The *db* Mouse as a Model for Steatohepatitis

Jason Robert Sutherland – STHJAS002
UCT Division of Anatomical Pathology

MSc. Supervised By
Professor Pauline de la Motte Hall, Division of Anatomical Pathology
Professor David Marais, Lipid Laboratory, Internal Medicine

Submitted – 14 February 2006
Faculty of Health Sciences
UNIVERSITY OF CAPE TOWN
DECLARATION

I, Jason Sutherland, hereby declare that the work on which this dissertation is based is my original work (except where acknowledgements indicate otherwise) and that neither the whole work nor any part of it has been, is being, or is to be submitted for another degree in this or any other university.

I empower the university to reproduce for the purpose of research either the whole or any portion of the contents in any manner whatsoever.

Signature: ..

Date: ..
THANK YOU

I would like to take this opportunity to show my gratitude to everyone who assisted me throughout my 2 years at U.C.T, without whom the project would not have been possible.

Supervisors

Professor Pauline Hall - For awarding me a position at U.C.T. and setting up a bursary which enabled me to study in Cape Town for 2 years.

Professor Dave Marais - For providing bench space in his lab, introducing me to lipids and giving advice and guidance whenever required.

Technical Team

Richard Kirsch - Zoe Lotz - Thanks for your support and help with photography
Pete Smith - Thanks for measurement of aminotransferases.
Jaap Visser - Thanks for measurement of blood / alcohol levels
Morea Peterson - Thanks for assistance with animal sacrifice.

SPF Animal Unit - Thanks for all your staining and help with administration

Lipid Laboratory

Dee Blackhurst Pam Byrnes Bharati Ratanje Much great appreciation to all of you and the rest of the lipid laboratory for assistance with teaching techniques, on hand to answer questions, ordering and supply of materials and being a pleasure to work with.
Table of Contents

List of abbreviations ix-xiii
Abstract 1

Chapter 1; Introduction – Overview of Nonalcoholic Fatty Liver Disease
1.1 Introducing Nonalcoholic Fatty Liver Disease 2
1.2 Associated Risk Factors 6
 1.2.1 Age 6
 1.2.2 Obesity 6
 1.2.3 Type 2 Diabetes Mellitus 7
 1.2.4 Insulin Resistance (IR) 7
 1.2.5 Gender 7
 1.2.6 ALT/AST ratio > 1 8
 1.2.7 Genetics 8
1.3 Diagnosis 9
1.4 Therapy 10

Chapter 2; Pathogenesis of Fatty Liver Disease
2.1 Introducing the Pathogenesis of NAFLD and NASH 14
2.2 Insulin Resistance (IR) 15
2.3 Free Fatty Acids (FFA) 18
2.4 β-Oxidation of Fatty Acids 20
2.5 Peroxisome Proliferator Activated Receptors (PPARs) 21
2.6 Cytochrome P450 Enzymes 25
2.7 Leptin 27
2.8 Type II Diabetes Mellitus (T2DM) 29
2.9 Obesity 29
2.10 Hepatic Fibrosis 31
2.11 Cirrhosis 34
2.12 Similarities with Alcoholic Liver Disease (ALD) 36

Chapter 3; Overview of Animal Models in Nonalcoholic Fatty Liver Disease
3.1 Introducing the Animal Models employed in studying NAFLD 39
3.2 (Ob/Ob) Mouse Model 39
3.3 Tumour Necrosis Factor-α (TNF-α) Knockout Mouse Model 42
3.4 Sprague-Dawley Rat Model 44
3.5 Peroxisome Proliferator Activated Receptors (PPAR) Mouse Model 44
3.6 Methionine and Choline Deficient (MCD) Dietary Model 47
3.7 Lipodystrophic Mouse Model 52
3.8 Leptin Deficient Mouse Model 53
3.9 Fatty Liver Shionogi (FLS) Mouse Model 55
3.10 Zucker (fa/fa) Rat Model 56
3.11 Acyl-CoA Oxidase (AOX) Mouse Model 57
3.12 Human Studies 58
3.13 Summary of Animal Data Derived from studying NAFLD 62
 3.13.1 Introduction 62
 3.13.2 (Ob/ob) Mouse Model 63
 3.13.3 TNF-R1 Knockout Mouse Model 65
 3.13.4 Sprague Dawley Mouse Model 66
 3.13.5 (Db/db) Mouse Model 67
3.13.6 PPAR-α Mouse Model 68
3.13.7 LepTg Mouse Model 70
3.13.8 Fatty Liver Shionogi (FLS) Mouse Model 71
3.13.9 Zucker (fa/fa) Rat Model 72
3.13.10 A/J Mouse Model 76
3.13.11 C57Bl/6J Mouse Model 77
3.13.12 Acyl CoA Oxidase (AOX) Mouse Model 78

Chapter 4; Methods and Materials
4.1 Introduction 80
4.2 Histology 80
 4.2.1 Tissue Processing 80
 4.2.2 Stains / Light Microscopy 80
4.3 Biochemistry 81
 4.3.1 Lipid Extraction 81
 4.3.2 Conjugated Dienes (CD) 82
 4.3.3 Lipid Hydroperoxides (LOOH) 83
 4.3.4 Thiobarbituric Acid Reactive Substances (TBARS) 84
 4.3.5 Total Cholesterol (TC) 85
 4.3.6 Hepatic Triglycerides (TG) 86
 4.3.7 Bicinchoninic Acid (BCA) Assay of Proteins 87
 4.3.8 Measurement of Aminotransferases 88
 4.3.9 Measurement of Blood Alcohol Levels 90
4.4 Statistical Analyses 91
4.5 Animal Studies 92
 4.5.1 Assessment of the db/db Mouse Model on Regular Chow for 20 Weeks 92
 4.5.2 Impact of Various Oils, Administered via the Diet (4 Weeks) 93
 4.5.3 Study of Short Period of Alcohol Administration (4 Weeks) 94
 4.5.4 Impact of Alcohol Administered over 8 Weeks in db/wt and db/db Mice 95
 4.5.5 Impact of Alcohol Administered over 20 Weeks in db/wt and db/db Mice 97

Chapter 5; Results of Studies
5.1 Assessment of the db/db Mouse Model on Regular Chow for 20 Weeks 98
 5.1.1 Body Mass 99
 5.1.2 Liver Mass 100
 5.1.3 Liver Proportion of Body Mass 100
 5.1.4 Plasma Glucose Concentrations 101
 5.1.5 Triglycerides 101
 5.1.6 Total Cholesterol 102
 5.1.7 Conjugated Dienes as Early Products of Lipid Peroxidation 102
 5.1.8 LOOH as Intermediated Products of Lipid Peroxidation 103
 5.1.9 TTBARS as Late Products of Lipid Peroxidation 103
5.2 Impact of Various Oils, Administered via the Diet (4 Weeks) 104
 5.2.1 Body Mass 104
 5.2.2 Gradient Analysis of Body Mass Gain 104
 5.2.3 Liver Mass 105
 5.2.4 Liver Proportion of Body Mass 105
 5.2.5 Plasma Glucose Concentrations 106
 5.2.6 Triglycerides 106
 5.2.7 Total Cholesterol 107
 5.2.8 Conjugated Dienes as Early Products of Lipid Peroxidation 107
 5.2.9 LOOH as Intermediated Products of Lipid Peroxidation 108
Chapter 6; Interpretation of Results
6.1 Assessment of the db/db Mouse Model on Regular Chow for 20 Weeks 143
6.2 Impact of Various Oils, Administered via the Diet (4 Weeks) 149
6.3 Study of Short Period of Alcohol Administration (4 Weeks) 152
6.4 Impact of Alcohol Administered over 8 and 20 Weeks in db/wt and db/db Mice 156
6.5 Histopathology Analysis
 6.5.1 Assessment of the db/db Mouse Model on Regular Chow for 20 Weeks 165
 6.5.2 Impact of Various Oils, Administered via the Diet (4 Weeks) 165
 6.5.3 Impact of Short Period of Alcohol Administration (4 Weeks) 166
 6.5.4 Impact of Alcohol Administered over 8 Weeks in db/wt and db/db Mice 166
 6.5.5 Impact of Alcohol Administered over 20 Weeks in db/wt and db/db Mice 167

Chapter 7; Discussion and Conclusion
7.1 Assessment of the db/db Mouse Model on Regular Chow for 20 Weeks 169
7.2 Impact of Various Oils, Administered via the Diet (4 Weeks) 169
7.3 Impact of a Short Period of Alcohol Administration (4 Weeks) 170
7.4 Impact of Alcohol Administered over 8 Weeks in db/wt and db/db Mice 171
7.5 Impact of Alcohol Administered over 20 Weeks in db/wt and db/db Mice 172
7.6 The Mouse as a Model 173
7.7 An Integrated View of Fatty Liver 174

Chapter 8; Tables – Group Mean Values
8.1 Assessment of the db/db Mouse Model on Regular Chow for 20 Weeks 176
 8.1.1 Terminal Body Mass 176
 8.1.2 Liver Mass 176
 8.1.3 Plasma Glucose Concentrations 177
 8.1.4 Triglycerides 177
 8.1.5 Total Cholesterol 178
 8.1.6 Conjugated Dienes as Early Products of Lipid Peroxidation 178
 8.1.7 LOOH as Intermediated Products of Lipid Peroxidation 179
 8.1.8 TTBARS as Late Products of Lipid Peroxidation 179
8.2 Impact of Various Oils, Administered via the Diet (4 Weeks) 180
 8.2.1 Weekly Body Mass 180
 8.2.2 Liver Mass 180
 8.2.3 Plasma Glucose Concentrations 181
 8.2.4 Triglycerides 181
 8.2.5 Total Cholesterol 182
 8.2.6 Conjugated Dienes as Early Products of Lipid Peroxidation 182
 8.2.7 LOOH as Intermediated Products of Lipid Peroxidation 183
 8.2.8 TTBARS as Late Products of Lipid Peroxidation 183
 8.2.9 BCA Protein Levels 184
8.3 Study of Short Period of Alcohol Administration (4 Weeks) 185
 8.3.1 Weekly Body Mass 185
 8.3.2 Triglycerides 186
 8.3.3 Total Cholesterol 186
 8.3.4 Conjugated Dienes as Early Products of Lipid Peroxidation 187
 8.3.5 LOOH as Intermediated Products of Lipid Peroxidation 187
 8.3.6 TTBARS as Late Products of Lipid Peroxidation 188
8.4 Impact of Alcohol Administered over 8 Weeks in db/wt and db/db Mice 189
 8.4.1 Weekly Body Mass 189
8.4.2 Liver Mass
8.4.3 Plasma Glucose Concentrations
8.4.4 Alcohol / Blood Levels
8.4.5 Aspartine Transaminase Levels
8.4.6 Alanine Transaminase Levels
8.4.7 Triglycerides
8.4.8 Total Cholesterol
8.4.9 Conjugated Dienes as Early Products of Lipid Peroxidation
8.4.10 LOOH as Intermediated Products of Lipid Peroxidation
8.4.11 TTBARS as Late Products of Lipid Peroxidation
8.4.12 BCA Protein Levels
8.4.13 Fat Change and Inflammation Grading

8.5 Impact of Alcohol Administered over 20 Weeks in db/wt and db/db Mice
8.5.1 Weekly Body Mass
8.5.2 Liver Mass
8.5.3 Plasma Glucose Concentrations
8.5.4 Alcohol Blood Levels
8.5.5 Aspartine Transaminase Levels
8.5.6 Alanine Transaminase Levels
8.5.7 Triglycerides
8.5.8 Total Cholesterol
8.5.9 Conjugated Dienes as Early Products of Lipid Peroxidation
8.5.10 LOOH as Intermediated Products of Lipid Peroxidation
8.5.11 TTBARS as Late Products of Lipid Peroxidation
8.5.12 BCA Protein Levels
8.5.13 Fat Change and Inflammation Grading

Chapter 9; Appendices – Individual Values
9A Wild Type Mice (wt/wt) on Regular Chow for 20 Weeks
 A1 Terminal Body Mass
 A2 Liver Mass
 A3 Liver Proportion of Body Mass
 A4 Plasma Glucose Concentrations
 A5 Triglycerides
 A6 Total Cholesterol
 A7 Conjugated Dienes as Early Products of Lipid Peroxidation
 A8 LOOH as Intermediated Products of Lipid Peroxidation
 A9 TTBARS as Late Products of Lipid Peroxidation

9B Heterozygous Mice (db/wt) on Regular Chow for 20 Weeks
 B1 Terminal Body Mass
 B2 Liver Mass
 B3 Liver Proportion of Body Mass
 B4 Plasma Glucose Concentrations
 B5 Triglycerides
 B6 Total Cholesterol
 B7 Conjugated Dienes as Early Products of Lipid Peroxidation
 B8 LOOH as Intermediated Products of Lipid Peroxidation
 B9 TTBARS as Late Products of Lipid Peroxidation

