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ABSTRACT 

The stringent specifications of modern tracking systems demand 

antennas of high performance. For this reason arrays are finding 

increasing application as monopulse antennas. 

A new exact procedure is introduced for the synthesis of optimum 

difference distributions for linear arrays of discrete elements, with 

a maximum sidelobe level specification. The method is based on the 

Zolotarev polynomial, and is precisely the difference mode equivalent 

of the Dolph~Chebyshev synthesis for sum patterns. When the 

interelement spacings are a half-wavelength or larger the element 

excitations are obtained in a very direct manner from the Chebyshev 

series expansion of the Zolotarev polynomial. For smaller spacings, a 

set of recursive equations is derived for finding the array excitation 

set. Efficient means of performing all the computations associated 

with the above procedure are given in full. In addition, a set of 

design tables is presented for a range of Zolotarev arrays of 

practical utility. 

A novel technique, directly applicable to arrays of discrete elements, 

for the synthesis of high directivity difference patterns with 

arbitrary si delobe envelope tapers is presented. This is done by 

using the.Zolotarev space factor zeros and correctly relocating these 

in a well-defined manner to effect the taper. 

r 
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A solution to the direct synthesis of discrete array sum patterns with 

arbitrary sidelobe envelope tapers is introduced. In this case the 

synthesis is also done by correct placement of the space factor zeros. 

The above techniques enable high excitation efficiency, low sidelobe, 

sum and difference pat terns to be synthesized independently. 

Contributions to the simultaneous synthesis of sum and difference 

patterns, subject to specified array feed network complexity 

constraints, are also given. These utilise information on the 

excitations and space factor zeros of the independently optimal 

solutions, along with constrained numerical optimisation. 

The thesis is based on original research done by the author, except 

where explicit reference is made to the work of others. 
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PREFACE 

The purpose of this preface is not to supplant Chapter which 

provides a general overview of the individual chapters contained in 

this thesis. It is intended rather to direct the reader towards the 

main emphases of the thesis. 

The essential points of the thesis are contained in the abstract, 

Chapter 1, Section 3. 7, and Chapter 9. The detailed workings that 

support the central themes may be found in Chapters 4 to 8. Chapters 

2 and 3 have been included to place the thesis as a whole in the 

context of other research in its relevant field, and to derive certain 

expressions not readily available in the literature. 
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CHAPTER 1 

INTRODUCTION 

1.1 THE MONOPULSE CONCEPT 

The function of a tracking radar is to select a particular target and 

follow its course in range and angle. An essential requirement is the 

measurement of the angle of arrival of the received signal using a 

directive antenna beam which is pointed towards the target. The 

characteristics of the antenna must be such that errors in pointing 

are measured and made available as error signals to control the 

positioning servos of the antenna. 

Tracking radars may be divided into two general types - sequential 

lobing and simultaneous lobing (mono pulse) [ 1]. The simultaneous 

lobing technique is referred to as "monopulse" since it permits in 

principle the extraction of complete error information from each 

received pulse. 

A monopulse antenna has three ports: the sum channel (I), elevation 

difference channel (~e) and azimuth difference channel (~a). This is 

illustrated schematically in Fig. 1 .1. If a plane wave is incident 

on the antenna and the radiation pattern of the antenna measured at 

the sum port, the form of the pattern Es(e) will be as shown in 

Fig. 1.2 for any spatial plane in which the measurement is performed. 

Here e is the angle measured with respect to the boresight direction 

of the antenna. , Should the pattern be measured in the elevation 

(azimuth) plane at the elevation difference port (azimuth difference 

port), the form will be that in Fig. 1. 3. The essential 

considerations for both elevation and azimuth difference patterns are 

the same. 
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When coupled to the transmitter of the monopulse radar system, the sum 

mode provides illumination of the distant target; when coupled to the 

receiver it provides range information and a reference signal. The 

azimuth and elevation difference ports are coupled to receivers whose 

signals, when combined with (normalised with respect to) the received 

reference sum signal, provide azimuth and elevation angle information, 

respectively. Although only the sum mode actually exists in 

transmission, it is common practice to consider all three modes in 

transmission for ease of analysis; by reciprocity [2] the antenna 

patterns are the same whether obtained in transmission or reception. 

With each difference signal ( Eda or Ede), one lobe must be in-phase 

with the sum signal (Es) and the other 180° out of phase with it. The 

beamforming network must ensure that this requirement is satisfied in 

order to provide the correct servo information. 

Assume that a target has been illuminated and a return from the target 

is incident on the monopulse radar antenna. If the antenna is 

pointing directly at the target (that is, the antenna boresight is 

aimed at the target), there will be no signal at either the azimuth or 

elevation difference ports, since these ports have patterns which have 

nulls on boresight. If the antenna boresight is off target, a signal 

will appear at either the elevation or azimuth difference channels, or 

both. The phase difference between non-zero Ede and/or Eda, and the 

sum signal Es (either 0° or 180 ° in the case of the ideal mono pulse 

antenna) provide information on the direction of offset in the 

elevation and azimuth difference planes independently. This 

information is used to drive servos to re~align the antenna boresight 

on the target. Thus complete tracking capability may be achieved. 

To summarise then, the amplitudes of the difference channels in 

comparison with that of the sum are a measure of the displacement of 

the target from the radar axis and the relative phase of the signals 

indicates the direction of this displacement. 
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RADIATING ELEMENTS 

BEAM FORMING NETWORK 
<ARRAY FEED NETWORK> 

FIGURE 1.1 SCHEMATIC DIAGRAM OF A MONOPULSE ANTENNA 
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1.2 ARRAY ANTENNAS 

A source of electromagnetic radiation may take many different forms. 

It could be a conducting wire, horn radiator, waveguide slot, or one 

of many other possibilities. The radiation pattern of a single 

element is fixed for a given frequency of excitation and consists, in 

general, of a main beam and a number of smaller sidelobes. In many 

applications there is a need for improving the performance above .that 

obtainable with a single radiating element. There are, broadly 

speaking, two methods available for this purpose. One technique uses 

a properly shaped reflector or lens fed by a radiating element, and 

the other employs a number of radiating elements correctly arranged in 

space to form an antenna array. Whether the reflector or array option 

is to be used depends on a multitude of factors related to particular 

applications and environments in which the antenna is to operate. 

Array antenna development can be divided into three stages: 

specification, synthesis and realisation. These should not be taken as 

clear'""cut divisions, however, as there is a considerable amount of 

overlap between the last two stages. Means of unambiguously 

specifying the required performance of a monopulse antenna are 

discussed in the following chapter. The synthesis problem involves 

the determination of the excitations and spacings of the array 

elements required to obtain desired radiation characteristics. 

Synthesis is usually performed subject to a set of constraints. The 

latter may set bounds on certain radiation pattern characteristics 

(e.g. sidelobe levels), but may also include constraints on other 

quantities in an attempt to allow easier practical realisability. This 

second kind of constraint may include factors such as the sensitivity 

of the array performance to imperfections, or constraints on the 

complexity of the feed network. It is in the setting down of 

constraints that engineering judgement must be exercised in the midst 

of the mathematical techniques. 
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The final step in the design of an antenna array is the actual 

establishment of the determined excitations in the form of hardware. 

The realisation of the array includes the selection of the radiating 

elements to be used, though this would no doubt have been kept in mind 

during the synthesis stage. The realisation phase would further 

involve the determination (theoretically or experimentally) of the 

element radiation characteristics and the coupling between elements, 

both externally and internally via the feed network. This information 

is then used to establish the correct excitation determined from the 

synthesis procedure. 
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1.3 OVERVIEW OF THE THESIS 

This thesis deals exclusively with array synthesis. 

Chapter 2 first summarises the definitions of numerous factors used in 

the literature to specify the performance of monopulse antennas. 

Thereafter essential information on array analysis pertinent to this 

work is given. This includes expressions for the performance indices 

associated with symmetrically and anti -symmetrically excited linear 

arrays, which (as far as can be established) do not appear to be given 

explicitly in the literature. Hence their inclusion in some detail 

here. 

In Chapter 3 the development of the synthesis of sum patterns is 

reviewed, followed by a review of the state of difference pattern 

synthesis. Thirdly, an overview is given of the problem of 

simultaneous sum and difference pattern synthesis. The chapter 

concludes (Section 3. 7) with a summary of synthesis problems which 

have not been adequately dealt with in the literature, and which form 

the subject of this thesis. 

Chapters 4, 5, 6, 7 and 8 contain the principal contributions of the 

present work to the theory of mono pulse array synthesis. A more 

detailed indication of the contents · of these chapters is more 

appropriate after the limitations of existing synthesis techniques has 

been gauged; this is therefore postponed until the end of the third 

chapter (Section 3.7). 

Finally, some general conclusions are reached in Chapter 9, and the 

research reported herein put into perspective. 

Appendix I contains a summary of concepts from the mathematical 

theories of approximation and op_!:._imisation referred to in the thesis, 

in order to make the latter more self-contained. Appendix II contains 

tables of design data relating to the synthesis procedure developed in 

Chapters 4 and 5. 
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CHAPTER 2 

MONOPULSE ARRAY SPECIFICATION AND ANALYSIS 

2.1 MONOPULSE ANTENNA SPECIFICATIONS 

2. 1 • 1 Preliminary Remarks 

The primary goal of an antenna 

radiation pattern with specified 

design is the establishment of a 

characteristics. Except for its 

terminal (circuit-like) properties such as impedance, impedance 

bandwidth, conversion efficiency, and so on, the parameters which 

characterize the performance of an antenna are all based on the shape 

of the radiation pattern. Performance optimisation is therefore the 

process of maximisation or minimisation of certain pattern performance 

indices subject to constraints on others. Before such a process can 

be effected, it is of course necessary that these measures of 

performance be precisely defined. 

For monopulse antennas there is a plethora of such specifications 

[1]-[7], some related not only to the antenna as a separate unit and 

measured at the radio frequencies (RF), but to the response with the 

antenna already connected to intermediate frequency circuitry. Such 

specifications are commonly referred to as pre-comparator and 

post-comparator parameters, though this is somewhat of a misnomer. 

Here only the pre-comparator specifications will be of- interest. These 

are those measured at the output of the essential RF stages at which 

sum and difference output can be observed for the first time. These 

are usually the outputs of the RF comparators, and will henceforth be 

accepted as such here. 
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Though all of the performance specifications considered are applicable 

to monopulse antennas of any physical type, the terminology here is 

specifically directed toward arrays. In what follows, the angle 8 

will be measured with respect to the direction broadside to the array. 

Under normal conditions, the maximum of the sum pattern wiQl be in the 

8 = 0 direction. Terms of the form Es(8) or Ed(8) will represent 

"voltage" values of the radiation pattern. 

2. 1 • 2 Sum Pattern Specifications 

The directivity Ds(8) in a direction 8 is defined as the ratio of the 

radiation intensity (radiated power per unit solid angle) in the 

direction 8 to the average radiation intensity [2]. Let the maximum 

directivity of the sum pattern (in the direction of the sum pattern 

direction) given array denoted m peak or boresight of the be by D . s max Furthermore, let D be the maximum possible directivity obtainable 
s 

with the given array; this will be that obtained when the elements 

have identical excitations (in both amplitude and phase). Then the 

excitation efficiency is defined as 

( 1 ) 

Here the conversion efficiency is assumed to be unity, so that gain 

and directivity Ds(8) are identical. 

Further specifications relating to the sum pattern are illustrated in 

Fig. 2.1. All sum pattern sidelobe levels are measured relative to 

the sum pattern maximum. The sidelobe ratio (SLR) is the reciprocal 

of the sidelobe level. In decibels therefore the sidelobe level will 

be a negative number and the sidelobe ratio positive. In the above 

discussion, the subscript "s" signifies a sum mode quantity. 
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2. 1 • 3 Difference Pattern Specifications 

The difference pattern, illustrated in Fig. 2.2, has ·a null on 

boresight (the 9 = 0 direction), two maxima either side (9 = ±9
0

) of 

the boresight direction and thereafter a number of sidelobes. These 

sidelobe levels (sidelobe ratios) will usually be measured relative to 

the difference pattern maxima. In some instances, however, it is 

preferable to measure these with respect to the maximum level of the 

sum pattern of the same array. Unless otherwise stated, the former 

convention is implied. As for the sum pattern, it is possible to 

define the directivity Dd(9), excitation efficiency nd, and quantities 

D~ and D~ax. 

For mono pulse antennas an additional class of parameters have been 

introduced in order to represent some measure of the slope of the 

difference pattern in the boresight (9 = 0) diJ~ection. Since there 

has not been complete standardisation in the literature, a number of 

different slo·pe parameters are defined here, and their relationships 

shown. 

Let Ed ( 9) be the "voltage" pattern (space factor) of the array 

operating in the difference. mode, and a = kL sine the normalised 

angle. In this expression k is the free space wavenumber and L the 

total length of the array. Furthermore, let Dd(9) represent the 

directivity of the difference pattern as a function of 9. The several 

boresight slope parameters currently 1n use can then be defined as 

shown below. 

(i) The difference slope is given by Rhodes [4] as, 

(2) 
a = 0 
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(ii) The normalised difference slope used by Kirkpatrick [5] is, 

K = ( 3) 
a. = 0 

(iii) If K0 is the maximum value of K possible with a given array of 

co-phasal excitations and K the actual value for the array, 

then the difference slope ratio is, 

K 
r = 

K 
K 

0 

( 4) 

(iv) Several other boresight slope quantities are also in use, but 

these involve sum pattern qualities as well. For instance, 

Ricardi and Niro [6] define angular sensitivity as, 

K a 
j 0max 

s 
(5) 

with Dmax as defined for the sum pattern in the previous 
s 

section. As figures of merit for the difference pattern, Hannan 

[7] defines the relative difference slope, 

K 
g 

and a further quantity, 

K m 

( 6) 
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where o: and e
3

dB are the main beam directivity and half­

power beamwidth of the sum pattern, respectively, of the array 

in question. The tracking sensitivity is often taken to be 

This is also called the normalised angular sensitivity by 

Kinsey [3]. Finally, Rhodes [4] deals with two further 

quantities, the slope-sum ratio Kd/Es(O) and the slope-sum 

product KdEs(O). 

The above slope parameters are all RF parameters, measured at the 

output of the beamforming network, and are of importance at the 

synthesis stage. While they are all clearly interrelated, for 

comparing the boresight slope performance of array distributions only 

Kd, K and Kr are required. The others are more important from an 

overall tracking system point of view. 

When an array antenna is realised in hardware, imperfections in the 

practical components necessitate the introduction of parameters to 

measure their effect. Boresight error results, for example, because 

of the non-idealness of the RF comparator; the difference pattern null 

is raised and shifts off the boresight direction by a small amount. 

The array elements will also have cross-polarised field components 

[ 8], and therefore the allowable cross-polarisation levels of the 

array must be specified. 
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2.2 LINEAR ARRAY ANALYSIS 

2.2.1 Introduction 

If the elements of an array all lie along a common straight line, they 

form a linear array. This geometry is not only important in its own 

right, but is also an essential building block of the majority of 

planar arrays. The synthesis of such linear arrays is therefore 

fundamental to all array design. 

Before a synthesis problem can be attempted, means of analysing a 

linear array must be available. Such analyses are treated in some 

detail in [9], [10] and [11], and a complete treatment is not intended 

here. Instead, only the most relevant material will be considered, 

certain new expressions presented, and some concepts written in a more 

concise form. In what follows, the background to any statements made 

without proof can be found in the above references. 

In order to be clear on exactly which aspects of antenna array 

analysis are pertinent to the matters at hand here, it is perhaps best 

to state clearly what categories are not of concern. Firstly, arrays 

with non-uniform element spacing and those which can be classified as 

thinned arrays (certain elements removed for various reasons), will 

not form part of the discussion. Electronically scanned and general 

shaped~beam array synthesis will also be set aside. Of prime 

importance is the design of monopulse linear arrays with high 

directivity (narrow beamwidth) and low sidelobes, for both sum and 

difference patterns. In all cases the main beam of the sum pattern 

and null of the difference pattern coincide, and this in the direction 

broadside to the array. Thus endfire arrays, for example, will not be 

considered. Although this may seem overly restrictive, such is not 

really the case. While linear arrays have a long history of 

development 

synthesis 

Chapter 3, 

and have achieved a certain level of maturity, the 

problem is not yet complete, as will be pointed out in 

and there is much scope for research in this area. 

Furthermore, this type of array is that of greatest concern for 

practical monopulse tracking systems. 
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2.2.2 Preliminary Considerations 

If the radiation patterns of the individual elements of an array are 

broad (as is most often the case since the elements usually have low 

directivity), the significant features of the array pattern are 

controlled by what is known as the array factor [ 10]. This latter 

factor is the pattern of an array of isotropic radiators, with 

spacings identical to those between the phase centres of the actual 

elements, and with relative complex (amplitude and phase) weighting or 

excitations equal to those of the actual array elements. The 

synthesis problem deals with the array factor. Henceforth, if the 

"radiation pattern" of an array is mentioned, it is the array factor 

that is being referred to. 

Consider the linear array geometry shown in Fig. 2.3, consisting of 2N 

elements with uniform element spacing d. The complex excitation of 

the n-th element is an, and the discrete distribution of excitations 

is called the aperture distribution of the array. The array factor 

(also called the space factor) is a superposition of contributions 

from each element, and is given by [9, p. 142], 

-1 j ( 2n+ 1) ~d sine 
. E( e) I a e 

n=-N n 

N j ( 2n-1) kd . 6 2 s1n 
+ I a e (7) 

n=1 n 

where k is the free-space wavenumber. 
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It is convenient to define an additional variable ljJ = kd sine. The 

latter will be used interchangeably with 8 to denote the pattern 

angle. If this new variable is used, an alternative expression for 

the array factor is 

-"1 
I 

n=-N 
a 

n 

j(2n+1) ~ 
e + 

N 

I 
n=1 

a 
n 

j ( 2n-1) ~ 
e (8) 

Distributions for which la;...n I I an I are of particular importance; 

reasons will be given in the next chapter. 

With symmetrical excitation, a'"'n 

[ 9, p. 1 42]' 

an, and the array factor becomes 

E ( lji) 
s 

N 

2 I 
n=1 

a cos 
n 

[ ( 2n-1) ~ ] 
2 

while for anti-symmetrical (difference) excitation, a_n 

which case 

N 
2j I 

n=1 
a sin [(2n-1) ~ ] 

n 2 

( 9) 

-~, in 

( 1 0) 

Recall that the array factor expressions given apply to an array of 2N 

elements (an even number). An array of 2N+1 elements (an odd number) 

is not suited to anti-symmetric (difference pattern) operation because 

of the central element. Hereafter all arrays considered in this 

thesis will be assumed to have an even number of elements, and to be 

either symmetrically or anti-symmetrically excited. 
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Expressions for array performance can be concisely written through use 

of matrix notation. The excitation vector is therefore defined as, 

for an array of 2N elements. The radiation vector is defined as, 

[F J s 

cos [¢12] 

cos [ 31)!/2] 

cos [ ( 2N-1) ¢/2] 

for symmetric (sum excitation), and as 

sin [¢12] 

sin [ 3¢/2] 

sin [C2N-1)1ji/2] 

( 11 ) 

( 12) 

( 1 3) 

for anti-symmetric (difference) excitation. The corresponding array 

factors are then, from equations (9) and (10), 

E ( tjJ) s ' ( 1 4) 

(15) 



20 

where [ ]T denotes the Hermitian transpose or adjoint (transpose of 

the conjugate). In the present case the vectors [Fs] and [Fd] are 

real, so that this simply reduces to the transpose. 

The subscript or superscript "s" ("d") has been used to designate 

quantities associated with sum (difference) excitation. This practice 

will be continued throughout; when such subscripts and superscripts 

are omitted, a result applicable to both types of excitation is 

implied. The terms symmetric (anti -symmetric) and sum (difference) 

excitation are synonomous. 

The following five subsections will define further, and give 

expressions for, various array performance factors. 

2.2.3 Directivity 

For an array of isotropic elements the directivity is governed 

entirely by the array factor. In the case of a linear array with 

array factor E(8), the expression for the directivity in a direction 8 

reduces to [11], 

D ( 8) 
1T/2 

r 
J 

-' 1T /2 

* 2 E(8) E (8) 
( 1 6) 

t * I I I 
E ( 8 ) E ( 8 ) cos 8 d 8 

While Cheng [12] and Collin and Zucker [11] give expressions for D(8) 

in terms of matrices (quadratic forms), this is only done for arrays 

with quite general excitation. The fact that an array is 

symmetrically or anti-symmetrically excited should obviously be 

exploited in order to lower the dimension of any analysis or synthesis 

work. It is surprisingly cumbersome to attempt to simplify the 

general results in [11] and [12] to the present special case. 
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A direct first principle approach applying expressions (9) and (10) to 

(16) yields the required results with less effort. Explicit 

expressions for these desired quantities do not appear to be available 

in the literature, and are therefore derived here. 

Consider the case of symmetrical excitation. 

density term 

From ( 9) , the power 

* 
N 

cos [ (2n-1) ~ ] 
N 

* cos [C2n-1) ~ ] } E (I)J)E (ljJ) { I a } { I a s s n=1 n n=1 n 

N N 
* cos [C2m-1) ~] cos [C2n-1) ~ ] I I a a ( 1 7) 

m=1 n=1 m n 

If an NxN matrix [A ] = {as } with m,n = 
s mn 1 ,2, •••N, with elements given 

by s a mn cos[(2m-1) ~ ]cos[C2n-1) ~ ], is defined, then (17) can be 

written as 

* E (I)J)E (I)J) s s 

The result (17) can be used in the denominator of (16). Thus, 

'IT/2 
( I * I I I 

J Es(e )Es(e )cose de 

-'IT/2 

with 

.'IT/2 
( 
J 

I 

[ kd sine cos ( 2m-1) 
2 

-'IT/2 

N N 

I L a 
m=1 n=1 m 

a* bs 
n mn 

I 

]cos[C2n-1) kd sine 
2 

I I 

]cose cte 

( 1 8) 

( 1 9) 
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Expansion of the indexed cosine terms as the sums of complex 

exponentials enables the integral to be evaluated in closed form as, 

sinc[Cn+m-1)kd] + sinc[(n-m)kd] (20) 

where sine x sin x/x. 

A matrix [B] is now defined to be [B ] = {bs }, m,n = 1,2, •••N. The 
s s mn 

directivity of this symmetrically excited linear array of 2N elements, 

in direction e (or equivalently$= kd sine), can therefore be written 

as the ratio of quadratic forms, 

D ( 8) 
s 

( 21 ) 

For the case of an anti -symmetrically excited array the derivation 

follows the same lines as that just compl.eted, except that the cosine 

functions with indexed arguments in (17) and (19) are replaced by sine 

functions. Hence, with 

d a mn 

sinc[Cn-m)kd] - sinc[(n+m-1)kd] 

m,n 1,2,···N 

( 22) 
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The directivity in direction 8 for the anti -symmetrically excited 

array is given by, 

2(Jf[Ad)[J] 

(J]T(Bd](J] 
( 23) 

The matrices [A] in either of the above cases can be written in terms 

of the radiation vectors as, 

2.2.4 Power Pattern and Excitation Efficiency 

The symmetric excitation will always produce a pattern with a peak at 

8 ~ 8
0 

= 0, the anti-symmetric excitation a pattern with peaks at 

8 = ±8
0

, the 8
0 

value depending on the particular excitations and 

element spacings selected. If [A0
] is the matrix [A] evaluated at 

8 = 8
0

, then the normalised power pattern is, 

P( 8) 
(J]T(A][J] 

[J]T[Ao)[J] 
(24) 

Since for the symmetric case the pattern peak occurs at 8 = 0, the 

peak directivity is found from examination of (17) and (21) to be, 

( 25) 
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If the array is uniformly excited, the elements of the excitation 

vector are all unity, and the numerator of (25) becomes 2N2 • The 

denominator reduces to a sum of all the elements of [ss]. and (25) 

therefore becomes, 

N N 
I I (26) 

m=1 n=1 

The excitation efficiency is then, 

(27) 

A similar quantity can be defined for the difference pattern. In this 

case the co-phasal excitation set which, for a given array size, 

provides the maximum possible value for the directivity of the 

difference pattern peak, is not a uniform distribution. But suppose 

that this maximum value is D~ax and occurs at an 

if the maximum directivity of the array being 

8 = 80 , the excitation efficiency is 

angle 8 = 8p. Then 

evaluated is D~ at 

(28) 

It is also possible to define an excitation efficiency for the 

difference array in terms of 

size as, 

Dmax for a uniform sum array of the same 
s 

(29) 
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2.2.5 Array Excitation Tolerance Sensitivity 

In the engineering design problem an important question is that 

concerning the sensi ti vi ty of a particular array excitation 

synthesised. Since the practical realisation of the excitation [J] is 

never exact, it is important to ascertain how such imperfections will 

effect the array factor E($). If the smallest error in [J] shifts the 

resulting E($) far off the desired one, then the synthesis is not an 

acceptable one from an engineering point of view, even if it is exact. 

The tolerance sensitivity S is defined as the ratio, 

s = 
[J]T[J] 

[J]T[A][J] 

It is important to realise that, since [A] is dependent on e, so is S. 

The minimum value of S possible is 1/2N [11, p. 197]. 

2.2.6 Array Q-Factor 

The Q-Factor of an array is defined by [11, p. 200] 

Q 
[J]T[J] 

[J]T[B] [J] 
( 30) 

From this definition it follows that Q = SD. Since it is proportional 

to S, and yet independent of pattern angle, it is widely used as a 

measure of array realisability. A constraint on the Q-factor to a 

reasonably low value is equivalent to restricting the design within a 

practical tolerance [ 12]. A very complete discussion on the concept 

of a Q~factor for antennas is given by Rhodes [13], who shows that the 

array Q is proportional to the "observable" time-average electric and 

magnetic stored energies. By "observable" is meant those portions of 

the stored energies which are not identical at all frequencies. 
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Thus a large Q implies excessive stored energy. For co"""phasal 

excitations and inter-elements greater than half a wavelength, the 

Q..::,factors are all fairly close to unity. 

rapidly to high values for smaller spacings. 

2.2.7 Difference Slope Parameters 

It can however increase 

As with directivity, for an array of isotropic sources, the boresight 

slope is entirely dependent on the array factor, 

N 
2 I an sin[(2n-1) ~ 

n=1 

The total length of an array of 2N elements and interelement spacing d 

is L = (2N-1)d. The normalised angle a defined in Section 2.1.3 is 

therefore a= (2N-1)kd sine. So the relationship between $and a is 

simply a= (2N-1)$. 

From equation (2), and the expression for the array factor Ed($), the 

difference slope is 

Kd 
ClEd 

Cla 
0 a = 

ClEd Cl$ 

Cl$ Cla 
$ 0 

N 
I ( 2n-1) a I (2N-1) 

n=1 n 

Hence ( 31 ) 



where [K) ( 2N-1) 

1 
3 
7 
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(2N-1) 

(32) 

Similarly, an expression for the normalised difference slope can be 

derived from equations (3) and (23). It then follows, after some 

mathematical manipulation that, 

N 
l: ( 2n-1) a 

n=1 
n 

K 

( 2N-1) I 2[J]T[Bd][J] 

[K)T[J) 
Therefore K ( 33) 

I 2[J]T[Bd] [J] 

Inspection of equation (31) then reveals that the two slope parameters 

are related as, 

K ( 34) 

This gives a normalised difference slope factor for discrete arrays 

which is consistent with the original definition given by Kirkpatrick 

[5] for continuous line-source distributions. The equation (33) can 

also be used to find, for a given element number 2N and spacing d (the 

effects of spacing d being represented in matrix [Bd]), that set of 

excitations which provides the maximum value of K possible. If this 

maximum value is K
0

, the value of Kr for any prescribed set of 

excitations on the same array is then simply 

K 
r 

K/K 
0 

(35) 
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Equations (31) to (34) prove to be extremely convenient for evaluating 

the difference distributions to be discussed later in this thesis. As 

they are not set down or derived elsewhere in the open literature, 

they have been described in some detail here. 
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CHAPTER 3 

REVIEW OF MONOPULSE ARRAY SYNTHESIS 

3.1 INTRODUCTORY REMARKS 

The antenna array synthesis problem can be succintly stated as one of 

finding the excitation [J] that will produce a radiation-pattern E(~) 

with certain performance indices maximised or constrained, and subject 

to specified (e.g. sidelobe level) constraints on the pattern and even 

the excitations themselves. Such constraints cannot be completely 

arbitrary of course, and must be consistent with the basic physical 

properties of the array. 

As was previously stated, the general shaped beam synthesis problem is 

not being considered here. Here E( ~) must for the sum pattern case 

have a single main lobe, while for the difference mode two adjacent 

beams separated by a deep broadside null are required. In both 

instances high directivity and low sidelobes is- the objective. 

As far as high efficiency, low sidelobe array distributions are. 

concerned, a number of important general rules can be stated. Although 

these arise from the studies reported in literature to be reviewed in 

the remaining sections of this chapter, they will nevertheless be 

highlighted at this stage: 

(i) It is the zeros of the array space factor that control both the 

sidelobe level and envelope. 

(ii) The aperture stored energy or Q (and the accompanying 

sensi ti vi ty to errors) depends on the shape of the aperture 

distribution and not just the edge taper (pedestal height). 
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(iii) A low Q, low tolerance sensitivity distribution requires an 

array space factor with a far out sidelobe envelope taper of 

1/u, where u = (d/A)sine. A more shallow taper gives a higher 

Q and tolerance sensitivity, while envelope decays faster than 

1/u can only be obtained at the cost of increased beamwidth and 

lower directivity (decrease in excitation efficiency). 

(iv) Aperture distri·butions which begin to increase in amplitude 

near the array edges ("edge brightening") are undesirable and 

difficult to implement. 

Array synthesis is, from a mathematical point of view, a problem of 

optimisation theory, and much current work adopts this approach. It 

can on the other hand in certain cases also be approached from the 

point of view of approximation theory. The early work (before the 

advent of the ubiquitous computer) was based almost entirely on such 

considerations, and research in this area continues. Optimisation and 

approximation theory are disciplines which are of course inextricably 

linked, though this connection is not always recognised in the array 

antenna area. The present chapter will therefore use formulations 

which serve to demonstrate this connect~on, in addition to providing 

an overall review of applicable synthesis methods. In order that this 

thesis be somewhat self~contained, a summary of pertinent concepts 

from optimisation and approximation theory is given in Appendix I. 
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3.2 SUM PATTERN SYNTHESIS 

3. 2. 1 Maximum Directivity for Fixed Spacing and Element Number 

Consider an array with a given number of elements and a fixed spacing 

between elements, and assume that the element excitations [J] 
necessary for maximisation of the directivity in the broadside 

direction are desired. The directivity can be written as the ratio of 

two quadratic forms [Chap. 2, Eqn. (21)], with matrices [As] and [ss] 

Hermitian, and [ss] in addition positive-definite. Such properties 

enable the desired excitations to b~ obtained directly as the solution 

of, 

[F ) 
s 

(1) 

with [Fs] evaluated in the broadside direction. Results of such 

computations have been considered by Cheng [1], Ma [2] , Pritchard 

[3], Lo et.al. [4], and Hansen [5]. Hansen [5, Fig. 2] has shown that 

for spacings above a half-wavelength, the maximum directivity is 

almost identically that obtained with the elements excited with 

uniform amplitude and phase. For smaller spacings the maximum 

directivity obtainable is greater than that of a uniform array; this 

phenomenon is_ called superdirecti vi ty. However, the excitations are 

extremely large, have large oscillatory variations in amplitude and 

phase from one element to another [2, p. 162], and are always 

associated with an enormously large Q [4] and hence tolerance 

sensitivity. 

prohibitive, 

For this reason fabrication difficulties are usually 

and superdirecti vi ty avoided in most instances. 

Experimentally it is simply not easy to produce an array. with a 

directivity much in excess of that produced by a uniform array. 
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3.2.2 Dolph~Chebyshev Synthesis 

Rather than maximise the directivity of the array, consider instead 

the problem of minimisation of beamwidth; the two approaches are not 

necessarily equivalent. Beamwidth minimisation subject to a 

constraint on the sidelobe ratio is the classic array synthesis 

prQblem_solved by C.L. Dolph in his monumental 1946 paper [6]. The 

underlying argument behind Dolph's approach has been put concisely by 

Hansen [5]: 

"A symmetrically tapered (amplitude) distribution over the 

array •••••.• is associated with a pattern having 

sidelobes than those of the uniform (amplitude) 

Lowering the sidelobes broadens the beamwidth .•••.• 

lower 

array. 

Some 

improvement in both beamwidth and efficiency is obtained by 

raising the farther out sidelobes. Intuitively one might 

expect equal level sidelobes to be optimum for a given 

sidelobe level". 

In order to synthesize such a pattern for broadside arrays with 

inter element spacing greater than or equal to a half~wa velength, Dolph 

made use of the Chebyshev polynomials. The latter, denoted by Tm(x), 

where m is the order of the polynomial, have oscillations of unit 

amplitude in the range -"1 < x .s_ 1, while outside this range they 

become monotonically large. Furthermore, Tm (x) has m zeros, all 

within the range ~1 < x < 1. In order to obtain a correspondence 

between the polynomial and array space factor, part of the x > 1 

region is mapped onto one side of the main beam while the oscillatory 

portion of the polynomial is mapped out once onto the sidelobes on one 

side of the main beam. Since an array of m elements has m-1 zeros, a 

Chebyshev polynomial of order m~1 must be used. The transformation 

from Tm.- 1(x) to array space factor Es(I/J) is x = x
0

cos(ljl/2), where 

1/1 = kd sine. If the sidelobe ratio is denoted by SLR, then 
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cosh { m- 1 Q.n [SLR + / SLR
2 

- 1 J } 

-1 
cosh { cosh (SLR) 

m-1 

and the array space factor is, 

E ( tjl) 
s 

( 2) 

( 3) 

From these, expressions for computing the required excitations may be 

derived. Such formulas have been derived by Stegen [8,12], van der 

Maas [9], Barbiere [10] and Bresler [17]. With current computational 

capabilities those due to Stegen [8] can be used directly. 

For an array of m 2N elements, the excitations are given by [8], 

a 
n 

N""1 
{ SLR + 2 \' T [ ( p1r ) ]cos [ ( 2n-1 ) p1r J } N L 2N~1 xocos 2N 2N 

p=1 
( 4) 

for n = 1 , 2 , • • • • • N. Care should be taken with the computations and 

evaluation of the Chebyshev polynomials. For large arrays or low 

sidelobes multiple precision is required in performing the summation 

in (4). 

Dolph was able to prove [6] that the array so synthesised is optimum 

in the sense that for the specified sidelobe ratio and element number, 

the beamwidth (between first nulls) is the narrowest possible. 

Alternatively, for a specified first-null beamwidth, the sidelobe 

level is the lowest obtainable from the given array geometry. This 

means that it is impossible to find another set of excitation 

coefficients yielding better performance, in both beamwidth and 

sidelobe ratio, for the g.i ven element number and uniform spacing d. 



36 

It represents a closed form solution to the optimisation problem of 

beamwi dth minimisation subject to side lobe constraints. The pattern 

of a 20~element Dolph~Chebyshev with a 30 dB sidelobe ratio is 

illustrated in Fig. 3.1. 

The original work of Dolph [6] is only valid for the case 

A./2 < d < 
-'1 cos (-1/x ) 

0 

1T 

Though this is possibly the most widely used case, it should be added 

that Riblet [7] showed how this restriction can be lifted, but only 

for an array of an odd number of elements. Dolph's transformation is 

such that for d < A./2 the pattern no longer contains the maximum 

possible number of sidelobes (the complete oscillatory region lxl ~ 1 

is not utilised) and hence the beamwidth wil1 not be at its minimum. 

