UNDERSTANDING THE INTERPLAY BETWEEN HIV-1 DIVERSITY, HUMORAL IMMUNE RESPONSES AND VIRAL FITNESS

GAMA PETULO BANDAWE

This dissertation is submitted in fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY in the Division of Medical Virology, Department of Clinical And Laboratory Sciences in the Faculty of Health Sciences at the University Of Cape Town

Supervisor: Professor Carolyn Williamson
Co-supervisor: Professor Lynn Morris

FEBRUARY 2014
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
Yo, we the reflection of our ancestors We'd like to thank you for the building blocks you left us Cause your spirit possessed us Yo, you blessed us. Thank you very much

Talib Kweli, Reflection Eternal

Instead, test everything. Hold on to what is good

1 Thessalonians 5:21

Galu wamkota sakandira pachabe

Chichewa proverb
CONTENTS

CONTENTS...i
ABSTRACT...v
ABBREVIATIONS..vii
DECLARATION..x
ACKNOWLEDGEMENTS ...xi
Chapter 1: Introduction and literature review ..1
 1.1 Introduction...1
 1.2 Diversity and Global Distribution of HIV ..3
 1.3 HIV envelope structure and function ..6
 1.3.1 HIV Genome ...6
 1.3.2 Gp120 ..7
 1.3.3 Gp41 ..12
 1.4 Transmission and acute infection ..14
 1.4.1 Mucosal transmission ..14
 1.4.2 Characteristics of transmitted viruses ..15
 1.5 Responses to HIV infection ...17
 1.5.1 Cytotoxic T-lymphocyte (CTL) immune responses ...17
 1.5.2 Humoral responses to HIV-1 infection ...20
 1.5.3 Antibody responses and HIV-1 subtype ..22
 1.5.4 Broadly cross-neutralizing antibodies ...23
 1.6 Antibody Dependent Cell-Mediated Cytotoxicity ..26
 1.6.1 ADCC ...26
 1.6.2 ADCC in primates, humans and vaccines ..27
 1.6.3 Measurement of ADCC ...28
 1.6.4 ADCC Epitopes and escape from ADCC ..30
 1.7 Fitness and selection in viral evolution ..33
 1.8 Study rationale ..35
Chapter 2: Differences in HIV-1 Neutralization Breadth in Two Geographically Distinct Cohorts in Africa ...37
ABSTRACT ...38
 2.1 Introduction ..39
 2.2 Materials and Methods ...40
 2.2.1 Ethics statement ...40
 2.2.2 Participants ...41
 2.2.3 Estimation of duration of infection ...41
2.2.4 RT-PCR amplification and sequencing ...42
2.2.5 Characterization of infecting virus ..42
2.2.6 Panel viral isolates ...43
2.2.7 Cloning of envelope genes and neutralization assays43
2.2.8 Mapping of HISIS_605 plasma specificity ...44
2.2.9 Calculation of breadth and potency scores ...44
2.2.10 Statistical analyses ..45

2.3 Results ..45
2.3.1 Characteristics of the two cohorts and their infecting viruses45
2.3.2 HISIS participants had greater neutralization breadth and potency46
2.3.3 Preferential recognition of subtype C viruses by HISIS participants46
2.3.4 Early viral loads were strong predictors of breadth at 2 years in both cohorts 48
2.3.5 HISIS cohort had higher viral loads ..49
2.3.6 Viral characteristics and development of neutralization breadth50
2.3.7 Development of autologous neutralizing antibody responses51
2.3.8 Development of neutralizing antibody breadth in HISIS_60552
2.3.9 Specificity of neutralizing antibody response in HISIS_60552

2.4 Discussion ..54

Chapter 3: Neutralizing Antibody Escape Pathways Constrained by Antibody-Dependent Cellular Cytotoxicity (ADCC) Responses56

Abstract ...56
3.1 Introduction ...58
3.2 Materials and methods ...59
3.2.1 Study participant samples ..59
3.2.2 Single genome amplification and sequencing59
3.2.3 Sequence analysis ..60
3.2.4 Identification of sites under positive selection pressure in CAP6360
3.2.5 Cloning and generation of pseudoviruses ...60
3.2.6 Cell lines ...61
3.2.7 HIV-1 env pseudovirus production and titration61
3.2.8 Neutralizing antibody assays ...61
3.2.9 Construction of infectious molecular clones (IMCs)62
3.2.10 Mutagenesis of envelope and infectious molecular clones62
3.2.11 Generation of virus stocks from infectious molecular clones62
3.2.12 Titration of virus stocks from infectious molecular clones62
3.2.13 Infection of CEM.NKRCCR5 Cell Line with HIV-1 IMC63
3.2.14 Intracellular p24 staining of infected CEM NKR CCR5 cells63
Chapter 4: The effects of early evolution on viral fitness

Abstract .. 84

4.1 Introduction .. 85

4.2 Materials and methods .. 85
4.2.1 Mutagenesis of cloned envelopes .. 85
4.2.2 Cell-cell fusion assay .. 85
4.2.3 Titration of viral stocks for entry and replication assays by beta gal staining .. 86
4.2.4 Replication assay ... 87
4.2.5 p24 ELISA .. 87

4.3 Results .. 88
4.3.1 Viruses from CAP63 show reduced fusion capacity within 11 weeks relative to the T/F virus .. 88
4.3.2 Deletions in V4 contribute to reduced fusion capacity in CAP63 89
4.3.4 Point mutations in the gp41 are preferentially fixed outside the LLP domains and have no effect on fusion capacity .. 90
4.3.5 Mutations in the V4 region of CAP63 result in reduced infectivity of virus stock .. 91
4.3.6 Adaptations in the V4 region of CAP63 affect viral replicative capacity in PBMC .. 92

4.4 Discussion .. 94

Chapter 5: Conclusions .. 96

APPENDICES ... 98

Appendix A: Standard RNA and DNA techniques .. 99
Appendix B: Reagents and buffers ... 102
Appendix C: Viral load data.. 103
Appendix D: Neutralization assay data ... 104
Appendix E: HIV-1 subtype C envelope, full length and sequencing primers 105
Appendix F: Mutagenesis primers ... 107
Appendix G: Titration of IMC virus stocks for infection of CEM NKR_{CCR5} cells 108
Appendix H: Determination of the optimal length of infection for target cells with IMCs .. 110
Appendix I: Cell-cell fusion capacity of CAPRISA envelopes from acute and chronic infection 111
Appendix J: Replication assay slope calculations .. 112
REFERENCES.. 113
ABSTRACT

HIV-1 antibody dependent cell cytotoxicity (ADCC) and neutralizing antibody (nAb) responses are both thought to be important responses to elicit through vaccination. This thesis characterises neutralizing response in two cohorts in Africa, and in a detailed study of one individual, elucidates the interplay between ADCC and nAb responses in early infection, and the impact of humoral escape on viral fitness.

It remains an open question whether different geographically distinct population groups vary in their neutralization responses to HIV-1. We compared neutralizing antibody responses in two African cohorts and found 35% of the Tanzanians in the HIV Superinfection Study (HISIS) cohort had neutralization breadth (neutralized >50% of panel viruses) at two years post infection compared to only 9% in the Centres for AIDS Program of Research in South Africa (CAPRISA) cohort. Cumulative viral loads between 3 and 12 months post infection were strongly associated with neutralization breadth (p<0.001), and were higher in the Tanzanian cohort (p=0.046). No association was found between breadth and dual infection, subtype or features of the envelope. One elite neutralizer was identified in the HISIS cohort with responses targeting the CD4 binding site.

While neutralizing antibodies are considered central for protection from infection, ADCC activity correlated with reduced risk of HIV-1 acquisition in the RV144 trial. There is limited understanding of the overlapping ADCC and neutralizing antibody functions in early infection. We investigated the kinetics and targets of both responses in one individual from CAPRISA. ADCC responses were detected 4 weeks post infection, with nAbs responses emerging at 7 weeks post infection. We identified five neutralization escape patterns in the V4 region of the envelope by 11 weeks post-infection. Four of these also conferred ADCC escape; however the fifth neutralization escape variant resulted in increased sensitivity to ADCC. This variant was eliminated in vivo by 29 weeks post infection.

Finally, we studied the effect of neutralizing and ADCC antibody escape mutations on the virus’ ability to mediate fusion, infectivity and replicative fitness. Envelopes bearing immune escape adaptations had lower cell-cell fusion ability compared to the T/F virus. The mutations also resulted in reduced infectivity of infectious molecular clone virus stocks. However, only
the largest deletion in the V4 caused reduced growth in peripheral blood mononuclear cells (PBMC).

In conclusion, the study finds that neutralizing antibody responses are influenced by community viral loads. The study defined the first ADCC epitope reported in the V4 region, and describes overlapping targets for ADCC and neutralizing antibodies. Where neutralization escape resulted in increased ADCC sensitivity, this was a dead end escape pathway. Finally we find that early V4 escape from both ADCC and nAb responses had a fitness impact on the virus. We thus demonstrate a mechanism through which ADCC and neutralizing antibodies can synergistically influence viral evolution and potentially produce a protective immune response.
This study has resulted in the following publication:

(* These two authors contributed equally to this work)

The remainder of the work herein is currently in preparation for publication in the form of two manuscripts, one encompassing chapter 2 and the other comprising chapters 3 and 4.

ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>aa</td>
<td>amino acid</td>
</tr>
<tr>
<td>ADCC</td>
<td>antibody-dependent cellular cytotoxicity</td>
</tr>
<tr>
<td>AIDS</td>
<td>acquired immune deficiency syndrome</td>
</tr>
<tr>
<td>AUC</td>
<td>area under the curve</td>
</tr>
<tr>
<td>bp</td>
<td>base pair(s)</td>
</tr>
<tr>
<td>°C</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>CAPRISA</td>
<td>Centre for the AIDS Programme of Research in South Africa</td>
</tr>
<tr>
<td>CCR5</td>
<td>chemokine receptor 5</td>
</tr>
<tr>
<td>cDNA</td>
<td>copy DNA</td>
</tr>
<tr>
<td>CRF</td>
<td>circulating recombinant form</td>
</tr>
<tr>
<td>CRFs</td>
<td>circulating recombinant forms</td>
</tr>
<tr>
<td>CTL</td>
<td>cytotoxic T lymphocytes</td>
</tr>
<tr>
<td>CXCR4</td>
<td>CXC chemokine receptor</td>
</tr>
<tr>
<td>DEAE</td>
<td>diethylaminoethyl</td>
</tr>
<tr>
<td>dH₂O</td>
<td>distilled water</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulphoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>dN</td>
<td>number of non-synonymous substitutions</td>
</tr>
<tr>
<td>dS</td>
<td>number of synonymous substitutions</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>ds</td>
<td>double stranded</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediamine tetraacetic acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>Env</td>
<td>envelope</td>
</tr>
<tr>
<td>Gp120</td>
<td>120kDa envelope glycoprotein</td>
</tr>
<tr>
<td>Gp41</td>
<td>41kDa envelope glycoprotein</td>
</tr>
<tr>
<td>HEK</td>
<td>human embryonic kidney</td>
</tr>
<tr>
<td>HIV</td>
<td>human immunodeficiency virus</td>
</tr>
<tr>
<td>HLA</td>
<td>human leukocyte antigen</td>
</tr>
<tr>
<td>HTA</td>
<td>heteroduplex tracking assay</td>
</tr>
<tr>
<td>IFN</td>
<td>interferon</td>
</tr>
<tr>
<td>IL</td>
<td>interleukin</td>
</tr>
<tr>
<td>IMC</td>
<td>infectious molecular clone</td>
</tr>
<tr>
<td>kb</td>
<td>kilobases</td>
</tr>
<tr>
<td>kDa</td>
<td>kilodaltons</td>
</tr>
<tr>
<td>LB</td>
<td>Luria-Bertani broth</td>
</tr>
<tr>
<td>LLP</td>
<td>lentiviral lytic peptides</td>
</tr>
<tr>
<td>LTNP</td>
<td>long-term non-progressor</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>µg</td>
<td>micrograms</td>
</tr>
<tr>
<td>µL</td>
<td>microliters</td>
</tr>
<tr>
<td>mg</td>
<td>milligrams</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>magnesium chloride</td>
</tr>
<tr>
<td>MHA</td>
<td>multi-region hybridization assay</td>
</tr>
<tr>
<td>MHC</td>
<td>major histocompatibility complex</td>
</tr>
<tr>
<td>min</td>
<td>minutes</td>
</tr>
<tr>
<td>mL</td>
<td>millilitres</td>
</tr>
<tr>
<td>mM</td>
<td>millimolar</td>
</tr>
<tr>
<td>MPER</td>
<td>membrane proximal external region</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>NaOH</td>
<td>sodium hydroxide</td>
</tr>
<tr>
<td>NaCl</td>
<td>sodium chloride</td>
</tr>
<tr>
<td>ng</td>
<td>nanograms</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>NICD</td>
<td>National Institute for Communicable Diseases</td>
</tr>
<tr>
<td>NK cells</td>
<td>natural killer cells</td>
</tr>
<tr>
<td>NKR</td>
<td>natural killer cell resistant</td>
</tr>
<tr>
<td>PBMC</td>
<td>peripheral blood mononuclear cells</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>pH</td>
<td>hydrogen potential</td>
</tr>
<tr>
<td>PHA</td>
<td>phytohaemagglutinin</td>
</tr>
<tr>
<td>PNGs</td>
<td>N-linked glycosylation site</td>
</tr>
<tr>
<td>pol</td>
<td>polymerase</td>
</tr>
<tr>
<td>pVL</td>
<td>plasma viral load</td>
</tr>
<tr>
<td>RLU</td>
<td>relative luminescence units</td>
</tr>
<tr>
<td>RNase</td>
<td>ribonuclease</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>SGA</td>
<td>single genome amplification</td>
</tr>
<tr>
<td>SIV</td>
<td>simian immunodeficiency virus</td>
</tr>
<tr>
<td>ss</td>
<td>single stranded</td>
</tr>
<tr>
<td>Tat</td>
<td>transcriptional transactivator protein</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-acetic acid EDTA (Tris acetate)</td>
</tr>
<tr>
<td>T/F</td>
<td>transmitted/founder</td>
</tr>
<tr>
<td>TM</td>
<td>transmembrane</td>
</tr>
<tr>
<td>Tris</td>
<td>2-amino-2-(hydroxymethyl)-1,3-propandiol</td>
</tr>
<tr>
<td>UCT</td>
<td>University of Cape Town</td>
</tr>
<tr>
<td>UNAIDS</td>
<td>Joint United Nations Programme on HIV/AIDS</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>V</td>
<td>volts</td>
</tr>
<tr>
<td>Vpu</td>
<td>viral protein u</td>
</tr>
<tr>
<td>Vpr</td>
<td>viral protein r</td>
</tr>
<tr>
<td>VL</td>
<td>viral load</td>
</tr>
<tr>
<td>YT</td>
<td>yeast-tryptone</td>
</tr>
</tbody>
</table>
DECLARATION

The work presented in this thesis was done at the Division of Medical Virology, Institute for Infectious Disease and Molecular Medicine at the University of Cape Town (UCT) under the supervision of Professor Carolyn Williamson and that neither the whole work nor any part of it has been, is being or is to be submitted for another degree in this or any other university. This work is all original and my own. Where use has been made of work of others, their contribution has been acknowledged in the text.

I empower the university to reproduce for the purpose of research either the whole or any portion of the contents in any manner whatsoever.

Gama Petulo Bandawe
February 2014
ACKNOWLEDGEMENTS

I would like to extend my deepest gratitude to Professor Carolyn Williamson. I have learned and grown immeasurably under her guidance both as my employer and my supervisor. It has been a privilege and a blessing to come under the mentorship of someone as competent, accomplished and generous.

I am grateful to my co-supervisor Professor Lynn Morris for your helpful and candid input, advice and support. I wish to thank Dr Darren Martin for his assistance in reading the manuscript as well as his encouragement. I wish to thank Melissa-Rose Abrahams, Ruwayhida Thebus, Penny Moore, Daniel Sheward, Jinny Marais and Florette Treurnicht for their assistance with much of the lab and technical work. To Andile Nofemela, thank you for walking much of this path hand in hand with me.

I wish to thank Dr Guido Ferrari for allowing me to spend time in his laboratory. He was an amazingly kind and gracious host and left a lasting impression. My thanks also go to Dr Justin Pollara and Kaylan Whitaker for their assistance at Duke. I am grateful to Jenifer L Spencer as well as Hongmei Gao and Kelli Greene for their assistance.

To my mother Angelina Thandiwe Bandawe and my father Gamaliel Petro Bandawe, thank you for all that I am. Your greatest sacrifice was to put the education of your children first and I am here as a result of that. Thank you for having faith in my abilities and for allowing me to be my true self, always. Professor Chiwoza Bandawe, thanks for your presence and strength in my darkest hour. To Mayola Bandawe and Tapuwa Bandawe, thank you for the love and friendship only a brother can provide. To all my friends scattered across the world, I cannot thank you enough.

I would like to also thank the following groups and organizations without whom, this work would not have been possible. Participants from the Centre for AIDS Programme of Research (CAPRISA) Acute Infection Study, Participants from the HIV Superinfection (HISIS) Study in Mbeya Tanzania, The Poliomyelitis Research Foundation (PRF), The Bill and Melinda Gates Foundation, The Carnegie Corporation of New York, The Clinical Infectious Diseases Research Initiative (CIDRI), The Canada AIDS Prevention Trials (CAPT) Network and the Columbia University-Southern Africa Fogarty AIDS Research Training Programme.
Last but not least, thank you to Linda Malilo my fiancée, best friend and partner for life. This is ours.
Chapter 1: Introduction and literature review

1.1 Introduction

1.2 Diversity and Global Distribution of HIV

1.3 HIV envelope structure and function
 1.3.1 HIV Genome
 1.3.2 Gp120
 1.3.3 Gp41

1.4 Transmission and acute infection
 1.4.1 Mucosal transmission
 1.4.2 Characteristics of transmitted viruses

1.5 Responses to HIV infection
 1.5.1 Cytotoxic T-lymphocyte (CTL) immune responses
 1.5.2 Humoral responses to HIV-1 infection
 1.5.3 Antibody responses and HIV-1 subtype
 1.5.4 Broadly cross-neutralizing antibodies

1.6 Antibody Dependent Cell-Mediated Cytotoxicity
 1.6.1 ADCC
 1.6.2 ADCC in primates, humans and vaccines
 1.6.3 Measurement of ADCC
 1.6.4 ADCC Epitopes and escape from ADCC

1.7 Fitness and selection in viral evolution

1.8 Study rationale
1.1 Introduction

The human immunodeficiency virus (HIV) is the causative agent of acquired immunodeficiency syndrome (AIDS). Over 33 million people worldwide are infected and over 4 million new infections occur every year (UNAIDS, 2012). Although antiretroviral therapy is saving many lives, new infections are greatly outpacing the number of people able to be treated through current global efforts. There is a critical need for developing a vaccine to prevent new infections. The development of a safe and effective HIV vaccine poses one of the greatest medical and scientific challenges of the 21st century. Difficulties facing the search for a vaccine include the lack of correlates of protective immunity, the capacity of the virus to integrate its genome into cells of the immune system, and the unprecedented hyper-variability of HIV (Barouch & Korber, 2010). While cellular immune response may be important in protecting individuals from HIV infection and disease, most successful vaccines to date are thought to protect through induction of neutralizing antibodies (Girard & Plotkin, 2012). Due to the variability of HIV, a vaccine will need to induce broadly neutralizing antibodies (bNAbs) capable of blocking many different HIV subtypes. Recent correlates of risk analysis on the RV144 trial, the first HIV vaccine trial to show protection, have also suggested a role for non-neutralizing antibodies in preventing infection (Haynes, Gilbert, et al., 2012).

There currently are no candidates in the pipeline that elicit bNAbs against HIV, and the path towards the development of such a candidate appears to be a very long one. Neutralizing antibody responses have been well studied in subtype C infections from Southern Africa and in subtype B infections from the US and Europe. However, the development of bNAds in other regions with non-subtype B and non-subtype C infections have been understudied. The role of non-neutralizing antibodies in protection and viral control has also been highlighted by the abovementioned vaccine trial and in infection but little is known about how these responses affect viral evolution in natural infection. Understanding the very earliest responses associated with control of viral replication and looking at patterns of escape in the virus may provide further information on the role of neutralizing and non-neutralizing antibodies in viral evolution.
This study seeks to begin to address both of the abovementioned issues and in so doing, the first aim of this thesis is to compare the evolution of neutralizing antibody responses in an exclusively subtype C infected South African cohort with that of a Tanzanian cohort infected with multiple HIV subtypes and recombinants. The second aim is to investigate early humoral responses associated with changes in the viral envelope of a subtype C infected individual and investigate the role of both neutralizing and non-neutralizing antibody responses in driving HIV evolution in early infection. Finally, this study aims to assess the effect of changes induced by early humoral responses on viral fitness. Consequently, the study aims to investigate the interplay between HIV diversity, humoral immune responses and viral fitness as understanding how these factors affect viral evolution and development of antibody responses during the crucial early stages of infection following transmission is critical for informing vaccine design.

This review will provide a basic overview of HIV diversity, the structure and function of the envelope, early immune responses to HIV infection with emphasis on antibodies, and will also discuss some concepts relating to viral fitness.

1.2 Diversity and Global Distribution of HIV

The human immunodeficiency viruses (HIV) have diverse origins with HIV-1 thought to have been transmitted to humans from chimpanzees (Pan troglodytes troglodytes) found in central Equatorial Africa. HIV-2 came from sooty mangabey monkeys (Cercopithecus aethiops) from West Africa (Sharp & Hahn, 2010). There have been at least four zoonotic events involving HIV-1 resulting in groups M, N, O (from chimpanzees) and P (from gorillas) (Sharp & Hahn, 2010). HIV-1 group M has given rise to the AIDS pandemic that has infected around 60 million individuals to date (UNAIDS, 2012). It is estimated that the most recent common ancestor of HIV-1 group M was introduced into humans approximately 100 years ago as a founder infection in a single individual (Korber et al., 2001). It gave rise to the HIV-1 group M subtypes (also called clades) A1, A2, B, C, D, F1, G, H, J, and K. These subtypes subsequently gave rise to unique recombinant forms (URFs) as well as circulating recombinant forms (CRFs), some of which became established very early in the epidemic (e.g. CRF01_AE, CRF02_AG, CRF04_cpx; Figure 1.1; Sharp & Hahn, 2010).
Subtypes or clades are classified based on phylogenetic clustering such that the individual genes throughout the viral genome are more closely related to each other than sequences from other subtypes. Proteins expressed by HIV can vary by 5-25% within a single HIV clade and by 10-40% between different clades (HIV sequence compendium; Kiuken et al., 2010). In the viral envelope, sequences from the same subtype can have up to 30% genome diversity (Robertson et al., 2000). Full-length genome sequencing has highlighted the degree to which recombination contributes to subtype diversity globally. Like other retroviruses, HIV undergoes frequent genetic recombination when two strains infect the same host cell. This process has given rise to new epidemic viruses caused by CRFs which resemble subtypes but have hybrid or mosaic genomes whose origins are designated by two or more parental subtypes (Hemelaar et al., 2011).

A virus is termed a CRF if it can be identified in at least three epidemiologically unlinked individuals (McCutchan, 2006; Peeters, 2001; Robertson et al., 2000). At least 55 CRFs have been identified to date (Los Alamos National Laboratory HIV Sequence Database, 2013). They are identified by number in ascending order according to the time of discovery, followed by the letters of the parental subtypes. Where recombinant sequences from only a single individual is available, the virus is designated a unique recombinant form (URF;
Chapter 1: Introduction and Literature Review

Ragupathy et al., 2011; Robertson et al., 2000). When viruses are comprised of more than two subtypes, they are termed complex CRFs or URFs (CRF_{cpx} and URF_{cpx}). These recombinants are common in regions where multiple subtypes are circulating in the local epidemic such as West Central Africa and East Africa, the latter of which is the location of one of the cohorts studied in this thesis.

With the exception of Africa, which is home to every subtype, other parts of the globe show a very clear distribution of HIV-1 subtypes (Hemelaar et al., 2006; Hemelaar et al., 2011). These patterns are mainly attributed to founder effects with migration routes where a single virus is introduced and subsequently spread. This pattern is being increasingly changed by global travel and the mixing of different epidemics (Buonaguro et al., 2008; Perrin et al., 2003). The most prevalent subtypes in the world are subtypes A, B and C, with C alone being responsible for approximately 50% of global infections (Hemelaar, 2012); subtypes A and B account for approximately 12% and 11% of infections respectively (Figure 1.2). Subtype A is predominant in West, Central and East Africa (Kenya, Uganda, Tanzania, Rwanda and Burundi) as well as Eastern Europe (Bobkov et al., 2004). Subtype B is the main subtype in Western and Central Europe, North and South America, and Australia. Subtype B is also prevalent in Southeast Asia, North Africa and the Middle East. In South Africa during the late 1990s, subtype B was mainly found among men who have sex with men (MSM). This is changing where there is evidence that the MSM and heterosexual epidemics are mixing (Middelkop et al., 2013 submitted). Subtype C is predominant in southern Africa and India, which together are home to 80% of the epidemic (Hemelaar, 2012). Of the less prevalent subtypes, subtype G accounts for 5% of the global infections, while subtype D makes up about 2% and is found in Central and East Africa including in Tanzania. The remaining subtypes F, H, J and K together account for less than 1% of global infections (Figure 1.2).

Recombinant viruses have become increasingly prevalent in the global HIV-1 pandemic with CRFs accounting for 20% of infections worldwide (Hemelaar, 2012). Two CRFs, CRF01_AE and CRF02_AG, are predominant in Southeast Asia and West Central Africa respectively and account for about half of all global recombinant infections (Tebit & Arts, 2011). However, in regions where multiple subtypes circulate, 30% of infections are made up of unique recombinants (Peeters et al., 1999, reviewed by Tebit & Arts, 2011). The global distribution of CRFs is broadly stable. However, because recombination and mutation are features of the
virus, increased ease of global travel could maintain or increase the importance of recombinant viruses in the epidemic.

Figure 1.2: Global distribution of HIV-1 subtypes and recombinants. Pie charts represent the distribution of HIV-1 subtypes and recombinants from 2004 to 2007 in each region. The relative surface areas of the pie charts correspond to the relative numbers of people living with HIV in the regions. The colours representing the different HIV-1 subtypes and recombinants are indicated. The HIV-1 subtype distributions found around the world and within Central African countries are shown in the insets of the main figure, as indicated. Reproduced and adapted with permission from (Hemelaar et al., 2011).

1.3 HIV envelope structure and function

1.3.1 HIV Genome

The HIV genome is made of single-stranded RNA. It is approximately 9.8 kilobases long and is composed of nine genes that code for 15 proteins. There are three structural or enzyme polyproteins whose products are essential components of the viral particle: Gag, Env, and Pol. The Gag polyprotein is cleaved into p17, p24, p7 and p6. The Env polyprotein is further processed into gp120 and gp41. The Pol polyprotein is processed into four enzymes, namely
integrase, reverse transcriptase, protease and RNase-H. Two regulatory proteins (Tat and Rev) and four accessory proteins (Nef, Vif, Vpr and Vpu) (HIV sequence compendium 2008) are also encoded in the genome. The genome has two long terminal repeat units (LTR) at the unique 5’ (U5) and unique 3’ (U3) ends that have control elements required for transcription of the viral genome (el Kharroubi & Martin, 1996).

The env gene evolves at a particularly high rate (1–2% per year) at the population level (Korber et al. 2000). Consequently, env is highly genetically diverse, posing a significant challenge to vaccine development. The HIV envelope mediates viral tropism, determines viral fitness (Marozsan et al., 2005) and is targeted by humoral immune responses which include non-neutralizing and neutralizing antibodies. These humoral immune responses are important drivers of env evolution and are the main selective pressures analysed in this study.

1.3.2 Gp120

The surface of HIV contains Env spikes that engage the cellular receptors for entry into target cells. Each envelope spike consists of a trimer of gp160 proteins, which in turn makes a gp120 exterior subunit and a gp41 transmembrane unit (Wyatt & Sodroski, 1998). The gp120 subunit of the env gene has five variable domains (V1-V5) which are interspersed within five relatively constant domains (C1-C5, Fig. 1.3; Starcich et al., 1986; Willey et al., 1986).

About 18 highly conserved cysteine residues located throughout gp120 and gp41 form nine intramolecular disulfide bonds that are crucial to the formation of Env tertiary structure (Leonard et al., 1990) and its antigenicity (Gao et al., 1996; Jobes et al., 2006). Two disulphide bonds separate V1 from V2 and V3 from V4 (Leonard et al., 1990).