9C Homozygous Mice (db/db) on Regular Chow for 20 Weeks
 C1 Terminal Body Mass
 C2 Liver Mass
 C3 Liver Proportion of Body Mass
 C4 Plasma Glucose Concentrations
 C5 Triglycerides
 C6 Total Cholesterol
C7 Conjugated Dienes as Early Products of Lipid Peroxidation 218
C8 LOOH as Intermediated Products of Lipid Peroxidation 219
C9 TTBARS as Late Products of Lipid Peroxidation 220
9D Impact of Various Oils, Administered via the Diet (4 Weeks) 221
 D1 Weekly Body Mass 221
 D2 Liver Mass 222
 D3 Liver Proportion of Body Mass 223
 D4 Plasma Glucose Concentrations 224
 D5 Triglycerides 225
 D6 Total Cholesterol 226
 D7 Conjugated Dienes as Early Products of Lipid Peroxidation 227
 D8 LOOH as Intermediated Products of Lipid Peroxidation 228
 D9 TTBARS as Late Products of Lipid Peroxidation 229
 D10 BCA Protein Levels 230
 D11 Cage Assignments 230

9E Impact of Short Period of Alcohol Administration (4 Weeks) 231
 E1 Weekly Body Mass 231
 E2 Triglycerides 232
 E3 Total Cholesterol 232
 E4 Conjugated Dienes as Early Products of Lipid Peroxidation 233
 E5 LOOH as Intermediated Products of Lipid Peroxidation 233
 E6 TTBARS as Late Products of Lipid Peroxidation 234

9F Impact of Alcohol Administered over 8 Weeks in db/wt and db/db Mice 235
 F1 Weekly Body Mass 235
 F2 Liver Mass 237
 F3 Liver Proportion of Body Mass 238
 F4 Plasma Glucose Concentrations 239
 F5 Alcohol / Blood Levels 240
 F6 Aspartine Transaminase Levels 241
 F7 Alanine Transaminase Levels 242
 F8 Triglycerides 243
 F9 Total Cholesterol 244
 F10 Conjugated Dienes as Early Products of Lipid Peroxidation 245
 F11 LOOH as Intermediated Products of Lipid Peroxidation 246
 F12 TTBARS as Late Products of Lipid Peroxidation 247
 F13 BCA Protein Levels 248
 F14 Fat Change and Inflammation Grading 249
 F15 Cage Assignments 249

9G Impact of Alcohol Administered over 20 Weeks in db/wt and db/db Mice 250
 G1 Weekly Body Mass 250
 G2 Liver Mass 254
 G3 Liver Proportion of Body Mass 255
 G4 Plasma Glucose Concentrations 256
 G5 Alcohol / Blood Levels 257
 G6 Aspartine Transaminase Levels 258
 G7 Alanine Transaminase Levels 259
 G8 Triglycerides 260
 G9 Total Cholesterol 261
 G10 Conjugated Dienes as Early Products of Lipid Peroxidation 262
 G11 LOOH as Intermediated Products of Lipid Peroxidation 263
 G12 TTBARS as Late Products of Lipid Peroxidation 264
 G13 BCA Protein Levels 265
 G14 Fat Change and Inflammation Grading 266
 G15 Cage Assignments 266

Chapter 10: References 267
List of Abbreviations

ACC: Acetyl-CoA carboxylase
ADH: Alcohol dehydrogenase
ALD: Alcoholic liver disease
ALT: Alanine aminotransferase
ANGPTL3: Angiopoietin-like protein 3
AOX: Acyl-CoA oxidase
AP1: Activator protein-1
ASP: Acylation stimulating protein
AST: Aspartate aminotransferase
BCA: Bicinchoninic acid
BHT: Butylated hydroxyl toluene
BMI: Body mass index
BSA: Bovine serum albumin
CB: Cannabinoid
CCK: Cholecystokinin
CD: Conjugated diene(s)
CE: Cholesterol ester
CLA: Conjugated linoleic acid
CNS: Central nervous system
CPT1: Carnitine palmitoyltransferase-1
CPT2: Carnitine palmitoyltransferase-2
CT: Computerised chromotography
CoA: Coenzyme A
CYP2E1: Cytochrome P450 2E1
CYP450: Cytochrome P450
DCA: Dicarboxylic fatty acids
DHEA: Dehydroepiandrosterone and its sulphate ester (DHEA-S)
DHEA-S: Dehydroepiandrosterone and sulphate ester
DMII: Diabetes mellitus type 2
DMSO: Dimethyl sulfoxide
Di/PAS: Periodic acid-Schiff stain with diastase digestion
DPPP: Diphenyl-1-pyrenylphosphine
ECM: Extracellular matrix
EGF: Epidermal growth factor
ER: Endoplasmic reticulum
Erks: Extracellular regulated kinases
FA: Fatty acid
FABP: Fatty acid binding protein(s)
FC: Free cholesterol
FFA: Free fatty acid
FLS: Fatty liver Shionogi
G6P: Glucose-6-phosphate
GK: Glycerol kinase
GLP1: Glucagon-like peptide-1
GLP2: Glucagon-like peptide-2
GLUT: Glucose Transporter(s)
GPO: Glycerol-3-phosphate oxidase
GSH: Glutathione
GTT: Glucose tolerance testing
H&E: Haematoxylin and eosin
HAD: Indiana University high-alcohol-drinking rat line
HCA: Hepatocellular adenoma
HCC: Hepatocellular carcinoma
HGFα: Hepatic growth factor alpha
HMGCoA: Hydroxymethyl glutaryl coenzyme A
HNE: 4-hydroxy-2'-nonenal
HSC: Hepatic stellate cell
11βHSD-I: 11β hydroxysteroid dehydrogenase-I
IGF2: Insulin growth factor-2
IκB: Inhibitor kappa kinase beta
IL2: Interleukin-2
IL8: Interleukin-8
i/p: Intraperitoneal
IR: Insulin resistance
ITT: Insulin tolerance testing
JIB: Jejuno-ileal bypass
Jnks: Jun N-terminal kinases
ko: Knockout
LCFA: Long chain fatty acids
LDL: Low density lipoprotein
LOOH: Lipid hydroperoxides
LPL: Lipoprotein lipase
LPS: Lipopolysaccharide
MCD: Methionine and choline deficient
MCDD: Methionine and choline deficient diet
MDA: Malondialdehyde
MDH: Malate dehydrogenase
MMP: Matrix metalloproteinases
MnSOD: Mitochondrial manganese superoxide dismutase
MTP: Mitochondrial triglyceride transfer protein
MTT: Monotetrazolium dye
MUFA: Monounsaturated fatty acid(s)
NAD/NADH: Nicotinamide adenine dinucleotide, oxidised / reduced forms
NAFLD: Nonalcoholic fatty liver disease
NASH: Nonalcoholic steatohepatitis
NFkB: Nuclear factor kappa beta
8-OHdG: 8-hydroxydeoxyguanosine
O₂⁻: Superoxide anion
Ob-R: Leptin receptor
OCT: Ornithine carbamyl transferase
OPN: Osteopontin
OXN: Oxyntomodulin
P: Indiana University alcohol-preferring rat line
P5P: Pyridoxal-5'-phosphate
PBS: Phosphate buffered saline
PC: Phosphatidylcholine
PCNA: Proliferating cell nuclear antigen
PDGF: Platelet derived growth factor
PH: Partial hepatectomy
PKA: Protein kinase A
PL: Phospholipid
PMN: Polymorphonuclear leucocyte(s)
POD: Peroxidase
PPARα: Peroxisome proliferator-activated receptor alpha
PPARβ: Peroxisome proliferator-activiated receptor beta
PPARγ: Peroxisome proliferator-activated receptor gamma
PTX: Pentoxifylline
PUFA: Polyunsaturated fatty acid(s)
PYY: Peptide YY
r-metHuLeptin: Recombinant methionyl human leptin
ROS: Reactive oxygen species
SHRSP: Stroke-prone spontaneously hypertensive rat
sp: Sardinian alcohol-preferring rat line
SR: Sirius red
SREBP1: Sterol regulatory element-binding protein-1
STAT1: Signal transducer and activator of transcription-1
T2DM: Diabetes mellitus type 2
TAG: Triglyceride
TBARS: Thiobarbituric acid reactive substances
tBHP: t-butyl hydroperoxide
TC: Total cholesterol
TG: Triglyceride
TGFβ1: Transforming growth factor beta-1
TNFα: Tumour necrosis factor alpha
TTBARS: Total Thiobarbituric acid reactive substances
UCP-2: Uncoupling protein-2
UCT: University of Cape Town
UDCA: Ursodeoxycholic acid
VLCFA: Very long chain fatty acid
VLDL: Very low density lipoprotein
wk: week
wt: wild type
Abstract

Fatty liver disease is a collective phrase for a spectrum of diseases characterised by increased liver fat content. It ranges from fatty infiltration of the liver to an inflammatory condition, steatohepatitis, which may lead onto cirrhosis. Although not associated with alcohol consumption, nonalcoholic steatohepatitis (NASH) has strong associations with obesity, diabetes and dyslipidaemia. Overlapping pathological mechanisms may be involved. The course of the disease will remain unpredictable, and specific treatment will only be able to be instituted once the pathogenesis is fully understood.

This thesis reviews current understanding of the pathogenesis and explores the suitability of a recently defined obese diabetic mouse model for its value as a model in the heterozygous and homozygous states.

Observations revealed that the db/wt phenotype has a larger mass than the wt/wt and responds with hyperglycaemia. Lipid accumulation occurs in this model when alcohol is administered and lipid peroxidation occurs but histological changes of steatosis and steatohepatitis do not occur. The db/db model is phenotypically distinguished by a large amount of fat storage, diabetes and macrovesicular steatosis that has more lipid peroxidation but no steatohepatitis even when alcohol further increases lipid peroxidation.

The model, as explored, did not reveal steatohepatitis either alone, or with alcohol as a single additional stressor, but both the db/wt and db/db mouse model could be further investigated to explore whether additional stressors could induce steatohepatitis in this model.
Chapter 1; Overview of Nonalcoholic Fatty Liver Disease

1.1 Introduction

Hepatic steatosis or fatty liver was previously regarded as a benign condition, but this impression has changed since Ludwig et al., (1980) first coined the term nonalcoholic steatohepatitis (NASH) when encountering a group of non-drinkers whose liver biopsies were revealed to be histologically indistinguishable from alcoholic hepatitis. Similarities between nonalcoholic liver disease and alcoholic hepatitis had already been recognised (Miller et al., 1979) but it was not until Ludwig et al., (1980) announced the mimicking of the poorly defined condition that the disease gained true recognition.

The groundbreaking study (Ludwig et al., 1980) was conducted using 20 patients who denied excessive alcohol intake (averaged one drink per week). The liver biopsy specimens were examined and all patients exhibited lobular inflammation and moderate to severe macrovesicular fatty changes which predominantly occurred in central hepatic zones. Alcohol is not the causative factor in the development of these fatty livers, but patient profiles implicated obesity and diabetes as predisposing conditions for NASH.

However, NASH has a prevalence of approximately 2-3% in the general population and is often considered under the denomination of nonalcoholic fatty liver disease (NAFLD) (Yu and Keefe, 2002). This term encompasses a wider range of liver disorders that are beginning to be recognised more frequently in affluent individuals (Haque et al., 2002) with the spectrum ranging from fatty liver alone to cirrhosis and possibly even development of hepatocellular carcinoma (Nanji, 2004). NAFLD is present in approximately 20% of the USA making it the most common form of liver disease within that country (Yu and Keefe, 2002).

NAFLD comprises the complete spectrum of liver degeneration; beginning as fatty liver alone, advancing to steatosis, then steatohepatitis (NASH) before progressing to fibrosis and resulting in cirrhosis which is the final end-point of an inflammatory response in the liver (Alba and Lindor, 2003). The pathology presented by this sequenced chain of events closely resembles that of alcohol-induced liver injury, even though NAFLD patients are exempt from extensive alcohol consumption (Matteoni et al., 1999).
The grouping together of all these multifactorial diseases under the term NAFLD has resulted in a wide range of pathologic and clinical entities. Despite NASH being regarded as potentially the most severe form in this arrangement of diseases, most patients are asymptomatic and a liver biopsy may be needed to determine certain distinguishing features that correlate with the stage of the disease (Fernández-Rodriguez et al., 2003). As a result, Brunt et al., (1999) devised a grading and staging system which reflects the unique pathological features present in this range of diseases (see below for histologic classification). A NASH patient would typically display type 3 or 4 characteristics and therefore only represents a percentage of the NAFLD assemblage.

Type 1: Steatosis
Type 2: Steatosis plus lobular inflammation
Type 3: Steatosis plus lobular inflammation and degenerative ballooning
Type 4: Steatosis plus degenerative ballooning, Mallory bodies ± fibrosis

Matteoni et al., (1999) also created a scoring system based on fat content, necroinflammation and progression to fibrosis within the spectrum of NAFLD. A study undertaken by Matteoni et al., (1999) examined liver biopsy specimens of 132 NASH patients with complete clinical records and established that approximately 29% were suspected of disease progression to cirrhosis. The occurrence of cirrhotic livers results from structural changes along with fibrosis. These changes may be described as a decline in regular lobular architecture and the emergence of fibrous tissue bands formed by regenerative nodules of hepatocytes (Diehl et al., 1988). Brunt et al., (1999), developed a staging system for assessing the extent of liver injury incurred by fibrosis/cirrhosis in NASH patients and is displayed below. Cirrhosis is not reversible and signals the loss of regulatory hepatic function.