The alternative transformation between x and ~. due to Riblet, 

rectifies this matter. Algorithms for determining the excitations of 

such arrays have been given by Brown [11,13], Drane [14,15] and Salzer 

[ 1 6 J. 

The Dolph-Chebyshev theory is indispensable and serves as a firm 

foundation for sum pattern synthesis. It provides a means of 

understanding array principles and indicates upper bounds on the 

performance that can be achieved. However, it does have a number of 

drawbacks as regards its use as a practical distribution. These are 

discussed below. 

Consider a Dolph-Chebyshev array of 2N = 20 elements. The required 

excitations, obtained using equation ( 4), are shown in Table 3.1 for 

sidelobe ratios of 20 dB, 30 dB and 40 dB. These indicate the 

tendency of equal sidelobe level distributions such as the 

Dolph-Chebyshev to have large peaks at the array ends (a non-monotonic 

distribution) for certain element number/SLR combinations. For a given 
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number of elements 2N there will be a certain SLR for which the 

distribution of excitations is "just" monotonic. If the number of 

elements is increased but this same SLR is desired, the required 

distribution will be non-monotonic. Increasing the SLR (lower 

sidelobes) will allow a monotonic distribution once more. For the 

example shown in Table 3.1, the distribution is already non-monotonic 

for a sidelobe ratio of 30 dB, while for a 20 dB sidelobe ratio the 

edge excitation is larger than the centre one. The peaks in the 

distribution at the array ends are not only disadvantageous in that 

they are difficult to implement and make an array which is realised 

more susceptible to edge effects, but they are also indicative of an 

increase in the Q and tolerance sensitivity [24]. 

Optimum beamwidth arrays do not necessarily provide optimum 

directivity, especially if the array is large [18, p. 91]. To see 

this, consider a Dolph""'Chebyshev array with a fixed sidelobe ratio. 

Let the array size increase (increase the element number with the 

spacing held fixed), at each stage keeping the sidelobe ratio constant 

and normalising the radiation pattern. This is permissible because 

the directivity to be found at each stage is only dependent on the 

angular distribution of the radiation and not on any absolute levels. 

It is then observed that the denominator of the directivity expression 

is dominated by the power in the sidelobes after a certain array size 

is reached, and remains roughly constant thereafter. Thus it is found 

that the Dolph-Chebyshev distribution has a directivity limit [12] 

because of its constant sidelobe level property, and for a given array 

size and maximum sidelobe level, may not be optimum from a directivity 

point of view. To remove this limitation a taper must be incorporated 

into the far-out sidelobes. Array distributions which will do this 

are taken up in the following two sections. It should be mentioned 

that there may be other reasons, in addition to that given above, why 

low tapering sidelobes are desired, especially if the antenna is to 

operate in a hostile environment [19]. 
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Element excitations for ·Dolph-Chebyshev distributions 

providing the sidelobe .ratios indicated, for an array of 

20 elements. 

SLR 20 dB 30 dB 40 dB 

a, 1.00000 1.00000 1. 00000 

a2 0.98146 0.97010 0.95869 

a3 0.94516 0.91243 0.88030 

a4 0. 89261 0.83102 0.77266 

a5 0.82596 0.73147 0.64612 

a6 0.74789 0.62034 0.51211 

a7 0.66149 0. 50461 0.38166 

a8 0.57004 0.39104 0.26408 

a9 0.47689 0.28558 0.16597 

a10 1.02812 0. 32561 o. 11820 
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3.2.3 Continuous Line-Source Distributions for Sum Patterns 

Although arrays of discrete radiating elements are being dealt with in 

this work, no review of synthesis techniques would be complete without 

reference to similar work on the synthesis of continuous line-source 

distributions, especially the work of Taylor [20]. Line~source 

synthesis is important in the array context for several reasons. 

Firstly, general principles can be learned which are equally 

applicable to arrays (see Section 3.1). Secondly, continuous 

distributions can be sampled for use with arrays. Furthermore, the 

direct discrete array synthesis methods to be discussed in the 

following sub-section have developed out of the theory on continuous 

distributions. 

Perhaps the most startling result on continuous distributions is that 

obtained by Bouwkamp and de Bruyn [21], who showed that with a 

continuous line-source of fixed length it is possible (in theory) to 

achieve any desired directivity. However, though this implies that 

there is no limit to the directivity, any directivity increase above 

that obtained from the aperture when it is uniformly excited is 

accompanied by a sharp increase in the nett reactive power required at 

the source to produce it [22], and thus a large Q and sensitivity. 

Practical considerations therefore make it unacceptable, as in the 

case of the unconstrained maximisation of the directivity of the 

discrete array (Section 3. 2.1). To be realisable physically, some 

constraint has to be placed on the proportion of reactive to radiative 

power, or equivalently on the Q. 

It is customary, when dealing with continuous line-source 

distributions, to use the variable u == (L/A)sine, where Lis the 

length of the source. This practice will be followed here. 
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The next question regarding continuous distributions is that of the 

distribution which provides the narrowest beamwidth for a given 

sidelobe level, and vice versa. This was answered by Taylor [20], who 

used the Dolph-Chebyshev theory as starting point. It was indicated 

in Section 3.2.2 that the Chebyshev polynomial Tm~ 1 (x) could be used 

to find the set of excitations which results in the optimum 

relationship between beamwidth and sidelobe ratio for an array of m 

elements. Using an asymptotic relationship for the Chebyshev 

polynomials given by van der Maas [9], Taylor derived the continuous 

equivalent of the Dolph~Chebyshev distribution. This distribution has 

a pattern with all sidelobes of equal level, and is optimum in the 

sense that it provides the narrowest beamwidth for a given sidelobe 

ratio of any non-superdirective distribution. 

Taylor called this the "ideal" line~source distribution. "Ideal" 

because O·f the fact that it is unrealisable, having a singularity at 

each end; a feature indicated by the non""decaying sidelobe levels. 

A solution to this problem was devised by Taylor [20], who recognised 

(and appears to be the first to have done so) that the synthesis 

problem is one of correctly positioning the zeros of the space factor 

(radiation pattern). Taylor observed that close-in zeros should 

maintain their spacings to keep the close-in sidelobes suitably low, 

and keep the beamwidth narrow. But at the same time further out 

sidelobes should decay as 1/u [18, p. 55]. Such sidelobe decay is 

found in the space factor sin nu/nu of a uniform line-source 

distribution, which has zeros at u = ±1 ,±2, ••••• [18, p. 48]. Suppose 

now that the ideal line-source has zeros at u = ±un, n 1,2,3,•••••. 

What Taylor did was to stretch the u scale slightly by a dilation 

factor o slightly greater than unity (so that the close-in zero 

locations are not shifted much) and chosen such that a some point, a 

shifted zero ~ is made to coincide with an integer, say n = n. From 

this transition point, the zeros of the ideal line~source are replaced 

by those of the uniform line-source. That is, the zeros of the new 

pattern are, 

-< n < n 

u 
n > n 
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with a u- == n. 
n 

This pattern has n roughly equal sidelobes, with a 1/u 

sidelobe decay beyond u == n. The corresponding aperture distribution 

is then found as a Fourier series obtained from the above information 

on the zeros [18, p. 58]. The final result is a distribution (the 

Taylor n distribution) which for a given sidelobe ratio gives both a 

narrower beamwidth and higher directivity than any comparable (i.e. 

those with a sidelobe taper) continuous line-source distribution. 

Information relating the sidelobe ratio, dilation factor and n values 

has been given by Hansen [18, p. 57]. Also given are expressions for 

the aperture distribution itself [18, p. 58]. Too large a value for 

n (exactly how large depends on the specified sidelobe ratio) implies 

that the ideal line--source distribution is "being approached too 

closely". The aperture distribution then becomes non-monotonic with 

peaks at the aperture ends (though the singularities of the ideal 

source do not occur), with an accompanying increase in excitation 

tolerances. Usually the n value is selected on the basis of the 

aperture distribution shape and tolerances. 

The Taylor n distribution was generalised by Rhodes [22, pp. 129-137] 

to one dependent on the parameter ii. and an additional one, say \!, 

which controls the taper rate of the sidelobe envelope for a given n. 

A value of \! == '"'1 corresponds to the "ideal" line-source case. If 

\! == 0, the original Taylor ii. distribution results, while\!> 0 

provides sidelobe envelope tapers more rapid than that of the \) 0 

case. 

A third continuous distribution due to Taylor is his one-parameter 

line-source distribution [18, p. 58]. Beginning with the sin TIU/Tiu 

space factor of a uniform line-source, with zeros at ~ == ±n, a new 

set of zeros were defined as ~ == / n2 
+ s2 where the "one-parameter" 

B is real_and greater than zero. From this altered set of zeros a low 

Q distribution is obtained which has a sidelobe taper of 1/u, starting 

at the very first sidelobe, whose level is determined by the value of 

B selected. The decay rate (which is expected, since ~ ~ ±n for 

large n) is the same as that of the Taylor ii. line-source distribution. 
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-Though the zeros of the Taylor one-parameter and n distributions are 

never identical (except for the trivial case when these both reduce to 

the uniform distribution, B = 0 and n = 1, respectively), the n 
distribution roughly speaking selects a design between the ideal and 

one-parameter cases. However, for the same first sidelobe ratio, the 

n distribution has a higher excitation efficiency (and hence 

directivity), and is therefore used more often. The reason for this 

is that the n distribution tends to flatten out at the ends of the 

line source while the one-parameter case does not. 

The Taylor one-parameter distribution was generalised by Bickmore and 

Spellmire, whose work has been reported in [23] and [24], into a 

two-parameter continuous line-source distribution. One of the 

parameters (c), like the B above, selects the starting sidelobe ratio, 

. while the other (say v) selects the rate of decay of the sidelobes. 

These two parameters are completely independent and the space factor 

(radiation pattern) is the Lambda function 

1 
A value of v = 2 yields the Taylor one-parameter distribution and 

v = .... ~ the Taylor "ideal" line-source, while v = > ~ gives sidelobe 

envelope tapers more rapid than 1/u and is correspondingly less 

efficient. 

Hansen [25] comments that for a given set of high directivity/low 

sidelobe requirements, the above distributions are always better than 

the earlier distributions such as cosine-on-a-pedestal, Hamming, and 

so on, and the latter should be regarded as obsolete. 
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3.2.4 Tapered-Sidelobe Sum Pattern Distributions for Discrete Arrays 

It is clear from the previous section that the theory of continuous 

aperture line--source distributions for sum patterns is extensive and 

well-developed. If these are to be used with arrays of discrete 

elements, some form of discretisization process must be performed. 

The earliest methods simply sampled the continuous distributions at 

the element locations. Unless the arrays are very large, however, a 

badly degraded pattern may be obtained. An alternative technique was 

proposed by Winter [26]. The initial array element excitations are 

determined by sampling of the continuous distribution and then 

iteratively adjusting these through Newton~Raphson minimisation of an 

error expression comprised of the sum of the squares of the 

differences between calculated (discrete) and specified (continuous) 

levels for a selected number of sidelobes. 

A more sophisticated yet direct alternative method was devised by 

Elliott [27]. This method matches zeros. Instead of sampling the 

continuous aperture distribution, one requires that the pat tern zeros 

of the continuous case also occur in the starting pattern of the 

discrete case. If the resulting pattern does not meet the design 

goal, a perturbation procedure has to be applied to the discrete 

distribution in order to bring the final pattern within sp~cification. 

As recently as 1982 Hansen [2.4] could correctly state that there were 

"no discrete distributions that yield a highly efficient tapered 

sidelobe pattern" directly and that in designing most arrays a 

continuous distribution had to be quanti sed in some manner. For the 

narrow beam, low sidelobe sum pattern, this is no longer the case as a 

result of an ingenious approach devised by Villeneuve [28]. The method 

utilises the important principle of synthesising aperture 

distributions - that of correct positioning of the space factor zeros. 

The Villeneuve distribution is the discrete equivalent of the highly 

desirable Taylor n distribution. The array element excitations can be 

obtained in a direct manner without the need for any form of 

approximation, sampling or perturbation procedures. In order to 

describe the Villeneuve procedure, consider an array of 2N elements 
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with the maximum sidelobe level specified. The first step consists of 

determining the space factor zeros for a Dolph-Chebyshev distribution 

with the same sidelobe level. 

distribution be denoted by ~n• n 

Let the zeros of this Chebyshev 

±1 , ±2, • • • ±( N-1), N. Furthermore, 

let ~on be the zeros of a uniform array of 2N elements, given by 

lJJon = n 1T /N, for the same range of n as above. Now move the zeros of 

the Chebyshev pattern so that for n ~ n, where n is some selected 

zero, they coincide with those of the uniform array ~on· In addition, 

multiply each of the first n-1 Chebyshev zeros by a dilation factor 
... 

a = n 21T/2N ~- . Thus the final zeros of the array are, 
n 

-

{ 
a ~n n < n - 1 

I 

~n -
~on n > n 

( 5) 

From these altered zeros, the final element excitations are obtained. 

Villeneuve [28] has devised efficient ways of doing this. These 

excitations are those of a discrete "Taylor-like" distribution, with 

the close~in sidelobes close to the design maximum specified, and the 

further out ones decreasing at the rate 1 /u (u = d/A sinS for the 

discrete case) in amplitude as their position becomes more remote from 

the· main beam. 

design variable. 

As with the continuous Taylor distribution, n is a 

The Villeneuve distribution is of course also 

applicable to the case of an odd number (2N+1) of array elements. 

A comparison of the excitation efficiencies of the Villeneuve 

(discrete) and Taylor (continuous) distributions has been published by 

Hansen [29]. 

For an array of 2N elements, with a first sidelobe ratio SLR, the 

symmetrical element excitations ap, p = 1 ,2, • • ·N, are determined as 

follows [28]: 
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The above technique is now generally referred to as the Villeneuve n 

distribution [29]. An example of such a distribution, along with its 

associated radiation pattern, is shown in Fig. 3.2 for the purposes of 

illustration. 
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3.3 DIFFERENCE PATTERN SYNTHESIS 

3. 3. 1 Introduction 

Most of the voluminous literature on the synthesis of linear arrays 

deals with sum patterns. Many of these principles apply equally well 

to the synthesis of difference patterns of course. However, 

additional performance indices (e.g. difference slope) are important, 

and alternative array distributions are required to provide high 

performance difference patterns. Preferably, a sequence of results 

paralleling that for sum patterns, analogous to Dolph-Chebyshev 
-synthesis and the Villeneuve n distribution method, is desired. Up to 

the present time such has not been the case, difference pattern array 

synthesis not having reached the same level of completeness as that 

for the sum mode, especially from an antenna theory point of view. In 

spite of this, useful work has been reported; this will be reviewed in 

the following three short subsections. 

3.3.2 Maximum Directivity for Fixed Spacing and Element Number 

One figure of merit of a difference pattern is the directivity in the 

direction of the beam maxima. Such a maximisation, using a method 

similar to that discussed in Section ( 3. 2.1) for sum patterns, has 

been briefly mentioned by Ma [2, p. 170] but no details have been 

published. As in that case, however, this is a case of unconstrained 

synthesis with its associated problems. Once more, no control over 

the sidelobes is possible, making it unsuitable for most applications 

for which monopulse arrays are needed. 
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Discrete Array Synthesis Subject to Sidelobe Constraints 

A difference pattern is called optimum "in the Dolph-Chebyshev sense" 

if it has the largest normalised slope on boresight (i.e. in the 

direction of ·the pattern null) and narrowest beamwidth for a specified 

sidelobe ratio, given the fixed number of array elements and 

interelement spacing. Price and Hyneman [30] demonstrated that array 

difference patterns with equal amplitude sidelobes are optimum in this 

sense, in that they display both the lowest sidelobe ratio for a given 

difference lobe beamwidth as well as the largest slope on boresight. 

They then proceeded to list the properties required of a polynomial 

which could be used to find the element excitations for such an 

optimum difference pattern. Having concluded that "no known 

polynomial has the required characteristics" [30,~ p. 569], they 

proceeded to develop a method based on a modification (which they 

called a transmutation) of a Dolph~Chebyshev excitation function for 

sum patterns. 

performance. 

The result is, however, a pattern with below-optimum 

More recently, Balakrishnan and Ramakrishna [31], in the light of 

appropriate polynomials not being available, devised a numerical 

method to obtain difference mode patterns with an eq~iripple sidelobe 

structure. They reduce the problem of obtaining the optimum 

excitations to a minimax problem, and solve this using a modified 

Remes exchange algorithm. 

The above two papers appear to be the only ones available which 

attempt to tackle specifically the discrete array difference pattern 

problem directly. 
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3.3.4 Continuous Line-Source Distributions for Difference Patterns 

Clearly work on the synthesis of discrete array distributions for 

difference patterns has been scarce in the open literature. Somewhat 

more has appeared on the subject of continuous aperture distributions. 

Kirkpatrick [32] in 1953, by a straightforward application of the 

calculus of variations, showed that the maximum·normalised difference 

slope (K) on boresight is produced by a line-source with a linear odd 

distribution such as that shown in Fig. (3.3). Thereafter Hannan [33] 

showed that the real line-source distribution which provides maximum 

peak directivity of the difference . beam is a truncated sine curve 

having an edge taper of 2.15 dB relative to its maximum value. This 

distribution is illustrated in Fig. 3.4. Furthermore, it was shown 

that the directivity of the line-source with this difference 

distribution is 2.15 dB below that of the same 1 ine-source operated 

for maximum directivity in the sum mode (uniform distribution). Nester 

[34] considered the maximisation of the sensitivity factor (Ks), 

assuming that the difference distribution was obtained from that for 

the sum by a simple phase reversal of one half of the sum distribution 

(i.e. a two~module feed network). The line~source distribution which 

maximises this factor is given [34] in Fig. 3.5. 

Powers [35] obtained a difference space factor Lv,c(u) by 

[26] differentiating the Bickmore-Spellmire space factor 

where u = (LIA)sinS, L being the length of the continuous line source. 

The rate of sidelobe decay for large u, as well as the space factor 

zero positions (and hence difference lobe beamwidths), can be 

controlled by adjusting v and c, though these are not independent. The 

synthesis of the line-source distribution is carried out by taking the 

Fourier transform of the space factor Lv,c(u) [35]. The linear odd 

distribution of Kirkpatrick [ 32] is a special case of the present 

distribution, though its property would not be obvious from the 

analysis of Powers had it not been known previously anyway. 
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In essence the Powers distribution allows one to draw up curves of 

slope at boresight, and sidelobe ratio, versus the two parameters v 

and c. At no stage however is one assured that, for a required 

sidelobe ratio, the distribution gives the maximum boresight slope or 

difference lobe beamwidths, or vice versa. 

By far the most useful (and most used) continuous line source 

distributions 

[ 36]. Bayliss 

for difference patterns 

took the derivative 

are those due to 

of Taylor's "ideal" 

line-source space factor, to obtain a space factor 

Bayliss 

(sum) 

In order to obtain from this a difference space factor with the first 

n sidelobes close to some specified level, after which the sidelobes 

taper off as 1/u, Bayliss undertook a parametric study in which the 

zeros and A were numerically adjusted for a number of sidelobe ratio 

values. Fourth order fitted polynomials for A, the difference lobe 

peak position, and the first four zeros (the others following from 

these) as functions of the required sidelobe ratio were obtained from 

the nu.rnerical data [36]. The Bayliss distribution- can be obtained 

from the final space factor zero positions in the form of a Fourier 

series, and gives near-optimum boresight difference slope for the 

specified sidelobe level. It is the difference pattern analogue of 

the Taylor distribution, though not as elegant because of the 

numerical Aroot adjustment required for each new sidelobe rat1o 

specified. 
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Finally, Lopez [32] has reported a method of obtaining the line~source 

distribution which provides maximum difference slope ratio (defined as 

the ratio the normalised difference slope of the line source to that 

of the linear odd excitation of Fig. 3. 3), and this subject to a 

sidelobe ratio constraint. The method is entirely numerical. 

Should any of the above continuous distributions be used with discrete 

arrays, some form of sampling, as discussed for sum distributions in 

Section 3.2.4, has to be used, and with the associated problems. 



54 

3.4 SOME GENERAL METHODS OF ARRAY SYNTHESIS 

Numerous methods have been devised for handling the 

arbitrarily-shaped""beam array synthesis problem. These are all of a 

numerical nature, involving some form of· iterative procedure. In most 

cases they utilise for the array problem some general mathematical 

constrained optimisation technique. Such methods differ principally 

in the following respects: 

( i) The way in which the array problem is formulated as such an 

optimisation problem (e.g. the choice of performance indices to 

be minimised or maximised). 

C::.i) The type of constraints which are applied (e.g. limited Q, 

maximum sidelobe levels allowed). 

(iii) The particular optimisation algorithm used (e.g. linear 

programming, quadratic programming, use of ratios of Hermitian 

quadratic forms). 

A good summary of such methods has been given by Hansen [24, 

pp. 48~54]. Detailed overviews have also been given by Cheng [1] and 

Lo et. al. [4], as well as Sanzgiri and Butler [38]. In order to make 

this brief section yet complete, a number of further papers deserve or 

require spec~al reference. Those by Elliott et. al. [39,40], though 

of a numerical nature, are firmly based on the important principle of 

correct space factor zero plat:::ement mentioned in Section 3. 2. Those 

by Einarsson [41], Owen and Mason [42], and Ng et. al. [43] are 

relevant to later sections of this work. 

Any of the above numerical methods could be used for the synthesis of 

Sw'Tl and difference patterns with high directivity and low sidelobes. 

But more direct methods are preferred, if they are indeed available. 

Reasons for this are presented in Section 3.6. 
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3.5 SIMULTANEOUS SYNTHESIS OF SUM AND DIFFERENCE PATTERNS 

3. 5.1 The Problem of Simultaneous Synthesis 

Assume for the moment that it is possible to synthesise separately 

both sum and difference array distributions with performance that can 

be classified as optimum. If feed networks of the type shown in Fig. 

3.6(a) are available for providing independent excitations for the two 

modes of operation, then these separate optimum distributions should 

be utilised. (The network shown should be regarded as schematic. Its 

realisation in hardware, though providing the same desired response, 

is more often as shown in Fig. 3.6(b), which is called a tandem feed 

network [44]). The latter allows both modes to be independently 

optimised, but its realisation and fabrication is expensive). Such 

networks will henceforth be referred to here as independent feed 

networks. They represent the upper bounds as regards the monopulse 

array performance, and will be referred to as the "ideal" solutions. 

In many cases the performance requirements of an array are such that 

the complexity and expense of such feed networks are justified. But 

there are a large number of applications and/or array types (e.g. 

slotted waveguide arrays) for which a simpler (relatively speaking) 

feed network is desirable which cannot provide independent sum and 

difference excitations. In such cases there has to be a compromise 

between the sum and difference performance, the ideal solution not 

being achievable. 

If the feed network of Fig. 3.6 is at one extreme, then the two~module 

network of Fig. 3.7 is at the other. It does not allow any 

independence between sum and difference excitations. Once the sum 

excitations are selected, the difference distribution is fixed, and 

vice versa. While the two-module feed arrangement is attractive 

because of its simplicity, the resulting antenna pattern performance 

may leave much to be desired, and is in many cases unacceptable. 
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+ + 

(a). 

(b). 

FIGURE 3.6(&) SCHEMATIC DIAGRAM OF A MONOPULSE LINEAR ARRAY 
WITH SEPARATE SETS OF ELEMENT EXCITATIONS FOR 
THE SUM AND DIFFERENCE MODES (INDEPENDENT NETWORK) 

(b) POSSIBLE REALISATION OF AN INDEPENDENT NETWORK l44l 
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COMPARATOR 
NETWORK 

FIGURE 3.7 SERIES FED MONOPULSE LINEAR ARRAY WITH SINGLE 
SET OF ARRAY WEIGHTS FOR BOTH SUM AND DIFFERENCE 
(Two-MODULE NETWORK) SIX ELEMENT ARRAY SHOWN FOR 
SIMPLICITY 
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In order to illustrate this, consider a linear array distribution 

designed for good sum pattern performance. In particular, observe the 

pattern of a 20 element; 30 dB sidelobe ratio, Villeneuve n = 4 array 

with interelement spacing d Al2, shown in Fig. 3.8(a). The 

corresponding difference pattern obtained with these element 

excitations is shown in Fig. 3. 8(b). This difference pattern has 

high sidelobes. Similarly, Fig. 3.9 shows the patterns of a 20 element 

array designed for a desired difference pattern performance, using a 

30 dB sidelobe ratio, modified '""' Zolotarev (n = 4) distribution. 

(These are developed in Chapter 6). The poor sum pattern performance 

is obvious. 

Also shown in the above figures are the element excitations 

appropriate to each pattern. The reason for the bad difference and 

sum performance in the above two cases, respectively, is clear if 

these excitations are examined. Consider the case in Fig. 3.8(b). 

There is an abrupt discontinuity at the array centre for this 

distribution, resulting in the high difference pattern sidelobes. 

Likewise, for the sum distribution of Fig. 3.9(b) there are dips in 

the excitations at the array centre, which inevitably leads to high 

sum pattern sidelobes. 

At this point two options are available: 

(a) That a feed network of complexity intermediate between the . 
independent and two~module types be used, in order to allow some 

degree of independence (though restricted) between the 

excitations of the two modes of operation. In this manner it may 

be possible to obtain a performance compromise which is 

sufficiently close to ideal. 

(b) That the two-module feed be used and a compromise reached to 

obtain less than ideal but yet marginally acceptable sum and 

difference pattern performance. 
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3.5.2 The Two~Module Feed Network Compromise Solution 

Nester [34] considers what is equivalent to the two-module feed 

network case, but which applies to continuous apertures 

(line-sources). The angular sensi ti vi ty Ks (product of sum 

directivity and difference slope) is maximised using a variational 

technique, without constraints. Optimum performance in this instance 

is provided by the distributions shown in Fig. 3. 5. The difference 

slope factor Kd is 0. 3 dB below the maximum obtainable with a line 

source (see Section 3.3.4), and the sum pattern directivity is 0.3 dB 

less than its maximum value. More severe, as far as low sidelobe 

array synthesis is concerned, is the fact that the sum sidelobe ratio 

is only 8.4 dB, while the largest sidelobe of the difference pattern 

is only 11.3 dB below the difference peak. Furthermore, when applying 

these continuous distributions to discrete arrays, the same 

quantisation problems will arise as described in Section 3.2. This is 

clearly not a solution to the simultaneous synthesis problem at hand. 

A compromise solution also involving a two~module feed network is that 

discussed by Schaffner et. al. [45]. 

slotted waveguide array is examined. 

The design of a monopulse 

Although the solution is 

specifically meant for this type of array configuration, the procedure 

adopted is effectively one of taking the average of the excitations 

which separately provide optimal sum and difference patterns. 

While both [34] and [45] consider particular compromise solutions, no 

definite procedure for finding the best compromise when using the 

two-module network is given. 
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3.5.3 Intermediate Network Solutions 

By intermediate networks is meant those of complexity lying between 

the completely independent and two..,module types. One such is the 

four-module network mentioned by Lopez [ 44], and illustrated 

schematically in Fig. 3.6(b). Clearly, such a network attempts to 

"smooth out" the central discontinuity of the difference distribution 

in a stair step sense. To do this each half of the network is divided 

into two sub-arrays, with different sub-array weightings for the sum 

and difference modes. This is equivalent to saying that the increased 

network complexity allows a limited degree of independence. Extending 

this sub-'arraying process by increasing the number of modules will 

naturally increase the degree of independence achievable. If the 

number of modules equals the number of elements complete independence 

between the su11 and difference excitations is obtained; but this is 

then just the independent network of Fig. 3.6 anyway. 

As with the two-module compromise solution, no information on a design 

algorithm for an n'"'module, or equivalent, intermediate network has 

appeared in the literature. This problem is taken up in Chapter 8. 
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3.6 EXACT (CLOSED FORM) VERSUS NUMERICAL TECHNIQUES 

In engineering, just what is meant by exact or closed form as opposed 

to numerical techniques is seldom precisely defined. The traditional 

approach is to consider to be exact any technique described entirely 

in terms of accepted mathematical functions irrespective of how 

obscure the latter may be. When it comes to obtaining answers from 

such methods of course, some form of numerical manipulation (which may 

be of a reasonably complex nature) is required for evaluating, and 

determining the properties of the functions involved. Indeed, even if 

the above-defined "exact" method uses only the sine function, the 

evaluation of which is performed on a computer using some series 

expansion, it would be equally valid (albeit mundane) to claim that 

the method is a numerical one. 

In order to strengthen the above definition of an exact method, 

restrictions might be placed on the subsequent numerical operations 

"allowed" by the definition. That is, a list of allowed elementary 

operations, (e.g. solution of a set of simultaneous linear equations, 

roots of a polynomial, and so on) can be specified as being within the 

domain of definition of an exact method. However, this does not make 

the definition less arbitrary. 

Clearly, the above possibilities, while perhaps valid descriptions of 

exact methods prior to the advent of computers, are no longer so. This 

difficulty is compounded by the fact that the aim of much of modern 

analysis is to reach a point where computational techniques are 

viable, and the distinction between "exact" and "numerical" cannot 

perhaps be made clear-cut in general, but only for particular cases. 

For the present work therefore, dealing specifically with array 

synthesis, a definition is proposed which does not depend on the 

amount of numerical computation involved but rather focuses on the 

nature of the algorithm itself. 
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A synthesis method will be regarded as exact if: 

(i) Only on termination of the algorithm is the complete set of 

excitations available, and it is the final answer. 

(ii) No initial guesswork on the part of the user of the technique 

is required. 

(iii) Any adjustment of array space factor zeros is done in a 

predetermined manner. 

In other words, at no stage with an exact method is it necessary to 

take an intermediate complete set of excitations, test it to see 

whether the initial bounding specifications are met, and either 

terminate the algorithm or compute a new set of excitations in some 

prescribed fashion. Observe also that while exact methods may 

iteratively determine the excitation of a particular element from 

those previously computed, the full set of excitations is only 

available on termination of the algorithm. Finally, condition (ii) 

eliminates from the menu of exact methods any algorithms which require 

an initial estimate of sidelobe maximum positions, for example, with 

the latter possibly having to be altered at the next stage. 

This definition can be "tested" on the synthesis techniques discussed 

in the preceding sections of this chapter. If this is done, the 

following are "found" to be exact methods for sum synthesis: 

(a) Unconstrained directivity maximisation of discrete arrays. 

(b) Dolph~Chebyshev synthesis of discrete arrays. 

(c) Taylor synthesis of continuous line-source distributions. 

(d) Synthesis of Villeneuve distributions for discrete arrays 

while for difference pat terns the only exact method is the 

near-optimum synthesis of Price and Hyneman. 
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All the other methods fall into the. class of numerical synthesis 

procedures. And these are in fact what are usually considered in the 

antenna community to be exact and numerical synthesis algorithms,· 

respectively, thus establishing the validity of the definitions 

adopted. 

The ideal situation is that for which some, albeit restricted, exact 

synthesis techniques are· available in addition to numerical 

approaches~ For instance, though the numerical constrained 

optimisation methods of Section 2. 2. 5 are extremely powerful, it is 

the study of array behaviour via the exact solutions of Dolph [6], 

Taylor [20] and Villeneuve [28] which gives an indication of how 

various constraints must be specified in the first place and from 

which the array physics can be learned. 

Furthermore, 

obtainable. 

exact methods set bounds on the array performance 

A numerical optimisation method applied to a particular 

synthesis problem may, for example, appear not to be able to bridge 

some performance limitation. The availability of an exact solution 

"close" to such a problem will indicate whether this is due to some 

physical limitation or whether the constraints have simply not been 

properly posed or have been overly restrictive. 

For all numerical methods, some set of initial estimates on the 

optimisation variables is needed. Here the existence of "close" 

closed form solutions provides a "warm start" for the optimisation 

process. 

Most important also is the fact that exact solutions facilitate the 

observance of trends in the performance of an array, a crucial part of 

any design process. General conclusions can be drawn. For example, 

Hansen [29] was able to make useful broad inferences regarding the 

effects of finite source/receiver separation distance on the 

measurement of low sidelobe patterns, since it could confidently be 

stated that "the Taylor n distribution is the only one that needs to 

be considered" for drawing such conclusions. 
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Finally, in defence of the usefulness of exact methods the present 

author would venture to state that, had the computer (necessity that 

it is) been invented before the definition of such elementary "closed 

form" functions as the trigonometric ones, our intuition, so essential 

for innovation, would have been severely limited. There is perhaps a 

parallel here with the comment made by Deschamps [46] with regard to 

the relatively simple geometrical nature of light having been 

recognised before its more complex wave nature: 

" if the (wave) nature of light and Maxwell's equations had 

been known earlier, optical instruments would not have been 

invented so readily!" 
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3.7 MONOPULSE ARRAY SYNTHESIS TECHNIQUES DEVELOPED IN THIS THESIS 

The conventional synthesis methods have been treated in the previous 

sections. Those dealt with in this thesis are summarised here. A 

knowledge of the unconstrained maximum directivity or the maximum 

normalised boresight slope of a difference array of given number of 

discrete elements is useful for evaluating the effectiveness of 

distributions providing patterns with sidelobe constraints. The first 

part of Chapter 4 examines these topics and compares the results with 

those for continuous line~sources. 

There has up to the present time, for difference patterns, been no 

equivalent of the Dolph'"'Chebyshev sum pattern synthesis technique. 

This method provides the information on space factor zeros which is 

crucial to sum array synthesis by correct zero positioning. In 

addition, it provides information on the upper bounds of array 

performance. Chapter 4 of this thesis develops such an exact 

procedure for difference patterns, which utilises the Zolotarev 

polynomials, and which is the difference analogue of Dolph"'"Chebyshev 

sum synthesis. For a specified sidelobe level and array size, this 

technique provides the set of element excitations giving maximum 

normalised boresight slope and minimum difference lobe beamwidths. It 

also provides information on space factor zero locations central to 

the difference synthesis problem in general. Chapter 5 considers the 

computational details associated with Zolotarev polynomial synthesis 

and discusses a number of design tables of practical use given in 

Appendix II. 

The Zolotarev polynomial distribution proves to have a number of 

characteristics similar to its Dolph~Chebyshev counterpart. The space 

factor has sidelobes all at the same level, with the accompanying 

directivity limiting. Constant sidelobes may also not be the envelope 

desired. Furthermore, for certain element number/sidelobe level 

combinations the distribution has an undesirable upswing near the 

array edges. Now sidelobes can be raised or lowered by adjusting the 

relevant space factor zeros. But if some sidelobes are lowered by 
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moving zeros closer together, others will be raised and/or the . main 

beam will broaden. The adjustment of zeros to taper the sidelobes (and 

at the same time remove the other unwanted features) cannot be done 

arbitrarily. Chapter 6 develops a method of correct pattern zero 

adjustment (using the Zolotarev space factor zeros as a starting 

point), enabling direct synthesis of discrete difference distributions 

yielding tapered sidelobe envelopes. Arbitrary sidelobe taper rates 

can be obtained with minimal beamwidth increase and decrease in 

directivity. A special case of the general method is that providing 

the 1/u taper, and which can be considered the discrete equivalent of 

Bayliss synthesis of continuous distributions. 

For some applications a taper other than 1 /u is desired for the sum 

pattern as well. Chapter 7 generalises the Villeneuve distribution for 

discrete arrays to a form which allows the direct synthesis of sum 

patterns with arbitrary sidelobe tapers. As such it is to a certain 

extent the discrete equivalent of the continuous line-source 

generalised Taylor distribution. 

