computer, which is a 64-bit machine. The code consists
of "three modules. The first determines the value of the Jacobi
modules k required for a given element number and. sidelobe ratio.
Representative resuits are given in Table II.1 and II.2 of Appendix

II.
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The second module computes the required array element excitations. A
‘range of array distributions can 'be found in Tables II.3 to II.1O0.
The third module is optional, and finds the roots of the associated
polynomial. Some results are presented in Tables II.19 to II.34. It
is possible to use the third module without having executed the second
if the roots are required for the synthesis procedures to be discussed

in Chapter 6.
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5.4 DESIGN TABLES FOR ZOLOTAREV DISTRIBUTIONS
5.4.1 Selection of Range of Parameters

Most modern radar and satellite communications antennas have sidelobe
specifications requiring leyels at least 25 dB down from the main
beam(s). Such levels are considered to be "moderate" [14]. On the
other hand an array with a sidelobe ratio of 50 dB. is considered to be
a very low sidelobe antenna, even by present standards [14,15]. In
order that the tables presented adequately cover this range of levels,

the "standard" sidelobe ratios between 15 dB and 60 dB are considered.

A survey of the commercial literature soon reveals that the number of
elements used per linear array. (or per linear "stick" of a planar
array) varies 00 widely to make it possible to identify "standard"
element numbers. The tables have therefore simply been restricted to
arrays of between 10 and 60 elements to limit the data presented to a

manageable size. These are given in Appendix II.

If the Zolotarev distributions are to be used directly,vall that is
needed is the set of element excitations. Any of the array
performance parameters can then be found as outlined in Chapter 2.
However, if the tapered sidelobe modified Zolotarev N distributions of
Chapter 6 muét be synthesized, then the array space factor zeros aré
required quantities. Hence their inclusion in the tables in

Appendix II.

The notation of the tables is consistent with that used thus far in
the thesis. The number of array elements is always denoted by 2N,
while SLR stands for the sidelobe ratio. The symbol a, denotes the
excitation of the n-=th element of the array, numbered from the central
element out towards the edge. Since the distribution is symmetric,
only one half of the excitations 1is tabulated. All directivities

quoted are not in decibels.
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5.4.2 Contents of the Tables

Table II.1 gives the modulus k required for a specified SLR and number
of array elements 2N. Due to the fact that the values of k are all

clustered close to unity, a "sidelobe parameter"
r = log, (1 ~ k)-.1
10

has been introduced and the information of Table II.1 repeated in

Table II.2, but with g displayed instead of k.

Tables II.3 to I11.10 provide the element excitations for the case
d > 0.5 A, for a range of array sizes and sidelobe ratios. The
performance parameters (i.e. relative slope ratio Kr and excitation
efficiencies N4 and ”ds) for these same arrays are given in Tables
I1.11 to II.18, for the specific spacing d = 0.5 A. From these the -
essential characteristics of the Zolotarev polynomial distributions

can be gleaned, and these are discussed in the next section.

In Tables II.19 to II.26 the roots (on the x-=axis) of the polynomials
associated with the above tabulated cases are presented, along with
the values of X1, Xp and X3. These can be used to find, from the

appropriate transformation equations,

sin(y/2) d > 0.5
X =
sin(y/2)/sin(2nd/ ) d < 0.5 )
the space factor =zeros 1N for any spacing. This 1is particularly

useful when using the synthesis methods developed in Chapter 6.

Finally, for the case d > 0.5 A, these space factor zeros Y, are given
in Tables II.27 to II.34. Only values up to Y, = m are given, these
applying exactly to the case of spacing d = 0.5 A. For 1abger

spacings, these ¢, values simply repeat themselves.
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5.5 THE PERFORMANCE OF ZOLOTAREV DISTRIBUTIONS

The Zolotarev polynomial distribution, like its Dolph=Chebyshev sum
mode counterpart, tends towards large peaks at the array ends for
certain ranges of array sizes and sidelobe ratios. For instance,
consider the case of an array of 2N = 20 elements, for spacings
d > 0.5 . The excitations, obtained from Tables II.3 to II.8 are
plotted in Fig. 5.1 for various sidelobe ratios. For a 15 dB sidelobe
ratio the largest excitation is seen to be at the array edge. That
this is required to provide the desired space factor is clear from the

plot of the latter in Fig. 5.2.

As the sidelobes are lowered (i.e. sidelobe ratio increased) edge
excitation decreases, with the peak excitation occurring elsewhere.
The distribution may still increase at the edge though. However, if
the sidelobes are lowered further, a point is reached at which the
peaking at the edge disappears. For the 20 element array this "edge
brightening" disappears for a sidelobe ratio of approximately 25 dB. A
summary of such information for other arrays sizes (for d > 0.5 1) is
presented in Table 5.1. The sidelobe ratios quoted are approximate
and merely intended to give a rough idea of the array sizes/sidelobe

ratios at which the various phenomena occur.

TABLE 5.1 : Sidelobe ratios associated with particular excitation

characteristics.

NUMBER OF SIDELOBE RATIO GREATER SIDELOBE RATIO AT WHICH,
ARRAY THAN WHICH DISTRIBUTION AND LESS THAN WHICH, THE
ELEMENTS DOES NOT INCREASE AT THE EDGE EXCITATION IS THE
{(2N) ARRAY EDGE LARGEST
10 16 dB 15 dB
20 25 dB : 19 dB
30 33 dB 21.5 dB
40 40 dB 23.5 dB
50 45 dB 25 dB
60 50 dB 26 dB
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Observe also that, for an array of fixed size, the maximum point on
the "hump" of the distribution shifts tbward the centre of the array
as the sidelobe ratio is lowered until the point is reached at which
the distribution does not begin to increase at the array edges.
Thereafter the element with maximum excitation is fixed regardless of

sidelobe ratio.

-~ It 1is interesting to examine the directivity and slope information
contained in Tables II.11 to II.18. This information is summarised in
Figs. 5.3. Though the numerical results apply only to the case
d = 0.5 X, the overall behaviour is applicable to other spacings as
well. Observe from Fig. 5.3 that for each array'size (2N value) there
is a sidelobe ratio giving maximum directivity. The reason is that
smaller sidelobe ratios (i.e. higher sidelobe 1levels) result in
significant power in the equal-level sidelobes, while larger sidelobe
ratios. give a lower excitation efficiency due to the larger beamwidths
(of the difference lobes) associated with the lower sidelobes. This .
behaviour parallels that of the Dolph=Chebyshev sum distribution

discussed in Section 3.2.2.

A similar ploé, but of the relative slope ratio Kr is shown in Fig.
5.4, It shows maximum points similar to those of the directivity, but
these are shifted down to lower sidelobe ratios. The relatively high
Kr values for the prescribed'sidelobe levels is indicative of the
optimum property of the Zolotarev polynomial distribution.

A further graph is shown in Fig. 5.5. Here the beam broadening factor
.is -plotted versus sidelobe ratio for various element numbers. This
factor has been defined here as the ratio of the first null beamwidth
of the difference lobe (see Fig. 2.2) to the corresponding quantity of
the - maximum slope array of the same number of elements (since the
latter always has a narrower beamwidth than that - of the maximum
directivity array). The price paid for sidelobe reduction is clear
from this figure, and 1is as expected. The decrease in excitation

efficiency with sidelobe reduction is also clear from the tables.
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The directivity information is plotted in another form in Fig. 5.6.
Here Dg is plotted as a function of array element number 2N, with

sidelobe ratio as a parameter. This form exhibits the ™"gain
compression" of the Zolotarev polynomial distribution with increasing
array size, for a given sidelobe ratio. Oncé more, this is precisely
the behaviour observed with the Dolph®#Chebyshev distribution. In that
case this undesirable performance was alleviated by altering the
excitations in order to provide some sidelobe taper. For the

difference pattern case this is done in the next chapter.

Before proceeding, two final examplés are considered simply for the
purposes of illustration. The space factor of an array of 2N = 50
elements and sidelobe ratio 40 dB is shown in Fig. 5.7. This was
plotted from the excitations in Table II.8, and is for a spacing
d = 0.5 . As an example of an array with spacing less than a
half-wavelength, consider d = 0.4 X and a sidelobe ratio of 30 dB for
a 20 element array. The methods of Section 4.5 give the required
excitations as shown in Table 5.2. Observe by comparison with the
information in Table II.6 that the excitations are different from
those for d > 0.5 A. The excitations for d = 0.4 X have alternating
signs, resulting in a characteristically high Q=factor. The space

factor of the array is drawn in Fig. 5.8.
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TABLE 5.2 : Element excitations for the Zolotarev polynomial array

~with 2N = 20, d = 0.4 X and SLR = 30 dB.

n a
n
~1 -0.97203
2 1.00000
3 =0, 77005
Y ©0.84061
5 =0, 48498
6 0.56680
7 £0,22760
8 0.29080
9 =0,06613
10 0.10185
m
D 9.1419
K 1.0407
Q 46.57
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5.6 CONCLUSIONS

Expressions have been given for the computations required in the
application of the Zolotarev array synthesis technique. . The
procedures used in a computer code developed to perform: such
computations have been explained and the code used to draw up a set of
tables of design data for a number of cases of practical importance.
These tables are given in Appendix 1II. For a wide range of
applications these tables eliminate the need for a suite of computer
codes to perform the array synthesis. On the other hand, the computer
software developed executes extremely rapidly and has the advantage

that arbitrary array sizes and sidelobe ratios can be specified.
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CHAPTER 6

MODIFIED ZOLOTAREV POLYNOMIAL DISTRIBUTIONS

6.1 INTRODUCTION

The Zolotarev polynomial distribution of Chapters U4 and 5 is optimum
for difference synthesis in the same sense as the Dolph=Chebyshev
distribution is for sum synthesis. Examination in Section 5.5 of the
characteristics of the Zolotarev polynomial distribution revealed that
it, like its sum counterpart, has a number of features which for
practical applications may be improved upon. Firstly there is the
constant sidelobe 1level which results in "directivity compression"
with increasing array size. Secondly there is the increase in the
magnitude of the excitations at the array edges for certain element
number/sidelobe ratio combinations, and the associated disadvantages.
These undesirable features <can be removed to some extent by
incorporating a sidelobe taper. Space factors with tapered sidelobe
envelopes are important not only for this reason. In many
applications a prescribed tapered sidelobe envelope is a definite
performance specification which has to be met. If only far-out
sidelobes must be. depressed below very low levels, forcing. all
sidelobes below these 1limits will result in unnecessary beam
broadening and excitation efficiency decreases. Use of a tapered

envelope will give a better design.

In Chapter 3 the course of further developments on the Dolph-Chebyshev
sum distributions was outlined. First the work of Taylor on
continuous distributions, resulting in an understanding of the physics
of aperture distributions (space factor zero placement), and then the
use of this knowledge by Villeneuve [1] and his subsequent invention

of a method for the direct synthesis of efficient, tapered sidelobe,
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sum patterns for discrete arrays which has as its point of departure
the Dolph-Chebyshev space factor zero positions., In the present
chapter the Zolotarev distribution is used as the starting point of a
technique for the direct synthesis of the excitations of a discrete

array with efficient, tapered sidelobe, difference space factors.

The discussion will use as examples arrays with spacings d = 0.5 A.
The method applies equally well for other spacings though. A comment
to this effect will be made at the end of the chapter.
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6.2 FUNDAMENTAL PRINCIPLES

The Zolotarev distribution is known to provide optimum beamwidth and
slope characteristics for a given array size and maximum sidelobe
ratio specification. It 1s an "ideal" difference distribution. Any
synthesis procedure for tapered sidelobe difference patterns should.
therefore use this ideal distribution as the starting point, and then
attempt to provide.the required sidelobe envelope taper with as little
departu;e from the ideal case as 1is possible. The close-in space
factor zeros especially should maintain their spacings as far as is
possible in order to keep the close-in sidelobes at the required
levels, and the beamwidth and slope factors close to optimum. The
farther-out zeros must however approach those of a space factor which
has the required envelope taper. As pointed out in Section 3.7, this
zero shifting must be done in some ordered fashion lest a depression
of sidelobes at one point be accompanied by an unacceptable increase

at another.

A Zolotarev array of 2N elements and specified sidelobe ratio has a
set of symmetrically positioned space factor zZeros {wn},
n = +1,+2, e+« +(N-1). These have been tabulated for a number of
cases in Appendix‘II. Because of the symmetry of the space factor,
only one half of the zeros need be considered. An additional zero is
located at ¢ = 0, as is always the case with difference patterns. This
will be kept apart from the other zeros, since it is fixed under all
circumstances. In order to emulate here what Villeneuve [1].did for
sum patterns, the Zolotarev =zeros V, are retained (almost) for
n=1,2, «=« (n-1), with n some chosen index. .However, for n > N, the
Zolotarev zeros ¥, are replaced by those of some space factor with a
sidelobe envelope taper, and which will be referred to in what follows
as the generic space factor zeros [2] and denoted by Yon»
n = ﬁ,ﬁ+1, *++ (N-1). The resulting new set {w;} of space factor

zeros, with

o - (1)
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for n = 1,2 <+« (N-1), together with the zero at y = 0, completely
characterises a new set 6f excitations. The dilation factor
0 = ¢éﬁ/wﬁ, which must be slightly greater than unity, prevents the
transition sidelobe from being raised above the maximum permissible
level by providing a smooth transition between the two zero-type
regions. Thus the Zolotarev =zeros are not retained exactly for

n < n-1, and a slight beam broadening therefore results.
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6.3 THE CHOICE OF A GENERIC DISTRIBUTION

6.3.1 The Suitability of Three Possible Generic Distributions

If it is to be utilised as a generic distribution, a distribution must
at least have a space factor which itself has the sidelobe taper that
the final distribution is to provide. Furthermore, 1t must be -
possible to place the generic space factor zeros won in an unambiguous
correspondence with those of the starting Zolotarev space factor, Uy
For a sum array of 2N elements, Villeneuve [1] used as generic space
factor that of a wuniformly excited array of the same number of
elements. The logical choice for the difference array case would seem
to be the adoption of the uniform (magnitude) anti-symmetrically
excited array as the generic distribution. (Note that by "difference
distribution" of 2N elements it will be implied in what follows that
the two halves of the array, eaéh havﬁng N elements, are excited in
anti-phase. This is consistent with the terminology of earlier
chapters). The space factor of a uniform difference distribution of
2N elements is easily found from expression (10) of Chapter 2 with
each a, = 1, and the resulting series of sine terms summed [3, p. 30]

to obtain

sin2(N¢/2)

sin(y/2) (2)

Eq(¥)

with zeros at Uon = 2nt/N, n = 1,2, +++ N/2, in addition to that at
Y = 0. Inspection of (2) reveals that as a result of the squared term
in the numerator it has second order =zeros, and this prohibits a

correct Y, - correspondence with the starting Zolotarev space

Yon
factor. This 1is best seen by considering an example of an array of
2N = 20 elements and d = 0.5 A. The Zolotarev space factor of a 25 dB
sidelobe ratio array of this size is shown in Fig. 6.1. (The space
factor =zeros and element excitations for this Zolotarev array are
given in Table 6.1). Superimposed is that of a uniform difference
distribution for an array of the same number of elements. Clearly the
uniform distribution has only half the number of separate zero

locations necessary to be a valid generic space factor.
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TABLE 6.1 : Space factor zeros and element excitations for a Zolotarey
array of 20 elements and 25 dB sidelobe ratio (d = 0.5 X).
(Extracted from Tables II.29 and II.5).

n U)n

pay

0.61603219
0.81725124
1.09280090
1.39318558
1.70403091
2.02008672
2.33899023
2.65948818
2.98080654

W 00 3 Oy U1 &= w N

n an

pay

. 168346
. 485100
. T45324
.921637
.000000
.981285
880081
721111
.534100
.536199

O W 0O N O U = w N
- O O O O

O O O O O

Ny 0.8883

K 0.8551
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There are fortunately two further known difference distributions which
have a 1/u sidelobe envelope taper; the unconstrained (sidelobe~wise)
maximum difference peak directivity and maximum normalised slope
distributions. These have been considered in Sections U4.1.2 and
4.,1.3, respectively. Figures 6.2 and 6.3 compare these space factors
to that of the 25 dB sidelobe ratio Zolotarev distribution, for a 20
element array. Clearly a one-=to=one zero correspondence is possible.
Either of the above space factors could therefore be used as the

generic ones.

Now the element excitations for maximum normalised slope and maximum
difference directivity distributions c¢an be determined using the
methods  of Section 4.1. Once these excitations are known the zeros of
the associated space factors can be found by numerically determining

the roots of the expression (10) of Chapter 2.

For convenience a number of cases for d = 0.5 X are presented in

Tables 6.2 and 6.3.

'
/

These were found for a given array size 2N by bounding each zero
through detection of a function sign change and then applying a
combination of the methods of linear interpolation, extrapolation and

bisection [4] in each interval to determine the precise zero location.

With this information at hand, the root shifting propdsed in Section

6.2 can be examined. For conciseness, 'the maximum directivity and
maximum normalised slope space factors will be referred to as the Dgax

and KO space factors, respectively.
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TABLE 6.2 : Zeros of maximum normalised boresight slope space factor
(d = 0.5 A).
2N 10 20 30 40 50 60
Y01 0.901739348{0.449717293{0.299671828{0.224717338{0.179760362{0.149794192
Y92 1.550455743]0.773176549}0.515208527{0.386343298 0.3090513Sé 0.257532269
¢03 2.188803265|1.091340961{0.727213287(0.5453202820. 436223223]0.363504457
Yoy 2.824233159|1.407834254{0.938099040{0.70345750310.562723195|0.468916713
wOS 1.723589616|1.148485530{0.861219480|0.688922814(0.574078630
Y6 2.038961610]1.358606433(1.018781203{0.814962017{0.679106807
¢O7 2.354117635|1.568569980[1.176223566]0.940905462(0.784055109
Ung 2.669150237|1.778433438]1.333589203{1.066787201]10.888951898
Y9 2.984118522|1.988230162|1.1490902761 | 1.192626892| 0. 993813539
U910 2.197981101{1.648179520{1.318436690}1.098650145
Y011 2.40770029411.805429u483(1.44022452411,203u468304
U1 o 2.617397741{1.962659507|1.569995793{1.308272496
%013 2.827081025(2.119874478({1.695754309{1.413065876
o1 1 3.036756307|2.277078004 | 1.8215028471.517850733
¢015 2.43427284311.947243u81 1.622628767
U016 2.591461171{2.072977799|1.727401274
¢017 2.7486L477212.1987070L46{1.832169257
Yo+ 8 2.90582516442.32443221711.936933507
¢019 3.06300369412.450154127(2.041694662
Yo20 2.575873456(2.146453238
Yoo 2.701590787|2.251209664
Yoo 2.827306629(2.355964300
Y023 2.953021442(2.46071 7454
Ygou 3.078735649]|2.565469389
Y25 2.670220340
Y026 -2.77U970515
Yo7 2.879720105
Y928 2.984469286
%029 3.089218224
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TABLE 6.3 : Zeros of maximum directivity space factor (d = 0.5 1).
2N 10 20 30 40 50 60
Vo1 0.881875823{0.440507754(0.293612802{0.220193749{0.176149074{0.146788234
Voo 1.600041359|0.801466094(0.534491786|0.400916340(0.320750646{0.267300203
¢o3 2.19744675011.100642132{0.733919123{0.550476914]0.440394918]0.367001736
Yoy 2.835823827]1.420733659|0.947536219{0.710752267]0.568638878} 0. 473882534
Y05 1.7293542811.153288149|0.865055247|0.692075636{0.576743610
Vo6 2.045667797(1.364337645(1.023399961]0.818774170|0.682336325
Yo7 2.356844978(1.571888924(1.179060907{0.94329861070.786104034
Vo8 2.672099246|1.782141761(1.336799582(1.069510657{0.891290884}
Y09 2.984093633|1.990420096|1.493021298]1.194486520]0.995435507
Vo190 2.200334894(1.650493509{1.320483003{1.100442061
Y011 2.408954485|1.806994980{ 1. 445686864 |1.204777794
Vo012 2.6187107081.9643291011.571569598|1.309688684
¢013 2.827489081{2.120985316{1.696903056{1.414133917
Yo1 4 3.037179999 2. 278241758 1. 822719232 1.518988215
Y015 |2.434987267{1.948131990 1.623501 481
Y016 2.592199354{2.0739067371.728319819
Vo717 2.748994784|2.199370088 1.832877740
Y18 2.9061837662.325118271(1.937672118
Y19 3.063001747 2.U450614259}2.042260413
Y020 2.576345510(2. 147038360
Vo1 2.701861884|2. 251647706
Yoo 2.82758304112.356414264
Y023 2.953110628]2.461038192
Yooy 3.078827058{2.565796950
Y025 2.670430693
Vo206 2.775184371
Vo217 2.879824184
Voo8 2.984574988
Y29 3.089217705
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6.3.2 Comparison of Modified Zolotarev Space Factors

The problem of finding the set of element excitations resulting from
the zero shifting operations indicated in expressions (1) will be
dealt with in Section 6.5. Of immediate concern in this section is
the behaviour of the space factors which are the outcome of such
alterations to the zeros. This is best observed through use of a
particular example. Suppose once more that an array of 2N = 20

elements with a speéified maximum sidelobe ratio of 25 dB is desired.