Stage 1: Zone 3 perisinusoidal and pericellular fibrosis, focal or extensive
Stage 2: Zone 3 perisinusoidal fibrosis, focal or extensive periportal fibrosis
Stage 3: Perisinusoidal and portal fibrosis, bridging fibrosis
Stage 4: Cirrhosis, with or without perisinusoidal fibrosis

A combination of both of these methods was adapted for the purpose of grading in this study. Fatty cysts, glycogenated nuclei and lipogranulomas can appear at histological examination, but these were not deemed reliable in making a correct prognosis (Brunt, 2002). It is worth noting that a diagnosis usually results from a variation of microscope findings as opposed to the exposure of a single pathological feature. Additional clinical traits which can be used for identification purposes include hepatomegaly, the most common physical sign and evaluation of serum
aminotransferase levels. No specific diagnostic test is currently available (Fernández-Rodriguez et al., 2003).

Liver biopsies are used for histological assessment of NAFLD patients to determine the extent of hepatocyte injury, inflammation and fibrosis. Haematoxylin and eosin (H&E) stains assess hepatic injury and cell disruption, whereas sirius red (SR) preparations can gauge the extent of fibrosis (Brunt, 2002). Periodic-acid Schiff after diastase digestion (D/PAS) is used for evaluation of debris-containing Kupffer cells (Brunt, 2001).

Factors which can promote or cause fatty liver (other than alcohol), include obesity, diabetes, insulin resistance, hyperlipidaemia, rapid weight loss or, more commonly, a combination of these (Fong et al., 2000). Additionally, hepatotoxic drugs, jejunoileal bypass operations, hepatitis C and Wilson’s disease are also acknowledged facilitators of fatty liver development (Fong et al., 2000). Rarely, fatty liver is encountered in disorders of lipoprotein assembly: either MTP deficiency or homozygous hypoßlipoproteinaemia.

The occurrence of steatosis is biochemically described as an accumulation of lipids in the liver exceeding 5% of the liver weight (Cairns and Peters, 1983), although this is not universally agreed. Steatosis in NAFLD patients is generally identified to consist of macrovesicular fat (large single lipid droplets) within hepatocyte cytoplasm displacing the nucleus, although mixed steatosis is also recognised to occur, in which microvesicular fat (multiple, small lipid droplets) are additionally present (Brunt and Tiniakos, 2002). Abnormalities in the metabolism and synthesis of lipid and consequent accumulation of triglycerides is believed to result in macrovesicular fat whereas the presence of microvesicular fat is indicative of further progressed liver disease characterised by a diminution of β-oxidation of fatty acids (Brunt and Tiniakos, 2002). The favourable location of fatty injury is located in acinar zone 3 despite the varying severity from patient to patient and is reversible. The potential of ballooning and Mallory bodies being located is dependent on stage of development (Brunt, 2001).

The occurrence and progression of the inflammatory response is coupled with steatosis and is frequently associated in NASH patients, as can be deduced by involvement in the scoring systems for assessment of disease status. The inflammation is mainly lobular and a key feature is the existence of
polymorphonuclear leukocytes (PMN) (Takahashi et al., 1987) which are closely located to ballooned hepatocytes in further advanced cases of NASH (Brunt, 2001). The ensuing inflammation can be either acute or chronic, but caution is advised when examining biopsy samples as steatosis and hepatic inflammation occur under many other circumstances.

The manifestation of hepatocyte injury primarily occurs as degenerative ballooning and is characterised by swelling of the cytoplasm of affected cells (Brunt, 2001), however, whether presence of ballooning degeneration is necessary for diagnostic evaluation of NASH is controversial. The additional appearance of Mallory bodies (dense intra-cytoplasmic inclusions in hepatocytes) provides evidence of further liver deterioration and can be verified by histochemical stains (Brunt, 2001). Megamitochondria are recognized as intracellular structures which display ultrastructural abnormalities and can also be observed in NASH patients as markers of progression to fibrosis, although association with extensive alcohol abuse is more frequent (Caldwell, 2002).

The progression to fibrosis in NASH is not universal as some patients experience a relatively benign pattern of the disease and do not require therapeutic treatment (James and Day, 1998). When fibrosis does develop, it is initially encountered in the centrilocular region zone 3, characterised by pericellular distribution and is referred to as ‘chicken-wire’ fibrosis that is often seen in alcohol-induced steatohepatitis (Brunt, 2001). Progression of the disease results in fibrosis becoming ‘bridged’ as a consequence of additional collagen deposition from hepatic stellate cells (HSC), the increased activity of which coincides with steatosis grading advancement (Reeves et al., 1996).

Patients with NAFLD and NASH are predominantly asymptomatic and are usually diagnosed accidentally during alternative investigations. A liver biopsy is usually requested on the grounds of patient history or unexplained clinical findings to clearly determine the presence of disease, although ultrasound and computerised tomography (CT) have also been used in detection with modest results (Yu and Keefe, 2002). Therefore prevalence of NAFLD and NASH is difficult to accurately measure as there will be a speculative number of unreported cases. Observations from various studies have been collated in an attempt at estimating the incidence of NAFLD. Harrison et al., (2002), established a 14% frequency of NAFLD in Japenese
trials whereas Yu and Keefe (2002) approximated the value to be nearer 20% in the USA population.

1.2 Associated Risk Factors

Research performed by Angula et al., (1999), established a link between fibrosis severity and steatohepatitis by examining particular features of patient profiles. The findings implied that body mass index (BMI), older age, diabetes and ratio of liver enzymes aspartate aminotransferase (AST) / alanine aminotransferase (ALT) lower than 1 were helpful markers in providing information for NAFLD or NASH identification. Further studies carried by Chitturi et al., (2002) and more recently by Sorrentino et al., (2004) confirmed that female gender may also be a risk factor to consider when assessing this group of diseases. The additional risk and surrounding complications posed by these menacing factors in relation to NAFLD progression will be discussed individually.

1.2.1 Age

The detection of NAFLD in children has been clearly documented over the years, especially in obese, pubertal adolescence (Baldridge et al., 1995). However, before a correct diagnosis can be established, malnutrition, short gut syndrome and drug and alcohol abuse, especially in older children, must be disproved before the condition can be attributed to NAFLD (Rashid and Roberts, 2000). Despite the prevalence of NAFLD in patients of all ages, individuals between 40-60 years of age seem to be at a higher risk independent of other factors involved (Reid 2001).

1.2.2 Obesity

Obesity is strongly associated with NAFLD patients, but the exact role of obesity within this arrangement of diseases remains undefined as non-obese individuals are also affected, comprising a small proportion of reported cases. Many studies have identified obesity as a possible predictor of NAFLD (Powell et al., 1990; Angulo et al., 1999; Garcia-Monzón et al., 2000) with values as high as 90% in a study undertaken by (Ludwig et al., 1980). In contradiction to this consistent observation, Bacon et al., (1994) reported the prevalence of NAFLD in non-obese patients to be higher than 50%. The majority of established NAFLD cases in children is highly associated with obesity (Baldridge et al., 1994).
1.2.3 Type 2 Diabetes Mellitus (T2DM)
Another factor seen to be closely linked with the occurrence of NAFLD is T2DM, though the range of association widely varies from 2-55% (James and Day, 1998). An assortment of studies has found hepatic fibrosis to be more common in obese patients with diabetes (Matteoni et al., 1999; Dixon et al., 2001). One study in particular revealed a 2.6-fold increase risk of progressing to NASH if T2DM was present (Wanless and Lentz, 1990). The added metabolic complications arising from diabetes may contribute to increased oxidative stress and may perpetuate hepatocyte degeneration. (Evan et al., 2002).

1.2.4 Insulin Resistance (IR)
The presence of insulin resistance comes as no surprise since obesity, dyslipidaemia and type 2 diabetes are linked to decreased sensitivity to insulin (Marchesini et al., 1999). The precise role of IR is unclear. Apart from a greater flux of fatty acids from adipose tissue to the liver, IR may aid in activation of tumour necrosis factor–α (TNF-α). Sustained production of this cytokine has been shown to promote the progressive pathogenesis of the disease (Koteish and Diehl, 2002). As a result of the close association between NAFLD and IR, many rodent models such as ob/ob (leptin deficient) and db/db (leptin receptor deficient) rodents are being employed or modified to exhibit the characteristics of obesity, diabetes and insulin resistance in an attempt to gain a better understanding of the pathogenesis of these diseases.

1.2.5 Gender
The recent inclusion of gender as a risk factor in NAFLD development and progression has received some criticism due to some conflicting evidence. Initial studies performed by Ludwig et al., (1980) displayed that an obese, middle-aged female would be a prime candidate for progressive NAFLD. Additional work by Angulo et al., (1999) and Chitturi et al., (2002) corroborated these findings. However, a study of 580 obese patients carried out by Marceau et al., (1999) did not find that gender was an indicator of fibrosis or cirrhosis, though it was statistically significant at predicting inflammation. The debate was continued by the finding, by Bacon et al., (1994), of NASH in young, non-obese males.

As previously mentioned, utilisation of rodent models is becoming more frequent in the exploration of NAFLD causes. A point of interest is the recent development of an animal model that exhibits a relationship between gender and the degree of hepatic injury (Kirsch et al., 2003).
1.2.6 AST/ALT ratio > 1
Aspartate aminotranferase (AST) and alanine aminotransferase (ALT) are liver specific enzymes. The release of aminotransferases indicates the presence of hepatocyte damage (Teitz, 1987). The enzyme activity of plasma has a strong correlation with the gradation of steatosis (Marceau et al., 1999). The ratio of AST/ALT is advantageous to the physician as a good predictor of NAFLD development and can also guide the decision to perform a liver biopsy.

1.2.7 Genetics
The postulate that certain genes or groups of genes may assume responsibility for inherited conditions which could promote the onset of NAFLD and NASH and their outcome is not yet adequately researched (Day, 2002).

The P450 enzymes present themselves as candidate genes for NASH development. Cytochrome P450 2E1 (CYP2E1) in particular, is capable of producing free radicals which could affect the rate of fatty acid oxidation and thus could contribute to the progressive nature of NASH (Day, 2002). The increased expression of CYP2E1 in a rodent dietary model of steatohepatitis adds further evidence of involvement in complications of NASH (Weltman et al., 1998).

Copper/zinc dismutase and aldehyde oxidase are genes responsible for regulation of mitochondrial manganese superoxide dismutase (MnSOD) which aids the body in combating oxidative stress by activation of uncoupling protein 2 (UCP-2) (Shimoda-Matsubayashi et al., 1996). Alteration of these genes could lead to unregulated UCP-2 activity which could effect lipid metabolism and may itself lead to hepatic damage and necrosis (Pessayre et al., 2001).

Cytokine genes have also been implicated in the pathogenesis of NAFLD and NASH, in particular tumour necrosis factor – α (TNF-α). Kupffer cells are the primary site of TNF-α generation, which, upon release in excess, impedes the normal action of insulin and contributes to oxidative stress through enhanced production of reactive oxygen species (ROS) (Peraldi and Spiegelman, 1998). A study conducted by Hui et al., (2004) confirmed activation of TNF-α in NAFLD patients that correlated with severity of steatosis and fibrosis.

Peroxisome proliferator activator receptors - α and γ (PPAR-α) and (PPAR-γ) are genes which modulate fatty acid oxidation and insulin sensitivity respectively (Day,
2002). PPAR-α is abundantly produced in the liver. Disruption of its function may cause uncontrolled fatty acid accumulation, whereas PPAR-γ has been shown to aggravate steatosis by activating lipogenic enzymes (Tanaka et al., 2005). Recent evidence from rodent and human studies suggests that agonists of PPARs display the ability to reduce triglycerides and lipid peroxidation and are therefore being introduced as a new approach for NAFLD treatment (Reifel-Miller et al., 2005; Kersten, 2002).

Additional candidate genes include: 11β hydroxysteroid dehydrogenase-1 (11βHSD-1) which contributes to the magnitude and pattern of obesity (Masuzaki et al., 2001) and Apolipoprotein E, that helps regulate lipid storage and export (Day, 2002). Many classes of genes have gained recognition for NAFLD association. Unless a strong monogenic component is responsible for fatty liver, the modulatory genes linked with NAFLD could hamper the detection of a single causative gene that may unravel the unknown.

Although contributing features have been identified in NAFLD and NASH patients, a solitary, causal factor remains elusive. Additional triggers such as drug abuse, jejunoo-ileal bypass operation (JIB), and rapid weight loss are also at fault, but encompass a smaller proportion of patients.

1.3 Diagnosis
NAFLD and NASH patients are typically asymptomatic. Many cases are discovered accidentally or are not even reported. Initial symptoms include; fatigue, lethargy, discomfort in the right-upper-quadrant of the abdomen and slight elevations of aminotransferase levels (Kumar and Malet, 2000). The presence of hepatomegaly and splenomegaly can be seen upon physical examination and provide additional indicators for patient evaluation (Reid, 2001).

The AST/ALT ratio is a good marker of hepatic injury as are the associated risk factors, but the true extent of liver damage remains unresolved until a liver biopsy. This remains the definitive means by which an accurate diagnosis and possible method of treatment can be evaluated (Brunt 2001). A physician will not immediately recommend a liver biopsy as an intervention in lifestyle may bring about a marked improvement in obesity related symptoms.
1.4 Therapy

The management of fatty liver is currently non-specific and involves general health measures with good nutrition and obtaining an ideal body mass, along with avoidance of factors that may promote or cause fatty liver. Healthy eating and exercise continues to be the cheap, safe option of therapy for weight reduction which should subsequently result in an improvement of insulin sensitivity and lowering of liver enzyme levels. Precautionary measures must be adhered to when subjects undertake severely restricted mass reduction diets as rapid weight loss can also induce hepatic injury (Capron et al., 1982). A liver biopsy would be indicated if this therapeutic approach was not successful, and risk factors proceeded to accumulate or the risk of cirrhosis was presented.