A further problem of importance in the design of monopulse arrays is 

that of simultaneous synthesis of high performance sum and difference 

patterns. Practical considerations related to array feed network 

complexity restrictions often pro hi bit complete independence of sum 

and difference excitations. In such cases some "best" compromise 

between the individual optimum performances is required. The 

inclusion of feed network constraints is essential. Some 

prescriptions have been offered in the literature, but the majority of 

them are of an ad hoc nature. 

this problem is presented in 

A contribution towards the solution of 

Chapter 8. A knowledge of the 

excitations ~~d/or the space factor zeros of the independently optimal 

sum and difference distributions, synthesised using the methods of the 

earlier chapters, is used together with numerical optimisation. 
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CHAPTER 4 

OPTIMUM DIFFERENCE PATTERN SYNTHESIS 

4.1 MAXIMUM DIFFERENCE PATTERN DIRECTIVITY AND NORMALISED SLOPE 

4. 1 • 1 Motivation 

The maximum possible 

number of elements 

sum directivity Dmax of an array of a given 
s 

is obtained when (superdirectivity excluded) the 

element excitations are all of equal amplitude and phase. This of 

course gives an array space factor with relatively high sidelobe 

levels. Nevertheless, a 

evaluation of a low sidelobe 

discussed in Section 3.2.4. 

knowledge of Dmax allows a meaningful 
s 

distribution such as that of Villeneuve, 

A set of excitations 

required sidelobe specification and yet provides 

which satisfies a 

a directivity Dm 
s 

close to Dmax (i.e. has a high excitation efficiency n ) is an example s . s 
of a good design. So too for the difference mode a knowledge of the 

excitation efficiency, 

for a given set of excitations is desirable. In this case the maximum 

possible value of the directivity D~ax of the pattern peak is 

unfortunately not as easily acquired as for the sum case. Although 

Hannan [1] has considered this problem for continuous line-source 

distributions, the corresponding information does not appear to be 

available in the literature for the discrete distributions under study 

here. This is therefore considered in Section 4.1.2 and some results 

are tabulated for later use. 
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In a similar manner the angular sensi ti vi ty ·properties of a given set 

of excitations should be evaluated by determining the relative 

difference slope Kr of its associated space factor on boresight. But 

since Kr = K/K
0

, not only must the normalised difference slope K 

provided by the given excitation set be determined, but the maximum 

possible value (K
0

) obtainable with the given array size must be 

known. Once more, while Kirkpatrick [2] has shown what this is for 

the continuous 1 ine-source, that for discrete distributions is 

unavailable. This will thus be dealt with in Section 4.1.3. 

4. 1 • 2 Determination of D~ax 

An expression for the directivity, as a function of pattern angle, is 

given by equation (23) of Chapter 2 for the difference mode as, 

2[J]T[Ad][J] 

[J]T[Bd][J] 
(1) 

where the matrices [J], [Ad] and [Bd] are defined by equations (11) 

and (22) of Chapter 2. Determination of the excitation vector [J] 

which maximises Dd (without constraints) in the direction of the 

difference pattern peaks can be done in a manner almost identical to 

that described by Cheng [3] for the sum pattern case. The method uses 

a theorem of matrix algebra [ 4] which states that if a quantity is 

expressible as a ratio of two quadratic forms, as is Dd in (1), then 

the vector [J] which maximises this quantity is given directly by the 

solution of the set of simultaneous equations 

( 2) 
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But this is only valid if [Ad] and [sd] are both Hermitian, and [sd] 

in addition non-singular and positive~definite [4]. An examination of 

the equation set (22) of Chapter 2 confirms that this is indeed the 

case. The elements of vector [Fd] are defined by equation (13) of 

Chapter 2. 

The elements of [F d] are functions of the angle ljJ
0 

in which the 

directivity is to be maximised. For the sum case this is simply the 

known value 1/Jo 0. On the other hand, for the difference case both 

the [J] required to maximise the peak directivity and the resulting 

direction of the peak, are unknowns. Consequently (3) has to be 

solved iteratively. A value for ljJ
0 

is estimated (from that obtained 

with the elements uniformly excited in the difference mode) and the 

elements of [Fd] computed. The linear system of equations (3) is 

solved for [J] and the actual value of ljJ
0 

obtained with this 

excitation vector determined. This new ljl
0 

is used to obtain an 

updated [Fd] and (2) solved once more for a new [J]. The above 

process is repeated until convergence (negligible difference between 

assumed and computed 1/1
0 

values) is achieved. On the order of 5 or so 

iterations is all that is required to achieve this. 

Computations performed using the above procedure are tabulated below, 

principally for later use in evaluating low sidelobe difference 

distributions. 

In the cases considered only real excitations were allowed. If this 

is not done, the high Q factor problem will arise. Should an attempt 

be made to restrict this phenomenon by performing a maximisation 

subject to a constraint on the Q, the question arises as to what 

largest value of Q is to be allowed. Such arbitrariness is not 

acceptable as a standard. It is for this reason that excitation 

efficiency for continuous line-source distributons for difference 

patterns is also determined by comparison to the real distribution 

which maximises the peak directivity for the same length line source 

[ 1 J. So too with the sum pattern case. Hence the use of real 

excitations here as well. 
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of this section is the devising of 
max 

standards (Dd ) against which to 

measure the effectiveness of the synthesis procedures developed in 

following sections, a number of interesting observations are worth 

noting regarding the maximum directivity discrete distributions. 

Unless otherwise stated, directivities are not quoted in decibels. 

Consider first an array of 20 elements. Table 4.1 shows the 

excitations which provide maximum directivity for spacings d = 0.4 A, 

d = 0.5 A and d = 0.7 A respectively. The associated array space 

factors are shown in Figs. 4.1(a), (b) and (c). It is immediately 

clear that the excitations are spacing dependent. Those for the 

smaller spacing of 0.4 A are oscillatory, with accompanying large Q 

factor. Sets of excitations max 
and Dd values for other array sizes 

with 0.5·A and 0.7 A spacings are given in Tables 4.2 and 4.3. Two 

typical sets of excitations for an array of 2N = 40 elements, are 

plotted in Figures 4. 2(a) and (b), with the discrete excitations 

simply joined by straight line segments. Observe that for half 

wavelength spacing the shape of the distribution is similar to that 

derived by Hannan [ 1] for the continuous line-source, and which is 

illustrated in Fig. 3. 4. This is also found to be the case for the 

other array sizes with d = 0.5 L Note however, that unlike the 

continuous case, for the discrete situation the edge taper is not a 

constant independent of array size. From Table 4.2 this edge taper can 

be seen to decrease with increasing array size. A plot of edge 

excitation for increasing array size, with d = 0.5 A, is given in Fig. 

4. 3, and reveals that this factor tends to that of the 

continuous-source as 2N becomes large. At the same time the 

excitations of the two centre elements tend to zero. 

The maximum directivity distribution for d = 0. 7 A shown in Fig. 

4.2(b) is typical of that for spacings greater than a half~wavelength. 

While the distribution shape is similar to that of the continuous case 

over the initial few elements, it departs from it near the edges of 

the array. 
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TABLE 4.1 Element excitations for maximum directivity difference 

space factors for an array of 2N = 20 elements. 

d 0.4 A 0.5 A 0.7 A 

a, -1.00000 0.11287 0.11942 

a2 0.96311 0. 33291 0.33576 

a3 '-'0.84491 0.53620 0.52134 

a4 0.75584 0.71249 0.70273 

a5 -0.56741 0.85290 0.85854 

a6 0.47530 0.95038 0.93574 

a7 -0.28305 1.00000 0.96343 

as 0.23052 0.99927 1.00000 

a9 -0.08339 0.94823 0.96105 

a10 0.08102 0.84945 0. 72557 

Q 517.0495 1.00000 1. 391 0 

0max 
d 10.3434 12.8450 17.8463 

An examination of the tabulated data shows that the excitation 

efficiency factor nds (ratio of maximum difference directivity to the 

maximum su11 directivity) is 

illustrative of the behaviour 

always less than 65%. Fig. 4.4 is 
max of Dd as a function of the number of 

elements in the array. As intuitively expected, this maximum 

directivity increases with array size. In order to gauge the effect 

of element spacing on 
max seen that ·Dd peaks, 

between d = 0.8 A and 

D~ax, Fig. 4.5 has been included. It can be 

for a given number of array elements, somewhere 

d = 1.0 A, depending on the precise value of 2N. 

The overall behaviour is comparable to similar curves for maximum 

directivity su11 patterns (i.e. uniform excitations). 
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TABLE 4.2 Element excitations. for maximum directivity difference 
patterns (d = 0.5 A). 

2N 1 0 20 30 40 50 60 

a, o. 22354 0.11287 0.07485 0.05623 0.04493 0.03746 

a2 0.62593 0. 33291 0.22287 0.16799 0.13441 0.11218 

a3 0.90323 0.53620 0.36589 0.27762 0. 22281 0.18627 

a4 1. 00000 0.71249 0.50072 0.38376 0.30942 0.25931 

a5 0. 89691 0. 85290 0.62432 0.48505 0.39352 0.33090 

a6 0.95038 0.73394 0.58023 0.47445 0.40063 

a7 1. 00000 0. 82711 0.66809 0.55155 0.46812 

a8 0.99927 0.90174 0.74752 0.62420 0.53298 

a9 0.94824 0.95617 0.81753 0.69180 0.59486 

a,o 0.84946 0.98917 0. 87723 0.75382 0.65340 

a11 1.00000 0.92586 0.80976 0. 70827 

a12 0.98843 0.96282 0.85916 0.75918 

a13 0.95470 0.98764 0.90162 0.80582 

a14 0.89958 1 . 00000 0.93681 0.84795 

a15 0.82431 0.99975 0.96443 0.88533 

a16 0.98689 0.98426 0.91774 

a17 0.96159 0.99615 0.94500 

a18 0.92416 1. 00000 0.96697 

a19 0.87507 0.99577 0.98352 

a20 0.81495 0. 98351 . 0. 99455 

a21 0.96331 1.00000 

a22 0.93532 0.99985 

a23 0.89979 0.99409 

a24 0.85700 0.98275 

a25 0.80728 0. 96591 

a26 0.94365 

a27 0.91610 

a28 0.88342 

a29 0.84578 

a30 0.80339 

nds 0.64711 0.64225 0.64135 0.64103 0.64088 0. 64080 

0max 
d 6. 4 711 12.8450 19.2404 25.6411 32.0440 38.4481 

IJ!o 0.45087 0.22486 0.14984 0.11236 0.08988 0.07490 
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TABLE 4.3 Element excitations for maximum directivity difference 

patterns (d = 0.7 A). 

2N 1 0 20 30 40 50 60 

a, 0.22686 0.11942 0.06976 0.05962 0.04155 0.03998 

a2 0.60385 0.33576 0.21981 0.16850 0. 1 3238 0.11278 

a3 0.91625 0.52134 0. 37271 0.26982 0.22634 0. 1 81 53 

a4 1.00000 0. 70273 0.50122 0.38007 0.30817 0.25804 

a5 0.75936 0.85854 0.61617 0.48553 0.38823 0.33205 

a6 0.93574 0.73643 0.57145 0.47556 0.39566 

a7 0.96343 0.83402 0.65649 0.55296 0.46261 

as 1.00000 0. 89171 o. 74506 0.61777 0.53295 

a9 0.96105 0.94718 o. 81 084 0.68837 0.59120 

a10 0.72557 1.00000 0.85931 0. 75661 0.64458 

a 11 0.99498 0.91643 0. 80491 0.70496 

a12 0.95871 0.95987 0.85047 0.75722 

a13 0.96318 0.96776 0.90284 0.79584 

a14 0.92649 0.97907 0.93583 0.83977 

a15 0.71237 1. 00000 0.95183 0.88393 

a16 0.97340 0.97987 0.90925 

a17 0.92253 1. 00000 o. 931 71 

a, a 0.92358 0.98727 0.96356 

a19 0.89626 0.98111 0.97882 

a20 0.69835 0.99102 0.97783 

a21 0. 95801 0.99104 

a22 0.90335 1. 00000 

a23 0. 90631 0.97794 

a24 0.88673 0.96410 

a25 0.69744 0.96995 

a26 o. 93571 

a27 0.88114 

a28 0.88693 

a29 0.87364 

a30 0.69189 

nds 0.6480 0.6447 0.6425 0. 6422 . 0. 641 6 0. 641 6 

·
0

max 
d 8.8687 1 7. 84 63 26.7769 35.7577 44.7082 53.6862 

*o 0.458806 0.226761 0.150668 0.112823 0.090175 0.075102 . 
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4. 1 • 3 Determination of K0 

The normalised slope of the difference pattern on boresight (w 

given by equation (33) of Chapter 2 as, 

K 

0) is 

( 3) 

with all terms as defined in Section 2. 2. 7. The present question is 

that of finding the [J] which maximises K for a given number of array 

elements, without any constraints on the pattern or other performance 

indices of the array. This is a non-linear unconstrained optimisation 

problem and a relatively straightforward procedure like that of 

Section 4.1.2 is not possible. Gillet. al [5, p. 116] give a 

quasi-Newton algorithm for solving this type of optimisation problem. 

Its implementation in [18] has been used here. Once more, for the 

reasons given earlier, only real excitations have been permitted. 

Consider first the case of half-wavelength spacing. Use of the 

algorithm for this spacing and a wide range of array sizes confirms 

that the excitation is simply a direct sampling of the continuous 

line""'source linear odd distribution derived by Kirkpatrick [2] and 

shown in Fig. 3.3. The equation of the linear odd continuous 

distribution, when sampled at the array element positions, gives the 

element excitations as, 

a 
n 

2n -
2N - n 1,2, ••• N ( 4) 

for an array of 2N elements. Furthermore, the array space factor of 

such an array is just the derivative (with respect to the angular 

variable) of the space factor of a uniformly excited array operated in 

the difference mode. This is easily found as, 
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2N cos(N$)sin($/2) - sin(N$)cos($/2) 

sin2 ($/2) 

The above maximum slope results hold only for d = 0. 5 >.. For other 

spacings the discrete distributions do not follow the linear odd shape 

exactly. To illustrate this, consider the maximum normalised slope 

excitations given in Table 4. 4 for the three spacings indicated. 

These were obtained using the numerical optimisation algorithm. The 

excitations for the d = 0.5 A case are identical to those obtained via 

equation (4). Plots of these sets of excitations for d = 0.5 A and 

d = 0.7 A are shown in Fig. 4.6, and their associated space factors 

plotted in Figs. 4.7(a) and (b). The maximum slope patterns always 

have higher sidelobes than the maximum directivity patterns, but a 

narrower first null beamwidth. The distribution for the d = 0. 7 A 

has a rippled shape passing just above that for d 

typical of cases for which d > 0.5 A. When 

0.5 A, and this is 

d < 0. 5 A, as for 

d = 0.4 A, the distribution obtained has a number of definite zero 

excitations, resulting in a type of thinned array. An example of such 

a case is that shown in the first column of Table 4. 4. Since the 

excitations for d = 0.5 A are easily obtained from equation (4), they 

are not tabulated here at all. Instead, only the values of K
0 

·are 

given for a selection of array sizes in-Table 4.5. On the other hand, 

Table 4.6 gives the excitations, which provide maximum normalised 

boresight slope, for the cased= 0.7 A. 

In order to indicate the overall behaviour of K
0 

as a function of 

element spacing and the n~~ber of array elements, Figs. 4.8(a) and (b) 

have bee plotted. The variation of K
0 

with 2N or d/A is seen to be 

similar to that of D~ax. 

It is noted that as for the continuous case the excitations providing 

maximum directivity for a discrete array is not the same as that which 

gives the largest normalised difference slope on boresight. 
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TABLE 4. 4 Element excitations for maximum normalised boresight slope 

for an array of 2N = 20 elements. 

d 0.4 A 0.5 A 0.7 A 

-- 0.21702 0.05263 0.06426 a1 

a2 0.00000 0.15790 0.17412 

a3 0.15943 0.26316 0.26596 

a4 0. 401 41 0.36842 0.38376 

a5 0.00000 0.47368 0.51974 

a6 0.80177 0.57895 0.61105 

a7 0.00000 0.68421 0.69153 

as 1. 00000 0.78947 0.85588 

a9 0.14561 0.89474 1 . 00000 

a10 0.98473 1. 00000 0.90964 

K 
0 

1.2605 1. 3572 1. 5857 

Q 1.3796 1. 00000 1. 3734 

Dm 
d 

9.5310 11.4472 15.8892 
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TABLE 4.5 Maximum normalised difference slope (K
0

) values. 

NUMBER OF ELEMENTS K FOR SPACING K FOR SPACING 
0 0 

(2N) d = o. 5 A d = o. 7 A 

8 0.9258 1. 0658 
-

10 1.0092 1. 1 628 

12 1. 0871 1. 2604 

14 1 • 1 602 1. 3498 

16 1 . 2293 1. 431 2 

18 1. 2948 1. 5126 

20 1 • 3572 1. 5857 

22 1 • 41 70 1. 6585 

24 1. 4744 1. 7272 

26 1. 5297 1. 7926 

28 1 • 5831 1. 8576 

30 1. 6348 1. 91 82 

32 1. 6848 1. 9787 

34 1. 7335 2.0367 

36 1. 7809 2.0927 

38 1. 8270 2.1484 

40 1 • 8720 2.2013 

50 2.0825 2. 451 9 

60 2.2737 2.6792 
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TABLE 4.6 Element excitations for maximum normalised boresight slope 

for spacing (d = 0.7 A). 

2N 1 0 20 30 40 50 60 

a, 0.11502 0.06426 0.02895 0.03038 0.01621 0.02001, 

a2 0.36534 0.17412 0.10121 0.07952 0.05843 0.05156 

a3 0.68076 0.26596 0.18339 0.12183 0.10586 0.07887 

a4 0.96883 0.38376 0.24656 0.17919 0.14078 0.11692 

a5 1.00000 0.51974 0.30567 0.23713 0.17635 0.15383 

a6 0.61105 0.38886 0.27840 0.22478 0.18022 

a7 0.69153 0.46657 0.32686 0.26611 0.21326 

as 0.85588 0.51625 0.39082 0.29711 0.25391 

a9 1 . 00000 0.58688 0.43869 0.34120 0.28346 

a10 0.90964 0.68504 0.47645 0.38994 0.31076 

a11 o. 73834 0.53898 0. 421 47 0.35130 

a12 0.77473 0.60063 0.45699 0.38709 

a13 0.89598 0.63142 0.51019 0.41090 

a14 1.00000 0. 68081 . 0. 54891 0.44664 

a15 o. 87834 0.76101 0.57477 0.48909 

a16 0.79686 0.62547 0.51430 

a17 0.81325 0.67760 0.54162 

a18 0.91446 0.69766 0.58776 

a19 1.00000 0.73495 0.62041 

a20 0.86407 0.80467 0.63868 

a21 0. 83051 0.68169 

a22 0.83549 0.72755 

a23 0.92510 0.74070 

a24 1.00000 0.77016 

a25 0.85593 0.83302 

a26 0.85236 

a27 0.84996 

a28 0.93200 

a29 1. 00000 

a30 0.85066 

K 
0 

1 . 1 628 1.5857 1 • 91 82 2.2013 2.4519 2.6792 
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4. 1 • 4 Discussion 

The previous two subsections have determined the maximum possible 
max values of Dd and K, denoted Dd and K

0
, respectively, achievable from 

an array of a' given number of elements, without constraints placed on 

the sidelobe levels of the space factor obtained with the associated 

sets of excitations. Application of sidelobe constraints will result 

in an altered set of excitations for which the pattern will have a 

directivity and normalised difference slope somewhat less than these 

maximum attainable values. Once again, a good design is that which 

satisfies the necessary sidelobe constraints and yet achieves a 

directivity and slope close to these maximum values. The remainder of 

this chapter and the two following it will discuss a new class of 

distributions which can be used to accomplish this exactly. 
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4.2 OPTIMUM POLYNOMIALS FOR DIFFERENCE PATTERNS WITH MAXIMUM 

SIDELOBE LEVEL CONSTRAINTS 

Consider the class C(a) of odd, real polynomials of degree n, 

p (x) 
n 

a x + a x3 
1 3 + • • • + a x n 

n 

defined over x 6(-oo,oo), and which have the following properties: 

( i) The zeros of all Pn (x) of C (a) are real, and all lie in the 

interval ('-'1, 1). 

(ii) All the Pn(x) of C(a) have maxima on either side of x 

are of equal magnitude A
0

, say. 

0 which 

(iii) All the Pn(x) of C(a) have their second .largest maxima in 

(-1,1) at unity magnitude, the others all lying between zero 

and unity or at unity. 

Then the theorem and corollary given below can be established. These 

were originally stated by Price and Hyneman [6], who were however not 

aware of the existence of a class of polynomials with the above 

properties. The proof of the theorem is elaborated on here and the 

existence of polynomials of the class C(a) demonstrated in Section 

4.3. 

Theorem 

If qn(x) is a member of C(a) but has the additional property that all 

subsidiary maxima (i.e. all those besides the innermost maxima) in the 

interval ·( -1, 1) are of magnitude unity, then qn (x) has the smallest 

distance from the origin to the first zeros on either side of x = 0. 
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Proof 

Form the difference polynomial f n (x) = qn (x) ~ Pn (x) between the 

general member Pn (x) of C (a) and the specific subclass qn (x) with the 

additional property. 

I 

Since Pn (x) and qn (x) are of order n, f n (x) must be a polynomial of 

order less than or equal to n. 

Assume now that the above theorem is not true. That is, if ±xq are 

the first zeros of qn(x) on either side of x = 0, and ±xp those for 

Pn(x), then xq ~ xp. 

Now since no subsidiary maxima of Pn(x) may exceed unity, and all the 

subsidiary maxima of qn(x) are exactly at unity, it follows that since 

xq ~ xp, Pn(x) and qn(x) must intersect at not less than n+2 points. 

This implies that fn(x) has n+2 zeros. But this is not possible since 

fn(x) is of, at most, degree n. Hence it follows that fn(x) = 0 and 

hence Pn(x) = qn(x). This proves the theorem. 

Corollary 

The polynomial subclass qn (x) defined in the above theorem ha,s the 

largest normalised slope at x = 0 of all those in C(a). 
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4.3 THE ZOLOTAREV POLYNOMIAL FUNCTION 

4.3.1 Introduction 

P.I. Chebyshev considered the problem of approximation to zero, in the 

minimax sense, over a single continuous interval. The work of 

Chebyshev was developed further by his student E. Zolotarev [7]. 
' 

Zolotarev' s work was described in detail and extended further by 

Achieser [8, 9]. Building on the work of Zolotarev, Achieser 

considered the problem of best approximation to zero (in the minimax 

sense) in the intervals -1 < x < -x3 and x3 < x < 1 by means of an odd 

polynomial. The result was a unique class of optimum odd polynomials 

z2n+ 1Cx), giving equiripple approximation to zero in the above 

intervals. These are now known as the Zolotarev polynomials. 

Mathematical details of their derivation by Achieser [8, 9] have been 

reproduced in the engineering literature by Levy [10], who used them 

in the microwave circuit design context. These derivations will not 

be given here. Instead, only the essential results derived in 

[8,9,10] which are necessary as the starting point for application of 

these mathematical ideas to the array synthesis problem, are given. 

The notation used here is different from that in the above references, 

but more suitable for the array problem. 

4.3.2 Definition of the Zolotarev Polynomial 

The Zolotarev polynomial of order (2n+1) is defined by 

22n+1(x) [( 1 ) { H(M + v,k) }] 
cosh n + 2 ~n H(M _ v,k) ( 5) 

(i) X 
sn(M,k)cn(v,k) 

( 6) 

I 

(i i) 
k x

3 
dn(M,k) ( 7) 



(iii) M 

(iv) 

( v) 

I 

(vi) k 

-K(k) 
2n+1 

sn( .... M,k) 
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cn(M,k)z(M,k) 
sn(M,k)dn(M,k) 

( 8) 

( 9) 

( 1 0) 

( 11 ) 

(vii) K(k) is the complete elliptic integral of the first kind, to 

modulus k [11, p. 12]. 

(viii) H(v,k) is the Jacobi eta function [12, p. 411]. 

(ix) sn(v,k), cn(v,k) and dn(v,k) are the Jacobi elliptic functions 

[11, p. 1]. 

(x) z(v,k) is the Jacobi zeta function [12, p. 405]. 

In elliptic function terminology, k is called the Jacobi modulus, and 
I 

k the complementary modulus. While the expression (5) is the correct 

formal expression for z2n+ 1 (x), it should not be used directly for 

computational purposes. 

detail in Chapter 5. 

Such numerical aspects are dealt with in 

Although k is used in the array literature (and in this thesis) to 

denote the free space wavenumber, its use as the Jacobi modulus of the 

elliptic functions is too entrenched to be denoted otherwise. Its 

meaning at any stage will usually be clear from the context; if not, 

specific note will be made as to its interpretation. 
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Finally, just as the Chebyshev polynomial satisfies a differential 

equation, the Zolotarev polynomial z2n+ 1 (x) satisfies the non-linear 

differential equation, 

d 
dx 22n+1 (x) (2n+1) ( 1 2) 

4.3.3 Properties of the Zolotarev Polynomial 

An example of the Zolotarev polynomial defined formally in equation 

(5) is shown in Fig. 4.9. The polynomials are defined throughout the 

region x 6(-oo,oo), but only the region x 6[-1, 1] is relevant to the 

array synthesis application. A Zolotarev polynomial z2n+ 1(x) of 

specified order is a function of both x and k. Here it will be 

considered to be a function of x, with k as a parameter determining 

the amplitudes of the maxima on either side of x = 0 relative to the 

peak value. Although it is possible to prove rigorously [10] that the 

definition (5) is a real polynomial, it is not possible to directly 

write z2n+ 1 (x) in standard polynomial form. Use of the secondary 

variable v, related to x via the transformation (6), makes the form of 

the polynomial more manageable. This transformation is illustrated in 

Fig. 4.10. Although vis complex, x and z2n+ 1 (x) are always real. 

The points x1 , x2 and x3, given by relations (7), (9) and (10), 

respectively, are significant. As x increases f'rom 0 to x1 , z2n+ 1 (x) 

increases from 0 to 1. In the region x1 < x < x3' the polynomial is 

greater than unity, with a maximum value A
0 

occurring at x = x 2 , the 

magnitude of A
0 

depending on the Jacobi modulus k. At x = x 3, 

z2n+ 1 (x) = 1. From x3 to it oscillates (n+1) times alternately 

between ±1, and there are n zeros in this interval. This behaviour is 

mirrored in the region ~1 < x ~ 0, so that together with the zero at 

X 0, 

interval 

22n+1(x) 

I X I < 1. 

has all (2n+1) zeros real and lying in the 

For lxl >~.the magnitude of z2n+ 1(x) increases 

indefinitely, becoming infinite at x = ±00 (which is equivalent to the 

point v = -M in Fig. 4.10). 
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Zg(x) 

A ----o 

X = -1 X = 0 X = 1 

FIGURE 4.9 TYPICAL ZOLOTAREV POLYNOMIAL FUNCTION. 
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Consideration of the properties of z2n+l(x) given above leads to the 

conclusion that the Zolotarev polynomials are exactly the class of odd 

polynomials identified in Section 4.2 as being optimum for difference 

pattern synthesis. The next step then is to determine how these 

polynomials may be used to synthesize an optimum set of array element 

excitations. 
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4.4 ARRAY ELEMENT EXCITATIONS FOR SPACINGS GREATER THAN OR EQUAL 

TO HALF A WAVELENGTH 

4. 4.1 · The Difference Space Factor as a Chebyshev Ser~es 

Consider a linear array of 2N elements, excited anti-symmetrically so 

as to obtain a difference pattern. The space factor is given by 

equation (10) of Chapter 2 as (ignoring the constant factor 2j), 

N 

I 
n=1 

a sin [C2n-1) ~] 
n 2 

The sine function in (13) can be expanded as [13, p. 28] 

s~n[ (2n-1) ~ ( 2n- 1 ) { s i n _21)1 - [ ( 2 n -1 ) 2 ;._ 1 2 ] s i n 3 ~2 
3! 

( 1 3) 

Elliott [14, p. 566] gives a general expression for the Chebyshev 

polynomial of odd order 2n-1 as, 

n 

I 
m=1 

A comparison of (13) and (14) reveals that, 

s i n [ ( 2n -1 ) ~ 

n+m-1 
2m.,.1 

2n-1 
X ( 1 5) 

( 1 6) 



104 

It thus follows that (13) can be written as 

( 17) 

a series of Chebyshev polynomials of argument sin lji/2. From (17) it 

is also clear that for the array of 2N elements in question, Ed(lji) is 

a polynomial of order 2N-1 in sin lji/2. 

4.4.2 Zolotarev Polynomial as a Chebyshev Series 

The correspondence between the space factor Ed(lji) and the Zolotarev 

polynomial z2n+ 1(x) must be established to enable the desirable 

properties of the latter to be utilised for array synthesis. This is 

best done by expanding the Zolotarev polynomial as a Chebyshev series, 

22n+1(x) ( 1 8) 

The use of such a form is not only useful as an artifice here, but the 

use of Chebyshev series is also advantageous from a numerical analysis 

point of view [15]. A discussion thereof and means of computing the 

series coefficients in ( 18) will be postponed to Section 5. 3. 5 in 

order not to obscure the essence of the theory being developed here. 

If such a Chebyshev series expansion is used, then for a Zolotarev 

polynomial of order 2N-1 it will be, 

22N-1 (x) 

N 
I b T2 . 1 (X) n n-

n=1 
( 1 9) 
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4.4.3 Correspondence of Zolotarev and Space Factor Polynomials 

For the case of half-wavelength spacing between array elements, 

~/2 = (~/2)sine. Therefore, as e varies over the range of observation 

angles from -~/2 to ~/2, the term sin(~/2) goes from ~1 to 1. If the 

spacing d is greater than a half-wavelength, the term sin(¢/2) also 

always reaches ~1 and 1 in the visible range -~/2 < e < ~12. Thus a 

correspondence x = sin(¢/2) can be made, so that (17) becomes 

N 
I a (-1)n T

2
. 

1
(x) 

n n-
n=1 

(20) 

Comparison of ( 19) and (20) clearly shows that the required optimum 

array coefficients {an} are simply related to the expansion 

coefficients {bn} of the Chebyshev series for z2N_1(x) by, 

a 
n 

( -1 )n b 
n 

( 21 ) 
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4.5 ARRAY ELEMENT EXCITATIONS FOR SPACINGS LESS THAN HALF A 

WAVELENGTH 

For spacings less than a half-wavelength the determination of the 

array coefficients is not as straightforward. If the correspondence 

x sin(lj!/2) is made for some general spacing, then for 

'""1T/2 ~ _ 8 ~ 1r/2, the corresponding x variation is -'sin(kd/2) < x < 
sin(kd/2), where k is the free space wavenumber. For example, for a 

spacing of 0. 4 of a wavelength, the range of x values is only 

~0.951 ~ x ~ 0.951, with the result that the pattern does not have as 

many secondary lobes as are possible, and is therefore non~optimum. 

This can be remedied by setting, 

sin 
X ( 22) 

sin 

but then the Chebyshev expansion (in x) of the space factor given in 

equation (20) is not possible. For spacing d less than a half­

wavelength, then, a more direct and tedious approach must be used. In 

what follows, let x
0 

= sin(kd/2). 

Assume then that the Zolotarev polynomial is available in the standard 

polynomial form, 

b x + b x3 
1 2 

+ • • • + (23) 

Methods of obtaining the bi are discussed in Section 5.3.5. 
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The expansion given in (14) can after some manipulation be written in 

the form, 

sin[ (2n-1) 1)!/2] 

where 

p 
n 

p 
0 

i=1 

n 
L g. (n)[sin 1)J/2]2(n-i)+1 

l 

p(p~1) (p-n+1) 
1 • 2 • • • n 

Thus, for each term in the series ( 1 3) ' 

( 24) 

(25) 

(26) 

( 27) 
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aNsin[ (2N-1) 1)!12] 

a
1
sin 1)!12 
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Comparing (13) with (23), and letting x = sin(~/2 ) it fol~ows that 
X 

= 

2N-1 
X 

0 

0 

2N-3 
X 

0 

Thus the array element excitations are given by, 

where 

a 
n 

p 

' b 
n 

' N 
[ b ""' L · a. g (j ) ] I g

1 
(n) 

n j=n+1 J P 

j - n + 1 

b /x2n-1 
n o 

2N-5 
X 

0 

(28) 
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In this manner, the array excitations can be obtained for some general 

element spacing. .For the case of half-wavelength spacing ( 28) and 

(21) give identical excitations of course. 
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4.6 SYNTHESIS PROCEDURE 

While details of a computational procedure are left until Chapter 5, 

the steps in the synthesis procedure just developed are summarised 

here. 

Suppose that the number of array elements (2N) and the required 

sidelobe ratio (SLR) have been specified. A Zolotarev polynomial of 

order 2N-~ is then required. The first step of the synthesis 

procedure is the solution of the equation, 

SLR ( 29) 

for the required Jacobi modulus k, since x2 is the position of the 

maximum of the polynomial. The quanti ties x2 and k are of course 

related through (8), (9) arid (10). With the order 2N"""1 and Jacobi 

modulus k known, the polynomial z2 N_ 1(x) is completely determined. Its 

expansion in the form of a Chebyshev series or conventional polynomial 

form, depending on whether the spacing is greater than a 

half"""wavelength or not, is then carried out, for the set of 

coefficients {bi}, i = 1,2,3, N. If d > 0.5 >., the excitations 

follow . directly from ( 21). For d < 0. 5 A, specification of the 

spacing d serves to determine x
0

, which together with the bi 

coefficients is used in (28) to find the array exci tatlons {an}, 

n = 1,2,3, N. Once these have been found any other array 

performance indices can be evaluated using the expressions given in 

Chapter 2. 

As an example, consider an array of 20 elements with a sidelobe ratio 

of 30 dB and half~wavelength spacing. Since 2N = 20 in this case, a 

polynomial Z~ 9Cx) is required. Solution of equation (29) gives the 

value of Jacobi modulus k = 0.999971042. The normalised array element 

excitations are found as given in Table 4.7. The cor~esponding array 

pattern is shown in Fig. 4.11, along with a plot of the excitations. 
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TABLE 4.7 Array element excitations for a 20 element, 30 dB sidelobe 

ratio, Zolotarev array. 

n an 

0.180205 

2 0.515913 

3 0.782293 

4 0.947927 

5 1.000000 

6 0.945505 

7 0.808179 

8 0.622164 

9 0.424087 

10 o. 3292-44 
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4.7 CONCLUSIONS 

The form of the real distributions providing (without sidelobe 

constraints) either the maximum directivity or maximum normalised 

boresight slope that is/possible with a given number of array elements 

and, spacings has been established using unconstrained numerical 

optimisation. For half wavelength interelement spacings these are 

similar to those of the corresponding continuous distributions. The 

tables of data on Ko 
d 0max 

an d can be used as the standards against 

which to evaluate distributions providing array space factors with 

constrained sidelobe levels. 

A difference pattern can be defined as optimum in the Dolph-Chebyshev 

sense if" it has the narrowest first null beamwi dth and largest 

normalised difference slope on boresight for a specified sidelobe 

level constraint. Such patterns will have sidelobes all at the same 

required level. The principal contribution made in this chapter is 

the development of a new exact synthesis method for determining the 

linear array excitations which will provide such optimum performance. 