Tables 6.1, 6.2 and 6.3 can be used to obtain the information on the
zeros Y, and Yon required for the zero shifting procedure; Since the
factor ¢ must be greater than unity (it is not possible, for the given
first sidelobe level, to have a beamwidth narrower than that of the
Zolotarev array), any n that may be selected must at least satisfy the

conditon,

D (3)

This is equivalent to saying that the Zolotarev zeros may only be
max
d

pattern is used as the generic space factor, the smallest n that may

shifted outward. Therefore, for the present example, when the D

be selected according to condition (3) is n=3. For the K,
pattern as the generic one, the minimum n allowed by (3) is n = 4.
Thus, not only is the Dgax space factor analogous to the maximum sum
directivity (uniform array) space factor used as the generic pattern
by Villeneuve [1] for sum pattern synthesis, but it appears at first
sight to offer more flexibility than phe Ko pattern. However, this
will be seen not to be the case. Fig. 6.4 shows the modified

Zolotarev pattern which results after using as the generic space

factor =zeros those provided by the Dgax distribution, for the case
n = 3. The sidelobes are seen to increase above the design sidelobe

level of 25 dB, indicative of incorrect behaviour of the transition
Zeros. If this same generic distirbution is used with n = 4  such

irregular behaviour does not occur, as illustrated in Fig. 6.5.
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Now consider the space factor which results wheh the Ko distribution
is used as the generic one. In this instance, for its lower bound
ﬁ = 1, the modified Zolotarev pattern resulting from the =zero
perturbation procedure defined by (1) is shown in Fig. 6.6. Thus, for
its minimum allowable ﬁ, no unwanted sidelobe behaviouwr is obtruded.
Furthermore, the first sidelobe in Fig. 6.6 1is closer to the design
level than it is in Fig. 6.5. In addition, further computations show
that this is so for any given n, and that utilisation of the KO rather
than Dﬁax pattern always results in a slightly larger excitation
efficiency and normalised slope. This has also been found to be the
case for other array sizes and design sidelobe ratios. (For very large
ﬁ values, the modified distributions obtained with either generic
space factors are very close to that of the starting Zolotarev
distribution. Their performance indices are then not very different).
“Since the DX

d
KO pattern will be utilised throughout the remainder of this thesis,

has therefore nothing extra to offer in its favour, the

and will simply be referred to as the generic space factor for

difference pattern synthesis.

Observe from the set of excitations shown with Fig. 6.6 that while the
starting Zolotarev excitations (obtained from Table 6.1) are -just
beginning to increase again at the edge element, such is not the case
with the new set. Incorporating the sidelobe taper has removed this.
The price paid is a beamwidth broadening by a factor ¢ = 1.01051 from
the starting Zolotarev array, though this is small. The difference
between the levels of the first and last sidelobes is only 2.67 dB.
For many applications this may not be satisfactory. If it is not
possible to increase the number of array elements, thé oﬁly
alternative is the incorporate into the distribution a factor which
allows control over the sidelobe envelope taper rate. This is done in

“the next section.



RELATIVE POWER LEVEL (DB)

—

0.0 o5 1.0
Y/

FIGURE 6.7 PATTERN OF MODIFIED ZOLOTAREV ARRAY

RELATIVE POWER LEVEL (DB)

X S
/7

FIGURE 6.8 PATTERN OF MODIFIED ZOLOTAREV ARRAY



——

168

2N = 20
d = 0.5
- -
2 net
~ E-xB
]
&
e I
[~ 4
o ]
[=]
.
s
E -
= |
o=
) //\\/m\/d
0.0 0.5 — 1.0
/74 S

FIGURE 6.9

PATTERN OF MODIFIED ZOLOTAREV ARRAY



169

6.4 GENERALISATION TO ARBITRARY SIDELOBE ENVELOPE TAPERS

Determination of the best pattern for a given application requires
careful consideration of the relative importance of the peak sidelobe
specification and the level of the more remote sidelobes. For this,
and some additional reasons mentioned in Section 6.1, a distribution
which allows some control over the sidelobe envelope taper rate and
not just the point at which taper begins, is highly desirable. In
order to effect such a distribution which applies directly to discrete
arrays, the zero shifting procedure defined by equation (1) must be
modified. This will be done in such a way that (1) is a special case.
The general zero shifting procedure is given here in complete form,
even at the.risk of repetition of part of Section 6.2. Once again,

symmetry permits only one half of the zeros to be considered.

For an array of 2N elements ahd a given sidelobe ratio spécification
there will be associated an optimum Zolotarev distribution (which will
be referred to as the starting distribution) with space factor zeros
{wn}, n=1,2, -« (N-1), with the additional mandatory zero at ¢ = O.
Similarly, the generic space factor will have a set of zeros {won} for
the same range of n, and the zero at ¢ = 0. The altered set of space

factor zeros {wé} is now giveh by,

b= (W)

with the dilation factor ¢ given by,

o = [u-+ E(wo'r-l = wa]]/wa | (5)

When £ = 0, the zero shifting operation is nullified and the starting
Zolotarev zeros (and associated distribution) are unchanged, giving a

space fdctor which has uniform sidelobes (zero taper).
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A value of £ =1 reduces the zero shifting algorithm of (4) to that of

(1), which gives a 1/u sidelobe envelope taper.

A value of & > 1 gives a more rapid sidelobe envelope taper. There is
_with increasing & an increase in the dilation factor ¢ and hence in

the amount of beam broadening.

Since it is not possible, for a given maximum sidelobe 1level, to
obtain a difference lobe beamwidth less than that of the appropriate
Zolotarev array it is necessary that ¢ > 1. From equation (5) this

implies that,

b= > Y= - (6)

is a requirement, and any n selected in a specific situation is only
valid if (6) is satisfied. There will in all cases be a minimum
allowable value for n for a given number of array elements 2N and
prescribed sidelobe ratio SLR. With the chésen generic space factor
. (i.e. the K, space factor), condition (6) has been found in all cases
considered to be a sufficient condition for determining this minimum
H, and ensures that an increase in the transition sidelobes above

the design sidelobe level will not occur. \

The use of the general procedure just described is illustrated in
Figs. 6.7, 6.8 and 6.9 for the same array and spécifications of Fig.
6.6, but for increasing value of the taper parameter. Its effect is
clear. While n determines the point of onset of the taper proper, the
gEfactor controls its rapidity. The pattern of Fig. 6.6 is of course
just that for which & = 1, and has a first sidelobe at precisely the
same level as that of the starting Zolotarev distribution, then three
sidelobes of the kind conventionally referred to as the "almost equal
level sidelobes", and thereafter a sidelobe envelope with a 1/u taper.
For the larger & values in Figs. 6.7 to 6.9 the first sidelobe has
decreased from that of the starting distribution, but the essential
pattern structure is the same, except for the increased outer sidelobe

taper rates.
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The number of elements 2N in a monopulse array will in most cases be
determined by the sum directivity (D:) requirements. This quantity is
the determining factor as regards the range capability of a tracking
radar. It is reasonable therefore to discuss the behaviour of the
present modified Zolotarev distributions for given fixed element

numbers.

A comprehensive discussion of the results of a parametric study of the

influence of n and £ on the array performance is given in Section 6.6.

In order to have a complete synthesis procedure, a methed is required
for obtaining the element excitations once the altered zero locations

{w;} are known. This is dealt with in the next section.



173

6.5 DETERMINATION OF MODIFIED ZOLOTAREV DISTRIBUTION EXCITATIONS

Consider again the expression for the space factor of the
anti-symmetrically excited (difference) array of 2N elements, given by

equation (10) of Chapter 2 as (ignoring the constant factor 23,

N
_ E(y) = )Y a_ sin[(2n=1)y/2] (7)
d n=1 n

The methods of the previous séction provide the set of =zeros {w;},
i =1,2, s+« (N-1), of the desired space factor. An additional zero
occurs on boresight at ¢ = 0. For reasons of symmetry, only one half
of the excitations and zeros need be considered. While there are
(N-1) zeros w;, there are N unknown excitations. However, it is the
relative excitations that are significant. One of the excitations can
be assumed equal to unity and all the others found relative to, it.
This is valid even if complex excitations are being considered. Let

ay = 1 in this case, so that (7) becomes,

N
E,(0) = sin{ (2N-1)y/2] +
n

1 .
a sin[ (2n-1)y/2] (8)

o~ 0

1

If equation (9) is enforced at the (N=1) zeros, a set of (N=1) linear
simultaneocus equations, in the (N-1) unknowns ap,ap, **° ay-q 1is

obtained, with E4(y;) = O for each i.
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The full set of equations is of the form,

N—1 ] L]
I a sin[(zn—'mp1 /2] + sin[(zN—mp1 /2] = o0
n=1 _
N-1 , .
Y a_sin[(on-1)y, /2] + sin[(zN-mp2 /2] = o0
n=1 n 2
N=1 : , ,
n§1 a, 51n[(2n~1)wN;1/2] + 51n[(2N—.)wN;1/2] = 0
The process can be represented in matrix notation as,
511 S12 S1,N-1 3 b
So1 S22 S5, =1 25 b2 ‘
. | . = ) (9)
| Sw-1,1 S,z T Syeuner | 8= | | On-1 |
where
1] 1]
S . = sin[(en=1)y, 2] and b, = = sin[(2N=1)y,/2].
ni i 1 1

Once the (N=1) unknowns have been found, the complete set of
excitations a1,35, *** ay can be renormalised to the excitation of

largest magnitude of the set.

The reason for selecting the above appraoch is the fact that there
exist very efficient routines for linear simultaneous equation
solution. This allows rapid and accurate determination of array

excitations.
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6.6 THE PERFORMANCE OF MODIFIED ZOLOTAREV POLYNOMIAL DISTRIBUTIONS

For discrete arrays; results are not as easily presented in thé
general form possible with continucus 1line-sources. Instead the
results of the parametric study of the performance of modified
Zolotarev polynomial distributions will be illustrated by two examples
{(both with d = 0.5 A) which exhibit ail the principal characteristics

of the distribution.

The first 1s that which has been considered earlier in this chapter
(2N = 20, SLR = 25 dB), and the second a 30 element, ‘15 dB sidelobe
ratio array. The former case has a starting Zolotarev distribution
{(see Table 6.1) which is not peaked at the edge. The latter example
can be seen from Table II.3 to have a starting distributicn with
maximum excitation at the edge. This array suffers from the
"directivity compression" problem discussed in Section 5.5, while the
first array does not. Shown in Fig. 6.10 is a plot of the excitation
efficiency of the 20 element array as a function of ﬁ, with £ as a
parameter. For a fixed n, increasing f causes a decrease in Nq» as
expected, since the distribution of excitations is becoming
increasingly tapered at the edges of the array. The vertical scale in
Fig. 6.10 is much expanded and the change in directivity is really
very small in spite of the fact that an increased sidelobe taper is
obtained. As n gets larger, the excitation efficiency becomes less
dependent on the parameter £, since the modified distributions are
tending' to the starting Zolotarev distribution. The excitation
efficiencies of the modified distributions are all seen to be lower
than that of the starting distribution. This is only true because of
the fact that the starting Zolotarev distribution does not suffer from
"diretivity compression", and will not be so fbr\the second example.
The behaviour of K. and beamwidth broadening above for the 20 element
array parallels that of the excitation efficiency. Recalling that o
gives directly the amount of first null broadening above that of the
starting pattern, it 1is noted that over the range 4 < n < 9 and

0 < £ <8, the variation in ¢ for this example is 1 < ¢ < 1.09182.
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‘The largest value occurs for the somewhat extreme case of n = 4,
£ = 8, which has a pattern which falls very rapidly below the =60 dB
point after only the first few sidelobes. Even then the beamwidth
broadening of 8.4% 1is relatively small considéring the greatly

increased sidelobe taper obtained.

Now congider the 30 element array with a sidelobe ratio of 15 dB. A
plot of its excitétion efficiency as a function of n is given in Fig.
6.11. For a given £ there is a particular n which gives maximum
directivity. Smaller and 1abger values than this result in lower
directivities. Such behaviour is a characteristic of distributions
whose starting Zolotarev distributions have "directivity compression".
Incorporating a sidelobe taper can be used to improve the directivity
above that of the starting distribution. The relative difference
slope (X,) of this array is seen from Fig. 6.12 to show a similar

behaviour, but the maxima occur for different n values.

Examination of the excitation sets also reveals that for each g, there
-is a value of n greater than which there is "edge brightening". For
the 30 element array, the distributions of element excitations are
presented in Fig. 6.13, for £ = 0, 1, 2 and 3, for the case of n equal
Lo its minimum allowable value of 2. With £ = 1, the distribution has
a maximum at the edge. Increasing n will onlyvserve to make the
distribution more like that of the starting Zolotarev case (g = O);
The only way to remove this "edge brightening'" for the given number of
elements and design sidelobe ratio is by increasing the parameter ¢£.
This confirms both the necessity and utility of intrdducing the
additional parameter £ in the zero alteration procedure of expression

(8).
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6.7 ARRAYS WITH SPACINGS OTHER THAN HALF A WAVELENGTH

The examples discussed in this chapter have all assumed d = 0;5 A.
This has simply been for convenience, however, and is not a necessity.
For general spacings the =zeros v of the starting Zolotarev space
factor are simply determined from the synthesis procedures of
Chapter 4, as is done for d = 0.5 A. When d > 0.5 i, only the unique
{non-repeating) =zeros are used, and these are the same as those for
d = 0.5 A. Similarly, the zeros Von of the generic space factor (KO
distribution) are found by using the method of Section UW.1.3 to
determine the required excitations for the given spacing, and then
finding the space factor zeros numerically, as indicated in Section

6.3.
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6.8 CONCLUSIONS

Chapter U4 added to the theory of antenna arrays by developing, for the
synthesis of discrete difference distributions, the analogue of the
fundamental Dolph-=Chebyshev synthesis of Sum patterns through use of
the Zolotarev polynomials. “In the present chapter a tapered sidelobe
difference pattern synthesis method has been outlined, which technique .
parallels the Villeneuve n distribution approach of sum patterns. Just
as the Villeneuve procedure provides the array excitations for a
discrete "Taylor-like" distribution directly, so does the pfesént one
allow direct synthesis of high performance discrete "Bayliss—=like"
distributions. In addition the approach has been extended to
incorporate a parameter which controls the sidelobe envelope taper
rate. As such this chapter completes a further aspect of array antenna

theory.

The synthesis procedure begins with the set of zeros of the Zolotarev
space factor associated with the given problem. These are then
altered according to a well-defined procedure given by expression (4),
making use also of the known zero locations of the maximum normalised
slope space factor for an array of the same number of elements. The-
altered set of zeros is then used in (9) to obtain the required set of

excitations.

Use of this method alleviates the need to sample the continuous
Bayliss line-source distribution (which itself is determined by a
numerical search procedure) and then iteratively .  adjust the
excitations to obtain the final desired pattern. Direct synthesis
methods for discrete arrays are particularly useful when the number of
array elements is too small for sampling of continuous distributions
to be satisfactory. . Preliminary work on the topic of this chapter has
been published by the author [5,6].
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CHAPTER 7

GENERALISED VILLENEUVE DISTRIBUTIONS FOR SUM SYNTHESIS

7.1 INTRODUCTION

The synthesis of sum patterns was reviewed in Section 3.2. To design
high-=performance low-sidelobe space factors the emphasis is on the
pattern zeros. The optimum constant sidelobe ratio Dolph-Chebyshev
distribution [1] provides the crucial initial space factor zero
locations. With this as basis, and the appropriate controlled zero
shifting, the tapered sidelobe Villeneuve distributions [2] are
derived. The close-in zeros are correctly placed from a knowledge of
the Dolph-=Chebyshev zeros to obtain a few nearly equal sidelobes at
the design level, while the farther-out zeros are made to match those
of the uniformly excited array in order to give a 1/u sidelobe

envelope.

Also reviewed were the corresponding continuous line~source
distributions - the constant sidelobe level "ideal” Taylor
distribution and the Taylor n distribution, respectively. In
addition, sidelobe envelope taper as well as close-in sidelobe levels
can be controlled in the family of distributions known as the
generalised Taylor distributions [3]. Taylor's n. distribution is a

special case of these.

In the present chapter the work of Villeneuve [2] is generalised to a
class of distributions, directly applicable to discrete arrays, which
allows the sidelobe envelope taper to be controlled. The arguments
are simil;r to those of Section 6.4 and the motivation given there is

applicable here as well.
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7.2 DETAILED FORMULATION

7.2.1 Array With An Even Number of Elements

The case of an array of an even number of elements is considered

first.

Consider an array of 2N elements with uniform spacing d. For a design
sidelobe ratio SLR, the 2N-1 unique space factor zeros of the

Dolph-Chebyshev distribution are given for d > 0.5 A by [2],

-1 1 2n=1 '
Y, = *2cos { 5 cos| é?%ﬁr%% ]} (1)
n = 1,2, ¢«¢+« N
where u, o= cosh { E%:T n[SLR + ¥ SLR2 -1 ] } (2)

These are the zeros of the starting space factor.