Further approaches to weight reduction have included administration of the drug orlistat, but this has produced mixed results. It may be hepatotoxic, thus affecting the risk / benefit ratio adversely (Lau et al., 2002). More extreme measures of losing weight are advertised as gastric banding and jejuno-ileal bypass (JIB) and if patient care is well maintained, the effects of steatosis are lessened and even reversed, although the reoccurrence and worsening of the conditions remains a high possibility (Holzbach, 1977).

Administration of vitamin C has been shown to be beneficial in the alleviation the progress of NAFLD (Oliveria et al., 2003). This antioxidant drug has displayed significant inhibition of steatosis, presumably by reducing oxidative stress levels which are thought to play a key role in facilitating the development and progression of NAFLD.

Additional drugs that have been prescribed as therapeutic agents involve a group of agents known as PPAR-α and PPAR-γ agonists (Desvergne and Wahli, 1999). As previously stated, these agonists posses the ability to modulate lipid transport and oxidation and enhance the actions of insulin, resulting in augmented fatty acid breakdown and control of inflammation. Research undertaken by Ip et al., (2003), exposed Wy-14,643 as a further agonist that shows the capacity to avert hepatic lipid accumulation and should be considered in future use as a preventative treatment.

The insulin-sensitizing thiazolidine-dione (PPAR-γ agonist), troglitazone has been investigated in NASH. Despite reasonable success in reducing ALT levels to within normal limits, post-treatment liver biopsies revealed NASH still to be present. The
drug later proved to be hepatotoxic and was withdrawn from the market (Chitturi and George, 2002).

Metformin is a biguanide, an anti-diabetic drug which has been used to treat T2DM for many years and is especially favoured in obese diabetics. The benefits arise from lowering fasting glucose and subsequent control of lipid production in diabetics. A study performed by Lin et al., (2000), used a diabetic mouse model (ob/ob), to examine the effects of metformin and successfully displayed a notable retraction in steatosis development and a normalizing trend of liver function tests, paving the way for future trials.

Clofibrate, a PPAR-α agonist, is an additional consideration for NAFLD management. The action of this drug reduces hepatic triglyceride as opposed to enhancing the effects of insulin (Laurin et al., 1996). It has been surpassed by newer fibric acid derivatives.

Colchicine is an anti-inflammatory and anti-fibrotic drug which can be administered to lessen the effects of cirrhosis in alcoholic and nonalcoholic patients but results to date have been inconsistent. Colchicine is a plant alkaloid that possesses the ability to inhibit the migration of granulocytes into the injured area, thereby inhibiting the metabolic and phagocytic activity of granulocytes (Rambaldi and Gluud, 2005). Furthermore, colchicine has been shown to impede the mediated transport of procollagen (Ehrlich and Bornstein, 1972), improve collagenase activity (Harris and Krane, 1971) and decrease liver fibrosis in rats (Rojkind and Kershenobich, 1975).

A recent review comprised of 1714 patients, randomised in 15 trials, was undertaken to examine the beneficial and harmful effects of colchicine in patients with alcoholic or nonalcoholic fibrosis or cirrhosis (Rambaldi and Gluud, 2005). In the majority of trials, the dosage received was 1mg colchicine, five days a week, although some trials did administer the same dose for 6 and 7 day periods. The median duration of the 15 trials was 18 months. The findings from the assemblage of trials revealed that colchicine had no significant effect on mortality, liver complications, liver biochemistry and liver histology. Colchicine was found to exhibit a positive effect on two serum markers of fibrotic activity (7S collagen and prolidase), however, the levels of collagen-peptidase were unaffected.
Another study investigating the effects of colchicine was carried out by Gong et al., (2004) which examined the outcome in patients being treated for primary biliary cirrhosis. Colchicine is administered to patients with primary biliary cirrhosis because it can delay progression of the disease (Kaplan, 1997) and enhance liver biochemical tests and immunoglobin levels (Warnes et al., 1987). The study concluded that treatment with colchicine did not significantly improve biochemical or histological parameters such as total cholesterol, ALT, AST, fibrosis, parenchymal inflammation or parenchymal necrosis in comparison to the placebo group which had no intervention. The findings from this study, combined with the data generated by Rambaldi and Gluud, (2005) do not provide any significant evidence that treatment with colchicine successfully ameliorates the effects on liver fibrosis or cirrhosis. Colchicine should only be used in further randomised trials once the detrimental effects and benefits, if any, are clearly defined.

Ursodeoxycholic acid (UDCA) treatment displays membrane-stabilising effects and has few drug interactions. It could play a defensive role in protecting the liver from oxidative stress and the progression of liver disease. The advantage of UDCA administration is the background history of the drug which provides strong evidence for the safe use in the milieu of fatty liver disease (Angulo, 2002).

The development of NAFLD is regarded as a fairly new concept in medical practice and has spurred the development of new and upcoming drugs to combat the outcomes.

Adiponectin is newly established as a possible alleviator of NAFLD. Adiponectin is secreted from adipose tissue and is diminished in obese patients. It is believed to decrease steatosis by increasing insulin sensitivity (Berg et al., 2002). This peptide also exhibits anti-inflammatory effects. It has been cited as a partial activator of TNF-α (Hui et al., 2004). In addition, low levels of adiponectin correlate with higher grades of hepatic steatosis and necroinflammatory and may prove to be an important therapeutic tool (Hui et al., 2004). It is not clear whether low adiponectin concentration merely reflects adipocyte dysfunction or is directly implicated in NASH.

Some therapeutic drug administration is clearly beneficial in treating NAFLD and certain treatments even reverse the outcome of steatosis, although ‘knock-on’ effects constantly persist and therefore considerate care in management is advised. The influx of experimental rodent work which covers the full range of consequences in
NAFLD is proving to be invaluable and needs to be sustained to gain a full understanding and to achieve effective medical therapies. The pathogenic mechanisms involved in the development and progression of NAFLD require to be clearly defined to establish advantageous treatment options and will be discussed in detail in the proceeding chapter.
2.1 Introducing the Pathogenesis of NAFLD/NASH

The pathogenesis of NAFLD and subsequent progression to NASH remains poorly understood, but information gained from studying animal models of hepatic steatosis has been invaluable and has established that the underlying mechanisms of NAFLD and NASH are multifactorial (Koteish and Diehl, 2002).

Steatosis is believed to be a benign condition but its presence facilitates susceptibility to further injury in the liver which has led to the ‘two-hit’ hypothesis. Normal liver, which has no steatosis, has a better ability to withstand the insults of oxidative stress, lipid peroxidation, abnormal cytokine production and insulin resistance and generally does not result in the development of hepatitis (Day and James, 1998). The presence of steatosis represents the ‘first-hit’ which is the initial insult but apparently benign to the liver and merely causes the hepatocytes to become fatty. It is suggested that a ‘fatty’ liver faces greater difficulty in dealing with the complications of a ‘second-hit’ that results in amplified damage and progressive NAFLD to NASH (Day and James, 1998). The ‘two-hit’ model is depicted below (Figure 2.1.1).

![Figure 2.1.1](image-url) The 'two-hit' hypothesis of NASH involves the common occurrence of hepatic steatosis as the initial offence (i.e. first-hit) and following development of steatosis, the liver becomes vulnerable to additional injury (i.e. second-hits). These further insults are induced by oxidative stress and other strained situations resulting in progression to steatohepatitis and liver cell death (Day and James 1998).
2.2 Insulin Resistance (IR)

A trademark characteristic of NAFLD is the presence of insulin resistance (IR). The manifestation of obesity, dyslipidaemia and type II diabetes is closely linked to decreased sensitivity to insulin and as sometimes referred to as the ‘insulin syndrome’ with IR being the common factor, (Marchesini et al., 1999). Recent reports have demonstrated that the majority of NAFLD patients display signs of impaired insulin activity (Pagano et al., 2002; Chitturi et al., 2002) and the close association between IR and the resultant metabolic changes has been a central theme to research.

The association of lowered sensitivity to insulin and obesity is a frequent occurrence. Obese patients display elevated levels of TNF-α expression and activity which coincides with rises in body mass index (BMI) (Kern et al., 1995). The generation of TNF-α rivals the normal functioning of insulin activity and assists in exacerbating insulin sensitivity by facilitating increased reactive oxygen species (ROS) production and oxidative stress (Peraldi and Spiegelman, 1998). This creates further insult and stress to the already vulnerable liver and promotes disease progression.

Additionally, the increased TNF-α also augments the performance of NF-κB that will amplify TNF-α. The implementation of this loop cycle is detrimental to the patient as NF-κB, an important transcription factor responsible for contributing to the regulation of inflammation, will promote inflammation. Continuous generation of these two cytokines propagates the activity of other pro-inflammatory cytokines such as interleukin-2 and 8, (IL-2) and (IL-8) which will also incite hepatocyte inflammation (Barnes and Karin, 1997). Studies performed in mice by Uysal et al., (1997) and more recently by Li et al., (2003) have shown that induced mutations of TNF-α receptors significantly improve the sensitisation towards insulin. This in turn, contributes to alleviating the development of fat accumulation leading to severe steatosis and confirms the role of TNF-α as a mediator of the ‘second-hit’ that worsens NAFLD.

The effects of IR on free fatty acid (FFA) metabolism are also believed to significantly contribute to the development of hepatic steatosis and progression to steatohepatitis. In an insulin-resistant individual, there is a greater flux of FFAs to the liver, causing strain on normal liver function. The increase in lipolytic activity in the adipocytes is part of insulin resistance (Roden et al., 1996). The increased presence of FFA in the hepatocytes inhibits the metabolism in the Krebs cycle, and facilitates fatty acid
oxidation, which endorses oxidative stress in the liver. Elevated hepatic glucose levels coincide with impairment of the Krebs cycle and the resulting sustained stimulation of gluconeogenesis and prolonged inhibition of glycolysis contribute to the accumulation of glucose. An increased production of glucose is met with raised concentrations of insulin in an attempt to improve clearance rates. The capacity of the pancreas to maintain demand for insulin is eventually exhausted and initiates the development of diabetes (Bergman, 1997).

Glucose uptake for cellular function is crucially dependent on insulin. Transporters of glucose (GLUT) gather on cell surfaces in higher numbers allowing glucose-6-phosphate (G-6-P) to accumulate as glycogen, which can be retransformed back to glucose when required for later use (Anthonsen et al., 1998). This reconversion process is modulated by glycogen synthetase and protein phosphatase (Newgard et al., 2000). The phosphorylation status of these enzymes is regulated by protein kinase A (PKA) which becomes inhibited when insulin circulates in high concentrations. Therefore, insulin enhances cellular import and storage of glucose by stimulating glycogen formation and also protects against potential degenerative hepatic glucose accumulation through inhibition of glycogenolysis and gluconeogenesis.
Figure 2.2.1: Top; Mechanism of fatty acid-induced insulin resistance in skeletal muscle. An increase in fatty acid concentration results in an elevation of the intramitochondrial acetyl CoA/CoA and NADH/NAD⁺ ratios, with subsequent inactivation of pyruvate dehydrogenase. This in turn causes citrate concentration to increase, leading to inhibition of phosphofructokinase. Subsequent increases in intracellular glucose-6-phosphatase concentration would inhibit hexokinase II activity, which would result in an increase in intracellular glucose concentration and a decrease in muscle glucose uptake. Bottom; Proposed alternative mechanism for fatty-acid induced insulin resistance in human skeletal muscle. An increase in delivery of fatty acids to muscle or a decrease in intracellular metabolism of fatty acids leads to an increase in intracellular metabolites such as diacyl-glycerol, fatty acyl CoA and ceramides. These metabolites activate a serine/threonine kinase cascade (possibly initiated by protein kinase Cβ) leading to phosphorylation of serine/threonine sites on insulin receptor substrates (IRS-1 and IRS-2), which in turn reduces the ability of the insulin receptor substrates to activate PI 3-kinase. As a consequence, glucose transport activity and other events downstream of insulin receptor signalling and diminished hexokinase II (HK), phosphofructokinase (PFK), pyruvate dehydrogenase (PDH) and protein kinase Cβ (PKCβ) (Schulmann et al., 2000).

A recent study performed by Yesilova et al., (2005), examined the role of acylation stimulating protein (ASP) which is second in abundance behind insulin in adipocytes and partially responsible for triglyceride synthesis. ASP stimulates the uptake of glucose in adipocytes. Mice previously administered ASP were shown to display improved clearance rates of FFA and TG (Saleh, 2001). Diacylglycerol
Acyltransferase is an important rate-limiting enzyme involved in TG synthesis and its activity is increased as a direct result of ASP induced glucose uptake, the consequence of which is increased stimulation of FFA re-esterification into triacylglycerol and reduction of FFA endogenous production (Germinario et al., 1993; Faraj et al., 2004).