The envelope glycoprotein is a highly glycosylated protein with up to half of the molecular mass of gp120 composed of N-linked glycans (Allan et al., 1985), with a small additional contribution from O-linked sugars (Bernstein et al., 1994). A gp120 molecule has between 20 and 35 N-linked glycosylation sites, while gp41 has 3-5. Glycans serve several functions including masking Env from host immune recognition (Montefiori et al., 1988), contributing to Env folding (Li et al., 2008) and helping virions bind to the host cell surface (Raska & Novak, 2010).
Chapter 1: Introduction and Literature Review

Figure 1.3: Domains of HIV-1 Env. Precursor gp160 contains the signal peptide (SP), which is cleaved during translation. The remaining precursor is cleaved at the furin site into the surface subunit (gp120) and transmembrane subunit (gp41) in the Golgi complex. Subunit gp120 contains five variable domains (V1-V5) and five constant domains (C1-C5). Subunit gp41 consists of the fusion peptide (FP), heptad-repeats (HR1 and HR2), the membrane-proximal external region (MPER), a transmembrane domain (TMD), and a cytoplasmic tail (CT). An enlarged representation of the gp41 CT is shown to highlight several motifs: the internalization signal YSPL, the Kennedy sequence (KS), the amphipathic α-helices LLP-1, -2, -3, and a C-terminal dileucine motif (LL) involved in endocytosis and intracellular distribution of Env (Checkley et al., 2012).

The V1V2 domain is the most variable in loop length and number of glycosylation sites (Chohan et al., 2005; Kitrinos et al., 2003; Masciotra et al., 2002; Palmer et al., 1996; Sagar et al., 2006; Shioda et al., 1997). The V1V2 loop can range in length from 50 to 90 amino acids (aa), while the length variation of V4 and V5 loops ranges from 19 to 44 aa and 14 to 36 aa, respectively. Compared to V1V2, V4 and V5, the V3 loop and C2, C3, and C4 domains show relatively little length variation (Checkley et al., 2012).

HIV enters cells via the CD4 receptor (Figure 1.4 C; McDougal et al., 1986) and a co-receptor, usually CCR5 (Alkhatib et al., 1996) or CXCR4 (Doranz et al., 1996). The crucial CD4 receptor binding site (CD4bs) consists of a conserved pocket-like structure formed from conserved residues in discontinuous segments that are folded into proximity in the Env tertiary structure between the three gp120 units. It is flanked by variable loops and the chemokine co-receptor binding site for CXCR4 and/or CCR5 that is exposed and/or formed

8
after virus attachment to cells (Benjelloun et al., 2012). The conserved C1, C3 and C4 domains within gp120 are the principle Env determinants that bind CD4 (Lasky et al., 1987). CD4 is observed to directly contact 26 residues (Kwong et al., 1998) that are widely dispersed in gp120 (Cordonnier et al., 1989; Kowalski et al., 1987; Olshevsky et al., 1990). The exposed variable domains on the gp120 surface do not have a direct role in CD4 binding. The gp120 variants with deleted V1, V2, and V3 domains still bind to CD4 with high affinity (Pollard et al., 1992; Wyatt et al., 1993).

The V3 loop is important for membrane fusion (Freed et al., 1991) and co-receptor specificity (Cann et al., 1992; Chesebro et al., 1991; Hwanget al., 1991; O’Brien et al., 1990; Shioda et al., 1991). It also contains dominant epitopes recognized by neutralizing antibodies (Goudsmit et al., 1988; Matsushita et al., 1988; Palker et al., 1988; Rusche et al., 1988). Transmitted viruses almost always have the ability to utilize the CCR5 co-receptor (R5 viruses), however some viruses switch to using the CXCR4 co-receptor (X4). The switch from R5 to X4 tropism is driven by V3 mutations and has been linked to an increase in the net positive charge of V3, allowing an interaction with the negatively charged surface of CXCR4 (Fouchier et al., 1992; Pollakis et al., 2004; T Shioda et al., 1994).

The structure of gp120 has been solved largely though X-ray crystallography of the HIV-1 gp120 “core” (from which N- and C-termini and V1/V2 and V3 variable loops were deleted) either “unliganded” or in complex with various ligands or fragments such as CD4, V3 loop, various binding and neutralizing antibodies and the gp120-interacting portion of gp41 (Chen et al., 2005; Chen et al., 2009; Huang et al., 2005; Kwong et al., 1998; Mao et al., 2013; Pancera et al., 2010; Wu et al., 2010; Zhou et al., 2007). The overall fold of CD4-bound gp120 consists of an “inner” domain and an “outer” domain (based on their orientation in the trimeric complex) linked by a four-stranded “bridging sheet” (Fig. 4A, B; Kwong et al., 1998). A comparison of CD4-bound and unliganded gp120 structures suggests that gp120 undergoes a remarkable degree of refolding following CD4 binding. This large CD4-induced conformational change results in the formation of the coreceptor binding surface from residues that were spatially well separated prior to CD4 binding (Chen et al., 2005).
Fig 1.4: HIV-1 Env gp120 and gp41 structures. (A) Ribbon diagram of gp120 core containing α-helices (α1-5) and β-strands (1-25) with relative positions of variable loops (V1-V5) and N and C-termini shown. The orientation of gp120 in this diagram places the viral membrane toward the top and the cell membrane toward the bottom. When gp120 is bound to CD4 it forms a “bridging sheet” consisting of four β-strands, which separates the inner and outer domains of gp120 relative to their orientation in the trimeric complex. Image reprinted by permission from Macmillan Publishers Ltd: Nature, copyright 2008. (B) Ribbon diagram of gp120 core (as in panel A) with N-terminus (red) and gp41 interaction site (blue) shown. The inner domain is shown in red and grey and the outer domain is shown in orange. The bridging sheet, which shares elements from both inner and outer domains, is in grey and orange. (C) Trimeric gp120 (same colours as in panel B) bound to three molecules of CD4 (yellow) and Fab from neutralizing antibody 17b (brown), used to stabilize the gp120 structure, superimposed onto the electron density observed by cryoelectron tomography (light grey). Orientation of this structure rotated 90°, which places the viral membrane in the plane of the page, is also shown on the right. Images (panels B, C) reproduced from Pancera et al., with permission. (D) Three-dimensional representation of HIV-1 Env in its CD4- bound conformation. (Left) A trimeric Env spike (blue) anchored in the lipid bilayer of the viral membrane (grey) is shown. The white arrow indicates the predicted location of gp41. (Right) Ribbon diagram of gp120 core (red) superimposed on the density map (blue) with V1/V2 loop (yellow) and V3 loop (green) shown. Reprinted by permission from Macmillan Publishers Ltd: Nature, copyright 2008.
Recently, the structure of the Env trimer has been resolved (Figure 1.5). Sanders et al., (2002) developed gp140 trimers from the BG505 phenotype truncated at residue 664, which are antigenically near-native, soluble, proteolytically cleaved trimer variants stabilized by the presence of an engineered intermolecular disulfide bond (termed SOS). This binds gp120 and gp41 and creates a single residue change in I559P within gp41 (termed IP). These structures known as BG505 SOSIP.664 gp140 trimers have enabled independent, fine resolution of the closed (unbound) pre-fusion native structures of the trimer by X-ray crystallography (Julien et al., 2013) and cryo-electron microscopy (Bartesaghi, 2013). Previously uncharacterized elements in the trimer were observed on these structures, such as the gp41 helices, the V1/V2/V3 loops and various glycans (Julien et al., 2013; Lyumkis et al., 2013; Figure 1.5).

Figure 1.5: 5.8 Å EM reconstruction and model of Env trimer in complex with PGV04. (A and B) Side (A) and top (B) views of BG505 SOSIP trimer EM reconstruction (left) and corresponding model (right). Segmentation and color coding: gray, PGV04; blue, gp120; orange, gp41; purple, V1/V2; green, V3. (C) The center panel shows a side view of the EM map alone with the Fab density removed. The outer panels show the modeled portion corresponding to the boxed region in the middle panel. The viral membrane would be at the bottom of the figure (Lyumkis et al., 2013).
1.3.3 Gp41

The gp41 transmembrane (TM) glycoprotein mediates fusion of the viral envelope with host cell membrane. The gp41 subunit is comprised of around 345 amino acids and is organized into three major domains: an extracellular domain (or ectodomain), a transmembrane domain (TMD), and a C-terminal cytoplasmic tail (CT) (reviewed by Checkley et al., 2012; Fig.1.2). The extracellular domain contains the major fusion determinants. These include: an N-terminal hydrophobic region known as the fusion peptide (Bosch et al., 1989; Freed et al., 1992; Freed et al., 1990); a polar region; two hydrophobic regions that form α-helical coiled-coil structures referred to as the heptad-repeat regions HR1 and HR2 (also known as N-helix and C-helix, respectively; Chan et al., 1997; Dubay et al., 1992; Pancera et al., 2010; Tan et al., 1997; Weissenhorn, 1997); and a Tryptophan-rich domain referred to as the membrane-proximal external region (MPER; Muñoz-Barroso et al., 1999; Salzwedel et al., 1999). HR1 and HR2 are connected by a disulfide-bridge within a hydrophilic C-C loop and the fusion process is largely driven by their interaction. The fusion peptide is lodged deep in the envelope spike where gp120 and gp41 interact but becomes exposed following binding of gp120 to CD4 and a coreceptor. This binding changes the structure of the envelope spike allowing penetration into target cell membranes by the fusion peptide of gp41. This causes membrane destabilization and formation of the fusion pore. Three HR1 motifs form a core bundle in parallel and fold over a hydrophobic groove antiparallel to three HR2 domains within each trimer, thus forming a stable six-helix bundle that brings the viral and cell membranes into close enough proximity for fusion to occur (Chan et al., 1997 reviewed by Checkley et al., 2012).

The membrane proximal external region (MPER) is made up of the last 24 amino acids of the gp41 extracellular domain. This region is highly conserved and is required for fusogenicity and virus infectivity (Muñoz-Barroso et al., 1999; Poumbourios et al., 1995; Salzwedel et al., 1999). The gp41 trans-membrane domain (TMD) situated downstream of the MPER consists of ~25 highly conserved amino acids anchoring Env in the lipid bilayer. The gp41 TMD plays an important role in Env function. Mutations in the “core” region of the TMD have a strong influence on Env-mediated fusion (Kondo et al., 2010; Shang & Hunter, 2010; Shang et al., 2008) The early models for gp41 anchored in the cellular membrane proposed that the TMD was an α-helix that spanned the membrane once and the CT was inside the virus particle. However, based on recognition of an epitope within the gp41 CT by neutralizing
monoclonal Abs, an alternative topology has been proposed in which gp41 spans the membrane three times (Chanh et al., 1986; Cleveland, 2003; Hollier & Dimmock, 2005; Kennedy et al., 1986).

The transmembrane subunit of most lentiviral Env glycoproteins has a very long cytoplasmic tail compared to those found in other retroviruses. The CT of HIV-1 gp41 influences multiple properties of the gp120/gp41 glycoprotein complex, such as Env incorporation into virus particles, virus infectivity, cell-surface Env expression, gp120 shedding, and Env induced fusion (Affranchino & González, 2006; Freed & Martin, 1996a; Gabuzda et al., 1992; Kalia et al., 2003; Lee et al., 1989; Murakami & Freed, 2000a, 2000b; Wilk et al., 1992; Wyss et al., 2001; Yu et al., 1993). A membrane-proximal tyrosine-based sorting signal with the consensus sequence YxxL mediates endocytosis of Env from the plasma membrane (Berlioz-Torrent et al., 1999; Ohno et al., 1997; Rowell et al., 1995). The signal also mediates the release of virions from some cells (Lodge et al., 1997), cell-cell transmission in T cells (Deschambeault et al., 1999) and particle infectivity (Day, Münk, & Guatelli, 2004; West et al., 2002). A dileucine motif in the gp41 CT regulates the intracellular distribution of Env (Berlioz-Torrent et al., 1999; Byland et al., 2007; Wyss et al., 2001) and regulates endocytosis (Byland et al., 2007).

Three amphipathic, α-helical segments are present in the central and C-terminal regions of the gp41 CT (Fig. 2, 5) (Eisenberg & Wesson, 1990; Miller et al., 1993, 1991; Venable et al., 1989). These segments are highly conserved among lentiviruses (Miller et al., 1991) and are referred to as lentiviral lytic peptides (LLP-1, LLP-2, and LLP-3). LLP-1 and LLP-2 segments are highly positively charged due to the presence of arginine residues on one face of the α-helix. LLP-3 is located between the other two segments. LLP domains have been implicated in Env fusogenicity (Kalia et al., 2003), protein stability (Lee et al., 2002), multimerization (Lee et al., 2000), cell surface expression (Bültmann et al., 2001), and incorporation (Cosson, 1996; Murakami & Freed, 2000a; Piller et al., 2000). Studies of LLP fragments have shown that they bind to and perturb membranes (Chen et al., 2001; Chernomordik et al., 1994; Comardelle et al., 1997; Gawrisch et al., 1993) causing cytolysis, hence the name “lytic peptides” (Miller et al., 1993). Truncation of LLP-1 led to a decrease in localization of Env to lipid rafts, suggesting that the LLP-1 segment contains the determinants for lipid raft association (Yang et al., 2010). The LLP-2 region in gp41 CT may be transiently exposed on the cell surface during cell-cell fusion (Lu et al., 2008).
Because the biological functions of the gp41 CT are diverse, it is relatively well conserved. This makes it a potentially productive target for therapies and vaccines. However, investigation of its exact role in cell-cell transfer, and the identification of cellular interaction partners is still on-going (Checkley et al., 2012)

1.4 Transmission and acute infection

1.4.1 Mucosal transmission

Although the risk of transmission is higher for individual acts of anal intercourse (0.65% to 1.7%; Boily et al., 2009; Jin et al., 2010) than for individual acts of vaginal intercourse (0.03% to 0.5%; Ariën et al., 2011; Boily et al., 2009), the AIDS pandemic has arisen largely through transmission during unprotected heterosexual contact (UNAIDS, 2012; Ariën et al., 2011). Studies of HIV sero-discordant couples show the probability of infection for each encounter with the virus is quite small, i.e. less than 0.0014 (Gray et al., 2001; Piot et al., 2001; Pope & Haase, 2003; Wawer et al., 2005). This is most likely a consequence of low amounts of virus inoculum, restricted access to target cells and selective transmission. However, this value represents the lower bound of the range, as a single value fails to reflect the variation associated with numerous co-factors that increase the risk of transmission. STIs, young age, and lack of circumcision increase susceptibility with early- and late-stage index infection amplifying transmissibility (Powers et al., 2008). Studies of cumulative HIV incidence have provided mixed evidence in support of differences between male-to-female and female-to-male transmission (Guthrie et al., 2007) with one meta-analysis suggesting that there is no meaningful difference by direction of transmission at the per-contact level (Powers et al., 2008). However, in at least two detailed studies, the risk of HIV acquisition during receptive penile vaginal intercourse is double that seen in insertive penile vaginal intercourse (Alcantara et al., 2009; Leynaert et al., 1998; Varghese et al., 2002).

In heterosexual transmission, HIV gains entry into the body mainly by crossing epithelial barriers covering the mucosal surfaces of the female or male genital tracts as well as the anal/rectal epithelia. An intact vaginal epithelium consists of several thick layers of stratified squamous epithelial cells and lamina propria which provide a mucosal barrier to HIV infection (Pope and Haase, 2003). Female genital tract virus transmissions involve early capture by epidermal Langerhans cells (LCs) in the vagina and endocervix stratified epithelia.
Langerhans cells bind the envelope gp120 of HIV through their C-type unique Langerin, a process that, at low viral loads, might lead to the degradation of HIV (de Witte et al., 2007; Figdor et al., 2002). On the contrary, if the protective effect of Langerin is inhibited due to higher viral concentrations, the internalized virus will be transferred to T cells leading to a productive infection of these cells within the mucosa or in draining lymph nodes following migration of LCs to secondary lymphoid organs (Hladik & McElrath, 2008; Hladik et al., 2007; Merad et al., 2008). Sexually transmitted infections, microulcerations, and hormone-induced changes in the vaginal epithelium during the menstrual cycle (Hu et al., 2000) can cause disruption to the mucosal barrier which can lead to inflammation. This results in the influx of CD4+ CCR5+ T cells to the submucosa, enabling HIV infection and then rapid dissemination to the lymphoid tissues.

In the 10 days that follow sexual mucosal exposure to HIV, viral RNA is not detectable in the circulation at the lowest threshold of 100 copies of viral RNA per milliliter (mL) of plasma. This time frame has been referred to as the eclipse phase (reviewed by Haase, 2011). Based on SIV models, HIV crosses the mucosal epithelial barrier to establish a founder population of infected cells within hours of infection (Miller et al., 2005; Zhang et al., 2004). Local expansion of this population during the first week of infection is followed by the establishment of a self-propagating systemic infection in the secondary lymphoid organs (Miller et al., 2005). The increased virus access to more susceptible target cells results in a significant increase in replication in the lymphatic tissues. The establishment of peak viremia in blood and tissue happens during the second week of infection before declining to stable levels around four weeks post exposure (Haase, 2010). Long term reservoirs for virus production and storage (as well as harbouring of proviruses) are established in latently infected cells in the lymphatic tissues (Haase, 1999 reviewed by Tebit et al., 2012).

1.4.2 Characteristics of transmitted viruses

Based on evidence from cross-sectional studies of individuals with acute and early infections, it is clear that transmission is associated with a population bottleneck; a single virion is responsible for establishment in approximately 80% of heterosexual HIV-1 transmissions (Abrahams et al., 2009; Keele et al., 2008). Therefore, a detailed molecular understanding of the transmission and the early evolution of HIV, including a precise description of the
transmitted or early founder virus, is critical for the development of microbicides as well as a potential HIV vaccine which need to target these viruses (Keele et al., 2008).

A very large number of transmitted, founder and acute Envs have been examined across a number of different studies and investigative groups (reviewed by Shaw & Hunter, 2012). The only major genetic or phenotypic signature that is consistently required for transmission appears to be the use of CCR5 (Berger et al., 1999; Parrish et al., 2013; Scarlatti et al., 1997; Zhu et al., 1993). Enhanced virus transmission has been associated with several genetic traits, including but not limited to shorter variable loops and reduced numbers of amino-linked glycosylation sites (Chohan et al., 2005; Derdeyn et al., 2004; Sagar et al., 2006; Wu et al., 2006) at least for subtypes A (Chohan et al., 2005) and C (Haaland et al., 2009). These signatures, which constitute relatively subtle alterations of Env structure and function in the context of the native Env trimer, could provide sufficient selective advantage during the eclipse phase of HIV-1 transmission (Shaw & Hunter, 2012). A recent study of the phenotypic properties of infectious molecular clones of transmitted/founder viruses by Parrish et al., (2013) found that relative to chronic control viruses, transmitted/founder viruses are enriched for higher Env content, enhanced cell-free infectivity, improved dendritic cell interaction, and relative IFN-α resistance. Asmal et al., (2011) have found signatures near the CD4 and CCR5 binding sites, the gp41 cytoplasmic domain, and the signal peptide. They found a significantly high frequency of a histidine residue at position 12 of the leader sequence amongst transmitted viral sequences. This study showed that viruses that contain this residue are more efficient at transporting the envelope glycoprotein to the endoplasmic reticulum; those with the residue have higher envelope expression and incorporation compared to those without the residue.

The recent finding that HIV-1 gp120 binds to the CD4+ T cell gut homing integrin α4β7 has suggested that this may be important in allowing an infecting virus to target cells capable of trafficking to the gut associated lymphoid tissue (Arthos et al., 2008). It has been reported that α4β7-expressing CD4+ T cells are more susceptible to productive infection by HIV-1 than those expressing low levels of the integrin. This is in part because this subset is enriched for activated CD4+ cells, and in part because α4β7hi cells express high levels of CCR5 and low levels of CXCR4 (Cicala et al., 2009). Interestingly, a small sample of acute subtype A and C virus Envs bound α4β7 with high affinity, and in some cases, later virus strains showed significantly reduced binding (Nawaz et al., 2011). This finding is consistent with an early
requirement for infection of α4β7-expressing cells that is dispensable once infection in the
gut mucosa has been established (Shaw & Hunter, 2012). However, a recent study by Parrish
et al. (2012) found that transmitted viruses did not differ in their ability to bind CD4 and
CCR5 compared to chronic viruses. They also found that anti-α4β7 antibodies were not
effective at inhibiting infection. This study concluded that the transmission bottleneck does
not result in the selection of viruses that utilize CD4, CCR5, and α4β7. Therefore, the role of
the intergrin α4β7 during HIV mucosal transmission is yet to be fully understood, and the
effect of the blockage of gp120-α4β7 interaction on HIV replication is not yet known (Parrish
et al., 2012). Given that HIV-1 transmission is inherently inefficient and likely represents the
most vulnerable point in the natural history of HIV-1 infection, identifying unique properties
and potential vulnerabilities of transmitted/founder viruses remains an important objective.

1.5 Responses to HIV infection

1.5.1 Cytotoxic T-lymphocyte (CTL) immune responses

Among the most important and effective immune responses to HIV infection is the cytotoxic
T-lymphocyte (CTL) response. CTLs play an important role in suppressing viral replication,
during both acute and chronic infection, and they are seen as early as two to three weeks after
infection (Goonetilleke et al., 2009; Lichterfeld et al., 2004; Mlotshwa et al., 2010), where
they are believed to contribute to a decline in viremia until the viral set point is achieved
(Altfeld et al., 2001; Dalod et al., 1999; Figure 1.6). In an infected cell, viral peptides are
processed inside the endoplasmic reticulum before being transported to the cell membrane for
presentation by the Major Histocompatibility Complex (MHC) class I molecules. The MHC
is known as human leukocyte antigen (HLA) in humans. The presentation of the viral peptide
on the surface of the cell triggers a response by the CTLs. The T cell receptors (TCR) that are
expressed on the surface of CTLs bind to the MHC class I molecules and its peptide on the
surface of the virus-infected cells. The binding induces the release of perforins and proteases
that lyse the infected cells (Lamas et al., 1998).

Non-mutational and mutational mechanisms of avoiding recognition by CTLs have evolved
in HIV-1. The non-mutational escape of CTLs by HIV is achieved by a Nef mediated
mechanism that involves the downregulation of the MHC class I molecules in the HIV
infected cells (Greenberg et al., 1998). Nef causes the MHC class 1 molecules to accumulate
in clathrin coated vesicles in the Golgi apparatus resulting in the lack of recognition of the infected cell by the CTLs (Tomiyama et al., 2002).

![Figure 1.6](image_url)

Figure 1.6: The timing of CTL and antibody responses during acute stage of HIV infection (Cohen et al., 2011). The Fiebig stages are indicated in Roman numerals with the detection of viral RNA and viral antigens indicated (Fiebig et al, 2003). Individuals classified as being in Stage I/II were viral RNA positive, EIA antibody negative; those in Stage III were EIA antibody positive, but negative by Western blot; those in Stage IV had an indeterminate Western blot; those in Stage V were Western blot positive but without reactivity to the p31 integrase band; and those in Stage VI were Western blot positive with a p31 band present.

Mutational escape is effected through amino acid changes in the viral peptides or epitopes that reduce binding to the MHC class I molecules and/or alter the interaction with the T-cell receptors. These changes result in a loss of recognition by CTLs (Goulder & Watkins, 2004; Klenerman et al., 1994; Le Gall et al., 2007; Tenzer et al., 2009). Additionally, mutational escape by HIV-1 may involve interfering with the intracellular processing of the viral peptides, which prevents these epitopes from being presented at the cell surface in the context of MHC class I molecules for recognition by CTLs (reviewed by Sewell et al., 2000).

In addition to the genetic diversity of HIV-1, the complexity of the epidemic is further increased by the diverse genetic backgrounds of HLA among individuals from different populations. HLAs are grouped into subfamilies of closely related variants. HLA corresponding to MHC class I has 3 major genes (HLA-A, HLA-B, HLA-C) and 3 minor genes (HLA-E, HLA-F and HLA-G; (Parham et al., 1995).
Genome wide association studies (GWAS) is an approach involving the identification of genetic variations in human genomes that are associated with any disease outcome. These studies have shown that variation attributed to HLA types is associated with differential disease progression. The pressure that CTLs exert on the virus results in the selection of certain viruses that can successfully avoid recognition by the CTLs. Therefore, the polymorphism of HLA molecules determines how different individuals can respond to specific immunodominant epitopes depending on their HLA background. Mutational escape occurs along generally reproducible pathways that are predictable based on host HLA allele expression (Allen et al., 2005; Brumme et al., 2007, 2009; C. B. Moore et al., 2002; Rousseau et al., 2008 reviewed by Chopera et al., 2011).

Because an individual’s HLA determines disease outcome, various types of CTL response will be much more effective at controlling viral replication than others. HLA alleles such as HLA B*27:05, HLA B*57:01, HLA B*58, B*44, B*14/Cw*08:02, A*25 and HLA B*63 have been strongly associated with immune control of HIV, resulting in slower disease progression (Gao et al., 2001; Kaslow et al., 1996; Kiepiela et al., 2004; Migueles et al., 2000; Pereyra et al., 2010; Zhang et al., 2013). The long-term benefit of these ‘protective’ HLA class I alleles is probably the result of their ability to mediate early, robust CTL responses against highly conserved HIV epitopes, most notably in the structural p24 Gag protein which results in lower viral loads (Altfeld et al., 2006; Crawford et al., 2007; Goulder et al., 1996). GWAS comparing individuals that control viral loads at less than 200 copies/mL (HIV controllers) and rapid progressors have found the presence of single nucleotide polymorphisms (SNPs) associated with viral control in the HLA region of chromosome 6. Further analysis in the HLA B gene found five amino acids that are critical for the binding of the viral peptide to the HLA binding groove (Fellay et al., 2007). On the other hand, HLA alleles such HLA B*35, Cw*07, HLA B*53 and HLA B*5802 have been associated with rapid disease progression (Carrington et al., 1999; Carrington & O’Brien, 2003; Ngumbela et al., 2008; Pereyra et al., 2010). Despite the abundance of studies that have identified a central role for HLA-B alleles in influencing control of HIV infection there is evidence from a subtype C infection cohort of interdependent protective effects of the HLA-Cw, and HLA-A haplotypes that cannot be explained solely by linkage to a protective HLA-B allele (Leslie et al., 2010).
During acute infection, very narrow CTL responses are observed, with the Gag, Pol, Nef and Env regions being frequently targeted (Abrahams et al., 2013; Borrow et al., 1997; Goonetilleke et al., 2009; Goulder & Watkins, 2004; Lichterfeld et al., 2004). Over the first 6 months of infection Nef, Gag, and Pol are mostly targeted (Goonetilleke et al., 2009; Gray et al., 2009; MLotshwa et al., 2010). During chronic infection, the Gag and Env-specific CTL response have been found to be associated with low and high viral loads respectively, suggesting that Gag, and not Env, is critical in CTL-mediated viral control (Geldmacher et al., 2007; Kiepiela et al., 2007). The escape mutations in Gag, particularly in the p24 capsid region, carry a fitness cost to the virus as these mutations may affect the conformation of the viral capsid (Martinez-Picado et al., 2006; Schneidewind et al., 2008). A study by Martinez-Picado et al., (2006) identified a mutation in the TW10 epitope in Gag that restricted in HLA B57 individuals to reduce the viral replicative capacity.

Several studies have shown that individuals with protective alleles harbor viruses with lower replicative capacity during acute infection than those lacking such alleles. The levels of viral replication are broadly correlated with the presence of HLA B-associated polymorphisms (Brockman et al., 2010; Goepfert et al., 2008; Wright et al., 2011).

This immune mediated attenuation of HIV-1 may be exploited to design an HIV-1 vaccine capable of stimulating effective CTL responses against highly conserved, mutationally constrained viral regions, where immune escape could only occur at substantial functional costs. Such a vaccine might ‘channel’ HIV-1 evolution towards a less-fit state, thus lowering viral load set points, attenuating the infection course and potentially reducing the risk of transmission (Chopera et al., 2011). However, major barriers to this approach include the virus’ ability to restore its fitness by means of compensatory mutations (Crawford et al., 2007; Goepfert et al., 2008; Schneidewind et al., 2007, 2008) and the likely accumulation of immune escape variants at the population level, which could lead to the loss of immunogenic CTL epitopes and diminished vaccine-induced cellular immune responses as the epidemic progresses (Chopera et al., 2011).