The generic space factor is that of a uniform array of 2N elements,

with its 2N-1 zeros at,

won = + nu/N n = 1,2, ««+ N : (3)

. *
Let the space factor zeros now be altered to the set wn’ With

g wn ‘ n < n
b, = "(ll)
o+ e )le = v n >
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with the dilation factor given by,

o = [IPE + (v + WJ(IDOH = "’H)] /b= (5)

In other words, the new set of space factor zeros is obtained by
shifting outward the outer zeros to new positions dependent on those
of the generic space factor in order that the desired remote“sidelobe
behaviour be obtained. At the same time the central zeros are dilated

to obtain nearly equal sidelobes in the central region of the pattern.
As before, the quantity n is a design parameter. Here the v is the
additional parameter to be selected. If v = <=1, then ¢ = 1, and the

space factor zeros w; are just the Dolph-Chebyshev zeros b -

On the other hand, a value v = 0 gives,

Q
]

Yom / V3

S
3

=
<
I

and the altered space factor zeros w; are Iidentical to those of the

Villeneuve distribution [2], with the 1/u sidelobe envelope taper.

If v > 0 the sidelobe envelope tapers are more rapid than 1/u,  but the
physics of the array problem then demands a decrease in the excitation
efficiency. A v < 0 gives envelope tapers more shallow than 1/u. The
parameter v has been used in its present form so that it parallels the
effect of the taper parameter 1in earlier work on continuous
line~-source distributions by Rhodes [3,4], on the generalised Taylor

n distributions.
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7.2.2  Array With An 0dd Number of Elements

Although odd numbers of elements are seldom used with monopulse
arrays, a brief note on the generalised Villeneuve distribution as
applied to an array of 2N+1 elements is in order. The synthesis
procedure is almost identical to that for the even array case except
that the generic space factor is now that of a uniform sum array of

2N+1 elements with space factor zeros,

21 n ' ,
Yon = * 2N (6)
n == 1,2’3' seee N,

For the case of an odd number of elements, if spacings d < 0.5 A are
required, the Dolph-Chebyshev zeros can be obtained from references

given in Section 3.2.2.

7.2.3 Computation of the Element Excitations

For the generalised case just developed, finite product expressions
for the excitations similar to those given by Villeneuve [2] do not
appear to be possible. Instead a matrix method is used for reasons
- similar to that given in Section 6.5. The space factor for a
symmetrical sum pattern of 2N elements is, according to equation (9)

of Chapter 2,

E.(¥) = a cos[(2n-1)y/2] (7)

i~ 2

n

where the multiplicative constant factor of 2 has been ignored.
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Array symmetry permits consideration of only one half of the space
factor zeros in finding the excitation set {a,}, n = 1,2, <+« N. The
zero perturbation procedure of Section 7.2.1 provides a set of desired
.space factor zeros {w;}, i=1,2, <« N. Using the same arguments as in
Section 6.5, if (7) is enforced at the first N-1 space factor zeros, a
set of N-1 linear simultaneous equations in the first N-1 excitatiohs
aq,3p, **° ay.s results, as in equation (10) of Chapter 6. For the

. present -case the matrix elements are,

S, ~ cos[(2n—1)w;/2] (8)

and the right hand side vector elements

b, = - cos[(2N—1)w;/2] - (9)

i

1§

Once the {a,} for n = 1,2, <<+ N-1 have been found, with ay 1 as
assumed without loss of generality, the complete set of N excitations
can be normalised to the maximum value of the set, and the

distribution is determined.
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7.3 GENERAL OBSERVATIONS

For given maximum sidelobe level and number of elements, it 1s known
that it is not possible to obtain a first null beamwidth less than
that of the Dolph-Chebyshev distribution. Therefore, if the sidelobe

constraints are not to be violated, it is required that,

|

2B (10)

and it therefore follows from (4) that the dilation factor ¢ must be
greater than or equal to unity. Equation (5) can then be invoked to

obtain the condition,

Y= > Y= (11)

bon = . | (12)

) w= (13)

There is consequently a minimum allowable n for each array
size/sidelobe ratio combination. The condition (13) is a necessary
but not a sufficient condition, however. This can be shown by
example. . Consider an array of 20 elements and d = 0.5 A with a sum
sidelobe ratio of 25 dB. Application of condition (13) revéals that
n > 2. Fig. 7.1 depicts the resulting space factor for the case v = 0
(Villeneuve distribution), and exhibits the "incorrect" sidelobe
behaviour obtained, with the second sidelobe rising above the

prescribed design level. While the particular case illustrated is for
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v = 0, examination of the pattern for v > 0 shows that the irregular
transition sidelobe increases in height with increasing v. Similar
observations to the above can be made for other array sizes and
aidelobe ratios. Thus, besides checking the condition (13), it is
necessary also to check the resulting array factor itself in order to
be certain that the n used is large enough to allow the transition
zeros to behave correctly. It has been found for all the cases
considered that an n equal to the next integer higher than that

obtained from (13) will always ensure this.

The effect of changing the parameter v can best be seen by keeping
nfixed for a specific array size and sidelobe ratio specification, and
plotting the array space factor as v is varied. This is done in Figs.
7.2(a) to (d) for the 20 element array with a 25 dB sidelobe ratio
specification. Clearly, for fixed H, the effect of increasing v is to
increase the sidelobe envelope taper rate, as expected. The level of
the first sidelobe changes little for the range of v considered, and
is thus virtually independent of v. For a given n, as the envelope
taper rate is increased so does o0, and as a result the first null
beamwidth as well. Also indicated in the above figures is the
excitation efficiency Ng for each case. As expected, an increasing v
is associated with a decreasing Mg+ This is still more clearly
illustrated in Fig. 7.3, where Ny is plotted versus v, with n as a
parameter. The amount of beamwidth broadening (measured relative to a
uniform array of 20 elements) is shown in Fig. 7.4. That the curve
for n = 2 is "out of place" is indjicative of the fact that this is too
small a value. Besides this, the form of the curve is predictable. So
too 1s the curve éhown in Fig. T.5. Except for those points
associated with n = 2, there is for fixed v a steady increase in
excitation efficiency és n gets larger. The reason 1is that as
ﬁincreases, the distribution approaches that of the starting
Dolph=Chebyshev distribution. Irrespective' of the values of the
parameters n and v, the generalised Villeneuve distribution has, for
this specific 'example, a lower directivity than 1its parent
Dolph-Chebyshev distributions, albeit with taper sidelobes. But this
is not always the case. As with the modified-=Zolotarev distributions

discussed in the previous chapter, if  the /barent distribution
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suffers from "directivity compression" (see Section 3.2.2), then the
form of the curves like those of Fig. 7.5 will be different. An array
of 30 elements, with a sidelobe ratio of 20 dB will serve to

illustrate this point.

The graph in Fig. 7.6 is now applicable. It is immediately clear
that,>for a fixed v, there is a certain value of n which provides
maximum directivity. Furthermore, for a wide range of v and n
combinations, the generalised Villeneuve distribution has a higher
directivity than the parent Dolph-Chebyshev one has. The reason is
the same as that given for the modified Zolotarev difference

distribution in Section 6.6.

As with the Zolotarev distribution there will be array sizes which,
for a specified sidelobe ratio, will possess "edge brightening" (i.e.
a non-monotonic distribution) even with - n equal to its minimum
allowable value and v = 0 (i.e. Villeneuve distribution). Increasing
n will simply worsen the situation and the only solution 1s to
increase the value of v. Consider for instance an array with 2N = U0
and SLR = 15 dB. The aperture distributions (with the excitations

simply connected by straight lines) for the smallest permitted n value

of 2 are shown in Fig. 7.7 for the thrée cases v = =1, v = 0 and
v = 1, The parent Dolph-Chebyshev (v = =1) case has a highly
non-monotonic distribution. The Villeneuve distribution (v = 0) is

just monotonic. The generalised Villeneuve distribution with v =1 1is
strictly monotonic. For a still larger array with the same sidelobe
level, a v > 0 will be required to obtain even a distribution which is
just monotonic; this confirms the usefulness of the generalised
Villeneuve distribution for reasons other than increased sidelobe

envelope taper rate.
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7.4 CONCLUSIONS

The generalised Villeneuve distribution developed in this chapter
permits the direct synthesis of discrete array distributions for high -
efficiency sum patterns of arbitrary sidelobe level and envelope
taper. With the Doclph-=Chebyshev distribution as the parent space
factor, and the correct perturbation of space factor zeros, the
excitation efficiency and beamwidths are kept as close to their
optimum values as is possible under the specified sidelobe ratio and
envelope taper. The 1level of the first sidelobe- is set by the
starting Dolph-Chebyshev distribution, the taper rate controlled by
the parameter v and the point at which the requifed taper proper
begins determined by n. The excitations are obtained from the
perturbed space factor zeros through solution of a set of linear
simultaneous equations. The synthesis procedure_is extremely rapid. A
computer code developed for performing the complete synthesis (with
the values of n, v, SLR, 2N and d as input), and which computes the
resulting space factor and directivity, takes approximately 4 CPU
seconds on a CDC Cyber 174 computer for an array of 20 elements.
Consequently, design trade-off studies are féasible; the proper choice
of the values of n and v for a particular application will depend on
the relative importance of the peak sidelobe level compared to that of
the farther-out sidelobes, and their effect on the excitation

efficiency.

The method is similar to (and might perhaps be considered the discrete

equivalent of) the generalised Taylor n continuous distributions [3].
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CHAPTER 8

. SIMULTANEOUS SYNTHESIS OF SUM AND DIFFERENCE DISTRIBUTIONS

8.1 INTRODUCTION

-The problem of optimum sum pattern synthesis for a discrete array was
shown in Chapter 3 to have been relatively well understood, and some
generalisations were presented in Chapter 7. The corresponding
difference pattern synthesis has_been brought to a similar level of
completion by the work reported in Chapters 4, 5 and 6. Consequently
high directivity, low sidelobe, sum or difference distributions can,
independently, be determined directly with a certain 1level of
confidence, On the other hand, the topic of simultaneous synthesis
has not yet been dealt with. When this topic was reviewed in Section
3.5, it was indicated that no definite procedures of any form have

been published to perform such syntheis.

As was pointed out in Section 3.5, any discussion of simultaneous
synthesis without reference to feed network constrainte is not
meaningful. Since the number of conceivable array feed network
architectures is essentially unlimited, an all~-encompassing theory of
simultaneous optimum synthesis is not possible. (There is perhaps an
analogy here with the subject of systems theory. While a general
theory for linear systems is possible, one such is not possible for
non-linear systems, since each is non-linear in its own particular
way). Instead, methods of simultaneous synthesis are considered here
for the important and widely used class of feed network which employs
sub-=arraying. The two-module and independent types of network are the

extreme cases of such a class of network.



202

In array antenna design (as in most other aréas of engineering)itwo
approaches are possible. On the one hand the performance of a number
of different "likely" sets of excitations may be examined and the most
desirable one selected. Alternatively, the inverse problem may be
attempted = finding that set of excitations wﬁich produces the desired
performance as closely as possible. The independent sum and
difference synthesis methods described earlier are examples of the
latter approach. The contributions to simultaneous synthesis methods
presented here fall somewhere between these two approache;. Some
choice on the part of the designer is required. One reason for a
- choice having to be made lies in the fact that, since some compromise
has to be made, certain criteria may be more important to meet than
others. For instance, it may in some cases be more important that the
sum mode be closer to its independently optimum performance at the
expense of the difference pattern, or vice versa. Selection of what
is simultaneously optimum therefore depends on the intended
application. Such a choice is not really a drawback since engineering
design 1is always dependent to some extent on the experience and
intuition of the designer. It is with this in mind that Bandler [2]
stresses the '"necessity of some (numerical) experimentation, in
general, before accepting an apparently optimal solution (obtained) by
any numerical optimisation procedure". The methods presented in this .
chapter are intended to provide means of performing such numerical

experimentation.
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8.2 ARRAY GEOMETRY AND NOTATION

In the interests of clarity, the sub-array geometry and associated

notation used in the sections that follow-will be outlined.

The general sub-arrayed configuration is shown schematically in Fig.
8.1 for one half of the array. The total number of array elements is
2N. Two sets of excitations are considered = local excitations and

sub-array weights.

The set of local excitations,
{a,} n o= 1,42, <o+ N

ére individually associated with each element. These will be the

excitations responsible for the sum pattern obtained.

There are 2Q sub*arrays and. the sub=arraying is symmetric about the

array centre. The q-th sub-array has Kq array elements associated

with it; thus

It then follows that the local excitations of the elements of the

first sub=array are,

Those for-the g=th sub=array are,

a y A ese g
+eooe s o0 ’ eeo
K1+K2 +Kq*1+1 K1+K2 +Kq“1+2 K1+K2+ +Kq
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while for the final Q-=th sub-array they are,

’a ’ see g
aK1+K2+ Ky *17 K Ky e e K 42 N

The excitation weighting of the g-th sub-array is denoted by gq(n),
indicating that the particular n=th element is a member of the g=th
sub-array. While for the sum pattern the n-th element has an
excitation which is simply the local excitation a,, for the difference
pattern its excitation is effectively angq(n).

The two=module and independent array feed networks are special cases
of the above geometry. If Q = N, then the independent network

results, while Q = 1 implies the two-module network.

Excitation sets {ai} and {ag} will always be used here to denote those

sets of excitations which are independently optimal for the sum and

difference cases, respectively. The corresponding space factor zeros

are,

i = £1,+2, <+ £(N-1)

i = +1,+2, +++« £(N-1)

For the difference pattern there is an additional zero at ¢ = 0, and
for the sum a zero at y = w., However, with the symmetric arrays dealt
with here these are always satisfiéd and need never be considered.
Also, for reasons of symmetry, only one half of the array excitations

and pattern zeros need be considered.
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Because of the enormous number of “~design parameters, and the
possibility of differing opinions as to what can be considered the
"best" compromise in any given situation, the simultaneous synthesis
technique discussions will generally be along the 1lines of a
description of the particular method, an illustrative example, and a

number of applicable comments.

The methods developed in this chapter will all be illustrated via a
common example in order to facilitate comparisons. The details of
independently optimum solutions, for the 20 element array with a

minimum sidelobe ratio of 25 dB, are given in Table 8.1.
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TABLE 8.1 : 20 element, 25 dB sidelobe ratio arrays with d = 0.5 X.

(a) Sum mode (Villeneuve, n = )

n ai i wl
1 1.00000 1 0.42406948
2 0.97591 2 0.64273132
3 0.92707 3 0.93785914
4 0.85415 y 1.25663704
5 0.76156 5 1.57079630
6 0.65833 6 1.88495556
7 0.55670 T 2.19911482
8 0.46916 8 2.51327408
9 0.40570 9 2.82743334
10 0.37258 10 3.14159265

(b) Difference mode (Modified Zolotarev, n = 4, £ = 3)

n ag i wl
1 0.17385 1 0.63546394
2 O.H9612 : 2 0.84303008
3 0. 75500 3 1.12727154
by 0.92719 by 1.43713140
5 1.00000 5 1.76270700
6 0.96589 ' 6 2.07671140
T 0.84010 7 2.38435488
8 0.68326 8 2.68746840
9 0.54640 9 2.99074250
10 0.36091
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8.3 A SIMPLE APPROACH FOR THE TWO=MODULE NETWORK

A simple attempt at obtaining a set of excitations which represents a
compromise Dbetween sum and difference performance, when a two=module
feed network is used, will first be described. Consider the sets of
independently optimum excitations {ai} and {ag}, n=1,2, «+« N. These
are obtained using the methods given in the earlier chapters. Suppose

that the compromise excitation for the n-th element is computed as,
a = §a°+ (1-28) al (2)
n n

where & is a weight factor with 0 < & < 1. A value of § = O
corresponds to the optimum~difference excitations, while § = 1 gives
the optimum sum excitations. The history of the resulting sum and
difference patterns as § varies from O to 1 is shown in Figs. 8.2 and
8.3 for a 20 element, 25 dB sidelobe ratio array. The results do not
appear to be satisfactory, with sidelobes unacceptably high for one or
other of the patterns. The problem with this approach is that there
is no way of determinfng Wwith any certainty what the best
sidelobe=constrained compromise solution is for the two-module feed
network, or how to improve the sidelobe performance by accepting some

beamwidth increase perhaps. This is taken up in the next section.
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'FIGURE 8.2  COMPROMISE PATTERNS OBTAINED USING
SIMPLE EXCITATION WEIGHTING PROCEDURE

(Horizontal Axis Is Angle Off Broadside From 0 to 90 Degrees.
Vertical Axis Is Relative Level In Decibels From -60 to 0).
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FIGURE 8.3 COMPROMISE PATTERNS OBTAINED USING
'SIMPLE EXCITATION WEIGHTING PROCEDURE

(Horizontal Axis Is Angle Off Broadside From 0 to 90 Degrees.
Vertical Axis Is Relative Level In Decibels From -60 to 0).
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8.4 SIMULTANEOUS SYNTHESIS WITH A TWO=MODULE NETWORK USING
NUMERICAL OPTIMISATION '

8.4.1 The Approach of Einarsson [1] for Sum Synthesis

The simultaneous synthesis method presented in this section is an
extension of the numerical optimisation method used by Einarsson [1]

for sum synthesis.

The notation used differs from that of Einarsson {11, but is more
convenient for the simultaneous probiem. Furthermore, the formulation
used throughout exploits the symmetry of the linear array, making use
of expressions derived in Chapter 2. Though Einarsson was concerned
with symmetric excitation, the planar array geometry with which he was
concerned does not allow this symmetry to Dbe exploited to the same

extent possible with linear arrays.

Recall from equation (21) of Section 2.2.3 that the sum directivity of
a linear array is expressible as the ratio of two Hermitian quadratic

forms,

S
D_(§) = (3)

with matrices [AS] and [BS], and excitation vector [J], defined in
Sections 2.2.2 and 2.2.3. The matrix [AS] can furthermore be written

as,

(a1 = [F1[F 1" ()

~

with vector [FS] as defined in equation (12) of Chapter 2.
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The expression for Dg(y) in equation (3) is dependent on angle y (or
equivalently 8). When evaluated in the ¢ = ¢h direction, say, [AS] and
[FS] will be denoted by [Ag] and [Fg] respectively. Matrix [BS] is
always independent -of . As before, Ds(w) in the direction of its
maximum is simply denoted by D:. For the broadside array this is in

the direction y = by = 0, and therefore,

. itsrl (5)

The array factor is given, in terms of the above quantities, in the

direction ¢ = ¢ as, -
ES(¢) = 2[F

"] (6)

from equation (14) of Chapter 2. In the broadside direction this is

therefore,

E(0) = 2[F°)7[s] (7

Note that [Fg] will simply be a vector with components all unity.

"Einarsson has shown [1] that maximisation of D2 in (5) can be

formulated as the problem of minimisation of the quantity,
PS(B) = [317[B.113]) - [F°)F[4] (8)

where J is equivalent to [J].
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This is a quadratic programming problem [3]. The minimisation is done
subject to a set of constraints on the sidelobe levels. If the
prescribed maximum sidelobe level relative to the pattern maximum is
denoted by ¢, then application of the sidelobe constraints at a set of

angles y = b150p, = dps °*° ¢y can be written as,

ES(¢h) - c ES(O)

A
o

(9)
*Es(¢h) -c ES(O)

A
o

for h = 1,2, -+« H. The fact that no assumption about the sign of the
sidelobes is made explains the appearance of two terms in (9). This
has the advantage that the constraint set remains linear. Use of the
modulus function would convert (9) to a non®linear set of constraints

in general, and prohibit the use of quadratic programming algorithms.