The work undertaken by Yesilova et al., (2005), could not fully establish a correlation between plasma ASP levels and lipid accumulation in NAFLD patients but did further outline the significance of ASP as a regulatory mediator of FFA uptake and TG synthesis. The dysregulation of the ASP pathway appears to increase the influx of FFAs to the liver which in turn results in hypertriglyceridaemia and a host of additional metabolic changes associated with obesity, and predisposing to coronary heart disease and diabetes (Sniderman et al., 2000; Weyer and Pratley, 1999; Cianflone et al., 1997; Koistinen et al., 2001). ASP and insulin are key factors which determine the rapidity of TG synthesis in the adipocyte, thus playing an important role in controlling FFA plasma concentration and transport and may have noteworthy implications in the metabolic complications of NAFLD and NASH (Sniderman et al., 1998).

A reduction in metabolic clearance is a resulting key feature of NASH patients who fail to successfully dispose of excess glucose. This lessened metabolic capacity of the liver, coupled with impaired lipolysis in adipocytes or disposal from hepatocytes, is a consequence of IR enhancing free fatty acid production. Hepatic steatosis occurs when hepatocytes lose the ability to balance synthesis and exportation of FFA, ultimately resulting in fat accumulation. The additional progression of the disease may depend on the presence or severity of further hits which will include P450, TNF-\(\alpha\) and lipid peroxidation (Sanyal, 2005).

2.3 Free Fatty Acid (FFA)

The physiological pathways of FFA are illustrated in figure 2.3.1, but components in this scheme will be discussed and illustrated separately in this section. Free fatty acids (FFA) are the principal metabolic product of adipocytes, and under normal circumstances will not accumulate as triglycerides within hepatocytes (Saleh et al., 1999). FFA synthesis and recycling of FFA and triglycerides to the liver provide for the export of energy from the liver as VLDL. Fatty acids also serve other functions: intracellular signalling, regulation of gene transcription and act as a source of immediate energy when oxidised.
The normal regulation of FFA results in their β-oxidation within mitochondria and peroxisomes, whilst oxidation may also occur within the cytochrome P450 system which responds to increasing demand. FFA may also be re-esterified to triglycerides or may be used for synthesis of other lipids (Fong et al., 2000). The two central mechanisms operated by the liver for providing FFA for cell function are lipogenesis (from acetyl CoA) and recruitment from the circulation by FAT protein (CD36). The FFA are primarily esterified into triglycerides (TG) which are the chief components of fat in the fatty liver (Wanless et al., 1989). Triglycerides accumulate as fat droplets in the cytosol of hepatocytes. For export they are moved by MTP to apolipoproteins B48 in the enterocyte or B100 in the hepatocytes to be secreted as chylomicrons and very low density lipoproteins (VLDL) respectively. These triglyceride-rich lipoproteins are transported in the blood to release FFA under the catalytic influence of lipoprotein lipase, chiefly at muscle and adipose tissue. The remnant particles of chylomicrons and VLDL return to the liver for redistribution within the cell as discussed above. A schematic representation of free fatty acid (FFA) is displayed below (Figure 2.3.1)

![Diagram](image)

Figure 2.3.1: Diagram illustrating the interrelationship of fatty acid and glucose metabolism (Kersten, 2002).
The hepatocytes adjust to an excess influx of FFA through adaptive modifications whereby secretion of VLDL is increased and the flux of free fatty acids towards β-oxidation is increased. Under normal conditions only a small amount of TG is stored in the liver. Hepatic TG accumulation reflects a discrepancy in triglyceride synthesis and/or fatty acid disposal which may be a result of increased FFA production, reduced capacity of β-oxidation or impairment of VLDL secretion (Fong et al., 2000). These factors all contribute to the production of oxidative stress, accumulation of hepatic fat and the pathogenesis of fatty liver. The consequence of this compensatory system becoming overloaded or being defective is an increase in TG content. The compensatory response and/or the increased TG may contribute to hepatic damage.

2.4 β-Oxidation of Fatty Acids

As mentioned earlier, β-oxidation is a fate of FA which occurs primarily in the mitochondrial inner membrane. Before FA arrive for β-oxidation, they are first transported through the cytoplasm in a combined complex with fatty acid binding proteins (FABP) which delivers the FA to the outer membrane of the mitochondria. Once they arrive at binding sites of the outer mitochondrial membrane, they are transformed into acetyl CoA and the converted derivatives of FA are transported from the outer membrane to inner membrane by carnitine palmitoyltransferase 1 (CPT1) and CPT2 respectively. The consequent β-oxidation of FA derived acetyl CoA generates a high energy yield and has proven to be a very useful pathway for an energy source cleaved from non-esterified FA.

The complexity of the development and progression of fatty liver in NAFLD and NASH remains incomplete but the involvement of β-oxidation is well documented. A very recent study carried out by Nakamuta et al., (2005) investigated the expression of various genes known to be involved in β-oxidation of fatty acid metabolism in NAFLD. Target genes included acetyl-CoA carboxylase (ACC) 1, ACC2, fatty acid synthase (FAS), carnitine palmitoyltransferase 1a (CPT1a) and long chain acyl-CoA dehydrogenase (LCAD). The study revealed an increased expression of ACC1 and ACC2 but not FAS using liver biopsies from 12 NAFLD patients. Further findings included a diminished expression of CPT1a which is a rate-limiting enzyme involved in β-oxidation. As a result, β-oxidation is reduced. This provides evidence that dysfunctional β-oxidation maybe partly why there is an accumulation of fat in hepatocytes of patients with NAFLD.
A great deal of attention has been focused on the role of FA in NAFLD and recent research undertaken by Drover et al., (2005) was concentrated on CD36 which is known to be the gene responsible for mediating the transfer of FA across plasma membranes and is therefore regarded as having a very important role in regulating FA metabolism. Impairment of gene CD36 in mice was previously shown to result in irregular uptake of FA and in addition, circulating levels of triacylglycerol (TAG) were increased (Coburn et al., 2000; Febbraio et al., 1999). Conversely, over-expression of the CD36 gene has demonstrated a link to hypertriglyceridaemia, insulin resistance and elevated levels of FA in hypertensive rats (Aitman et al., 1999). In humans, abnormal plasma lipid levels are also often associated with dysfunctional expression of the CD36 gene.

CD36 is referred to as a multi-ligand scavenger receptor and expression favours tissues with a high influx of free fatty acids (Coburn et al., 2000). Drover et al., (2005) investigated the role of CD36 using CD36-null mice and monitoring their responses to acute and chronic feeding in relation to FA utilization and secretion of lipoproteins. The study confirmed the necessity for the CD36 gene through comparing levels of circulating TAG between knockout CD36 mice and their respective wild-type littermates after high fat feeding. The levels of TAG recovered in the knockout mice were 23% which was significantly lower than the 67% of the controls. Furthermore, deficiency of CD36 also resulted in a reduced clearance of lipoproteins and defective lipoprotein lipolysis which enhances the case that an aberration in gene CD36 function could contribute to facilitating fatty liver development and progression.

2.5 Peroxisome proliferator activated receptors – (PPAR)

FFA is required by hepatocytes to maintain cell function. Because FFA supply may exceed the demand, protective pathways are required to prevent stress and liver injury. One mechanism by which the possible cytotoxic effects of FFA have been restrained involves the peroxisome proliferator activated receptors (PPARs). These hormone receptors have gained significant interest due to their orchestrative role of FFA metabolism and their activation in response to a variety of drugs used in treatment of obesity and T2DM (Kersten et al., 2002; Bocher et al., 2002).

Peroxisome proliferator activated receptors (PPARs) display a common structure comprising a central DNA-binding domain structure containing two zinc-fingers (for interaction with DNA) and a large C-terminal domain that binds ligands (Aranda and Pascual, 2001). PPARs are key ligand-activated transcription factors consisting of
isotypes α, β and γ and the different distinguishable forms each permit the liver cells to deal with alternate biological processes (Kersten et al., 2002).

PPAR-α is responsible for regulating fatty acid oxidation, gluconeogenesis, amino acid metabolism and is predominantly operative in the liver (Kersten et al., 2002). A group of ligands which enhances the binding affinity of these receptors is referred to as fibrates and have been in use for the treatment of hypertriglyceridaemia since the 1960s (Kersten et al., 2002). Clofibrate and gemfibrozil are further lipid-lowering drugs that have had limited success in combating the complications of NASH. A further therapeutic approach has included the administration of atorvastatin which has resulted in significant improvements in serum lipid concentrations which correlated with less severe hepatic inflammation and ballooning (Horlander et al., 2001).

PPAR-α is employed by the liver as sensor apparatus to detect elevated levels of FFA. When hepatocytes experience an influx of free fatty acids, PPAR-α relays signals for the expression of acyl CoA oxidase, a key enzyme required for inducement of β-oxidation. This presents a preventative measure against fatty acid cytotoxicity (Kersten et al., 2002). However, despite the rewarding benefits of PPAR-α activation, continuous stimulation by FFA overload may generate ROS and participate in the role of carcinogenesis (Bocher et al., 2002). The role of PPAR-α in regulating nutrient metabolism is shown below; (Figure 2.5.1).
PPAR-α contributes to the control of lipid metabolism, the running of which is also altered by the presence of excess alcohol and products of the inflammatory response. Dysfunctional lipid metabolism may be central in ALD and in NASH as well, explaining the similarities of the two diseases (Kotesih and Diehl, 2002).

Nakajima et al., (2004), investigated the role of PPAR-α in alcoholic liver disease using PPAR-α null mice fed a 4% ethanol diet and assessed for liver injury. The mice administered ethanol displayed hepatic irregularities that included inflammation, mitochondrial swelling and fibrosis, which corresponds with injuries found in alcoholics. Additionally, ethanol-fed PPAR-α null mice were subjected to higher levels of oxidative stress and had markedly increased lipid peroxides after 6 months in comparison to the controls. There was also a reduction of liver mRNA proteins encoding for growth factors (HGF-α, TGF-α and TGFβ1) involved in hepatic proliferation in wild-type mice whose PPAR-α expression was decreased by 60%. This implicates PPAR-α in the pathogenesis of fatty liver as its deficiency can result in altered signalling and stimulation of hepatic cell growth in the presence ethanol. It should strongly be considered that PPAR-α is an important target gene for the modulation of ALD, at least in rodents. PPAR-α is not expressed as highly in humans in comparison to rodents, resulting in the hypothesis that humans may possibly be
more vulnerable to the effects of excess alcohol as PPAR-α appears to have a defensive role in ALD.

The knowledge of PPAR-β remains relatively small but previous studies have proposed a partial role in lipid metabolism of nerve cells (Basu-Modak et al., 1999). PPAR-β may also be implicated in adipogenesis, suggesting a link to obesity (Bastie et al., 2000), and hence fatty liver.

In contrast, PPAR-γ has been more extensively studied. It is located in plentiful quantities in white adipose tissue and macrophages (Braissant et al., 1996), although the amounts expressed in the liver are relatively low in comparison (Nanji et al., 2004). Owing to its role in adipocyte differentiation, PPAR-γ is regarded as having a strong connection with obesity (Kersten et al., 2002). Mice that do not exhibit sufficient levels of PPAR-γ become fat intolerant, develop hyperlipidaemia and become insulin resistant (Clarke, 2001). This evidence is suggestive of PPAR-γ being a crucial regulator of triglyceride homeostasis and a potential contributor towards hepatic steatosis development (Gavrilova et al., 2003).

Not only is PPAR-γ central in differentiation of preadipocytes into mature fat cells, a process called adipogenesis, but it is also believed to occupy a regulatory role in lipogenesis (Kubota et al., 1999). PPAR-γ and sterol regulatory element-binding protein-1 (SREBP-1) are thought to be involved in a continuous loop whereby they possess the ability of upregulating each other, thus encouraging lipogenesis in adipose tissue (Kersten et al., 2002). SREBP-1 is a transcription factor responsible for stimulating expression of various genes fundamental in lipogenesis such as acetyl-CoA carboxylase, fatty acid synthase and ATP-citrate lyase. A study carried out by Way et al., (1999) used a PPAR-γ agonist known as GW1929 in Zucker fatty rats and displayed an increased expression of SREBP-1 and genes involved in fatty acid oxidation and confirmed PPAR-γ participation in lipogenesis although it is not yet understood whether it is direct or secondary to up-regulation of SREBP-1.

PPARs have been extensively examined in rodent models and recent work undertaken by Wargent et al., (2005), has implicated the possible involvement of PPAR activation in response to conjugated linoleic acid (CLA). The findings indicated that CLA increased insulin sensitivity in lep^{ob}/lep^{ob} mice and that the subsequent activation of PPAR-α and y may contribute to the improvement of insulin sensitivity in these genetically obese female mice. It is clearly evident that the action of PPARs is
central in controlling fat accumulation and other overlapping pathogenic mechanisms such as lipogenesis, β-oxidation and insulin sensitivity and should remain at the fore for future research into fatty liver development and other surrounding complications.

2.6 Cytochrome P450 Enzymes

The cytochrome P450 proteins (CYP450) are recognized as a group of closely related isoenzymes which are encoded by separate genes and classified according to their molecular structure (Gonzalez, 1990; Nebert et al., 1989). These enzymes perform numerous functions and are located in most human tissue, although the liver has the highest content, in mitochondria and the endoplasmic reticulum. Induction of the CYP450 system is usually in response to drugs, including barbiturates, and toxins such as alcohol and tobacco smoke (Okey, 1989). Once induced, the P450 cytochromes increase the degradation of drugs and toxins. Relentless and unremitting induction may, however, lead to increased generation of oxidative stress and reactive oxygen species (ROS), thus providing an initiating step for liver injury (Lieber, 1997).