The method uses Zolotarev polynomials, and is analogous to the 

Chebyshev polynomial synthesis of sum patterns. The identification of 

the appropriate polynomials here, and the subsequent development of 

the synthesis technique (methods of obtaining the element excitations) 

completes this aspect of array antenna theory in a satisfactory and 

satisfying manner. Preliminary work has been published by the author 

[16,17]. 
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CHAPTER 5 

COMPUTATIONAL ASPECTS OF ZOLOTAREV POLYNOMIAL ARRAY SYNTHESIS 

5.1 INTRODUCTION 

The concept of Zolotarev polynomial synthesis is by itself important 

from an antenna theorist's point of view. However, the utility of the 

method rests on the computational tasks involved. The present chapter 

will consider in detail such computational aspects as the algorithms 

for elliptic function generation, series evaluation, and root finding. 

On the basis of these considerations a highly efficient interactive 

computer code has been developed. Given the number of array elements, 

required sidelobe ratio, and element spacing, the code finds the array 

element excitations and space factor zeros. In the second portion of 

this chapter some tables of such information generated by the code and 

presented in ApJ?endix . II, are discussed. These have, of necessity, 

been restricted to those cases considered either particularly 

illustrative or most common in practice. 

After presentation of the tables, a number of properties of the 

Zolotarev distribution are highlighted. This leads logically to the 

subject of Chapter 6 - that of direct synthesis of difference patterns 

with tapered sidelobe heights. 
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5.2 DERIVATION OF EXPRESSIONS SUITABLE FOR COMPUTATION 

5. 2. 1 Introduction 

A comment was made in Chapter 4 that the formal definition (5) given 

there should not be used for computational purposes. The aim of the 

present section therefore is to arrange the formulations of the 

previous chapter into a form suitable for numerical computation. 

In order to do this, the domain 0 < x < 
regions: 

(a) Region I for which 0 < x < x1 

(b) Region II for which x1 < x ~ x3 

(c) Region III for which x3 ~ x < 

which can easily be identified in Fig. 4.1 0. 

is divided into three 

The region for which 

lx I > 1 is of no interest as far as the array synthesis problem is 

concerned, and will not be considered. It is because of the symmetry 

of the polynomial that only the positive portion of the domain 

I X I < 1. 

For convenience, the expression defining the Zolotarev polynomial of 

order 2n+1 is repeated here, 

z2 1 ( x) n+, 
cosh[(n + -

2
1 )tn{ H(M + v,k) }] 

H(M - v,k) 
( 1 ) 

In addition to the special functions K(k), sn(v,k), cn(v,k), dn(v,k), 

z(v,k), and H(v,k) defined and referenced in Section 4.3.2, two 

further ones will be used in this chapter. These are the second 

Jacobi eta function H1(v,k) and the Jacobi theta function e(v,k), 

whose relationships to H(v,k) are given in references [2] and [4]. 
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Only the first five of the above functions need eventually to be 

numerically evaluated individually. The advantage of the introduction 

of the eta and theta functions is the considerable simplification 

effected in the mathematical manipulation of the Zolotarev 

polynomials. When working with these functions use is made of a 

quantity q called the nome [1], and defined by 

q 
I 

""'1TK (k)/K(k) 
e 

I 
The complementary nome q is defined as, 

I 
I -1TK(k)/K (k) 

q e 

5.2.2 

It is observed in Fig. 4.10 that for this range of x, the variable v 

is a complex quantity given by, 

v - K(k) + j<j> ( 2) 

I 
where <Pis real, 0 < <P ~ K (k), k being the Jacobi modulus. Therefore, 

H(M + v,k) 
H(M - v,k) 

H(M ""' K + j<j>,k) 
H(M + K- j<jl,k) ( 3) 

Gibbs [4, p. 188] gives the relationships between the first Jacobi eta 

function H(u,k) and the second Jacobi eta function H1 (u,k) as, 

H
1 

( u, k) H(u + K,k) 

H
1 
(u,k) - H(u - K,k) 
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It therefore follows that the right hand side of (3) becomes, 

since e::.!j1r -1. 

H
1 

( M + j <j>, k) 

H1(M-j<j>,k) (4) 

From Abramowitz and Stegun [2, p. 577] the natural logarithm of the 

ratio of two such second Jacobi eta functions is conveniently given by 

the series expansion, 

H1 (b + u,k) cos 
(b + u)1f 

Q.n { Q.ri 2K 
H

1 
( b """ u,k) (b -u)1f 

cos 2K 

00 

('-'1 { 2r 
+ 4 I q 

2r r r=1 - q 

where q is ,the nome. 

For the case of equation (4), b M and u j <P. 

Consequently, 

(b ± u)1f 
2K 

(M ± j<j>)1f 
2K 

Use of (6) and the identity, 

cos( a. + j B) 

cos (a. - j 8) 
""j 2tan - 1 (tana. tanhS) 

e 

sin r1rb r1ru (5) - sin K K 

( 6) 



1 21 

reduces the logarithm term in (5) to, 

2tan~1( TIM TI~ 
- j 2K )tanh( 2K 

In the series terms of (5), substitution of u 

sin( rnu 
K 

j sinh( rn~ 
K 

j ~ leaves 

Therefore, from (3), (4), (5), (7) and (8) it follows that, 

in { H ( M + v, k ) 
H(M - v,k) - jTI- j 2tan~ 1 [tan( ;~ )tanh( ;~ )] 

oo r 
+ . 4 \ ( -1) 

J L r 
r==1 

2j h(M,~,k) 

where for convenience, 

h(a,b,k) TI """' tan -'-"1 
2 

00 ( -1) r 
I + 2 

r==1 r 

2r 
q sin( rnM )sinh( rn~ 

1 
2r K K -q 

[tan[ 
na ]tanh[ Tib 

2K(k) 2K (k) 

2r _q __ 
]sin[ rna ]sinh[ K(k) 

1"""'q2r 

and which.is real for real a and b. 

( 7) 

( 8) 

( 9) . 

( 1 0) 

J] 

' rnb J 
K(k) (11) 
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From (1) then, 

22n+1(x) cosh[j 2(n + 1 )h(M,~,k)] 

cos[(2n + 1 )h(M,~,k)] ( 12) 

for this reg~ on. With v = ""K + j ~. use of the properties of the 

Jacobian elliptic function [6, p. 914] reduces expression (6) of 

Chapter 4, the transformation between x and v, to the form, 

X sn(M,k) 
2 I 

1 '"' dn ( ~. k ) 
2 2 I 

sn (M,k)dn (~,k ) 
( 1 3) 

This gives x once ~ is specified. In order to find the inverse 
I 

transformation, sn(~,k) is made the subject of expression (13), 

utilising the elliptic function identities [6, p. 916], to give 

I 
sn(~,k ) 

x cn(M,k) 

/1 2 I 
- x k sn(M,k) 

Now the incomplete elliptic integral of the first kind [2, p. 589] is 

defined as, 

F(a,b) 

a 
f 
J 
0 

It then follows that since [1, p. 392], 

-1 sn (a,b) F(a,b) 

( 1 4) 
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the desired inverse transformation is, 

' F( t, k ) ( 15) 

x cn(M,k) 
where t 

If xis given, the corresponding~ can be found from (15). 

5.2.3 

From Fig. 4.10, for x1 ~ x ~ x3, the variable vis a complex quantity 
' v = s + jK (k), where sis real and -K(k) < s < 0. Thus, 

H(M + v,k) ' H(M + s + jK ,k) 

H(M - v,k) ' H(M - s - jK ,k) 
( 1 6) 

Copson [ 1, p. 411] gives an expression relating the eta and theta 

functions, 

H[u + jK
1 
,k] 

1 
- Ii 

j q e 
""'j .:!!. u/K 

2 G(u,k) 

It therefore follows that (16) can be written as, 

- j 1T ( 1 + M/K) 
e 

G(M + s,k) 
G(M - s,k) ( 17) 
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and therefore, in this region, 

in [ H ( M + v , k ) 
H(M - v,k) 

_ jn ( 1 + M ) + in 8(M + s,k) 
K e(M- s,k) 

( 1 8) 

But from equation (8) of Chapter 4, 

M 

For this reason then, 

'""jn(1 M 
+­

K 

Thus , from ( 1 ) 

z2n+1(x) 

Let f(a,b,k) 

.... K(k) 
2n+1 

[ 
2n 

.... jn 2n+1 

cosh[- J. nn + (n + )in{ e(M + s,k) }] 
2 e(M - s,k) 

cos[nn]cosh[(n + -
2
1 )in{ e(M + s,k) }] (19) 

e(M - s,k) 

in { 8(a + b,k) 
8(a - b,k) 

( 20) 

Instead of first computing the theta functions, direct series 

expansions are available [2,3,5] for f(a,b,k) in terms of either q or 
t 

its complement q . For most of the antenna synthesis problems k is 

near to 1, so that K(k) is very large, and q close to unity, while q 
t 

t 
is small. Series in terms of q are then more rapidly convergent and 

are preferred if many computations ar~ required. For this reason use 

is made of the expansion 
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cosh 
(a+b)1f 

f(a,b,k) 1rab + .Q.n 2K 
' ( a--b )1f 

KK cosh 2K 

00 

( -1/ '2r 
- 4 I q 

sinh ( r1ra ) sinh ( r1rb ( 21 ) 
r '2r ' ' r=1 - q K K 

Therefore (19) can be written in compact form as, 

22n+1 (x) cos(nTI)cosh [(n + ~ )f(M,s,k)] (22) 

The transformations between x and s for this region are found using a 

procedure similar to that applied for region I. Starting with 

expressions (6) of Chapter 4, substitution of v 

result, 

sn(M,k)dn(s,k) 
X 

' s + jK leads to the 

(23) 

The inverse transformation is similarly found in terms of the 

incomplete elliptic integral as, 

s F(p,k) (24) 

p 
[ 

sn
2

(M,k) - x
2 J 2 

k -sn~2~(~M~.~k~)~(~1--~x~2--) 
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5.2.4 Region III {x3 ~ x ~ 1) 

For this range of x values,· v is entirely imaginary, being given by 
I 

v = j~, where ~is real, and 0 < ~ < K (k). In this case, then, 

H(M + v,k) 
H(M - v,k) 

H(M + j<j>,k) 
H(M- j<j>,k) 

I 

An expansion in terms of q is given in [5, Eq. 72] as, 

H (b + u,k) 

.9..n { H ( b - u , k ) 
1TbU '-- + 

I 

KK 

co 

'"' 4 I 
r=1 

.9..n 

r 

sinh (b + U)1T 
I 

2K 
(b -u)1T 

sinh I 

2K 

1 2r 
q sinh( r1rb )sinh( 

1 2r 1 

1-'q K 

In the case of (25), b M and u j<f>. 

I I 

Thus (b ± uhr/2K (M ±j~)1T/2K 

I 

j(~+jM)1r/2K 

(25) 

r1r~ ) ( 26) 
K 

Using the fact that sinh[j(a + jS)] j sin(a + jS), and the identity, 

sin(a- jS) 
sin(a + jS) 

'-'-1 j 2tan (tana/tanhS) 
e 

the logarithm term in (26) reduces to 

j2tan'"' 1 [tan ( 1T~ 1 ) I tanh ( 1TM
1 

)] (27) 
2K · 2K 
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In the series term in (26), with u j~, 

sinh ( r1ru 
I 

K 
j sin r'IT~ 

' K 
(28) 

So, if the function g(a,b,k) is defined for notational convenience as, 

tan 'ITb 
' 

g(a,b,k) 1rab + 2tan -'1 2K 
"'"'-' 'ITa KK tanh 

' 2K 

00 '2r 
- 4 I q 

]sinh[ 
r1ra 

]sin[ 
r1rb ( 29) 

'2r ' ' r=1 r 1-q K K 

which is real for real a and b, then from (25), (26), (27) and (28) 

Q.n { H ( M + v , k ) 
H(M - v,k) j g(M,~,k) 

Substitution of (30) into (1) gives, 

22n+1 (x) cosh (j (n + t) g(M,~,k)] 

cos [(n +; ) g(M,~,k)] 

(30) 

( 31) 

All that remains is to relate x to ~ in the region. Once again, as 

for regions I and II, the derivation is relatively straightforward but 

tedious. Use of the transformation (6) of Chapter 4 and the elliptic 

function identities, with v = j ~, leads finally to the following 

relationships, 
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and its inverse, 

r 
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sn(M,k) 

I 2 2 I 2 I 
sn (M,k)cn (~,k ) + sn (~,k ) 

I 

F( r, k ) 

sn (M,k) 
cn(M,k) 

5.2.5 Relating Jacobi Modulus k to the Sidelobe Ratio 

(32) 

(33) 

The maximum value of the Zolotarev polynomial (position of the 

difference peak) occurs at x = x2, with 

SLR ( 34) 

since the Zolotarev polynomial as defined in (1) gives sidelobe levels 

of unity. This maximum occurs in region II, so that with 

cn(M,k) z(M,k) 1 - sn(M,k)dn(M,k) 
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equation (34) can be written as, 

cos[nTI]cosh[(n + ~ )f(M,s2 ,k)] SLR 

Given the order (2n+1) of the polynomial, and the sidelobe ratio SLR, 

this equation can be solved for the value of the modulus k required to 

give such a sidelobe ratio. 

5.2.6 Finding the Zeros of the Zolotarev Polynomial 

A knowledge of the zeros of the Zolotarev polynomial will be required 

in Chapters 6 and 8. 

The zeros of the Zolotarev polynomial all lie in Region III in which, 

22n+1(x) cos[(n + ~ )g(M,~,k)] ( 36) 

This is the "equiripple" region, and the zeros of z2n+ 1 (x) can be. 

found from 

(n + ~ )g(M,~,k) (m + 
2 

h ( 37) 

for m 0,1,2,··· 

Solution of this equation gives the zeros in terms of ~. from which 

the x values are found from equation (32). 
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COMPUTATIONAL ASPECTS 

5. 3.1 Introductory Remarks 

Central to the numerical problem is the accurate computation of the 

special functions used. Three further numerical topics are the 

summation of the series and finding the zeros of a function. Each of 

the above aspects is considered separately in the sections that 

follow. Routines available in high quality mathematical software 

libraries have been used wherever possible. 

5.3.2 The Elliptic Integrals of the First Kind 

For the usual range of sidelobe ratios of interest the Jacobi modulus 

k lies between 0.9 and 1.0, being closer to 1.0 in most cases. An 

array of 20 elements, for example, requires k = 0. 99989531 6 for a 

sidelobe ratio of 25 dB and k = 0. 999971042 for a sidelobe ratio of 

30 dB. Accurate computation of the elliptic integrals for this range 

of modulus k values is consequently of the utmost importance. 

Fortunately, a very accurate routine S21 BBF for doing just this is 

available in the NAG library [8]. This routine calculates an 

approximation to the integral, 

RF(x,y,z) 2 

"' I [Ct + x)(t + y)(t + z)] 

0 

2 
dt 

where x, y, z ~ 0 and at most one is zero, and which is referred to as 

the symmetrised elliptic integral of the first kind [9, 10]. The 

result is accurate to within a small multiple of machine precision 

[8], and uses the algorithm of Carlson [9,10]. 
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If the following terms are defined, 

w 

v 

then the incomplete elliptic integral of the first kind, defined in 

equation (14), is simply given by [8], 

F(a,b) 

and the complete elliptic integral of the first kind by, 

K(k) 
. 2 

RF(0.0,1-k ,1.0) 

Computation of the elliptic integrals in this manner has been found to 

be ver.y satisfactory. 

5.3.3 Computation of the Jacobian Elliptic Functions sn, en and dn 

The functions sn, en and dn were computed using routines based on the 

algorithms given by Bulirsch [7]. These are available as FORTRAN 

subroutines JELF and DJELF (single- and double'""precision versions, 

respectively) in the IBM Scientific Subroutine Package [11]. All 

three Jacobian elliptic functions are computed simultaneously by the 

above routines. 
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5.3.4 Convergence of Series 

The series used for evaluation of the functions in expressions (11), 

(21) and (29) are all three very rapidly convergent. No special 

methods are required for their evaluation and a simple term-by-term 

convergence test is suitable. 

5.3.5 Generation of the Polynomial Forms of z2n+ 1(x) 

The coefficients of either the Chebyshev series in equation ( 18) of 

Chapter 4, or of the conventional polynomial form in equation (23) of 

Chapter 4, are necessary for the determination of the array 

excitations, depending on whethe~ the element spacing d > 0.5 A or 

d < 0. 5 L 

Consider first the Chebyshev series expansion, 

(38) 

In order to find the set of coefficients {bi}, a set of N values of x 

are selected in the interval 0 < x < 1. Enforcement of equation (38) 

at each of these points x1,x2 , • • • xN results in a set of linear 

simulataneous equations, 

.............. 

T2N'_, 1 (x 1
) 

T2N""1 (x2) -., 

z2N"'1cx,) 

2 2N~1<x2) (39) 
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which can be solved for the expansion coefficients. The sample points 

xi selected must be chosen such that the matrix is well-conditioned. 

This will be so if the xi are evenly spaced throughout the region, 

with one of them at the position of the maximum. 

The advantage of representing a polynomial as a Chebyshev series has 

been pointed out by Fox and Parker [12]. They also warn that 

-,straightforward use of the above method in finding the coefficients of 

.the conventional polynomial form directly in .powers of x, 

b x + b x3 
1 2 

+ • • • + ( 40) 

leads to a seriously ill-conditioned matrix if the coefficients bi 

have large numerical values. Since this is the case with the 

Zolotarev polynomials, the following alternative least squares 

procedure has been found to work well: 

(a) Select a set of points 

M > N 

fairly evenly spaced over the interval. 

(b) Set up a system of equations as was done in (39). Here, however, 

there will be M equations in theN unknowns coefficients, with 

M > N. The system of equations ·is then solved in a least squares 

sense. 
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5.3.6 Root Finding 

Determination of the zeros of a function is required for relating the 

Jacobi modulus k to the sidelobe ratio, and for determining the zeros 

of the Zolotarev array space factor. The mathematics for these tasks 

has been given in Sections (5.2.5) and (5.2.6), respectively. For the 

present case in which the functions have complicated forms, root 

finding procedures which do not require derivatives are desirable. 

Routines for doing this are available in most mathematical subroutine 

libraries. In the computations used to draw up the tables presented 

in Appendix II, the IMSL [13] routine ZFALSE was used. ZFALSE uses 

the "regula falsi" technique to find the solution of an equation 

f(x) = 0 and requires as input values of x known to be to the left and 

right of the root. For the computations required in Section 5.2.6 the 

routine is ca.lled successively until all the zeros have been found. 

The left and right bounds are found in all cases by simply 

incrementing the independent variable in sufficiently small steps and 

detecting a sign change in the particular function f(x). 

5.3.7 Computer Code 

Based on the above considerations, an interactive computer code has 

been developed. The code has been found to be very flexible and easy 

to use, and has been used to assemble the design tables given in 

Appendix II. It has been used with single-precision arithmetic on a 

CDC Cyber 174 computer, which is a 64-bit machine. The code consists 

of ·three modules. The first determines the value of the Jacobi 

modules k required for a given element number and. sidelobe ratio. 

Representative results are given in Table II. 1 and II. 2 of Appendix 

II. 
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The second module computes the required array element excitations. A 

range of array distributions can be found in Tables II. 3 to II. 10. 

The third module is optional, and finds the roots of the associated 

polynomial. Some results are presented in Tables II.19 to II.34. It 

is possible to use the third module without having executed the second 

if the roots are required for the synthesis procedures to be discussed 

in Chapter 6. 
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5.4 DESIGN TABLES FOR ZOLOTAREV DISTRIBUTIONS 

5. 4. 1 Selection of Range of Parameters 

Most modern radar and satellite communications antennas have sidelobe 

specifications requiring leyels at least 25 dB down from the main 

beam(s). Such levels are considered to be "moderate" [14]. On the 

other hand an array with a sidelobe ratio of 50 dB. is considered to be 

a very low sidelobe antenna, even by present standards [14,15]. In 

order that the tables presented adequately cover this range of levels, 

the "standard" sidelobe ratios between 15 dB and 60 dB are considered. 

A survey of the commercial literature soon reveals that the number of 

elements used per linear array. (or per linear "stick" of a planar 

array) varies too widely to make it possible to identify "standard" 

element numbers. The tables have therefore simply been restricted to 

arrays of between 10 and 60 elements to limit the data presented to a 

manageable size. These are given in Appendix II. 

If the Zolotarev distributions are to be used directly, all that is 

needed is the set of element excitations. Any of the array 

performance parameters can then be found as outlined in Chapter 2. 

However, if the tapered sidelobe modified Zolotarev n distributions of 

Chapter 6 must be synthesized, then the array space factor zeros are 

required quanti ties. Hence their inclusion in the tables in 

Appendix II. 

The notation of the tables is consistent with that used thus far in 

the thesis. The number of array elements is always denoted by 2N, 

while SLR stands for the sidelobe ratio. The symbol an denotes the 

excitation of the n~th element of the array, numbered from the central 

element out towards the edge. Since the distribution is symmetric, 

only one half of the excitations is tabulated. 

quoted are not in decibels. 

All directivities 
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5.4.2 Contents of the Tables 

Table II.1 gives the modulus k required for a specified SLR and number 

of array elements 2N. Due to the fact that the values of k are all 

clustered close to unity, a "sidelobe parameter" 

has been introduced and the information of Table II. 1 repeated in 

Table I1.2, but with s displayed instead of k. 

Tables II. 3 to. II.1 0 provide the element excitations for the case 

d ~ 0. 5 A, for a range of array sizes and sidelobe ratios. The 

performance parameters (i.e. relative slope ratio Kr and excitation 

efficiencies nd and nds) for these same arrays are given in Tables 

11.11 to II.18, for the specific spacing d = 0. 5 A. From these the 

essential characteristics of the Zolotarev polynomial distributions 

can be gleaned, and these are discussed in the next section. 

In Tables 11.19 to 1I.26 the roots (on the x~axis) of the polynomials 

associated with the above tabulated cases are presented, along with 

the values of x1, x2 and x3• These can be used to find, from the 

appropriate transformation equations, 

X 
{ 

sin(ljJ/2) 

sin(ljJ/2)/sin(2ndiA) 

d > 0.5 A 

d < 0.5 A 

the space factor zeros lj!n for any spacing. This is particularly 

useful when using the synthesis methods developed in Chapter 6. 

Finally, for the case d ~ 0.5 A, these space factor zeros lj!n are given 

n are given, these in Tables II. 27 to II. 34. Only values up to lj!n 

applying exactly to the case of spacing d 0.5 A. For larger 

spacings, these lj!n values simply repeat themselves. 
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5.5 THE PERFORMANCE OF ZOLOTAREV DISTRIBUTIONS 

The Zolotarev polynomial distribution, like its Dolph""Chebyshev sum 

mode counterpart, tends towards large peaks at the array ends for 

certain ranges of array sizes and sidelobe ratios. For instance, 

consider the case of an array of 2N = 20 elements, for spacings 

d > 0.5 A. The excitations, obtained from Tables II. 3 to II. 8 are 

plotted in Fig. 5.1 for various sidelobe ratios. For a 15 dB sidelobe 

ratio the largest excitation is seen to be at the array edge. That 

this is required to provide the desired space factor is clear from the 

plot of the latter in Fig. 5.2. 

As the sidelobes are lowered (i.e. sidelobe ratio increased) edge 

excitation decreases, with the peak excitation occurring elsewhere. 

The distribution may still increase at the edge though. However, if 

the sidelobes are lowered further, a point is reached at which the 

peaking at the edge disappears. For the 20 element array this "edge 

brightening" disappears for a sidelobe ratio of approximately 25 dB. A 

summary of such information for other arrays sizes (for d > 0. 5 ,\) is 

presented in Table 5.1. The sidelo be ratios quoted are approximate 

and merely intended to give· a rough idea of the array sizes/sidelobe 

ratios at which the various phenomena occur. 

TABLE 5.1 Sidelobe ratios associated with particular excitation 

characteristics. 

NUMBER OF SIDELOBE RATIO GREATER SIDELOBE RATIO AT WHICH, 
ARRAY THAN WHICH DISTRIBUTION AND LESS THAN WHICH, THE 

ELEMENTS DOES NOT INCREASE AT THE EDGE EXCITATION IS THE 
(2N) ARRAY EDGE LARGEST 

10 16 dB 15 dB 

20 25 dB 19 dB 

30 33 dB 21.5 dB 

40 40 dB 23.5 dB 

50 45 dB 25 dB 

60 50 dB 26 dB 
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Observe also that, for an array of fixed size, the maximum poin~ on 

the "hump" of the distribution shifts toward the centre of the array 

as the sidelobe ratio is lowered until the point is reached at which 

the distribution does not begin to increase at the array edges. 

Thereafter the element with maximum excitation is fixed regardless of 

sidelobe ratio . 

. It is interesting to examine the directivity and slope information 

contained in Tables 11.11 to 11.18. This information is summarised in 

Figs. 5.3. Though the numerical results apply only to the case 

d == 0. 5 >., the overall behaviour is applicable to other spacings as 

well. Observe from Fig. 5.3 that for each array size (2N value) there 

is a sidelobe ratio giving maximum directivity. The reason is that 

smaller sidelobe ratios (i.e. higher sidelobe levels) result in 

significant power in the equal-level sidelobes, while larger sidelobe 

ratios give a lower excitation efficiency due to the larger beamwidths 

(of the difference lobes) associated with the lower sidelobes. This 

behaviour parallels that of the Dolph~chebyshev sum distribution 

discussed in Section 3.2.2. 

A similar plot, but of the relative slope ratio Kr is shown in Fig. 

5.4. It shows maximum points similar to those of the directivity, but 

these are shifted down to lower sidelobe ratios. The relatively high 

Kr values for the prescribed sidelobe levels is indicative of the 

optimum property of the Zolotarev polynomial distribution. 

A further graph is shown in Fig. 5.5. Here the beam broadening factor 

.is. plotted versus sidelobe ratio for various element numbers. This 

factor has been defined here as the ratio of the first null beamwidth 

of the difference lobe (see Fig. 2.2) to the corresponding quantity of 

the ·maximum slope array of the same number of elements (since the 

latter always has a narrower beamwidth than that · of the maximum 

directivity array). The price paid for sidelobe reduction is clear 

from this figure, and is as expected. The decrease in excitation 

efficiency with sidelobe reduction is also clear from the tables. 
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The directivity information is plotted in another form in Fig. 5.6. 

Here D~ is plotted as a function of array element number 2N, with 

sidelobe ratio as a parameter. This form exhibits the "gain 

compression" of the Zolotarev polynomial distribution with increasing 

array size, for a given sidelobe ratio. Once more, this is precisely 

the behaviour observed with the Dolph"'Chebyshev distribution. In that 

case this undesirable performance was alleviated by altering the 

excitations in order to provide some sidelobe taper. For the 

difference pattern case this is done in the next chapter. 

Before proceeding, two final examples are considered simply for the 

purposes of illustration. The space factor of an array of 2N = 50 

elements and sidelobe ratio 40 dB is shown in Fig. 5. 7. This was 

plotted from the excitations in Table II. 8, and is for a spacing 

d = 0.5 A. As an example of an array with spacing less than a 

half-wavelength, consider d = 0.4 A and a sidelobe ratio of 30 dB for 

a 20 element array. The methods of Section 4. 5 give the required 

excitations as shown in Table 5.2. Observe by comparison with the 

information in Table II. 6 that the excitations are different from 

those for d > 0.5 A. The excitations for d = 0.4 A have alternating 

signs, resulting in a characteristically high Q.:.factor. 

factor of the array is drawn in Fig. 5.8. 

The space 
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TABLE 5. 2 Element excitations for the Zolotarev polynomial array 

with 2N = 20, d = 0.4 A and SLR = 30 dB. 

n a n 

- 1 -0.97203 

2 1. 00000 

3 '-'0.77005 

4 o. 84061 

5 "-'0.48498 

6 0.56680 

7 "-'0.22760 

8 0. 29080 

9 ""0.06613 

10 0.10185 

Dm 
d 

9.1419 

K 1. 0407 

Q 46.57 
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5.6 CONCLUSIONS 

Expressions have been given for the computations required in the 

application of the Zolotarev array synthesis technique. The 

procedures used in a computer code developed to perform. such 

computations have been explained and the code used to draw up a set of 

tables of design data for a number of cases of practical importance. 

These tables are given in Appendix II. For a wide range of 

applications these tables eliminate the need for a suite of computer 

codes to perform the array synthesis. On the other hand, the computer 

software developed executes extremely rapidly and has the advantage 

that arbitrary array sizes and sidelobe ratios can be specified. 
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CHAPTER 6 

MODIFIED ZOLOTAREV POLYNOMIAL DISTRIBUTIONS 

6.1 INTRODUCTION 

The Zolotarev polynomial distribution of Chapters 4 and 5 is optimum 

for difference synthesis in the same sense as the Dolph""Chebyshev 

distribution is for sum synthesis. Examination in Section 5.5 of the 

characteristics of the Zolotarev polynomial distribution revealed that 

it; like its sum counterpart, has a number of features which for 

practical applications may be improved upon. Firstly there is the 

constant sidelobe level which results in "directivity compression" 

with increasing array size. Secondly there is the increase in the 

magnitude of the excitations at the array edges for certain element 

number/sidelobe ratio combinations, and the ·associated disadvantages. 

These undesirable features can be removed to some extent by 

incorporating a sidelobe taper. Space factors with tapered sidelobe 

envelopes are important not only for this reason. In many 

applications a prescribed tapered sidelobe envelope is a definite 

performance specification which has to be met. If only far-out 

sidelobes must be depressed below very low levels, forcing. all 

sidelobes below these limits will result in 

broadening and excitation efficiency decreases. 

envelope will give a better design. 

unnecessary beam 

Use of a tapered 

In Chapter 3 the course of further developments on the Dolph-Chebyshev 

sum distributions was outlined. First the work of Taylor on 

continuous distributions, resulting in an understanding of the physics 

of aperture distributions (space factor zero placement), and then the 

use of this knowledge by Villeneuve [1] and his subsequent invention 

of a method for the direct synthesis of efficient, tapered sidelobe, 
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sum patterns for discrete arrays which has as its point of departure 

the Dolph-Chebyshev space factor zero positions. In the present 

chapter the Zolotarev distribution is used as the starting point of a 

technique for the direct synthesis of the excitations of a discrete 

array with efficient, tapered sidelobe, difference space factors. 

The discussion will use as examples arrays w-ith spacings d = 0. 5 >.. 

The method applies equally well for other spacings though. A comment 

to this effect will be made at the end of the chapter. 
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6.2 FUNDAMENTAL PRINCIPLES 

The Zolotarev distribution is known to provide optimum beamwidth and 

slope characteristics for a given array size and maximum sidelobe 

ratio specification. It is an "ideal" difference distribution. Any 

synthesis procedure for tapered sidelobe difference patterns should 

therefore use this ideal distribution as the starting point, and then 

attempt to provide the required sidelobe envelope taper with as little 

departure from the ideal case as is possible. The close-in space 

factor zeros especially should maintain their spacings as far as is 

possible in order to keep the close-in sidelobes at the required 

levels, and the beamwi dth and slope factors close to optimum. The 

farther-out zeros must however approach those of a space factor which 

has the required envelope taper. As pointed out in Section 3.7, this 

zero shifting must be done in some ordered fashion lest a depression 

of sidelobes at one point be accompanied by an unacceptable increase 

at another. 

A Zolotarev array of 2N elements and specified sidelobe ratio has a 

set of symmetrically positioned space factor zeros { l/Jn}' 

n = ±1,±2, ••• ±(N-1). These have been tabulated for a number of 

cases in Appendix II. Because of the symmetry of the space factor, 

only one half of the zeros need be considered. An additional zero is 

located at l/J = 0, as is always the case with difference patterns. This 

will be kept apart from the other zeros, since it is fixed under all 

circumstances. 

sum patterns, 

In order to emulate here what Villeneuve [1] did for 

the Zolotarev zeros ,,, are retained (almost) for "'n 
n = 1 ,2, ••• (~-1), with~ some chosen index .. However, for n ~~.the 

Zolotarev zeros l/Jn are replaced by those of some space factor with a 

sidelobe envelope taper, and which will be referred to in what follows 

as the generic space factor zeros [2] and denoted by !/Jon, 

n = ~ .~+1, • • • ( N-1). The resulting new set { l/J~} of space factor 

zeros, with 

{ 
0 l/J n n < n 

( 1 ) 

n > n 
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for n = 1 , 2 • • • ( N-1), together with the zero at 1jJ = 0, completely 

characterises a new set of excitations. The dilation factor 

o = 1jJ0~/1jJn, which must be slightly greater than unity, prevents the 

transition sidelobe from being raised above the maximum permissible 

level by providing a smooth transition between the two zero-type 

regions. Thus the Zolotarev zeros are not retained exactly for 

n < n-1, and a slight beam broadening therefore results. 
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6.3 THE CHOICE OF A GENERIC DISTRIBUTION 

6. 3. 1 The Suitability of Three Possible Generic Distributions 

If it is to be utilised as a generic distribution, a distribution must 

at least have a space factor which itself has the sidelobe taper that 

the final distribution is to provide. Furthermore, it must be 

possible to place the generic space factor zeros $
0

n in an unambiguous 

correspondence with those of the starting Zolotarev space factor, $n. 

For a sum array of 2N elements, Villeneuve [1] used as generic space 

factor that of a uniformly excited array of the same number of 

elements. The logical choice for the difference array case would seem 

to be the adoption of the uniform (magnitude) anti-symmetrically 

excited array as the generic distribution. (Note that by "difference 

distribution" of 2N elements it will be implied in what follows that 

the two halves of the array, each having N elements, are excited in 

anti -phase. This is consistent with the terminology of earlier 

chapters). The space factor of a uniform difference distribution of 

2N elements is easily found from expression ( 1 0) of Chapter 2 with 

each an= 1, and the resulting series of sine terms summed [3, p. 30] 

to obtain 

sin2(N$/2) 
sin($/2) ( 2) 

with zeros at $0 n = 2n1r/N, n = 1,2, ••• N/2, in addition to that at 

$ = 0. Inspection of (2) reveals that as a result of the squared term 

in the numerator it has second order zeros, and this prohibits a 

correct $n -+ $on correspondence with the starting Zolotarev space 

factor. This is best seen by considering an example of an array of 

2N = 20 elements and d = 0.5 A. The Zolotarev space factor of a 25 dB 

sidelobe ratio array of this size is shown in Fig. 6.1. (The space 

factor zeros and element excitations for this Zolotarev array are 

given in Table 6.1). Superimposed is that of a uniform difference 

distribution for an array of the same number of elements. Clearly the 

uniform distribution has only half the number of separate zero 

locations necessary to be a valid generic space factor. 
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Space factor zeros and element excitations for a Zolotarev 

array of 20 elements and 25 dB sidelobe ratio (d = 0.5 A). 

(Extr~cted from Tables II.29 and II.5). 

n \)Jn 

0.61603219 

2 0. 81 725124 

3 1. 09280090 
' 

4 1. 3931 8558 

5 1. 70403091 

6 2.02008672 

7 2.33899023 

8 2.65948818 

9 2.98080654 

n an 

1 0.168346 

2 0.485100 

3 0.745324 

4 0.921637 

5 1. 000000 

6 0.981285 

7 0.880081 

8 0.721111 

9 0.534100 

10 0.536199 

nd 0.8883 

Kr 0.8551 
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There are fortunately two ~urther known difference distributions which 

have a 1/u sidelobe envelope taper; the unconstrained (sidelobe-wise) 

maximum difference peak directivity and maximum normalised slope 

distributions. These have been considered in Sections 4. 1. 2 and 

4.1.3, respectively. Figures 6.2 and 6.3 compare these space factors 

to that of the 25 dB sidelobe ratio Zolotarev distribution, for a 20 

element array. Clearly a one~to~one zero correspondence is possible. 