1.5.2 Humoral responses to HIV-1 infection

The first detectable B-cell response to HIV infection is in the form of immune complexes 8 to 20 days after plasma virus detection (Figure 1.6). The first free, plasma, anti-HIV-1
antibodies are directed to gp41 and appear 13 days after the appearance of plasma virus (Figure 1.7). In contrast, envelope gp120-specific antibodies are delayed an additional 14 days and these antibodies target the V3 loop (Tomaras et al., 2008a). These first antibodies are by themselves incapable of stopping the virus from infecting new cells and are thus ineffective in controlling viremia. Antibodies that are able to prevent the virus from infecting cells are called neutralizing antibodies. These usually appear a few months post-infection (Gray et al., 2007; Li et al., 2006; Wei et al., 2003). These early neutralizing antibodies are effective against the autologous virus but are usually strain-specific and unable to neutralize

Figure 1.7. The antibody response to human immunodeficiency virus type 1 (HIV-1) occurs in stages, shown here in a clockwise direction starting at the top. A: Initial antibody response to HIV-1 is non-neutralizing and directed at gp41. B: Non-neutralizing antibodies directed against gp120 arise soon thereafter. C: After a delay of weeks to months, autologous neutralizing antibodies (NAbs) arise that apply selection pressure on the virus. D: Viral mutation results in neutralization escape by HIV-1, represented here by a change in the shape of gp120. E: In some patients, antibodies that can neutralize a wide range of HIV-1 isolates arise (bnAbs, broadly neutralizing antibodies), represented here by a variety of shapes of gp120. Mixing of envelope shapes on a single virus particle is shown for illustrative purposes only (Alter & Moody, 2010).
divergent HIV strains from other hosts (Gray et al., 2007). The virus can easily escape these early neutralizing antibodies because they are so narrowly focused and target variable regions of Env. Additionally, early neutralizing antibodies only reach biologically relevant levels long after the initial exposure to the infecting virus (Davis et al., 2009; Moore, Gray, & Morris, 2009; Rong et al., 2009; Wei et al., 2003). Escape is achieved by disruption of the epitopes recognized through point mutations, insertions and deletions, and recombination. While all three mechanisms are able to directly alter the epitope, they are also used indirectly to achieve structural shielding of the epitopes through shifting N-glycosylation sites that prevent access of the antibodies to the epitopes. Deletions and recombination are also used to alter the lengths of the variable domains of the envelope (Herrera et al., 2003; Overbaugh & Rudensey, 1992; Richman et al., 2003).

Certain regions in the viral envelope protein are preferentially targeted by the first autologous neutralizing antibodies. These are mainly on the extensively N-glycosylated outer surface of the virus. The V1V2 region (Overbaugh et al., 1991; Overbaugh & Rudensey, 1992), the alpha-2 helix in the C3 region, and the V4 region are all major targets of neutralizing antibodies in subtype C (Moore et al., 2009; Rong et al., 2007a; Rong et al., 2007b). Also, neutralizing antibody escape is driven by multiple regions in gp120, which include the V3-V5 region, and the V1V2 region in association with the gp41 region (Rong et al., 2009). The V1V2 loops together with the V3 region have also been identified as targets during subtype B infections particularly the N-glycosylation sites within these regions (Tang et al., 2011).

1.5.3 Antibody responses and HIV-1 subtype

It has proven difficult to clearly define the relationship between subtype and neutralization serotype. Numerous early studies found that there was little or no relationship between the genetic subtypes and what was observed in neutralization assays (Beirnaert et al., 2000; Kostrikis et al., 1996; Kostrikis et al., 1996; J. P. Moore et al., 1996; Nyambi et al., 1996; Weber et al., 1996 reviewed in Moore et al., 2001). However, later evidence from improved analyses of subtype B and C infections showed that there are some shared regional and subtype-specific determinants of neutralization. There was also a significant trend toward increased neutralization sensitivity when the virus and HIV-1 plasma or plasma pool were of the same clade (Bures et al., 2002; Lakhashe et al., 2007; Rademeyer et al., 2007; Seaman et
al., 2010; van Gils et al., 2010). Although the genetic subtypes do not precisely correspond to serotypes (Moore et al., 2001), they do impact epitope structure and variability and thus are related to antibody susceptibility patterns (Binley et al., 2004; Brown et al., 2008; Li et al., 2006). Differences in the immunogenicity of different subtypes have also been implicated in the strength of elicited antibody responses. Several studies have reported that infection with subtype C and A viruses results in greater breadth and potency than subtype B viruses (Brown et al., 2008; Bures et al., 2002; Dreja et al., 2010; Li et al., 2006). Similar findings have also been shown in plasmas from individuals infected with subtype D, CRF02_AG and CRF01_AE, although the effect was less pronounced (Brown et al., 2008; Dreja et al., 2010).

There is very little data available on how antibody responses differ in populations with a variety of local epidemics. Similarly, little is known about how the increasing global diversity presence of CRFs and URFs may affect the development of antibody responses.

1.5.4 Broadly cross-neutralizing antibodies

Antibodies that are able to neutralize a range of viruses are called broadly cross-neutralizing antibodies (bnAbs). Any successful vaccine for HIV will have to induce a neutralizing antibody response of some breadth to be effective. Approximately 10 – 30 % of individuals are able to develop broadly neutralizing antibodies after years of infection (Doria-rose et al., 2010; Gray et al., 2011; Keele et al., 2008; Sather et al., 2009a; Simek et al., 2009). The rarity of bnAbs is most likely related to the unusual features of the Env protein and the capabilities of the virus. These include Env’s extensive glycan ‘shield’ (Binley et al., 2010; Richman et al., 2003; Wei et al., 2003), rapid neutralizing Ab selection of escape mutants (Richman et al., 2003; Wei et al., 2003), transient epitope expression (Frey et al., 2008), steric hindrance (Labrijn et al., 2003; Schief et al., 2009), and inability to overcome Ab-binding entropic barriers (Kwong et al., 2002). Another potential reasons for the rarity of broadly neutralizing antibody responses is that HIV-1 particles bear non-functional gp120/gp41 monomers and gp120-depleted gp41 stumps (Moore et al., 2006). The highly immunogenic epitopes present on non-native Env structures may hinder bnAb responses by inducing dominant Ab responses that are non-neutralizing or neutralizing but strain-specific (Haynes & McElrath, 2013; Labrijn et al., 2003).
Chapter 1: Introduction and Literature Review

It is still unclear why certain individuals can develop these antibodies and others cannot. Longer periods of infection and high levels of viremia (thus persistent viral stimulation) are associated with the development of neutralization breadth (Euler et al., 2011; Gray et al., 2011; Piantadosi et al., 2009; Sather et al., 2009a). The extent of neutralizing breadth has also been correlated with CD4(+) T cell decline and CD4(+) T cell count at 6 months post infection (Gray et al., 2011). In addition to infection with a non-B virus (Brown et al., 2008; Dreja et al., 2010), high envelope diversity during early infection (Sather et al., 2009b) as well as superinfection (Cortez et al., 2012), particularly with a very divergent virus (Powell, Kinge, & Nyambi, 2010), has been associated with increased breadth of neutralizing antibody responses. This again raises the question of how a highly diverse local epidemic and the presence of multiple unique or circulating recombinant forms might affect the development of broadly neutralizing antibody responses in a population.

A number of cross-reactive monoclonal neutralizing antibodies and the epitopes that they target have been identified. Initially, IgGb12 (which targets the CD4 binding site), 4E10, Z13 (carboxy terminal MPER), 2F5 (amino-terminal MPER), and 2G12 (gp120) were isolated and represented the prototypic protective antibodies an HIV-1 vaccine should elicit (Burton et al., 1994; Muster et al., 1993; Stiegler et al., 2001; Trkola, Purtscher, et al., 1996; Zwick et al., 2001 reviewed by Verkoczy et al., 2011). Recently developed high-throughput recombinant antibody technology has enabled the identification of many new bnAbs, some with higher potency than those of the first generation. These include PG9, PG16, VRC01, PGT121 and PGT128 antibodies which target the gp120 region of the HIV-1 envelope (Corti et al., 2010; Walker et al., 2009a; Zhou et al., 2010). Following extensive and in depth analysis of available antibodies, four distinct Env regions have been identified (Figure 1.8). Each of these represents a potential Achilles’ heel for HIV-1 that could be targeted by an antibody-based vaccine: the gp41 Membrane Proximal External Region (MPER), the gp120 CD4 binding site, quaternary V2/V3 loop epitopes, and Env carbohydrates (reviewed by McElrath & Haynes, 2010). These studies have also revealed an interesting pattern in which all bnAbs share at least one of the following three unusual characteristics: a) self-/polyreactivity, b) elongated and highly hydrophobic (and/or charged) heavy chain third complementarity determining regions (HCDR3), and c) high numbers of Ig somatic mutations (McElrath & Haynes, 2010). Thorough investigation of the traits associated with bnAb may provide clues about potential mechanisms controlling the induction, specificity and neutralization potential of bnAb.
Recent studies have highlighted the significance of the interplay between early antibodies and viral escape in the evolution of conserved bnAb epitopes. Moore et al. (2012) showed, in two HIV-1 infected individuals who developed bnAbs targeting the glycan at Asn332 on the gp120 envelope, that this glycan was absent on the initial infecting virus. The glycan evolved within 6 months, as a consequence of immune escape from earlier strain-specific antibodies.

Figure 1.8: Model of the structure and Antibody Recognition of the HIV Envelope Spike (Schief et al., 2009) adapted from a cryo-electron tomographic structure of the HIV trimer (Liu et al., 2008). The crystal structure of the b12-bound monomeric gp120 core (red) has been fitted into the density map (Zhou et al., 2007). Glycans are shown in purple. The CD4 binding site is shown in yellow. The approximate locations of the epitopes targeted by existing bnMAbs are indicated with arrows. The figure is adapted from a review by (Burton et al., 2012).

that resulted in a shift of a glycan to position 332. Liao et al., (2013) demonstrated that the binding of a transmitted/founder Env to an unmutated common ancestral B-cell receptor of a bnAb lineage was responsible for the induction of broad neutralizing antibodies, thus providing a logical starting place for vaccine-induced CD4-binding site bnAb clonal activation and expansion.
The induction of bnAb in a vaccine setting remains a major challenge in the field. It is important to remain hopeful, however, as a number of studies have shown that neutralizing antibodies can provide sterilizing immunity in macaques in a SHIV model. These studies highlight the potential importance of an early and potent neutralizing response during that window of virus vulnerability immediately after transmission when low genetic diversity reduces the chance of immune escape (Baba et al., 2000; Emini et al., 1992; Hofmann-Lehmann et al., 2001; Mascola et al., 1999, 2000; Parren et al., 2001; Shibata et al., 1999; Xu et al., 2002; Moldt et al., 2012).

1.6 Antibody Dependent Cell-Mediated Cytotoxicity

1.6.1 ADCC

![Diagram of antibody functions](image)

Figure 1.9: How antibodies combat HIV-1. (a) Neutralization of free virus by antibodies, (b) complement-mediated lysis of free virus and infected cells triggered by antibodies, (c) opsonization of virus particles by antibodies and phagocytosis of virus particles via Fc- or complement-receptors, (d) antibody-dependent cellular cytotoxicity (ADCC) against infected cells. Neutralizing antibodies (red), non-neutralizing (blue), Fc-receptors (violet), complement components (light-blue), complement-receptors (black).
In addition to neutralization, antibodies mediate antiviral immunity through numerous functions (Alpert, Heyer, et al., 2012; Figure 1.9). Antibody coating of HIV may lead to complement opsonization and viral lysis (Aasa-chapman et al., 2005) or phagocytosis (Kedzierska et al., 2001, 2013). The constant (Fc) region of IgG interacts with Fc receptors expressed on leukocytes and with complement. These interactions can contribute to antiviral immunity via several mechanisms. These include orchestrating the homing of effector cells (Ottonello et al., 1999; Rot & von Andrian, 2004; von Andrian & Mackay, 2000), inhibiting virus replication through antibody dependent cellular viral inhibition (ADCVI: Ackerman et al., 2011; Kottilil et al., 2003; Oliva et al., 1998; Trkola, et al., 1996), and killing virus-infected cells by complement-dependent cytotoxicity (CDC; Spear et al., 1990) as well as antibody-dependent cell-mediated cytotoxicity (ADCC; Koup et al., 1989; Lanier et al., 1986; Rook et al., 1987). These non-neutralizing effector functions are mainly associated with the release of chemokines (Chung et al., 2009; Stratov et al., 2008), which are important components of antiviral immunity (Hessell et al., 2007). These functions have been implicated in protective immune responses against HIV-1 (Baum et al., 1996; Forthal et al., 1999; Ljunggren et al., 1990). While macrophages, neutrophils and eosinophils can mediate ADCC, classical ADCC is mediated by Fc binding to the Fcγ-Receptor (FcR) IIIa also known as CD16 on the surface of natural killer (NK) cells (Clynes et al., 2000). Activation of NK cells through the binding of antibody to FcRs leads to ADCC. If the antibody binds to a viral antigen on the surface of infected cells (Figure 1.9 B), it leads to perforin, granzyme and Fas ligand release and death of the infected cell (Brown et al., 2012).

1.6.2 ADCC in primates, humans and vaccines

A distinct advantage of non-neutralizing Ab-mediated ADCC and ADCVI is their ability to harness the innate immune system early on in acute HIV infection, specifically through NK cells. These cells destroy infected cells expressing antibody-bound antigen or mediate virus inhibition having bound antibody-antigen complexes (Ahmad & Menezes, 1996; Asmal et al., 2011). NK cell activity is dramatically elevated during acute infection before the CD8+ T cell response and is the dominant cytolytic effector population during acute HIV infection (Alter & Altfeld, 2009; Alter et al., 2007; Altfeld et al., 2012). In part, this is due to the presence of antigen-specific Abs in mucosal secretions and also to the large number of potential ADCC effector cells in the peripheral circulation (Battle-Miller et al., 2002; Nag et al., 2004). This
differs from CTL responses which often do not have mucosal homing ability. These innate effector cells could be utilized by vaccines to gain more effective control of HIV (Berger & Alter, 2011).

Several studies have reported active and passive immunization that protected non-human primates from SIV or SHIV infection. The mechanism of protection was related at least in part, to ADCC- and ADCVI-mediating antibodies (Alpert et al., 2012; Florese et al., 2009; Gómez-Román et al., 2005; Hidajat et al., 2009; Xiao et al., 2010). In three studies, ADCC responses are associated with delayed acquisition or reduced acute and chronic viral load, indicating that antibodies play an important antiviral role even after acquisition (Hidajat et al., 2009; Xiao et al., 2010, 2012). ADCC responses are elicited by several candidate vaccines in humans recently including virus-like particles and recombinant gp120 (Moody et al., 2012; Pastori et al., 2012). The recent emphasis on the importance of antibody effector functions is further emphasized by the recent results of the RV144 Thai trial. This trial used an ALVAC recombinant DNA canarypox vector vaccine with two boosters of AIDSVAX recombinant gp120 protein. Statistical analysis showed 31% vaccine efficacy (Rerks-Ngarm et al., 2009) and subsequent immune correlate analysis found that V1V2 binding but not neutralizing antibodies correlated inversely with infection risk (Haynes, Gilbert, et al., 2012; Rolland et al., 2012). An earlier trial using the same vaccine, VAX004, gave no protection but supported the later finding that recombinant gp120 can elicit antibodies with antiviral activity against clinical HIV-1 (Forthal et al., 2007). This activity required the presence of FcR-bearing effector cells, further suggesting a role for ADCC/ADCVI in an HIV vaccine.

1.6.3 Measurement of ADCC

Several laboratory methods exist for determining the efficacy of antibodies or effector cells in eliciting ADCC. Essentially, a labelled target primary cell (or cell line expressing a certain surface-exposed antigen) is incubated with antibody specific for that antigen. When measuring HIV specific ADCC activity, target cells may be coated with gp120, gp140, or peptides (Asmal et al., 2011; Barouch et al., 2012; Chung et al., 2011; Ferrari et al., 2011; Fouda et al., 2011; Matthews et al., 2004). Chronically infected T-cell lines can also be used (Gómez-Román et al., 2005; Pollara et al., 2011). After washing, effector cells expressing Fc receptor CD16 are co-incubated with the antibody-labelled target cells. Target cell lysis or
effector cell functions are subsequently measured by one of several methods. Early ADCC assays were based on readouts of 51Cr release from labelled target cells by a scintillation counter or spectrophotometry (Alsmadi et al., 1997). This method measured cell death due to ADCC but suffered from high levels of non-specificity and background due to leakiness of cells. The study of ADCC was held back due to the laborious technical requirements and insensitive nature of the assay. There are often variations in the overall levels of antigens present on the surface of the target cells, as well as variations to the particular antigenic epitopes available (CD4 binding site, CD4 inducible, gp120 monomers/trimers). This means that ADCC assays based on target cells coated with recombinant forms of Env, or some chronically infected T-cell lines will measure antibodies that may not direct ADCC against cells infected with primary isolates compromising the actual biological relevance of the assays (Pollara et al., 2011).

Several improved ADCC assays have recently become available. A fluorescent killing assay termed “rapid fluorescent ADCC” (RFADCC) assay (Gómez-Román et al., 2006) which relies on the release of intracellular fluorescent dye has been developed. This assay is simpler and more quantitative than chromium release assays. Forthal et al. (2005) have used assays of in vitro viral replication inhibition to illustrate the effectiveness of HIV- and SIV-specific ADCC responses (Forthal et al., 2005; Hessell et al., 2007). Alpert et al. (2012) developed a novel ADCC assay based on immortalized cell lines - an NK cell line that expresses either human or rhesus macaque CD16, and a CD4+ target cell line that expresses luciferase from a Tat-inducible promoter upon HIV-1 or SIV infection. The dose-dependent loss of luciferase in the presence of NK cells and serial dilutions of plasma or serum indicates the killing of virus-infected cells by ADCC. Stratov et al. (2008) explored an intracellular cytokine staining (ICS) based assay by studying NK cell expression of effector molecules following activation by HIV Ags and Abs. Here, small quantities of whole blood are incubated with HIV peptide antigens. Gated NK cells are then monitored for the expression of cytokines, such as IFN-γ, or degranulation markers, such as the expression of CD107a or the loss of intracellular granzyme B. This assay is simpler than killing assays and can measure a variety of functions of NK cells triggered by HIV-specific Ab.

The measurement of ADCC-mediating Abs by effector cells has been limited by the lack of a quantitative technique that allowed for specific and high-throughput analysis of target cell killing at the single cell level. Pollara et al. (2011) developed a flow cytometry-based assay
that takes advantage of the ability to reproducibly detect the proteolytic activity of Granzyme B (GzB) after its delivery into target cells, initiated by Ab recognition of viral antigens on the target cell membrane. This method has enabled the detailed study of ADCC responses in human and non-human primate vaccine studies.

1.6.4 ADCC Epitopes and escape from ADCC

Detailed sequence analysis of single HIV genomes reveals that most changes acquired during the first months of infection align with sites of CTL or nAb escape mutations (Abrahams et al., 2013; Goonetilleke et al., 2009) or are related to APOBEC (Wood et al., 2009). However, a few mutations do not map clearly to these sites, suggesting that they may be reversions from escape in the previous host (Song et al., 2012) or escape from immune responses, such as ADCC.

Relatively few ADCC epitopes have been identified to date within HIV. ADCC antibody responses are generally thought to target viral surface proteins presented on the surface of infected cells. As a consequence of this, the majority of identified ADCC epitopes are within Env glycoproteins, gp120 (Alsmadi et al., 1997; Alsmadi & Tilley, 1998; Koup et al., 1991) and gp41 (Duval et al., 2008; Tyler et al., 1990; Ziegner et al., 1992). Epitopes directed against Env have been reported as either linear or conformational/discontinuous and have been well described in a recent review by Pollara et al., (2013) (Table 1.1). Within gp120, several monoclonal antibodies that bind to epitopes which are induced by conformational changes that follow the binding of CD4 to gp120 have demonstrated ADCC activity (Bonsignori et al., 2012; Ferrari et al., 2011; Friedman et al., 2012; Guan et al., 2013). One of these, A32, binds to a conformational epitope involving the C1 region (Finnegan et al., 2001). While it cannot bind the Env expressed on infectious virions, it is capable of broad and potent recognition and binding of cell surface expressed Env in the presence of CD4 (Ferrari et al., 2011). This is indicative of differences in the expression of Env in these two contexts and thus differences in the requirements of antibody activity for neutralization and ADCC (Pollara et al., 2013). Several epitopes have been described in the V2 region of Env (Liao, Bonsignori, et al., 2013), the CD4 binding site (Alsmadi & Tilley, 1998; Ferrari et al., 2011; Forthal et al., 1995; Hezareh et al., 2001; Koup et al., 1991; Posner et al., 1992), the V3 region (Alsmadi & Tilley, 1998; Bonsignori et al., 2012; Forthal et al., 1995). In gp41,
ADCC epitopes have been described in cluster I (Moog et al., 2014; Tyler et al., 1990), HR2 (Forthal et al., 1995; Tyler et al., 1990) and the MPER (Forthal et al., 1995; Moog et al., 2014; Tudor & Bomsel, 2011; Tyler et al., 1990).

ADCC responses to viral peptides derived from internal HIV-1 proteins such as Tat, Nef, Vpu and Pol have also been identified (Florese et al., 2009; Isitman et al., 2011; Stratov et al., 2008; Yamada & Iwamoto, 1999; Yamada et al., 2004). These proteins are not targeted to the cell membrane and it is yet to be shown how epitopes on the surface of cells would be presented to ADCC antibodies. Furthermore, it is not clear whether ADCC antibodies to such internal proteins can actually recognize HIV-infected cells in vitro in a biologically relevant way. One possible explanation is that ADCC recognition of viral debris on the surface of healthy neighbouring cells may trigger non-cytolytic activity from NK cells that could limit HIV-1 spread in a local environment (Isitman et al., 2012).

ADCC responses forcing immune escape has only been demonstrated recently (reviewed by Isitman et al., 2012). Demonstration of viral escape from ADCC responses strongly suggests that ADCC responses exert significant pressure on the virus. Evidence of immune escape was found in one study in the Env protein of HIV-1 using peptides with known ADCC epitopes and an NK-cell activation assay (A. W. Chung et al., 2011). Selective pressure, most likely from ADCC has been demonstrated to act on amino acid position 169 in the V2 region of the envelope of transmitted/founder virus sequences from the breakthrough infections in RV144 (Rolland et al., 2012). Escape has also been shown in an epitope of the highly conserved protein Pol (Crowe et al., 2001; Isitman et al., 2011). However, this and other work likely underestimates the number of ADCC epitopes targeted by each HIV positive subject, since linear epitopes are readily mapped and dissected and consensus subtype B overlapping peptides are used for screening. Conformational ADCC antibodies are also likely to elicit escape, but to map such responses and identify escape patterns will be difficult and will require large numbers of mutant, whole, Env proteins (Isitman et al., 2012). Furthermore, many ADCC epitopes have clearly been demonstrated to overlap with neutralizing antibody epitopes (Pollara et al., 2013) and therefore their escape mechanisms will likewise inevitably overlap. ADCC-forced mutations could theoretically incur some “fitness cost” to viral replicative capacity. Constructing replicating viruses with ADCC-induced mutations will allow testing of this hypothesis.
Table 1.1: Defined Regions of the HIV-Envelope Glycoprotein Targeted by Human mAbs with ADCC Activity. The table is taken from the review by (Pollara et al., 2013)

<table>
<thead>
<tr>
<th>HIV-1 Envelope Glycoprotein</th>
<th>Envelope Region</th>
<th>mAb</th>
<th>Discontinuous or Linear Epitope</th>
<th>Neutralizing or Non-Neutralizing</th>
<th>ADCC References</th>
</tr>
</thead>
<tbody>
<tr>
<td>gp120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CD4i C1 region</td>
<td>A32</td>
<td>Discontinuous</td>
<td>Non-Neutralizing</td>
<td>(Ferrari et al., 2011)</td>
</tr>
<tr>
<td></td>
<td>(Cluster A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CD4i CoRBS</td>
<td>17B</td>
<td>Discontinuous</td>
<td>Neutralizing</td>
<td>(Ferrari et al., 2011)</td>
</tr>
<tr>
<td></td>
<td>(Cluster C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CD4i Cluster A</td>
<td>C11, L9-i1, N5-i5, L9-i2, N12-i3, N26-i1</td>
<td>Discontinuous</td>
<td>Non-Neutralizing</td>
<td>(Guan et al., 2013)</td>
</tr>
<tr>
<td></td>
<td>CD4i Cluster B</td>
<td>N12-i15</td>
<td>Discontinuous</td>
<td>Non-Neutralizing</td>
<td>(Guan et al., 2013)</td>
</tr>
<tr>
<td></td>
<td>CD4i Cluster C1</td>
<td>L9-i3, N5-i1, N5-i3, N5-i4, N5-i8, N10-i1.1, N10-i5.3, N12-i1, N12-i2, N12-i4, N12-i5, N12-i7, N12-i8</td>
<td>Discontinuous</td>
<td>Neutralizing</td>
<td>(Guan et al., 2013)</td>
</tr>
<tr>
<td></td>
<td>CD4i Cluster C2</td>
<td>N12-i10, N12-i17, N12-i18, N12-i19</td>
<td>Discontinuous</td>
<td>Neutralizing</td>
<td>(Guan et al., 2013)</td>
</tr>
<tr>
<td></td>
<td>CD4i Cluster C3</td>
<td>N5-i2, N5-i6, N5-i9, N5-i14, N5-i7, N5-i12, N10-i3.1, N12-i12, N12-i9, N12-i11</td>
<td>Discontinuous</td>
<td>9/10 Neutralizing</td>
<td>(Guan et al., 2013)</td>
</tr>
<tr>
<td></td>
<td>CD4i Cluster C4</td>
<td>L9-i4, N5-i10.1, N5-i13, N10-i12, N12-i14, N12-i16</td>
<td>Discontinuous</td>
<td>2/6 Neutralizing</td>
<td>(Guan et al., 2013)</td>
</tr>
<tr>
<td></td>
<td>CD4i</td>
<td>N10-i4, N10-i6.1</td>
<td>Discontinuous</td>
<td>Non-Neutralizing</td>
<td>(Guan et al., 2013)</td>
</tr>
<tr>
<td></td>
<td>CD4i C1 region</td>
<td>CH20, CH29, CH38, CH40, CH49, CH51, CH52, CH53, CH54, CH55, CH57, CH77, CH78, CH80, CH81, CH90, CH91, CH92, CH94</td>
<td>Discontinuous</td>
<td>Non-Neutralizing</td>
<td>(Bonsignori et al., 2012)</td>
</tr>
<tr>
<td></td>
<td>C2, C3, C4, V4 glycansites</td>
<td>2G12</td>
<td>Discontinuous</td>
<td>Neutralizing</td>
<td>(Trkola et al., 1996)</td>
</tr>
<tr>
<td></td>
<td>C5</td>
<td>670-D</td>
<td>Discontinuous</td>
<td>Neutralizing</td>
<td>(Forthal et al., 1995)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750-D</td>
<td>not defined</td>
<td>Non-Neutralizing</td>
<td>(Forthal et al., 1995)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42F, 43F</td>
<td>Linear</td>
<td>Non-Neutralizing</td>
<td>(Alsmadi et al., 1998)</td>
</tr>
<tr>
<td></td>
<td>CD4 binding site</td>
<td>15e</td>
<td>Discontinuous</td>
<td>Neutralizing</td>
<td>(Koup et al., 1991)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F105</td>
<td>Discontinuous</td>
<td>Neutralizing</td>
<td>(Posner et al., 1992)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>448-D</td>
<td>Discontinuous</td>
<td>Neutralizing</td>
<td>(Forthal et al., 1995)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1125H, 5145A</td>
<td>Discontinuous</td>
<td>Neutralizing</td>
<td>(Alsmadi et al., 1998)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b12</td>
<td>Discontinuous</td>
<td>Neutralizing</td>
<td>(Hezareh et al., 2001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VR01</td>
<td>Discontinuous</td>
<td>Neutralizing</td>
<td>(Ferrari et al., 2011)</td>
</tr>
<tr>
<td></td>
<td>V2</td>
<td>CH58, CH59, HG107, HG120</td>
<td>Linear</td>
<td>Neutralizing</td>
<td>(Liao et al., 2013)</td>
</tr>
<tr>
<td></td>
<td>PG9</td>
<td>Discontinuous</td>
<td>Neutralizing</td>
<td>(Biedma ME, 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V3</td>
<td>694/98D</td>
<td>Linear</td>
<td>Neutralizing</td>
<td>(Forthal et al., 1995)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4117C, 41148D</td>
<td>Linear</td>
<td>Neutralizing</td>
<td>(Alsmadi et al., 1998)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH22, CH23</td>
<td>Linear</td>
<td>Neutralizing</td>
<td>(Bonsignori et al., 2012)</td>
</tr>
</tbody>
</table>
1.7 Fitness and selection in viral evolution

Viral fitness is defined as “the capacity of a virus to produce infectious progeny in a given environment” (Domingo & Holland, 1997). A more accurate and specific term commonly in use today is replicative fitness (reviewed by Wargo & Kurath, 2012). Due to host immune clearance of viruses and finite host lifespan, viruses must be transmitted to new hosts to survive. As such, transmission fitness is an important component of overall fitness. Ultimately, replication and transmission contribute to the prevalence of viral genetic material at a population level in the field over time. The capacity of a virus (a serotype, clade, or variant) to become dominant in the field (relative to other serotypes, clades, or variants of the same virus) has been defined as epidemiologic fitness (Domingo, 2010). Resistance fitness is the ability of a virus to resist antiretroviral drugs and escape surveillance and destruction by host immune responses, notably T cells, neutralizing antibodies, or host genetic resistance mechanisms.