CYP2E1 is the most abundant enzyme in the P450 family and is central in the metabolism of alcohol. CYP2E1 is activated as an adaptive response to high blood ethanol levels and catalyses the following reaction (see below).

\[
\text{CH}_3\text{CH}_2\text{OH} + \text{NADPH} + \text{O}_2 \rightarrow \text{CH}_3\text{CHO} + \text{NADP}^+ + \text{H}_2\text{O}
\]

Although the induction of CYP2E1 accelerates the metabolism of ethanol, this reaction is also closely associated with the release of free radicals whose nature can facilitate lipid peroxidation, mitochondrial damage and oxidative stress which all contribute to liver damage (Lieber, 2004). Furthermore, acetaldehyde (ethanol) production is increased. Ethanal is highly reactive and toxic, adding to the cumulative pathogenic effects (Lieber et al., 1986).

CYP2E1 activity is also exacerbated in response to nutritional states including fasting, diabetes and obesity. This explains the presence of increased CYP2E1 in NASH despite the lack of excess alcohol consumption (Robertson et al., 2001). However, CYP2E1 is not the only factor contributing to the development of fatty liver as products of the inflammatory response and fibrogenesis also combine to the resultant oxidative stress. The many possibilities of CYP2E1 interactions are depicted below in figure 2.6.1 (Lieber, 2004).
Figure 2.6.1: This diagram displays the many compounds which act as potential substrates for induction of cytochrome P450 CYP2E1 activity that results in detrimental and beneficial effects (Lieber, 2004).

CYP2E1 has been described as a “leaky” enzyme as it is capable of “futile cycling” whereby detrimental oxygen species and hydroxyl radicals are formed in the absence of substrates causing NADPH-dependent lipid peroxidation and cellular damage (Robertson et al., 2001). It is believed that for NASH to occur and progress, additional oxidative stress is necessary as a 'second-hit' to establish a certain degree of lipid peroxidation that surmounts regular cell defences resulting in necroinflammation (Day and James, 1998). Common characteristics of NASH such as obesity and diabetes are regarded as mediators of CYP2E1 induction and therefore must be also regarded as ‘second-hit’ candidates capable of causing oxidative stress and hence hepatic damage.

IR is already established as a common characteristic in NAFLD and NASH patients. A further complication of IR is the ability to induce the operation of the cytochrome P450 system CYP2E1. This can also lead to the production of ROS as a result of intra-hepatic metabolic abnormalities which mimics the conditions experienced in alcoholic liver disease (ALD) (Albano et al., 1996). A study performed by Weltman et al., (1998) investigated the presence of hepatic CYP2E1 in a group of 31 patients with NASH that comprised 23% diabetes and 45% obese, both being aetiologic factors closely linked to relative insulin deficiency. The findings revealed that concentrations of CYP2E1 in patients with NASH was increased in comparison to the controls and also very similar to levels identified in patients with alcoholic steatohepatitis. Furthermore the acinar distribution of CYP2E1 seen in NASH patients closely resembles the distribution displayed in early alcoholic liver injury and coincides with the extent of steatosis through acinar zones 3 to 1 as with ALD.
A further source of induction of the CYP2E1 pathway is an elevated concentration of FFA which can occur via peroxisomal β-oxidation providing a supplementary source of oxidative stress. A reduced sensitivity to insulin can also lessen the suppression of HSC and thus cause adipocytes to increase FFA delivery to the hepatocytes, resulting in yet another potential source of liver cell damage (Sniderman et al., 1998).

In addition to CYP2E1, a further P450 cytochrome subfamily, CYP4A, can serve as an alternative microsomal lipid oxidase for catalysing ethanol. The ROS and additional oxidative stress may thus come from other avenues of formation of superoxides and \(\text{H}_2\text{O}_2 \) (Robertson et al., 2001).

Overall, hepatic steatosis is regarded as a benign condition which results when the hepatic triglyceride pool expands as a result of limiting oxidation or export capacity. The development of steatohepatitis requires an additional 'second-hit' in the form of oxidative stress from an array of hepatic pathways such as CYP2E1 that elicits the progressive nature of the disease, thus providing a framework for treatment and disease prevention (Day and James, 1998).

2.7 Leptin

Leptin resistance is yet another potential causative factor in the pathogenesis of the fatty liver diseases. Leptin is a 17 kilodalton protein product derived from adipocytes and is involved in several key biological functions that include the regulation of food intake and energy expenditure (Zang et al., 1994). Furthermore, leptin is known to influence enzymes of fatty acid oxidation and control store levels of body fat thus permitting fluctuations in appetite and metabolism (Zhou et al., 1997).

Leptin is genetically deficient in \(\text{ob/ob} \) mice. This strain of mouse exhibits several characteristics of humans with NAFLD such as obesity, diabetes and development of steatosis. It has become a valuable model for studying the disease mechanisms involved (Unger, 2000). A study by Campfield et al., (1995) revealed that the administration of recombinant leptin suppressed the appetite and consequently reduced the food intake in \(\text{ob/ob} \) mice and had a protective effect. Conversely, when excess caloric intake does occur, leptin aids in stimulating the confinement of extra calories to adipocytes, therefore deflecting potential steatotic damage away from non-adipocytes and exhibiting a defensive role against obesity (Unger, 2002).
In spite of this, when steatotic liver damage is incurred by a NASH patient, dysfunctional leptin expression and signalling is a probable outcome. Leptin is responsible for aiding the regulation of several cytokine receptors but the balance of the leptin effects promotes the initiation of fibrosis. It is known that leptin stimulates the production of the potent profibrotic cytokine transforming growth factor-β1 (TGF-β1) (Bissell et al., 2001). Additional proposed profibrotic effects of leptin are that the receptors may activate STAT-3 through ligand-binding, thus increasing collagen gene production and CYP2E1 expression is partly reliant on leptin activity and therefore has the ability to enhance oxidative stress by means of CYP2E1 induction (Saxena et al., 2002; Enriquez et al., 1999). Excess lipids or ‘lipotoxicity’ due to increased amounts of free fatty acids is also a very common occurrence in NASH and may be attributed to the dysfunctional production of leptin that aims to modulate insulin sensitivity to correct for insulin resistance (Chitturi et al., 2002).

It is not only leptin that has been implicated as a contributing factor in fatty liver development but also leptin receptors. Zucker fa/fa rats are diabetic and have leptin resistance as a result of a substitution mutation in the leptin receptor (Ob-R) with an ensuing loss of function (Unger, 2002). After approximately 5 weeks of age, these rats exhibit elevation in FFA plasma levels as well as an accumulation of triglycerides in various organs. Furthermore, Unger (2000) showed that an intravenous injection of cDNA of wild-type OB-Rb consequently restores normal expression of leptin receptors in the fa/fa rat, resulting in a regression of hepatic triglyceride levels. Recent research by Cohen et al., (2005) also examined the leptin receptor (Ob-R) and established that the liver unexpectedly contained Ob-R mRNA and therefore could augment circulating levels of leptin when negative energy balance is endured.

Numerous other studies have investigated the role of leptin in genetic rodent models of obesity such as leptin-deficient ob/ob mice and Zucker diabetic fa/fa rats. This will be discussed later in the NAFLD/NASH animal models chapter. However, it must be noted that increased leptin gene expression has been observed in humans in addition to leptin plasma concentrations and suggests the occurrence of obesity in humans may owe itself to dysfunctional leptin receptors as opposed to leptin itself (Hamilton et al., 1995).

2.8 Type 2 Diabetes Mellitus
It is estimated that 250 million people distributed worldwide will be affected by type 2 diabetes mellitus within 15-20 years as a result of insulin resistance (O’Rahilly, 1997).

A recent advance in the prevention of diabetes and hepatic injury has examined the effects of dehydroepiandrosterone (DHEA) and its sulphate ester (DHEA-S) (Aoki et al., 2003). These adrenal steroids circulate in great numbers in humans and have shown beneficial effects in the treatment of inflammation. The study performed by Aoki et al., (2003) treated diabetic db/db mice with DHEA and resulted in reduced TNF-α concentration, inhibition of inflammatory cytokines, an increase in insulin sensitivity and consequently a diminished degree of hepatic injury. A one-year treatment programme with DHEA in post-menopausal women revealed a 30% restoration of insulin sensitivity, but a definitive role of DHEA remains unresolved (Ishizawa et al., 2001).

2.9 Obesity
Although the progression of NAFLD can occur in the lean individual, the presence of obesity is almost a prerequisite. It is now estimated that nearly 1000 people a week are dying prematurely in the United Kingdom alone as a direct effect of obesity (Small and Bloom, 2005). Recent research has been directed at drug-inducing appetite suppression which leads to a lower food intake and the loss of weight. The ingestion of food stimulates the immediate release of numerous gut peptides such as glucagon-like peptide-1 (GLP-1) and -2 (GLP-2), cholecystokinin (CCK) and peptide YY (PYY) (Baggio et al., 2004). These peptides amongst others possess the ability to stimulate ascending neural pathways or directly enter the central nervous system (CNS) to signal the termination of food consumption (Korner and Leibel, 2003). They are therefore believed to act as sensitive modulators of feeding behaviour by communicating with CNS satiety centres which govern control of gut motility and glucose homeostasis (Baggio et al., 2004).

Oxyntomodulin (OXM) is a natural digestive hormone consisting of a 37-amino acid peptide which contains the entire sequence of glucagon and is cosecreted with GLP-1 (Dakin et al., 2001). GLP-1 is known to lower blood glucose and to reduce food intake in obese diabetic patients (Drucker, 2002; Zander et al., 2002) whereas GLP-2 is implicated in the inhibition of gastric motility and acid secretion (Drucker, 2001). Less is understood about OXM. Investigative work has examined this peptide and
highlighted a strong association with gastric emptying and stimulation of intestinal glucose uptake in rodents (Jarrousse et al., 1993; Collie et al., 1997). Furthermore, OXM has also displayed capabilities of inhibiting food intake and lowering weight gain in rats and more recently in humans (Dakin et al., 2002; Cohen et al., 2003).

The latest development in oxyntomodulin research is a 4-week trial (Bloom – Argus, 2005), conducted in 26 overweight or obese patients. They received three injections a day, each administered 30 minutes before eating. The results revealed an average weight loss of 2.3 kg from treatment with OXM in comparison to a placebo group which lost approximately 0.5 kg during the same period.

The exact mechanisms by which OXM inhibits food intake in rodents and humans is unclear but it is hoped that the drug will be available on the market as a therapeutic approach for obesity within the next 5 years. Despite OXM being primarily developed as a means of weight reduction, the drug could also have a significant impact in halting the progression of NAFLD.

Rimonabant is an anti-obesity drug which is under current investigation as it is believed to increase satiety and promote weight reduction (Bays, 2004). Cannabinoid (CB) receptors are the molecular targets for the active ingredient in cannabis; Δ⁹-tetrahydrocannabinol, which are triggered by a small family of endogenous lipids (Giuffrida et al., 2001). Cannabis smokers may experience an enhanced appetite when this reaction occurs which has led to rimonabant being examined. Rimonabant is a CB antagonist and functions by blocking the CB-1 receptor (Bays, 2004). It is therefore hypothesised, that inhibition of the receptor responsible for regulating appetite would reduce caloric intake and consequently lower body mass. Rimonabant, at present, is being studied in clinical trials of over 6000 patients, including those with type II diabetes (SPG Media Limited). Initial findings are encouraging, revealing advantageous effects on lipids such as triglycerides and high-density lipoprotein-cholesterol levels (Anthenelli and Despres, 2004).

The epidemic of obesity is still relatively new, but despite public health education highlighting the surrounding complications, it is estimated that over 1 billion adults worldwide are overweight (Bays, 2004). Studies in weight-reducing drugs like rimonabant are still in early development and it remains unclear whether a single treatment target or a multiple of treatment targets provides the most effective
approach. Further research is required to find a suitable treatment that will effectively modulate fatty liver by limiting or preventing obesity.

2.10 Hepatic Fibrosis
Fibrosis is not always present in NAFLD patients but is regarded as the key pathological feature of liver damage in NASH. The fibrotic process in steatohepatitis is believed to be nearly identical to other modes of chronic liver damage such as ALD (Friedman, 2000). The common trait of fibrosis in steatohepatitis is often referred to as pericellular ‘chicken-wire’ fibrosis due to its histological appearance within hepatocytes and is initially located in acinar zone 3 as with ALD (Brunt and Tiniakos, 2002). The progression to fibrosis has been attributed to various underlying factors including oxidative stress, lipid peroxidation, insulin resistance, and upregulation of cytokines which are all potentially able to be the ‘second-hit’ after the metabolic stress. The adaptive responses of the liver to further injury help explain the underlying pathogenesis of NASH and contribute to the knowledge of fibrogenic mechanisms. Although the risk factors for fibrosis development and progression in NASH remain unclear, the morphological changes that occur are clearly defined and are outlined below (Figure 2.10.1).