Either of the above space factors could therefore be used as the 

generic ones. 

Now the element excitations for maximum normalised slope and maximum 

difference directivity distributions can be determined using th~ 

methods of Section 4.1. Once these excitations are known the zeros of 

the associated space factors can be found by numerically determining 

the roots of the expression (10) of Chapter 2. 

For convenience a number of cases for d 0. 5 >. are presented in 

Tables 6.2 and 6.3. 

These were found for a given array size 2N by bounding each zero 

through detection of a function sign change and then applying a 

combination of the methods of linear interpolation, extrapolation and 

bisection [4] in each interval to determine the precise zero location. 

With this information at hand, the root shifting proposed in Section 

6.2 can be examined. For conciseness, the maximum directivity and 

maximum normalised slope space factors will be referred to as the Dmax 
d 

and K
0 

space factors, respectively. 
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TABLE 6.2 Zeros of maximum normalised boresight slope space factor 

(d = 0.5 ).). 

2N 1 0 20 30 40 50 60 

~01 0.901739348 0.449717293 0.299671828 0.224717338 0.179760362 o. 149794192 

\i!o2 1.550455743 0.773~76549 0.515208527 0.386343298 0.309051352 0.257532269 

~03 2.188803265 1 . 091 340961 0. 727213287 0.545320282 0.436223223 0.363504457 

li!o4 2.824233159 1.407834254 0.938099040 0.703457503 0.562723195 0.468916713 

1ilo5 1. 72358961 6 1.148485530 0.861219480 0.688922814 0.574078630 

lfio6 2.038961610 1.358606433 1. 018781203 0.814962017 0.679106807 

1ilo7 2.354117635 1.568569980 1. 176223566 0.940905462 0.784055109 

0o8 2.669:50237 1. 778433438 1.333589203 1. 066787201 0.888951898 

\!Jog 2.984118522 1.988230162 1. 490902761 1. 192626892 0.993813539 

001 0 2.197981101 1.648179520 1.318436690 1.098650145 

llio~1 2.407700294 1. 805429483 1.444224524 1.203468304 

wo12 2.617397741 1.962659507 1.569995793 1.308272496 

li-'o1 3 2.827081025 2.119874478 1.695754309 1. 41 3065876 

¢o1 4 3.036756307 2.277078004 1.821502847 1. 517850733 

li!o1 5 2.434272843 1. 947243481 1. 622628767 

l)J01 6 2.591461171 2.072977799 1. 727401274 

lj!017 2.748644772 2.198707046 1. 832169257 

wo~ 8 2.905825164 2.324432217 1.936933507 

1)101 9 3.063003694 2.450154127 2.041694662 

1.);020 2.575873456 2.146453238 

1)1021 2.701590787 2.251209664 

1)1022 2.827306629 2.355964300 

1!;023 2.953021442 2.460717454 

l)J024 3.078735649 2.565469389 

lilo25 2.670220340 . 
<J!o26 . 2. 774970515 

0027 2.879720105 

1)J028 2.984469286 

:.;_,029 3.089218224 
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TABLE 6.3 Zeros of maximum directivity space factor (d = 0.5 A). 

2N 1 0 20 30 40 50 60 

1jl01 0.881875823 0.440507754 0.293612802 0.220193749 0.176149074 0.146788234 

1jl02 1.600041359 0.801466094 0.534491786 0.400916340 0.320750646 0.267300203 

1/Jo3 2.197446750 1 . 1 006421 32 0.733919123 0.550476914 0.440394918 0.367001736 

1jl04 2.835823827 1. 420733659 0.947536219 0.710752267 0.568638878 0. 473882534 

1jl05 1. 729354281 1.153288149 0.865055247 0.692075636 0.576743610 

1jJ06 2.045667797 1.364337645 1. 023399961 0.818774170 0.682336325 

1jl07 2.356844978 1.571888924 1.179060907 0.943298610 0.786104034 

1jl08 2.672099246 1.782141761 1.336799582 1.069510657 0.891290884 

1jlo9 2.984093633 1 • 990420096 1 . 493021 298 1.194486520 0.995435507 

1jl01 0 2.200334894 1.650493509 1.320483003 1.100442061 

1jJ011 2.408954485 1. 806994980 1. 445686864 1.204777794 

1jl012 2. 61 871 0708 1.964329101 1. 571 569598 1 . 309688684 

1jl013 2.827489081 2.120985316 1.696903056 1. 4141 33917 
___.. 

1jl01 4 3.037179999 2.278241758 l. 822719232 1 • 51 898821 5 

1jl015 2.434987267 1. 948131 990 1. 623501 481 

1jJ016 2.592199354 2.073906737 1. 728319819 

1jl017 2.748994784 2.199370088 1.832877740 

1jJ018 2.906183766 2. 325118271 1. 93767211 8 

1jl019 3.063001747 2.450614259 2.042260413 

1jl020 2.576345510 2.147038360 

1jl021 2.701861884 2.251647706 

1jJ022 2.827583041 2.356414264 

1jl023 2.953110628 2.461038192 

iPo24 3.078827058 2.565796950 

1jl025 2.670430693 

1jJ026 2. 775184371 

1jl027 2.879824184 

1jJ028 2.984574988 

1jl029 3.089217705 
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6.3.2 Comparison of Modified Zolotarev Space Factors 

The problem of finding the set of element excitations resulting from 

the zero shifting operations indicated in expressions ( 1) will be 

dealt with in Section 6.5. Of immediate concern in this section is 

the behaviour of the space factors which are the outcome of such 

alterations to the zeros. This is best observed through use of a 

particular example. Suppose once more that an array of 2N = 20 

elements with a specified maximum sidelobe ratio of 25 dB is desired. 

Tables 6.1, 6.2 and 6.3 can be used to obtain the information on the 

zeros 1/Jn and 1/Jon required for the zero shifting procedure. Since the 

factor a must be greater than unity (it is not possible, for the given 

C.rst sidelobe level, to have a beamwidth narrower than that of the 

Zolotarev array), any n that may be selected must at least satisfy the 

conditon, 

ljJ-
n 

(3) 

This is equivalent to saying that the Zolotarev zeros may only be 

shifted outward. Therefore, for the present example, when the D~ax 

pattern is used as the generic space factor, the smallest n that may 
-be selected according to condition (3) is n = 3. For the K

0 

pattern as the generic one, the minimum n allowed by (3) is ri = 4. 

Thus, not only is the D~ax space factor analogous to the maximum sum 

directivity (uniform array) space factor used as the generic pattern 

by Villeneuve [1] for sum pattern synthesis, but it appears at first 

sight to offer more flexibility than the K
0 

pattern. However, this 

will be seen not to be the case. Fig. 6.4 shows the modified 

Zolotarev pattern which results after using as the generic space 

factor zeros those provided by the D~ax distribution, for the case 

n = 3. The sidelobes are seen to increase above the design sidelobe 

level of 25 dB, indicative of incorrect behaviour of the transition 

zeros. If this same generic distirbution is used with n = 4, such 

irregular behaviour does not occur, as illustrated in Fig. 6.5. 
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Now consider the space factor which results when the K0 distribution 

is used as the generic one. In this instance, for its lower bound 

n. = 4, the modified Zolotarev pattern resulting from the zero 

perturbation procedure defined by (1) is shown in Fig. 6.6. Thus, for 

its minimum allowable n, no unwanted sidelobe behaviour is obtruded. 

Furthermore, the first sidelobe in Fig. 6.6 is closer to the design 

level than it is in Fig. 6.5. In addition, further computations show 

that this is so for any given n, and that utilisation of the K
0 

rather 

than D~ax pattern always results in a slightly larger excitation 

efficiency and normalised slope. This has also been found to be the 

case for other array sizes and design sidelobe ratios. (For very large 

n values, the modified distributions obtained with either generic 

space factors are very close to that of the starting Zolotarev 

distribution. Their performance indices are then not very different). 

Since the D~ax has therefore nothing extra to offer in its fa~our, the 

K
0 

pattern will be utilised throughout the remainder of this thesis, 

and will simply be referred to as the generic space factor for 

difference pattern synthesis. 

Observe from the set of excitations shown with Fig. 6.6 that while the 

starting Zolotarev excitations (obtained from Table 6.1) are -just 

beginning to increase again at the edge element, such is not the case 

with the new set. Incorporating the sidelobe taper has removed this. 

The price paid is a beamwidth broadening by a factor a= 1.01051 from 

the starting Zolotarev array, though this is small. The difference 

between the levels of the first and last sidelobes is only 2.67 dB. 

For many applications this may not be satisfactory. If it is not 

possible to increase the number of array elements, the only 

alternative is the incorporate into the distribution a factor which 

allows control over the sidelobe envelope taper rate. This is done in 

the next section. 
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6.4 GENERALISATION TO ARBITRARY SIDELOBE ENVELOPE TAPERS 

Determination of the best pattern for a given application requires 

careful consideration of the relative importance of the peak sidelobe 

specification and the level of the more remote sidelobes. For this, 

and some additional reasons mentioned in Section 6.1, a distribution 

which allows some control over the sidelobe envelope taper rate and 

not just the point at which taper begins, is highly desirable. In 

order to effect such a distribution which applies directly to discrete 

arrays, the zero shifting procedure defined by equation ( 1) must be 

modified. This will be done in such a way that (1) is a special case. 

The general zero shifting procedure is given here in complete form, 

even at the risk of repetition of part of Section 6.2. Once again, 

symmetry permits only one half of the zeros to be considered. 

For an array of 2N elements and a given sidelobe ratio specification 

there will be associated an optimum Zolotarev distribution (which will 

be referred to as the starting distribution) with space factor zeros 

{¢n}, n = 1 ,2, (N-1), with the additional mandatory zero at¢= 0. 

Similarly, the generic space factor will have a set of zeros {¢
0

n} for 

the same range of n, and the zero at ¢ = 0. The altered set of space 

factor zeros {~~} is now given by, 

~n { 
0 i)J 

n 

with the dilation factor o given by, 

0 

n < n 

( 4) 

n > n 

( 5) 

When ~ = 0, the zero shifting operation is nullified and the starting 

Zolotarev zeros (and associated distribution) are unchanged, giving a 

space factor which has uniform sidelobes (zero taper). 
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A value of ~ = 1 reduces the zero shifting algorithm of (4) to that of 

(1), which gives a 1/u sidelobe envelope taper. 

A value of ~ > 1 gives a more rapid sidelobe envelope taper. There is 

with increasing ~ an increase in the dilati6n factor o and hence in 

the amount of beam broadening. 

Since it is not possible, for a given maximum sidelobe level, to 

obtain a difference lobe beamwidth less than that of the appropriate 

Zolotarev array it is necessary that o > 1. 

implies that, 

> 1)!-
n 

From equation (5) this 

( 6) 

is a requirement, and any n selected in a specific situation is only 

valid if (6) is satisfied. There will in all cases be a minimum 

allowable value for n for a given number of array elements 2N and 

prescribed sidelobe ratio SLR. With the chosen generic space factor 

(i.e. the K
0 

space factor), condition (6) has been found in all cases 

considered to be a sufficient condition for determining this minimum 

n, and ensures that an increase in the transition sidelobes above 

the design sidelobe level will not occur. 

The use of the general procedure just described is illustrated in 

Figs. 6.7, 6.8 and 6.9 for the same array and specifications of Fig. 

6.6, but for increasing value of the taper parameter. Its effect is 

clear. While n determines the point of onset of the taper proper, the 

~factor controls its rapidity. The pattern of Fig. 6. 6 is of course 

just that for which ~ = 1, and has a first sidelobe at precisely the 

same level as that of the starting Zolotarev distribution, then three 

sidelobes of the kind conventionally referred to as the "almost equal 

level sidelobes", ~nd thereafter a sidelobe envelope with a 1/u taper. 

For the larger ~ values in Figs. 6.7 to 6.9 the first sidelobe has 

decreased from that of the starting distribution, but the essential 

pattern structure is the same, except for the increased outer sidelobe 

taper rates. 
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The number of elements 2N in a monopulse array will in most cases be 

determined by the sum directivity (Dm) requirements. This quantity is 
s 

the determining factor as regards the range capability of a tracking 

r.adar. It is reasonable therefore to discuss the behaviour of the 

present modified Zolotarev distributions for given fixed element 

numbers. 

A comprehensive discussion of the results of a parametric study of the 

influence of nand ~on the array performance is given in Section 6.6. 

In order to have a complete synthesis procedure, a method is required 

for obtaining the element excitations once the altered zero locations 

{*~} are known. This is dealt with in the next section. 
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6.5 DETERMINATION OF MODIFIED ZOLOTAREV DISTRIBUTION EXCITATIONS 

Consider again the expression for the space factor of the 

anti-symmetrically excited (difference) array of 2N elements, given by 

equation (10) of Chapter 2 as (ignoring the constant factor 2j), 

N 

I 
n=1 

a sin[C2n~1)$/2] 
n 

( 7) 

The methods of the previous section provide the set of zeros {w~}, 
i = 1,2, ••• (N-1), of the desired space factor. An additional zero 

occurs on boresight at w = 0. For reasons of symmetry, only one half 

of the excitations and zeros need be considered. While there are 
I 

(N-1) zeros wi' there are N unknown excitations. However, it is the 

relative excitations that are significant. One of the excitations can 

be assumed equal to unity and all the others found relative to, it. 

This is valid even if complex excitations are being considered. Let 

aN= 1 in this case, so that (7) becomes, 

N""1 
sin[(2N-1)$12] + L 

n=1 
a sin[(2n-1)$12] 

n 
( 8) 

If equation (9) is enforced at the (N~1) zeros, a set of (N~1) linear 

simultaneous equations, in the (N-1) unknowns a 1 ,a 2, • • • aN_ 1 is 
I 

obtained, with Ed(wi) = 0 for each i. 



• 

1 74 

The full set of equations is of the form, 

N-1 I I 

I a sin [ ( 2n -1 ) ljJ 
1 

12] + sin[(2N-1)1jJ1 
/2] 0 

n=1 n 

N-1 I I 

b a sin[(2n-1)1jJ2 12] + sin[(2N-1)1jJ2 
/2] 0 

n=1 n 

N-1 
I an sin[(2n-1)1jJ~~ 1 !2] + sin[(2N-1)1jJ~~ 1 12] 0 

n=1 

The process can be represented in matrix notation as, 

s11 

where 

s . 
n1 

sin [ ( 2n-1 ) lji: /2] 
l. 

s1,N-1 

and b. 
l 

( 9) 

Once the (N-1) unknowns have been found, the complete set of 

excitations a 1, a 2 , • • • aN can be renormal ised to the excitation of 

largest m~gnitude of the set. 

The reason for selecting the above appraoch is the fact that there 

exist very efficient routines for linear simultaneous equation 

solution. This allows rapid and accurate determination of array 

excitations. 
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6.6 THE PERFORMANCE OF MODIFIED ZOLOTAREV POLYNOMIAL DISTRIBUTIONS 

For discrete arrays, results are not as easily presented in the 

general form possible with continuous lineooo\sources. Instead the 

results of the parametric study of the performance of modified 

Zolotarev polynomial distributions will be illustrated by two examples 

(both with d = 0.5 A) which exhibit all the principal characteristics 

of the distribution. 

The first is that which has been considered earlier in this chapter 

(2N 20, SLR = 25 dB), and the second a 30 element, ·15 dB sidelobe 

ratio array. The former case has a starting Zolotarev distribution 

(see Table 6.1) which is not peaked at the edge. The latter example 

can be seen from Table II.3 to have a starting distribution with 

maximum excitation at the edge. This array suffers from the 

"directivity compression" problem discussed in Section 5. 5, while the 

first array does not. Shown in Fig. 6.10 is a plot of the excitation 

efficiency of the 20 element array as a function of n, with E;, as a 

parameter. For a fixed n, increasing E;, causes a decrease in nd, as 

expected, since the distribution of excitations is becoming 

increasingly tapered at the edges of the array. The vertical scale in 

Fig. 6.10 is much expanded and the change in directivity is really 

very small in spite of the fact that an increased sidelobe taper is 

obtained. As n gets larger, the excitation efficiency becomes less 

dependent on the parameter t;,, since the modified distributions are 

tending to the starting Zolotarev distribution. The excitation 

efficiencies of the modified distributions are all seen to be lower 

than that of the starting distribution. This is only true because of 

the fact that the starting Zolotarev distribution does not suffer from 

"direti vity compression", and will not be so for the second example. 

The behaviour of Kr and beamwidth broadening above for the 20 element 

array parallels that of the excitation efficiency. Recalling that o 

gives directly the amount of first null broadening above that of the 

starting pattern, it is noted that over the range 4 < n < 9 and 

0 < E;, < 8, the variation in o for this example is < 0 < 1. 09182. 
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The largest value occurs for the somewhat extreme case of i1 4, 

~ = 8, which has a pattern which falls very rapidly below the '-'-60 dB 

point after only the first few sidelobes. Even then the beamwi dth 

broadening of 8.4% is relatively small considering the greatly 

increased sidelobe taper obtained. 

Now consider the 30 element array with a sidelobe ratio of 15 dB. A 

plot of its excitation efficiency as a function of n is given in Fig. 

6.11. For a given ~ there is a particular ~ which gives maximum 

directivity. Smaller and larger values than this result in lower 

directi vi ties. Such behaviour is a characteristic of distributions 

whose starting Zolotarev distributions have "directivity compression". 

Incorporating a sidelobe taper can be used to improve the directivity 

above that of the starting distribution. The relative difference 

slope (Kr) of this array is seen from Fig. 6. 12 to show a similar 

behaviour, but the maxima occur for different n values. 

Examination of the excitation sets also reveals that for each ~. there 

is a value of n greater than which there is "edge brightening". For 

the 30 element array, the distributions of element excitations are 

presented in Fig. 6.13, for~= 0, 1, 2 and 3, for the case of n equal 

to its minimum allowable value of 2. With~= 1, the distribution has 

a maximum at the edge. Increasing n will only serve to make the 

distribution more like that of the starting Zolotarev case (~ = 0). 

The only way to remove this "edge brightening" for the given number of 

elements and design sidelobe ratio is by increasing the parameter ~. 

This confirms bOth the necessity and utility of introducing the 

additional parameter ~ in the zero alteration procedure of expression 

( 4) • 
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6.7 ARRAYS WITH SPACINGS OTHER THAN HALF A WAVELENGTH 

The examples discussed in this chapter have all assumed d = 0. 5 A. 

This has simply been for convenience, however, and is not a necessity. 

For general spacings the zeros ljln of the starting Zolotarev space 

factor are simply determined from the synthesis procedures of 

Chapter 4, as is done for d = 0.5 A. When d > 0.5 A, only the unique 

(non'""'repeating) zeros are used, and these are the same as those for 

d = 0. 5 A. Similarly, the zeros ¢
0

n of the generic space factor (K
0 

distribution) are found by using the method of Section 4. 1. 3 to 

determine the required excitations for the given spacing, and then 

finding the space factor zeros numerically, as indicated in Section 

6.3. 
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6.8 CONCLUSIONS 

Chapter 4 added to the theory of antenna arrays by developing, for the 

synthesis of discrete difference distributions, the analogue of the 

fundamental Dolph"""Chebyshev synthesis of sum patterns through use of 

the Zolotarev polynomials. • In the present chapter a tapered sidelobe 

difference pattern synthesis method has been outlined, which technique. 

parallels the Villeneuve n distribution approach of sum patterns. Just 

as the Villeneuve procedure provides the array excitations for a 

discrete "Taylor-like" distribution directly, so does the present one 

allow direct synthesis of high· performance discrete "Bayliss--like" 

distributions. In addition the approach has been extended to 

incorporate a parameter which controls the sidelobe envelope taper 

rate. As such this chapter completes a further aspect of array antenna 

theory. 

The synthesis procedure begins with the set of zeros of the Zolotarev 

space factor associated with the given problem. These are then 

altered according to a well-defined procedure given by expression (4), 

making use also of the known zero locations of the maximum normalised 

slope space factor for an array of the same number of elements. The· 

altered set of zeros is then used in (9) to obtain the required set of 

excitations. 

Use of this method alleviates the need to sample the continuous 

Bayliss line"""source distribution (which itself is determined by a 

numerical search procedure) and then iteratively. adjust the 

excitations to obtain the final desired pattern. Direct synthesis 

methods for discrete arrays are particularly useful when the number of 

array elements is too small for sampling of continuous distributions 

to be satisfactory. Preliminary work on the topic of this chapter has 

been published by the author [5,6]. 

-------··~---------------
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CHAPTER 7 

GENERALISED VILLENEUVE DISTRIBUTIONS FOR SUM SYNTHESIS 

7.1 INTRODUCTION 

The synthesis of sum patterns was reviewed in Section 3.2. To design 

high-performance low-sidelobe space factors the emphasis is on the 

pattern zeros. The optimum constant sidelobe ratio Dolph-Chebyshev 

distribution [1] provides the crucial initial. space factor zero 

locations. With this as basis, and the appropriate controlled zero 

shifting, the tapered sidelobe Villeneuve distributions [2] are 

derived. The close-in zeros are correctly placed from a knowledge of 

the Dolph~Chebyshev zeros to obtain a few nearly equal sidelobes at 

the design level, while the farther-out zeros are made to match those 

of the uniformly excited array in order to give a 1 /u sidelobe 

envelope. 

Also reviewed 

distributions 

were the corresponding 

the constant sidelobe 

continuous line-source 

level "ideal" Taylor 

distribution and the Taylor n distribution, respectively. In 

addition, sidelobe envelope taper as well as close-in sidelobe levels 

can be controlled in the family of distributions known as the 

generalised Taylor distributions [3 J. Taylor Is n distribution is a 

special case of these. 

In the present chapter the work of Villeneuve [2] is generalised to a 

class of distributions, directly applicable to discrete arrays, which 

allows the sidelobe envelope taper to be controlled. The arguments 

are similar to those of Section 6.4 and the motivation given there is 

applicable here as well. 
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7.2 DETAILED FORMULATION 

7. 2.1 Array With An Even Number of Elements 

The case of an array of an even number of elements is considered 

first. 

Consider an array of 2N elements with uniform spacing d. For a design 

sidelobe ratio SLR, the 2N-1 unique space factor zeros of the 

Dolph-Chebyshev distribution are given for d > 0.5 A by [2], 

where 

n 1 ,2, • • • N 

cos[ (2n'"'"1 )1r ] } 
2(2N-1) 

u 
0 

cosh { 2~_ 1 tn[SLR + / SLR2 - 1 J } 

These are the zeros of the starting space factor. 

(1) 

( 2) 

The generic space factor is that of a uniform array of 2N elements, 

with its 2N-1 zeros at, 

± n1r/N n 1 , 2, • • • N 

Let the space factor zeros now be altered to the set ~n' with 

{ 
.;...i. 

n < n 

-n > n 

(3) 

(4) 
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with the dilation factor given by, 

0 (5) 

In other words, the new set of space factor zeros is obtained by 

shifting outward the outer zeros to new positions dependent on those 

of the generic space factor in order that the desired remote sidelobe 

behaviour be obtained. At the same time the central zeros are dilated 

to obtain nearly equal sidelobes in the central region of the pattern. 

-As before, the quantity n is a design parameter. Here the v is the 

additional parameter to be selected. If v = ....;.1 , then o = 1 , and the 
' space factor zeros ~n are just the Dolph-Chebyshev zeros ~n· 

On the other hand, a value v 

n 1T 

N ~­n 

0 gives, 

' and the altered space factor zeros ~n are identical to those of the 

Villeneuve distribution [2], with the 1/u sidelobe envelope taper. 

If v > 0 the sidelobe envelope tapers are more rapid than 1/u,· but the 

physics of the array problem then demands a decrease in the excitation 

efficiency. A v < 0 gives envelope tapers more shallow than 1/u. The 

parameter v has been used in its present form so that it parallels the 

effect of the taper parameter in earlier work on continuous 

line-source distributions by Rhodes [3,4], on the generalised Taylor 

n distributions. 
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7.2.2 Array With An Odd Number of Elements 

Although odd numbers of elements are seldom used with monopulse 

arrays, a brief note on the generalised Villeneuve distribution as 

applied to an array of 2N+1 elements is in order. The synthesis 

procedure is almost identical to that for the even array case except 

that the generic space factor is now that of a uniform sum array of 

2N+1 elements with space factor zeros, 

1/lon 
21T n 

+-­- 2N+1 

n 1,2,3, ••• N. 

(6) 

For the case of an odd number of elements, if spacings d < 0.5 A are 

required, the Dolph-Chebyshev zeros can be obtained from references 

given in Section 3.2.2. 

7.2.3 Computation of the Element Excitations 

For the generalised case just developed, finite product expressions 

for the excitations similar to those given by Villeneuve [2] do not 

appear to be possible. Instead a matrix method is used for reasons 

similar to that given in Section 6.5. The space factor for a 

symmetrical sum pattern of 2N elements is, according to equation (9) 

of Chapter 2, 

E ( ljl) 
s 

N 
I 

n=1 
a cos[(2n-1)1jl/2] 

n 

where the multiplicative constant factor of 2 has been ignored. 

(7) 
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Array symmetry permits consideration of only one half of the space 

factor zeros in finding the excitation set {an}, n 1 , 2, • • • N. The 

zero perturbation procedure of Section 7.2.1 provides a set of desired 
I 

space factor zeros {¢i}, i = 1 ,2, •• N. Using the same arguments as in 

Section 6.5, if (7) is enforced at the first N~1 space factor zeros, a 

set of N~1 linear simultaneous equations in the first N-1 excitations 

aN_1 results, as in equation ( 1 0) of Chapter 6. For the 

present-case the matrix elements are, 

s . 
n1 

cos [ ( 2n -1 ) ¢ ~ 12 ] 
1 

and the right hand side vector elements 

b. 
1 

(8) 

( 9) 

Once the {an} for n = 1 , 2, • • • N-1 have been found, with aN = 1 as 

assumed without loss of generality, the complete set of N excitations 

can be normalised to the maximum value of the set, and the 

distribution is determined. 
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7.3 GENERAL OBSERVATIONS 

For given maximum sidelobe level and number of elements, it is known 

.that it is not possible to obtain a first null bearnwidth less than 

that of the Dolph-Chebyshev distribution. Therefore, if the sidelobe 

constraints are not to be violated, it is required that, 

( 1 0) 

and it therefore follows from (4) that the dilation factor o must be 

greater than or equal to unity. Equation (5) can then be invoked to 

obtain the condition, 

ljJ ~ > lj!-on n 

But since the generic zeros are given by, 

it follows that condition (11) reduces to, 

n > N 
1T 

lj!­
n 

( 11 ) 

( 12) 

( 1 3) 

-There is consequently a minimum allowable n for each array 

size/sidelobe ratio combination. The condition (13) is a necessary 

but not a sufficient condition, however. This can be shown by 

example. . Consider an array of 20 elements and d = 0. 5 >. with a sum 

sidelobe ratio of 25 dB. Application of condition ( 1 3) reveals that 

n > 2. Fig. 7.1 depicts the resulting space factor for the case v = 0 

(Villeneuve distribution), and exhibits the "incorrect" sidelobe 

behaviour obtained, with the second sidelobe rising above the 

prescribed design level. While the particular case illustrated is for 
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v = 0, examination of the pattern for v > 0 shows that the irregular 

transition sidelobe increases in height with increasing v. Similar 

observations to the above can be made for other array sizes and 

sidelobe ratios. Thus, besides checking the condition ( 13), it is 

necessary also to check the resulting array factor itself in order to 

be certain that the n used is large enough to allow the transition 

zeros to behave correctly. It has been found for all the cases 
-considered that an n equal to the next integer higher than that 

obtained from (13) will always ensure this. 

The effect of changing the parameter v can best be seen by keeping 

tifixed for a specific array size and sidelobe ratio specification, and 

plotting the array space factor as v is varied. This is done in Figs. 

7. 2(a) to (d) for the 20 element array with a 25 dB sidelobe ratio 

specification. Clearly, for fixed n, the effect of increasing v is to 

increase the sidelobe envelope taper rate, as expected. The level of 

the first sidelobe changes little for the range of v considered, and 

is thus virtually independent of v. For a given n, as the envelope 

taper rate is increased so ·does cr, and as a result the first null 

beamwidth as well. Also indicated in the above figures is the 

excitation efficiency ns for each case. As expected, an increasing v 

is associated with a decreasing ns. This is still more clearly 

illustrated in Fig. 7.3, where ns is plotted versus v, with n as a 

parameter. The amount of beamwidth broadening (measured relative to a 

uniform array of 20 elements) is shown in Fig. 7. 4. That the curve 

for n 2 is "out of place" is indicative of the fact that this is too 

small a value. Besides this, the form of the curve is predictable. So 

too is the curve shown in Fig. 7.5. Except for those points 

associated with n == 2, there is for fixed v a steady increase in 

excitation efficiency as n gets larger. The reason is that as 
... 
nincreases, the di stri but ion approaches that of the starting 

Dolph~Chebyshev distribution. Irrespective of the values of the 

parameters n and v, the generalised Villeneuve distribution has, for 

this specific example, a lower directivity than its parent 

Dolph-Chebyshev distributions, albeit with taper sidelobes. But this 

is not always the case. As with the modified-Zolotarev distributions 

discussed in the previous chapter, if the parent distribution 
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suffers from "directivity compression" (see Section 3.2.2), then the 

form of the curves like those of Fig. 7.5 will be different. An array 

of 30 elements, with a sidelobe ratio of 20 dB will serve to 

illustrate this point. 

The graph in Fig. 7.6 is now applicable. It is immediately clear 

that' for a fixed v, there is a certain value of n which provides 

maximum directivity. Furthermore, for a wide range of v and n 
combinations, the generalised Villeneuve distribution has a higher 

directivity than the parent Dolph-Chebyshev one has. The reason is 

the same as that given for the modified Zolotarev difference 

distribution in Section 6.6. 

As with the Zolotarev distribution there will be array sizes which, 

for a specified sidelobe ratio, will possess "edge brightening" (i.e. 

a non-monotonic distribution) -even with n equal to its minimum 

allowable vaiue and v = 0 (i.e. Villeneuve distribution). Increasing 

ii will simply worsen the situation and the only solution is to 

increase the value of v. Consioer for instance an array with 2N = 40 

and SLR = 15 dB. The aperture distributions (with the excitations 

simply connected by straight lines) for the smallest permitted n value 

of 2 are shown in Fig. 7. 7 for the three cases v = -"1, v = 0 and 

\) = 1. The parent Dolph-Chebyshev ( v = -"1) case has a highly 

non~monotonic distribution. The Villeneuve distribution (v = 0) is 

just monotonic. The generalised Villeneuve distribution with v = 1 is 

strictly monotonic. For a still larger array with the same sidelobe 

level, a v > 0 will be required to obtain even a distribution which is 

just monotonic; this confirms the usefulness of the generalised 

Villeneuve distribution for reasons other than increased sidelobe 

envelope taper rate. 
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7.4 CONCLUSIONS 

The generalised Villeneuve distribution developed in this chapter 

permits the direct synthesis of discrete array distributions for high · 

efficiency sum patterns of arbitrary sidelobe level and envelope 

taper. With the Dolph""'Chebyshev distribution as the parent space 

factor, and the correct perturbation of space factor zeros, the 

excitation efficiency and bearnwidths are kept as close to their 

optimum values as is possible under the specified sidelobe ratio and 

envelope taper. The level of the first sidelobe- is set by the 

starting Dolph-Chebyshev distribution, the taper rate controlled by 

the parameter v and the point at which the required taper proper 

begins determined by n. The excitations are obtained from the 

perturbed space factor zeros through solution of a set of linear 

simultaneous equations. The synthesis procedure is extremely rapid. A 

computer code developed for performing the complete synthesis (with 

the values of n, v, SLR, 2N and d as input), and which computes the 

resulting space factor and directivity, takes approximately 4 CPU 

seconds on a CDC Cyber 174 computer for an array of 20 elements. 

Consequently, design trade-off studies are feasible; the proper choice 

of the values of n and \) for a particular application will depend on 

the relative importance of the peak sidelobe level compared to that of 

the farther-out sidelobes, and their effect on the excitation 

efficiency. 

The method is similar to (and might perhaps be considered the discrete 

equivalent of) the generalised Taylor n continuous distributions [3]. 
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CHAPTER 8 

SIMULTANEOUS SYNTHESIS OF SUM AND DIFFERENCE DISTRIBUTIONS 

8.1 INTRODUCTION 

-The problem of optimum sum pattern synthesis for a discrete array was 

shown in Chapter 3 to have been relatively well understood, and some 

generalisations were presented in Chapter 7. The corresponding 

difference pattern synthesis has been brought to a similar level of 

completion by the work reported in Chapters 4, 5 and 6. Consequently 

high directivity, low sidelo be, sum or difference distributions can, 

independently, be determined directly with a certain level of 

confidence. On the other hand, the topic of simultaneous synthesis 

has not yet been dealt with. When this topic was reviewed in Section 

3.5, it was indicated that no definite procedures of any form have 

been published to perform such syntheis. 

As was pointed out in Section 3. 5, any discussion of simultaneous 

synthesis without reference to feed network constraints is not 

meaningful. Since the number of conceivable array feed network 

architectures is essentially unlimited, an all-encompassing theory of 

simultaneous optimum synthesis is not possible. (There is perhaps an 

analogy here with the subject of systems theory. While a general 

theory for linear systems is possible, one such is not possible for 

non-linear systems, since each is non-linear in its own particular 

way). Instead, methods of simultaneous synthesis are considered here 

for the important and widely used class of feed network which employs 

sub~arraying. The two-module and independent types of network are the 

extreme cases of such a class of network. 
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In array antenna design (as in most other areas of engineering) two 

approaches are possible. On the one hand the performance of a number 

of different "likely" sets of excitations may be examined and the most 

desirable one selected. Alternatively, the inverse problem may be 

attempted ~ finding that set of excitations which produces the desired 

performance as closely as possible. The independent sum and 

difference synthesis methods described earlier are examples of the 

latter approach. The contributions to simultaneous synthesis methods 

presented here fall somewhere between these two approaches. Some 

choice on the part of the designer is required. One reason for a 

choice having to be made lies in the fact that, since some compromise 

has to be made, certain criteria may be more important to meet than 

others. For instance, it may in some cases be more important that the 

sum 'mode be closer to its independently optimum performance at the 

expense of the difference pattern, or vice versa. Selection of what 

is simultaneously optimum therefore depends on the intended 

application. Such a choice is not really a drawback since engineering 

design is always dependent to some extent on the experience and 

intuition of the designer. It is with this in mind that Sandler [2] 

stresses the "necessity of some (numerical) experimentation, in 

general, before accepting an apparently optimal solution (obtained) by 

any numerical optimisation procedure". The methods presented in this 

chapter are intended to provide means of performing such numerical 

experimentation. 
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8.2 ARRAY GEOMETRY AND NOTATION 

In the interests of clarity, the sub-array geometry and associated 

notation used in the sections that follow-will be outlined. 

The general sub-arrayed configuration is shown schematically in Fig. 

8.1 for one half of the array. The total number of array elements is 

2N. Two sets of excitations are considered ...:. local excitations and 

sub-array weights. 

The set of local excitations, 

n ±1 , ±2, • • • ±N 

are individually associated with each element. These will be the 

excitations responsible for the sum pattern obtained. 