The set of constraints (9) can of course be re-written as,

(10)
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The above method has been applied using the quadratic programming
procedure described by Gill et. al. [3] and implemented in [4] as
routine EOYNAF., After the initial run of the optimisation it is in
most cases necessary to check the space factor obtained for any
sidelobe level violations at angles other than those {¢,} initially
selected for the constraint set, and then re-run the optimisation with
the altered set of constraint angles, as suggested in [5, p. 53]. This

does not cause any unforeseen problems though.

The present approach is easily extended to cases requiring a sidelobe
taper, though this was not done by Einarsson, To do this a set of
quantities Ch is defined, one associated with each constraint angle
P o= ¢h, instead of having the same ¢ for each such angle. This can be

considered to be a sidelobe envelope taper vector,
(12)

The components of C are determined from an equation for the envelope

in térms of angle V.

Furthermore, the quadratic programming technique wused allows
requirements for a monotonic distribution of excitations to be

incorporated as a linear constraint set, if indeed so desired.

The method has been found to work extremely well, but no results will
be given here, since the aim in this section is primarily one of
enlarging the scope of the method to include simultaneous synthesis.

For sum synthesis alone the methods of Chapter 3 and 7 should be used.
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8.4,2 Extension to Difference Synthesis

With the . quantities [Fd], [Ad] and [Bd] derived in Chapter 2 the

extension of the method of Einarsson [1] to difference synthesis is

relatively straightforward. Suppose that the maximum of the
difference pattern is at angle ¢ = Yo' then from equation (23) of
Chapter 2 it follows that,
Tr,0
. 2l [aglls] |
Dd = , . (13)

where [Ag] is just [Ad] evaluated at ¢ = Yo. Similarly, [Fg]

[Fd] evaluated at this same angle. Maximisation of (13) 1is then

denotes

equivalent to minimising the function,
P = []7[B,[0] - [FS17[4] (14)

which is again a quadratic programming problem. In this case the
precise position Y of the maximum is not known a priori. An
iterative procedure is therefore followed, as was done in Section 4,1,
The optimisation is performed with Yo equal to that of a uniform arréy
of the same number of elements as that under consideration, operated
in the difference mode. At the end of the first run, the actual value
of Y, obtained with the resulting exeitation set [J] is found, and the
optimisation re-run with this value. This process 1is repeated until

convergence is obtained; this is achieved rapidly.

The sidelobe constraints are applied in much the same way as for sum
synthesis. However, the set of constraint angles will be different
from thdse for the sum case and will be denoted by
U= Y3, Yy, *e+ Y, e+ Yg. Thus [Fg] 4] evaluated at ¥ = Y,.
The set of constraint conditions corresponding to those in (9) and
(10) are then,

implies [F
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Eq(Y.) = ¢ Ej() <0

(15)

“E(Y.) = ¢ E () < 0

or equivalently,

(16)

As mentioned previously, a sidelobe taper requirement can be
incorporated by defining a taper vector like that in (12). The
monotonicity constraint should be applied more carefully. For
difference distributions it must be remembered that by "monotonic" is
meant that the excitations must not increase near the array ends. The
distribution as a whole is inherently_non*monotonic. This requirement
can still be implemented as a set of additional 1linear constraints

however.

The quadratic programming routine EOUNAF [4] has been used to
implement the above procedure for difference synthesis. Once more no
special problems requiring further discussion were encountered, and

. the final step of simultaneous synthesis can therefore be considered.

8.4.3 Simultaneous Synthesis with a Two-Module Array Feed Network
Following the work of Zionts and Wallenius [6] on multi-objective

optimisation, the simultaneous synthesis problem can be formulated as

one of miﬁimising thé quantity,

P(J) = & PS(J) + (1 - G)Pd(J) (17
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subject to some set of constraints. The quantity in (17) 1is a
weighted addition of the functions Ps(j) and P4(J) ‘applying
individually to the sum and difference cases, respectively. The
guantity & expresses a preference for one or other mode of operation.
A § = 0 reduces the problem to that of difference synthesis, while if
§ = 1 it becomes the sum synthesis problem. Equal weighting is

obtained when § = 0.5.

The next question concerns the set of constraint conditions. A single
set of - angles at which to apply sidelobe constraints is not
acceptable. The reason is that the angular regions over which the
sidelobes occur are different for the two cases, the first minimum of
the sum pattern occurring earlier than that of the difference pattern.
An angle at which it is appropriate to apply a sum sidelobé constraint
may fall within the principal 1lobe of the difference pattern.
Furthermore, it is wusually desirable to specify difference sidelobe
levels relative to the difference patﬁern maximum and not to the sum
maximum. To do this not only different sets of constraint angles must
be used but in fact two completely different sets of constraints. The
procedure then is to maximise the quantity P(3) in (17) subject to a
constraint set consisting of those in both equations (11) and (16).
In (11) let the maximum sidelobe level specification be denoted by Cg
(instead of simply c¢) in order to distinguish it from the difference
sidelobe level quantitied C4 to be used in (16). As discussed above,
the sets {¢h} and {Yr} of constraint angles will generally not be
identical, at 1least not for the first few values close to the
broadside direction. A conflicting constraint set is hereby avoided.
This is crucial in the application of the method to simultaneous

synthesis.

Since Ps(j) and Pd(j) are quadratic, so is their linear combination
used to form P(J). Therefore the quadratic programming algorithm
EO4NAF [4] can be applied to this problem as well.

This approach has been exercised for a number of different problems.
The procedure developed from this experience will first be outlined,

and then the numerical results presented for a particular example.
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As the first step, the exact ﬁrocedures for independent sum and
difference pattern synthesis presented-earlier in this thesis are used
to synthesise an optimum set of sum excitations and an optimum set of
difference excitations. This will give an idea of the performance
achievable independently. From the space factor =zeros of these
independently optimum patterns, the region over which to apply
sidelobe constraints in each case is clearly discernible. 1In this way
a selection of constraint angles which aré overly restrictive (require
beamwidths that are too narrow) even for the independent patterns is
prevented. This is important since any infeasibility of solution
indicated by the numerical optimisation routine must then be solely
due to the facﬁ that simultaneous synthesis is being attempted. Thus
information from the independent exact synthesis methods is used to
draw up the initial constraint angle sets {¢h} and {Yr}’ such that
¢1 = w? and Y1 = ¢$ initially.

The next step is to set Cg = C4 (i.e. identical sum and difference
sidelobe specifications) and repeatedly execute the optimisation
routine, each time decreasing the common sidelobe level factor until a
solution subject to the given constraints is no longer feasible. That
this stage has been reached is indicated by the optimisation algorithm
putting all the excitations to zero and setting a flag that a feasible
solution is not possible. At this point, because of the fact that the
constraint angles have been éelected using informationi from the
independently optimum solutions, the beamwidths obtained with the
solution [J] of the optimisation routine will be close to those of the
independent solutions. (This can easily be strictly enforced by
requiring a very low "sidelobe" at the first constraint angles o9 and

Y, for the sum and difference cases, respectively, if so desired).

Furthermore, the last feasible sidelobe level is at this stage also
known to be the lowest achievable for the given beamwidths and the

two-module feed.
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If the beamwidths of both the sum and difference patterns are to
remain as specified above, the maximum sidelobe level Cq of the sum
pattern can only be decreased by increasing that of the difference
pattern (cd), or vice versa. Alternatively, sidelobe levels can be
lowered over some sectors of the patterns and allowed to increase over
others. Such sidelobe structures have been considered in [5, p. 36].
In order to determine to what extent this 1is possible, the

optimisation routine must again be executed a number of times.

‘An alternative approach to the one outlined above is one which also
begins with the independently optimum solutions, sets the factors Cq
'and cq can be set to some desired sidelobe levels, and "allows" the
beamwidths of either the sum or difference patterns, or both, to
increase by shifting the first constraint. angles (qa1 and/or Y1)
further out, re=distributing the constraint set, and each time
executing the optimisation routine until a feasible solution is
obtained for the given Cq and cq values. It is important to réalise
that an acceptable solution may not in fact exist for the given array
size and prescribed sidelobe levels. There is a limit to the amount
of Dbeamwidth increase which can be permitted. Firstly, if the
suppression of sidelobes is desired for rejection of clutter and other
sources of interference, for example, there 1is 1little sense in
accepting too much beam broadening for either sum or difference
‘patterns just to lower the sidelobes over a sidelobe region with a now
greatly reduced angular extent and the interference now entering via
the broader main lobes. Also, associated with beam broadening is
decreased directivity and boresight slope performance. A further
Eeason for limiting the amount of beamwidth ipcrease is that the.
difference lobe becomes severely deformed; what happens is that the
first null of the "starting pattern" begins to fill in and merge with
this difference 1lobe. It is advisable at eaoh'stage to check the.
patterns for undesirable deformities, and for "spurious" sidelobes at
angles other than those of the constraint set selected before

accepting any set of excitations as the final solution. The former is



220

easilj done via modern computer graphics. "Spurious" sidelobes are
easily detected numerically, their angular 1location included in the
constraint set, inactive constraints of the previous run eliminated
(this information may be requested from the optimisation routine), and

the optimisation process repeated.

After some experience, using the structured approach given above{ it
is found that the method is flexible and becomes relatively easy to
use. The formulation of the problem as a quadratic programming one
offers considerable advantages as regards execution times involved, so
that repeated use is feasible. The solutions have been found in all
cases using a starting set of excitations of unity for each element.
There appears to be no advantage in using &§ values other than 0.5.
The sum characteristics are rather played off against those of the
difference by altering their respective sidelobe levels or beamwidths

as indicated in the above guidelines.

8.4,y Illustrative Examplé

Consider as an example the case of an array of 20 elements, and
suppose that for both sum and difference patterns a sidelobe ratio of
25 dB is desired, though known to be over-ambitions for a two-module
network. The independently optimum solutions are then just those
-given in Table 8.1. Using this information the optimisation problem
was set up and executed. The sidelobes for both sum and difference
patterns were decreased until a feasible solution with the given set
of constraint angles was no longer possible and the last feasible
solution examined. At this point the difference sidelobe constraint
was increased slightly to the 15 dB level, and that for the sum
lowered in small steps until a feasible solution was once more no
longer possible. At this stage the compfomise solution (with
beamwidths comparable with those of the above independently optimum
designs) had a sidelobe ratio of 17 dB for the sum mode and 15 dB for

the difference mode. This is illustrated in Fig. 8.4.
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As a next step the first constraint angle of the difference pattern
was shifted obtward by a factor of 1.1, with that for the sum
unchanged. A sum sidelobe ratio of 18 dB was then obtainable, with
that for the difference pattern unchanged. As a third step, the sum
beamwidth was allowed to increase by a factor of 1.1 and that of the
difference pattern by a factor 1.3. For this case the sum sidelobe
ratio achievable is 20 dB, if the level of the difference sidelobe
constraints is once more unaltered. This is shown in Fig. 8.5, and

clearly shows the beam broadening of the difference pattern.

By altering the constraints ih a systematic manner then, meaningful
design trade-off studies can be performed using the quadratic
programming method. The performance that can be obtained with a
two-module feed network is severely restricted, however, and the

constraints cannot be too tight.
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8.5. EXCITATION MATCHING VIA SUB-ARRAY WEIGHT ADJUSTMENT

8.5.1 Introduction

The technique dealt with in the previous section enables the best
compromise simultaneous synthesis to Dbe performed under the
limitations of the two-module network. "The remainder of the chapter
is concerned with simultaneous synthesis of an array which utilises
sub—arraying to increase the number of degrees of freedom above that
available with the two-module network. The particular approach in
this section 1is one which attempts to obtain a good compromise by
dealing directly with the independently optimal excitations {ai} and

{a?}, and will be referred to as excitation matching.

8.5.2 The Excitation Matching Concept

Assume that the excitation sets {a:} and {a:} have been determined,
and let {az} be the local set of excitations. 1In other words, the sum
mode will have its optimum .set of excitations. With the sub-array
configuration selected, the sub-=array weights must be determined
according to some criterion. The difference excitations will be the
set {en}, with e, = gq(n)ai, the gq(n) being the weight of the sub-
array associated with the n-th element. For a given configuration of
sub—-arrays the gq must be chosen so that the set {en} is as close as
possible to the independently optimum difference set {ag}. To effect

this, a set of N residuals {r_ } is formed, with

cijgj(i) (18)
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for each i = 1,2, +++ N. For each i1 value only one of the cij are
non~zero, depending on the particular sub-array geometry used. More

specifically,

s : s s s .
{ ai if element i is in sub-array j

1]
L 0 otherwise

In the case of an independent feed network (N = Q) it is possible to
adjust the "sub—array" weights so that each residual rs is exactly
zero. Thus, with each rs
simultaneous equations for the subzarray weights. In this case, with

= 0, equations (18) form a system of linear

N = Q, each "sub-array" weight g is simply the ratio a?/ai.'

For the case of a feed network of. intermediate complexity (N > Q) it
is not possible to make each of the N residuals rs identically zero by
adjusting the Q sub=array weights. Nevertheless, the system of

equations,

I ~0
(e}

gj(i) = a, 19

can still be considered as that which will provide the solution for

the sub-=array weights.

But since N > Q, it is an over-determined set, with more equations
than unknowns. However, such a system of equations can be "solved" by
finding the set of unknowns, {gq}, q=1,2, *++ Q which minimises some

norm of the vector of residuals,

]T

=0 3

[r1,r2, ses p (20)

N
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Three possible norms, which have been defined in Appendix I, are

_ N
Irll, = 21 Ir_| (21)
n=
1
= 2
I, - | I+ (22)
n=
”ﬁ”m = 1 <max< . [rn] (23)
n

The advantage of formulating the problem in theAabove manner is that
efficient algorithms have been reported in the mathematical literature
for solving the system (19) subject to any of the above L9, %5 Or &,
‘norms. The details of such algorithms will not be reproduced here as
they are available in the references given below. The method
associated with the &, norm is described in [7] and [8] and
implemented in [9], while that for the 2, norm is available in [10].
Finally, [11] gives the details for the &, case, and is implemented in

[12].

8.5.3 Observations, Examples and Further Discussion

The excitation matching approach has been exercised for a large,
though limited, number of different cases. Detailed examination of
these results reveals that the &, norm always results in both the
poorest sidelobe performance and bfoadest beamwidth. The sidelobes
obtained through use of the 21 norm are consistently higher than those
for the 22 norm. The reason for the superior performance observed for
the 22 nbrm appears to be that it never attempts to force the
compromise difference beamwidth to be narrower than that of the

independently optimum difference pattern, and allows a natural
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increase in this beamwidth when sub=arraying is used. On the other
hand, the beamwidths of the 21 norm solution are in many cases
narrower than those of the independent pattern; hence the poorer

sidelobe behaviour.

When sub-arraying is used, the selection of a particular configuration
is an additional design variable. There is a considerble advantage
therefore in the fact that for the excitation matching approach a
known sum pattern is kept fixed and only the difference pattern
performance adjusted. This corresponds closely to what is usually

done in practice.

The array of Table 8.1 will be used to illustrate the application of
the excitation matching procedure. In all cases the independehtly
optimum sum excitation set will be kept fixed and the sub-array
weights used to adjust those for the difference mode. Three different
sub~array configurations have been selected, as specified in Table
8.2.

TABLE 8.2 : Sub~array configurations.

CONFIGURATION Q K, K, Ky K, K,
F o 5 2 2 2 2 2
#2 5 1 1 2 5 1
#3 3 3 4 3 - -

The first configuration represents the case of paired sub=arraying
over the antenna. Configuration # 2 has the same number of sub-arrays
as that of the first, but a different number of elements per sub-
array. For this configuration the number of elements per sub-array was
chosen by observing the difference |a? = a§| between each of the
excitations of the independently optimum arrays of Table 8.1, and
including in the same sub=array those elements with [a? - agl falling

Wwithin certain intervals. The third configuration is an example of the
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limited number of sub-arrays that might be used with a typicdl small
monopulse antenna, and corresponds to a six-module feed network. It is
not suggested here that +the above sub=array configurétions are
particularly desirable. They have been selected, rather, in order
that all the characteristics of the much larger number of cases

actually considered be exhibited.

Only the results obtained using the 22 norm are presented, because of
the superior performance obtained. These results are shown, in order,
for the three configurations, in Figs. 8.6, 8.7 and 8.8. Configuration
# 2, which has the same number of sub=arrays as-configuration # 1, has
the better overall performance. However, it should be remembered that
if the element patterns of the array elements are taken into
consideration, it may be possible to suppress the sub‘array grating
lobe effect in the end-=fire direction in Fig. 8.6. If this is
possible, configuration # 1 gives a very good result if it is
remembered that only the five sub=array weights are adjusted instead

of all ten elements.

The results shown in Fig. 8.8 for configuration # 3 appear to be open
to improvement if the excitation matching were done with a sidelobe
constraint imposed. Gill et. al. [3, p. 180] show that the least
squares (&,) solution of a system of over-determined linear
simultaneous equations subject to a set of constraints can indeed be
formulated as a constrained quadratic programming problem. In
particular, the least squares solution of any over=determined system

of the form,

[s]lx] = [r] (24)

[E][x] < [v] (25)
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is equivalent to the quadratic programming problem,

minimise  {[#]7[x) + (x]"[c]{x]}

subject to (e][x]) < [v] (26)
where ‘ [6] = % [s]"[s]

and (1) - [s)7[p]

If this is applied to the problem at hand, with [X] the vector of
unknown sub=array weights, the system of excitation matching equations
(19) can be solved in the %> sense, subject to the set of sidelobe
constraints given in equation (16). Only the difference pattern
constraints are utilised of course, since the independently optimum
sum mode excitations are unaltered. The initial constraint angles
{Yr} are chosen using the information on the space factor zeros of the
independently optimum difference pattern as suggested in Section
8.4.3. The above constrained 1least squares approach has been
implemented using the routine EOUNAF [4]. When applied to the
configurations # 1 and # 2, little improvement in the sidelobe level
performance couldAbe obtained, implying that these were near to the
best compromise in the first place. For configuration # 3 enforcement
of sidelobe constraints showed that for a feasible solution these
could be reduced only slightly to the 16.5 dB level but no further.
The resulting pattern is shown in Fig. 8.9. The peak sidelobe of Fig.
8.8 has been lowered and the central sidelobes raised by a small
amount. In other words, the unconstrained solution is itself close to
the final answer for the sub-array weights which provide the best
compromise difference pattern. Application of the constraints does

some "fine-tuning".
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The conclusions reached from the above observations are that the
application of excitation "matching with the 22 norm provides
near=optimum compromised difference mode solutions for a specified
sub-array geometry, array size and independently optimum set of sum
excitations. Such solutions should be obtained with the set of
sidelobe constraints applied, and the algorithm executed reapeatedly,
each time lowering the sidelobe level factor until a feasible solution
is no longer possible. The last feasible solution (set of sub-array
weights) is then the best solution of the simultaneous synthesis

problem.