Replicative fitness of HIV-1 can be measured in cultured cells, tissue explants, or within individual hosts. It is often assessed by comparing viral replication in parallel hosts or cell cultures infected with single viral variants. However, the assessment of fitness in mixed infections of two viral variants is a more sensitive and possibly more valid measure of viral fitness differences (Domingo & Holland, 1997). Unfortunately, competition assays face the challenge of superinfection and recombination which would result from the presence of multiple viruses infecting one cell and production of chimeric viruses bearing components of both “parent” viruses. Transmission fitness studies of HIV-1 have proved extremely difficult to conduct due to practical and ethical considerations. Data on transmission fitness of HIV-1 have thus relied mainly on non-human primate models. Data from other simpler systems have shown that replicative fitness does not always match transmission fitness. Viral genotypes with the greatest replication success are not always those that have the greatest transmission to new hosts (Duan et al., 2010; Seibert et al., 2010).

Resistance fitness is strongly associated with replicative fitness costs. This means resistant variants show reduced replication ability compared to wild-type strains in the absence of the selective drug or host immune pressure. This has massive implications for the development of a vaccine and for the epidemic in general. Primary HIV-1 isolates in the epidemic appear to
have undergone a reduction in replicative fitness over time comparing historical (1986–1989) and more recent samples (2002–2003; Ariën et al., 2005). Several studies on intra-patient HIV-1 replicative fitness show that it tends to progressively increase through the course of infection in the absence of ART (Quiñones-Mateu et al., 2000; Barbour et al., 2004; Troyer et al., 2005). Consecutive genetic bottlenecks with each transmission event may reset the fitness for each new infecting virus. The resulting reduction in fitness may be greater than the replicative fitness increase within an infected individual prior to new transmission, thereby attenuating HIV-1 in the human population over time. It is well known that successive transmission events of RNA viruses may cause deleterious genetic bottlenecks which result in profound fitness losses (i.e., Muller’s ratchet; Peris et al., 2010). Upon transmission, there is an absence of selective pressure prior to host responses or there may be differences in early host responses between the donor and recipient. This removes any need for transmission and resistance fitness and provides an opportunity for reversion to optimal replicative fitness. Herbeck et al. (2006) demonstrated reversion to ancestral states upon transmission driven by a need to re-establish replication efficiency. Reversion from CTL induced mutations with fitness cost has also been shown in numerous studies (Allen et al., 2004; Leslie et al., 2004).

Fitness acts on viral evolution through selection. Selection will act to either preserve or eliminate changes in the genome that result in different mutational fitness effects. As would be expected, the majority of mutations have negative impacts on fitness, often resulting in nonviable viruses. However, mutations with positive fitness effects also occur. These changes are sought after through the exploration of sequence space and are preserved or selected for the benefit of the virus (Wargo & Kurath, 2012). The very high replication rate of HIV-1 coupled with an extremely error-prone reverse transcriptase gene of one error in every two to four thousand bases (Preston et al., 1988) translates into a large and diverse quasispecies population, which is an extremely efficient exploration of sequence space. For HIV-1, increases in quasispecies heterogeneity were associated with fitness recovery in vitro, even in the absence of changes in the consensus sequence (Bordería et al., 2010).

Statistical models of codon evolution have been developed and applied to protein-coding sequences from viral genomes pathogens for the detection of evidence of diversifying selection acting on protein coding DNA sequences (Muse & Gaut, 1994; Nielsen & Yang, 1998; Z. Yang et al., 2000). Positive selection is frequently inferred by comparing the rate of non-synonymous substitutions per non-synonymous site (dN) to the rate of synonymous
substitutions per synonymous site (dS). The ratio of these two rates is often represented by the symbol ω. Under the assumption that synonymous substitutions are neutral and that the synonymous substitution rate therefore approximates the neutral rate of evolution, diversifying selection can be inferred when ω is greater than one (Tajima, 1989). HIV-1 has several examples of sequence motifs within protein-coding sequences that are expected to be under purifying selection at the nucleotide level. Many of these are involved in regulating gene expression and have been shown to evolve under the influence of strong, purifying selection pressure at the nucleotide level (Ngandu et al., 2008). Analysis of the type of selection acting on a gene or codon gives insight into the type of selection pressure under which it is evolving. Mathematical analyses of selection are confounded by recombination (Anisimova et al., 2003; Scheffler et al., 2006; Shriner et al., 2003).

Recombination occurs when the reverse transcriptase switches RNA templates during replication, thereby forming progeny viruses that are representative of different parent viruses (Wooley et al., 1997). HIV has one of the highest recombination rates compared to other organisms, with approximately 2.8 recombination events occurring per genome per replication cycle (Zhuang et al., 2002). The recombination rate therefore exceeds the mutation rate per replication. Recombination events can occur between viruses from different subtypes (intersubtype recombination) and also between viruses derived from the same subtype (intrasubtype recombination; Takehisa et al., 1999). This second type of recombination is much harder to identify but is important to take into account. Publically available tools for site specific inferences of purifying and diversifying selection such as Datamonkey make use of a recombination detection algorithm (GARD) (Kosakovsky Pond et al., 2006).

1.8 Study rationale

The diversity of HIV-1 remains a massive challenge in the development of an effective vaccine. Most of the biologically relevant variation observed in vivo is the result of genetic variation and competitive selection together with random events acting on a large mass of replicative units. The aim of all interventions and therapies is to prevent infections or oppose increases of viral load or viral fitness. Replication rate, viral load, genetic heterogeneity, viral fitness and disease progression are all strongly interconnected. Thorough understanding of
the interplay between these factors and their influence on both the virus and the host immune response is essential for the development of effective interventions.

A priority for vaccine design is to elicit humoral responses that provide sterilizing immunity. Broadly neutralizing antibodies are central to this effort. Despite the presence of evidence of subtype-specific determinants of neutralization, only a few studies have related the development of breadth to the specific subtype of the infecting virus. Viral load and time since infection are very strongly associated with the increased breadth of neutralizing antibody responses. Controlling for these factors is essential for the accurate and meaningful understanding of the role of subtypes and viral diversity in the development of broadly neutralizing antibodies in natural infection. Events occurring during early viral evolution are likely to have a disproportionately large effect on the development of broadly neutralizing antibodies. The role of effector functions of neutralizing and non-neutralizing antibodies, particularly antibody dependent cell-mediated cytotoxicity (ADCC), in viral control and evolution is still very unclear. Looking at early patterns of escape and identification of selective pressures driving early changes should provide insights into how these factors drive viral evolution.

The specific objectives of the project were:

1. To compare the development of broadly neutralizing antibody responses after two years of infection in two cohorts of African women with very different circulating, local HIV-1 epidemics: the CAPRISA cohort based in the KwaZulu Natal region of South Africa and the HISIS cohort based in the Mbeya region of Tanzania.

2. To study the earliest humoral responses as selective pressures driving the viral evolution and diversification process in an individual infected with HIV-1 with an emphasis on understanding the interplay of neutralizing and ADCC antibodies.

3. To study the cost on viral fitness of early adaptations to humoral responses during HIV-1 infection.

Development of effective interventions against HIV-1 is likely to result from successful integration of multiple approaches to achieve optimal results. This will therefore depend on a significantly improved understanding of the interplay between different aspects of the disease than we currently possess.
Chapter 2: Differences in HIV-1 Neutralization Breadth in Two Geographically Distinct Cohorts in Africa

ABSTRACT .. 38

2.1 Introduction .. 39

2.2 Materials and Methods .. 40
 2.2.1 Ethics statement ... 40
 2.2.2 Participants ... 41
 2.2.3 Estimation of duration of infection .. 41
 2.2.4 RT-PCR amplification and sequencing .. 42
 2.2.5 Characterization of infecting virus .. 42
 2.2.6 Panel viral isolates .. 43
 2.2.7 Cloning of envelope genes and neutralization assays ... 43
 2.2.8 Mapping of HISIS_605 plasma specificity ... 44
 2.2.9 Calculation of breadth and potency scores ... 44
 2.2.10 Statistical analyses ... 45

2.3 Results .. 45
 2.3.1 Characteristics of the two cohorts and their infecting viruses .. 45
 2.3.2 HISIS participants had greater neutralization breadth and potency ... 46
 2.3.3 Preferential recognition of subtype C viruses by HISIS participants ... 47
 2.3.4 Early viral loads were strong predictors of breadth at 2 years in both cohorts 48
 2.3.5 HISIS cohort had higher viral loads .. 49
 2.3.6 Viral characteristics and development of neutralization breadth .. 50
 2.3.7 Development of autologous neutralizing antibody responses ... 51
 2.3.8 Development of neutralizing antibody breadth in HISIS_605 ... 52
 2.3.9 Specificity of neutralizing antibody response in HISIS_605 .. 52

2.4 Discussion .. 54
ABSTRACT

It remains an open question whether different geographically distinct population groups, vary in their neutralization responses to HIV-1. Here we compared the development of HIV-1 neutralizing antibody responses, over the first two years of infection, in two African cohorts. Serum samples from 20 women from the HISIS cohort in Tanzania infected with subtypes A, C, D or unique recombinant forms, and 22 women from the CAPRISA cohort in South Africa infected with subtype C, were assayed against a multi-subtype 12-virus panel in the TZM-bl assay. There were significantly higher neutralizing antibody responses among the Tanzanian participants, 35% of whom could neutralize >50% of the panel viruses by two years post infection compared to only 9% in the CAPRISA cohort (p=0.0131). Accumulative viral loads between 3 and 12 months post infection were strongly associated with neutralization breadth (p<0.0001, r²=0.4747) and were higher in the Tanzanian cohort (p=0.0460). The HISIS cohort also had higher autologous neutralization titers at 12 months post infection (6649.76) than the CAPRISA cohort (1336.69: p=0.0327). No association was found between the neutralizing antibody breadth and dual infection, infection by intersubtype recombinant variable loop length. One elite neutralizer was identified in the HISIS cohort in whom breadth was likely attributed to antibodies directed toward the CD4 binding site. Our results show that the Tanzanian cohort had higher viral loads and an increased frequency of cross-neutralizing responses compared to the South African cohort suggesting that community viral loads play a role in the development of broadly neutralizing antibodies in different populations.
2.1 Introduction

The unprecedented viral diversity seen in the HIV-1 pandemic poses a major challenge to the development of an effective preventive vaccine. Studies on HIV-infected humans with broadly neutralizing antibody (bNAb) responses may provide important insights into how to elicit these types of responses through vaccination. Broadly neutralizing responses generally take 2-4 years to develop, and have been strongly associated with high viral loads and low CD4 counts in early infection (Gray et al., 2011; Piantadosi et al., 2009; Sather et al., 2009b). Only 10-30% of individuals develop bNAb responses (Dhillon et al., 2007; Doria-rose et al., 2010; Euler et al., 2010; Gray et al., 2011; Yuxing Li et al., 2007; McElrath & Haynes, 2010; Sather et al., 2009b; Simek et al., 2009), with approximately 1% of individuals classified as elite neutralizers (Simek et al., 2009). There have been limited studies that have directly compared neutralization responses between cohorts to determine if these responses vary between different populations infected with different subtypes.

This study compares kinetics and potency of neutralization responses in two cohorts in Africa: one in South Africa (Centre for the AIDS programme of research in South Africa, CAPRISA) exclusively infected with subtype C; and one in Tanzania (HIV superinfection study, HISIS) infected with multiple subtypes or recombinant forms. Although subtype has also been implicated in the potency and breadth of neutralizing responses (Bures et al. 2002; Brown et al. 2008; Dreja et al. 2010; M. Li et al. 2006), further investigation is warranted as these studies were cross-sectional and did not control for confounders such as viral load or time since infection. In addition, other viral envelope properties may influence the development of breadth including high viral diversity in early infection (Euler et al., 2012; Piantadosi et al., 2009; Sather et al., 2009b), infection by viruses with shorter variable loops, differences in glycosylation motifs, and amino acid changes (Rademeyer et al., 2007; van den Kerkhof et al., 2013). Furthermore, dual infection with two distinct HIV strains has also been associated with broader neutralizing antibody responses (Cortez et al., 2012; Powell et al., 2010).

The targets of HIV-specific bNAbs are common between subtypes and have been mapped to four sites of vulnerability: the CD4 binding site, membrane proximal external region (MPER), V1V2 domain, and the coreceptor/V3 region of gp120 (reviewed by Haynes et al.
2013; Walker et al. 2009; Walker et al. 2011; Stamatatos et al. 2009; McElrath & Haynes 2010; Mascola & Montefiori 2010; Pejchal et al. 2012). However, studies have shown broader neutralizing antibody responses against viruses of the same subtype as the infecting virus that elicited the response (Bures et al., 2002; Lakhashe et al., 2007; Rademeyer et al., 2007; van Gils et al., 2010) suggesting that there are subtype-specific epitope variants (i.e. that some epitopes are less variable within a subtype compared to between subtypes) (Binley et al., 2004; Brown et al., 2008; Li et al., 2006). Inter-subtype recombinant viruses in the form of circulating recombinant forms (CRF) potentially contain epitopes from discordant subtypes or provide a different scaffold for the known sites of vulnerability, and it is not clear to what extent this may impact on the development of neutralizing antibody response in natural infection.

To understand the evolution of bNAb responses in different populations in Africa, we compared the kinetics and breadth of responses in a South African and Tanzanian cohort. This study showed that participants in the Tanzanian cohort had higher viral loads and significantly broader neutralizing responses at two years post infection compared to the South African cohort.

2.2 Materials and Methods

2.2.1 Ethics statement

All laboratory and cohort work done in the HISIS study was reviewed and approved by the research ethics committees of the Ministry of Health, Tanzania; the Ludwig-Maximilians-University, Munich, Germany; and the University of Cape Town, South Africa. The CAPRISA Acute Infection study was reviewed and approved by the research ethics committees of the University of KwaZulu- Natal, the University of Cape Town, and the University of the Witwatersrand. All participants provided written informed consent for study participation.
2.2.2 Participants

Twenty-two participants from the CAPRISA 002 Acute Infection study were included in this study. CAPRISA 002 is a cohort in KwaZulu-Natal, South Africa that recruits from both urban Durban and rural Vulindlela. For the CAPRISA cohort, high risk HIV negative women monitored either monthly or three monthly for recent HIV-1 infection using two HIV-1 rapid antibody tests and PCR (Roche Amplicor v1.5). HIV-1 infection was confirmed using an enzyme immunoassay (EIA) test. Following diagnosis of HIV-1 infection, women were followed weekly for a month, bi-weekly until 3 months post-infection, monthly for one year, and 3-monthly thereafter (van Loggerenberg et al., 2008).

Twenty participants from the HIV Superinfection Study (HISIS) were included in this study. HISIS is a cohort of 600 women at high risk of HIV infection working in modern and traditional bars, guesthouses and hotels, established in Mbeya Region, south west Tanzania (Riedner et al., 2003). For the HISIS cohort, high risk seronegative women were followed three monthly and were screened for HIV infection using EIA and PCR (Roche Amplicor v1.5). Recently HIV-1 infected HISIS participants were followed up 3-monthly for up to 2 years post infection.

HIV-1 plasma RNA load for both cohorts was determined with the Roche Amplicor HIV-1 Monitor Test version 1.5 (Roche Diagnostics). The range of quantitation was ≥400 to ≤750,000 virus copies per millilitre (Saathoff et al., 2010; van Loggerenberg et al., 2008). All women were antiretroviral treatment naïve for the duration of the study.

2.2.3 Estimation of duration of infection

The estimated duration of infection for both cohorts was categorized into five stages based on evolving HIV-1 RNA or antibody profiles (Fiebig et al., 2003). Duration of infection was estimated for those in Fiebig stage I/II as 14 days; and Fiebig stages III/IV as 30 days. For participants in Fiebig stage V or VI stage, duration of infection was estimated as the midpoint between the last HIV-1 negative visit (PCR negative and seronegative) and first seropositive visits, or as 45 days prior to the first seropositive visit, whichever was closer.
2.2.4 RT-PCR amplification and sequencing

HIV-1 RNA was purified from plasma using the Qiagen Viral RNA kit, and reverse transcribed to cDNA using Superscript III Reverse Transcriptase (Invitrogen, CA). Single genome amplification (SGA) or end-point dilution was carried out on plasma from the first seropositive visit in HISIS and on the first HIV positive (serum or RNA positive) visit in CAPRISA (Salazar-Gonzalez et al., 2008). Amplicons were directly sequenced using the ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction kit (Applied Biosystems, Foster City, CA) and resolved on an ABI 3100 automated genetic analyzer. The full-length env sequences were assembled and edited using Sequencher v.4.0 software (Genecodes, Ann Arbor, MI). Multiple sequence alignments were performed using Clustal X (ver. 1.83) and edited by eye with BioEdit (ver. 5.0.9). Pairwise DNA distances and neighbor joining trees were computed using Mega 4 (Tamura, Dudley, Nei, & Kumar, 2007). Trees generated in MEGA were visualized using Dendroscope (ver. 2.3) (Huson et al., 2007).

2.2.5 Characterization of infecting virus

Infecting virus sequences in the CAPRISA cohort were subtyped using the REGA subtyping tool available at http://bioafrica.mrc.ac.za/rega-genotype/html/subtypinghiv.html (Alcantara et al., 2009; de Oliveira et al., 2005). The infecting HIV-1 virus/viruses in the HISIS cohort are described in full by Nofemela, Bandawe et al. (2011).

The presence of multiple subtype infections in the HISIS cohort was previously determined by the Mbeya Medical Research Programme and Ludwig-Maximilians-University team one year after infection by the Multi-region Hybridization Assay (MHA), using subtype A, C and D-specific fluorescent probes in five genomic regions in a real-time PCR format (Geldmacher et al., 2007; Hoelscher et al., 2002). Detection of multiple subtype C infections (dual infection) in CAPRISA was defined previously using heteroduplex mobility assay (HMA) and confirmed using single genome amplification (SGA) and sequencing (Woodman et al., 2011).
2.2.6 Panel viral isolates

Molecularly cloned full-length env genes for HIV-1 Env pseudovirus production were obtained as follows: four representative clones from the standard panel of HIV-1 subtype B reference strains (AC10.0.29, CAAN5342.A2, QH0692.42 and PVO.4: Li et al. 2005; Li et al. 2006) and the standard panel of HIV-1 subtype C reference strains (Du156.12, Du422.1, ZM214M.PL15, and ZM109F.PB4: Li et al. 2007) as well as four Kenyan acute/early subtype A env clones (Q168ENVa2, Q461ENVe2, Q842ENVd12, and Q23ENV17: Long et al. 2002; Poss & Overbaugh 1999) that have been previously described were obtained from the NIH AIDS Research and Reference Reagent Program (ARRRP).

2.2.7 Cloning of envelope genes and neutralization assays

For 16 HISIS participants, we generated functional env clones whose sequences were identical to or most closely matched the consensus of SGA-derived sequences from the earliest RNA positive visit. These molecular clones were assumed to represent the T/F virus responsible for clinical infection. First-round PCR products were used as templates to amplify full-length envelope genes. The 3-kb PCR fragments, generated using the envA-rx (5'-CACCAGCCTTGGCATCTCTGATAGCAGGAAGAA-3') and envM primers (Keele et al., 2008), were cloned into the pCDNA 3.1-TOPO vector (Invitrogen) and screened as previously described (Haaland et al., 2009).

The JC53bl-13 (TZM-b1) cell line was obtained from the NIH AIDS Research and Reference Reagent Program. 293T cells were obtained from G. Shaw. Both cell lines were cultured in DMEM (Gibco BRL Life Technologies) containing 10% heat-inactivated FBS and 50 μg/mL gentamicin (Sigma). Cell monolayers were disrupted at confluency by treatment with 0.25% trypsin in 1mM EDTA.

Env-pseudotyped viruses were obtained by co-transfecting the Env plasmid with pSG3ΔEnv (Li et al., 2005), into HEK293T cells using Fugene transfection reagent (Roche). Pseudovirus-containing supernatant was harvested 24 h following transfection and clarified by centrifugation and 0.45 μm filtration. Single-use aliquots (1.0 mL) were stored at -80°C. The 50% tissue culture infectious dose (TCID\textsubscript{50}) for each pseudovirus preparation was
determined by infection of TZM-bl cells as previously described (Gray et al. 2007; Li et al. 2005). Virus neutralization was measured using a luciferase based assay in TZM.bl cells as previously described (Gray et al. 2007). In brief, three-fold serial dilutions of plasma samples were performed in duplicate (96-well flat bottom plate) in 10% D-MEM growth medium (100 µL/well). An amount of 200 TCID50 of virus was added to each well in a 50 µL volume, and the plates were incubated for 1 h at 37°C. TZM.bl cells were then added (1x 10^4/well in a 100µL volume) in 10% D-MEM growth medium containing DEAE-dextran (Sigma, St. Louis, MO) at a final concentration of 11 µg/mL. Assay controls included replicate wells of TZM.bl cells alone (cell control) and TZM.bl cells with virus (virus control) as well as wells containing VSV-G pseudotyped virus to ensure inhibition is HIV-1 specific. Following 48-h incubation at 37°C, 150 µL of assay medium was removed from each well and 100 µL of Bright-Glo luciferase reagent (Promega, Madison, WI) was added. The cells were allowed to lyse for 2 min, and then 150 µL of the cell lysate was transferred to a 96-well black solid plate, and luminescence was measured using a Victor 3 luminometer (Perkin Elmer). Titres were calculated as the 50% inhibitory dilution (ID50) which is the serum dilution that caused a 50% reduction in relative luminescence units (RLU) compared to the level in the virus control wells after subtraction of cell control RLU.

2.2.8 Mapping of HISIS_605 plasma specificity

The consensus C (ConC) plasmid pConCgp160-opt (catalog no. 11405) was obtained through the NIH ARRRP, provided by Beatrice Hahn (University of Alabama). The following ConC mutants, containing mutations in known broadly neutralizing epitopes, were screened for neutralization activity; (V2) N160A, K169E; (V3) I307A, H330Y, N332A; (CD4 binding site, CD4bs) K360V, E362N, L369P, T372V/T373M, S375M; (V4) T408A, T415I; (C4) R416A: (V5) F468V (Mufhandu et al., 2012). Neutralization assays were conducted and the shift in the ID50 titre of the mutant relative to the wild-type pseudovirus was calculated.

2.2.9 Calculation of breadth and potency scores

Breadth and potency scores were calculated for each plasma sample to compare neutralization between samples according to the method of Blish et al. (2008). A median ID50 value was assigned to each panel virus, based on the median of all the ID50 values from every
 plasma sample tested against that virus. To define a breadth score for an individual plasma sample, the plasma/virus combinations in which the ID\textsubscript{50} was above the median ID\textsubscript{50} defined for that virus with all plasma samples were given a score of 1, and those below were scored as 0. The breadth score within each subtype was calculated and the overall breadth score was determined by summing these numbers for all 12 viruses tested. The potency score was derived by dividing the ID\textsubscript{50} value of a given plasma/virus combination by the median virus ID\textsubscript{50} value. As with the breadth score, the potency scores against all 12 panel viruses were added to obtain an overall potency score.

2.2.10 Statistical analyses

To compare the viral load measurements between the CAPRISA and HISIS cohorts, the lower and upper detection limits of those viral loads measured in the CAPRISA cohort were set artificially at 399 copies/mL and 750 001 copies/mL, respectively. For both cohorts, viral loads were measured regularly up to 4 years post infection. Generation of LOESS smoothing lines and Wilcoxon rank sum and Mann Whitney tests were performed by Lise Werner (UKZN) using Graphpad Prism. Linear mixed model analyses fitted to viral load and corrections accounting for repeated measures were performed by Lise Werner using SAS version 9.3 (SAS Institute Inc., Cary).

2.3 Results

2.3.1 Characteristics of the two cohorts and their infecting viruses

This study compared the neutralization breadth at two years post infection in 22 participants in the CAPRISA cohort (van Loggerenberg et al., 2008) recruited from rural and urban areas in KwaZulu/Natal Province, South Africa; and 20 participants in the HISIS cohort (Hoelscher et al., 2002) recruited from Mbeya region on the south-western border of Tanzania. All participants were recruited within a mean 34 days of estimated time of infection (range of 14 to 45 days), and were followed for a minimum of 2 years (range 24-27 months). Both cohorts consisted of high risk female participants who had acquired HIV via heterosexual transmission and remained anti-retroviral treatment naïve during the 2 years of follow up. Infections in the both cohorts reflected the HIV diversity of their respective local epidemics.
with HISIS participants infected with subtypes A (n=4), C (n=8), D (n=1) and recombinant viruses (n=7) [2 AC, 2 ACD, 1 AD and 2 CD] (Nofemela et al., 2011); while CAPRISA participants were all infected with subtype C viruses (van Loggerenberg et al., 2008) (Figure 1A and 1B). A description of each of the unique inter-subtype mosaic viruses from the HISIS cohort was published previously (Nofemela, Bandawe et al., 2011). Mean inter-participant pair-wise distances between infecting viruses was significantly higher for HISIS viruses at 15.63% than for the CAPRISA viruses at 10.68% (p<0.0001 Mann-Whitney).

Figure 1 A and B: Circular maximum likelihood trees showing consensus derived infecting viruses sequences from the HISIS (A) and CAPRISA (B) cohorts. Thirty reference sequences including 18 CRF sequences and a SIVcpz out-group are included (in black). Branch tips for subtype A are green, subtype B blue subtype C red, and recombinants purple.

2.3.2 HISIS participants had greater neutralization breadth and potency

Neutralization assays were conducted using a 12 pseudovirus panel consisting of four subtype A (one tier 1B; three tier 2), four subtype C (one tier 1B; three tier 2) and four subtype B viruses (1 tier 3; three tier 2: Seaman et al. 2010: Appendix D). Each plasma sample was assigned a breadth and potency score which takes into consideration the overall neutralization titre and susceptibility of each panel virus. At two years post infection, there was significantly higher breadth of neutralizing responses among the Tanzanian participants of whom 35% (7/20) developed broadly neutralizing responses (bNAbs: could neutralize >50% of the panel viruses at titres of over 1:50, ID$_{50}$>50) compared to only 9% (2/22) in the CAPRISA cohort (p=0.0139: Appendix D). Potency scores did not differ between the two cohorts but
participants in the HISIS cohort had a significantly higher mean breadth score (3.35) compared to the CAPRISA participants (0.95) (p=0.0131).

2.3.3 Preferential recognition of subtype C viruses by HISIS participants

The subtype C viruses in the panel were more commonly recognised by HISIS participants with a mean breadth scores of 1.65 against subtype C, compared to 0.8 and 0.9 against subtype A and B viruses respectively (Appendix D; Figure 2.2). CAPRISA participants, where fewer individuals developed bNAbs, did not show preferential recognition of a subtype with mean breadth scores of 0.36, 0.27 and 0.32 against subtype A, B and C respectively. Interestingly, one subtype C virus, ZM214, was neutralized by plasma from 12 HISIS participants, but was not neutralized by plasma from any individual in the CAPRISA cohort.

Figure 2.2: Hierarchical clustering of ID₅₀ neutralization titres of HISIS (A) and CAPRISA (B) donor sera and twelve panel viruses. The dendrograms on the left cluster sera according to their neutralization capacity while the dendrograms at the top cluster the panel viruses according to their neutralization susceptibilities.
2.3.4 Early viral loads were strong predictors of breadth at 2 years in both cohorts

To determine the time point at which viral load was most predictive, breadth scores were divided into three categories: no breadth (0 breadth score); cross-neutralization (1-4 breadth score); and broadly cross-neutralizing (5+ breadth score). A multinomial regression model was fitted to breadth (as a 3-level categorical outcome) at 4, 7, 13, 19 and 25 months post infection in order to determine the mean viral load most predictive of breadth at 2 years.

Table 2.1: Odds of developing a breadth of 1-4 or 5+ versus no breadth at 2 years, for every 1 log increase in log viral load at each of the individual time points (multinomial regression model performed by Lise Werner).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Odds ratio (95% CI)</th>
<th>p-value</th>
<th>Odds ratio (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log viral load</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 months</td>
<td>0.95 (0.40 – 2.16)</td>
<td>0.8576</td>
<td>4.55 (1.05 – 19.63)</td>
<td>0.0424</td>
</tr>
<tr>
<td>7 months</td>
<td>1.02 (0.39 – 2.66)</td>
<td>0.9671</td>
<td>32.41 (1.35 – 776.49)</td>
<td>0.0318</td>
</tr>
<tr>
<td>13 months</td>
<td>0.92 (0.38 – 2.23)</td>
<td>0.8449</td>
<td>2.97 (0.71 – 12.31)</td>
<td>0.1345</td>
</tr>
<tr>
<td>19 months</td>
<td>0.55 (0.23 – 1.33)</td>
<td>0.1864</td>
<td>1.59 (0.04 – 5.77)</td>
<td>0.4775</td>
</tr>
<tr>
<td>25 months</td>
<td>0.94 (0.38 – 2.34)</td>
<td>0.8883</td>
<td>3.19 (0.83 – 12.21)</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Using combined data from both cohorts, viral loads at 4 and 7 months post infection, were significantly associated with bNAb responses (p = 0.0424 and p = 0.0318) (Table 2.1). At 4 months, for every 1 log increase in viral load, there was a 4.55 times increased likelihood of having a bNAb response compared to not having a breadth response (OR 4.55; 95% CI 1.05 – 19.63; p=0.0424). Stronger associate was detected at 7 months where, for every 1 log increase in viral load, there was a 32 times increased likelihood for a bNAb response compared to not having a breadth response (OR 32.41; 95% CI 1.35 – 776.49; p=0.0318). However, accumulative viral exposure as measured by plasma viral load area under the curve (pVL AUC) between 3 and 12 months was the strongest predictor of breadth at 2 years post infection (p<0.0001; r²=0.4747). Interestingly, despite being predictive of breadth scores greater than 5, viral load was not predictive of the development of breadth scores of 1 to 4 (Table 1).
2.3.5 HISIS cohort had higher viral loads

To determine if viral load was associated with increased breadth observed in the HISIS cohort, the mean pVL AUC values was compared between the CAPRISA and HISIS cohorts. The mean pVL AUC for HISIS was significantly higher than that in CAPRISA (p=0.0460: Figure 2.3A).