There are 2Q sub:.!arrays and the sub"'arraying is symmetric about the 

array centre. 

with it; thus 

The q-th sub-array has Kq array elements associated 

N ( 1 ) 

It then follows that the local excitations of the elements of the 

first sub~array are, 

a a • • • 1 ' 2 

Those for·the q-'th sub-array are, 

aK + K + • • • + K + 1 ' aK + K • • • + K + 2 ' 1 2 q~1 1 2 q~1 
aK +K +•••+K 

1 2 q 



-
-
-
-

K1 ELEMENTS K2 ELEMENTS 
• 

Kq ELEMENTS KQ ELEMENTS 

\17\ 7-----------\V\V\V \[7\17- ----------\I\ I\ I \7\7-----------\1\ if\ I! \7\7------- ----\V\1\V 

1-

FIGURE 8.1 SCHEMATIC DIAGRAM OF SUB-ARRAY FEED NETWORK 

1\) 

0 
.t:: 



205 

while for the final Q~th sub~array they are, 

~ + K + • • • + K + 1 ' aK + K • • • + K + 2 ' 
1 2 Q:.!1 1 2 Q~1 

••• a 
N 

The excitation weighting of the q-th sub-array is denoted by gq(n), 

indicating that the particular n""'th element is a member of the q~th 

sub-array. While for the sum pattern the n-th element has an 

excitation which is simply the local excitation ~· for the difference 

pattern its excitation is effectively angq(n). 

The two'""module and independent array feed networks are special cases 

of the above geometry. If Q = N, then the independent network 

results, while Q = 1 implies the two-module network. 

Excitation sets {as} and {ad} will always be used here to denote those n n 
sets of excitations which are independently optimal for the sum and 

difference cases, respectively. The corresponding space factor zeros 

are, 

{ 1)!~} 
1 

i ± 1 , ±2 , • • • ± ( N -1 ) 

i ± 1 , ±2 , • • • ± ( N -1 ) 

For the difference pattern there is an additional zero at 1jJ = 0, and 

for the sum a zero at 1jJ = ~. However, with the symmetric arrays dealt 

with here these are always satisfied and need never be considered. 

Also, for reasons of symmetry, only one half of the array excitations 

and pattern zeros need be considered. 
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Because of the enormous number of -design parameters, and the 

possibility of differing opinions as to what can be considered the 

"best" compromise in any given situation, the simultaneous synthesis 

technique discussions will generally be along the lines of a 

description of the particular method, an illustrative example, and a 

number of applicable comments. 

The methods developed in this chapter will all be illustrated via a 

common example in order to facilitate comparisons. The details of 

independently optimum solutions, for the 20 element array with a 

minimum sidelobe ratio of 25 dB, are given in Table 8.1 • 

• 
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TABLE 8.1 20 element, 25 dB sidelobe ratio arrays with d = 0.5 X. 

(a) Sum mode (Villeneuve, n 4) 

s 
n a 

n 
i ljJ~ 

1 

1.00000 1 0.42406948 

2 0. 97591 2 0. 642731 32 

3 0.92707 3 0. 9378591 4 

4 0.85415 4 1.25663704 

5 0.76156 5 1. 57079630 

6 0.65833 6 1.88495556 

7 0.55670 7 2.19911482 

8 0.46916 8 2.51327408 

9 0.40570 9 2.82743334 

10 0.37258 10 3.14159265 

(b) Difference mode (Modified Zolotarev, n 4, ~ = 3) 

d 
n a 

n 
i ljJ~ 

1 

1 0.17385 1 0.63546394 

2 0.49612 2 0.84303008 

3 0.75500 3 1.12727154 

4 0.92719 4 1.43713140 

5 1. 00000 5 1. 76270700 

6 0.96589 6 2.07671140 

7. 0.84010 7 2.38435488 

8 0.68326 8 2.68746840 

9 0.54640 9 2. 99074250 

10 0. 36091 
., 
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8.3 A SIMPLE APPROACH FOR THE TWO~MODULE NETWORK 

A simple attempt at obtaining a set of excitations which represents a 

compromise between sum and difference performance, when a two~module 

feed network is used, will first be described. Consider the sets of 

independently optimum excitations {as} and {ad}, n = 1,2, N. These 
n n 

are obtained using the methods given in the earlier chapters. Suppose 

that the compromise excitation for the n-th element is computed as, 

a 
n 

where o is a weight factor with 0 < o < 1. 

(2) 

A value of o = 0 

corresponds to the optimum difference excitations, while o 1 gives 

the optimum sum excitations. The history of the resulting sum and 

difference patterns as o varies from 0 to 1 is shown in Figs. 8. 2 and 

8.3 for a 20 element, 25 dB sidelobe ratio array. The results do not 

appear to be satisfactory, with sidelobes unacceptably high for one or 

other of the patterns. The problem with this approach is that there 

is no way of determining with any certainty what the best 

sidelobe"""constrained compromise solution is for the two-module feed 

network, or how to improve the sidelobe performance by accepting some 

beamwidth increase perhaps. This is taken up in the next section. 
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0 = 0.2 

0 = 0.4 

FIGURE 8.2 COMPROMISE PATTERNS OBTAINED USING 
SIMPLE EXCITATION WEIGHTING PROCEDURE 

0 - 0 

0 = 0.2 

0 = 0.4 

(Horizontal Axis Is Angle Off Broadside From 0 to 90 Degrees. 
Vertical Axis Is Relative Level In Decibels From -60 to 0). 
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c5 e: 1 

0 e: 0.8 

c5 = 0.6 

FIGURE 8.3 COMPROMISE PATTERNS OBTAINED USING 
SIMPLE EXCITATION WEIGHTING PROCEDURE 

c5 -

c5 = 0.8 

c5 = 0.6 

(Horizontal Axis Is Angle Off Broadside From 0 to 90 Degrees. 
Vertical Axis Is Relative Level In Decibels From -60 to 0). 
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8. 4 SIMULTANEOUS SYNTHESIS WITH A TWO""' MODULE NETWORK USING 

NUMERICAL OPTIMISATION 

8. 4.1 The Approach of Einarsson [1] for Sum Synthesis 

The simultaneous synthesis method presented in this section is an 

extension of the numerical optimisation method used by Einarsson [1] 

for sum synthesis. 

The notation used differs from that of Einarsson [1 ], but is more 

convenient for the simultaneous problem. Furthermore, the formulation 

used throughout exploits the symmetry of the linear array, making use 

of expressions derived in Chapter 2. Though Einarsson was concerned 

with symmetric excitation, the planar array geometry with which he was 

concerned does not allow this symmetry to be exploited to the same 

extent possible with linear arrays. 

Recall from equation (21) of Section 2.2.3 that the su~ directivity of 

a linear array is expressible as the ratio of two Hermitian quadratic 

forms, 

D ( \jJ) 
s ( 3) 

with matrices [As] and [Bs], and excitation vector [J], defined in 

Sections 2.2.2 and 2.2.3. The matrix [As] can furthermore be written 

as, 

[A ] 
s 

( 4) 

with vector [Fs] as defined in equation (12) of Chapter 2. 
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The expression for Os(~) in equation (3) is dependent on angle ~ (or 

equivalently e). When evaluated in the.~ = <Ph d~rection, say, [As] and 

[Fs] will be denoted by [A:] and [F:] respectively. Matrix [Bs] is 

always independent of ~- As before, Os(~) in the direction of its 

maximum is simply denoted by Om. For the broadside array this is in 
s 

the direction ~ = 4>0 = 0, and therefore, 

( 5) 
(J](B ](J] 

s 

The array factor is given, in terms of the above quantities, in the 

direction ~ = <Ph as, · 

( 6) 

from equation (14) of Chapter 2. In the broadside direction this is 

therefore, 

E ( 0) 
s 

Note that [F0
] will simply be a vector with components all unity. s 

( 7) 

Einarsson has shown [1] that maximisation of Om in (5) can be 
s 

formulated as the problem of minimisation of the quantity, 

p ( J) 
s 

( 8) 

where J is equivalent to [J]. 
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This is a quadratic programming problem [3]. The minimisation is done 

subject to a set of constraints on the sidelobe levels. If the 

prescribed maximum sidelobe level relative to the pattern maximum is 

denoted by c, then application of the sidelobe constraints at a set of 

angles ijJ = <1>1 , <1>2 , • • • ~, • • • <j>H can be writ ten as, 

( 9) 

for h = 1,2, ••• H. The fact that no assumption about the sign of the 

sidelobes is made explains the appearance of two terms in ( 9). This 

has the advantage that the constraint set remains linear. Use of the 

modulus function would convert (9) to a non~linear set of constraints 

in general, and prohibit the use of quadratic programming algorithms. 

The set of constraints (9) can of course be re~written as, 

( 1 0) 

or equivalently as, 

( 11 ) 
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The above method has been applied using the quadratic programming 

procedure described by Gill et. al. [3] and implemented in [ 4] as 

routine E04NAF. After the initial run of the optimisation it is in 

most cases necessary to check the space factor obtained for any 

sidelobe level violations at angles other than those { q,h} initially 

selected for the constraint set, and then re-run the optimisation with 

the altered set of constraint angles, as suggested in [5, p. 53]. This 

does not cause any unforeseen problems though. 

The present approach is easily extended to cases requiring a sidelobe 

taper, though this was not done by Einarsson. To do this a set of 

quantities ch is defined, one associated with each constraint angle 

$ = q,h, instead of having the same c for each such angle. This can be 

considered to be a sidelobe envelope taper vector, 

-c ( 12) 

The components of C are determined from an equation for the envelope 

in terms of angle $. 

Furthermore, the quadratic programming technique used allows 

requirements for a monotonic distribution of excitations to be 

incorporated as a linear constraint set, if indeed so desired. 

The method has been found to work extremely well, but no results will 

be given here, since the aim in this section is primarily one of 

enlarging the scope o,r the method to include simultaneous synthesis. 

For sum synthesis alone the methods of Chapter 3 and 7 should be used. 
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8. 4. 2 Extension to Difference Synthesis 

With the. quantities [Fd], [Ad] and [Bd] derived in Chapter 2 the 

extension of the method of Einarsson [1] to difference synthesis is 

relatively straightforward. Suppose that the maximum of the 

difference pattern is at angle 1jJ = Y
0

; then from equation (23) of 

Chapter 2 it follows that, 

2[J]T[A~] [J] 

[J]T[Bd][J] 
( 1 3) 

where [A~] is just [Ad] evaluated at 1jJ = Y
0

• Similarly, [F~] denotes 

[Fd] evaluated at this same angle. Maximisation of (13) is then 

equivalent to minimising the function, 

( 1 4) 

which is again a quadratic programming problem. In this case the 

precise position Y
0 

of the maximum is not known a priori. An 

iterative procedure is therefore followed, as was done in Section 4.1. 

The optimisation is performed with Y0 equal to that of a uniform array 

of the same number of elements as that under consideration, operated 

in the difference mode. At the end of the first run, the actual value 

of Y
0 

obtained with the resulting excitation set [J] is found, and the 

optimisation re,...run with this value. This process is repeated until 

convergence is obtained; this is achieved rapidly. 

The sidelobe constraints are applied in much the same way as for sum 

synthesis. 

from those 

1jJ = Y1,Y2, 

The set of 

However, the set of constraint angles will be different 

for the sum case and will be denoted 

YR. Thus [F~] implies [Fd] evaluated at 1jJ = 

conditions corresponding to those in (9) 
Yr' 

constraint 

(10) are then, 
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( 1 5) 

or equivalently, 

( 1 6) 

As mentioned previously, a sidelobe taper requirement can be 

incorporated by defining a taper vector like that in ( 1 2). The 

monotonicity constraint should be applied more carefully. For 

difference distributions it must be remembered that by "monotonic" is 

meant that the excitations must not increase near the array ends. The 

distribution as a whole is inherently non~monotonic. This requirement 

can still be implemented as a set of additional linear constraints 

however. 

The quadratic programming routine E04NAF [4] has been used to 

implement the above procedure for difference synthesis. Once more no 

special problems requiring further discussion were encountered, and 

. the final step of simultaneous synthesis can therefore be considered. 

8.4.3 Simultaneous Synthesis with a Two-Module Array Feed Network 

Following the work of Zionts and Wallenius [6] on multi-'objective 

optimisation, the simultaneous synthesis problem can be formulated as 

one of minimising the quantity, 

P(J) ( 1 7) 
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subject to some set of constraints. The quantity in ( 17) is a 

weighted addition of the functions P s (J) and P d c;:n applying 

individually to the sum and difference cases, respectively. The 

quantity o expresses a preference for one or other mode of operation. 

A o = 0 reduces the problem to that of difference synthesis, while if 

o = 1 it becomes the sum synthesis problem. 

obtained when o = 0.5. 

Equal weighting is 

The next question concerns the set of constraint conditions. A single 

set of angles at which to apply sidelobe constraints is not 

acceptable. The reason is that the angular regions over which the 

sidelobes occur are different for the two cases, the first minimum of 

the sum pattern occurring earlier than that of the difference pattern. 

An angle at which it is appropriate to apply a sum sidelobe constraint 

may fall within the principal lobe of the difference pattern. 

Furthermore, it is usually desirable to specify difference sidelobe 

levels relative to the difference pattern maximum and not to the sum 

maximum. To do this not only different sets of constraint angles must 

be used but in fact two completely different sets of constraints. The 

procedure then is to maximise the quantity PC:h in ( 17) subject to a 

constraint set consisting of those in both equations ( 11) and ( 16). 

In (11) let the maximum sidelobe level specification be denoted by cs 

(instead of simply c) in order to distinguish it from the difference 

sidelobe level quantitied cd to be used in (16). As discussed above, 

the sets { <l>h} and { Yr} of constraint angles will generally not be 

identical, at least not for the first few values close to the 

broadside direction. A conflicting constraint set is hereby avoided. 

This is crucial in the application of the method to simultaneous 

synthesis. 

Since Ps(j) and Pd(J) are quadratic, so is their linear combination 

used to form P( J). Therefore the quadratic programming algorithm 

E04NAF [4] can be applied to this problem as well. 

This approach has been exercised for ·a number of different problems. 

The procedure developed from this experience will first be outlined, 

and then the numerical results presented for a particular example. 
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As the first step, the exact procedures for independent sum and 

difference pattern synthesis presented~earlier in this thesis are used 

to synthesl.se an optimum set of sum excitations and an optimum set of 

difference excitations. 

achievable independently. 

This will give an idea of the performance 

From the space factor zeros of these 

independently optimum patterns, the region over which to apply 

sidelobe constraints in each case is clearly discernible. In this way 

a select.ion of constraint angles which are overly restrictive (require 

beamwidths that are too narrow) even for the independent patterns is 

prevented. This is important since any infeasibility of solution 

indicated by the numerical optimisation routine must then be solely 

due to the fact that simultaneous synthesis is being attempted. Thus 

information from the independent exact synthesis methods is used to 

draw up the initial constraint angle sets {~h} and {Yr}, such that 

~ 1 = ~~ and Y1 = ~~ initially. 

The next step is to set cs = cd (i.e. identical sum and difference 

sidelobe specifications) and repeatedly execute the optimisation 

routine, each time decreasing the common sidelobe level factor until a 

solution subject to the given constraints is no longer feasible. That 

this stage has been reached is indicated by the optimisation algorithm 

putting all the excitations to zero and setting a flag that a feasible 

solution is not possible. At this point, because of the fact that the 

constraint angles have been selected using information from the 

independently optimum solutions, the beamwidths obtained with the 

solution [J] of the optimisation routine will be close to those of the 

independent solutions. (This can easily be strictly enforced by 

requiring a very low "sidelobe" at the first constraint angles ~ 1 , and 

Y·1 for the sum and difference cases, respectively, if so desired). 

Furthermore, the last feasible sidelobe level is at this stage also 

known to be the lowest achievable for the given beamwidths and the 

two-module feed. 
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If the beamwidths of both the sum and difference patterns are to 

remain as specified above, the maximum sidelobe level cs of the sum 

pattern can only be decreased by increasing that of the difference 

pattern (cd), or vice versa. Alternatively, sidelobe levels can be 

lowered over some sectors of the patterns and allowed to increase over 

others. Such sidelobe structures have been considered in [5, p. 36]. 

In order to determine to what extent this is possible, the 

optimisation routine must again be executed a number of times. 

An alternative approach to the one outlined above is one which also 

begins with the independently optimum solutions, sets the factors cs 

and cd can be set to some desired sidelobe levels, and "allows" the 

beamwidths of either the sum or difference patterns, or both, to 

increase by shifting the first constraint angles (~ 1 and/or Y1 ) 

further out, re~distributing the constraint set, and each time 

executing the optimisation routine until a feasible solution is 

obtained for the given cs and cd values. It is important to realise 

that an acceptable solution may not in fact exist for the given array 

size and prescribed sidelobe levels. 

of beamwidth increase which can be 

There is a limit to the amount 

permitted. Firstly, if U1e 

suppression of sidelobes is desired for rejection of clutter and other 

sources of interference, for example, there is little sense in 

accepting too much beam broadening for either sum or difference 

patterns just to lower the sidelobes over a sidelobe region with a now 

greatly reduced angular extent and the interference now entering via 

the broader main lobes. Also, associated with beam broadening is 

decreased directivity and· boresight slope performance. A further 

reason for limiting the amount of beamwidth increase is that the 

difference lobe becomes severely deformed; what happens is that the 

first null of the "starting pattern" begins to fill in and merge with 

this difference lobe. It is advisable at each stage to check the 

patterns for undesirable deformities, and for "spurious" sidelobes at 

angles other than those of the constraint set selected before 

accepting any set of excitations as the final solution. The former is 
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easily done via modern computer graphics. "Spurious" sidelobes are 

easily detected numerically, their angular location included in the 

constraint set, inactive constraints of the previous run eliminated 

(this information may be requested from the optimisation routine), and 

the optimisation process repeated. 

After some experience, using the structured approach given above, it 

is found that the method is flexible and becomes relatively easy to 

use. The formulation of the problem as a quadratic programming one 

offers considerable advantages as regards execution times involved, so 

that repeated use is feasible. The solutions have been found in all 

cases using a starting set of excitations of unity for each element. 

There appears to be' no advantage in using 6 values other than 0.5. 

The sum characteristics are rather played off against those of the 

difference by altering their respective sidelobe levels or beamwidths 

as indicated in the above guidelines . 

8.4.4 • Illustrative Example 

Consider as an example the case of an array of 20 elements, and 

suppose that for both sum and difference patterns a sidelobe ratio of 

25 dB is desired, though known to be over-ambitions for a two-module 

network. The independently optimum solutions are then just those 

given in Table 8.1. Using this information the optimisation problem 

was set up and executed. The sidelobes for both sum and difference 

patterns were decreased until a feasible solution with the given set 

of constraint angles was no longer possible and the last feasible 

solution examined. At this point the difference sidelobe constraint 

was increased slightly to the 15 dB level, and that for the sum 

lowered in small steps until a feasible solution was once more no 

longer possible. At this stage the compromise solution (with 

beamwidths comparable with those of the above independently optimum 

designs) had a sidelobe ratio of 17 dB for the sum mode and 15 dB for 

the difference mode. This is illustrated in Fig. 8.4. 
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As a next step the first constraint angle of the difference pattern 

was shifted outward by a factor of 1.1, with that for the sum 

unchanged. A sum sidelobe ratio of 18 dB was then obtainable, with 

that for the difference pattern unchanged. As a third step, the sum 

beamwidth was allowed to increase by a factor of 1.1 and that of the 

difference pattern by a factor 1. 3. For this case the sum sidelobe 

ratio achievable is 20 dB, if the level of the difference sidelobe 

constraints is once more unaltered. This is shown in Fig. 8.5, and 

cl~arly shows the beam broadening of the difference pattern. 

By altering the constraints in a systematic manner then, meaningful 

design trade-off studies can be performed using the quadratic 

programming method. The performance that can be obtained with a 

two-module feed network is severely restricted, however, and the 

constraints cannot be too tight. 
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8.5 EXCITATION MATCHING VIA SUB-ARRAY WEIGHT ADJUSTMENT 

8. 5. 1 Introduction 

The technique dealt with in the previous section enables the best 

compromise simultaneous synthesis to be performed under the 

limitations of the two-module network. The remainder of the chapter 

is concerned with simultaneous synthesis of an array which utilises 

sub-arraying to increase the number of degrees of freedom above that 

available with the two-module network. The particular approach in 

this section is one which attempts to obtain a good compromise by 

dealing directly with the independently optimal excitations {a~} and 

{a~}. and will be referred ,to as excitation matching. 
1 

8.5.2 The Excitation Matching Concept 

Assume that the excitation sets {as} and {ad} have been determined, 
n n 

and let {as} be the local set of excitations. In other words, the sum n 
mode will have its optimum .set of excitations. With the sub-array 

configuration selected, the sub~array weights must be determined 

according to some criterion. The difference excitations will be the 

set {en}• with en= gq(n)a~, the gq(n) being the weight of the sub­

array associated with the n-th element. For a given configuration of 

sub-arrays the gq must be chosen so that the set {en} is as close as 

possible to the independently optimum difference set {ad}. To effect 
n 

this, a set of N residuals {rn} is formed, with 

This can be re-written as, 

r. 
1 

d a. -
1 

( 1 8) 
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for each i = 1, 2, N. For each i value only one of the cij are 

non..,zero, depending on the particular sub-array geometry used. More 

specifically, 

! s 
if element i is in sub-array j a. 

1 
c .. 

1J l 0 otherwise 

In the case of an independent feed network (N = Q) it is possible to 

adjust the "sub-array" weights so that each residual ri is exactly 

zero. Thus, with each ri = 0, equations (18) form a system of linear 

simultaneous equations for the sub~array weights. In this case, with 
d s N = Q, each "sub-array" weight g

1
. is simply the ratio a./a .. 

1 1 

For the case of a feed network of intermediate complexity (N > Q) it 

is not possible to make each of the N residuals ri identically zero by 

adjusting the Q sub...,array weights. Nevertheless, the system of 

equations, 

Q 
I 

j=1 
c .. g.(i) 

1J J 
a. 

1 

d 
( 1 9) 

can still be considered as that which will, provide the solution for 

the sub~array weights. 

But since N > Q, it is an over-determined set, with more equations 

than unknowns. However, such a system of equations can be "solved" by 

finding the set of unknowns, {gq}, q = 1 ,2, ••• Q which minimises some 

norm of the vector of residuals, 

-
R (20) 
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Three possible norms, which have been defined in Appendix I, are 

N 

2: 
n=1 

lr I n 

N 

2: 
n=1 

2 
r 

n 

2 

max lr I 
< n < N n 

(21) 

(22) 

(23) 

The advantage of formulating the problem in the above manner is that 

efficient algorithms have been reported in the mathematical literature 

for solving the system (19) subject to any of the above £1 , £2 or£~ 

norms. The details of such algorithms will not be reproduced here as 

they are available in the references given below. The method 

associated with the £1 norm is described in [7] and [8] and 

implemented in [9], while that for the £2 norm is available in [10]. 

Finally, [11] gives the details for the£~ case, and is implemented in 

[12]. 

8.5.3 Observations, Examples and Further Discussion 

The excitation matching approach has been exercised for a large, 

though limited, number of different cases. Detailed examination of 

these results reveals that the £~ norm always results in both the 

poorest sidelobe performance and broadest beamwidth. The sidelobes 

obtained through use of the £1 norm are consistently higher than those 

for the £2 norm. The reason for the superior performance observed for 

the £2 norm appears to be that it never attempts to force the 

compromise difference beamwidth to be narrower than that of the 

independently optimum difference pattern, and allows a natural 
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increase in this bea~width when sub~arraying is used. On the other 

hand, the beamwidths of the Q.1 norm solution are in many cases 

narrower than those of the independent pattern; hence the poorer 

sidelobe behaviour. 

When sub-arraying is used, the selection of a particular configuration 

is an additional design variable. There is a considerble advantage 

therefore in the fact that for the excitation matching approach a 

known sum pattern is kept fixed and only the difference pattern 

performance adjusted. 

done in practice. 

This corresponds closely to what is usually 

The array of Table 8.1 will be used to illustrate the application of 

the excitation matching procedure. In all cases the independently 

optimum sum excitation set will be kept fixed and the sub-array 

weights used to adjust those for the difference mode. Three different 

sub-array configurations have been selected, 

8.2. 

as specified in Table 

TABLE 8.2 Sub-array configurations. 

CONFIGURATION Q K1 K2 K3 K4 K5 

II 1 5 2 2 2 2 2 

II 2 5 1 1 2 5 1 

II 3 3 3 4 3 - -

The first configuration represents the case of paired sub~arraying 

over the antenna. Configuration II 2 has the same number of sub-arrays 

as that of the first, but a different number of elements per sub­

array. For this configuration the number of elements per sub-array was 

chosen by observing the difference Ia~ ~ a~l between each of the 
1 1 

excitations of the independently optimum arrays of Table 8.1, and 

including in the same sub~array those elements with Ia~ - a~l falling 
1 1 

within certain intervals. The third configuration is an example of the 
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limited number of sub-arrays that might be used with a typical small 

monopulse antenna, and corresponds to a six-module feed network. It is 

not suggested here that the above sub-array configurations are 

particularly desirable. They have been selected, rather, in order 
-

that all the characteristics of the much larger number of cases 

actually considered be exhibited. 

Only the results obtained using the ~2 norm are presented, because of 

the superior performance obtained. These results are shown, in order, 

for the three configurations, in Figs. 8.6, 8.7 and 8.8. Configuration 

# 2, which has the same number of sub~arrays as configuration # 1, has 

the better overall performance. However, it should be remembered that 

if the element patterns of the array elements are taken into 

consideration, it may be possible to suppress the sub~array grating 

lobe effect in the end-fire direction in Fig. 8. 6. If this is 

possible, configuration # gives a very good result if it is 

remembered that only the five sub-array weights are adjusted instead 

of all ten elements. 

The results shown in Fig. 8. 8 for configuration If 3 appear to be open 

to improvement if the excitation matching were done with a sidelobe 

constraint imposed. Gill et. al. [3, p. 180] show that the least 

squares C£ 2) solution of a system of over-determined linear 

simultaneous equations subject to a set of constraints can indeed be 

formulated as a constrained quadratic programming problem. In 

particular, the least squares solution of any over~determined system 

of the form, 

[s][x] [P J (24) 

say, subject to a set of general linear constraints 

[E][x] < [v] ( 25) 
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is equivalent to the quadratic programming problem, 

minimise 

subject to [E][x] < [v] (26) 

where (G) 

and 

If this is applied to the problem at hand, with [x] the vector of 

unknown sub~array weights, the system of excitation matching equations 

(19) can be solved in the .Q.2 sense, subject to the set of sidelobe 

constraints given in equation ( 16). Only the difference pattern 

constraints are utilised of course, since the independently optimum 

sum mode excitations are unaltered. The initial constraint angles 

{ Yr} are chosen using the information on the space factor zeros of the 

independently optimum difference pattern as suggested in Section 

8.4.3. The above constrained least squares approach has been 

implemented using the routine E04NAF [4]. When applied to the 

configurations # 1 and # 2, little improvement in the sidelobe level 

performance could be obtained, implying that these were near to the 

best compromise in the first place. For configuration # 3 enforcement 

of sidelobe constraints showed that for a feasible solution these 

could be reduced only slightly to the 16.5 dB level but no further. 

The resulting pattern is shown in Fig. 8.9. The peak sidelobe of Fig. 

8. 8 has been lowered and the central sidelobes raised by a small 

amount. In other words, the unconstrained solution is itself close to 

the final. answer for the sub-array weights which provide the best 

compromise difference pattern. 

some "fine-tuning". 

Application of the constraints does 
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The conclusions reached from the above observations are that the 

application of excitation · matching with the 12 norm provides 

near'"'optimum compromised difference mode solutions for a specified 

sub-array geometry, array size and independently optimum set of sum 

excitations. Such solutions should be obtained with the set of 

sidelobe constraints applied, and the algorithm executed reapeatedly, 

each time lowering the sidelobe level factor until a feasible solution 

is no longer possible. The last feasible solution (set of sub-array 

weights) is then the best solution of the simultaneous synthesis 

problem. 

With the first constraint angle set equal to the first null of the 
d independently optimum difference pattern (i.e. Y

1 
~ ~1 ), the beamwidth 

of the compromise pattern is approximately that of the independently 

optimum one. The above process then indicates what the lowest 

sidelobe level can be under these beamwidth conditions. Alternatively, 

the set of constraint angles can be shifted outward (if some beamwidth 

increase in the compromise pattern is permitted) and the process 

repeated to see whether lower sidelobes can be obtained. The same care 

must be taken as was noted in Section 8.4.3. The constraint shifting 

process was not applied to the examples given in this section. 

There is no reason why the excitation matching may not be performed 

with the independently optimum set of difference excitations {a~} kept 
1 

fixed and a compromised set of sum excitations obtained by adjustment 

of the sub-array weights. This has not been considered, however, 

since it is unlikely that the difference performance will take 

preference over that of the sum in practice. 
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8.6 MINIMUM NORM SPACE FACTOR ZERO PLACEMENT 

8.6.1 Motivation 

This approach to simultaneous synthesis tries to take heed of the 

advice that "in modern antenna work easy mathematics has yielded to 

good physics distributions should be designed by proper 

placement of pattern.:,function zeros which means highly 

efficient" distributions [5]. 

Consider again the case of the monopulse array which has optimum sum 

mode performance (zeros), but a two~module feed network which results 

in the poor difference pattern performance shown in Fig. 3. 8. This 

difference space factor has minima but no visible zeros. What has 

happened is that the zeros of the space factor (which is a polynomial 

and must therefore have a pre~determined number of zeros) have become 

complex and occur in invisible space. In order to have an optimum 

difference pattern as well, the excitations for the difference mode of 

operation would have to be adjusted in order to restore its optimum 

space factor zero positions. 

only be done through use 

As has been noted repeatedly, this can 

of independent feed networks. If 

intermediate complexity feed networks are to be used, the fact that 

the complete sets of optimum zero positions cannot be exactly attained 

for both sum and difference modes simultaneously (due to the limited 

number of degrees of freedom), must be accepted. The question then 

is, for a specified feed network constraint, how can the optimum 

layout of zero positions be approached "as closely as possible" under 

the restircted circumstances. This question is taken up below and the 

concept. of minimum norm space factor zero placement introduced. 
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8.6.2 Formulation 

The starting point of the technique to be discussed here is the 

knowledge of the zeros of the independently optimum sum and difference 

space factors. This information can be obtained from the techniques 

presented 

let the 

in the 

desired 

previous chapters. 

sum space factor 

For an 

zeros 

array 

be 

of 

the 

2N elements, 

set {1)J~}, 
i = 1,2,3, ••• N-1, and those for the difference space factor be 

{1)J~}, i = 1,2, ••• (N-1). Let the set of known local element 

excitations again be {a1,a 2, ···aN}, and the sub-array weights 

{g1 ,g2 , ••• gQ}, Q being the total number of sub-arrays used. 

From equations (9) and (10) of Chapter 2, the space factors are, 

N 
E ( ljl) 2 I a cos[(2n-1)1jl/2] (27) s n=1 n 

N 
Ed ( ljl) 2j I g (ri) a sin[C2n-1)1)J/2] ( 28) 

n=1 
q n 

The synthesis problem can now be stated as one of determining the set 

of sub-array weights {gq} such that the system of equations, 

E ( ljl~) s 1 
0 i 1,2,•••(N"""1) (29) 

0 i 1 , 2, • • • ( N-1) (30) 

is satisfied in some sense. Note that the zeros 1jJ = 1T for the sum 

pattern, and 1jJ = 0 for the difference pattern, need not be explicitly 

considered since they always satisfy (29) and (30), respectively. 
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8.6.3 Optimum Sum and Compromised Difference Pattern 

Consider the situation for which the set of local excitations is set 

equal to the set of independently optimal sum excitations. That is, 

{a } 
n 

( 31) 

n 1,2, ••• N 

For this case equations (29) are satisfied exactly. The synthesis 

problem then becomes one of determining the set of sub-array weights 

{gq} such that the system of equations (30) is satisfied in some 

sense. Since only the relative weights are of interest, the Q-th 

weight may be set equal to unity. 

solved then becomes, 

N-K 
I Q g (n) as sin[C2n-1)$~12] 

n=1 q n 1 

for each i 

The system of equations to be 

( 32) 

1,2, ••• (N-1) 

This is a set of (N-1) equations for the (Q-1) unknowns {gq}, 

q = 1,2, ••• (Q-1), since gQ has been assumed to be unity. 
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8.6.4 Optimum Difference and Compromised Sum Pattern 

If the set of independently optimal difference excitations is taken as 

the set of local excitations, that is 

(33) 

n 1,2, ••• N 

then equations (30) are satisfied exactly, and only the system (29) 

need be enforced in some sense. 

system of equations, 

N-K 
I Q g ( n ) ad cos [ ( 2n -1 ) 1jJ ~ 12 ] 

n=1 q n 1 

Thus, with gQ = 1 as before, the 

cos [ ( 2n-1) ljJ~ 12] 
1 

i 1,2, ••• (N-1) 

must be solved for the sub-array weights {gq}, q 1 • 2. • • • ( Q-1 ) . 

8.6.5 Application of Minimum Norm Space Factor Zero Placement 

Only the case of optimum sum and compromised differene pattern 

performance has been considered, as formulated in Section 8.6.3. The 

algorithms and routines used for "solving" the system of equations 

( 32) through minimisation of one or other norm, without constraints, 

are identical to those identified in the section on excitation 

matching. Use of the ~2 norm, with constraints applied, was effected 

via the quadratic programming procedure· also used with the excitation 

matching method. For the present case of minimum norm space factor 
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zero placement the ~ 1 norm was also used with constraints. Though not 

utilised in Section 8.5, the method of Conn et. al. [7,8,9] does 

permit inclusion of constraints, and this has been used here. 

For the present method, if sidelobe constraints are applied, an 

additional constraint is needed. It is necessary to keep the 

difference pattern primary lobe maximum fixed, lest the sub"""array 

weights be adjusted in a manner which depresses this lobe along with 

the sidelobes. The condition used here to accomplish this is, 

where ~0 is the position of the difference lobe maximum. Since this is 

not known a priori, some iteration like that used in Section 4.1 is 

required. The solutions obtained have been found to be insensitive to 

small errors in the value of ~0 used. The above condition is a linear 

constraint, 

Q 

I 
q=1 

K q 

I 
n=K 

q-1 

and is equivalent to normalising the pattern to its maximum value. A 

number of statements consistent with the results obtained for a large 

number of problems to which the method has been applied can be made: 

(a) Application of the ~"" norm results in· difference patterns with 

higher sidelobes than is obtained with the other two norms. 

(b) For the unconstrained solutions, whether the ~ 1 or ~2 norm 

provides the most satisfying compromised difference pattern is 

dependent on the sub-array configuration under consideration. 
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(c) For the constrained solutions (finding the lowest sidelobe level 

which permits a feasible solution for a prescribed set of 

constraint angles) the solutions obtained using the g,1 and g,2 
norms are almost identical. These are furthermore little 

different from the constrained excitation matching results. This 

consistency is indicative of the fact that the solutions found by 

the two methods are indeed the "best compromises". 

For the constrained minimum norm space factor zero placement method, 

the constraints are applied in.the same manner as in Section 8.4 and 

8. 5, with the 

enforced at the 

sidelobe constraints 

zero positions {~~} 
1 

of the 

of the 

form of equation (16) 

independently optimum 

difference pattern, and at intermediate angles. Keeping y1 = ~~ 
fixed ensures that a compromise difference pattern is obtained with a 

beamwidth close to that of the independently optimum case. If 

beamwidth broadening is acceptable, the constraint angles can be 

shifted outward. 