With the first constraint angle set equal to the first null of the

independently optimum difference pattern (i.e. Y, = w?), the beamwidth

of the compromise pattern is approximately that1of the independently
optimum one. The above process then indicates what the lowest
sidelobe level can be under these beamwidth conditions. Alternatively,
the set of constraint angles can be shifted outward (if some beamwidth
increase in the compromise pattern is permitted) and the process
repeated to see whether lower sidelobes can be obtained. The same care
must be taken as was noted in Section 8.4.3. The constraint shifting

process was not applied to the examples given in this section.

There 1is no reason why the excitation matching may not be performed
with the independently optimum set of difference excitations {ag} kept
fixed and a compromised set of sum excitations obtained by adjustment
of the sub-array weights. This has not Dbeen considered, however,
since it is wunlikely that the difference performance will take

preference over that of the sum in practice.
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8.6 MINIMUM NORM SPACE FACTOR ZERO PLACEMENT
8.6.1 Motivation

This approach to simultaneous synthesis tries to take heed of the
advice that "in modern antenna work easy mathematics has yielded to
good physics ..... distributions should be designed by proper
placement of pattern=function zeros ..... which means highly

efficient" distributions [5].

Consider again the case of the monopulse array which has optimum sum
mode performance (zeros), but a two-module feed network which results
in the poor difference pattern performance shown in Fig. 3.8. This
difference space factor has minima but no visible =zeros. What has
happened is that the zeros of the space factor (which is a polynomial
and must therefore have a pre“determined number of zeros) have become
complex and occur in invisible space. In order to have an optimum
difference pattern as well, the excitations for the difference mode of
operation would have to be adjusted in order to restore its optimum
space factor zero positions. As has been noted repeatedly, this can
only be done through usé of independent feed networks. If
intermediate complexity feed networks are to be used, the fact that
the complete sets of optimum zero positions cannot be exactly attained
for both sum and difference modes simultaneously (due to the limited
number of degrees of freedom), must be accepted. The question then
is, for a specified feed network constraint, how can the optimum
" layout of zero positions be approached "as.closely as possible" under

the restircted circumstances. This question is taken up below and the

concept: of minimum norm space factor zero placement introduced.
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8.6.2 Formulation

The starting point of the technique to be discussed here 1is the
knowledge of the zeros of the independently optimum sum and difference
space factors. This information can be obtained from the techniques
presented in the previous chapters. For an array of 2N elements,
iet the desired sum space factor zeros be the set {wi},
i=1,2,3, «++ N-1, and those for the difference space factor be

{wQ}, i=1,2, s¢¢ (N-1). Let the set of known local element

i
excitations again be {a1,a2, XX aN}, and the sub~array weights

{g1,g2, e SQ}, Q being the total number of sub-arrays used.

From equations (9) and (10) of Chapter 2, the space factors are,

N
E(y) = 2 Y a_ cos[(en-1)yps2] (27)
s n=1 n

N
Eq(9) = 2j n§1 g,(n) ay sin[(2n-1)y/2] o (28)

The synthesis problem can now be stated as one of determining the set

of sub-array weights {gq} such that the system of equations,

S . .
AR 1=1,2, =++ (N-1) (29)
E(vd) = o i=1,2, ««+ (N-1) (30)
d+ i '

is satisfied in some sense. Note that the zeros ¢ = 1 for the sum
pattern, and ¢ = 0 for the difference pattern, need not be explicitly

considered since they always satisfy (29) and (30), respectively.
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8.6.3 Optimum Sum and Compromised Difference Pattern

Consider the situation for which the set of local excitations is set

‘equal to the set of independently optimal sum excitations. That is,

fa} = {a°) (3D

n n

n = 1,2’ eee N

For this case equations (29) are satisfied exactly. The synthesis
problem then becomes one of determining the set of sub-array weights
{gq} such that the system of equations (30) is satisfied in some
sense, Since only the relative weights are of interest, the Q-th
weight may be set equal to unity. Tﬁe system of equations to be

solved then becomes,

5 Q g,(n) ai sin[(2n—1)¢?/2]

i
I
2062
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This is a set of (N-1) equations for the (Q-1) unknowns {gq},

q =1,2, *++ (Q-1), since gq has been assumed to be unity.
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8.6.4 Optimum Difference and Compromised Sum Pattern

If the set of independently optimal difference excitations is taken as

the set of local excitations, that is

a} - {a%) (33)
n o= 1,2, e+ N

then equations (30) are satisfied exactly, and only the system (29)
need be enforced in some sense. Thus, with gy = 1 as before, the

system of equations,

N_KQ d S N s
I g (n)a cos[(en-1)v.72] = - Y a_ cos[(2n-1)y./2]
q n 1 i
n=1 n=N-K
Q
i = 1,2, o« (N-1)
must be solved for the sub-array weights {gq}, q=1,2, +=- (Q-1).

8.6.5 Application of Minimum Norm Space Factor Zero Placement

Only the case of optimum sum and compromised differene pattern
performance has been considered, as formulated in Section 8.6.3. The
algorithms and routines used for "solving" the system of equations
(32) through minimisation of one or other norm, without constraints,
are 1identical to those identified in the section on excitation
matching. Use of the 22 norm, with constraints applied, was effected
via the quadratic programming procedure also used with the excitation

matching method. For the present case of minimum norm space factor
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zero placement the £1 norm was also used with constraints. Though not
utilised in Section 8.5, the method of Conn et. al. [7,8,9] does

permit inclusion of constraints, and this has been used here.

For the present method, if sidelobe constraints are applied, an
additional constraint 1is needed. It 1is necessary to keep the
difference pattern primary lobe maximum fixed, lest the sub-=array
weights be adjusted in a manner which depresses this lobe along with

the sidelobes. The condition used here to accomplish this is,

where Vg is the position of the difference lobe maximum. Since this is
not known a priori, some iteration like that used in Section 4.1 is
required. The solutions obtained have been found to be insensitive to
small errors in the value of Yo used. The above condition is a linear

constraint,

]
-—

S d
a_ gq(n) fn(wo)

and is equivalent to normalising the pattern to its maximum value. A
number of statements consistent with the results obtained for a large

number of problems to which the method has been applied can be made:

(a) Application of the &, norm results in difference patterns with

higher sidelobes than is obtained with the other two norms.

(b) For the unconstrained solutions, whether the £1 or £2 norm
provides the most satisfying compromised difference pattern is

dependent on the sub-array configuration under consideration.
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(¢) For the constrained solutions'(finding the lowest sidelobe level
which permits a feasible solution for a prescribed set of
constraint angles) the solutions obtained using the 21 and 22
norms are almost identical. These are furthermore little
different from the constrained excitation matching results. This
consistency is indicative of the fact that the solutions found by

the two methods are indeed the "best compromises".

For the constrained minimum norm space factor zero placement method,
the constraints are applied in.the same manner as in Section 8.4 and
8.5, with the sidelobe constraints of the form of equation (16)
enforced at the zero positions {wg} of the independently optiﬁum
difference pattern, and at inpermediate angles. Keeping Y1 = ¢$
fixed ensures that a compromise difference pattern is obtained with a
beamwidth close to that of the independently optimum case. If
beamwidth broadening is acceptable, the constraint angles can be

shifted outward.

In order to facilitate comparison, an example identical to the third
one described in Section 8.5.3 is used, with {a?} and {w?} obtained
from Table 8.1. Fig. 8.10 depicts the resultant pattern when the s
norm 1is used, without constraints, .for the sub®array configuration
# 3. On the other hand, the unconstrained 21 solution is that shown
in Fig. 8.11. With the first constraint ‘angle equal to w?, and the
constrained 21 solution sought, the pattern in Fig. 8.12 is obtained.
This is of the same form as that of Fig. 8.10, except for a very
slight decrease in the level of the highest sidelobes. Application of
a constrained 22 norm solution alters Fig. 8.10 to a pattern that is
for all practical purposes identical to that in Fig. 8.11.
Finally,comparison of Fig. 8.11 and 8.9 completes £he illustration 6f

statement (c¢) given above.
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8.7 CONCLUSIONS

The increased complexity and generality of the simultaneous synthesis
of sum and difference patterns does not facilitate development of
"deterministic" procedures 1like those presented for indepéndent
synthesis in Chapters 4 to 7. Instead interactive numerical
procedures must be used; this appears to be a characteristic of all
multi=criteria optimisation methods reported in the mathematical

literature [6]. Some form of man-machine interaction is essential.

Under the restrictions of a two-module feed network the quadratic
programming formualtion of Section 8.4 can be used interactively for
studying simultaneous synthesis compromises and establishing bounds.
Essential to the method is the introduction in this work of a
composite objective function and separate subsets‘ of sidelobe
constraints for the sum and difference cases, lin order to avoid a

confliciting constraint set.

Improved simultaneous performance c¢an be achieved through use of
sub-arraying. Two different methods for simultaneous synthesis under
such conditions have been presented. These have been termed
excitation matching and minimum norm space factor zero placement, and
make maximum use of information provided by the independent synthesis
techniques. The advantage of these approaches 1is that the
independently optimum sum characteristics are kept fixed and the
sub-array weights adjusted, subject to a set of sidelobe constraints,
to find the "best compromise" difference performance. The fact that
both techniques, one working with the excitations and the other with
the space factor zeros, give virtually identical results, lends
support to the conclusion that these are the best compromises for a

given sub~array configuration.

Since no methods which address the simultaneous synthesis problem.in a
systematic manner have appeared in the literature the above procedures

satisfy a much needed requirement in this area.
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CHAPTER 9

GENERAL CONCLUSIONS

.A number of problems associated with- the synthesis of monopulse
antenna _arrays have been dealt with. The concept of array synthesis
by correct space factor zero placement has been reinforced. The
information presented permits the synthesis of high performance
monopulse arrays. The original contributions to array theory which

have been presented in this thesis are:

(a) The development of the Zolotarev polynomial synthesis technique
for difference patterns. This method can be used for the exact
determination of the optimum excitations and space factor zeros
for a pattern with maximum normalised boresight slope and minimum

beamwidth, for a given maximum sidelobe level.

(b) The formulation of a systematic direct method for synthesising
discrete arrays with difference patterns of specified maximum
sidelobe 1level and arbitrary sidelobe envelope taper. The
Zolotarev space factor zeros serve as the starting point for this

direct synthesis procedure,

(c) The development of a direct discrete array synthesis technique
for sum patterns with arbitrary sidelobe envelope taper. This is

a generalisation of the Villeneuve distribution.

(d) The application of constrained numerical optimisation to the
simultaneous synthesis of sum and difference patterns subject to

given feed network constraints.
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In addition a number of results which could not be located in the open

literature, have been presented. These include,

(a) Explicit expressions for certain performanc¢e indices of
symmetrically and anti-symmetrically excited linear arrays, and
the formulation of the problem for such arrays in a unified
manner which connects the approximation and optimisation theory

approaches to array synthesis.

(b) Information on the discrete difference distributions required to

provide: (without pattern constraints) either maximum  possible
max
d

and their comparison to the continuous distribution case.

directivity D , Oor maximum possible normalised boresight slope

KO,
(These results also provide the standards against which to
measure array performance and are not readily available

elsewhere).

The above contributions must now be placed in the context of the
overall monopulse array synﬁhesis problem. Such a design problem is a
multi—objective one where, depending on the specific application,

certain performance indices may be more important than others.

Consider first the situation in which the sum mode performance must
take preference over the difference, as has often been the case in the
past. If sum mode directivity is to be maximised at all costs, then a
uniform set of excitations should be used. Usually the sidelobe
levels for this distribution are too high. The alternative, for the
narrowest beamwidth obtaihable under a given maximum sidelobe
specification, is the Dolph-Chebyshev distribution developed in 1946.
For a slightly increased directivity, with the farther=out sidelobes
tapering off from the first one which is at the specified maximum
level, the Villeneuve distribution can be used. This was first
published - by Villeneuve in 1984, and uses as its starting point the

zeros of an associated Dolph=Chebyshev space factor.
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In the ever-increasing number of cases where not only the allowed
level of the maximum (first) sidelobe level but also the more remote
sidelobe 1levels or simply the sidelobe envelope taper, 1is a
specification, the generalised Villeneuve distribution developed in
Chapter 7 of this thesis can be applied. Further reasons for using

this distribution are given in that chapter.

Should the difference performance take preference over the sum, a
different path has to be followed. If difference directivity is to be
maximised at all costs, the methods developed in Section 4.,1.2 can be
used. On the other hand, the methods presented in Section 4.1.3 are
applicable if the maximum possible normalised boresight slope is
desired irrespective of the sidelobe levels obtruded. 1In the majority
of designs though, sidelobe levels are important. The synthesis of
difference distributions providing optimum slope and - beamwidth
characteristics subject to a maximum allowablé sidelobe 1level
constraint 1is possible via the Zolotarev polynomial procedure
developed for the first time in Chapters 4 and 5 of this thesis. This
is the difference mode analogue of the Dolph-Chebyshev distribution.
For a number of useful céses the required element excitations can be
obtained directly from the tableé published in Appendix II.
Alternatively the modified Zolotarev distributions with arbitrary
sidelobe envelope tapers can be applied. The details of the latter
approach are worked out in Chapter 6 and its significant advantages
indicated. This technique utilises the Zolotarev zeros as a point 6f

departure.

If there are no restrictions on the complexity of the array feed
network to be used, then the sum and difference synthesis can be
considered separately, as outlined above, and independent networks
used to set up the desired excitation sets for each mode of operation.
Should this not be the case, the methods of simultaneous synthesis
which are- the subject of Chapter 8, can be followed. These provide
the array designer with interactive procedures for obtaining good
compromises between sum and difference performance, given the feed

network constraints.
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For some time now a set of exact synthesis techniques for monopulse
arrays of discrete elements, as complete as that which exists for
continuous line-'-\sour‘cés, has not been available. With the suite of
new techniques presented in Chapters 4 to 7 this is no longer the
case. These not only complete an aspect important in antenna theory,
but, together with the expressions for computing array performance
indices given in Chapter 2, and the numerical simultaneous synthesis
procedures developed in Chapter 8, have been implemented as a set of
computer codes which form a very useful computer-aided design tool at

the synthesis stage of monopulse antenna development.
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APPENDIX I
APPROXIMATION AND OPTIMISATION
1 INTRODUCTION

The mathematical theories of approximation and optimisation are both
well=established in the "literature. However, a summary of some

pertinent concepts is given here in the interests of completeness.

2 THE CONCEPT OF A NORM

Essential to approximation and optimisation is the concept of a norm.
The definition of a norm, which has to satisfy a number of properties
to be wvalid [1, p. 1], is a measure of the "closeness" of two

functions or vectors. In any situation there may be many poséible
definitions for a norm. However, there are a number of standard types
which have been adopted (each for some good reason) and which need to

be discussed.
Consider two functions f(x) and g(x) defined over the interval [a,b].
' Let the residual r(x) = f(x) - g(x), and let |r(x)|| denote the norm of

r(x). Then the following norms can be defined:

The least p-th norm (Ep norm),

o

r O = lr(x)|P

D ———

Its application in the microwave circuit optimisation context is

described by Bandler [2].
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If p = 2, the above becomes what is known as the least squares norm

(%5 norm).
If p =1, [[r(x)] is called the % norm.

If p » », the above becomes

e = max |r ()|
a <x<b

which is referred to as the maximum; uniform, %, or Chebyshev norm.

The single vertical lines denote the usual modulus operation.

The &, norm thus measures the maximum deviation that occurs between
the two functions f(x) and g(x). On the other hand, 2, estimates the
total deviation over the whole interval. A small value of [r(x)|,
does not guarantee that the deviation is not very large at certain
isolated points. As p increases, lp approaches the Chebyshev norm
more closely. The particular norm to be used depends on .the

application.

Although the above definitions have been given for the space of
continuous functions of a single variable, they can of course be
generalised to cases for which there are many independent variables.
Such norms may also be defined for n-dimensional vector spaces and

matrices.

Consider an n-dimensional vector space with elements (column vectors)

denoted by X or [X], with

T
[(x1 = [x1 Xy oo xn]

where the transpose is used simply for economy of space.
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Functions of the form F(X) can be defined on this vector space. Vector

norms may then be defined as follows [7].

Let X and Y be elements of the vector space, and define the residual

vector R=%- ?, so that

wh s = s = s e
ere r Xl yl.

The norms measuring the "closeness" of the vector X and Y are then

1
N p
(a) Bl = | 2 el
1=1.
1
_ 0 2
= 2
(b) "RHZ = .21 lril
1=
~ n
() Rl = 1
1=
(d) IRl, = max e,
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3 APPROXIMATION THEORY

The subject of approximate representation of functions in terms of
polynomials derives from the work of the Russian mathematician
Chebyshev (1821-1894) and his pupils Korkine, Zolotarev and Markoff.
Since that time it has become the 1independent discipline of
"approximation theory" [1,3] or "the constructive theory of functions"
- [a]. 'The result has been the derivation of many different special
types of polynomials with properties of tremendous significance in the
solution of engineering problems. The modern theory is no longer
limited to the consideration of only polynomials as the approximating

functions.

The fundamental theorem of algebra [4, p. 9] proves that every

polynomial has a zero. It then follows that
(i) A polynomial pn(x) of degree n has at most n zeros.

(ii) A polynomial pn(x) of degree n is determined uniquely by its

value at n+1 distinct points, Xg,Xq,X5, *** X,.

Two further theorems which will be quoted without proof are those due

to Weierstrass and Borel respectively [5, p. 18]:
(i) If f(x) is a function defined on x €[a,b], then given ¢ > 0,
there is a polynomial p,(x) such that Ipn(x) = £(x)] < e for

x €la,b].

(ii) If n is a given integer, there is a unique polynomial pn(x) of

degree n or less such that
Ipn(x) = £Glw < lla, (1) = £GO

for every polynomial q,(x) of degree n or less.
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The existence of a best (in the & norm sense) approximating

polynomial having been established, it is natural to ask how to find
this pn(x) in any given case. There is unfortunately no known closed
form procedure which, for general f(x) and interval [a,b], can be used
to find the best approximaing polynomial p,(x) in a finite number of

steps.

The best approximating polynomial pn(x) is that which minimises the
maximum norm (and thus the maximum value of the difference

lpn(x) = f(x)|). It is therefore referred to as the minimax problem.

A particular but important case, that for which f(x) = 0 and
a,b] = [-1,1], 1is dealt with in a theorem due to Chebyshev
{5, p. 28]. It proves that for this special case the best

approximating polynomial is the Chebyshev polynomial Tn(x). The use
of this polynomial is central to the synthesis of optimum sum patterns
of linear arrays, and is described in Section 3.2.2.. A second
particular case for which analytical solutions have been obtained is
that of the Zolotarev polynomial function, which forms the basis of

the synthesis procedure developed in Chapter 4.

Numerical methods exist for finding p,(x) for arbitrary f(x) if the
minimax condition is imposed at only a finite number of points at a
time. The earliest approaches were the Remez exchange algorithms,
details of which are given by Jones [5, p. 19] and Rivlin [1, p. 136].
Such exchange algorithms have largely been superseded by reformulation
of the minimax problem as a 1linear programming one. The latter
technique is mentioned 1later in this appendix. A Remez exchange

algorithm application to the difference pattern problem is referenced

in Section 3.3.3.
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Yy OPTIMISATION THEORY

Optimisation and approximation theory are intimately related. The
subject of optimisation covers a wider range of problems and
approaches, however, and could be considered to contain that of
approximation entirely. This 1s not usually done though, and this

practice has been adhered to in this summary.