Figure 2.3: A: Cumulative plasma viral load measured by the area under the curve (pVL AUC) between 3 and 12 months post infection for each individual in CAPRISA and HISIS (Mann-Whitney test). B: Comparison of total V1–V5 amino acid loop lengths of derived transmitted/founder virus sequences from HISIS and CAPRISA cohorts. Horizontal bars indicating median lengths are in red. C: Comparison of individual variable loop amino acid lengths of derived transmitted/founder virus sequences from HISIS and CAPRISA cohorts. Horizontal bars indicating median lengths are in red.

To determine how much of the differences in neutralizing responses could be attributed to factors other than viral load, we fitted a multinomial model after adjusting for pVL AUC. In this adjusted model, we found that HISIS cohort participants were 10.21 (95% CI 0.65–160.88 p=0.0986) times at greater odds of developing bNAb responses compared to the CAPRISA participants. This compared to only 5.88 greater odds in the unadjusted model (OR 5.88, 95% CI 0.90 – 33.3; p=0.0644). Although this difference was not statistically significant, this result indicated that factors, in additional to elevated viral loads, may have contributed to the development of greater breadth in the HISIS cohort.
2.3.6 Viral characteristics and development of neutralization breadth

Of the 20 participants in the HISIS cohort, eight (40%) were infected with subtype C, and seven (35%) were infected with an intersubtype recombinant virus. To investigate the influence of subtype C and recombinant viruses on the development of breadth, HISIS participants were partitioned into subtype C and “other” infections (non-C and recombinants) as well as into “pure” HIV subtype versus inter-subtype recombinant infections. Subtype C infections had lower mean breadth scores compared to other infections (2.25 and 4.08 respectively) but this was not statistically significant (p=0.1577). The mean breadth score for recombinant virus infections was higher compared to pure subtypes (4.71 and 2.62 respectively), but this difference was also not statistically significant (p=0.1840: Wilcoxon rank sums exact test) both before and after accounting for viral load. While viral subtype did not appear to be a major factor in the development of breadth in the HISIS cohort, a larger sample size is needed to address the effect of subtype on neutralization breadth.

Dual infections have been associated with breadth of neutralizing antibody responses (Cortez et al., 2012; Powell et al., 2010). Dual infection data was available for participants in the HISIS and CAPRISA cohort (Herbinger et al., 2006; Woodman et al., 2011). In the HISIS cohort, 7/20 (35%) were dually infected compared to 4/22 (18%) in the CAPRISA cohort (Appendix D). Dual infection was not associated the development breadth in either of the cohorts nor in a combined analysis (using a Wilcoxon ranks sum test and multinomial regression model).

We then investigated if there were other genotypic features of infecting viruses that may affect the development of the neutralizing antibody response. A comparison of variable loops between the cohorts found that there was no significant difference in V1-V5 length (Figure 2.3B), but that HISIS viruses in early infection had significantly longer V2 (p=0.03) and V4 (p=0.0133) loops than CAPRISA viruses (Figure 2.3C). However, unlike previous studies (Rademeyer et al., 2007), there was no association between loop length of the infecting virus and development of breadth in this small cohort study.
2.3.7 Development of autologous neutralizing antibody responses

We then compared the kinetics of autologous neutralizing antibody responses in the CAPRISA cohort with those of the HISIS cohort (Figure 2.4). Previously published data from the CAPRISA cohort showed that individuals had a median time to first detection of autologous neutralization of 19 weeks (Gray et al. 2007). Twelve of the fourteen participants studied here had developed responses with titres over 100 at 20 weeks post infection. In the HISIS cohort, fourteen of the sixteen participants tested also developed responses by 20 weeks post infection. Most participants (11/16) could neutralize their infecting virus with titres over 1,000 at 12 months with four participants, HISIS_54, HISIS_142, HISIS_304 and HISIS_605, reaching extremely high titres of over 10,000. No CAPRISA participant had reached titres of 10,000. Median autologous neutralizing antibody titers at 12 months post infection were higher in HISIS (6649.76) than in CAPRISA (1336.69) (p=0.0327, Wilcoxon signed rank test). HISIS_98 developed a very weak neutralization response to its infecting virus, and was unable to neutralize any heterologous virus at 2 years post infection.

Figure 2.4: The development of autologous neutralizing antibody responses in HISIS (A) and CAPRISA (B). A functional envelope clone representing the transmitted/founder or an early virus for each of 16 HISIS and 14 CAPRISA participants was tested against longitudinal samples of autologous plasma in an Env-pseudotyped virus neutralization assay. Results are shown as neutralization titres (ID\textsubscript{50}). CAPRISA assays were performed by Penny Moore (NICD).
2.3.8 Development of neutralizing antibody breadth in HISIS_605

HISIS_605 showed the broadest response and neutralized 83% of the virus panel which is highly unusual after only 2 years of infection (Figure 2.2). This participant was infected with a subtype A/C recombinant virus (Nofemela, Bandawe et al. 2011) and neutralized 3 subtype A viruses at ID$_{50}$ values of over 1,000, two subtype Cs and one subtype B and subtype D virus with ID$_{50}$ of over 300 fulfilling the definition of an elite neutralizer (Simek et al., 2009). There was no cross reactivity at 36 weeks (9 months), and some cross neutralization was detected at 52 weeks (12 months) post infection with strong neutralization of Du156 and some weak neutralization of Q168 (Figure 2.5A). By 15 months post infection, HISIS_605 was able to neutralize 72% of the panel viruses. This was significantly faster than the most potent neutralizer in the CAPRISA cohort, namely CAP256, who was able to neutralize 50% of the panel after 2 years and 83% of the panel after 3 years of infection through the development of antibodies to the V1V2 loop (Gray et al., 2011).

2.3.9 Specificity of neutralizing antibody response in HISIS_605

To identify the major target of this elite neutralizer we focussed on sites that we found to be significantly more conserved in neutralization sensitive viruses relative to neutralization resistant viruses based on the entropy at each gp160 position in the 12 panel viruses. Twenty two sites were identified, of which 14 were located in the V2, V3, CD4 binding site (CD4-bs), and V4, C4 and V5 regions. We performed mapping studies with pseudoviruses with mutations in that would abrogate recognition of the well-known bNab targets (provided by Morris laboratory, NICD). Reductions in the ability of plasma to neutralize the ConC virus were observed with the CD4-bs mutations K360V, E362N, L369P and S375M (Figure 2.4B). For position 362 there was a 15-fold (93%) reduction in titre from 1:2,014 to 1:130 while at position 375 there was a reduction in titre to 1:196 (90%). Mutations at positions 360 and 369 also reduced the titres to 1:405 (80%) and 1:500 (75%) respectively (Figure 2.5B). These residues overlap the CD4 binding loop (Figure 2.4C and D) with residues Asp368, Glu370 and Lle371 involved in direct interactions with CD4 (Huang et al., 2004). Residues at positions 360 and 362 overlap with the binding sites of VRC01 mAb (Zhou et al., 2010). The V3 mutant I307A, shown to make viruses very sensitive to CD4-Ig as well as monoclonal
antibody b12 (Li et al., 2011), was extremely sensitive to the HISIS_605 plasma at an elevated titre of >10,000.

Figure 2.5 A: Kinetics of development of neutralizing antibody breadth in HISIS_605 over time. Sequential serum samples were tested against 9 of the panel viruses. Subtype A viruses are in green, subtype B viruses blue, subtype C viruses red, and autologous transmitted/founder AC recombinants in grey. **B:** Identification of residues involved in neutralization of ConC by HISIS_605 plasma. Residues that most affected neutralization are shown in red (E362N: 15-fold reduction and S375M: 11 fold reduction) and others in orange (K360V: 5-fold reduction and L369P: 4-fold reduction). **C and D:** Three dimensional model showing residues involved in the specificity associated with neutralization by HISIS_605 plasma. The inner domain of gp120 is in grey while the outer domain is in blue. Residues directly involved in CD4 binding are highlighted in cyan and residues that affect the recognition of ConC by HISIS_605 plasma are in red and orange. The ribbon structure (C) as well as the surface view (D) is shown.
2.4 Discussion

In this study, we showed different frequencies of broadly neutralizing antibody responses in two female cohorts in Africa, with the HISIS participants from Tanzania having broader neutralizing antibody responses at two years post infection compared to the CAPRISA participants from South Africa. Participants in the HISIS cohort also had more potent autologous neutralizing antibody responses at 12 months post infection. We found that VL was predictive of the development of breadth with cumulative VL between 3 and 12 months being most strongly associated with breadth at 2 years. The HISIS cohort had higher VL accounting for much of the difference observed in breadth between the two populations. However, other factors may still play a role as the odds of developing breadth in HISIS remained higher than in CAPRISA even after correction for viral load. The role of subtype effects, dual infection and other virological characteristics of the infecting virus could not be established, mainly because of the limited size of the study. However, we demonstrate an important role for the VL in shaping the neutralizing antibody responses in different geographical regions.

The association between VL and neutralization breadth has been established by several groups (Doria-rose et al., 2010; Ferreira et al., 2013; Mikell et al., 2011; Sajadi et al., 2011; Sather et al., 2009b) and like others we found a strong association. VL is an important factor in transmission of HIV-1 and higher community VL in sub-Saharan Africa has been identified as a major driver of the explosive epidemics observed in the general populations of this region when compared to other regions across the globe (Abu-raddad et al., 2012). Our study finds that community VL differs within the sub-Saharan region with the higher VL in the East African cohort compared to South Africa. Higher VL in the East African cohort could be driven by the presence of tropical co-infections such as malaria (Abu-Raddad et al., 2006; Cuadros et al., 2011), a factor which absent in South Africa (Snow et al., 2005). There are also substantial genetic variations between African populations which may provide another explanation for differences in VL. The lack of an incremental association of breadth and VL may be explained by the fact that there is an optimal range within which VL positively affects the development of breadth. Sajadi et al., (2011) noted that at VLs of below 100 HIV-1 RNA copies/ml and above 10000 HIV-1 RNA copies /ml the development of
breadth was affected either by insufficient antigenic stimulation or B-cell dysfunction respectively.

Because of the small sample size of our study, we were unable to fully address any possible effect of subtype on the development of breadth. Subtype specific differences in ability to elicit breadth of responses have been reported for subtypes A, C, D, CRF02_AG and CRF01_AE in comparison with subtype B infections (Brown et al., 2008; Dreja et al., 2010), however, these studies were cross sectional and thus were unable to account for time since infection. Additionally, there remains a paucity of data on how recombinant forms (CRFs or URFs) affect the development of breadth of neutralizing antibody responses. This and the role of other virological factors remains an important question in the field requiring a much larger study.

Breadth develops incrementally over two to four years (Gray et al., 2011) and cross neutralizing antibodies develop, on average, after 2.5 years with a rare few individuals showing early breadth at one year (Mikell et al., 2011). In this study, one individual from the HISIS cohort developed cross-neutralizing responses as early as one year of infection, and was classified as an elite neutralizer by 2 years post infection with neutralization data from mutational analysis suggesting they targeted the CD4 binding site on the HIV envelope. In agreement with several other studies (Li et al., 2007; Lynch et al., 2012; Mikell et al., 2011; Sather et al., 2009b; Zhang et al., 2012) we observed that broad and potent neutralizing antibody responses that bind to the CD4-bs of the HIV envelope can emerge early during infection.

In conclusion, the CAPRISA and HISIS cohorts have enabled us to directly compare the development of breadth in neutralizing antibody responses in populations with different local epidemics. Differences in the local epidemics, particularly the presence of co-infections and genetic differences which may influence viral loads and thus the development of bNAb responses need to be considered as they may have implications for the continued efforts to understand how to elicit these responses through vaccination.
Chapter 3: Neutralizing Antibody Escape Pathways Constrained by Antibody-Dependent Cellular Cytotoxicity (ADCC) Responses

Abstract .. 56

3.1 Introduction .. 58

3.2 Materials and methods .. 59
 3.2.1 Study participant samples ... 59
 3.2.2 Single genome amplification and sequencing ... 59
 3.2.3 Sequence analysis ... 60
 3.2.4 Identification of sites under positive selection pressure in CAP63 60
 3.2.5 Cloning and generation of pseudoviruses ... 60
 3.2.6 Cell lines .. 61
 3.2.7 HIV-1 env pseudovirus production and titration .. 61
 3.2.8 Neutralizing antibody assays .. 61
 3.2.9 Construction of infectious molecular clones (IMCs) .. 62
 3.2.10 Mutagenesis of envelope and infectious molecular clones ... 62
 3.2.11 Generation of virus stocks from infectious molecular clones ... 62
 3.2.12 Titration of virus stocks from infectious molecular clones ... 62
 3.2.13 Infection of CEM.NKR CCR5 Cell Line with HIV-1 IMC .. 63
 3.2.14 Intracellular p24 staining of infected CEM NKR CCR5 cells .. 63
 3.2.15 Recombinant gp120 HIV-1 Proteins ... 64
 3.2.16 ADCC-GranToxiLux (ADCC-GTL) assay ... 64

3.3 Results .. 65
 3.3.1 Evidence of early changes in Env .. 65
 3.3.2 Early adaptations in CAP63 .. 67
 3.3.3 Early neutralizing antibody responses in CAP63 .. 70
 3.3.4 Early ADCC responses in CAP63 .. 70
 3.3.5 Changes in V4 affected neutralization sensitivity ... 72
 3.3.6 V4 neutralizing antibody mutations facilitate escape from ADCC responses in CAP63 ... 74
 3.3.7 The 6D_391 deletion escapes neutralizing antibody responses but becomes highly sensitive to ADCC .. 75
 3.3.8 ADCC activity constrains pathways of escape from neutralizing antibody responses 77

3.4 Discussion ... 78
Abstract

While neutralizing antibodies are considered central to the development of an HIV vaccine, ADCC activity correlated with reduced risk of HIV-1 acquisition in the RV144 trial. There is limited understanding of the overlapping ADCC and neutralizing antibody functions in early infection. This study investigated the kinetics and targets of neutralizing and ADCC antibody responses in early infection.

We analysed 16 individuals from HISIS and 14 from CAPRISA for evidence of early immune escape in gp160. Six individuals showed evidence of early changes and in three individuals changes were detectable before neutralizing antibody responses. One individual was selected and characterised in detail. In this individual (CAP63) ADCC responses were present at enrolment (4 weeks post infection) and neutralizing antibody responses emerged at 7 weeks post infection. By 11 weeks, five neutralization escape patterns were identified by sequence analysis and confirmed through mutagenesis and pseudovirion neutralization assays. One virus escaped through point mutations and four viruses escaped through deletions of 5 to 9 amino acids at various positions starting at codons 391-399 in the V4 region.

Four of these neutralizing antibody escape adaptations in CAP63 were also confirmed to mediate escape from ADCC via a GranToxilux ADCC assay. One (6D_391) rendered the virus more sensitive to ADCC mediated by autologous plasma as well as two control plasma samples and a monoclonal antibody A32. Viruses containing the 6D_391 deletion were absent from the viral population sampled at 29 weeks post infection.

This study defines the first ADCC epitope reported in the V4 region and demonstrates a common epitope recognised by antibodies with ADCC and neutralizing activity. The elimination of the neutralization resistant/ADCC sensitive variant suggests that antibody effector functions apply additional pressure on the virus which may constrain neutralization escape pathways.
3.1 Introduction

It is generally accepted that broadly neutralizing antibodies against HIV-1 will be important responses to elicit through vaccination. However non-human primate SIV/SHIV models suggest that the other antibody effector functions, such as antibody-dependent cell cytotoxicity (ADCC), may also play a role both in protection from infection, and in the modification of disease progression (Alpert, Harvey, et al., 2012; Florese et al., 2009; Gómez-Román et al., 2005; Hidajat et al., 2009; Xiao et al., 2010, 2012). In humans, the V2 region of HIV-1 is a major target of broadly neutralizing antibodies (Haynes & McElrath, 2013) but the immune correlate analysis of the RV144 vaccine trial showed that, V2 binding antibodies and low levels of plasma IgA Env antibodies in association with high levels of ADCC, were inversely correlated with infection risk (Haynes, Tomaras, et al., 2012). Furthermore, in natural infection, ADCC antibodies in breast milk have been correlated with reduced vertical transmission from viremic mothers (Mabuka et al., 2012).

Cytotoxic T lymphocytes (CTLs) are associated with the control of HIV replication during acute infection (Goonetilleke et al., 2009; Koup et al., 1994). In contrast, the first antibodies to arise following infection are binding antibodies targeting gp41, and these are thought to have little or no impact on the virus (reviewed by Alter & Moody, 2010). CTL escape accounts for some, but not all, of the changes seen in early env evolution (Abrahams et al., 2013; Liu et al., 2013; Wood et al., 2009). A recent study found evidence of low levels of neutralizing antibodies as early as two weeks post seroconversion which were sufficient to result in viral escape (Bar et al., 2012). However, little is known about escape from effector mediated antibody functions, such as ADCC, which generally arise before neutralizing antibodies.

The relationship between the neutralization and ADCC antibody functions has been difficult to unravel due to lack of clearly defined ADCC epitopes. This gap is in part due to many different methods used to study ADCC (or other Fc receptor-mediated activity) which may be measuring slightly different functions. These methods have relied on targets coated with peptides or recombinant forms of Env (reviewed in chapter 1), whereas mutant whole Env proteins are required to accurately map escape from ADCC responses (Isitman et al., 2012). Due to the high plasticity of the viral genome, identification of escape mutations through
sequencing is a sensitive tool for evaluating immune pressure acting on the virus. Single genome amplification based approaches have enabled the identification of the transmitted/founder viruses (Keele et al., 2008). Tracking of their evolving progeny thereby allowing us to determine the selective pressures that are acting on the virus through the footprints of these pressures on the viral quasispecies (Abrahams et al., 2013; Bar et al., 2012). Specifically, this approach can be used to investigate how ADCC responses influence viral evolution in natural infection and provide further insights into the importance of ADCC responses in HIV infection.

Broadly reactive and effective ADCC activity has been demonstrated for non-neutralizing monoclonal antibodies such as A32 (Ferrari et al., 2011). However, neutralizing and ADCC functions can also be mediated by the same IgG response and their epitope recognition footprint often overlaps (Alpert, Harvey, et al., 2012; Fouda et al., 2011; Pollara et al., 2013; Smalls-Mantey et al., 2012). In such cases, it is possible that the antibody effector functions apply additional pressure on the virus. Such pressure could result in the generation of ADCC-induced mutations that could influence susceptibility to neutralizing antibodies, or vice versa.

In this chapter, we investigate the pattern of early escape in an individual from the CAPRISA cohort in whom we detected significant changes to the viral envelope within 13 weeks of infection. We characterised the timing and effects of these changes in the Envelope protein on neutralizing and ADCC antibody recognition. We aimed to determine how the interplay between the neutralizing and effector mediated functions of early antibody responses affects viral evolution in natural HIV-1 infections.

3.2 Materials and methods

3.2.1 Study participant samples

Longitudinal plasma samples were obtained from the HISIS and CAPRISA cohorts as detailed in Chapter 2.2.2.

3.2.2 Single genome amplification and sequencing

Viral sequences were generated using the single genome amplification method as detailed in Chapter 2.2.4.
3.2.3 Sequence analysis

Sequence alignments, amino acid identity plots and participant consensus sequences were generated using BioEdit version 7.0.8.0 (Hall, 1999). The transmitted full-length envelope virus sequence for each participant was taken as the consensus of all sequences generated from the earliest sampled timepoint (Keele et al., 2008). Maximum likelihood trees were generated using Mega version 4 (Tamura et al., 2007). The Los Alamos Highlighter tool (www.hiv.lanl.gov/content/sequence/HIGHLIGHT/highlighter) was used to generate plots of synonymous and non-synonymous nucleotide changes.

3.2.4 Identification of sites under positive selection pressure in CAP63

Site-specific non-synonymous to synonymous substitution (dN/dS) rate ratios across each gene were estimated using the MG94xHKY85 codon model (Kosakovsky Pond & Frost, 2005). We allowed dS to vary across codon sites and employed the Dual model which takes into account that dS may vary independently of dN (Kosakovsky Pond & Muse, 2005). The models were implemented within the HyPhy package (Kosakovsky Pond et al., 2005) and ensured that the correct phylogenetic relationships were used for sequence regions that were separated by recombination breakpoints (Scheffler, Martin & Seoighe, 2006). For graphical representation of sites under selection, the (p-value)$^{-10}$ is used enabling lower p-values to be displayed as taller bars.

3.2.5 Cloning and generation of pseudoviruses

PCR amplification of HIV-1 env genes was done using the SGA approach previously described (Abrahams et al., 2009; Keele et al., 2008) or a limiting dilution PCR. The second round PCR reaction was repeated using the high fidelity Phusion Hot Start DNA Polymerase (Finnzymes), together with, 0.2 mM dNTPs (Roche), 4 µM of Env 1A-Rx (5’ CAC CGG CTT AGG CAT CTC TTA TAG CAG GAA GAA 3’) and EnvN (5’ CTG CCA ATC AGG GAA AGT AGC CTT GT 3’) in a final volume 50 µL. The cycling conditions for this reaction were as follows: denaturing at 94 ºC for 5 minutes, 45 cycles of 94 ºC for 30 seconds; 55 ºC for 30 seconds; 72 ºC for 4 minutes, and final extension step at 72 ºC for 10 minutes. The amplicons were gel purified and cloned into the mammalian expression vectors pcDNA3.1D/V5-His-TOPO (Invitrogen) or pTarget (Promega, US) according to the
manufacturer’s instructions. Functional envelope clones were selected using a 96-well plate format pseudovirion entry efficiency assay based on relative luminescence units (RLU) that is 2.5 times above background.

3.2.6 Cell lines

TZM-bl cells, also known as JC53bl-13 cells (Montefiori et al., 2004) were obtained from the NIH AIDS Research and Reference Reagent Program Division of AIDS, NIAID, NIH. 293T/17 cells were obtained from Dr George Shaw (University of Alabama, Birmingham, AL). Both cell lines were cultured in D-MEM (Gibco BRL Life Technologies) containing 10% heat-inactivated fetal bovine serum (FBS) and 50 µg/mL gentamicin (Sigma). Cell monolayers were disrupted at confluency by treatment with 0.25% trypsin in 1 mM EDTA. CEM.NKRCR5 and CEM.NKR_LUC cells from Dr. Alexandra Trkola were obtained through the NIH AIDS Reagent Program, Division of AIDS, NIAID, and NIH.

3.2.7 HIV-1 env pseudovirus production and titration

Stocks of HIV-1 env pseudovirus were produced by co-transfecting 293T/17 cells (1.7x10^7 cells per T75 flask) with 4 µg of an HIV-1 rev/env expression plasmid and 8 µg of an env-deficient HIV-1 backbone plasmid (pSG3ΔEnv) (M. Li et al., 2005) using the PolyFect Transfection Reagent (QIAGEN). Pseudovirus-containing supernatants were harvested 48h following transfection and clarified by 0.45 µm filtration and adjusted to 20% FBS. Single-use aliquots (1.0 mL) were stored at -80°C. The 50% tissue culture infectious dose (TCID_{50}) for each pseudovirus preparation was determined by infection of TZM.bl cells as previously described (Gray et al. 2007; Li et al. 2005).

3.2.8 Neutralizing antibody assays

Virus neutralization was measured by luciferase based assay as described in Chapter 2.2.7.
3.2.9 Construction of infectious molecular clones (IMCs)

Infectious molecular clones representing the transmitted/founder virus sequences of CAP45, CAP63, CAP210 and CAP239 were constructed from proviral DNA by Florette Treurnicht (UCT) in collaboration with members of the Kappes laboratory at the University of Alabama at Birmingham (UAB) using the method described in detail by Ochsenbauer et al., (2012).

3.2.10 Mutagenesis of envelope and infectious molecular clones

Site-directed mutagenesis was used to introduce mutations and deletions into the CAP63_T/F IMC using a QuikChange II site-directed mutagenesis kit (Stratagene). Mutagenesis primers used are listed in appendix F and properties of mutant viruses are listed in Table 3.2. All mutations were confirmed by full length sequencing of the pseudovirus (PSV) or IMC. The following PSV mutants were generated; CAP63_PSV_6D-391, CAP63_PSV_7D-397, CAP63_PSV_9D-396, and CAP63_PSV_5D-399. For the GLY_398_404 adaptation, two separate pseudoviruses, CAP63_PSV_GLY _398 and CAP63_PSV_GLY_404, were constricted to individually test the effect of each glycan on the neutralization sensitivity of the virus. The following IMC mutants were generated; CAP63_IMC_GLY404, CAP63_IMC_6D-391, CAP63_IMC_7D-397, CAP63_IMC_9D-396, and CAP63_IMC_5D-399.

3.2.11 Generation of virus stocks from infectious molecular clones

Stocks of live HIV-1 IMC virus were produced by transfecting 293T/17 cells (3x10⁶ cells per T75 flask) with 12 µg of an HIV-1 IMC plasmid DNA using the FUGENE Transfection Reagent (Roche). IMC virus-containing supernatant was harvested 48h following transfection and clarified by centrifugation and 0.45 µm filtration and adjusted to 20% FBS. Single-use aliquots (1.0 mL) were stored at -80°C and the harvest date recorded. To expand the stock, 12mL of Growth Media (GM) was added to the cells and incubated overnight. A second harvest was performed as outlined above and the harvest date recorded.

3.2.12 Titration of virus stocks from infectious molecular clones

The TCID₅₀ for each IMC virus preparation was determined both by infection of TZM.bl cells and CEM.NKR_LUC cells as previously described (Gray et al., 2007; Li et al., 2005).
μl of virus stock was placed in a total volume of 100 μL of GM and 11 serial 5-fold dilutions were made in a 96 well plate. Virus dilutions were co-incubated with 60,000 cells in 100 μl RPMI-12%-GM containing 16 μg DEAE-Dextran/mL for 4 days. On day 4, 100 μl of the cell suspension was placed in a 96-well solid white plate. 100μL of BriteLite Plus (Perkin Elmer) was added to the white plate and incubated for 2 minutes. Luminescence was read in a luminometer using the 1.0 sec/well protocol implemented by the computer program Wallac (Perkin Elmer).

3.2.13 Infection of CEM.NKR_{CCR5} Cell Line with HIV-1 IMC

HIV-1 IMC virus stocks were titrated on CEM.NKR_{CCR5} to determine the input that achieved optimal viral gene expression within 72 h post infection, as measured by detection of intracellular p24 expression. IMC virus stock volumes of 900 μL, 300 μL and 100 μL were used to infect 2x10⁶ cells for 72 hours and levels of intracellular p24 were assayed. Having determined the volume of stock that gave the highest rates of infection for each IMC by intracellular p24 staining, we subsequently infected 2 x 10⁶ cells with each IMC by incubation with the appropriate dose of IMC for 0.5 h at 37°C and 5% CO₂ in the presence of DEAE-Dextran (7.5 μg/mL). The cells were subsequently resuspended at 0.5 x 10⁶/mL and cultured for 2 days in complete medium containing 7.5 μg/mL DEAE-Dextran. On assay day, the infection was monitored by measuring the frequency of cells expressing intracellular p24. The assays performed using the IMC-infected target cells were considered reliable if the percentage of viable p24+ target cells on assay day was ≥20%. The data are presented after normalizing to the % of target cells positive for intracellular p24.

3.2.14 Intracellular p24 staining of infected CEM NKR CCR5 cells

Following 72 h of infection, cells were washed in PBS, dispensed in 96-well V-bottom plates at 1 x 10⁵ viable cells per well, and stained with a vital dye (LIVE/DEAD Fixable Aqua Dead Cell Stain, Invitrogen) to exclude non-viable cells from subsequent analyses. The cells were then washed twice with 250 μL per well of washing buffer (WB; PBS + 1% FBS) and incubated with Cytofix/Cytoperm (BD Bioscience, San Jose, CA) for 20 min at 4°C. The cells were then washed twice with 200 μL of 1% Cytoperm washing buffer. After the final wash, the anti-p24 Ab (clone KC57-RD1; Beckman Coulter) was added to a final dilution
1:400 and the plates were incubated for 30 min at 4°C. The plates were washed twice with WB, and the cells were resuspended in 200 µL 1% formaldehyde-PBS. The samples were acquired within 24 hours using the LSR II flow cytometer. A minimum of 10,000 total singlet events was acquired for each analysis. Gates were set to include singlet and live events. The appropriate compensation beads were used to compensate the spillover signal for the two fluorophores. Data analysis was performed using FlowJo 8.8.4 software (TreeStar, Ashland, OR). The uninfected CEM.NKR_{CCR5} and the chronically infected A1953 cell lines were used to titer the vital dye and the anti-p24 Ab, and were used as negative and positive controls, respectively, for the described staining procedure.