Fibrosis is generally regarded as a defensive repair mechanism in response to cell injury. Fibrogenesis mechanisms can be activated without cell death or inflammation. The trademark characteristic of hepatic fibrosis is the deposition of extracellular matrix (ECM) proteins within the space of Disse (Geerts, 2001). In the normal functioning liver, the ECM provides support for cellular structure, permits growth-
factor transport and is also relied upon for transmitting signals to surrounding cells in order to maintain their differentiated functions (Friedman, 2003). Conversely, an injured liver exhibits scarred tissue with amassing ECM which encompasses macromolecules from three main families: collagens, glycoproteins and proteoglycans. As the liver develops fibrosis, changes in the arrangement of the ECM occur due to an influx of fibril forming collagens (types I and III), fibronectin and laminin (Friedman, 2000; Shuppan et al., 2001). Furthermore, the expression of matrix metalloproteinases (MMP) and their inhibitors appear to be in an imbalance, causing disorder in hepatic compartments because excessive matrix deposition is not being compensated by increased degradation (Friedman, 2000; Shuppan et al., 2001).

Hepatic stellate cells (HSC), among other major cell types including Kupffer cells and endothelial cells are activated in the fibrotic liver. HSC in particular have been viewed as a causative factor for enhancing ECM production during fibrogenesis (Eng et al., 2000). HSC are present in both normal and damaged livers, and can be distinguished by their vitamin A content and location. HSC are located beneath endothelial cells in the space of Disse and in normal functioning liver they connect with other stellate cells via gap junctions (Eng et al., 2000). However, during injury, HSC are converted into myofibroblast-like cells that now contain little vitamin A and facilitate collagen assemblage (Friedman, 2000; Eng et al., 2000). The 'activation' of HSC at the onset of injury is therefore regarded as being a central event in the detrimental progressive nature of hepatic fibrosis which entails the conversion of quiescent vitamin-A storing cells into proliferative, fibrogenic and contractile myofibroblasts (Friedman, 2003) (see figure 2.10.2).
Figure 2.10.2; HSC activation is a response to liver injury by a two-step process of initiation and perpetuation. Resolution of fibrosis may occur by reduction of HSC number by apoptosis and reversal of activated HSC to quiescent phenotype (Friedman, 2003).

The potential disadvantage arising from HSC activation include alterations in ECM components, and the loss of vitamin A. The cells enlarge and continued injury will exacerbate the fibrosis with activation being propagated by increased expression of cytokines such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF) and transforming growth factor-β1 (TGF-β1) (Maher, 2000). Transcription factors that include nuclear factor-κB (NF-κB), activator protein-1 (AP-1) and signal transducer and activator of transcription-1 (STAT-1) also play a supporting role in activating HSC which coincides in synchrony with accumulation of ECM, remodelling of the matrix and modification of fibrotic activity.

Studies which are primarily concerned with the fibrotic response in NASH patients are limited. A study undertaken by Baldridge et al., (1995) discovered that 14 children with NASH all displayed signs of portal fibrosis and postulated that fibrosis may be more prominent in children than adults. Additional research has also proposed that
old age, obesity, female gender and diabetes mellitus are further independent determinants of fibrosis (Wanless et al., 1990; Angula et al., 1999).

A clear, singular, causative factor for generating fibrotic stimuli in NAFLD and NASH remains elusive. Several inter-related discrepancies in lipid metabolism, inflammatory response, resistance to insulin or a combination play a role. Further work must be aimed at gaining a better understanding of the processes involved in a liver becoming fibrotic in order to channel resources towards identifying possible therapeutic targets for treatment purposes of these at highest risk for serious complications of fatty liver, especially cirrhosis.

2.11 Cirrhosis

Although liver cirrhosis is not evident in every patient with progressive fatty liver disease, clinical studies reveal that approximately 20% of patients with NASH proceed in developing a cirrhotic liver (Diehl et al., 1988; Matteoni et al., 1999). Whether a patient is developing a cirrhotic liver or not is difficult to determine clinically and biochemically and has resulted in the endorsed use of needle biopsy as the 'gold standard' for correct diagnosis (Brunt, 2001). When cirrhosis is fully established in the liver, the regular lobular structure is completely lost and is replaced by regenerative nodules that vary significantly in size, and is bounded by bands of fibrous tissue (Diehl et al., 1998). Cirrhosis can be classified as micronodular, macronodular or more commonly a combination of both. Micronodular cirrhosis consists of small uniform nodules and is frequently associated with alcoholics. It often results in yellow coloration of the liver due to severe fatty change. Macronodular cirrhosis is often revealed after cessation of heavy drinking and comprises large protuberant nodules separated by fibrous bands.

The rate at which cirrhosis proceeds is dependent on the extent of injury incurred by the individual and factors that trigger cell-death, fibrosis and regeneration. A toxin such as alcohol will effect concentration-dependent cell death and damage. Cirrhosis greatly enhances the likelihood of developing hepatocellular carcinoma (HCC), cirrhosis may also result in the loss of liver function and often portal hypertension arises due to the increased resistance to flow. Research carried out long ago by Heston and Vlhakis, (1962) indicated that ageing mice develop hepatic tumours but it remains unclear whether the occurrence of hepatocellular carcinoma is a genuine event in the advancement of NASH. Increases in oxidative stress and lipid peroxidation have been reported in numerous studies involving NASH patients
Weltman et al., 1996; Esterbauer et al., 1992) suggesting a possible link to arising hepatocarcinogenesis.

A study conducted by Seki et al., (2002) investigated the hepatic expression of 4-hydroxy-2’-nonenal (HNE) and 8-hydroxydeoxyguanosine (8-OHdG) as HNE is a reliable marker of lipid peroxidation and 8-OHdG is regarded as a target of free radicals in cellular DNA that demonstrates signs of oxidative DNA damage. The findings revealed that expression of HNE and 8-OHdG were markedly increased in NAFLD patients in correlation with the stage of fibrosis when compared to patients with normal liver. HNE is a strong chemical attractant for neutrophils and oxidative stress-induced NF-kB activation (Schaur et al., 1994; Jaeschke et al., 1996). It may therefore contribute towards initiating the activation of HSC which are a primary source of ECM proteins central to the progression of fibrogenesis (Friedman, 1993).

In addition, the accumulation of 8-OHdG in cellular DNA of NAFLD patients resulted in mispairing and provides evidence that this oxidative modification is mutagenic and carcinogenic (Kasai et al., 1991). The probability that oxidative DNA damage or increased levels of oxidative stress is involved in developing HCC is high, but more studies need to be undertaken to confirm the hypothesis. Further mechanisms which have been proposed for facilitating the development of hepatic carcinogenesis include alterations in fatty acid metabolism (Ockner et al., 1993), activation of PPAR-a (Gonzalez et al., 1998), insulin stimulation of TNF-a (Bertrand et al., 1998) and overexpression of insulin growth factor-2 (IGF-2) (Rogler et al., 1994). Other tumour-forming pathways exist but whether cirrhosis is a prerequisite for HCC to transpire remains ambiguous.

The pathogenesis of NAFLD remains unclear despite the advances which have been made in understanding the progressive nature of the disease and the complexity of the process. The ‘two-hit’ model described by Day and James (1998) summarises the process of events that occurs in this multifactorial disease. The ‘first-hit’ results in the development of steatosis as a consequence of several metabolic features that include insulin resistance and altered lipid metabolism leading to an increase in esterified fatty acid in the liver. The ‘second-hit’ occurs as a follow-up to the development of steatosis whereby the liver is more susceptible to disease through confrontation with detrimental factors such as increased lipid peroxidation, P450 CYP activity, insulin, leptin and the inflammatory infiltrate which all significantly contribute to the escalation of the disease.
The important causative features of NAFLD and NASH which facilitate the
development and progression of the disease are predominantly researched in rodent
models that lends itself to specific manipulation action and the evaluation of the liver
biochemically, genetically and histologically. Work undertaken in this thesis aims at
investigating whether the (db/db) strain is suitable for additional research and
describes some biochemical changes along with the histology of the liver.

2.12 Similarities with Alcoholic Liver Disease (ALD)
The occurrence of NAFLD and the subsequent progression from simple fatty liver to
fibrotic liver and cirrhosis is similar to the pathogenesis arising in alcoholic liver
disease (ALD). A major difference between the two disorders is that NAFLD patients
do not consume what is considered to be an excess amount of alcohol whereas the
consumption of the ALD patients is significant to cause an effect which results in the
same extent of liver injury. The proposed doses of alcohol required to facilitate ALD
is 40-80 g/day for males and 20-40 g/day for females over a 10-12 year period
(Becker et al., 1996; Grant et al., 1988). However, Ludwig et al., (1980) carried out a
study and found patients who denied any alcohol intake or averaged one drink per
week still exhibited comparable liver damage as revealed in ALD patients. This
contrasting data suggests that a safe alcohol intake limit cannot really be applied in
forecasting whether an individual develops fatty liver as some people are more
sensitive to the effects, although a low intake coupled with a healthy diet and
exercise would certainly decrease the possibility.

Potential pathways by which fatty liver can develop and progress include fatty acid
oxidation, increased ROS production by the cytochrome P450 system and effects of
IR on oxidative stress (Haque and Sanyal, 2002). The fact that complete abstinence
from alcohol does not guarantee avoidance of fatty liver development suggests that
certain biochemical pathways involved in metabolizing alcohol and generating fatty
liver in ALD must also be operational in NAFLD.

The metabolism of alcohol primarily occurs by alcohol dehydrogenases (ADH),
although CYP2E1 and catalases are also regarded as having important roles (Arteel
et al., 2003). CYP2E1 is believed to be of significant importance as it is localized in
hepatic lobules when liver injury is endured from excess alcohol intake. In addition,
CYP2E1 induction has the potential to be a source of oxidative stress but the
mechanisms involved remain unclear (Arteel et al., 2003). Possible mechanisms by
which alcohol consumption may lead to liver injury are depicted below (Figure 2.12.1).

Figure 2.12.1: Mechanisms by which ethanol consumption may lead to liver damage. Ethanol causes a number of physiological and biochemical changes to liver that may lead to initiation and progression of alcoholic liver disease (ALD). These include the following: alcohol metabolism, via the formation of toxic byproducts (e.g. CYP2E1). Inflammation coupled with priming of these immune cells and an increase in proinflammatory cytokines and chemokines. Sensitisation of hepatic cells, via alteration of intracellular signaling, depletion of energy reserves and an increased response to external stimuli (e.g. cytokines/chemokines) alters/enhances the response of the cells during the course of alcohol administration. Reactive oxygen species / reactive nitrogen species (ROS/RNS) formation, via electron leakage from enzyme systems (e.g. mitochondria and CYP2E1), inflammatory cells and by decreased degradation of oxidatively-modified proteins is proposed to play a key role in mediating the effects of ethanol. These events are not mutually exclusive and tend to enhance the effects of the other pathways. The net result is a vicious cycle of damage and progression in the disease. Polymorphisms in key genes involved in these events are also thought to cause the sensitivity of some individuals to chronic alcohol abuse (Arteel et al., 2003).

There are several animal models that are employed to study the effects of alcohol such as the Sardinian alcohol-prefering (sP) rat line which has been purposely bred for over 20 years for high alcohol consumption (Colombo et al., 1997) and the Indiana University alcohol-prefering (P) and high-alcohol-drinking (HAD) lines (Li et al., 1993). However research undertaken in these model poses limitation problems as sucrose must be added to concentrations (>6%) to create a ‘sweet taste’ otherwise the rodents will behave adversely towards the solution. This sugar supplement consequently decreases the rate of alcohol intake.

Further problems arising from working with rodent models is creating an accurate representation of the conditions that humans endure in developing fatty liver through excess alcohol consumption. The majority of people whose alcohol intake is in excess of 60 g/day will develop fatty liver whilst those who have a severe mixed micro/macrovesicular pattern are more likely to develop fibrosis and resultantly cirrhosis (Teli et al., 1995). However, due to the difference in body mass between humans and rodents, it is difficult to gauge a concentration of alcohol that would
correspond accurately. A study undertaken by Yin et al., (1999) subjected wild-type TNF-R1 knockout mice to ethanol concentrations of 28 g/kg·day⁻¹ to induce fatty liver. The treatment lasted 4 weeks and also included an acclimatization period in which the initial dose was 16 g/kg·day⁻¹ and incremented until the desired dosage was reached. It takes approximately 10-12 years of alcohol abuse to develop fatty liver in humans (Becker et al., 1996; Grant et al., 1988) whereas the wild-type TNF-R1 mice showed significant steatosis and inflammation after only 4 weeks. Additionally, many rodent models do not live beyond 2 years and further confirms the difficulty in trying to bridge the gap between rodent and human data. Research in animal models remains the best option to successfully manage and possibly eliminate the conditions arising in ALD and similarly in NAFLD. Additional work should possibly be aimed at determining the overlapping pathways involved in provoking a fatty liver in ALD and NAFLD and therefore establish why this type of liver injury occurs in NAFLD patients despite alcohol not being an applicable factor.
Chapter 3; Animal Models of NASH and NAFLD

3.1 Introduction

This chapter illustrates the extensive assortment of rodent models that are employed to investigate the pathogenesis and surrounding complications of NAFLD and NASH. From hepatic steatosis being originally regarded as a benign condition, there are now several animal models which have been specifically modified to induce key features considered to be risk factors in development and progression of fatty liver. NAFLD is an asymptomatic disease and detection by liver biopsy remains an invasive, yet the most effective technique by which correct diagnosis can be reached. Obesity, insulin resistance, type 2 diabetes mellitus and dyslipidaemia are almost a prerequisite for facilitation of the disease in human patients (Koteish and Diehl, 2002) and it is these characteristics which are purposely activated in rodent models to replicate the conditions observed in a 'typical' human profile.