In order to facilitate comparison, an example identical to the third 

one described in Section 8.5.3 is used, with {a~} and {~?} obtained 
1 1 

from Table 8.1. Fig. 8.10 depicts the resultant pattern when the g,2 
norm is used, without constraints, .for the sub~array configuration 

# 3. On the other hand, the unconstrained 

in Fig. 8.11. With the first constraint 

g,1 solution is that shown 
d angle equal to ~ 1 • and the 

constrained g,1 solution sought, the pattern in Fig. 8.12 is obtained. 

This is of the same form as that of Fig. 8.1 0, except for a very 

slight decrease in the level of the highest sidelobes. Application of 

a constrained g,2 norm solution 

for all practical purposes 

alters Fig. 8.10 to a pattern that is 

identical to that in Fig. 8.11. 

Finally,comparison of Fig. 8.11 and 8.9 completes the illustration of 

statement (c) given above. 
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8.7 CONCLUSIONS 

The increased complexity and generality of the simultaneous synthesis 

of sum and difference patterns does not facilitate development of 

"deterministic" procedures like those presented for independent 

synthesis in Chapters 4 to 7. Instead interactive numerical 

procedures must be used; this appears to be a characteristic of all 

multi~criteria optimisation methods reported in the mathematical 

literature [6]. Some form of man-machine interaction is essential. 

Under the restrictions of a two-module feed network the quadratic 

programming formual tion of Section 8. 4 can be used interactively for 

studying simultaneous synthesis compromises and establishing bounds. 

Essential to the method is the introduction in this work of a 

composite objective function and separate subsets of sidelobe 

constraints for the sum and difference cases, in order to avoid a 

confliciting constraint set. 

Improved simultaneous performance can be achieved through use of 

sub-arraying. Two different methods for simultaneous synthesis under 

such conditions have been presented. These have been termed 

excitation matching and minimum norm space factor zero placement, and 

make maximum use of information provided by the independent synthesis 

techniques. The advantage of these approaches is that the 

independently optimum sum characteristics are kept fixed and the 

sub-array weights adjusted, subject to a set of sidelobe constraints, 

to find the "best compromise" difference performance. The fact that 

both techniques, one working with the excitations and the other with 

the space factor zeros, give virtually identical results, lends 

support to the conclusion that these are the best compromises for a 

given sub-array configuration. 

Since no methods which address the simultaneous synthesis problem in a 

systematic manner have appeared in the literature the above procedures 

satisfy a much needed requirement in this area. 
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CHAPTER 9 

GENERAL CONCLUSIONS 

A number of problems associated with the synthesis of monopulse 

antenna_arrays have been dealt with. The concept of array synthesis 

by correct space factor zero placement has been reinforced. The 

information presented permits the synthesis of high performance 

mono pulse arrays. The original contributions to array theory which 

have been presented in this thesis are: 

(a) The development of the Zolotarev polynomial synthesis technique 

for difference patterns. This method can be used for the exact 

determination of the optimum excitations and space factor zeros 

for a pattern with maximum normalised boresight slope and minimum 

beamwidth, for a given maximum sidelobe level. 

(b) The formulation of a systematic direct method for synthesising 

discrete arrays with difference 

sidelobe level and arbitrary 

patterns of specified maximum 

sidelobe envelope taper. The 

Zolotarev space factor zeros serve as the starting point for this 

direct synthesis procedure. 

(c) The development of a direct discrete array synthesis technique 

for sum patterns with arbitrary sidelobe envelope ~aper. This is 

a generalisation of the Villeneuve distribution. 

(d) The application of constrained numerical optimisation to the 

simultaneous synthesis of sum and difference patterns subject to 

given feed network constraints. 
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In addition a number of results which could not be located in the open 

literature, have been presented. These include, 

(a) Explicit expressions for certain performance indices of 

symmetrically and anti-symmetrically excited linear arri'J.ys, and 

the formulation of the problem for such arrays in a unified 

manner which connects the approximation and optimisation theory 

approaches to array synthesis. 

(b) Information on the discrete difference distributions required to 

provide· (without pattern constraints) either maximum possible 

directivity D~ax, or maximum possible normalised boresight slope 

K0 , and their comparison to the continuous distribution case. 

(These results also provide the standards against which to 

measure array performance and are not readily available 

elsewhere). 

The above contributions must now be placed in the context of the 

overall monopulse array synthesis problem. Such a design problem is a 

multi -objective one where, depending on the specific application, 

certain performance indices may be more important than others. 

Consider first the situation in which the sum mode performance must 

take preference over the difference, as has often been the case in the 

past. If sum mode directivity is to be maximised at all costs, then a 

uniform set of excitations should be used. Usually the sidelobe 

levels for this distribution are too high. The alternative, for the 

narrowest bearnwidth obtainable under a given maximum sidelobe 

specification, is the Dolph-Chebyshev distribution developed in 1946. 

For a slightly increased directivity, with the farther-"out sidelobes 

tapering off from the first one which is at the specified maximum 

level, the Villeneuve distribution can be used. This was first 

published· by Villeneuve in 1984, and uses as its starting point the 

zeros of an associated Dolph""Chebyshev space factor. 
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In the ever ... increasing number of cases where not only the allowed 

level of the maximum (first) side lobe level but also the more remote 

sidelobe levels or simply the sidelobe envelope taper, is a 

specification, the generalised Villeneuve distribution developed in 

Chapter 7 of this thesis can be applied. Further reasons for using 

this distribution are given in that chapter. 

Should .the_ difference performance take preference over the sum, a 

different path has to be followed. If difference directivity is to be 

maximised at all costs, the methods developed in Section 4.1. 2 can be 

used. On the other hand, the methods presented in Section 4.1. 3 are 

applicable if the maximum possible normalised boresight slope is 

desired irrespective of the sidelobe levels obtruded. In the majority 

of designs though, sidelobe levels are important. The synthesis of 

difference distributions providing optimum slope and beamwidth 

characteristics subject to a maximum allowable sidelobe level 

constraint is possible via the Zolotarev polynomial procedure 

developed for the first time in Chapters 4 and 5 of this thesis. This 

is the difference mode analogue of the Dolph-Chebyshev distribution. 

For a number of useful cases the required element excitations can be 

obtained directly from the tables published in Appendix II. 

Alternatively the modified Zolotarev distributions with arbitrary 

sidelobe envelope tapers can be applied. The details of the latter 

approach are worked out in Chapter 6 and its significant advantages 

indicated. This technique utilises the Zolotarev zeros as a point of 

departure. 

If there are no restrictions on the complexity of the array feed 

network to be used, then the sum and difference synthesis can be 

considered separately, as outlined above, and independent networks 

used to set up the desired excitation sets for each mode of operation. 

Should this not be the case, the methods of simultaneous synthesis 

which are· the subject of Chapter 8, can be followed. These provide 

the array designer with interactive procedures for obtaining good 

compromises between sum and difference performance, given the feed 

network constraints. 
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For some time now a set of exact synthesis techniques for monopulse 

arrays of discrete elements, as complete as that which exists for 

continuous line~sources, has not been available. With the suite of 

new techniques presented in Chapters 4 to 7 this is no longer the 

case. These not only complete an aspect important in antenna theory, 

but, together with the expressions for computing array performance 

indices given in Chapter 2, and the numerical simultaneous synthesis 

procedures developed in Chapter 8, have been implemented as a set of 

computer codes which form a very useful computer-aided design tool at 

the synthesis stage of monopulse antenna development. 
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APPENDIX I 

APPROXIMATION AND OPTIMISATION 

INTRODUCTION 

The mathematical theories of approximation and optimisation are both 

well-"established in the literature. However, a summary of some 

pertinent concepts is given here in the interests of completeness. 

2 THE CONCEPT OF A NORM 

Essential to approximation and optimisation is the concept of a norm. 

The definition of a norm, which has to satisfy a number of properties 

to be valid [1, p. 1 ], is a measure of the "closeness" of two 

functions or vectors. In any situation there may be many possible 

definitions for a norm. However, there are a number of standard types 

which have been adopted (each for some good reason) and which need to 

be discussed. 

Consider two functions f(x) and g(x) defined over the interval [a,b]. 

Let the residual r(x) = f(x)- g(x), and let llr(x)ll denote the norm of 

r(x). Then the following norms can be defined: 

The least p-th norm (~p norm), 

llr (x) II 

Its application in the microwave circuit optimisation context is 

described by Sandler [2]. 
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If p = 2, the above becomes what is known as the least squares norm 

( g,2 norm). 

If p = 1, llr(x)ll is called the g,1 norm. 

If p ~ oo, the above becomes 

max lr(x)l 
a < x < b 

which is referred to as the maximum, uniform, Q.
00 

or Chebyshev norm. 

The single vertical lines denote the usual modulus operation. 

The Q.oo norm thus measures the maximum deviation that occurs between 

the two functions f(x) and g(x). On the other hand, g, 2 estimates the 

total deviation over the whole interval. A small value of llr(x)lb 

does not guarantee that the deviation is not very large at certain 

isolated points. As p increases, Q.p approaches the Chebyshev norm 

more closely. The particular norm to be used depends on .the 

application. 

Although the above definitions have been given for the space of 

continuous functions of a single variable, they can of course be 

generalised to cases for which there are many independent variables. 

Such norms may also be defined for n~dimensional vector spaces and 

matrices. 

Consider an n-dimensional vector space with elements (column vectors) 

denoted by X or [X], with 

[X] [x X • • • X ]T 
1 2 n 

where the transpose is used simply for economy of space. 
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Functions of the form F(X) can be defined on this vector space. Vector 

norms may then be defined as follows [7]. 

Let X and Y be elements of the vector space, and define the residual 

vector R = X - Y, so that 

-R = r ••• 
2 

where 

The norms measuring the "closeness" of the vector X and Y are then 

(a) 

(b) 

n 
(c) I 

i=1 

(d) 
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3 APPROXIMATION THEORY 

The subject of approximate representation of functions in terms of 

polynomials derives from the work of the Russian mathematician 

Chebyshev (1821-1894) and his pupils Korkine, Zolotarev and Markoff. 

Since that time it has become the independent discipline of 

"approximation theory" [ 1, 3] or "the constructive theory of functions" 

[4]. The result has been the derivation of many different special 

types of polynomials with properties of tremendous significance in the 

sol uti on of engineering problems. The modern theory is no longer 

limited to the consideration of only polynomials as the approximating 

functions. 

The fundamental theorem of algebra [4, p. 9] proves that every 

polynomial has a zero. It then follows that 

(i) A polynomial Pn(x) of degree n has at most n zeros. 

( ii) A polynomial Pn (x) of degree n is determined uniquely by its 

value at n+1 distinct points, x0 , x 1 , x2 , • • • xn. 

Two further theorems which will be quoted without proof are those due 

to Weierstrass and Borel respectively [5, p. 18]: 

(i) If f(x) is a function defined on x e[a,b], then given E: > 0, 

there is a polynomial Pn (x) such that I Pn (x) '"" f (x) I ~ E: for 

x e[a,b]. 

(ii) If n is a given integer, there is a unique polynomial Pn(x) of 

degree n or less such that 

for every polynomial qn(x) of degree nor less. 
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The existence of a best (in the ~oo norm sense) approximating 

polynomial having been established, it is natural to ask how to find 

this Pn(x) in any given case. There is unfortunately no known closed 

form procedure which, for general f(x) and interval [a,b], can be used 

to find the best approximaing polynomial Pn(x) in a finite number of 

steps. 

The best approximating polynomial Pn (x) is that which minimises the 

maximum norm (and thus the maximum value of the difference 

IPn(x) ~ f(x)l ). It is therefore referred to as the minimax problem. 

A particular but important case, that for which f(x) 0 and 

[a,b] [-1,1], is dealt with in a theorem due to Chebyshev 

[5, p. 28]. It proves that for this special case the best 

approximating polynomial is the Chebyshev polynomial Tn(x). The use 

of this polynomial is central to the synthesis of optimum sum patterns 

of linear arrays, and is described in Section 3.2.2. A second 

particular case for which analytical solutions have been obtained is 

that .of the Zolotarev polynomial function, which forms the basis of 

the synthesis procedure developed in Chapter 4. 

Numerical methods exist for finding Pn (x) for arbitrary f (x) if the 

minimax condition is imposed at only a finite number of points at a 

time. The earliest approaches were the Remez exchange algorithms, 

details of which are given by Jones [5, p. 19] and Rivlin [1, p. 136]. 

Such exchange algorithms have largely been superseded by reformulation 

of the minimax problem as a linear programming one. The latter 

technique is mentioned later in this appendix. A Remez exchange 

algorithm application to the difference pattern problem is referenced 

in Section 3.3.3. 
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4 OPTIMISATION THEORY 

Optimisation and approximation theory are intimately related. The 

subject of optimisation covers a wider range of problems and 

approaches, however, and could be considered to contain that of 

approximation entirely. This is not usually done though, and this 

practice has been adhered to in this summary. 

In Chapter 8 consistent use is made of optimisation algorithms. 

Wherever possible the advice of Gill, et. al. [7] has been followed. 

They correctly maintain that because of the steady progress in 

optimisation methods, anyone who wishes to solve an applied 

optimisation problem should not start from scratch and devise his own 

optimisation method or write his own implementation, but should 

formulate the problem at hand in such a way that selected routines 

from high-quality mathematical software libraries can be used. 

However, optimisation codes cannot be used effectively if a 

"black-box" approach is adopted. An understanding of the essence of a 

particular technique used is necessary in order to apply and adapt 

existing software properly. This and a knowledge of a broad 

classification of optimisation problems in order of increasing 

complexity is also useful to prevent the use of a method that is of a 

more general nature than is in fact necessary, since increased 

complexity also means decreased reliability (relatively speaking) and 

longer execution times [7. Chap. 8). 

The literature on optimisation is voluminous indeed. The sources used 

for the applications in Chapter 8 were the texts by Gill, et. al. [7], 

Walsh [8] and Noble [9],.the papers by 'Conn, et. al .. [10,11] and 

Barrodale et. al. [12,13], and the NAG library of mathematical 

software [16]. 



The optimisation problem is 

function, F(x), where X 

objective function and the 
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one of 

[x1 x2 

column 

minimising 

... T xn] . 

vector x 

or maximising a given 

F(X) is called the 

represents a set of 

independent parameters (variables) of which F is a function. For most 

physical problems such minimisation (maximisation) must be done 

subject to a set of constraints imposed on X, usually for reasons of a 

practical nature [14,15]. The existence or absence of such 

constraints determines whether a problem is of the constrained or 

unconstrained type. The methods used in Section 4. 1 are of the 

unconstrained variety. A flow chart giving an overall arrangement, in 

order of increasing complexity, of the subject of optimisation from a 

user's point of view is shown in Fig. 1. It should be pointed out 

that this is not a standard classification, but rather one based on 

the experience of the present autho~ in applying optimisation theory 

to array synthesis. 

Problems of the type (1) and (2) are called Linear Programming 

problems, while (3) and (4) are Quadratic Programming problems. Many 

algorithms exist for solving such problems, most of them based on what 

is known as the simplex method, or variations thereof [7,8]. For the 

linear and quadratic programming problems formulated in Chapter 8 use 

has been made of the routine E04NAF available from the Numerical 

Algorithms Group (NAG) library of mathematical software [16]. For the 

linear programming problem the objective function is of the form 

F(X) cTx, where c;T is a constant vector, equal to VF(X), the 

gradient of F(X). 

defined as, 

The gradient of any function F(X) is of course 

aF 1ax1 

oF/ax 
n 
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The Hessian matrix of a function F(X), denoted by [G] say, is defined 

as [7], 

[G] 

If the Hessian matrix of F is constant, then F is a quadratic function 

which can be written in the form (quadratic programming problem), 

Specification of the (constant) quantities [G] and C completely 

defines F(5(). 

Problems of the type (5) occur in Section 4.1 and have been solved 

numerically using the NAG routine E04JAF, which is based on what are 

referred to as quasi-Newton methods [7, pp. 116-127]. 



FIGURE 1 
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( 1 ) • F(X) Linear in x and unconstrained 

( 2) • F(X) Linear in x with linear constraints 

( 3) • F(X) Quadratic in x and unconstrained 

( 4) • FO() Quadratic in x with linear constraints 

( 5) . F(X) Is of general non-linear form but 
unconstrained 

( 6) • F(X) Is of general non-linear form with 
simple bounds on X 

( 7) • F(X) Is of . general non-linear form with 
linear constraints 

( 8) • F(X) Is linear, quadratic or general 
non~linear form with non'"" linear 
constraints 

Flowchart of optimisation problems in order of increasing 

complexity. 
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APPENDIX II 

TABLES OF DESIGN DATA FOR ZOLOTAREV POLYNOMIAL ARRAYS 



TABLE II.1 Jacobi modulus (k) values for various numbers of elements (2N) and sidelobe ratios (SLR). 

~ R 1 0 20 30 40 50 60 

15 dB 0.998745828908 0.9985867774745 0.9985589883166 0.9985495421102 0.9985452430448 0.9985429332424 

20 dB 0.9996757515225 0.9996208784026 0.9996122308734 0.9996093496527 0.9996080480023 0.9996073511207 

25 dB 0.9999156095527 0.9998953160856 0.9998898518608 0.9998880307364 0.9998872079156 0.9998867673677 

30 dB 0.9999770191198 0.9999710417524 0.9999701140527 0.9999696784784 0.9999694480226 0.9999693246752 

35 dB 0.9999939866708 0. 999991 916181 9 0.9999914923241 0.9999913516146 0.999991288133 0.9999912541684 

40 dB 0.9999982703182 0.99999637147 0.9999974904427 0.9999974418081 0.9999974198777 0.9999974081473 

50 dB 0.9999998714254 0.9999998067784 0.9999997935154 0.9999997864033 0.9999997831988 0.9999997814853 

60 dB 0.9999999911282 0.999999829653 0.999999981613 0.9999999811682 0.9999999809682 0.9999999808614 

1\) 
U1 
\.0 
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TABLE II.2 Sidelobe parameter z;; for various numbers of elements (2N) 
and sidelobe ratios (SLR). 

2N 1 0 20 30 40 50 60 SLR 

15 dB 2.90164 2.84979 2.84133 2.83849 2.83721 2.83652 
-

20 dB 3.48912 3.42122 3.41143 3.40821 3.40677 3.40600 

25 dB 4.07371 3.98012 3.95802 3.95090 3.94772 3.94603 

30 dB 4.63863 4.53823 4.52453 4.51825 4.51496 4.51321 

35 dB 5.22089 5.09238 5.07019 5.06306 5.05989 5.05820 

40 dB 5.76203 5.62656 5.60040 5.59207 5.58836 5.58639 

50 dB 6.89084 6.71394 6.68511 6.67041 6.66394 6.66052 

60 dB 8.05199 7.76867 7.73549 7.72511 7. 72052 7.71809 
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TABLES II. 3 II. 10 

Element Excitations For The Case d > 0.5 A 

For a Range of Array Sizes (2N) and Sidelobe Ratios (SLR) 
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TABLE II. 3 

SIDELOBE RATIO 1 5 dB 

2N 1 0 20 30 40 50 60 

a1 0. 286771 0.088911 0.042033 0.024339 0.015841 0.011122 

a2 0.763587 0.259548 0.124625 0.072544 0.047328 0. 033271 

a3 0.993677 0.409407 0.202862 0.119340 0.078231 0.055137 

a4 0.934697 0.527139 0. 274071 0.163828 0.108171 0.076534 

a5 1.000000 0.604817 0.335906 0.205169 0.136787 0.097282 

a6 0.638685 0.386457 0.242609 0.163737 0.117209 

a7 0. 629395 . 0.424331 0.275490 0.188708 0.136150 

as 0.581715 0.448708 0.303274 0.211421 0.153955 

a9 0.503762 0.459362 0.325551 0.231629 0.170484 

a10 1. 000000 0.456656 0.342048 0.249132 0. 18561 3 

a11 0.441502 0.352636 0.263768 0.199232 

a12 0.415299 o. 357326 0.275422 0.211249 

a13 0.379841 0.356271 0.284028 0.221589 

a14 0.337212 0.349753 0.289564 0.230197 

a15 1.000000 0.338172 0.292055 0.237035 

a16 0.322036 0.291573 0.242084 

a17 0.301939 0.288230 0.245344 

a18 0.278546 0.282182 0.246835 

a19 0.252566 0.273617 0.246593 

a20 1.000000 0.262758 0.244673 

a21 0.249855 0.241145 

a22 0.235180 0.236094 

a23 0.219022 0.229620 

a24 0.201682 0.221835 

a25 1.000000 0.212860 

a26 0.202828 

a27 0.191876 

a28 0. 1 801 49 

a29 0.167794 

a30 1. 000000 
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TABLE II. 4 

SIDE LOBE RATIO 20 dB 

2N 1 0 20 30 40 50 60 

a1 0 .. 313412 0.154498 0.085569 0.050670 0.033413 0.023662 

a2 0.812779 0.448090 0.252986 0.150784 0.099727 0.070734 

a3 1.000000 0.697575 0.409466 0.247267 0.164513 0.117058 

a4 0.855364 0.880222 0.548441 0.337828 0.226789 0.162147 

a5 0.649432 0.982183 0.664376 0.420377 0. 285626 0.205530 

a6 1. 000000 0.753082 0.493083 0.340165 0.246765 

a7 0.940499 0. 811927 0.554436 0.389638 0.285437 

as 0. 81 91 63 0.839951 0.603290 0.433382 0.321170 

a9 0.657312 0.837860 0.638897 0.470850 0.353630 

a10 0.894156 0.807917 0.660916 0.501623 0.382529 

a11 0.753730 0.669421 0.525416 0.407628 

a12 0.679962 0.664880 0.542080 0.428742 

a13 0.591983 0.648131 0. 551606 . 0.445742 

a14 0.495494 0.620337 0.554118 0.458553 

a15 1.000000 0.582934 0.549869 0.467156 

a16 0.537572 0.539230 0.471589 

a17 0.486048 0.522684 0.471941 

a18 0.430233 0.500804 0.468354 

a19 0.372009 0.474244 0.461018 

a20 1.000000 0.443718 0.450165 

a21 0.409985 0.436067 

a22 0.373828 0.419029 

a23 0.336036 0.399386 

a24 0.297388 0.377495 

a25 1.000000 0.353727 

a26 0.328466 

a27 0.302097 

a28 0.275005 

a29 0.247565 

a30 1.000000 
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TABLE II. 5 

SIDELOBE RATIO 25 dB 

2N 10 20 30 40 50 60 

a, 0.339635 0.168346 0.110710 0.082520 0.065381 0.046697 

a2 0.858518 0.485100 0.326403 0.245187 0.194947 0.139501 

a3 1. 000000 0.745324 0.525330 0.400826 0.320960 0.230547 

a4 --o. 778931 0.921637 0.697654 0.545067 0.441149 0.318698 

a5 0.451870 1.000000 0. 835431 0.673992 0.553396 0.402866 

a6 0.981285 0.933134 0.784289 0.655779 0.482035 

a7 0. 880081 . 0. 987975 0.873373 0.746625 0.555275 

as 0.721111 1.000000 0.939477 0.824550 ·o. 621 758 

a9 0.534100 0.971956 0.981695 0.888485 0.680774 

a10 0.536199 0.908946 1.000000 0.937698 0.731739 

a 11 0.817912 0.995212 0.971812 0.774204 

a12 0.706999 0.968930 0.990796 0.807863 

a13 0.584861 0.923438 0.994964 0.832551 

a14 0.459970 0.861576 0.984953 0. 848251 

a15 0.683816 0.786594 0.961698 0.855082 

a16 0.701998 0.926395 0.853304 

a17 0.611383 0.880460 0.843299 

a18 0.518280 0.825484 0.825568 

a19 0.426007 0.763183 0.800717 

a20 0.842952 0.695347 0.769440 

a21 0.623784 0.732506 

a22 0.550277 0.690740 

a23 0.476533 0.645009 

a24 0.404138 0.596201 

a25 1.000000 0.545208 

a26 0.492912 

a27 0.440164 

a28 0.387773 

a29 0.336492 

a30 1.000000 
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TABLE II. 6 

SIDELOBE RATIO 30 dB 

2N 10 20 30 40 50 60 

a, 0.365699 0.180205 0.119517 0.089238 0.070972 0.058999 

a2 0.902867 0.515913 0.351337 0.264711 0.211399 0.176126 

a3 -1.000000 0.782293 0.562134 0.431320 0.347316 0.290654 

a4 0.714435 0.947927 0.739882 0.583624 0.475871 0.400911 

. a5 0.335589 1.000000 0.875325 0.716857 0.594431 0.505316 

a6 0.945505 0.962682 0.827142 0.700663 0.602406 

a7 0.808179 1.000000 0.911661 0.792599 0.690873 

a8 0. 622164 0.989136 0.968752 0.868692 0. 769581 

a9 0.424087 0.935380 0.997959 0.927849 0.837597 

a10 0.329244 0.846766 1.000000 0.969459 0.894199 

a 11 0.733176 0.976690 0.993394 0.938890 

a12 0.605313 0.930796 1 . 000000 0.971405 

a13 0.473685 0.865852 0.990071 0.991711 

a14 0.347695 0.785942 0.964806 1.000000 

a15 0.394442 0.695464 0.925754 0.996678 

a16 0.598892 0.874755 0.982352 

a17 0.500542 0.813864 0.957809 

a18 0.404374 0.745277 0.923993 

a19 0.313812 0.671253 0.881979 

a20 0.472085 o. 594041 0.832944 

a21 0.515804 0.778135 

a22 0. 438560 0.718843 

a23 0.364118 0.656369 

a24 0.294042 0.591994 

a25 0.552337 0.526954 

a26 0.462412 

a27 0.399438 

a28 0.338990 

a29 0.281896 

a30 0. 635467. 
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TABLE II. 7 

SIDE LOBE RATIO 35 dB 

2N 1 0 20 30 40 50 60 

a1 0.392702 0.192715 0.127198 0.094930 0.075728 0.062991 

a2 0.947744 0.548216 0.372861 0.281151 0.225337 0.187910 

a3 1.000000 0.820554 0.593184 0.456650 0.369465 0.309666 
-

a4 0.657489 0.974602 0.774034 0.614936 0.504674 0.426235 

a5 0.258062 1.000000 0.905069 0.750449 0.627833 0.535718 

a6 0.911427 0.980616 0.858853 0.736226 0.636387 

a7 0.742801 1.000000 o. 937235 0.827644 0. 726721 

as 0.537397 0.967322 0.984224 0.900443 0.805446 

a9 0.336909 0.890722 1.000000 0.953597 0.871555 

a10 0.209751 0.781249 0.986217 0.986706 0.924332 

a 11 0.651497 0.945833 1. 000000 0.963359 

a12 0. 51 41 82 0.882870 0.994297 0.988521 

a13 0.380840 0.802119 0.970957 1. 000000 

a14 0.260797 0.708817 0.931805 0.998258 

a15 0.235806 0.608312 0.879044 0.984021 

a16 0.505749 0.815154 0.958246 

a17 0.405789 0.742788 0.922091 

a18 0.312387 0.664664 0.876879 

a19 0.228629 0.583459 0.824053 

a20 0.273308 0.501714 0.765135 

a21 0.421752 0.701686 

a22 0.345602 0.635262 

a23 0.274951 0.567374 

a24 0.211107 0.499453 

a25 0.314613 0.432815 

a26 0.368638 

a27 0.307937 

a28 0.251551 

a29 0.200134 

a30 0.357628 
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TABLE II. 8 

SIDELOBE RATIO 40 dB 

2N 10 20 30 40 50 60 

a1 0.417487 0.205279 0.135117 0.100615 0.080144 0.066594 

a2 0.988039 0.580418 0.394990 0.297527 0.238241 0.198524 

a3 1.000000 0.858099 0.624931 0.481756 0.389853 0.326710 
-

a4 0.6i2497 1.000000 0.808659 0.645721 0.530943 0.448772 

a5 0.209022 0.999331 0.934884 0.783081 0.657886 0.562496 

a6 0.879553 0.998333 0.889102 0.767607 0.665892 

a7 0.685015 1.000000 0.960897 0.857694 0.757250 

a8 0.467050 0.946607 0.997534 0.926472 0.835178 

a9 0.270179 0.849393 1.000000 0.973053 0.898634 

a10 0.139485 0.722438 0.971044 0.997339 0.946948 

a11 0.580780 0.914889 1.000000 0.979831 

a12 0.438606 0.836871 0.982408 0.997366 

a13 0.307744 0.743012 0.946551 1.000000 

a14 0.196654 0.639583 0.894920 0.988513 

a15 0.146191 0.532672 0.830377 0.963986 

a16 0.427814 0.756013 0.927753 

a17 0.329683 0.675009 0.881357 

a18 0.24~884 0.590498 0.826492 

a19 0.166842 0.505434 0.764948 

a20 0.163486 0.442485 0.698551 

a21 0.343947 0.629116 

a22 0.271678 0.558385 

a23 0.207062 0.487990 

a24 0.150999 0.419407 

a25 0.184205 0.353927 

a26 0.292630 

a27 o. 236371 

a28 0.185774 

a29 0.141234 

a30 0.206433 
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TABLE II. 9 

SIDELOBE RATIO 50 dB 

2N 10 20 30 40 50 60 

a, 0.437956 0.221055 0.147512 0.110462 0.088236 0.073437 

a2 1.000000 0.617556 0.428836 0.325624 0.261772 0.218618 

a3 -0.938196 0.890985 0.670935 0.523946 0.426643 0.358781 

a4 0.505867 1.000000 0.853582 0.695635 0.577545 0.490768 

a5 0.137377 0.948520 0.964380 0.832907 0.709852 0.611699 

a6 0.779155 1.000000 0.930519 0.819827 0.719065 

a7 0.554790 0.965968 0.986062 0.904784 0.810802 

as 0.336446 0.875129 1.000000 0.963184 0.885356 

a9 0.165974 0.745125 0. 975461 0.994663 0.941719 

a10 0.062106 0.595403 0.917806 1.000000 0.979449 

a11 0.444305 0.834036 0.981016 0.998661 

a12 0.306720 0.732100 0.940425 1.000000 

a13 0.192622 0.620178 0.881639 0.984600 

a14 0.106642 0.506016 0.808551 0.954015 

a15 0.056262 0.396360 0. 725301 0.910146 

a16 0.296552 0.636042 0.855154 

a17 0.210299 0.544736 0.791366 

a18 0.139620 0.454962 0.721185 

a19 0.084963 0.369772 0.646997 

a20 0.058742 0.291595 0.571089 

a21 0.222179 0.495575 

a22 0.162587 0.422334 

a23 0.113230 0.352964 

a24 0.073940 0.288750 

a25 0.063470 0.230647 

a26 0.179283 

a27 0.134971 

a28 0.097732 

a29 0.067335 

a30 0.069152 
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TABLE II. 10 

SIDELOBE RATIO 60 dB 

2N 1 0 20 30 40 50 60 

a1 0.451343 0.236727 0.160088 0.119601 0.095390 0.079455 

a2 1.000000 0.654020 0.462948 0.351497 0.282443 0.236211 
-

a3 0.880774 0.922515 0.716649 0.562140 0.458530 0.386595 

a4 0.427974 1.000000 0.897156 0. 739508 0.617050 0.526645 

a5 0.098065 0.903892 0.991695 0.874542 0.752416 0.652816 

a6 0. 696728 1.000000 0.961849 o. 860351 0.762111 

a7 0.456855 0.933232 1.000000 0. 938091 0.852196 

as 0.248876 0.810954 0.991403 0.984490 0.921469 

a9 0.106199 0.656933 0.941800 1.000000 0.969103 

a10 0.030795 0.494730 0.859444 0.986558 0.995049 

a 11 0.343988 0.754103 0.947375 1.000000 

a12 0.218058 0.635989 0.886652 0.985328 

a13 0.123237 0.514769 0.809257 0.952986 

a14 0.059473 0.398739 0. 720373 - 0.905397 

a15 0.023790 0.294264 0.625160 0.845317 

a16 0.205493 0.528450 0.775699 

a17 0.134370 0.434491 0.699554 

a18 0.080874 0.346760 0.619821 

a19 0.043442 0.267856 0.539250 

a20 0.022556 0.199458 0.460302 

a21 0.142362 0.385076 

a22 0.096575 0.315258 

a23 0.061450 0.252095 

a24 0.035852 0.196396 

a25 0.023011 0.148551 

a26 0.108576 

a27 0.076163 

a28 0.050745 

a29 0.031567 

a30 0.024181 
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TABLES II.11 - II.18 

Performances Indices For Array Excitations Given In Preceding Tables, 

For The Specific Case Of d 0.5 A 
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TABLE II. 11 

SIDE LOBE RATIO 15 dB d = Oo5 A 

2N 10 20 30 40 50 60 

K 
- Oo966008 1o305248 1o535339 1 0 705893 1o839143 1.946896 

K r 0.9572 0.9617 0.9392 0.9113 0. 8831 0.8563 

Dm 
d 6.0690 11.4282 15.8951 19.6573 22.8664 25.6352 

nd Oo9379 Oo8897 0.8261 0.7666 Oo7136 0.6667 

nds Oo6069 Oo5714 0.5298 0.4914 0.4573 0.4273 

TABLE II.12 

SIDELOBE RATIO 20 dB d = 0.5 A 

2N 1 0 20 30 40 50 60 

K Oo901639 1.246686 1.507992 1.719668 1 0 898368 2.053214 

K 0.8934 0.9186 0.9224 0.9186 0.9116 0.9030 r 

Dm 
d 5.9065 11.8124 17. 4211 22.7165 27.7172 32.4448 

nd 0.9128 0.9196 0.9054 0.8859 0.8650 Oo8439 

nds Oo5907 Oo5906 0.5807 0.5679 0.5543 0.5407 
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TABLE II. 13 

SIDELOBE RATIO 25 dB d =: 0.5 A 

2N 10 20 30 40 50 60 

K 0.839346 1.160484 1 . 41 721 9 1.631804 1.818415 1.984772 

K 0.8317 0.8551 
r 

0.8669 0.8717 0.8732 0.8729 

Dm 
d 5.6239 11 • 4099 17.1698 22.8330 28.3938 33.8522 

nd 0. 8691 0.8883 0.8924 0.8905 0.8861 0.8805 

nds 0.5624 0.5705 0.5723 0.5708 0.5679 0.5642 

TABLE II. 14 

SIDELOBE RATIO 30 dB d == 0.5 A 

2N 10 20 30 40 50 60 

K 0.788534 1. 078081 1.315812 1.518541 1 . 6971 87 1 . 858222 

K 0.7813 0.7943 r 0.8049 0.8112 0. 81 50 0.8173 

Dm 
d 5.3644 10.8469 16.3906 21.9305 27.4489 32.9405 

nd 0.8290 0.8444 0.8519 0.8553 0.8566 0.8568 

nds 0.5364 0.5423 0.5464 0.5483 0.5490 0.5490 
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TABLE II. 15 

SIOELOBE RATIO 35 dB - d = 0.5 A 

2N 10 20 30 40 50 60 

K 0.745736 1. 00701 7 1.227817 1.417024 1.584486 1. 736057 

K 0.7389 0.7420 0.7511 0.7570 0.7609 0.7635 r 

om 
d 5.1377 10.3148 15.5966 20.8957 26.1963 31.4932 

nd 0.7939 0.8030 0.8106 0.8149 0.8175 0.8191 

nds 0.5138 0.5157 0.5199 0.5224 0.5239 0.5249 

TABLE II. 16 

SIOELOBE RATIO 40 dB d = 0.5 A 

2N 1 0 20 30 40 50 60 

K 0.713184 0.948482 1.153562 1.330411 1.487399 1. 629760 

K 0.7067 0.6989 0.7056 0.7107 0.7142 0.7168 r 

om 
d 4.9628 9.8629 14.8940 19.9529 25.0214 30.0933 

nd 0.7669 0.7678 0.7741 0.7782 0.7808 0.7827 

nds 0.4963 0.4931 0.4965 0.4988 0.5004 0.5016 
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TABLE II. 17 

SIOELOBE RATIO 50 dB d = 0.5 A 

2N 10 20 30 40 50. 60 

K 0.661928 0.853326 1.030735 1.186612 1.325605 1.451948 

-

K 
r 

0.6559 0.6287 0.6305 0.6339 0.6365 0.6386 

om 
d 4.6853 9.1155 13.7037 18.3394 22.9900 27.6478 

nd 0.7240 0.7097 0.7122 0.7152 0. 71 75 0.7191 

nds 0.4685 0.4558 0.4568 0.4585 0.4598 0.4608 

TABLE II. 18 

SIOELOBE RATIO 60 dB d = 0.5 A 

2N 1 0 20 30 40 50 60 

K 0.625489 0.783315 0.939229 1.077816 1. 202291 1.315836 

K 0.6198 0.5772 0.5745 0.5758 0.5773 0.5787 r 

om 
d 4.4866 8. 5580 12.8019 17.0955 21.4094 25.7335 

nd 0.6933 0.6663 0.6654 0.6667 0.6681 0.6693 

nds 0.4487 0.4279 0.4267 0.4274 0.4282 0.4289 
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TABLES 11.19 11.26 

x~axis Roots Of The Zolotarev Polynomials Associated With Arrays 

Of The Element Numbers And Sidelobe Ratios Indicated. 