3.2.15 Recombinant gp120 HIV-1 Proteins

Recombinant gp120 HIV-1 protein representing the envelope of the HIV-1 subtype C isolate CAP45.2.00 (GenBank No. DQ435682; Immune Technology, New York), was used to coat CEM.NKR_{CCR5} target cells by incubating 1 x 10⁶ cells in 1 mL RPMI media with 20 µg/mL gp120 for 90 min at 48°C.

3.2.16 ADCC-GranToxiLux (ADCC-GTL) assay

ADCC activity was detected according to a modification of the GranToxiLux (GTL) cell-mediated cytotoxicity procedure (Liu et al., 2002; Packard et al., 2007) with the assay performed in 96-well plates as follows. Infected and uninfected CEM.NKR_{CCR5} target cells were counted, washed, resuspended in R10 at 1 x 10⁶ cell/mL, and labelled with a fluorescent target-cell marker (TFL4; OncoImmunin, Gaithersburg, MD) and a viability marker (NFL1; OncoImmunin) for 15 min in a 37°C water bath as specified by the manufacturer. After two washes using 10 mL of R10, viable cells were counted using a Guava PCA (Millipore, Billerica, MA) and adjusted to reach a final viable effector to viable target ratio of 30:1 to PBMC effector cells. Twenty-five µL of each effector and target cell suspension and 75 µL of GzB substrate (OncoImmunin) was dispensed into each well of a 96-well V-bottom plate. After incubation for 5 min at room temperature, 25 µL of the appropriate anti-body or IgG dilutions were added to the target/effector cell suspension and incubated for 15 min at RT. The plates were subsequently centrifuged for 1 min at 300g, and incubated for 1 h at 37°C and 5% CO₂. After two washes with WB, cells were resuspended in 225 µL of WB, placed at
4°C, and acquired directly from the assay plate with the LSRII (BD Bioscience, San Jose, California) within 6 h using the high-throughput system (HTS, BD Bioscience, San Jose, California). A minimum of 2.5×10^3 and 5×10^3 events representing viable gp120-coated and infected target cells, respectively, was acquired for each condition. The signal for each fluorophore was detected using: (1) 640 nm/40 mW laser and 660/20 filter for TFL4; (2) 405 nm/50 mW laser and 450/50 filter for NFL1; and (3) 488 nm/20 mW laser and the combination of 505LP with 525/50 filters for the GzB substrate. The spectral properties of the fluorescent molecules utilized in this panel meant no manual compensation of the signals was required to analyse the data, as reported elsewhere (Liu et al., 2002). Data analysis was performed using a dedicated analysis template that reflecting the gating strategy on FlowJo 8.8.4 software (Tree Star Inc). All wells with more than 8% of cells positive for granzyme were considered positive for granzyme activity and the ADCC titer was the highest antibody dilution at which the cut-off 8% GzB level of activity was achieved (Pollara et al., 2011).

3.3 Results

3.3.1 Evidence of early changes in Env

To identify individuals with evidence of early adaptations in the envelope gene we analysed sequences from 30 individuals infected by a single variant at transmission as identified by Abrahams et al., (2009) and Nofemela, Bandawe et al., (2011). Envelope SGA sequences generated from the first HIV positive visit (< 3 months/13 weeks post infection) included: 153 from 16 individuals from the HISIS cohort (Nofemela, Bandawe et al., 2011); and 280 from 14 individuals from the CAPRISA cohort (Abrahams et al., 2009). Escape from neutralizing antibodies in early infection is typically observed as changes in the lengths of the envelope hyper-variable domains resulting from insertions and deletions (indels), as well as shifting carbohydrate moieties in and around the outer surface of the protein (Moore et al., 2008; Rong, Gnanakaran, Decker, Bibollet-Ruche, et al., 2007; Wei et al., 2003). Sequences from four out of 16 participants from the HISIS cohort and two out of 14 participants from the CAPRISA cohort had changes suggestive of neutralization escape (Table 3.1). In three of these individuals, HISIS_556, CAP63 and CAP210, these adaptations were observed prior to neutralizing antibody responses, which were detected at 26 weeks (Chapter 2), 19 weeks (Gray et al., 2007) and 49 weeks (Abrahams et al., 2013) respectively.
Table 3.1A: HISIS cohort: Summary of adaptations observed in gp160 of transmitted/founder virus sequence in the first 13 weeks of infection (Nofemela, Bandawe et al., 2011).

<table>
<thead>
<tr>
<th>Participant ID</th>
<th>Sequence changes</th>
<th>Timing (weeks)</th>
<th>Change</th>
<th>HXB env position</th>
<th>Env region</th>
<th>Timing of nAbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>HISIS_398</td>
<td>Glycan shift</td>
<td>12</td>
<td></td>
<td>454</td>
<td>V5</td>
<td><13 weeks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HISIS_556</td>
<td>Deletion</td>
<td>12</td>
<td></td>
<td>130</td>
<td>V1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deletion</td>
<td>12</td>
<td></td>
<td>193</td>
<td>V2</td>
<td>26 weeks</td>
</tr>
<tr>
<td></td>
<td>Deletions</td>
<td>12</td>
<td></td>
<td>467, 478</td>
<td>V5</td>
<td></td>
</tr>
<tr>
<td>HISIS_477</td>
<td>Glycan loss</td>
<td>12</td>
<td></td>
<td>230</td>
<td>V2</td>
<td><13 weeks</td>
</tr>
<tr>
<td></td>
<td>Glycan shift</td>
<td>12</td>
<td></td>
<td>397, 401</td>
<td>V4</td>
<td></td>
</tr>
<tr>
<td>HISIS_515</td>
<td>Deletion</td>
<td>7</td>
<td></td>
<td>390</td>
<td>V4</td>
<td>ND</td>
</tr>
</tbody>
</table>

Table 3.1B: CAPRISA cohort: Summary of adaptations observed in gp160 of transmitted/founder virus sequence in the first 13 weeks of infection (Abrahams et al., 2013).

<table>
<thead>
<tr>
<th>Participant ID</th>
<th>Sequence changes</th>
<th>Timing (weeks)</th>
<th>Change</th>
<th>HXB env position</th>
<th>Env region</th>
<th>Timing of nAbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAP63</td>
<td>deletions, glycans</td>
<td>11</td>
<td></td>
<td>Deletions 391, 396, 397, 399, glycans 398, 404</td>
<td>V4</td>
<td>19 weeks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAP210</td>
<td>deletions</td>
<td>12</td>
<td></td>
<td>391</td>
<td>V4</td>
<td>49 weeks</td>
</tr>
</tbody>
</table>
3.3.2 Early adaptations in CAP63

To elucidate interplay between neutralizing and ADCC responses driving these early changes, we studied one individual, CAP63, in detail. This individual was selected as her virus had large deletions in the V4 region at 11 weeks post infection, prior to the detection of neutralizing antibodies at 19 weeks post infection (Abrahams et al., 2013; Gray et al., 2007) (Table 3.1). Previous work had identified that the neutralization epitope was located in the V4 region (Gray et al., 2007). We hypothesized that these changes in V4 were due to escape from either low levels of neutralization antibodies prior to detectable neutralization responses, or from ADCC responses. CAP63 maintained high viral loads throughout infection (Figure 3.1) and progressed rapidly to AIDS within 55 weeks when her CD4+ T-cell count dropped below 200 cells/µL and antiretroviral therapy was initiated according to prevailing guidelines (Republic of South Africa, Department of Health, 2005).

![Figure 3.1: Viral load, CD4 counts and humoral responses in CAP63 over the 37 weeks of infection. Viral load is shown by the red dotted line, ADCC titres against CEM NKRCCR5 cells infected with CAP63_T/F_IMC virus shown by the blue line, neutralizing antibody (nAb) titres (ID\textsubscript{50}) against CAP63_T/F pseudovirus shown by the green line and are all plotted on the left axis. CD4 count is shown by the orange dotted line and is plotted on the right axis. VL and CD4 counts were performed by the CAPRISA AI Study team (UKZN).](image-url)
CAP63 was infected with a single founder virus (Abrahams et al., 2009). To identify sites under selective pressure, we obtained a total of 89 full length gp160 sequences from 2 weeks (n=30), 4 weeks (n=11), 11 weeks (n=8), 29 weeks, (n=29) and 37 weeks post infection (n=4) (Figure 3.2 A) that were generated either by single genome amplification or by limiting dilution PCR (Abrahams et al., 2013; Abrahams et al., 2009). We evaluated evidence of early adaptation by (i) investigating sub-lineages with shared mutations compared to the T/F virus, that were consistent selective pressure applied on the virus (Keele et al., 2008); (ii) insertions and deletions as well as changes to the glycosylation pattern in the envelope; (iii) evidence of positive selection over time as detected by the HYPHY (MEME) analysis (Murrell et al., 2012).

Shared codon changes were observed 4 weeks after infection in the V1V2 (A158T), V4 (P395S) and in gp41 (D818N) (Figure 3.2). At 11 weeks post infection, 5 out of 7 sequences contained deletions in the V4 region which resulted in changes to the glycosylation profile. Viruses with deletions in the V4 region compared to the founder virus persisted, with 27 out of 29 viruses sampled at 29 weeks carrying a deletion. There was one sequence where changes in the glycosylation profile were caused by two point mutations resulting in the addition of two potential N-linked glycosylation sites (PNGS).

We identified strong selective pressure on the V4 region, which changed in magnitude over time. During the first 11 weeks of infection, two sites in gp120 (codons 395 and 407) were under positive selection. When analysed over the entire 29 weeks of follow up period the signal at 407 was amplified with a (p-value)$^{-10}$ reading of 73.5 (p = 0.00136), while none of the other values exceed 15 (p=0.007) (Figure 3.2C). The amino acid at this position in the transmitted founder was Valine (V), which was maintained until 11 weeks post infection (Figure 3.2 D), and by 29 weeks post infection this position showed high entropy with 4 other amino acids also represented at this position.

During the first 11 weeks, positive selection was also identified in the gp41 region. Sites under selection in gp41 were distributed throughout the gene with a cluster of sites at codons 749, 753, 754 and 757, with a particularly strong signal at codon 754. These sites all fall within the rev exon 2 reading frame and results obtained in this region are unreliable due to the overlapping reading frame. After 29 weeks, we also identified sites under positive selection in the V1, C2 and V3 regions of gp120.
Figure 3.2: Analysis of CAP63 sequences over 29 weeks of infection.

(A) The highlighter plot illustrating acquired mutations in Env compared to the derived transmitted/founder (T/F) sequence. Red tick: non-synonymous substitutions; green tick: synonymous substitutions; grey, deletions.

(B) and (C) Plot of sites under positive selection detected over 11 weeks (B) and 29 weeks (C). Selection detecting by mixed effects model of evolution likelihood of positive selection. The y axis plots the \((p\text{-value})^{10}\) with higher bars indicating a higher likelihood of positive selection at that codon position. The area shaded in blue represents the overlapping tat and rev exon 2 reading frames. Results obtained in these regions are not reliable.

(D) Amino acid alignment of the V4 region. Glycosylation sites are shaded in grey. Viruses from 11 weeks post infection carrying the changes under investigation are in the rectangular box. Residues in gp120 under the strongest positive selection in the first 11 weeks (residue 395) and after 11 weeks (residue 407) are marked in boxes.
Chapter 3: Neutralizing Antibody Escape Pathways Constrained by ADCC responses

3.3.3 Early neutralizing antibody responses in CAP63

CAP63 was enrolled into the AI cohort at four weeks post-infection, Gray et al., (2007) had timed neutralization responses utilizing pseudotyped envelope clones generated from sequences from this time-point. However sample was available from 2 weeks pre-enrolment (antibody negative, HIV PCR positive) visit (Abrahams et al., 2009) which differed from the derived transmitted/founder in up to 4 amino acid positions (CAP63.2.00.A9.J, Figure 3.5). As these changes may affect neutralization results, we repeated the assay using the T/F virus envelope. We measured autologous neutralizing antibody response to CAP63_T/F pseudovirus at 7 weeks with an ID$_{50}$ of 169 (Figure 3.1), which is earlier than 19 weeks previously identified (Gray et al., 2007) using a later envelope. The neutralizing antibody response was characterized by steadily rising titers against the T/F virus until 33 weeks post infection. A drop in titres was seen between 33 and 37 weeks post infection.

3.3.4 Early ADCC responses in CAP63

We next investigated kinetics of ADCC responses using two approaches, firstly by coating target cells with recombinant GP160 (rGP160) from CAP45.2.00; and secondly, by infecting cells with T/F autologous infectious molecular clones.

Using rgp120 coated target cells, kinetics of ADCC responses in CAP63, was compared with three other CAPRISA participants. The kinetics of ADCC responses differed between participants (Figure 3.3). At the first available visit post HIV diagnosis, CAP63 (4 weeks pi) and CAP293 (6 weeks pi) had potent ADCC activity, while CAP45 and CAP210 high ADDC titres only increased at the second (9 weeks pi) and third (12 weeks pi) visit respectively. In all participants, once established, high titer responses were maintained throughout monitored infection period which ranged from 29 and 67 weeks. In three of the CAPRISA participants studied, ADCC responses were present before detectable neutralizing antibody responses (Gray et al., 2007: Figure 3.3), with responses emerging concurrently in one participant (CAP45).
Chapter 3: Neutralizing Antibody Escape Pathways Constrained by ADCC responses

Figure 3.3: The kinetics of ADCC responses to HIV-1 infection in 4 CAPRISA participants. The ADCC activity of the participants is measured against CEM-NKR_{CCR5} coated with recombinant CAP45.2.00 gp120. The time-point at with the first autologous neutralizing antibody response with an ID₅₀ of over 100 is marked with an arrow. Neutralizing antibody data for CAP45, CAP239 and CAP210 was published by Gray et al. (2007) and CAP63 neutralizations were repeated here. Log ADCC titer was the highest antibody dilution at which the cut-off 8% GzB level of activity was achieved.

For CAP63, we repeated the ADCC assay using CEM NKR_{CCR5} cells infected with IMC virus of the CAP63_T/F (provided by Melissa-Rose Abrahams). CEM.NKR_{CCR5} is a lymphoid cell line transduced with a retroviral vector to express human CCR5. The cells present Env on the surface, however do not secrete infectious virus making them suitable for infection with primary HIV isolates for use in the GranToxiLux assay. This assay may be biologically more relevant as the protein is matched to the infecting virus and its conformation would be more similar to natural infection.

Titrations were performed to determine the optimal level of inoculum for infection. A minimum infection level of 20% of p24+ target cells was required for the ADCC assay (Pollara et al., 2011). The highest level of infection was attained using 300 µL of virus stock (Appendix H) and this volume was used in an assay performed over two days. Similar to previous results (Figure 3.3), we found high titre ADCC responses at the earliest time-point (4 weeks post infection), which were sustained until 33 weeks post infection. However, in contrast to the coating target cells, using the infectious assay we found no detectable ADCC activity at 37 weeks post infection (Figure 3.1).
3.3.5 Changes in V4 affected neutralization sensitivity

To assay the effect of the changes observed in the 11 week viruses on neutralizing antibody responses, functional *env* clones were constructed. A total of six out of seven *env* SGA clones were functional in pseudovirion assays. The *env* SGA clone, CAP63.2.05_T19 was non-functional and therefore excluded from the assays (Table 3.2). The T/F pseudovirus and the six 11 week pseudoviruses (PSV) were assayed against plasma samples from between 14 and 37 weeks post infection (Figure 3.4). Relative to the T/F virus, all of the naturally occurring viral variants showed evidence of neutralization escape, with reduced sensitivity to neutralization relative to the T/F virus at 11 and 20 weeks. The two variants (CAP63_F4_5 and CAP63_T6W) that contained changes in or near the codon 407, the codon under strong positive selection (Figure 3.4), showed sustained resistance to neutralization at all the time-points tested.

As there were changes from the T/F virus outside of the V4 region which may have affected neutralization, we introduced the V4 changes into the T/F backbone (Table 3.2, Figure 3.5). In the case of the GLY_398_404 adaptation, two separate pseudoviruses, GLY_398 and GLY_404, were constructed to individually test the effect of each glycan on the neutralization sensitivity of the virus.

Figure 3.4: A) Amino acid alignment of the V4 region of pseudovirus clones of CAP63 T/F and six naturally occurring variants from 11 weeks post infection. The putative escape mutation associated with each virus is listed in brackets. B) Pseudovirus neutralization assay of CAP63 T/F and naturally occurring cloned variants from 11 weeks post infection.
Table 3.2: Naturally occurring viruses from 11 weeks post infection and their corresponding constructed pseudoviruses and infectious molecular clones.

<table>
<thead>
<tr>
<th>Natural sequence pseudovirus</th>
<th>Env and Changes from T/F in V4</th>
<th>CAP63 Pseudovirus constructs</th>
<th>CAP 63 IMC constructs</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAP63.2.05_F4_5</td>
<td>two point mutations causing the addition of glycosylation sites at positions 398 and 404</td>
<td>PSV_GLY_398</td>
<td>IMC_GLY_404</td>
</tr>
<tr>
<td>CAP63.2.05_T6W</td>
<td>6 amino acid deletion starting at codon 391</td>
<td>PSV_6D_391</td>
<td>IMC_6D_391</td>
</tr>
<tr>
<td>CAP63.2.05_T13W</td>
<td>7 amino acid deletion starting at codon 397</td>
<td>PSV_7D_397</td>
<td>IMC_7D_397</td>
</tr>
<tr>
<td>CAP63.2.05_T14W</td>
<td>9 amino acid deletion starting at codon 396</td>
<td>PSV_9D_396</td>
<td>IMC_9D_396</td>
</tr>
<tr>
<td>CAP63.2.05_T19</td>
<td>9 amino acid deletion starting at codon 390**</td>
<td>PSV_9D_390**</td>
<td>ND</td>
</tr>
<tr>
<td>CAP63.2.05_T27</td>
<td>7 amino acid deletion starting at codon 397</td>
<td>PSV_7D_397</td>
<td>IMC_7D_397</td>
</tr>
<tr>
<td>CAP63.2.05_T34</td>
<td>5 amino acid deletion starting at codon 399</td>
<td>PSV_5D_399</td>
<td>IMC_5D_399</td>
</tr>
</tbody>
</table>

*Two different pseudoviruses were constructed to test the impact of each glycan individually. **For sequence CAP63.2.05_T19, all pseudotyped viruses subsequently cloned from this sequence were non-functional.

Figure 3.5: Highlighter plot showing envelope sequences from pseudoviruses and infectious molecular clones of CAP63. The transmitted/founder pseudovirus clone is the reference line at the top. An early pseudovirus cloned from a virus sampled at 4 weeks post infection (CAP63.2.00_A9) (Gray et al., 2007) and pseudoviruses constructed from 6 viruses sampled at 11 weeks post infection (CAP63.2.05) are below. Pseudoviruses generated from the introduction of V4 deletions are next (CAP63_PSV) and these are followed by infectious molecular clones constructed by mutagenesis of the transmitted founder IMC (CAP63_IMC).
Similar to the wild-type variants, the 11 week plasma did not neutralize five of the six contemporaneous T/F V4 mutant pseudoviruses (Figure 3.6A), confirming that these changes were responsible for neutralization escape. Similarly, the 14 weeks plasma neutralized the earlier 11 week virus, although at much lower titres than the T/F, with ID$_{50}$ values of between 89 and 481 compared to T/F virus which is neutralized with an ID$_{50}$ of 1276. The introduction of a glycan at amino acid 404, as well as the large V4 deletions, resulted in a decrease in sensitivity to neutralization, while an additional single N-linked glycan at position 398 (which occurs together with the glycan at position 404 in natural infection) caused a smaller reduction in sensitivity to neutralization. In subsequent experiments, the glycan at position 404 is used as this is the modification with the most impact on neutralization.

3.3.6 V4 neutralizing antibody mutations facilitate escape from ADCC responses in CAP63

We were interested in mapping effects of these V4 neutralization escape mutations on ADCC activity. To do this, we introduced these changes into CAP63 T/F IMC and infected a target cell (CEM.NKR$_{CCR5}$ cells) (Table 3.2). Four IMC mutants (three with deletions and one with a glycan introduced at position 404) were constructed: CAP63 IMC Gly404, CAP63 IMC 6D 391, CAP63 IMC 7D 397, CAP63 IMC 9D 396 and CAP63 IMC 5D 399 and confirmed by sequencing of the full-length genome (Figure 3.5). Plasma samples were evaluated at 11 time points up to 37 weeks post infection. Titrations were performed to determine the optimal level of inoculum for infection (Appendix H). A minimum infection level of 20% of p24+ target cells was required for the ADCC assay (Pollara et al., 2011). Levels of infection differed between the different IMCs. CAP63 IMC T/F showed the most efficient rates of infection with the 300µL inoculum resulting in 95.6% of the cells staining positive for p24 after 72 hours. The lowest infectivity was CAP63 IMC 7D 397, where the 900µL inoculum resulted in only a 25.7% positive rate (Appendix H).

The IMC clones containing changes in V4 observed at 11 weeks post infection were assayed for recognition by ADCC (Figure 3.6B). Early ADCC activity between 4 and 7 weeks, recognised the T/F and two of the four 11 week mutants: the one mutant, IMC 6D 391 (green line), was more sensitive than the T/F IMC to ADCC activity throughout the 33 weeks.
post infection suggesting that neutralization escape resulted in increased exposure of the ADCC epitope; while responses to the second mutant, IMC_5D_399 (dark blue line), were lost after 7 weeks, suggesting that ADCC activity disappeared when neutralization responses emerged. No ADCC activity was detected against cells infected with IMC/GLY_404 (red line) and IMC_9D_396 (light blue line) which indicates that the glycan at position 404, and the nine amino acid deletion at 396, completely abrogated ADCC recognition, and that new responses to this variant were not elicited.

Figure 3.6: A: Comparison of autologous neutralization sensitivities of multiple envelope clones from CAP63. Envelope clones from the transmitted/founder virus and 5 viruses with changes observed in viruses sampled at 11 weeks post infection, introduced into the T/F, were tested against autologous serum from various points over 37 weeks of infection in an Env pseudotyped virus neutralization assay. Results are shown as ID\textsubscript{50} values and differences in the viruses are shown in the amino acid alignment above. B: ADCC responses in CAP63. The results of the ADCC assay with target CEM NKR\textsub{CCR5} cells infected with various CAP63 IMCs over 37 weeks of infection. ADCC responses to coated cells are shown in grey and CAP63_IMC_T/F infected cells are in black. CAP63_IMC_5D_399 is in blue, CAP63_IMC_6D_391 is green, CAP63_GLY_404 is red and CAP63_IMC_9D_396 is in aquamarine. ADCC activity against the T/F IMC is the mean of two separate runs. CAP45 gp120 coated cells were used as control targets and activity against these cells was sustained throughout the period investigated.

3.3.7 The 6D_391 deletion escapes neutralizing antibody responses but becomes highly sensitive to ADCC

The 6D_391 deletion, which resulted in a loss of a glycosylation site at position 390, enhanced ADCC activity by CAP63 plasma compared to the T/F IMC (Figure 3.6B) while at the same time mediating escape from neutralizing antibodies (Figure 3.6A). To determine if
this mutation affected recognition by other ADCC antibodies, this mutant was assessed against a panel of antibodies with known ADCC activity including HIVIG (anti-HIV immunoglobulin prepared from pooled plasma of asymptomatic, HIV antibody positive donors with CD4+ counts above 400 cells/µL); A300 (serum from an HIV-1 infected individual); and the monoclonal antibody A32 (recognizes a conformational epitope that includes the C1 region, Ferrari et al., 2011) (Figure 3.7). Similar to patient derived responses, the ADCC activity against IMC_6D_391 infected cells was enhanced for HIVIG, A300 and A32, indicating the 6D_391 deletion gp120 results in a conformation that promotes recognition and binding by ADCC antibodies of different specificities.

Figure 3.7: ADCC activity mediated by control antibodies and plasma against CEM.KNR CCR5 cells infected with the various CAP63 IMCs. The polyclonal intravenous IgG preparation IVIG, the anti-HIV-1 immunoglobulin HIVIG, the serum from an HIV-1 infected individual A300 and the monoclonal antibody A32 are used to mediate ADCC activity. ADCC activity is shown in percentage GzB positive cells. The CAP63 T/F and all other IMCs with the exception of CAP63_6D_391 showed similar levels of ADCC activity. CAP63_6D_391 showed significantly elevated peaks of ADCC activity mediated by A300, HIVIG and mAb A32. IVIG was a negative control a polyclonal intravenous IgG preparation. The cut-off value for positivity is 8%.
3.3.8 ADCC activity constrains pathways of escape from neutralizing antibody responses

In summary, at 11 weeks post infection there were 5 escape variants which were classified into three types of escape pathways based on their neutralizing and ADCC characteristics (Figure 3.8):

Neutralization escape pathway A, depicted in green in Figure 3.8, is a deletion which knocks out the first glycan at position 389 (6D_391). This deletion increased sensitivity to ADCC autologous antibodies targeting the V4, as well heterologous antibodies targeting as other regions of the envelope. This mutant with increased susceptibility to ADCC was eliminated.
from the viral population at 29 weeks post infection, and as such appears to be a dead-end neutralization escape pathway;

Neutralization escape pathway B, depicted in blue in Figure 3.8, is a series of amino acid deletions of between five and nine amino acids starting at or after codon 392 (5D_399, 7D_397 and 9D_396). This epitope was recognised by ADCC in early infection, however ADCC activity was lost once neutralizing antibodies emerged; and

Neutralization escape pathway C, shown in red, is a point mutation at position 404 that adds a glycosylation site (Gly_404). This mutation was never recognised by ADCC antibodies, and was poorly recognised by neutralization antibodies.

Escape pathway B or C persisted in the population albeit at low levels, with the majority of the viral population consists of viruses which have acquired mutations from both pathways (displayed in purple in Figure 3.8).

3.4 Discussion

Although neutralizing activity alone may provide protection against HIV the effector functions of antibodies which accelerate the destruction of virus infected cells are likely to be vital components of a completely effective anti-HIV immune response (Picker & Deeks, 2013). Understanding the first responses to HIV-1 infection may provide insights into mechanisms of viral control, and inform vaccine development. In this chapter we analysed infected participants of the HISIS and CAPRISA cohorts and focused the study on one individual, CAP63, to understand the interplay between ADCC and neutralizing antibody responses and how these shape the evolution of HIV-1 during early infection.

In CAP63, ADCC responses were present at the first time-point sampled (four weeks post infection), with autologous neutralizing antibody response to the T/F virus emerging only at seven weeks post infection. Codons in the V4 region were under strong positive selection, and we confirmed that it was the target of both neutralizing and ADCC responses. All the changes in the V4 regions observed at 11 weeks conferred some level of neutralization resistance suggesting that neutralizing antibodies were a major force driving changes in that
region. Prior to neutralization responses, there was a single change from the T/F in the four weeks post infection virus (codon position 395), however this did not appear to be associated with ADCC escape (Figure 3.1D) suggesting that this was not driven by ADCC responses. However it would be of interest to sequence the virus between 4 and 7 weeks post infection to more definitively determine if there is evidence of ADCC driven escape.

ADCC responses are among the earliest responses present during the course of disease and they precede the emergence of autologous neutralizing antibody responses (Forthal, Landucci, & Daar, 2001). The first response to HIV-1 infection involves IgG3 (Yates et al., 2011), and although IgG1 antibodies also arise early, they strengthen and persist and replace the IgG3 response as the disease progresses (Tomaras et al., 2008b). IgG3 and IgG1 both have high affinity for FcγRs and functional potency (IgG3>IgG1) (Yates et al., 2011) but IgG1 responses are associated with neutralization (Banerjee et al., 2010). Although we were unable to differentiate between different IgG subclasses, we hypothesize that the development of the neutralizing antibody response at seven weeks post infection may have coincided with subclass switching, and the loss of IgG3 responses resulting in loss of ADCC responses capable of recognising mutant 5D_399 (blue line, Figure 3.6B).

Although both neutralizing antibodies and ADCC responses are targeted at the V4 region, some neutralizing escape variants did not confer resistance to ADCC and this difference in recognition pattern and kinetics of responses is indicative of humoral responses with overlapping but unique characteristics. In addition to the fact that ADCC antibodies do not necessarily have neutralizing activity and can recognise different targets, the very same targets on the envelope may also be presented in different conformations. The cell-associated form is often associated with lipid rafts and an uncleaved main structural Gag polyprotein and is mechanically stiff. The mature virion bound form is associated with a mature Gag that has undergone proteolysis subsequent to budding resulting for morphological maturation and enabling infectivity (Chojnacki et al., 2012; Kol et al., 2013; Pang et al., 2013).