In Chapter 8 consistent use is made of  optimisation algorithms.
Wherever possible the advice of Gill, et. al. [7] has been followed.
They correctly maintain that because of the steady progress in
optimisation methods, anyone who wishes to solve an applied
optimisation problem should not start from scratch and devise his own
optimisation method or write his own implementation, but should
formulate the problem at hand in such a way that selected routines
from high~quality mathematical software 1libraries can be used.
However, optimisation codes cannot be used effectively if a
"black~box" approach is adopted. An understanding of thé essence of a
particular technique used is necessary in order to apply and adapt
existing software properly. This and a knowledge of a broad
classification of optimisation problems in order of increasing
complexity is also useful to prevent the use of a method that is of a
more general nature than 1is in fact necessary, since increased
complexity also means decreased reliability (relatively speaking) and

longer execution times [7. Chap. 8).

The literature on optimisation is voluminous indeed. The sources used
for the applications in Chapter 8 were the texts by Gill, et. al. [7], .
Walsh [8] and Noble (91, . the papers by Conn, et. al.. [10,11] and
Barrodale et. al. [12,13], and the NAG 1library of mathematical
software [16].
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The optimisation problem is one of minimising or maximising a given
function, F(X), where X = [xq x5 oo xn]T. F(X) is called the
objective function and the column véctor X represents a set of
independent parameters (variables) of which F is a function. For most
physical problems such minimisation (maximisation) must be done
subject to a set of constraints imposed on X, usually for reasons of a
practical nature [14,15]. The existence or absence of such
constraints determines whether a problem is of the constrained or
unconstrained type. The methods used in Section 4.1 are of the
unconstrained variety. A flow chart giving an overall arrangement, in
order of increasing complexity, of the subject of optimisation from a
user's point of view is shown in Fig. 1. It should be pointed out
that this is not a standard classification, but rather one based on
the experience of the present author in applying optimisation theory

to array synthesis.

Problems of the type (1) and (2) are called Linear Programming
problems, while (3) and (l) are Qﬁadratic Programming prdblems. Many
algorithms exist for solving such problems, most of them based on what
is known as the simplex method, or variations thereof [7,8]. For the
linear and quadratic programming problems formulated in Chapter 8 use
has been made of the routine EOUNAF available from the Numerical
Algorithms Group (NAG) library of mathematical software [16]. For the
linear programming problem the objective function is of the form
F(X) = CTX, where C! is a constant vector, equal to VF(X), the
gradient of F(X). The gradient of any function F(X) is of course

defined as,

aF/ax1 -1
) 3F/3x2
VF(X) = .
3F/8xn
L _
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The Hessian matrix of a function F(i), denoted by [G] say, is defined
as [7])

32F/3x2  eeer 3%F/3x.5x |
1 1""'n
g1 & : :
2 2
L_B F/anax1 coes ) F/Bxn _J

If the Hessian matrix of F is constant, then F is a quadratic function

which can be written in the form (quadratic programﬁing problem),

F(X) = % XT[GIX + CX

Specification of the (constant) quantities [G] and C completely
defines F(X).

Problems of the type (5) occur in Section 4.1 and have been solved
numerically using the NAG routine EOUJAF, which is based on what are

referred to as quasi-Newton methods [7, pp. 116-127].
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(1. F(X) Linear in X and unconstrained
Y
(2). F(X) Linear in X with linear constraints
v
(3). F(X¥) Quadratic in X and unconstrained
Y
(W), F(?) Quadratic in ¥ with linear constraints
Y
(5). F(X) Is of general non-linear form but
unconstrained
4
(6). F(X) Is of general non-linear form with
simple bounds on X
Y
(7). F(X) Is of general non-linear form with
' linear constraints
Y
F(i) Is linear, quadratic or general

(8).

non-linear form with non=linear
constraints

FIGURE 1 : Flowchart of optimisation problems in order of

complexity.

increasing
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APPENDIX II

TABLES OF DESIGN DATA FOR ZOLOTAREV POLYNOMIAL ARRAYS



TABLE II.1 : Jacobi modulus (k) values for various numbers of elements (2N) and sidelobe ratios (SLR).

SLR 2N 10 20 30 4o 50 60

15 dB .998745828908 .99858677T7UTUS .9985589883166 . 9985495421102 .9985452430448 . 9985429332424
20 dB . 9996757515225 . 9996208784026 .9996122308734 .9996993496527 .9996080480023 .9996073511207
25 dB .9999156095527| 0.9998953160856 . 9998898518608 9998880307364 . 9998872079156 . 9998867673677
30 dB .9999770191198 .9999710417524 .9999701140527 . 9999696784784 .999969””802é6 .9999693246752
35 dB .9999939866708| 0.9999919161819 .99999149232M .9999913516146 .999991288133 .9999912541684
40 dB .9999982703182 . 99999637147 .9999974904u27 .9999974418081 . 9999974198777 .9999974081473
50 dB .999999871 4254 .9999998067784 . 9999997935154 . 9999997864033 . 9999997831988 .9999997814853
60 dB .9999999911282 .999999829653 .999999981613 . 9999999811682 . 9999999809682 . 999999980861 4

662



260

TABLE II.2 : Sidelobe parameter r for various numbers of elements (2N)
and sidelobe ratios (SLR).

2N , .
SLR 10 20 30 4o 50 60

15 dB 2.90164 2.84979 2.84133 2.83849 2.83721 2.83652

20 dB 3.48912 3.42122 3.41143 3.40821 3.450677 3. 40600

25 dB 4.0737 3.98012 3.95802 3.95090 3.94772 3.94603

30 dB 4.63863 4,53823 4.52453 4.51825 4,51496 4,51321

35 dB 5.22089 | 5.09238 | 5.07019 | 5.06306 | 5.05989 | 5.05820

40 dB | 5.76203 | 5.62656 | 5.60040 | 5.59207 | 5.58836 | 5.58639

50 dB 6.89084 6.71394 | 6.68511 6.67041 6.66394 6.66052

60 dB 8.05199 | 7.76867 | 7.73549 | 7.72511 7.72052 [ 7.71809
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TABLES I1I.3 - 1II.10

Element Excitations For The Case d > 0.5 A

For a Range of Array Sizes (2N) and Sidelobe Ratios (SLR)



TABLE II.3
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asg

SIDELOBE RATIO 15 dB
2N 10 20 30 40 50 60
a; | 0.286771 | 0.088911 | 0.042033 | 0.024339 | 0.015841 | 0.011122
a, | 0.763587 | 0.259548 | 0.124625 | 0.072544 | 0.047328 | 0.033271
a; | 0.993677 | 0.409407 | 0.202862 | 0.119340 | 0.078231 | 0.055137
ay | 0.934697 | 0.527139 | 0.274071 | 0.163828 | 0.108171 | 0.076534
ag | 1.000000 | 0.604817 | 0.335906 | 0.205169 | 0.136787 | 0.097282
ag 0.638685 | 0.386457 | 0.242609 | 0.163737 | 0.117209
aq 0.629395 -| 0.424331 | 0.275490 | 0.188708 | 0.136150
ag 0.581715 | 0.448708 | 0.303274 | 0.211421 | 0.153955
ag 0.503762 | 0.459362 | 0.325551 | 0.231629 | 0.17048M
ayg 1.000000 | 0.456656 | 0.342048 | 0.249132 | 0.185613
ay 0.441502 | 0.352636 | 0.263768 | 0.199232
aj; 0.415299 | 0.357326 | 0.275422 | 0.211249
a5 0.379841 | 0.356271 | 0.284028 | 0.221589
ayy 0.337212 | 0.349753 | 0.289564 | 0.230197
ajs 1.000000 | 0.338172 | 0.292055 | 0.237035
arg 0.322036 | 0.291573 | 0.242084
ayq 0.301939 | 0.288230 | 0.24534k
aig 0.278546 | 0.282182 | 0.2146835
ajq 0.252566 | 0.273617 { 0.246593
250 1.000000 | 0.262758 | 0.244673
a1 0.249855 | 0.241145
355 0.235180 | 0.236094
P 0.219022 | 0.229620
a5 0.201682 | 0.221835
a5 1.000000 | 0.212860
256 0.202828
ayy 0.191876
asg 0.180149
a5q 0.167794
1.000000
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TABLE II.4
SIDELOBE RATIO 20 dB

oN 10 20 30 40 50 60
a; | 0.313412 | 0.154498 | 0.085569 | 0.050670 { 0.033413 | 0.023662
a, | 0.812779 | 0.448090 | 0.252986 | 0.150784 | 0.099727 | 0.070734
ay | 1.000000 | 0.697575 | 0.409466 | 0.247267 | 0.164513 | 0.117058
ay 0.855364 0.880222 0.548441 0.337828 0.226789 0.162147
ag | 0.649432 | 0.982183 | 0.664376 | 0.420377 | 0.285626 | 0.205530
ag 1.000000 | 0.753082 | 0.493083 | 0.340165 | 0.246765
aq 0.940499 | 0.811927 | 0.554436 | 0.389638 | 0.285437
ag 0.819163 | 0.839951 | 0.603290 | 0.433382 | 0.321170
aq 0.657312 | 0.837860 | 0.638897 | 0.470850 | 0.353630
A 0.894156 | 0.807917 | 0.660916 | 0.501623 | 0.382529
a 0.753730 | 0.669421 | 0.525416 | 0.407628
2y, 0.679962 | 0.664880 | 0.542080 | 0.428742
ays 0.591983 | 0.648131 | 0.551606 | 0.u445742
ajy 0.495494 | 0.620337 | 0.554118 | 0.458553
ajs 1.000000 | 0.582934 | 0.549869 | 0.467156
aig 0.537572 | 0.539230 | 0.471589
ay 0.486048 | 0.522684 | 0.471941
a,g 0.430233 | 0.500804 | 0.46835U
a;g 0.372009 | 0.u7424Y4 | 0.461018
a0 1.000000 | 0.443718 | 0.450165
a,; 0.409985 | 0.436067
a5 0.373828 | 0.419029
351 0.336036 | 0.399386
asy, 0.297388 | 0.377495
a,c 1.000000 | 0.353727
206 0.328466
asy 0.302097
a8 0.275005
a,g 0.247565
1.000000
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TABLE II.5
SIDELOBE RATIO 25 dB
2N 10 20 30 40 50 60
31 0.339635 0.168346 0.110710 0.082520 0.065381 0.046697
as 0.858518 { 0.485100 0.326403 0.245187 0.194947 | 0.139501
as 1.000000 0.745324 0.525330 0.400826 0.320960 0.230547
ay | 0.778931 0.921637 0.697654 0.545067 0.441149 | 0.318698
ag 0.451870 1.000000 0.835431 0.673992 0.553396 0. 402866
ag 0.981285 | 0.933134 | 0.784289 | 0.655779 | 0.482035
ag 0.880081 | 0.987975 0.873373 0.746625 0.555275
ag 0.72111 1.000000 0.939477 0.824550 | "0.621758
ag 0.534100 | 0.971956 | 0.981695 | 0.888485 | 0.680774
a0 0.536199 | 0.908946 | 1.000000 | 0.937698 | 0.731739
a4 0.817912 | 0.995212 | 0.971812 | 0.774204
ars 0.706999 | 0.968930 | 0.990796 | 0.807863
a3 VO.58U861 0.923438 0.994964 0.832551
aqy 0.459970 | 0.861576 | 0.984953 | 0.848251
aye 0.683816 | 0.786594 | 0.961698 | 0.855082
ayg 0.701998 | 0.926395 | 0.85330Y
ayg 0.611383 | 0.880460 | 0.8143299
ag 0.518280 | 0.825484 | 0.825568
2419 0.426007 0.763183 0.800717
a0 0.842952 | 0.695347 | 0.7694%0
2, 0.623784 | 0.732506
a5, 0.550277 | 0.690740
a,3 0.476533 | 0.645009
aoy 0.404138 | 0.596201
assg 1.000000 0.545208
2,6 0.492912
asg 0.440164
a g 0.387773
a9 0336492
1.000000
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TABLE II.6
SIDELOBE RATIO 30 dB

2N 10 20 30 10 50 60

a, | 0.365699 | 0.180205 | 0.119517.{ 0.089238 | 0.070972 { 0.058999
a, | 0.902867 | 0.515913 | 0.351337 | 0.264711 | 0.211399 | 0.176126
a3 |-1.000000 | 0.782293 | 0.562134 | 0.431320 | 0.347316 | 0.290654
ay | 0.714435 | 0.947927 | 0.739882 | 0.583624 | 0.475871 | 0.400911
ag | 0.335589 | 1.000000 | 0.875325 | 0.716857 | 0.594431 | 0.505316
ag 0.945505 | 0.962682 | 0.827142 | 0.700663 | 0.602406
aq 0.808179 | 1.000000 | 0.911661 | 0.792599 | 0.690873
ag 0.622164 | 0.989136 | 0.968752 | 0.868692 | 0.769581
aq 0.424087 | 0.935380 | 0.997959 | 0.927849 | 0.837597
210 0.329244 | 0.846766 | 1.000000 { 0.969459 | 0.894199
as 0.733176 | 0.976690 | 0.993394 | 0.938890
aqs 0.605313 | 0.930796 { 1.000000 | 0.971405
ay3 0.473685 | 0.865852 | 0.990071 | 0.991711
ayy 0.347695 | 0.785942 | 0.964806 | 1.000000
ars 0.394442 | 0.695464 | 0.925754 | 0.996678
a6 0.598892 | 0.874755 | 0.982352
ayq 0.500542 | 0.813864 | 0.957809
ag 0.404374 | 0.745277 | 0.923993
asq 0.313812 | 0.671253 | 0.881979
a5 0.472085 | 0.594041 | 0.832944
a, 0.515804 | 0.778135
ans 0.438560 | 0.718843
as3 0.364118 | 0.656369
aoy 0.294042 | 0.591994
a,e 0.552337 | 0.526954
a6 0.1462412
a57 0.399438
arg 0.338990
asrg 0.281896
a3q 0.635467 -
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TABLE II.7

SIDELOBE RATIO 35 dB

2N 10 20 30 ho 50 60

a, 0.392702 0.192715 0.127198 0.094930 0.075728 0.062991
a, 0.94774LY 0.548216 0.372861 0.281151 0.225337 0.187910
az 1.000000 0.820554 0.593184 0.U56650 0.369L65 0.309666
ay 0.657489 | 0.974602 0.774034 0.614936 0.504674 0.426235
ag 0.258062 1.000000 0.905069 0.750449 0.627833 0.535718
ag 0.911427 | 0.980616 | 0.858853 0.736226 { 0.636387
ag 0.7u42801 1.000000 0.937235 0.827644 0.726721
ag 0.537397 0.967322 0.98u224 0.900443 0.805446
ag 0.336909 0.890722 1.000000 0.953597 0.871555
aqg 0.209751 0.781249 0.986217 0.986706 0.924332
ay 0.651497 0.945833 1.000000 0.963359
aqo 0.514182 0.882870 0.994297 0.988521
ay3 0.380840 0.802119 0.970957 1.QOOOOO
aqy 0.260797 0.708817 0.931805 0.998258
a5 0.235806 0.608312 0.8790u44 0.984021
arg 0.505749 | 0.815154 | 0.958246
a7 0.405789 0.742788 0.922091
ag 0.312387 0.664664 0.876879
219 0.228629 0.583459 0.824053
as 0.273308 0.501714 0.765135
asg 0.421752 0.701686
ass 0.345602 | 0.635262
an3 0.274951 0.567374
asy 0.211107 0.499453
asg 0.314613 0.432815
arg 0.368638
257 0.307937
asg 0.251551
asg 0.20013Y
azg 0.357628
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TABLE II.8
SIDELOBE RATIO 40 dB
2N 10 20 30 40 50 60
a, 0.417487 | 0.205279 | 0.135117 | 0.100615 | 0.080144 | 0.066594
a, | 0.988039 | 0.580418 | 0.394990 | 0.297527 | 0.238241 | 0.198524
a3 | 1.000000 | 0.858099 | 0.624931 | 0.481756 | 0.389853 | 0.326710
ay | 0.612497 | 1.000000 | 0.808659 | 0.645721 | 0.530943 [ 0.448772
ag | 0.209022 | 0.999331 | 0.934884 | 0.783081 | 0.657886 | 0.562496
ag 0.879553 | 0.998333 | 0.889102 | 0.767607 | 0.665892
as 0.685015 | 1.000000 | 0.960897 | 0.857694 | 0.757250
ag 0.467050 | 0.946607 | 0.997534 | 0.926u472 | 0.835178
aq 0.270179 | 0.849393 | 1.000000 | 0.973053 | 0.898634
asg 0.139485 | 0.722438 | 0.971044 | 0.997339 | 0.946948
aq 0.580780 { 0.914889 | 1.000000 { 0.979831
ay, 0.438606 | 0.836871 | 0.982408 | 0.997366
a3 0.3077u4 | 0.743012 | 0.946551 | 1.000000
ayy 0.196654 | 0.639583 | 0.894920 | 0.988513
ays 0.146191 | 0.532672 | 0.830377 | 0.963986
arg 0.427814 | 0.756013 | 0.927753
ayq 0.329683 | 0.675009 | 0.881357
arg 0.24188Y4 | 0.590498 | 0.826492
ayq 0.166842 | 0.505434 | 0.764948
asg 0.163486 | 0.442u85 | 0.698551
2o 0.343947 | 0.629116
ass 0.271678 | 0.558385
353 0.207062 | 0.1487990
a,), 0.150999 | 0.419407
a5s 0.184205 | 0.353927
asg 0.292630
a5y 0.236371
arg 0.185774
3, 0.141234
0.206433
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TABLE II.9
SIDELOBE RATIO 50 dB
2N 10 20 30 40 50 60 -
a, 0.437956 | 0.221055 | 0.147512 | 0.110462 | 0.088236 | 0.073437
a, 1.000000 | 0.617556 | 0.428836 | 0.325624 | 0.261772 | 0.218618
aj ~-0.938196 0.890985 0.670935 0.523946 { 0.u4266U43 0.358781
ay 0.505867 | 1.000000 | 0.853582 | 0.695635 | 0.577545 { 0.490768
ag 0.137377 | 0.948520 | 0.964380 { 0.832907 | 0.709852 | 0.611699
ag 0.779155 | 1.000000 | 0.930519 | 0.819827 { 0.719065
aq 0.554790 | 0.965968 | 0.986062 { 0.90u4784 { 0.810802
ag 0.336446 | 0.875129 | 1.000000 | 0.963184 | 0.885356
aq 0.165974 | 0.745125 | 0.975461 | 0.994663 | 0.941719
asg 0.062106 | 0.595403 | 0.917806 | 1.000000 { 0.979449
aqy 0.444305 | 0.834036 | 0.981016 | 0.998661
ays 0.306720 | 0.732100 | 0.940425 | 1.000000
aq3 0.192622 | 0.620178 | 0.881639 | 0.984600
ayy 0.106642 | 0.506016 | 0.808551 | 0.954015
as 0.056262 | 0.396360 | 0.725301 | 0.910146
ayg 0.296552 | 0.636042 | 0.85515U
aq7 0.210299 | 0.544736 | 0.791366
asg 0.139620 | 0.454962 | 0.721185
a1g 0.084963 | 0.369772 | 0.646997
asg 0.058742 | 0.291595 | 0.571089
asy 0.222179 | 0.495575
a5, 0.162587 | 0.422334
ap3 0.113230 | 0.352964
ay 0.073940 | 0.288750
ass 0.063470 | 0.230647
asg 0.179283
asy 0.134971
arsg 0.097732
ayg 0.067335
0.069152
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TABLE II.10