(Relevant To Arrays Of Any Spacing d). 
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TABLE II. 19 

SIDELOBE RATIO 15 dB 

2N 1 0 20 30 40 50 60 

1 .4944800926 .2463541538 .1627843452 • 121 3931 307 . 096745151 4 .0804039363 

2 . 6970807298 • 3628911 91 7 .2415411506 . 1 805661 204 .1440633759 .1198009606 

3 .8830839856 .4982936582 .3360051735 .2522785749 .2016752270 . 1678870871 

4 . 986-6127824 . 6281 01 9285 .4314946800 .3259812230 . 261 321 3951 .2178648531 

5 .7442488985 .5239625069 .3990304843 .3210374668 .2681666524 

6 .8420474143 .6113508074 .4702361629 .3800108077 . 31 81 801 680 

7 . 91 81786480 .6922167287 .5388303366 .4377574656 .3675639179 

8 .9702486146 .7654016869 . 60421 471 32 .4939194394 .4160783502 

9 .9966778595 .8299299665 . 6658795253 .5481987087 .4635306008 

10 .8849743441 .7233730517 .6003316878 . 5097528621 

11 .9298450035 .7762892329 .6500781940 .5545928312 

12 .9639872764 .8242626517 .6972163882 .5979091426 

13 .9869826548 .8669667796 .7415404318 .6395690803 

1 4 .9985506928 . 90411 37363 .7828594716 .6794474185 

15 .9354547442 . 8209973051 .7174258543 

16 .9607808644 . 855 792 40-51 .7533927654 

17 .9799237926 .8870981292 .7872431530 

18 .9927565919 .9147830203 .8188786893 

19 .9991942885 .9387311408 .8482078250 

20 .9588424055 .8751459287 

21 .9750328926 .8996154411 

22 .9872351172 .9215460327 

23 .9953982596 .9408747572 

24 .9994902224 .9575461959 

25 .9715125893 

26 .9827339538 

27 .9911781803 

28 - .9968211153 

29 .9996484893 

x1 0.025352 0.012197 0.008012 0.005963 0.004748 0.003944 

x2 0.224677 0.108808 0.071555 0.053274 0.042426 0.035246 

x3 0.451854 0.223703 ~o. 147661 0.110076 0.087712 0.072890 
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TABLE II. 20 

SIDELOBE RATIO 20 dB 

2N 10 20 30 40 50 60 

1 .5431199278 .2747749877 .1821041180 . 1359401 984 .1083896089 .0901044132 
' 

2 .7189117002 .3794276750 .2532151728 . 1 894661 520 .1512274910 . 1257869097 

3 .8902481172 .5083864898 .3436572136 .2582461387 .2065274887 . 1719631 350 

4 .9873797052 .6344626127 .4368849312 . 3303278271 .2649075452 .2209005414 
-

5 .7481768749 .5278919540 .4023475213 .3238278706 . 2705527342 

6 .8443034137 .6142465768 .4728333703 .3822505866 . 32011 991 05 

7 . 91 92923247 .6943386168 .5408904605 .4395899772 . 369175821 8 

8 .9706439302 .7669252774 .6058557979 .4954360119 .4174375219 

9 . 996721.1 473 .8309847346 .6671835166 .5494614857 .4646877574 

10 .8856629880 .7244003484 .6013852578 .5107440076 

11 .9302540587 .7770867010 .6509560019 .5554445928 

12 .9641933355 . 8248683233 .6979445002 .5986419055 

1 3 .9870562394 .8674127501 .7421398615 • 6401 989264 

14 .9985588369 .9044280276 .7833476787 .6799873761 

15 .9356625469 .8213891953 . 7178867331 

16 .9609053934 .8561010168 . 7537837311 

17 .9799868977 • 88733511 81 . 7875721 329 

18 .9927792837 . 91 49590087 .8191526650 

19 .9991967962 .9388559754 .8484330478 

20 .9589253508 .8753280813 

21 .9750827799 .8997597601 

22 .9872604624 .9216574035 

23 .9954073586 .9409577882 
~ 

24 .9994893502 .9576052777 

25 • 971 551 9421 

26 .9827576666 -
27 .9911903590 

28 .9968254624 

29 .9996471033 

x1 0.015073 0.007299 0.004794 0.003567 0.002840 0.002359 

x2 0. 238121 0. 116232 0.076555 0.057027 0.045426 0.037744 

x3 0. 509431 0.256236 0.169659 0.126611 0.100936 0.083902 
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TABLE II. 21 

SIDELOBE RATIO 25 dB 

2N 10 20 30 40 50 60 

1 .5898249379 .3031687017 .2012057273 • 1502753452 .1198475054 .0996419899 

2 .7417466907 . 3973484794 .2657198915 . 1989640255 .1588601665 • 1321587391 

3 . 8979460071 .5196151476 .3520678485 .2647798736 .2118309199 . 17641 40795 

4 .9882103918 .6416079749 .4428663351 . 3351 321 449 .2688643651 .2242468697 

5 .7526090452 .5322716839 .4060300373 .3269202478 .2731945426 

6 • 8468549071 .6174818882 .4757236240 .3847386627 .3222726516 

7 .9205534996 .6967126762 .5431863095 .4416285477 • 370967281 0 

8 .9710873178 .7686314785 .6076863457 .4971246760 . 41 89494921 

9 .9967702184 .8321666331 .6686389644 .5508684418 .4659758149 

10 .8864349500 .7255474712 .6025596471 • 511 84 77711 

11 .9307127336 .7779774742 .6519347961 .5563934498 

12 .9644244334 .8255450211 . 6987565786 .5994584040 

13 .9871387751 .8679111084 • 7428085458 .6409008840 

14 .9985679722 .9047792862 .7838923719 .6805892462 

15 .9358948153 .8218264793 . 7184005201 

16 .9610445944 .8564454083 .7542196224 

17 .9800574415 .8875996029 .7879389454 

18 .9928044950 .9151554276 .8194581682 

19 .9991995996 .9389968589 . 848684201 9 

20 .9590179330 .8755312156 

21 .9751384650 .8999207090 

22 .9872887537 • 921 781 611 5 

23 .9954175155 .9410534053 

24 .9994904772 .9576711728 

25 .9715958338 

26 .9827841147 

27 .9912036988 

28 .9968302845 

29 .9996476400 

x1 0.008841 0.004344 0.002882 0.002152 0.001716 0.001426 

x2 0.250097 0.123059 0.081101 0.060428 0.048140 0.040000 

x3 0.562629 0.287565 0. 190634 0.142326 0.113488 0.094346 
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TABLE II. 22 

SIDELOBE RATIO 30 dB 

2N 10 20 30 40 50 60 

1 . 6324280169 .3316462128 .2213073559 .1655481953 .1321121425 . 1098766467 

2 .7640600559 .4165476079 .2797698516 .2097652214 .1675796819 .1394555327 

3 .9056754317 .5319732476 . 361 7737212 .2724104313 .2180523637 . 1 81 64 79420 

4 .9890517852 .6495573790 .4498434087 .3408032654 .2735558453 . 2282239181 

5 • 7575651 850 .5374068203 • 4103993081 .3306055882 .2763503600 

6 .8497157773 .6212859192 .4791625592 .3877121796 .3248514803 

7 . 9219697458 .6995087851 .5459226574 .4440690117 .3731169765 

8 .9715880623 . 7706431756 .6098705260 .4991484903 .4207658193 

9 .9968253897 .8335611576 .6703768888 .5525559159 .4675243313 

10 .8873462388 .7269179607 . 6039689471 .5131754476 

11 .9312543750 .7790421111 .6531098439 .5575352525 

12 • 9646973945 .8263540322 .6997317763 .6004412323 

13 .9872362755 . 8685070391 .7436117321 .6417460370 

1 4 .9985787645 .9051993860 .7845467454 .6813140289 

15 .9361726389 .8223518907 .7190193237 

16 .9612111123 .8568592536 .7547446719 

17 . 9801 41 8344 .8879174557 . 7883808301 

18 .9928347742 . 91 5391 4973 .8198262259 

19 .9992061734 .9391627787 .8489868024 

20 . 9591292162 .8757759736 

21 .9752054003 .9001146465 

22 .9873227618 .9219312834 

23 .9954297248 .9411619847 

24 .9994958143 .9577505815 

25 .9716487278 

26 .9828159879 

27 .9912199140 

28 .9968361109 

29 .9996482868 

x1 0.005219 0.002555 0.001679 0.001252 0.000998 0.000829 

x2 0.260364 0.129437 0.085549 0.063794 0.050838 0.042250 

x3 0.609996 0.318267 0.212204 0.158689 0.126620 0.105300 
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TABLE II. 23 

SIDE LOBE RATIO 35 dB 

2N 10 20 30 40 50 60 

1 .6732459895 .3597614865 .2407922702 .1803969463 .1440411785 .1198435002 

2 .7866626594 .4365419639 .2941322803 .2208182030 . 1765226290 .1469483738 

3 .9137172059 .5451906356 . 371961 7396 . 28042794 51 .2246038942 • 1871 660868 

4 .9899353051 . 6581587581 .4572523545 .3468312049 .2785535640 .2324656026 

5 . 7629583711 .5428912276 . 41 507021 89 .3345540659 .2797355094 

6 .8528384917 • 625361 7023 .4828507200 . 3909082441 .3276265948 

7 . 92351 83002 .7025104572 .5488630664 .4466972779 .3754348370 

8 .9721361114 • 7728054641 .6122205874 .5013308396 .4227267474 

9 .9968857987 .8350613260 .6722484368 .5543771821 .4691976052 

10 .8883271245 . 7283947384 .6054909427 .5146109978 

11 • 931 837611 4 .7801898354 .6543794451 .5587704049 

12 .9649913947 .8272264749 . 7007858161 .6015047913 

1 3 .9873413080 .8691498578 .7444800891 .6426608643 

14 .9985903914 . 9056526263 .7852543649 .6820987335 

15 . 9364724226 .8229201500 .7196894041 

16 .9613908114 .8573069083 .7553133098 

17 .9802329144 .8882613126 .7888594545 

18 .9928673940 . 91 56469021 . 8202249231 

1 9 .9992106684 .9393439776 .8493146192 

20 .9592496287 .8760411451 

21 .9752778297 .9003247705 

22 .9873595992 .9220934545 

23 .9954429370 .9412829009 

24 .9994932980 .9578366276 

25 .9717060443 

26 .9828505267 

27 .9912374856 

28 .9968424248 

29 .9996514030 

x1 0.003003 0.001493 0.000987 0.000736 0.000587 0.000488 

x2 0.269709 0.135361 0.089598 0.066859 0.053300 0.044304 

x3 0.654649 0.348112 o. 232791 0.176124 0.139196 0.115804 
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TABLE II.24 

SIDELOBE RATIO 40 dB 

2N 1 0 20 30 40 50 60 

1 .7081754044 .3865358530 .2597383153 . 1948325604 . 155691 6961 . 12958191 30 

2 .8068817402 .4564090690 .3086932091 .2320628739 . 1856274035 .1545799246 

3 .9210930122 .5586576088 .3825485882 .2887873797 .2314396173 . 1929258328 

4 . 990_7532078 .6670272017 .4650421083 .3531900133 .2838291996 .2369448505 

5 .7685526524 .5486924402 . 4200272725 .3387472537 .2833317930 

6 .8560883999 . 6296877179 .4867782693 .3943140443 .3305849144 

7 .9251329855 .7057031109 .5520009644 .4495039606 .3779109573 

8 .9727081653 .7751084569 .6147319726 .5036645863 .4248244894 

9 .9969488835 .8366605746 .6742503700 .5563266717 .4709893512 

10 .8893734502 .7299754730 . 6071 21 21 70 .5161492549 

11 .9324600272 . 781 41 89640 .6557400632 .5600946075 

12 .9653052353 . 8281 611 434 . 701 91 58560 .6026454751 

13 .9874534484 ·. 8698387172 .7454113354 . 6436423292 

1 4 .9986028063 .9061384320 .7860134100 .6829407994 

15 .9367937971 . 82 3 52 981 9 9 . 7204086053 

16 .9615834753 .8577872559 .7559237273 

17 .9803305737 .8886303256 . 7893733105 

18 .9929025047 .9159210180 .8206530136 

19 .9992104554 .9395384658 .8496666345 

20 .9593788799 .8763259117 

21 .9753555792 .9005504353 

22 . 9873990671 .9222676287 

23 .9954571203 . 9414127718 

24 .9994948719 . 9579290493 

25 . 9717676094 

26 . 9828876265 

27 .9912563603 

28 .9968492070 

29 .9996546785 

x1 0.001785 0.000883 0.00585 0.000436 0.000348 0.000289 

x2 0.277378 0.140719 0.093330 0.069693 0.055577 0.046205 

x3 0.692432 0.376230 0.252599 0.189424 0.151350 0.125960 

- ·---------------------------~ 
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TABLE II. 25 

,, 
SIDELOBE RATIO 50 dB 

2N 10 20 30 40 50 60 

1 . 7716448891 .4395793961 .2982654005 .2243869725 . 17951 41 074 . 14951 40925 

2 .8454922438 .4977262129 .3397644630 .2561405067 .2051553589 .1709630666 

3 .9356551937 .5876470903 .4059265422 . 3073065286 . 2466068503 .2057166696 

4 .9923900282 .6864675848 .4825580320 .3675330645 .2957469719 .2470719768 

5 • 7809357353 .5618660869 .4313186778 .3483128442 .2915424039 

6 .8633218353 .6395681053 .4957762040 . 4021281 431 .3373778202 

7 . 9287383351 .7130211407 .5592158059 .4559667438 .3836171647 

8 .9739877572 .7803996481 .6205201253 .5090512699 .4296703344 

9 .9970901077 .8403407323 .6788719996 .5608339342 .4751352548 

10 .8917838716 . 7336290561 .6108949795 .5197129094 

11 .9338949706 .7842623446 .6588924339 .5631651204 

12 .9660291434 .8303247462 .7045357806 .6052922628 

13 .9877121936 .8714340960 .7475715006 .6459208865 

14 .9986314558 .9072639633 .7877748522 .6848965544 

15 .9375385775 .8249450826 .7220795641 

16 .9620300635 . 8589026056 . 7573423330 

17 .9805569776 .8894873392 .7905677772 

18 .9929836360 .9165577444 .8216483018 

19 .9992194559 . 9399902903 . 8504851 781 

20 . 9596791805 .8769881660 

21 .9755362804 .9010752983 

22 .9874908646 .9226727678 

23 .9954900795 .9417148814 

24 .9994985292 .9581440560 

25 .9719108390 

26 .9829739413 

27 .9913002746 

28 .9968649869 

29 .9996514922 

x1 0.000594 0.000297 0.000197 0.000147 0.000118 0.000098 

x2 0.290658 0.150673 0.100423 0.075093 0.059922 0.049835 

x3 0.760336 0.431346 0.292456 0.219920 0.175943 0.146530 
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TABLE II. 26 

SIDE LOBE RATIO 60 dB 

2N 1 0 20 30 40 50 60 

1 .8244456411 .4886813327 .3349917537 .2530892907 .2029552205 . 169195821 7 

2 .8792505737 .5378099495 .3707898785 . 2806857421 .2252479684 • 1879034976 

3 .9488962741 . 61 69062331 .4302034213 .3269374400 .2628332247 .2194680022 

4 . 9939046608 .7065528128 . 5011 763301 .3830945570 .3087961552 .2582147975 

5 • 79390131 64 .5760591720 . 4437356297 .3589285730 .3006988941 

6 . 8709548351 .6503004469 .5057525153 .4108714530 .3450155809 

7 .9325604350 .7210116337 . 5672573004 .4632362118 .3900669322 

8 .9753478212 .7861970190 .6269942984 .5151318578 . 4351 6711 69 

9 .9972403912 .8443824639 .6840541656 .5659345020 .4798498287 

10 . 8944354481 . 7377330549 .6151732168 .5237727325 

11 .9354752645 .7874604483 . 662471 0280 .5666678924 

12 .9668269863 .8327606607 .7075129910 .6083147967 

1 3 .9879975768 .8732316082 .7500282072 .6485250250 

1 4 .9986630533 .9085328166 .7897793543 .6871332032 

15 . 9383785549 . 8265564374 .7239915014 

16 .9625338932 .8601729980 .7589662065 

17 .9808124578 .8904637966 .7919355509 

18 .9930751785 . 9172833984 . 8227883228 

1 9 .9992339880 .9405053230 .8514229742 

20 .9600215465 .8777470527 

21 .9757422232 .9016768449 

22 .9875955427 . 9231 371 61 8 

23 .9955276654 .9420612157 

24 .9995027000 .9583905592 

25 .9720750624 

26 • 98307291 33 

27 .9913506306 

28 .9968830952 

29 .9996535010 

x1 0.000188 0.000102 0.000067 0.000050 0.000040 0.000033 

x2 0.301159 0.159259 0. 106691 0.079958 0.063870 0.053148 

x3 0.816273 0.481903 0.330108 0.249338 0.199890 0.166660 
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TABLES II. 27 II. 34 

Tables Of Space Factor Zeros For Zolotarev Polynomial Arrays 

With d > 0.5 A, For the Range of Sidelobe Ratios 

And Array Sizes Indicated 
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TABLE II. 27 

SIDELOBE RATIO 15 dB 

2N 10 20 30 40 50 60 

ljJ1 1. 03447315 0.49783332 0.32702397 0.24338654 0.19379341 0.16098164 

lji2 1.54263569 0.74273744 0.48790742 0.36312400 0. 28913281 0.24017879 

lji3 2.16478947 1.04325915 0.68534449 0.51006854 0.40613598 0.33737188 

ljJ4 2.81396854 1.35822306 0.89229796 0.66409892 0.52878182 0.43925247 

ljJ5 1. 67881913 1. 10299314 0.82091852 0.65364947 0.54297894 

lji6 2.00213550 1 . 31 553282 0.97911670 0.77961596 0.64761854 

lji1 2.32691654 1.52911225 1.13809605 0.90620587 0.75277642 

1J!8 2.65251113 1. 74333053 1.29755994 1. 0331 8333 0.85825671 

lji9 2.97852256 1. 95796426 1. 4573441 8 1.16041791 0.96395115 

ljJ1 0 2.17287782 1. 61 735028 1. 28783156 1.06979500 

ljJ11 2.38798275 1 . 77751 541 1. 41537467 1.17574714 

ljJ1 2 2.60321749 1.93779741 1 . 54 301 41 3 1.28178018 

ljJ13 2.81853618 2.09816676 1. 67072698 1. 38787515 

ljJ1 4 3.03390208 2.25860201 1. 79849675 1. 49401 850 

ljJ1 5 2.41908696 1. 92631126 1. 60020027 

ljJ1 6 2.57960896 2.05416131 1. 70641297 

ljJ17 2.74015777 2.18203974 1 . 81265082 

ljJ1 8 2.90072473 2.30994088 1. 91890934 

ljJ1 9 3.06130219 2.43786013 2.02518492 

1J!2o 2.56579366 2.13147465 

ljJ21 2.69373823 2.23777615 

lji22 2.82169101 2.34408742 

lji23 2.94964945 2.45040677 

ljJ24 3.07772899 2.55673274 

ljJ25 2.66306405 

ljJ26 2.76939956 

lji21 2.87573824 

ljJ28 2.98207913 

lji29 3.08856200 
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TABLE II. 28 

SIDELOBE RATIO 20 dB 

2N 10 20 30 40 50 60 

1/!1 1.14829677 0.55671134 0.36625185 0. 27272481 0.21720594 0.18045356 

1/!2 1. 60447075 0.77835527 0.51200460 0.38123684 0.30361985 0.25224200 

1/!3 2.19577924 1.06662007 0.70161707 0.52241263 0.41604919 0.34564429 

1/!4 2.82351178 1. 37462616 0.90426540 0.67330175 0.53621608 0.44547545 

1/!5 1.69062012 1.11223316 0.82815927 0.65954515 0.54793426 

1/!6 2.01052781 1. 32286168 0.98500708 0.78446123 0.65171211 

1/!7 2.33255724 1. 53500091 1. 14299088 0.91028425 0.75624408 

1/!8 2.65578746 1. 7480721 6 1 . 301 68225 1. 0366734 0.86124713 

1/!9 2.97958904 1 . 961 751 03 1.46084259 1.1634391 0.96656390 

1/!1 0 2.17583982 1. 62032830 1. 29046761 1. 07209992 

1/!11 2.39020930 1.78004751 1.41768624 1 . 1 7779504 

1/!1 2 2.60476929 1. 93993847 1.54504653 1.28360913 

1/!13 2.81945255 2.09995789 1. 67251479 1. 38951 437 

1/!1 4 3.03420515 2.26007424 1. 80006682 1. 49549083 

1/!1 5 2.42026374 1. 92768475 1 . 601 52388 

1/!1 6 2.58050779 2.05535502 1. 70760249 

1/!17 2.74079130 2.18306710 1.81371819 

1/!1 8 2.90110277 2.31081266 1.91986434 

1/!1 9 3.06142726 2.43858490 2.02603564 

1/!20 2.56637820 2.13222782 

1/!21 2.69418777 2.23843736 

1/!22 2.82200943 2.34466130 

1/!23 2.94983945 2.45089715 

1/!24 3.07767438 2.55714277 

1/!25 2.66339627 

1/!26 2.76965596 

1/!27 2.87592208 

1/!28 2.98218829 

1/!29 3.08845755 
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TABLE II. 29 

SIDELOBE RATIO 25 dB 

2N 10 20 30 40 50 60 

1j!1 1.26168407 0.61603219 0. 40517733 0.30169354 0.24027255 0.19961522 

1j!2 1 . 671 341 95 0.81725124 0.53790116 0.40060139 0.31907210 0.26509301 

1j!3 2.23016003 1. 09280090 0.71955897 0.53595128 0.42689603 0.35468439 

1j!4 2.83417961 1. 3931 8558 0.91758619 0.68349096 0.54442757 0.45234031 

1j!5 1. 70403091 1. 12256338 0.83621135 0.66608582 0.55342469 

1j!6 2.02008672 1. 33107468 0.99157305 0.78984934 0.65625849 

1j!7 2.33899023 1 . 541 60928 1. 14845489 0.91482602 0. 76010081 

w8 2.65948818 1.75339809 1. 30628812 1. 04056361 0.86457615 

$9 2.98080654 1. 96600697 1. 46475382 1. 16680887 0.96947431 

$10 2.17917018 1. 62365921 1.29340904 1.07466859 

$11 2.39271344 1. 78288057 1.42026644 1.18007804 

$12 2.60651488 1.94233458 1.54731568 1.28564857 

1j!1 3 2.82048347 2.10196273 1.67451123 1 . 391 34258 

$14 3.03454613 2.26172236 1.80182039 1. 4971 331 6 

$15 2.42158125 1. 92921893 1 . 60300050 

$16 2.58151418 2.05668852 1. 70892966 

w17 2.74150068 2.18421487 1.81490916 

$18 2.90152348 2.31178666 1. 92093000 

1j!1 9 3.06156730 2.43940371 2.02698500 

$20 2.56703133 2.13306836 

$21 2.69469007 2.23917528 

$22 2.82236524 2.34530178 

$23 2.95005177 2.45146228 

$24 3.07774496 2.55760042 

$25 2.66376707 

$26 2.76994216 

$27 2.87612359 

$28 2.98230947 

1j!2 9 3.08849797 
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TABLE II. 30 

SIDE LOBE RATIO 30 dB 

2N 10 20 30 40 50 60 

ljJ1 1.36936736 0.67609602 0.44630972 0.33262770 0.26499899 0.22019788 

ljJ2 1. 7391662 0.85928893 0.56710875 0.42266966 0.33674823 0.27982310 

ljJ3 2.2659402 1.121 8584 0.74033956 0.55179464 0.43963673 0.36532402 

ljJ4 2.8453731 1. 41400427 0.93317999 0.69554236 0.55417591 0.46050613 

lJ!s 1 .. 7191499 1.13471826 0.84578380 0.67389034 0.55998899 

ljJ6 2.0308919 1.34076542 0.99940072 0.79629667 0.66170937 

ljJ7 2.34627283 1.54941977 1. 15497991 0.92026986 0.76473270 

¢8 2.66370140 1. 75969961 1.31179441 1. 045231 63 0.86857868 

ljJ9 2.98218647 1.97104612 1. 46943318 1.17085541 0.97297620 

ljJ1 0 2.18311534 1. 62764638 1.29694315 1. 07776095 

lji11 2.39568085 1. 78627312 1. 42336777 1. 18282760 

ljJ12 2.60858386 1. 94520472 1.55004395 1.28810552 

ljJ13 2.82170555 2.10436472 1.67691218 1.39354559 

ljJ1 4 3.03495036 2.26369728 1. 80392963 1. 49911256 

ljJ15 2.42316019 1. 93106456 1. 60478044 

ljJ16 2. 58272038 2.05829290 1. 71052964 

ljJ17 2.74235096 2. 1 8559591 1. 81 634509 

ljJ1 8 2.90202973 2.31295871 1 . 92221 495 

ljJ19 3.06189665 2.44036920 2.02812979 

lJ!2o 2.56781735 2.13408197 

ljJ21 2.69529459 2.24006520 

ljJ22 2.82279347 2.3460.7422 

ljJ23 2.95030730 2.45210456 

ljJ24 3.07808026 2.55815238 

1jJ25 2.66421431 

ljJ26 2. 77028734 

1jJ27 2.87636875 

ljJ28 2.98245601 

ljJ29 3.08854672 
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TABLE II. 31 

SIDELOBE RATIO 35 dB 

2N 10 20 30 40 50 60 

1jJ1 1. 47717996 0.73602450 0.48636411 0.36278000 0.28908795 0.24026449 

1jJ2 1.81076920 0.90350292 0.59709502 0.44530660 0.35490495 0.29496488 

1jJ3 2.30467953 1.15323300 0.76224301 0.56847982 0.45307305 0.37655290 

1jJ4 2.85759795 1.43674107 0.94980638 0.70838095 0.56457547 0.46922393 

1jJ5 1.73575437 1.14775207 0.85603996 0.68226397 0~56703721 

1jJ6 2.04279461 1.35118993 1. 00781430 0.80323629 0.66758085 

1jJ7 2.35430874 1. 55783784 1.16200703 0.92614086 0.76973177 

1jJ8 2.66835480 1.76649974 1.31773195 1.05027235 0. 87290403 

1jJ9 2.98371120 1. 97648849 1. 47448341 1.17522887 0.97676388 

1jJ10 2.18737860 1. 63195223 1. 3007651 9 1.08110780 

1jJ11 2.39888877 1. 78993846 1. 42672333 1. 18580481 

1jJ12 2.61082113 1.94830668 1.55299690 1.29076685 

1jJ1 3 2.82302724 2.10696137 1.67951155 1. 39593251 

1jJ1 4 3.03538757 2.26583267 1. 80621 366 1.50125766 

1jJ1 5 2.42486768 1. 93306347 1 . 60670972 

1jJ1 6 2.58402491 2.06003076 1 . 71 226411 

1jJ1 7 2.74327063 2. 1 8709201 1. 81 790189 

1jJ1 8 2.90257631 2.31422851 1. 92360820 

1jJ1 9 3.06212263 2.44142507 2.02937117 

1jJ20 2.56866903 2.13518118 

1jJ21 2.69594964 2.24103032 

1jJ22 2.82325797 2.34691196 

1jJ23 2.95058420 2.45282049 

1jJ24 3.07792195 2.55875105 

1jJ25 2.66469940 

1jJ26 2.77066175 

1jJ27 2.87663467 

1jJ28 2.98~61496 

1jJ2 9 3.08878226 
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TABLE II. 32 

SIDELOBE RATIO 40 dB 

2N 1 0 20 30 40 50 60 

ljl1 1.57382113 0.79374506 0.52550241 0.39217347 0.31265529 0.25989465 

ljl2 1. 87770822 0.94791040 0.62763767 0.46839583 0.37342064 0.31040450 
-

lji3 2.34175711 1.18553280 0.78510626 0.58592002 0.46711443 0.38828625 

ljl4 2.86940039 1.46042293 0.96736435 0.72195737 0.57557038 0.47843987 

ljl5 1.75315166 1. 161 59882 0.86695074 0.69117022 0.57453298 

ljl6 2.05530619 1.36230232 1 . 01 679550 0.81064259 0.67384653 

ljl7 2.36277147 1.56683007 1. 16952405 0. 93241991 0.77507776 

lji8 2.67326040 1.77377346 1.32409220 1.05567093 0.87753600 

lji9 2.98531932 1. 98231 51 7 1.47989832 1 . 1 7991 732 0.98082395 

ljl1 0 2.19194575 1. 63657212 1.30486532 1. 08469782 

ljl11 2.40232682 1. 79387309 1.43032487 1 . 1 8899999 

ljl12 2. 61321958 1. 95163777 1. 55616754 1.29362413 

ljl1 3 2.82444441 2.10975060 1. 68230337 1. 39849596 

ljl1 4 3.03585641 2.26812691 1. 80866737 1. 503561 95 

ljl1 5 2.42670247 1. 935211 28 1. 60878257 

ljl1 6 2.58542686 2.06189834 1 . 71 41 2795 

ljl17 2.74425906 2.18869997 1. 81957503 

ljl18 2.90316602 2.31559339 1. 9251 0572 

ljl1 9 3.06211191 2.44256007 2.03070556 

ljl20 2.56958460 2.13636284 

ljl21 2.69665386 2.24206790 

ljl22 2.82375639 2.34781265 

ljl23 2.95088191 2.45359024 

ljl24 3.07802092 2.55939475 

ljl25 2.66522099 

ljl26 2.77106434 

ljl27 2.87692060 

ljl28 2.98278587 

ljl29 3.08903096 
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TABLE II. 33 

SIDELOBE RATIO 50 dB 

2N 10 20 30 40 50 60 

1/!1 1. 76284639 0.91026069 0.60574963 0.45262784 0.36098502 0.30015364 

1/!2 2.01497264 1.04195043 0.69333290 0.51805477 0.41324487 0.34361408 
-

1/!3 2.42022207 1. 25629552 0.83598485 0. 62472259 0.49835480 0.41439196 

1/!4 2.89469764 1. 51 324004 1.00714590 0.75271007 0.60047475 0.49931476 

1/!5 1. 79232505 1.19327981 0.89190778 0.71154126 0.59167778 

1/!6 2.08363094 1. 38787261 1. 03745676 0.82768004 0.68826001 

1/!7 2.38199013 1. 58759541 1 • 1 868791 4 0.94691629 0.78741991 

1/!8 2.68442043 1. 79060942 1.33881158 1. 0681 6439 0.88825532 

1/!9 2.98898060 1. 99582301 1. 49245058 1. 19078542 0.9902'3547 

1/!10 2.20254514 1. 64729409 1. 31 4381 06 1 . 09302975 

1/!11 2.41031180 1. 80301257 1 • 43869089 1.19642218 

1/!1 2 2.61879284 1. 9593803 1. 56353759 1. 30026595 

1/!13 2.82773849 2.1162368 1. 68879627 1. 40445791 

1/!1 4 3.03694633 2.2734640 1. 81 437627 1. 50892343 

1/!1 5 2.4309720 1. 94021 006 1. 61 360719 

1/!1 6 2.5886898 2.06624607 1. 71 846726 

1/!17 2.7465599 2.19244409 1. 82347123 

1/!1 8 2.9045342 2. 31877201 1. 92859360 

1/!1 9 3.0625662 2.44520369 2.03381400 

1/!20 2. 571 71735 2.13911584 

1/!21 2.6982948 2.24448547 

1/!22 2.8249186 2.34991145 

1/!23 2.9515755 2.45538405 

1/!24 3.0782515 2.56089490 

1/!25 2.66643663 

1/!26 2.77200267 

1/!27 2.87758706 

1/!28 2. 98318425 

1/!29 3.08878901 
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TABLE II. 34 

SIDELOBE RATIO 60 dB 

2N 1 0 20 30 40 50 60 

1)J1 1.93844393 1.02115536 0.68319295 0.51174436 0.40875002 0.34002733 

1)J2 2.14857334 1.13567445 0.75971876 0.56901699 0.45439507 0.37805437 

1)!3 2.49943988 1.32961142 0.88943620 0.66612220 0.53191500 0.44253828 

1)J4 2.92065752 1.56923008 1 • 04991 523 0.78628824 0.62785414 0.52234775 

1)J5 1.83439707 1.22779865 0.91952577 0. 73423944 0.61085075 

1)J6 2.11428444 1.41595972 1 . 06050808 0.84681943 0.70451077 

1)J7 2.40288288 1. 61 052232 1.20634328 0. 96328673 0.80140856 

W8 2.69658354 1. 809261 49 1. 35537780 1. 08232296 0.90044776 

1)J9 2.99297558 2.01082288 1. 50661247 1. 2031 3259 1.00096707 

1)!10 2.21433436 1.65941238 1. 325211 31 1.10254755 

1)!11 2.41920308 1. 81 335575 1.44822537 1. 20491224 

1)!12 2.62500336 1.96815117 1. 57194559 1.30787124 

1)!13 2.83141193 2.12359002 1.69620945 1.41129023 

1)J1 4 3.03816172 2.27951793 1.82089839 1.51507156 

1)J1 5 2.43581692 1. 94592374 1. 6191 4254 

1)J1 6 2.59239378 2.07121757 1.72344790 

1)!17 2. 74917228 2.19672673 1. 82794481 

1)J1 8 2.90608760 2.32240875 1. 93259950 

1)!19 3.06330550 2.44822893 2.03738492 

1)!20 2.57415835 2.14227906 

1)!21 2.70017231 2.24726374 

1)!22 2.82624919 2. 35232371 

1)!23 2.95236956 2.45744602 

1)!24 3.07851548 2.56261946 

1)!25 2.66783422 

1)!26 2.77308151 

1)!27 2.87835334 

1)!28 2.98364265 

1)!29 3.08894142 
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