Of interest, the one neutralization escape variant where the loss of a glycosylation site at position 389 (6D_391) that facilitated neutralization escape, resulted in increased sensitivity to ADCC by both CAP63 plasma, and by two control plasmas and A32, which recognizes a CD4 inducible conformational epitope that includes the C1 region (Ferrari et al., 2011). This indicates that the glycan at position 390 is important either for shielding one or several major
ADCC associated epitopes, or affects the conformational integrity of the Env trimer expressed on the surface of infected cells. This adaptation, unlike most other adaptations found at 11 weeks post infection, was not present in sequences from 29 weeks post infection and it is possible that was selected against and removed from the population through the action of ADCC associated antibodies.

In addition to the target cells and the presentation of epitopes, there is an important role for effector cells in the mediation efficient ADCC activity. In vivo as well as in the GTL assay where PBMCs were used as the effector cell source, natural killer (NK) cells and monocytes carry out this function. The type and expression levels of Fc receptors on these cells can play an important role in Fc-receptor binding affinity, as can the Fc portion of antibodies. Infection and activation of these innate immune cells has a great influence on their ability to perform ADCC by reducing their numbers, reducing FcR expression levels and impairing normal function. As such, it is possible to detect ADCC activity in vivo using donor PBMC which would not be present in vitro as a consequence of depletion of impairment of an individual’s NK and monocyte population.

In conclusion, our results confirm only partial overlap between the epitopes of neutralizing antibodies and antibodies mediating ADCC in early infection: while some adaptations mediating escape from both neutralization and ADCC, others did not. Relatively few ADCC epitopes have been identified to date and prior to this, there have been no reports of ADCC epitopes in the V4 region (Pollara et al., 2013) and there is even less evidence of immune escape from ADCC (reviewed by Isitman et al., 2012). Furthermore, much of the available evidence is based on linear peptides and gp140 (Chung et al., 2011) which limit our understanding of the full breadth of ADCC activity to that which is mediated by Abs recognizing antigens expressed on the surface of infected cells. This study highlights the complex relationships that exist between neutralizing antibodies and ADCC mediating antibodies in HIV-1 infections, and the role of ADCC in the evolution of the viral quasispecies during the course of disease. We present a novel finding of a dead-end neutralizing antibody escape pathway as a result of its increased sensitivity to ADCC. This increased sensitivity results in the population-wide depletion of mutants carrying the neutralization escape mutation and is the first reported evidence of this type of influence on viral evolution by ADCC activity. While the exact mechanism is yet to be fully elucidated, it
may point to potential methods for disrupting disease progression, with applicability in the development of HIV vaccines or therapeutic interventions.
Chapter 4: The effects of early evolution on viral fitness

Abstract .. 84

4.1 Introduction ... 85

4.2 Materials and methods .. 85
 4.2.1 Mutagenesis of cloned envelopes ... 85
 4.2.2 Cell-cell fusion assay ... 86
 4.2.3 Titration of viral stocks for entry and replication assays by beta gal staining 86
 4.2.4 Replication assay .. 87
 4.2.5 p24 ELISA .. 87

4.3 Results ... 88
 4.3.1 Viruses from CAP63 show reduced fusion capacity within 11 weeks relative to the T/F virus 88
 4.3.2 Deletions in V4 contribute to reduced fusion capacity in CAP63 .. 89
 4.3.4 Point mutations in the gp41 are preferentially fixed outside the LLP domains and have no effect on fusion capacity .. 90
 4.3.5 Mutations in the V4 region of CAP63 result in reduced infectivity of virus stock 91
 4.3.6 Adaptations in the V4 region of CAP63 affect viral replicative capacity in PBMC 92

4.4 Discussion .. 94
Abstract

The ability of a virus to infect new host cells, replicate and escape host surveillance, all contribute to viral fitness. While escape from cellular immune responses has been associated with a fitness cost through reduced replicative capacity, given the plasticity of env, it is generally thought that escape from humoral responses would not impact on fitness. We studied the effect of neutralizing and ADCC antibody escape mutations on the viral fitness using the virus’ ability to mediate fusion, infectivity and replicative fitness as surrogate markers of fitness.

Wild type transmitted/founder (T/F) envelope were compared to 11 week envelopes, and the T/F envelope with the nAb and ADCC escape mutations introduced. The T/F infectious molecular clones (IMCs) were compared to matched T/F constructs with these escape mutations. The ability of cloned envelopes to mediate fusion was tested using a cell-cell fusion assay; infectivity of IMC virus was measured by determining the ratio of number of infectious units (IU) per mL to p24; and replication capacity was measure in growth assays conducted in PBMC from two donors over two weeks.

Wild type envelopes bearing immune escape adaptations had lower cell-cell fusion ability compared to the T/F virus. Introduction of these mutations into T/F env and IMCs showed that these V4 adaptations were responsible for this reduction, and furthermore resulted in reduced infectivity. The largest deletion in the V4 (9D_396) caused an 11-fold reduction in infectivity of IMC virus stocks and also had reduced growth in PBMCs.

This study shows that escape from humoral responses in early infection resulted in fitness cost affecting fusion, infectivity and replication.
4.1 Introduction

An important focus of HIV research has been to try to understand how patterns of viral diversification and adaptation affect viral fitness as this may assist in identifying sites of vulnerability on the virus. However, the extensive variability and the apparent ability of the virus to tolerate large changes in these regions with minimal fitness cost (Bunnik et al., 2010) have made this difficult. Despite this, there is, a large body of evidence showing that the variable loops of the Env glycoprotein gp120 are important determinants and markers of vital components of viral fitness such as co-receptor tropism and viral pathogenesis (Monno et al., 2011), sensitivity to neutralization by antibody responses (Bunnik et al., 2010; van Gils et al., 2011; Wei et al., 2003), viral fusion (Cavrois et al., 2013) and disease progression (Curlin et al., 2010).

The V4 region of gp120 has been reported to evolve independently, resulting in very high intra-patient diversity (Castro et al., 2008) and it has been proposed that a high frequency of insertions and deletions is achieved through a mechanism involving strand slippage misalignment of long sequence duplications, repeats, and palindromes (Guglietta, Pantaleo, & Graziosi, 2010). V4 is one of the major targets of early autologous neutralizing antibody responses in subtype C infection (Moore et al., 2008; Rong et al., 2009) and deletions of V4 and V5 were shown to disrupt Env cell surface display and viral assembly (Yuan, Li, & Zhang, 2013). We have shown in the preceding chapter that V4 is the target of the neutralizing and ADCC antibody responses in CAP63 and that deletions and glycan shifts in the region enhanced the resistance fitness of the virus. The current study aimed to determine what other fitness effects adaptations in the V4 region may have. We monitored the impact of deletions in the V4 on viral fusion, viral infectivity and replicative capacity.

4.2 Materials and methods

4.2.1 Mutagenesis of cloned envelopes

Site-directed mutations corresponding to naturally-occurring mutations and back mutations to the T/F sequence were introduced with QuickChange site-directed mutagenesis kit (Strategene). Primers used for mutagenesis are in Appendix F.
4.2.2 Cell-cell fusion assay

HEK 293T cells (4 x 10^5) were seeded in 6 well plates overnight, and co-transfected with 3.75 µg of each individual env plasmid and 3.75 µg of pSVtat72 (NIH AIDS Reagent Programme) for 48 hours using the PolyFect Transfection Reagent (QIAGEN, US) according to the manufacturer’s instructions. The cell medium was removed and the cells were lifted using 0.04% EDTA. The 293T cells (1 X 10^4 cells per well) were added to TZM-bl cells (1 X 10^4 cells per well) and allowed to incubate at 37ºC for 24 hours. The media (100 µL) was removed from the cells, and 100µL of Bright-Glo buffer (Promega, US) was added. The plate was incubated for 2 minutes at room temperature with mild shaking. After cell lysis, 150 µL was transferred to a Co-Star black plate, and the plate was read immediately using a Glomax 96 microplate luminometer (Promega, US).

4.2.3 Titration of viral stocks for entry and replication assays by beta gal staining

The β-Gal reporter found in TZM-bl cells allows direct enumeration of infectious viral units by counting β-Gal expression-positive infected cell colonies under a microscope. Briefly, 1x10^5 TZM-bl cells in 500µL of growth media were seeded onto each well of a 24 well plate overnight. On the second day, IMC virus stock was diluted at 1:10, 1:50, 1:250 1:1250 and 1:6250 in DMEM containing 1% FBS and antibiotics. Media was removed from the cells and 200µL of fresh media was added. 50µL of virus dilution and a no-virus control was added to the wells and incubated for 4 hours at 37ºC. 500µL of fresh media was added to each well and samples were incubated for 48 hours at 37ºC. On day 4, supernatant was removed from the infected cells and 250µL of fixing solution (PBS with 0.8% Gluteraldehyde and 2% formaldehyde) and incubated at room temperature for 8 minutes. Fixing solution was removed and the cells washed 3 times with 500µL PBS per well. 250µL of staining solution (4mM Potassium Ferricyanide, 4mM Potassium Ferrocyanide, 400µg/mL MgCl2 and 400µg/mL X-gal in PBS) was added to each well and incubated at 37ºC for 2 hours. The staining solution was removed and 250µL PBS added to each well. Blue cells were counted under a light microscope and the number of infectious units calculated. Infectivity was calculated by normalizing the virus stock to 7500 IU per mL and determining the number of IU per unit p24 determined by ELISA.
4.2.4 Replication assay

The kinetics of viral replication was determined in human PBMC. Cells were stimulated for 72 hours in RPMI with 15% FCS with 2mM L-glutamine and gentamycin supplemented with 200U/mL IL2 and phytoheamaglutinin (PHA) at 37°C at 5% CO2. The cells were then washed twice in RPMI with 15% FCS with 2mM L-glutamine and gentamycin and rested overnight in the same media supplemented with 200U/mL IL-2 (growth media). A 96 well plate was then seeded with 750,000 PHA-IL2 treated cells per well in 100µL of growth media. Virus was added to the PBMC at a multiplicity of infection (MOI) of 0.01 (MOI, IU/cell) in 100µL of media. Cells were incubated at 37°C at 5% CO2 and 72µL of culture supernatant was sampled with replacement of media at days 3, 5, 7, 9, 11, and 14 post infection for determination of p24. Each virus inoculum tested was subjected to the same treatment in the absence of cells to determine background levels of p24. The slope of each growth assay was calculated using the LOGEST function in excel on the logarithmic growth phase of the curve.

4.2.5 p24 ELISA

COSTAR white opaque 96-well ELISA plates (Corning) were coated overnight with affinity purified sheep anti HIV-1 p24 gag antibody (Aalto Bio Reagents), washed three times with tris-buffered saline (TBS) and allowed to dry. Plates were stored at -20C for medium term use. A p24 standard dilution series was prepared in binding buffer made up of TBS with 1% Empigen (Sigma) after reconstituting bacterially expressed p24 (Aalto Bio Reagents) in TBS with 1% FCS. Virus containing sample supernatants were also serially diluted in binding buffer and 100µL of samples and p24 standards were placed in pre-coated and blocked plates. Plates were covered and incubated for two hours at room temperature. The plates were then washed three times with TBS. 100µL of a 1 in 12500 dilution of an alkaline phosphatase conjugated sheep anti HIV-1 monoclonal antibody BC 1071-AP (Aalto Biosciences) in TBS with 0.1% TWEEN-20 was added and incubated for 1 hour at room temperature. Wells were washed 4 times with a TBS buffer with TROPIX and 0.1% TWEEN. Bound antibodies were measured by placing 100µL of a solution of CDP Star with Saphire-II (Life Tech) in TROPIX buffer in each well for half an hour and reading in a luminometer. All reactions were run in triplicate and the equation generated from the linear range of the p24 standard
Chapter 4: The effects of early evolution on viral fitness

curve was used to determine the amount of p24 in each sample based on the results of the luminometer readings.

4.3 Results

4.3.1 Viruses from CAP63 show reduced fusion capacity within 11 weeks relative to the T/F virus

The ability of the viral envelope to mediate fusion is an important aspect of viral fitness. In the previous chapter we identified viruses at 11 weeks post infection which had undergone modifications in the V4 as a result of antibody pressure. To investigate the impact of these modifications on viral fusion, we compared the ability of envelope bearing these adaptations to mediate fusion relative to the T/F virus. To measure fusion, we co-transfected two plasmids into 293T cells, one expressing the envelope of interest and the other expressing Tat, and co-incubated these cells with TZM-bl cells overnight. Cell-cell fusion was measured by luciferase activity induced by Tat resulting from the fusion of the effector 293T and reporter TZM-bl cells.

![Figure 4.1](image.png)

Figure 4.1: Fusion capacities of CAP63 T/F virus and variants from 11 weeks post infection measured by luciferase expression (RLU) in TZM-bl cells. The T/F virus is represented by the red bar while variants from week 11 are shown in pink. Negative controls include a mock transfection (no DNA), transfection with only Tat expressing plasmid (no Env), transfection with only Env expressing plasmid (no Tat), as well as transfection with an empty mammalian expression vector (pcDNA3.1) and a VSV-G Env expressing plasmid. Du151 (black) and Du172 (green) were used as positive controls.
Chapter 4: The effects of early evolution on viral fitness

Envelopes from 11 weeks showed markedly reduced fusion capacity relative to the T/F virus envelope (Figure 4.1). All of the variants from 11 weeks post infection had modifications in the V4 region of the envelope and these were studied in detail in the previous chapter (see Figure 3.2 in chapter 3).

4.3.2 Deletions in V4 contribute to reduced fusion capacity in CAP63

In addition to shifts in the glycosylation sites and deletions in the V4 region, several other adaptations to the envelopes of viruses from 11 weeks post infection were observed. These included shared point mutations in the V1 region, as well as shared mutations at two locations in the cytoplasmic tail of the gp41 (Figure 3.2 Chapter 3). To exclude the influence of changes outside of V4 on fusion, we introduced V4 mutations into the T/F virus sequence (Chapter 3.2.10). We then compared the fusion capacity of the 11 week wild type virus, the V4 mutant envelopes, and the T/F envelope to determine the influence of any other changes to the sequence (Figure 4.2).

Figure 4.2 Comparison of fusion capacity of the T/F virus (in red) to naturally occurring CAP63 envelopes (in darker shades and marked with *) and T/F viruses with week 11 adaptations introduced in the V4 region. Error bar is the standard deviation of 3 independent experiments.
The T/F virus had increased fusogenicity compared to all of the variants with V4 adaptations. In four of the five, the wild type week 11 variants had very similar cell-cell fusion capacity compared to the T/F viruses with introduced V4 adaptations, indicating that changes outside the V4 did not affect fusion. In one variant, the wild-type CAP63.2.05_F4_5 was less fusogenic than its corresponding mutated T/F virus CAP63_GLY_404. These two sequences differ in the V4 region in that the former had two extra glycosylation sites, one at position 398 and the one at 404, while the latter had only the additional glycan at position 404. However there were also changes in gp41 which may have affected fusion. Our results confirm that the immune adaptations to the V4 region caused a reduction in the fusion capacity of the envelopes.

4.3.4 Point mutations in the gp41 are preferentially fixed outside the LLP domains and have no effect on fusion capacity

Analysis of early evolution in CAP63 showed that there was strong positive selection in the gp41 region of the envelope during the first 11 weeks of infection (Chapter 3). The central and C-terminal regions of the gp41 cytoplasmic tail contain three conserved amphipathic α-helical segments referred to as lentiviral lytic peptides (LLP-1, LLP-2, and LLP-3) (Miller et al., 1991). These motifs have been associated with cell surface expression (Bültmann et al., 2001), Env fusogenicity (Kalia et al., 2003), and Env incorporation into a virus (Murakami & Freed, 2000; Piller et al., 2000).

Two clusters of changes were observed in viruses at 11 weeks, both in the cytoplasmic tail of the gp41 region, which were shared or closely related to among most variants (Figure 4.3). The first set of changes was between positions 734 and 741 located at the C-terminal end of the Kennedy sequence, with the S738N and I741R mutations being the most prevalent change. A second set of changes were at positions 818 to 824, located between LLP1 and LLP3. The most common mutation there was T823I.

In order to establish whether these mutations affected fusion, we back-mutated CAP63.2.05_T6W (G734E, I823T), CAP63.2.05_T13W (R741I, G818D) and CAP63.2.05_T14W (N738S, A824V) to the T/F sequence. Each of the viruses had two mutations which we reverted to the T/F sequence both individually and in combination. For
all the viruses, reversion of one or both of the mutations to the T/F sequence had no noticeable effect of the ability of the envelope to mediate fusion (Figure 4.3).

![Figure 4.3](image)

Figure 4.3: Mutations in the cytoplasmic tail of gp41 in CAP63 and their effect on cell-cell fusion. A: the positions of mutations relative to the Kennedy sequence and the LLP domains. B: the effect of mutations on the gp41 of CAP63.2.05_T6W, C: CAP63.2.05_T13W and D: CAP63.2.05_T14W. In each case we see the effect of just the V4 mutation, the naturally occurring variant, reversion of the Kennedy sequence mutation, reversion of the C-terminal mutant and reversion of both mutations.

4.3.5 Mutations in the V4 region of CAP63 result in reduced infectivity of virus stock

To investigate the effects of V4 adaptations in CAP63 on infectivity, we compared the CAP63 T/F IMC virus to four variants with adaptations introduced into the V4 region (Chapter 3.3.5). Infectivity was measured by determining the ratio of number of infectious units (IU) per mL to p24. To account for variations between each virus preparation and storage process, three separate virus stock preparations from different days were evaluated (Figure 4.4).
Figure 4.4: The average infectivity of viruses and standard deviations (error bars) based on three separate preparations of virus from 293T cells transfected with IMCs. Infectious units were measured by titrating virus preps and infecting TZM-b1 cells and staining with beta-galactosidase. The number of infectious units was then normalized to 7500 IU/mL and p24 measured by ELISA. The graph plots infectious units per 10pg p24.

The T/F virus stock was the most infectious compared to the V4 adapted viruses. On average, relative to the infectivity of the T/F virus the Gly_404 mutation caused a 2.5-fold reduction, the 5D_399 and 6D_391 mutations caused 5.097 and 5.85-fold reductions respectively while the 9D_396 deletion caused a 11.29-fold reduction. Larger deletions in the V4 tended to cause greater reductions in infectivity.

4.3.6 Adaptations in the V4 region of CAP63 affect viral replicative capacity in PBMC

Previous experiments evaluated infectivity in TZMbl, and we were interested in determining overall replicative capacity in PBMC. We obtained PBMCs from two donors and evaluated replication for each IMC in triplicate over a 14 day period (Figure 4.6). Replication kinetics of the viruses differed in the two donors, with the natural log slope of production of p24 being significantly greater in donor WP4 than in donor WP1 (p=0.007; Appendix J). The slopes of the p24 production by the various IMCs did not differ significantly from each other.
within the same donor over the length of the 14 day assay period (Appendix J). However, in both donors, the CAP63.IMC.9D.396 virus was consistently slower in reaching detectable p24 levels, only reaching such levels 2 days later than the rest. The plateau was also much lower than other viruses which suggests a replicative fitness costs associated with this deletion.

Figure 4.6 Replicative capacities of CAP63.T/F and V4 mutant viruses from 11 weeks post infection assayed over 14 days in PBMC from 2 donors WP1 (A) and WP4 (B). Each data point represents the mean of triplicate wells.
4.4 Discussion

The impact of neutralization escape on viral fitness is largely unexplored with a recent study showing that in one individual, escape from broadly cross neutralizing antibodies lead to a reduction in the viruses ability to enter and replicate (Sather et al., 2012). Although some studies have implicated early neutralizing antibody responses in controlling viral replication – at least temporarily (Bar et al., 2012; Moore et al., 2009) – these changes are not generally thought to impact viral fitness. In this study, we demonstrate that humoral escape mutations in the V4 region in the first few months of infection resulted in reduction in fusion capacity, infectivity and the variant with the largest deletion also had reduced replication capacity.

The cell-cell fusion assay enables the fusion event to be measured and has been widely used to investigate several aspects of HIV-1 entry into cells including efficiency, kinetics, and number of env trimers needed for fusion (Cheng et al., 2010; Dorr et al., 2005; Guo et al., 2012; Heredia et al., 2008; Lineberger et al., 2002; Markosyan et al., 2009; Melikyan et al., 2000; Mulampaka & Dixit, 2011). Using this assay we demonstrated in one individual that the T/F virus was more fusogenic than the 11 week virus. It has been suggested T/F viruses carry an excess of Env trimers (Parrish et al., 2013) and therefore may generally be more fusogenic. However, we expanded our analysis to a comparison of envelopes from early and chronic infection from eight individuals showed that only four T/F viruses were more fusogenic showing that this is not a property of transmitted viruses (Appendix I). Similar results have been reported in a study by Guo et al., (2012) also conducted in subtype C infected mother-infant pairs.

Changes to the V4 and V5 of gp120 have been shown to disrupt density and structure of cell surface Env and viral assembly (Yuan et al., 2013) and altering the expression levels of envelope trimers greatly affects the efficiency of cell-cell fusion (Lineberger et al., 2002). Several studies have found that gp120/gp41-driven membrane fusion requires the formation of a threshold number of fusion-active intercellular gp120/gp41:CD4:CCR5 complexes (Klasse, 2007; Lineberger et al., 2002; Magnus et al., 2009) and the probability of reaching this threshold is governed, in large part, by the surface density of gp120/gp41 (Lineberger et al., 2002). Only a few functional trimers are packaged on a virus with estimates averaging...
eight or nine and ranging from two to 19. Given this low number of Env trimers per virus, small modifications in the distribution of surface Env are likely to translate to significant changes in the packaging and thus infectivity of virions. We found that changes in the V4 had significant impact on the infectivity of virus produced in culture. The virus with lowest infectivity also had an extended lag phase of replication and lower plateau relative to the T/F virus. While we have not measured env density directly we hypothesise the V4 deletions resulted in a reduction of surface expression of Env, and this impacted on the fusion and infectivity. To verify this, future studies should measure the effect of V4 deletion on env expression and presentation using sing flow cytometry and western blot.

In conclusion, adaptations to the V4 brought on by escape from neutralizing and ADCC antibodies result in reductions in fusogenicity and virus particle infectivity probably as a result of changes in the cell surface expression and distribution of Env trimers. Only the immune escape adaptation with largest reduction in particle infectivity was sufficient to cause a change in the replication kinetics of the virus. These results have implications for the understanding of fitness costs associated with escape from humoral responses to HIV and highlight the importance of V4 as a potentially important target on the virus as it has a significant role in viral fitness.
Chapter 5: Conclusions

After more than three decades there is still no effective vaccine for HIV. The remarkable diversity of HIV and the difficulty associated with eliciting broadly protective antibody responses through vaccination are among the major challenges facing vaccine developers. However recent findings from the RV144 vaccine trial which suggest a role for ADCC in protection underscored the need to fully understand the interplay between ADCC and neutralizing antibodies. We were interested in understanding the interplay between HIV-1 diversity, humoral responses and viral fitness in an effort to further inform vaccine design.

We compared neutralizing antibody responses in two female cohorts in Africa with different local epidemics, the Tanzanian HISIS cohort and South African CAPRISA cohort. We found different frequencies of broadly neutralizing antibody responses, with HISIS participants having broader neutralizing antibody responses at two years post infection compared to the CAPRISA participants. Participants in the HISIS cohort also had more potent autologous neutralizing antibody responses at 12 months post infection. We were unable to establish a role for subtype effects, dual infection and other virological features of the infecting virus in the development of broadly neutralizing antibodies in these two populations. A larger study may be required to fully explore these factors. However, we found that VL was strongly predictive of the development of breadth and that the HISIS cohort had higher VL. The study illustrates a key role for community VL in shaping the neutralizing antibody responses in different geographical regions. The presence of VL-influencing co-infections such as malaria may be one of the drivers as might be the extensive host genetic diversity which is present across the African continent. Both of these factors should be considered in future studies investigating the development of bNAb responses.

To understand the interplay between ADCC and neutralizing antibody responses we analysed one participant, CAP63, in detail. We found that ADCC responses preceded neutralizing antibody responses and that both responses targeted overlapping epitopes in the V4 region of the envelope. Four of the five neutralization escape mutants identified at 11 weeks post infection also mediated escape from ADCC, while one deletion made the virus sensitive to ADCC and was eliminated. Our study showed that certain neutralizing escape pathways were a dead-end, and for viruses to survive they may need to avoid both neutralization and ADCC.
responses. This study defined ADCC epitopes based on the functional virus as opposed to peptides or gp140, and was the first study to define an ADCC epitope in the V4 region.

Lastly, the impact of humoral V4 escape mutations on viral fitness was determined by monitoring fusion capacity, viral infectivity and replication capacity. Adaptations to the V4 resulted in reductions in fusogenicity and virus particle infectivity, probably as a result of changes in the cell surface expression and distribution of Env trimers. Replicative capacity of the virus was largely resilient to changes in fusogenicity and infectivity since only the largest reduction in particle infectivity translated to a change in the replication kinetics. These results provide further insights into fitness costs associated with escape from humoral responses to HIV and highlight the importance of V4 as a potentially important target on the virus as it has a significant role in viral fitness. A priority for future studies must be to determine if our findings can be expanded to multiple individuals.

In conclusion, this study was the first to directly compare nAb responses in two cohorts in Africa, showing that differences in community viral loads have a strong influence on frequency of people who develop broadly cross-neutralizing responses. This may in part explain the wide variation reported in the literature. ADCC responses were shown to evolve very early in infection and recognise the same epitope as neutralizing antibodies. This very early pressure by ADCC response prior to neutralizing response could potentially facilitate a rapid rate of escape. Although both nAb and ADCC recognise the same epitopes, in vivo they are presented differently (i.e. cell associated or cell free) and it remains to be determined if effective ADCC activity is facilitated by the same antibody with both functions, or two different antibodies. Of interest is the fact that one neutralization escape mutant was actually more susceptible to ADCC and this was an unsuccessful escape pathway for the virus. Importantly, this was the first study to show that change in V4 driven by early autologous responses affects viral fitness. Our study demonstrates and proposes a mechanism through which an effector mediated humoral response can complement the action of neutralizing antibodies in exerting selective pressure, exacting a discernible fitness cost and influencing viral evolution. Given the relative ease with which such responses have been generated, an adjustment in our understanding of what constitutes potentially protective vaccine-induced immunity to include effector mediated humoral responses may offer an additional avenue of hope in the quest for an effective vaccine.
APPENDICES

Appendix A: Standard RNA and DNA techniques ... 99
Appendix B: Reagents and buffers .. 102
Appendix C: Viral load data ... 103
Appendix D: Neutralization assay data .. 104
Appendix E: HIV-1 subtype C envelope, full length and sequencing primers 105
Appendix F: Mutagenesis primers .. 107
Appendix G: Titration of IMC virus stocks for infection of CEM NKR_{CCR5} cells 108
Appendix H: Determination of the optimal length of infection for target cells with IMCs 110
Appendix I: Cell-cell fusion capacity of CAPRISA envelopes from acute and chronic infection 111
Appendix J: Replication assay slope calculations ... 112
Appendix A: Standard RNA and DNA techniques

A1. Extraction of viral RNA
RNA was extracted both manually and using the automated method. For automatic extraction using 200µL of plasma, the Magna Pure Compact machine was used (Roche, Mannheim, Germany). RNA was extracted manually using the QIAamp® Viral RNA Mini Kit for the purification of viral RNA from plasma (Qiagen, Valencia CA, USA). A 140-280µL sample aliquot was added to 560µL prepared AVL containing carrier RNA in a 1.5mL microfuge tube, mixed by pulse-vortexing for 15 seconds, incubated at room temperature (15-25°C) for 10 minutes and briefly centrifuged to remove drops from the inside of the lid. Ethanol (560µL;96-100%) was added and mixed by pulse vortexing for 15 seconds and briefly centrifuged to remove drops from the inside of the lid and the solution was carefully applied to the QIAamp spin columns and centrifuged at 6000xg (8000 rpm) for 1 minute. The column was placed in a clean 2mL collection tube and the tube containing filtrate was discarded. Next 500µL Buffer AW1 was added and centrifuged at 6000xg (8000 rpm) for 1 minute, the column placed in a clean collection tube and the tube containing filtrate was discarded. Next 500µL Buffer AW2 was added and centrifuged at 20000xg (14000 rpm) for 3 minutes and the tube containing filtrate was discarded. The column was then placed in a clean 2mL collection tube and centrifuged for an additional 1 minute at full speed. The sample was then eluted after a 1 minute incubation step with 60µL AVE buffer aliquoted to 10-20µL and either used directly in the cDNA synthesis or stored at -80°C.

A2. PCR Purification
PCR products were purified by the QIAquick Spin Kit (Qiagen, Valencia, CA, USA) according to the manufacturer’s instructions. Briefly PB buffer (5x volume of PCR product) was mixed with PCR product and loaded on the spin column and centrifuged for a minute at 13000rpm. PE buffer (750µL) was used to wash by centrifugation at 13000rpm for one minute. Clean PCR product was eluted by centrifugation at 13000rpm using buffer EB (50µL).