SIDELOBE RATIO 60 dB

2N 10 20 30 40 50 60

a, | 0.451343 | 0.236727 | 0.160088 | 0.119601 | 0.095390 { 0.079455
a, | 1.000000 | 0.654020 | 0.462948 | 0.351497 | 0.282443 | 0.236211
a; | 0.880774 | 0.922515 | 0.716649 | 0.562140 | 0.458530 | 0.386595
ay | 0.427974 | 1.000000 | 0.897156 | 0.739508 | 0.617050 | 0.526645
as | 0.098065 | 0.903892 0.991695 | 0.874542 | 0.752416 | 0.652816
ag 0.696728 | 1.000000 | 0.961849 | 0.860351 | 0.762111
aq 0.456855 | 0.933232 | 1.000000 | 0.938091 | 0.852196
ag 0.248876 | 0.810954 | 0.991403 | 0.984490 | 0.921469
ag 0.106199 | 0.656933 | 0.941800 | 1.000000 | 0.969103
arq 0.030795 | 0.494730 | 0.859444 | 0.986558 | 0.995049
a 0.343988 | 0.754103 | 0.947375 | 1.000000
a5 0.218058 | 0.635989 | 0.886652 | 0.985328
a;s 0.123237 | 0.514769 | 0.809257 | 0.952986
ay 0.059473 | 0.398739 | 0.720373 |. 0.905397
a1s 0.023790 | 0.294264 | 0.625160 | 0.845317
arg 0.205493 | 0.528450 | 0.775699
ayq 0.134370 | 0.434491 | 0.699554
arg 0.080874 | 0.346760 | 0.619821
ayg 0.043442 | 0.267856 | 0.539250
a5 0.022556 | 0.199458 | 0.460302
a5 0.142362 | 0.385076
as5 0.096575 | 0.315258
253 0.061450 | 0.252095
a, 0.035852 | 0.196396
255 0.023011 | 0.1u8551
a5 0.108576
857 0.076163
asg 0.050745
a5 0.031567
asg 0.024181
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TABLES II.11 = 1II.18

Performances Indices For Array Excitations Given In Preceding Tables,

For The Specific Case Of d = 0.5 A



271

TABLE IT.11

SIDELOBE RATIO 15 dB d = 0.5 A
2N 10 20 30 40 50 60
K .966008 | 1.305248 | 1.535339 | 1.705893 | 1.839143 | 1.946896
K, L9572 0.9617 0.9392 0.9113 0.8831 0.8563
Dg .0690 11.4282 | 15.8951 19.6573 | 22.8664 | 25.6352
ny .9379 0.8897 | 0.8261 0.7666 0.7136 0.6667
Ny | 0-6069 0.5714 | 0.5298 0.4914 0.4573 0.4273

TABLE II.12

SIDELOBE RATIO 20 dB d = 0.5\
2N 10 20 30 40 50 60
K .901639 | 1.246686 | 1.507992 | 1.719668 1.898365 2.053214
K, .8934 0.9186 0.922U 0.9186 - | 0.9116 0.9030
DY .9065 11.8124 | 17.4211 | 22,7165 | 27.7172 | 32.4448
Ny .9128 0.9196 | 0.9054 0.8859 0.8650 0.8439
n 0.5906 | 0.5807 0.5679 0.5543 0.5407

ds

.5907
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TABLE II.13

SIDELOBE RATIO 25 dB d = 0.5 A
2N 10 20 30 UQ 50 60
K .839346 ‘1.16OU8H 1.417219 1.631804 1.818415 1.984772
Kr 8317 0.8551 0.8669 0.8717 0.8732 0.8729
DZ‘ .6239 11,4099 | 17.1698 | 22.8330 | 28.3938 | 33.8522
n, .8691 0.8883 | 0.8924 0.8905 0.8861 0.8805
nds .56214 0.5705 0.5723 0.5708 0.5679 0.56u42

TABLE II.14

SIDELOBE RATIO 30 dB d~= 0.5 A
2N 10 20 30 40 50 60
K . 788534 1.078081 1.315812 1.518501 1.697187 1.858222
Kr .7813 0.7943 0.8049 0.8112 0.8150. 0.8173
Dg‘ .364 10.8469 | 16.3906 | 21.9305 | 27.4489 | 32.9405
n, .8290 0.8444 | 0.8519 0.8553 0.8566 0.8568
nds .53614 0.5423 0.5464 0.5483 0.5490 0.5490




273

TABLE II.15

ds

SIDELOBE RATIO 35 dB - d = 0.5 )
2N 10 20 30 10 50 60
K .TUS736 | 1.007017 | 1.227817 | 1.417024 | 1.584u86 | 1.736057
K, . 7389 0.7420 0.7511 0.7570 0.7609 0.7635
Dg L1377 10.3148 | 15.5966 | 20.8957 26.1963v 31.4932
nd .7939 0.8030 0.8106 | 0.8149 0.8175 0.8191
Ny, | 0-5138 0.5157 | 0.5199 0.5224 0.5239 0.5249

TABLE I1.16

SIDELOBE RATIO 40 dB d = 0.5 A

2N 10 20 30 4o 50 60
| K .713184 0.948482 1.153562 1.330411 1.487399 1.629760

K., . 7067 0.6989 0.7056 0.7107 0.7142 0.7168
Dz .9628 9.8629 14,8940 | 19.9529 | 25.0214 | 30.0933
nd . 7669 0.7678 0.7741 0.7782 0.7808 0.7827
n L4963 0.4931 | 0.4965 0.4988 0.5004 0.5016
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TABLE II.17

ds

SIDELOBE RATIO 50 dB d = 0.5 A
2N 10 20 30 40 50, 60
K .661928 | 0.853326 | 1.030735 | 1.186612 | 1.325605 | 1.451948
K, .6559 0.6287 0.6305 0.6339 0.6365 0.6386
DE .6853 9.1155 13.7037 | 18.3394 | 22.9900 | 27.6478
ny . 7240 0.7097 | 0.7122 0.7152 0.7175 0.7191
nyg | 0-4685 0.14558 | 0.14568 0.4585 0.4598 0.14608

TABLE II.18

SIDELOBE RATIO 60 dB d = 0.5 A
2N 10 20 30 10 50 60
K .625489 | 0.783315 | 0.939229 | 1.077816 | 1.202291 | 1.315836
K., .6198 0.5772 0.5745 0.5758 0.5773 0.5787
DY . 4866 8.5580 12.8019 | 17.0955 | 21.4094 | 25.7335
ny .6933 0.6663 | 0.6654 0.6667 0.6681 0.6693
n . 1y87 0.4279 | 0.4267 0.4274 0.4282 0.14289
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TABLES II.19 = 1II.26

X2axis Roots Of The Zolotarev Polynomials Associated With Arrays
Of The Element Numbers And Sidelobe Ratios Indicated.

(Relevant To Arrays Of Any Spacing d).
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TABLE II.19

SIDELOBE RATIO 15 dB

2N 10 20 30 40 50 60
1 {.4944800926(.2463541538.1627843452].1213931307|.0967451514].0804039363
2 {.6970807298{.3628911917].2415411506].1805661204| .1440633759].1198009606
3 [.8830839856(.4982936582|.3360051735|.2522785749].2016752270|.1678870871
4 |.9866127824).6281019285|.4314946800( .3259812230{.2613213951{.2178648531
5 .7T442488985].5239625069| .39903048431.3210374668|.2681666524
6 .8420LTU1U3].6113508074].4702361629|.3800108077{.3181801680
7 .9181786480(.6922167287|.5388303366 .4377574656|.3675639179
8 .9702486146|.7654016869|.6042147132].4939194394].4160783502
9 .9966778595].8299299665 . 6658795253{ .5481987087| . 4635306008
10 .8849743441(.7233730517.6003316878|.5097528621
11 .9298450035( . 7762892329 . 6500781940 .5545928312
12 .9639872764 | .8242626517{.6972163882(.5979091426
13 .9869826548 .8669667796{ .T415404318} .6395690803
14 .9985506928].9041137363(.7828594716] .67944T74185
15 .935U4547442].,8209973051] . 7174258543
16 .9607808644 1 .85579240511.7533927654
17 .9799237926( .8870981292{ .7872431530
18 .9927565919( .9147830203 .8188786893
19 .9991942885(.9387311408] .8482078250
20 .9588424055| . 8751459287
21 .9750328926| .8996154411
22 .9872351172].9215460327
23 .9953982596| . 9408TUT5T2
24 .9994902224] .9575461959
25 .9715125893
26 .9827339538
27 .9911781803
28 .9968211153
29 .9996484893
X, | 0.025352 0.012197 0.008012 0.005963 0.00L748 0.003944
X, | 0.224677 0.108808 0.071555 0.053274 0.042426 0.035246
X 0. 451854 0.223703 0.110076 0.087712 0.072890

0.147661
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TABLE II.20

SIDELOBE RATIO 20 dB

2N 10 20 30 i) 50 60
1 .5431199278(.2747749877(.1821041180(.1359401984 .10%3896089 .0901044132
2 {.7189117002| .3794276750(.2532151728} .1894661520 .151227”910 .1257869097
3 1.8902u481172}.5083864898,3436572136(.2582L461387].2065274887{.1719631350
4 |.9873797052|.6344626127|.4368849312|.3303278271.2649075452] . 220900541 4]
5 |.7481768749] .5278919540] . 4023475213 . 3238278706 . 27055273 42
6 .8UU3034137].6142465768(.4728333703(.3822505866(.3201199105
7 .9192923247] ,6943386168( .5408904605( .4395899772{.3691758218
8 .9706439302 .766925277” .6058557979| . 4954360119} .4174375219
9 .9967211473({.8309847346 .6671835166| .5494614857] . U6UEBTTSTY
10 .8856629880] .7244003484} .6013852578].5107U4L0076
11 .93025405871 .7770867010} .6509560019{ .5554445928
12 .9641933355| . 8248683233/ . 6979445002 . 598641 9055
13 .9870562394( .8674127501] .7421398615(.6U401989264
1y .9985588369| . 9044280276 . 7833476787 . 6799873761
15 .9356625469] .8213891953] . 7178867331
16 .9609053934| 8561010168 . 7537837311
17 .9799868977| . 8873351181 .7875721329
18 .9927792837| . 91149590087 | . 8191526650
19 .9991967962| . 9388559754 . 8484330478
20 .9589253508; .8753280813
21 .9750827799| . 8997597601
22 9872604624 . 9216574035
23 .9954073586 . 9409577882
oy .9994893502] . 9576052777
25 .9715519“21
26 .9827576666
27 .9911903590
28 .9968254621
29 .9996471033
X1 0.015073 0.007299 0.00L4794 0.003567 0.002840 0.002359
X2 0.238121 0.116232 0.076555 0.057027 0.045426 0.037744
X 0.509431 0.256236 0.169659 0.126611 0.100936 0.083902
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TABLE IT,21

SIDELOBE RATIO 25 dB

2N 10 20 30 40 50 60
1 .58982493791.3031687017{.2012057273(.1502753452|.1198475054 .0996419899
2 | TU1T7466907].3973484794.2657198915].19896L40255] .1588601665].1321587391
3 {.89794600711{.5196151476] .3520678485] .2647798736|.2118309199|.1764140795
4 .9882103918 .6416079TU9(.4U28663351 ;33513214H9 .26886L43651(.2242468697
5 . 7526090452 .5322716839| . 4060300373 .3269202478] .2731945426
6 .8”685“9071 .6174818882| .4757236240] .38U47386627| .3222726516
T .9205534996( .6967126762] .5431863095} .4L16285477|.3709672810
8 .9710873178} .7686314785].6076863L457(.4971246760( .418949L4921
9 .9967702184{.8321666331(.66863896U4 | ,5508684L18{.46597581L9} -
10 .886U4349500] .7255U474712| .6025596471(.5118477711
1 .9307127336| . 7779774742 .6519347961 | 5563934498
12 .9644244334 ] 8255450211 . 6987565786 | . 5994584040
13 .9871387751| .8679111084] . 7428085458 . 6409008840
14 .9985679722| .9047792862] . 7838923719/ . 6805892462
15 .9358948153|.8218264793(.7184005201
16 .9610445944] ,856L4454083(.7542196224
17 .9800574415/ . 8875996029] . 787938945U
18 .9928044950| . 9151554276 | . 8194581682
19 .9991995996 | . 9389968589/ . 8486842019
20 .9590179330{ . 8755312156
21 .9751384650 . 8999207090
22 .9872887537| .9217816115
23 .9954175155{ . 9410534053
24 .9994904772] .9576711728
25 .9715958338
26 .9827841147
27 .9912036988
28 .9968302845
29 .9996476400
X1 .0.008841 0.00434Y 0.002882 0.002152 0.001716 0.001426
X2 0.250097 0.123059 0.081101 0.060428 0.048140 0.040000
X 0.562629 0.190634 0.142326 0.113488 0.094346

0.287565
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TABLE II.22

SIDELOBE RATIO 30 dB

2N 10 20 30 40 50 60
1 [.6324280169].3316462128f.2213073559|.1655481953].1321121425].1098766467
2 |.7640600559] . 4165476079} .2797698516|.2097652214] .1675796819( .1394555327
3 {.9056754317].5319732476].3617737212.2724104313].2180523637|.1816479420
4 1.9890517852} .6495573790| . 4498434087 . 3408032654 .2735558453.2282239181
5 .7575651850{ .5374068203{ .4103993081{ .3306055882{ .2763503600
6 .8497157773].6212859192| .4791625592] .3877121796} .3248514803
7 .9219697458| .6995087851 | 5459226574 | . 4440690117|.3731169765
8 .9715880623| .7706431756| .6098705260] . 4991 484903 . 4207658193
9 .9968253897| .8335611576( .6703768888] .5525559159( . 4675243313
10 .8873462388{.7269179607| .6039689471|.5131754476
11 .9312543750] . 7790421111 .6531098439] .5575352525
12 .9646973945] .8263540322] .6997317763( .6004412323
13 .9872362755]| . 8685070391 . 7436117321 .6417460370
14 .9985787645] .9051993860] . 7845467454 .6813140289
15 .9361726389|.8223518907( .7190193237
16 .9612111123] .8568592536] . 7547446719
17 .9801418344].8879174557| .7883808301
18 .99283477421.9153914973(.8198262259
19 .9992061734].9391627787| .8489868024
20 .9591292162| .8757759736
21 .9752054003 . 90011 46465
22 .9873227618] .9219312834
23 .9954297248( . 9411619847
24 .99949581143 .9577505815
25 .9716487278
26 .9828159879
27 .9912199140
28 .9968361109
29 .9996482868
x, | 0.005219 0.002555 0.001679 0.001252 0.000998 0.000829
x, | 0.260364 0.129437 0.085549 0.063794 0.050838 0.042250
p 0.609996 0.318267 0.212204 0.158689 0.126620 0.105300
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TABLE ITI.23

SIDELOBE RATIO 35 dB

2N 10 20 30 4o 50 60
1 {.6732459895.3597614865] .2407922702| . 1803969463 .1450411785| . 1198435002
2 1.7866626594] . 4365419639 .2941322803].2208182030}.1765226290 .1&69&83738
3 |.9137172059 .5451906356(.3719617396] 2804279451 | .2246038942| . 1871660868
4 |.9899353051(.6581587581] .4572523545 .3468312049| .2785535640| . 2324656026
5 1.7629583711(.5428912276] . 4150702189| . 3345540659 . 2797355094
6 .8528384917|.6253617023 .4828507200{ .3909082441].3276265348
7 .9235183002| .7025104572] 5488630664 . 4466972779 . 3754348370
8 .9721361114].7728054641 | .6122205874{ .5013308396] . 4227267474
9 .9968857987| .8350613260| .6722484368| .5543771821{.4691976052
10. .8883271245].7283947384 | .6054909427].5146109978
11 .9318376114] . 7801898354/ . 6543794451 | 5587704049
12 .9649913947) .8272264749 .7007858161 .6015047913
13 .9873413080| .8691498578 . 7444800891 . 6426608643
11 .9985903914{ . 9056526263 . 7852543649 . 6820987335
15 .9364724226] .8229201500{ . 7196894041
16 .9613908114{ .8573069083] .7553133098
17 9802329144 .8882613126| . 7888594545
18 .99286739“0 .9156U469021{ .8202249231
19 9992106684 .9393439776| .8493146192
20 .9592496287(.8760411451
21 .9752778297| .9003247705
22 .9873595992{ .9220934545
23 .9954429370{ .9412829009
21 9994932980 . 9578366276
25 .9717060443
26 .9828505267
27 9912374856
28 .9968424218
29 9996514030
x1 0.003003 0.001493 0.000987 0.000736 0.000587 0.000488
X, | 0.269709 | 0.135361 0.089598 | 0.066859 | 0.053300 | 0.044304
X 0.654649 0.348112 0.232791 0.176124 0.139196 0.115804
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TABLE II.24

SIDELOBE RATIO 40 dB

2N 10 20 30 40 50 60
1 {.7081754044|.3865358530(.2597383153( . 1948325604 .1556916961 | .1295819130
2 {.8068817402|.4564090690 .3086932091(.2320628739].1856274035].1545799246
3 1.9210930122|.5586576088| .3825485882|.2887873797] .2314396173(.1929258328
4 |.9907532078|.6670272017 . 4650421083 .3531900133 2838291996 | . 2369448505
5 . 76855265214 .5486924402| . 4200272725 . 3387472537/ . 2833317930
6 .8560883999| .6296877179( . 4867782693 | 3943140443 | .33058491 44
7 .9251329855| . 7057031109| .5520009644 | . 4495039606 . 3779109573
8 .9727081653) .7751084569| .6147319726 5036645863 | . 4248244894
9 .99691488835| . 8366605746 | . 6742503700] .5563266717| . 4709893512
10 .8893734502] .7299754730] .6071212170] 5161492549
11 .93246002721 .78141896U40} .655TU00632] .5600946075
12 . 96530523531 .8281611434}.7019158560{ .6026454751
13 .9874534u84].8698387172.745411335U(.6436423292
1 .9986028063] .9061384320| .7860134100| .6829407994
15 .9367937971| .8235298199| . 7204086053
16 .9615834753] .8577872559] . 7559237273
17 .9803305737{ . 8886303256/ .7893733105
18 .9929025047(.9159210180( .8206530136
19 .9992104554] . 9395384658/ . 8496666345
20 .9593788799| .8763259117
21 .9753555792| .9005504353
22 .9873990671] .9222676287
23 .9954571203] .94141 27718
21 .9994948719] . 9579290493
25 9717676094
26 .9828876265
27 .9912563603
28 9968492070
29 9996546785
x1 0.001785 0.000883 0.00585 0.000436 0.000348 0.000289
x, | 0.277378 | 0.140719 | 0.093330 |} 0.069693 | 0.055577 | 0.046205
X 0.692432 0.376230 0.252599 0.189424 0.151350 0.125960
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TABLE II.Z25
SIDELOBE RATIO 50 dB