A3. Transformation
Preparation of competent cells
Both commercial available competent cells (cells supplied with the kits) and E.coli DH5α cells, prepared according to the dimethyl sulphoxide (DMSO) method (C. T. Chung & Miller, 1988) were used for transformation. A 5mL volume of 2YT broth was inoculated and incubated overnight at 37°C on a shaker. A dilution of 1/100 was made from the culture into 100mL 2YT broth in a litre culture flask and grown on the shaker to early log phase (OD$_{600}$ 0.2 to 0.4). The cells were then harvested by centrifugation at 500 rpm for 5 min at 4°C in a Beckman J2-21 centrifuge. The pellet was resuspended in ice cold TSB buffer (Appendix B) and placed on ice for 10 min. Sterile glycerol was added to a final concentration of 10% v/v and 100µL aliquots were stored at -80°C.

Transformation
Frozen cells were defrosted on ice and 3µL ligation mix was then mixed with the cells and left on ice between 10 to 20 min. the cells were heat shocked at 42°C for 30 seconds. One mL of 2YT medium was added and the cells incubated for about 30 to 45 min at 37°C. A volume of 50 to 100µL was plated on selective plates containing either ampicillin or kanamycin (Appendix B). The plates were then incubated at 37°C and single colonies were either inoculated into 2mL 2YT broth for minipreparations or for colony PCR screening.

A4. Colony Screening
Following transformation colonies were screened by colony PCR as described by (A. B. Lee & Cooper, 1995). The colonies were picked using a plastic pipette tip, replicated on another plate for future reference and inserted into a 25 to 50µL PCR master mix with primers T7 and Rev17. PCR reactions of 35 cycles were performed and 5µL of PCR product was run on a gel to confirm the presence of the insert. Positive PCR fragments were cleaned up for sequencing and cloning.

A5. Agarose gel electrophoresis
DNA fragments were visualised in 0.8% agarose gels. Agarose gel electrophoresis was performed using horizontal gel apparatus (Stratagene, La Jolla, USA). The agarose gel was prepared by melting the appropriate weight per volume agarose (Agarose Di LE, Hispanagar, Burgos, Spain) in 1X TAE (Appendix B). Once melted, GelRed (Biotium, Hayward, CA, USA) was added to the gel and the agarose poured into gel setting trays and allowed to cool to room temperature to set. Set gels were placed in a gel apparatus submerged in 1X TAE. Before loading, 1-5µL PCR product mixed with 2µL of 6X agarose gel electrophoresis
loading dye. In order to determine the size of amplicons a DNA molecular weight marker V! (Roche, GmbH, Mannheim, Germany) was included in the first lane of all gels. The gel was electrophoresed at 100 to 120 V according to gel size for 60 minutes or until sufficient separation of bands. The DNA fragments were visualized on a UVP transilluminator (UVP, San Gabriel, CA, USA) at 256nm wavelength and photographed with Kodak ds 1D Electrophoresis Documentation and Analysis System 120 V2.0.3 computerized gel imager.
Appendix B: Reagents and buffers

B1. 50x TAE buffer:
121g Tris base, 28.55mL glacial acetic acid, 50mL 0.5M EDTA pH 8.0, make up to 500mL with deionized H₂O

B2. 0.5M EDTA:
Add 186.1g disodium ethylenediaminetetraacetate.2H₂O to ~800mL deionized sterile water. Dissolve by stirring vigorously on a magnetic stirrer while adjusting the pH to 8.0 with ~20g NaOH pellets. The disodium salt of ADTA will only dissolve if the pH of the solution is adjusted to ~8.0.

B3. LB broth
10g NaCl, 5g Yeast extract, 10g Tryptone, up to 1L with deionised water

B4. LB agar selection plates
LB medium was made as described above. 15g agar was added before autoclaving. Agar was cooled to ~55°C. Ampicillin (Sigma, MO, USA) 100µg/mL or 15µg/mL kanamycin (Km; Nova Nordisk, Johannesburg, RSA) and agar was poured into plates and allowed to cool and harden. Plates were inverted and stored in the dark at 4°C.

B5. Growth media
Complete growth media for adherent human tissue cell lines consisted of High glucose D-MEM with L-glutamine and 25mM HEPES (Life Technologies, CA, USA) supplemented with 10% fetal bovine serum and 1% Penicillin/Streptomycin and 100 µg/mL Gentamicin (Life Technologies, Carlsbad, CA, USA)

B6. RPMI media
R10 growth media for suspension human tissue cell lines consisted of RPMI 1640 medium (Life Technologies, Carlsbad, CA, USA) supplemented with 10% FBS, 10 mM HEPES (Life Technologies, Carlsbad, CA, USA), 100 µg/mL Gentamicin (Life Technologies, Carlsbad, CA, USA), and 1% Penicillin-Streptomycin and Glutamine (Life Technologies, Carlsbad, CA, USA),
Appendix C: A scatterplot with a LOESS smoothing line (with 95% confidence intervals) depicting all available viral load measurements for both CAPRISA (AI) and HISIS cohorts over time.
Appendix D: Neutralization assay data

D1: Breadth and potency scores HISIS

<table>
<thead>
<tr>
<th>Serum No.</th>
<th>Infected Subtype</th>
<th>Infection Status</th>
<th>C50 (titre)</th>
<th>% Viruses Neutralized</th>
</tr>
</thead>
<tbody>
<tr>
<td>405.11</td>
<td>A</td>
<td>Single</td>
<td>1:50</td>
<td>90%</td>
</tr>
<tr>
<td>398.11</td>
<td>C</td>
<td>Single</td>
<td>1:50</td>
<td>85%</td>
</tr>
<tr>
<td>248.11</td>
<td>ACD</td>
<td>Single</td>
<td>1:50</td>
<td>90%</td>
</tr>
<tr>
<td>308.10</td>
<td>A</td>
<td>Single</td>
<td>1:50</td>
<td>90%</td>
</tr>
<tr>
<td>415.11</td>
<td>ACD</td>
<td>Single</td>
<td>1:50</td>
<td>85%</td>
</tr>
<tr>
<td>566.10</td>
<td>C</td>
<td>Single</td>
<td>1:50</td>
<td>90%</td>
</tr>
<tr>
<td>613.10</td>
<td>ACD</td>
<td>Single</td>
<td>1:50</td>
<td>85%</td>
</tr>
<tr>
<td>216.9</td>
<td>A</td>
<td>Single</td>
<td>1:50</td>
<td>90%</td>
</tr>
<tr>
<td>532.10</td>
<td>AB</td>
<td>Dual</td>
<td>1:50</td>
<td>90%</td>
</tr>
<tr>
<td>515.10</td>
<td>A</td>
<td>Single</td>
<td>1:50</td>
<td>90%</td>
</tr>
<tr>
<td>346.10</td>
<td>A</td>
<td>Single</td>
<td>1:50</td>
<td>90%</td>
</tr>
<tr>
<td>316.10</td>
<td>A</td>
<td>Single</td>
<td>1:50</td>
<td>90%</td>
</tr>
<tr>
<td>234.9</td>
<td>A</td>
<td>Single</td>
<td>1:50</td>
<td>90%</td>
</tr>
<tr>
<td>89.9</td>
<td>CB</td>
<td>Dual</td>
<td>1:50</td>
<td>90%</td>
</tr>
<tr>
<td>142.9</td>
<td>A</td>
<td>Single</td>
<td>1:50</td>
<td>90%</td>
</tr>
<tr>
<td>509.9</td>
<td>C</td>
<td>Single</td>
<td>1:50</td>
<td>90%</td>
</tr>
<tr>
<td>594.10</td>
<td>A</td>
<td>Single</td>
<td>1:50</td>
<td>90%</td>
</tr>
<tr>
<td>304.10</td>
<td>C</td>
<td>Single</td>
<td>1:50</td>
<td>90%</td>
</tr>
<tr>
<td>98.9</td>
<td>F</td>
<td>Single</td>
<td>1:50</td>
<td>90%</td>
</tr>
</tbody>
</table>

D2: Breadth and potency scores for CAPRISA

<table>
<thead>
<tr>
<th>Serum ID</th>
<th>Infected Subtype</th>
<th>Infection Status</th>
<th>C50 (titre)</th>
<th>% Viruses Neutralized</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAP254</td>
<td>C</td>
<td>Single</td>
<td>1:50</td>
<td>90%</td>
</tr>
<tr>
<td>CAP274</td>
<td>C</td>
<td>Single</td>
<td>1:50</td>
<td>90%</td>
</tr>
</tbody>
</table>

Appendix D: Neutralization by plasma sampled at 2 years post infection in CAPRISA (D1) and HISIS (D2) cohorts of a panel of 12 viruses. Values represent the dilution at which 50% neutralization was detected (ID50) in a serial dilution range starting at 1:45. The breadth of neutralization is listed on the right hand side showing percentage of panel viruses neutralized with ID50 values greater than 1:45 and 1:100. The infecting subtype and detection of dual infection at any time during the 2 year follow-up since infection as well as viral load at sampling are shown on the left.
Appendix E: HIV-1 subtype C envelope, full length and sequencing primers

Appendix E1: PCR primers

<table>
<thead>
<tr>
<th>Primer</th>
<th>Direction</th>
<th>sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIF1</td>
<td>forward</td>
<td>GGG TTT ATT ACA GGG ACA GCA GAG</td>
</tr>
<tr>
<td>OFM19</td>
<td>reverse</td>
<td>GCA CTC AAG GCA AGC TTT ATT GAG GCT TA</td>
</tr>
<tr>
<td>EnvA</td>
<td>forward</td>
<td>GGC TTA GGC ATC TCC TAT GGC AGG AAG AA</td>
</tr>
<tr>
<td>EnvArx</td>
<td>forward</td>
<td></td>
</tr>
<tr>
<td>EnvN</td>
<td>reverse</td>
<td>CTG CCA ATC AGG GAA GTA GCC TTG TGT</td>
</tr>
</tbody>
</table>

Appendix E2: Sequencing primers

Appendix E2 (A): Envelope sequencing primers

<table>
<thead>
<tr>
<th>Primer</th>
<th>Direction</th>
<th>HXB2 position</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF00</td>
<td>forward</td>
<td>6201</td>
<td>GGG AAA GAG CAG AAG ACA GTG GCA ATG A</td>
</tr>
<tr>
<td>For16</td>
<td>forward</td>
<td>7350-7375</td>
<td>TTTAATTGTGGAGGAGAATTTTTCTA</td>
</tr>
<tr>
<td>EF200</td>
<td>forward</td>
<td>8092</td>
<td>GGG ATA ACA TGA CCT GGA TGC AGT GGG</td>
</tr>
<tr>
<td>EF175</td>
<td>reverse</td>
<td>6401</td>
<td>TTT AGC ATC TGA TGC ACA GAA TAG</td>
</tr>
<tr>
<td>EF115</td>
<td>reverse</td>
<td>7374</td>
<td>AGA AAA ATT CTC CTC TAC AAT TAA</td>
</tr>
<tr>
<td>EF15</td>
<td>reverse</td>
<td>8445</td>
<td>CTT GCT CTC CAC CTT CTT C</td>
</tr>
<tr>
<td>For14</td>
<td>forward</td>
<td>6556-6582</td>
<td>TATGGGACAAAGCCTAAAGCCATGTG</td>
</tr>
<tr>
<td>EF170</td>
<td>forward</td>
<td>7799</td>
<td>AGC AGG AAG CAC TAT GGG</td>
</tr>
<tr>
<td>EF260</td>
<td>forward</td>
<td>8520</td>
<td>TTC AGC TAC CAC CGA TTG AGA GAC T</td>
</tr>
<tr>
<td>Rev15</td>
<td>reverse</td>
<td>7015-6990</td>
<td>CTGCCATTTAACAGCATTTGAGTTGA</td>
</tr>
<tr>
<td>EF55</td>
<td>reverse</td>
<td>7940</td>
<td>GCC CCA GAC CGT GAG TTG CAA CAT ATG</td>
</tr>
<tr>
<td>Rev19</td>
<td>reverse</td>
<td>8820-8797</td>
<td>ACTTTTTGACCACCTTGCCACCCAT</td>
</tr>
</tbody>
</table>
Appendix E2 (B): Full length HIV-1 genome sequencing primers

<table>
<thead>
<tr>
<th>primer</th>
<th>Direction</th>
<th>HXB2 position</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>5R(3)C</td>
<td>reverse</td>
<td>7502→7526</td>
<td>CATTGTCGTCCTACCCCCCTGCCAC</td>
</tr>
<tr>
<td>13R2C2</td>
<td>reverse</td>
<td>2712→2735</td>
<td>GCCAAATATTGAGGTGTATATAGG</td>
</tr>
<tr>
<td>EF15</td>
<td>reverse</td>
<td>8424←8442</td>
<td>CTT GCT CTC CAC CTT CTT C</td>
</tr>
<tr>
<td>EF55</td>
<td>reverse</td>
<td>7914←7937</td>
<td>GCC CCA GAC GTG GAG TTG CAA CAT ATG</td>
</tr>
<tr>
<td>EF110</td>
<td>forward</td>
<td>7005→7025</td>
<td>CTG TTA AAT GGT AGC CTA GCA GAA</td>
</tr>
<tr>
<td>EF00</td>
<td>forward</td>
<td>6204→6228</td>
<td>GGG AAA GAG CAG AAG ACA GTG GCA ATG A</td>
</tr>
<tr>
<td>E230</td>
<td>forward</td>
<td>8276→8296</td>
<td>AAT ATT CAT AAT GAT AGT AGG AGG</td>
</tr>
<tr>
<td>GF80</td>
<td>forward</td>
<td>1477→1493</td>
<td>AGA GAA CCA AGG GGA AGT GA</td>
</tr>
<tr>
<td>G35</td>
<td>reverse</td>
<td>1817←1835</td>
<td>CAT GCT GTC ATC ATT TCT TCT A</td>
</tr>
<tr>
<td>P7</td>
<td>forward</td>
<td>4025→4039</td>
<td>AGA AGT AAA CAT AGT AAC</td>
</tr>
<tr>
<td>G00</td>
<td>forward</td>
<td>767→782</td>
<td>GAC TAG CGG AGG CTA GAA G</td>
</tr>
<tr>
<td>NefOR</td>
<td>reverse</td>
<td>523←540</td>
<td>AGGCAAGCTTTATTGAGG</td>
</tr>
<tr>
<td>SQ3R(2)C</td>
<td>reverse</td>
<td>8651←8680</td>
<td>GCTATGGTATCAGACACTAATAGACACTC</td>
</tr>
<tr>
<td>SQ4F</td>
<td>forward</td>
<td>2076→2095</td>
<td>ACAGGCTAATTITTTAGGGA</td>
</tr>
<tr>
<td>SQ5F</td>
<td>forward</td>
<td>2613→2637</td>
<td>AAACAATGGCCATTAAACAGAAGAGA</td>
</tr>
<tr>
<td>SQ6.5FC</td>
<td>forward</td>
<td>3444→3469</td>
<td>GCAGAGTTAGAATTTGCAAGAAC</td>
</tr>
<tr>
<td>SQ8R</td>
<td>reverse</td>
<td>5963←5988</td>
<td>CTCCGCTTCTCCTGCCATAGGAGAT</td>
</tr>
<tr>
<td>SQ8RC</td>
<td>reverse</td>
<td>4660←4685</td>
<td>TTCTACTACTCCCTGGACTTTTGGGAG</td>
</tr>
<tr>
<td>SQ9FC3</td>
<td>forward</td>
<td>5074→5099</td>
<td>CAGGTAGACAGGATGAAGATCAGAAC</td>
</tr>
<tr>
<td>SQ9'RC</td>
<td>reverse</td>
<td>5341←5366</td>
<td>ATATGAATTAGTGGTGCTGCCAGGCC</td>
</tr>
<tr>
<td>SQ10FC</td>
<td>forward</td>
<td>5833→5857</td>
<td>GGAGCCAGTAGATCTACACCTAGAG</td>
</tr>
<tr>
<td>SQ11RC3</td>
<td>reverse</td>
<td>3687←3713</td>
<td>TTTAGGAGTCTTTTCCCATATTACTAT</td>
</tr>
<tr>
<td>SQ15FC</td>
<td>forward</td>
<td>8561→8580</td>
<td>GAGAGCGGTGAAGACTTTGAGG</td>
</tr>
<tr>
<td>SQ16F</td>
<td>forward</td>
<td>56→75</td>
<td>CCACACACAGGCTACTTCC</td>
</tr>
</tbody>
</table>
Appendix F: Mutagenesis primers

Appendix F1: CAP63 IMC mutagenesis primers

<table>
<thead>
<tr>
<th>Primer Name</th>
<th>Primer Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAP63F4_5_I398T</td>
<td>AGTACATACATGCTAATGGTACGACATACAAATGGTGCAAGC</td>
</tr>
<tr>
<td>CAP63F4_5_I398T_antisense</td>
<td>AGTACATACATGCTAATGGTACGACATACAAATGGTGCAAGC</td>
</tr>
<tr>
<td>CAP63F4_5_A404T</td>
<td>CTTTCTATTGGAATACATACATACAGCTGTTAATGGTACGACATACAAATGGTGCAAGC</td>
</tr>
<tr>
<td>CAP63F4_5_A404T_antisense</td>
<td>CTTTCTATTGGAATACATACATACATACAGCTGTTAATGGTACGACATACAAATGGTGCAAGC</td>
</tr>
<tr>
<td>CAP63T6Wdel390-395-antisense</td>
<td>GTGATGACTTTCCCTCGTACATATGGTATATGGTATATGCATGAGCTGCTGAGGAGCAGTGATGT</td>
</tr>
<tr>
<td>CAP63T6Wdel390-395-antisense</td>
<td>GTGATGACTTTCCCTCGTACATATGGTATATGGTATATGCATGAGCTGCTGAGGAGCAGTGATGT</td>
</tr>
<tr>
<td>CAP63T13Wdel397-403-antisense</td>
<td>GTGATGACTTTCCCTCGTACATATGGTATATGGTATATGCATGAGCTGCTGAGGAGCAGTGATGT</td>
</tr>
<tr>
<td>CAP63T13Wdel397-403-antisense</td>
<td>GTGATGACTTTCCCTCGTACATATGGTATATGGTATATGCATGAGCTGCTGAGGAGCAGTGATGT</td>
</tr>
<tr>
<td>CAP63T14Wdel396-404-antisense</td>
<td>GTGATGACTTTCCCTCGTACATATGGTATATGGTATATGCATGAGCTGCTGAGGAGCAGTGATGT</td>
</tr>
<tr>
<td>CAP63T14Wdel396-404-antisense</td>
<td>GTGATGACTTTCCCTCGTACATATGGTATATGGTATATGCATGAGCTGCTGAGGAGCAGTGATGT</td>
</tr>
<tr>
<td>CAP63T19del389-396-antisense</td>
<td>GTGATGACTTTCCCTCGTACATATGGTATATGGTATATGCATGAGCTGCTGAGGAGCAGTGATGT</td>
</tr>
<tr>
<td>CAP63T19del389-396-antisense</td>
<td>GTGATGACTTTCCCTCGTACATATGGTATATGGTATATGCATGAGCTGCTGAGGAGCAGTGATGT</td>
</tr>
</tbody>
</table>

Appendix F2: CAP63 pseudovirus mutagenesis primers

<table>
<thead>
<tr>
<th>Primer Name</th>
<th>Primer Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAP63_G728E</td>
<td>CGAAGAAGAAGGGTGAGAGCAAGACAACACGAGAT</td>
</tr>
<tr>
<td>CAP63_G728E_antisense</td>
<td>CGAAGAAGAAGGGTGAGAGCAAGACAACACGAGAT</td>
</tr>
<tr>
<td>CAP63_I817T</td>
<td>CGAAGAAGAAGGGTGAGAGCAAGACAACACGAGAT</td>
</tr>
<tr>
<td>CAP63_I817T_antisense</td>
<td>CGAAGAAGAAGGGTGAGAGCAAGACAACACGAGAT</td>
</tr>
<tr>
<td>CAP63_N733S</td>
<td>CGAAGAAGAAGGGTGAGAGCAAGACAACACGAGAT</td>
</tr>
<tr>
<td>CAP63_N733S_antisense</td>
<td>CGAAGAAGAAGGGTGAGAGCAAGACAACACGAGAT</td>
</tr>
<tr>
<td>CAP63_T14W_K722E</td>
<td>CGAAGAAGAAGGGTGAGAGCAAGACAACACGAGAT</td>
</tr>
<tr>
<td>CAP63_T14W_K722E_antisense</td>
<td>CGAAGAAGAAGGGTGAGAGCAAGACAACACGAGAT</td>
</tr>
<tr>
<td>CAP63_T14W_N729S</td>
<td>CGAAGAAGAAGGGTGAGAGCAAGACAACACGAGAT</td>
</tr>
<tr>
<td>CAP63_T14W_N729S_antisense</td>
<td>CGAAGAAGAAGGGTGAGAGCAAGACAACACGAGAT</td>
</tr>
<tr>
<td>CAP63_T14W_A815V</td>
<td>CGAAGAAGAAGGGTGAGAGCAAGACAACACGAGAT</td>
</tr>
<tr>
<td>CAP63_T14W_A815V_antisense</td>
<td>CGAAGAAGAAGGGTGAGAGCAAGACAACACGAGAT</td>
</tr>
<tr>
<td>CAP63_G728E</td>
<td>CGAAGAAGAAGGGTGAGAGCAAGACAACACGAGAT</td>
</tr>
<tr>
<td>CAP63_G728E_antisense</td>
<td>CGAAGAAGAAGGGTGAGAGCAAGACAACACGAGAT</td>
</tr>
<tr>
<td>CAP63_T34_N733S</td>
<td>CGAAGAAGAAGGGTGAGAGCAAGACAACACGAGAT</td>
</tr>
<tr>
<td>CAP63_T34_N733S_antisense</td>
<td>CGAAGAAGAAGGGTGAGAGCAAGACAACACGAGAT</td>
</tr>
<tr>
<td>CAP63_T34_N733S</td>
<td>CGAAGAAGAAGGGTGAGAGCAAGACAACACGAGAT</td>
</tr>
<tr>
<td>CAP63_T34_N733S_antisense</td>
<td>CGAAGAAGAAGGGTGAGAGCAAGACAACACGAGAT</td>
</tr>
<tr>
<td>CAP63_T13W_R734I</td>
<td>CGAAGAAGAAGGGTGAGAGCAAGACAACACGAGAT</td>
</tr>
<tr>
<td>CAP63_T13W_R734I_antisense</td>
<td>CGAAGAAGAAGGGTGAGAGCAAGACAACACGAGAT</td>
</tr>
</tbody>
</table>
Appendix G: Titration of IMC virus stocks for infection of CEM NKR_{CCR5} cells

Appendix G1: Table showing results of titration of IMC virus inoculum in CEM NKR_{CCR5} target cells for determination of optimal inoculum. IMC virus stocks were produced in HEK293T cells and different volumes of the virus stock (900, 300 and 100µL) used to inoculate 2x10^6 target cells. Intracellular p24 staining was carried out after 72 hours of infection. Values in the table are %p24 positive cells. Unusable infections (<20% p24 positive) are highlighted in grey.

<table>
<thead>
<tr>
<th>Clone</th>
<th>Inoculum (microliters)</th>
<th>900</th>
<th>300</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAP63_IMC_T-F</td>
<td></td>
<td>94.8</td>
<td>95.6</td>
<td>88.9</td>
</tr>
<tr>
<td>CAP63_IMC_Gly_404</td>
<td></td>
<td>85.6</td>
<td>85.7</td>
<td>73.1</td>
</tr>
<tr>
<td>CAP63_IMC_6D_391</td>
<td></td>
<td>70.3</td>
<td>51.8</td>
<td>20.7</td>
</tr>
<tr>
<td>CAP63_IMC_7D_397</td>
<td></td>
<td>25.7</td>
<td>12.5</td>
<td>9.26</td>
</tr>
<tr>
<td>CAP63_IMC_9D_396</td>
<td></td>
<td>76.91</td>
<td>48.4</td>
<td>23</td>
</tr>
<tr>
<td>CAP63_IMC_5D_399</td>
<td></td>
<td>86.9</td>
<td>86.3</td>
<td>76.7</td>
</tr>
</tbody>
</table>
Appendix G2: Titration for optimal infection of target cells with IMCs. Intracellular P24 staining of CEM.NKRCCR5 cells 72 hours after infection with 900µL, 300µL and 100µL of HEK293T produced IMC virus. Panel A is a mock infection, panel B is the A1953-CEM-NKRCCR5 chronically infected cells (A1953) positive control. Panels C, D and E are the CAP63 T/F titrations and panels F, G and H are the CAP63_7D_397 titrations. The volume with the best infectivity was chosen. Infections had to exceed 20% to be used for the ADCC assay.
Appendix H: Determination of the optimal length of infection for target cells with IMCs

Panel A is a mock infection, panel B is the A1953-CEM-NKR_{CCR5} chronically infected cell (A1953) positive control. Panels C through F show the results of intracellular p24 staining of CEM NKR_{CCR5} cells after infection for 2 days and 3 days using 900μL (C and E respectively) and 300μL (D and F) of inoculum. The highest levels of intracellular p24 are reached at 2 days post infection.
Appendix I: Cell-cell fusion capacity of CAPRISA envelopes from acute and chronic infection

Appendix I: Cell-cell fusion capacities of pseudoviruses from acute/early (solid bars) and late/chronic infection (striped bars) in 8 CAPRISA participants. Control reactions with no DNA, no env and no tat and the positive Du151 control are in black.
Appendix J: Replication assay slope calculations

Appendix J1: The mean slope of the growth curves from triplicate replication assays of five viruses in PBMC from two donors (WP1 and WP2) calculated using the LOGEST function in excel. The mean slope of the growth curves was higher in PBMC from WP4 (p=0.0079).

Appendix J2: The slopes each of the growth curves from triplicate replication assays of five viruses in PBMC from two donors (WP1 and WP2) calculated using the LOGEST function in excel. The mean slope of the growth curves did not differ between viruses.
REFERENCES

responses and changes during antiretroviral therapy. *Journal of Virology*, 73(9), 7108–16.

Guo, H., Abrahamyan, L. G., Liu, C., Waltke, M., Geng, Y., Chen, Q., … Kong, X. (2012). Comparative analysis of the fusion efficiency elicited by the envelope glycoprotein V1-
V5 regions derived from human immunodeficiency virus type 1 transmitted perinatally. *The Journal of General Virology*, 93(Pt 12), 2635–45. doi:10.1099/vir.0.046771-0

130

132

Mabuka, J., Nduati, R., Odem-Davis, K., Peterson, D., & Overbaugh, J. (2012). HIV-specific antibodies capable of ADCC are common in breastmilk and are associated with reduced risk of transmission in women with high viral loads. PLoS Pathogens, 8(6), e1002739. doi:10.1371/journal.ppat.1002739

141

146

virion-binding immunoglobulin M (IgM) and IgG antibodies followed by plasma anti-
gp41 antibodies with ineffective control of initial viremia. *Journal of Virology*, 82(24),
12449–63. doi:10.1128/JVI.01708-08

(2008b). Initial B-cell responses to transmitted human immunodeficiency virus type 1:
virion-binding immunoglobulin M (IgM) and IgG antibodies followed by plasma anti-
gp41 antibodies with ineffective control of initial viremia. *Journal of Virology*, 82(24),
12449–63. doi:10.1128/JVI.01708-08

Tomiyama, H., Akari, H., Adachi, A., & Takiguchi, M. (2002). Different effects of Nef-
mediated HLA class I down-regulation on human immunodeficiency virus type 1-
specific CD8(+) T-cell cytolytic activity and cytokine production. *Journal of Virology*,
76(15), 7535–43.

Trkola, A., Dragic, T., Arthos, J., Binley, J. M., Olson, W. C., Allaway, G. P., … Moore, J. P.
(1996). CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-
receptor CCR-5. *Nature*, 384(6605), 184–7. doi:10.1038/384184a0

Trkola, A., Purtscher, M., Muster, T., Ballaun, C., Buchacher, A., Sullivan, N., … Katinger,
epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. *Journal of
Virology*, 70(2), 1100–8.

Troyer, R. M., Collins, K. R., Abraha, A., Moore, D. M., Krizan, R. W., Toossi, Z., … Fraundorf,
E. (2005). Changes in Human Immunodeficiency Virus Type 1 Fitness and Genetic Diversity during Disease Progression Changes in Human Immunodeficiency Virus Type 1 Fitness and Genetic Diversity during Disease Progression †.

Tudor, D., & Bomsel, M. (2011). The broadly neutralizing HIV-1 IgG 2F5 elicits gp41-
specific antibody-dependent cell cytotoxicity in a FכγRI-dependent manner. *AIDS

Van den Kerkhof, T. L., Feenstra, K. A., Euler, Z., van Gils, M. J., Rijsdijk, L. W., Boeser-

Van Gils, M. J., Bunnik, E. M., Boeser-Nunnink, B. D., Burger, J. a, Terlouw-Klein, M.,