2N 10 20 30 40 50 60

1 |.7716448891].4395793961 | .2982654005 . 2243869725 . 1795141074 | . 1495140925
>2 .8U54922438] ,4977262129(.3397644630(.2561405067 .2051553589 .1709630666
3 .9356551937 .5876470903] .4059265422(.3073065286} .2L466068503|.2057166696
4 .9923900282 .68646758u8(.u4825580320( .3675330645|.2957469719].2470719768
5 .7809357353| .5618660869| . 4313186778 .3483128442] 2915424039
6 .8633218353(.6395681053 .4957762040 .4021281431 .3373778202
7 .9287383351.7130211407| .5592158059| . 4559667438} . 3836171647
8 .9739877572( .7803996481| .6205201253 .5090512699 LU206703344
9 .9970901077| . 8403407323 .6788719996| 5608339342 . 4751352548
10 | .8917838716].7336290561].6108949795}.5197129094
1 .9338949706/ . 7842623446/ . 6588924339/ . 5631651204
12 .9660291 434] ,8303247462¢.7045357806( .6052922628
13 .9877121936/ .8714340960| . 7475715006 . 6459208865
14 .9986314558| 9072639633 . 7877748522 . 6848965544
15 .9375385775/ . 8249450826/ . 7220795641
16 .9620300635( .8589026056| .7573423330
17 .9805569776/ . 8894873392/ . 7905677772
18 .9929836360|.91655774Lu; 8216483018
19 .9992194559] . 9399902903 | . 8504851 781
20 .9596791805] . 8769881660
21 .9755362804(.9010752983
22 .98749086146/ . 9226727678
23 .9954900795| . 9417148814
oY .9994985292| . 9581440560
25 .9719108390
26 .9829739413
27 | .9913002746
28 .9968649869
29 .9996514922
x1 0.000594 0.000297 0.000197 0.000147 0.000118 0.000098
x2 0.290658 0.150673 0.100423 0.075093 0.059922 0.049835
X 0.760336 0.431346 0.292456 0.219920 0.175943 0.146530
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TABLE II.26

SIDELOBE RATIO 60 dB

2N 10 20 30 40 50 60
1 |.8244456411].4886813327(.3349917537|.2530892907].2029552205{.1691958217
2 1.8792505737|.5378099495| .3707898785] .2806857421 .2252U796841 . 1879034976
3 |.9488962741].6169062331].4302034213].3269374400].2628332247|.2194680022
4 [.9939046608|.7065528128{.5011763301.3830945570|.3087961552( .25821 47975
5 .7939013164| .5760591720| . 4437356297 .3589285730| . 3006988941
6 .8709548351 | .6503004469(.5057525153| . 410871 4530{ .3450155809
7 .9325604350| .7210116337| .5672573004| . 4632362118 .3900669322
8 .9753478212|.7861970190( .6269942984{ .5151318578| . 4351671169
9 .9972403912] .8443824639] .6840541656| .56593U45020( . 4798498287
10 .89443544811.7377330549(.6151732168|.5237727325
1 .9354752645] . 7T87U604483] .6624710280( .5666678924
12 .9668269863{ .8327606607(.7075129910] .6083147967
13 .9879975768( .8732316082| .7500282072] . 6485250250
14 .9986630533].9085328166( .7897793543{.6871332032
15 .9383785549}.826556437U(.7239915014
16 .9625338932| .8601729980{ . 7589662065
17 .9808124578| .8904637966{ .7919355509
18 .9930751785|.9172833984| .8227883228
19 .9992339880{ .9405053230{ . 8514229742
20 .9600215465] .877T7U470527
21 .9757422232| .9016768449
22 .9875955427| .9231371618
23 .9955276654{ 9420612157
24 .9995027000{ . 9583905592
25 .9720750624
26 .9830729133
27 9913506306
28 .9968830952
29 .9996535010
x, | 0.000188 0.000102 0.000067 0.000050 0.000040 0.000033
X, | 0.301159 0.159259 0.106691 0.079958 | 0.063870 0.053148
X 0.816273 0.481903 0.330108 0.249338 0.199890 0.166660
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TABLES II.27 ~ II.34

Tables Of Space Factor Zeros For Zolotarev Polynomial -Arrays
With d > 0.5 A, For the Range of Sidelobe Ratios

And Array Sizes Indicated
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TABLE II.27

SIDELOBE RATIO 15 dB

2N 10 20 30 4o 50 60
w1 1.03447315]0.49783332{0.32702397{0.24338654]0.19379341}0.16098164
Yo 1.54263569]0.74273744%)0.48790742]0.36312400{0.28913281(0.24017879
U3 [2.16U78947]1.04325915|0.68534449[0.51006854|0.40613598|0.33737188
by 2.8139685411.35822306{0.89229796|0.66409892|0.52878182(0.U43925247
Vs 1.67881913{1.10299314{0.82091852{0.65364947|0.54297894
Vg 2.00213550{1.31553282{0.97911670{0.77961596{0.64761854
w7 2.32691654{1.52911225{1.13809605|0.90620587(0.75277642
Vg 2.65251113}1.74333053{1.29755994]1.03318333{0.85825671
¥g 2.97852256|1.95796426(1.4573L4418}1.16041791]0.96395115
V10 2.17287782|1.61735028}1.28783156|1.06979500
V1 2.38798275|1.77751541 1. 41537467 1.17574714
L2 2.60321749}1.9377974111.5430141341.28178018
U3 2.81853618}2.09816676(1..67072698|1.38787515
¥y y 3.03390208{2.25860201{1.798u49675(1.49401850
U5 2.41908696|1.92631126(1.60020027
Vg 2.57960896|2.05416131(1.70641297
¢17 2.7401577712.18203974}1.81265082
V18 2.9007247312.30994088{1.91890934
w19 3.06130219]2.43786013(2.02518u492
12%0 2.56579366{2.13147U65
Yoy 2.69373823(2.23777615
Voo 2.82169101{2.34u087U2
Vo3 2.9496U9U5| 2, 45040677
Yoy 3.07772899(2.55673274
Vs ' 2.66306405
Uog 2.76939956|
Y 2.87573824
Uog 2.98207913
w29 3.08856200
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TABLE II.28

SIDELOBE RATIO 20 dB

2N 10 20 30 40 50 60

¥y |1.14829677|0.55671134]0.36625185(0.27272481|0.21720594{0.18045356
Yo 1.60447075]0.77835527|0.51200L460{0.38123684]0.30361985}0.25224200
Y3 [2.19577924{1.06662007|0.70161707(0.52241263(0.41604919{0. 34564429
Py |2.82351178{1.374626160.90426540{0.67330175[0.53621608 0. 44547545
Vg 1.69062012{1.11223316(0.82815927{0.65954515]0.54793426
Vg 2.01052781{1.32286168]0.98500708{0.78446123{0.65171211
Vo 2.33255724/1.53500091]1.14299088{0.91028425{0.75624408
Vg 2.65578746{1.74807216[1.30168225{1.0366734 |0.86124713
¥g 2.97958904{1.96175103|1.46084259|1.1634391 |0.96656390
P10 2.17583982|1.62032830{1.29046761(1.07209992
V1 g 2.39020930(1.78004751]1.41768624(1.1777950L
V1o 2.60476929(1.93993847]1.54504653(1.28360913
V3 2.81945255]2.09995789|1.67251479(1.38951437
Py y 3.03420515(2.26007424]1.80006682}1. 49549083
Y15 2.42026374]1.92768475{1.60152388
P16 2.58050779{2.05535502{1.70760249
7 2.74079130{2.18306710{1.81371819
Py 8 2.90110277{2.31081266|1.91986434
Y19 3.06142726[2.43858490(2.02603564
¥o0 2.56637820{2.13222782
Vo 2.69418777{2.23843736
Yoo 2.82200943]2.34466130
o3 2.94983945] 2, 45089715
Yoy 3.07767438{2.55714277
Vos 2.66339627
bog 2.76965596
Uo7 2.87592208
Yog 2.98218829
g 3.08845755




TABLE I1.29
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SIDELOBE RATIO 25 dB

2N 10 20 30 40 50 60

¥y |1.26168407|0.61603219{0.40517733]|0.30169354|0.24027255|0.19961522
¥y [1.67134195]0.81725124{0.53790116(0.40060139{0.31907210(0.26509301
U3 2.23016003|1.09280090]0.71955897|0.53595128{0.42689603|0.35468439
vy {2.83417961{1.39318558{0.91758619(0.68349096|0.54442757{0.45234031
Vs 1.70403091]1.12256338|0.83621135[0.66608582{0.55342469
Vg 2.02008672{1.33107468{0.99157305|0.78984934}0.65625849
by 2.33899023{1.54160928{1.14845489|0.91482602{0.76010081
g 2.6594881811.75339809(1.30628812{1.04056361{0.86U457615
bg 2.9808065U411.96600697(1.4647538211.1668088710.96947431
Y10 2.17917018[1.62365921{1.29340904{1.07466859
V14 2.39271344}1.78288057|1.4202664411.18007804
L2 2.60651488[1.94233458{1.54731568]1.28564857
V13 2.820483471{2.10196273{1.67451123]1.39134258
¥y y 3.03454613(2.26172236{1.80182039{1.49713316
Uy 2.42158125{1.92921893(1.60300050
V16 2.58151418/2.05668852{1.70892966
Yy 7 2.74150068[2.18421487|1.81490916
U1 8 2.90152348]2.31178666{1.92093000
¥rg 3.06156730{2.439403712.02698500
s 2.56703133(2.13306836
Vo1 2.69469007{2.23917528
Voo 2.82236524{2.34530178
Vo3 2.95005177{2.45146228
Vo) 3.07774L496{2.55760042
Yos 2.66376707
bog 2.76994216
Vo7 2.87612359
Vo8 2.98230947
Vg 3.08849797
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TABLE II.30

SIDELOBE RATIO 30 dB

2N 10 20 30 Lo 50 60

12 1.36936736]/0.67609602{0.44630972{0.33262770{0.26499899}0.22019788
vy 1.7391662 0.85928893]{0.56710875 0.42266966 0.33674823{0.27982310
w3 2.2659402 [1.1218584 [0.7403395610.55179464{0.43963673{0.365324L02
Yy (2.8453731 [1.41400427{0.93317999|0.69554236{0.55417591{0.46050613
w5 1.7191499 [1.13471826(0.8457838010.67389034{0.55998899
Vg 2.0308919 [1.34076542}0.99940072¢0.79629667{0.66170937
by 2.3462728311.54941977]|1.15497991/0.92026986{0.76473270
Vg 2.66370140]1,75969961]1.3117944111.04523163/0.86857868
Vg 2.9821864711.97104612(1.46943318[1.17085541710.97297620
V10 2.18311534)1.62764638(1.29694315{1.07776095
V11 2.39568085(|1.7862731211.42336777(1.18282760
129 2.6085838611.9452047211.55004395{1.28810552
W13 2.82170555]|2.10436472(1.67691218{1.39354L559
¥y y 3.03495036(2.26369728{1.80392963{1.49911256
V15 2.42316019{1.9310645611.604780u4
V16 2.58272038]2.05829290{1.71052964
by g 2.7423509612.18559591(1.81634509
Vg 2.9020297312.31295871]1.92221495
V19 3.06189665(2.44036920}2.02812979
Yoo 2.56781735|2.13408197
Vo 2.69529459| 2. 24006520
Yoo 2.82279347|2.34607422
¢23 2.9503073012.45210456
Yoy 3.07808026{2.55815238
o5 2.66421431
Yot 2.77028734
Vo7 2.87636875
Uog 2.98245601
¥og 3.08854672




TABLE II.31

289

SIDELOBE RATIO 35 dB

2N 10 20 30 4o 50 60

w1 1.47717996|0.73602450]0.48636411]|0.36278000{0.28908795 0.24026449
v, |1.81076920[0.90350292|0.59709502|0. 44530660 0.35490495 0. 29496488
w3 2.30U467953{1.15323300{0.76224301|0.56847982|0.45307305|0.37655290
vy |2.85759795{1.43674107|0.94980638{0.70838095|0.561457547|0. 46922393
Vs 1.73575437]1.14775207]0. 85603996 0.68226397]0.56703721
Vg 2.04279461]1.35118993|1.00781430{0.803236290. 66758085
w7 2.35430874{1.5578378411.16200703{0.92614086}0.76973177
Vg 2.66835480|1.76649974]1.31773195[1.05027235]0.87290403
Wg 2.98371120]1.97648849|1.4744834111.17522887{0.97676388
1o 2.18737860|1.63195223{1.30076519|1.08110780
¥y >.39888877]1.78993846]1.42672333|1.18580481
¢12 2.61082113{1.94830668[1.55299690|1.29076685
Vi3 2.82302724]2.10696137|1.67951155|1.39593251
¢1H 3.03538757(2.265832671.80621366{1.50125766
¢15 2.42486768{1.933063U7{1.60670972
¢16 2.5840249112.06003076(1.71226411
V7 2.74327063|2.18709201|1.81790189
¢18 2.9025763112.31422851(1.92360820
¢19 3.06212263(2.44142507|2.02937117
Vot 2.56866903]2.13518118
Yoy 2.69594964{2.24103032
T 2.82325797|2.34691196
Vo3 2.95058420] 2. 45282049
Yoy 3.07792195|2.55875105
Vos 2.66469940
Vot 2.77066175
Yoo 2.87663467
Yog 2.98261496
Uag 3.08878226
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TABLE II.32

SIDELOBE RATIO 40 dB

2N 10 20 30 4o 50 60

¥y [1.57382113{0.79374506(0.5255024110.39217347{0.31265529{0.25989465
¥, |1.87770822|0.94791040|0.62763767{0.46839583(0.37342064{0.31040450
¥g 2.341757111.185532800.78510626|0.58592002 | 0. 46711443 0. 38828625
¥y (2.86940039|1.46042293]0.96736435/0.72195737{0.57557038{0.47843987
Vs 1.75315166(1.16159882|0.8669507410.69117022{0.57453298
Vg 2.05530619{1.36230232{1.01679550|0.81064259{0.67384653
g 2.36277147{1.56683007|1.16952405|0.93241991{0.77507776
vg 2.67326040{1.77377346{1.32409220(1.05567093{0.87753600
Vg 2.98531932(1.98231517|1.47989832{1.17991732{0.98082395
V10 2.19194575(1.63657212(1.30486532{1.08469782
by 2.40232682(1.79387309;1.43032487}1.18899999
by o 2.61321958{1.95163777{1.55616754(1.29362413
b3 2.82444401(2.10975060]1.68230337(1.39849596
Y1y 3.03585641(2.26812691{1.80866737{1.50356195
Yy5 2.42670247(1.93521128}1.60878257
V16 2.585U42686(2.0618983411.71412795
Yy g 2.74425906(2.18869997{1.81957503
Uy g 2.90316602{2.31559339(1.92510572
¥y g 3.06211191]2.44256007|2.03070556
Uog 2.56958460(2.13636284
Vo 2.69665386(2.24206790
Yoo 2.82375639(2.34781265
o3 2.95088191 (2. 145359024
Yoy 3.07802092{2.55939475
Yos 2.66522099
bog 2.77106434
Vo7 2.87692060
Vog 2.98278587
¥og 3.08903096




TABLE 11.33
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SIDELOBE RATIO 50 dB

2N 10 20 30 40 50 60

¥y |1.76284639/0.91026069|0.60574963|0. 45262784 | 0. 36098502 0.3001536%
U, |2.01497264|1.04195043|0.69333290(0.51805477| 0. 41324487|0.34361408
¥y |2.42022207|1.25629552| 0. 83598485 0. 62472259 0. 49835480 0. 41439196
vy | 2.89469764[1.51324004]1.00714590{0. 75271007 0. 60047475 0.49931476
Vs 1.79232505(1.19327981(0.89190778{0. 71154126/ 0.59167778
Vg 2.08363094|1.38787261|1.03745676(0.82768004 | 0. 68826001
¥ 2.38199013]1.58759541|1.18687914|0.94691629} 0. 78741991
Vg 2.68442043]1.79060942 [ 1.33881158{1.06816439/0.88825532
U 2.98898060{1.99582301{1.49245058|1.19078542{0. 99023547
V10 2.20254514|1.64729409|1.31438106/1.09302975
V1 2.410311801.80301257{1.43869089|1.19642218
¥y 5 2.61879284/1.9593803 |1.56353759|1.30026595
V3 2.82773849[2.1162368 |1.68879627|1. 40445791
¥y y 3.03694633]2.2734640 |1.814376271.50892343
Vs 2.4309720 |1.94021006]1.61360719
V16 2.5886898 |2.06624607|1.71846726
¥ 27465599 |2.19244409| 1. 82347123
V18 2.9045342 |2.318772011.92859360
¥yg 3.0625662 |2.44520369|2.03381400
o0 2.57171735|2.13911584
Vo 2.6982948 |2.2u4448547
Voo 2.8249186 {2.34991145
Vo3 2.9515755 |2.45538405
oy 3.0782515 |2.56089490
Vo5 2.66643663
Vs 2.77200267
Vg 2.87758706
Vog 2.98318425
V29 3

.08878901
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TABLE II,34

SIDELOBE RATIO 60 dB

2N 10 20 30 40 50 60

¥y {1.93844393|1.02115536 0.68319295]0.51174436/0. 40875002 0. 34002733
Yo [2.74857334]1.13567445 0.75971876|0.56901699| 0. 45439507 0. 37805437
w3 |2.49943988|1.32961142(0.88943620(0.66612220(0.531915000. 44253828
Uy [2.9206575211.56923008|1.04991523(0.78628824{0.6278541410.52234775
¥ 1.83439707{1.22779865|0.91952577}0.73423944(0.61085075
Vg 2.114284u411.41595972]1.06050808]0.84681943{0. 70451077
Yq 2.40288288(1.61052232{1.20634328/0.96328673{0.80140856
Vg 2.6965835411.80926149(1.35537780{1.08232296{0.90044776
'wg 2.99297558(2.01082288|1.50661247|1.20313259{1.00096707
10 2.21433436{1.65941238{1.32521131{1.10254755
¥y g 2.41920308{1.81335575| 1. 44822537{1.20491224
¥y 5 2.62500336(1.96815117|1.57194559[1.30787124
V13 2.83141193(2.12359002|1.69620945|1.41129023
Py y 3.03816172(2.27951793]1.82089839{1.51507156
¥y 2.43581692]1.945923741.6191 4254
P16 2.59239378{2.07121757|1.72344790
V17 2.74917228{2.19672673{1.8279L481
Vg 2.90608760]2.32240875]1.93259950
¥yg 3.06330550] 2. 44822893]2.03738492
¥s0 2.57415835]2.14227906
Vo 2.70017231|2.24726374
Yoo 2.82624919]2.35232371
Yo3 2.952369562. 45744602
by 3.07851548{2.56261946
Vs 2.66783422
og 2.77308151
Vg 2.87835331l
Uog 2.98364265
¥og 3.08894142
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