The findings generated from animal models of steatosis and steatohepatitis have been invaluable and greatly improved our understanding of the pathogenesis of NAFLD and NASH. Additional studies in animal models will hopefully identify a causative factor of these disorders, therefore allowing successful treatment and even amelioration of the disease. Although, care must be taken when interpreting the results as no animal model to date has been shown to exactly mirror the biochemical and metabolic pathways known to exist in humans with fatty liver.

3.2 (Ob/ob) Mouse Model

A number of animal models has been used in recent years to help advance the understanding of NAFLD. The ob/ob mouse has been widely studied as this particular model of genetic leptin deficiency owing to a mutation in the ob gene, manifests key traits seen in the human clinical profile of NAFLD. These characteristics include obesity, hyperinsulinaemia, insulin resistance, type II diabetes and hepatic steatosis (Lin et al., 2000).

Many different approaches have been employed to combat the development and progression of NAFLD in the ob/ob mouse model with no real success. One study investigated aminosterol 1436, which is a spermine-cholesterol metabolite originally isolated from dog shark and has been found to repress appetite and resultantly reduce weight (Ahima et al., 2002). The action of 1436 suppresses SREBP1 and its target genes (GPAT and SCD-1), which are involved in hepatic lipid metabolism, and subsequently ameliorates the development of fatty liver (Yahagi et al., 2002).
study undertaken by Takahashi et al., (2004), examined the effects of 1436, in an attempt to decrease body weight and resultantly defuse surrounding complications in Lepob/ob mice.

Lepob/ob mice treated with aminosterol 1436 displayed significantly reduced daily food intake and consequent weight loss in comparison to the non-treated animals. Triglyceride, cholesterol and ALT concentrations were also significantly reduced in association with decreased insulin levels. Although further studies are required to establish if 1436 can also reverse other abnormalities of NAFLD such as necrosis and fibrosis, aminosterol 1436 still serves as an effective treatment for insulin resistance and hepatic steatosis by decreasing hepatic lipid synthesis.

Another approach used to examine the abnormalities of NAFLD was to investigate the formation of reactive oxygen species (ROS). ROS are produced in liver mitochondria and there are multiple mechanisms that can promote their generation in NAFLD. The production of ROS may be a result of increased fatty acid oxidation, elevated cytochrome P450 activity or a metabolic consequence of insulin resistance to name a few, all of which typically occur in a NAFLD patient (Haque et al., 2002).

Research performed by Yang et al., (1999) documented an increased expression of mitochondrial uncoupling protein-2 (UCP-2) in fat laden hepatocytes of ob/ob mice. The raised activity of UCP-2 is believed to increase the risk of collapse of membrane structure by partially depolarising the inner mitochondrial cell walls and may explain the vulnerability of fatty hepatocytes to necrosis.

A further study carried out by Yang et al., (2000) used the ob/ob model again to establish whether increased production of ROS and the resultant oxidative stress contributed to the development of fatty hepatocytes and promotion of necrosis through mediation of UCP-2. The study demonstrated a significant increase in the release of H\textsubscript{2}O\textsubscript{2} from mitochondria of fatty liver and confirms an increased production of reactive oxygen species compared to the controls. In addition, the mitochondria from fatty livers displayed an elevated rate of O\textsubscript{2} consumption or production which conforms with the idea that mitochondria from ob/ob mice may contain more UCP-2 when compared to the lean wild-type littermates. The increase of UCP-2 and ROS may or may not directly result in necrosis, but in concert with several dispositional factors within fatty livers may promote necrosis that does not occur in normal livers.
Another strategy for identifying the underlying factors involved in the pathogenesis of NAFLD proposes that impaired regeneration in fatty liver may promote progression of the disease. Additional work undertaken by Yang et al., (2001) was aimed at recognizing the altered mechanisms which may contribute to impaired regenerative responses of a fatty liver in NAFLD. Obese (ob/ob) mice and normal wild-type controls were subjected to a 70% partial hepatectomy (PH), after which the animals were allowed to recover. The regenerative responses of both groups of animals were recorded. Within the first 36 hours after the PH procedure 7/25 ob/ob mice with fatty livers died in comparison to 0/26 lean controls, instantly suggesting an abnormality in the hepatic compensation and/or regeneration ability of obese mice. Further findings revealed substantial decreases of hepatocyte proliferation in surviving ob/ob mice by monitoring induction of proliferating cell nuclear antigen (PCNA), the action of which is typically increased as hepatocytes leave the pre-replicative phase of the cell cycle (Michalopolous et al., 1997). Oxidant-sensitive, growth regulatory protein kinase cascade systems are believed to help regulate hepatocyte proliferation in response to liver injury. Jun N-terminal kinases (Jnks) and extracellular regulated kinases (Erks) are two such systems which are normally activated by cytokines and growth factors (Westwick et al., 1995). However, signalling pathways become altered in fatty livers as an outcome of sustained oxidative stress and result in abnormal function of these systems, hence the poor proliferative response to liver damage in obese animals.

Although a single causative factor of NAFLD remains unidentified, the observations from the study confirmed that fatty livers of ob/ob mice had less efficient regenerative responses when compared to normal livers of wild type controls. Zucker fa/fa rats have also been shown to display inhibited liver regenerative responses (Selzner et al., 2000) adding further speculation that impaired regeneration may assist in the progressive nature of the disease by inhibiting hepatic proliferation and increasing liver injury.

Obesity and diabetes are fully established risk factors implicated in the development and progression of NAFLD. The exact mechanisms involved in the disease process remain unclear, but as these components appear to be central in amplification of NAFLD, their roles are becoming more scrutinized in the search for a true cause and a possible treatment. Glucocorticoids have been closely examined of late as they are believed to play a significant role in the manifestation of obesity and insulin
resistance and may therefore contribute to the materialisation of the adverse outcomes of the disease (Bjorntop et al., 2000).

A study performed by Liu et al., (2003) attempted to determine the role of glucocorticoids through measuring the activity of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). The synthesis of corticosterone is predominantly regulated by liver-specific 11β-HSD1 and is an essential reaction in facilitating further generation of active glucocorticoids (Voice et al., 1996). Female ob/ob mice were treated with leptin and compared to non-treated ob/ob animals. Fatty livers of leptin-treated mice revealed significantly elevated 11β-HSD1 activity and increased levels of corticosterone. In addition, body weight was significantly reduced (27.6%) when compared to the untreated obese mice. However, despite the leptin-linked improvements, 11β-HSD1 activity, corticosterone levels and body weight never returned to normal levels as indicated by the lean littermate controls. The findings implicate increased insulin sensitivity in response to leptin treatment and that the obese nature of ob/ob animals is associated with the impaired activity of 11β-HSD1. The altered hepatic activity of 11β-HSD1 in fatty liver may therefore become a very useful tool in understanding the development of obesity and diabetes.

Clearly, much time and resources have been directed at unravelling the pathogenesis of fatty liver of the ob/ob mouse model. The characteristics of this particular model closely resemble the conditions seen in humans with NAFLD and it is therefore hoped that a better understanding of ob/ob mice will serve as guide for treatment and the ob/ob model remains a fundamental component for future research.

3.3 Tumour Necrosis Factor-α (TNF-α) Knockout Mouse Model and Human Studies of TNF-α

Increased levels of TNF-α are already well-documented to mediate liver damage (Diehl, 2000). Patients suffering from NAFLD and other complications of fatty liver continuously display elevated TNF-α in plasma (Winkler et al., 1998), hence the great interest surrounding this cytokine. A study performed by Ji et al., (2004) investigated the role of TNF-α in ethanol-induced liver injury using TNFR1 knockout mice. TNF-α is judged to permit the incidence of steatosis occurring in part by impeding normal insulin signalling pathways, thus acting with proinflammatory effects (Crespo et al., 2001). The mice lacking the receptor for TNF-α expression displayed minor
reductions in triglyceride levels and grading of steatosis. Furthermore, ALT and necroinflammatory foci were lowered by 50% in comparison but no significant changes were noted in endoplasmic reticulum (ER) stress. These observations implicate the involvement of TNF-α in ethanol-induced liver damage.

Yin et al., (1999) also used TNFR1 knockout mice to establish a role of TNF-α in alcohol-induced liver injury. The mice were exposed to a high-fat ethanol diet for 4 weeks to induce fatty livers before being subsequently terminated. The study showed liver/body weight ratios to be affected by ethanol feeding in comparison to the control diet, as expected. But this finding was not replicated when comparing TNFR1 animals. However, assessment of steatosis, inflammation, necrosis and ALT levels after ethanol feeding revealed all parameters to be significantly increased in the presence of TNF-α. The biochemical and pathological differences arising from evaluation of TNFR1 knockout mice and those capable of expressing TNF-α confirm that TNF-α plays a role in alcohol-induced liver injury.

There is further speculation that TNF-α acts as a second hit in the already discussed “two-hit” hypothesis (Day, 2002). TNF-α is accepted as a ‘second-hit’ as it is one of the predominant cytokines produced in response to increased reactive oxygen species (ROS) (Yang et al., 2000) and has a major influence in progressive NAFLD. One method by which TNF-α is believed to promote hepatic oxidative stress is through inhibitor kappa beta kinase beta (IKKβ) (Yuan et al., 2001). IKKβ is partly responsible for the inactivation of nuclear factor kappa beta (NF-κB) which initiates the transcription of TNF-α. However, because TNF-α is also responsible for stimulation of IKKβ, a positive feedback loop is generated that results in insulin resistance, further production of TNF-α and a chronic inflammatory state (Yuan et al., 2001).

Work undertaken by Hui et al., examined TNF-α activity in NASH and NAFLD patients and attempted to establish markers for differentiating histology. There were 109 subjects with varying degrees of liver damage in the study, standardised in order to eliminate confounding factors of age, sex and body weight. Hypoadiponectinemia and TNF-α activation were associated with NASH which was coupled with higher grades of steatosis and necroinflammation. Adiponectin has been shown to inhibit the activity of NF-κB (Ouchi et al., 2000) which consequently reduced the self-reinforcing flow of TNF-α and effectively lowered hepatic inflammation. Thus
adiponectin may have a potential therapeutic application for alcohol and nonalcohol liver disease.

As illustrated above, TNF-α is implicated in NAFLD and alcohol induced fatty liver damage and the histopathological similarities which exist between the different diseases reinforces the idea that mutual pathways must be involved (Ludwig et al., 1980).

3.4 Sprague-Dawley Rat Model

A study carried out by Lieber (2004) fed male Sprague-Dawley rats a high-fat, liquid diet in an attempt to produce a suitable experimental model which replicates all the key characteristics seen in human patients with NASH. The high-fat diet consisted of 71% of fat-derived energy compared to 35% in the standard diet fed to the control animals. Both diets were fed ad libitum.

After 3 weeks, panlobular steatosis and inflammation were evident in the high-fat diet fed rats. This was coupled with elevated plasma lipid concentrations and increased levels of hepatic TNF-α in comparison to the control group. Furthermore, increased plasma insulin was indicative of insulin resistance and CYP2E1 induction was also documented to add to oxidative stress.

However, the rats fed the high-fat diet did not become obese and comparison of the mean body weights against the standard diet fed animals revealed no statistical significance. Restriction of the high-fat diet substantially reduced the hepatic changes observed in these animals, but the undesirable development of mild steatosis still occurred. This provides evidence that restricted, food components can play a strong role in deranging liver function.

Despite the increasing knowledge of NASH and associated liver diseases, an exact model remains elusive as all models to date lack one or more pathogenic factors. The subsequent non-development of obesity in Sprague Dawley rats raises doubt on the suitability of this model for studying NASH, although targeting food components is still regarded as a possible strategy for studying the disease process and modulation of its outcome.

3.5 Peroxisome Proliferator-Activated Receptors (PPAR) Mouse Model

PPARs comprise a superfamily of nuclear hormone receptors which are capable of facilitating the effects of fatty acids and oxidised phospholipids on DNA (Kersten,
Three subtypes of PPARs exist (denoted α, β and γ) and each has a distinct tissue distribution pattern (Braissant et al., 1996). PPAR-α is mainly present in liver, PPAR-β is ubiquitously expressed and PPAR-γ is predominantly located in adipose tissue (Memon et al., 2000).

PPAR-α is believed to be central in the homeostasis of lipid metabolism and is thus likely to participate in the pathogenesis of fatty liver (Desvergne et al., 2004). The altered expression or function of PPAR-α may result in abnormal lipid accumulation and ROS which are key mediators of fatty liver disease. Cytochromes CYP2E1 and CYP4A are possible hepatic sources of ROS (Weltman et al., 1996) as their crucial role in fatty acid production pathways may potentiate the development of steatohepatitis if PPAR-α regulation becomes augmented.

Ip et al., (2003) investigated the role of PPAR-α activation by analysing ROS and lipid peroxidation parameters. Fatty livers were induced by administration of the MCD diet for 5 weeks in PPAR-α deficient mice and compared against animals fed a control diet. Wy-14,643 is an agonist specific for PPAR-α and was administered in addition to the MCD to a further group of animals in an attempt to resolve the function of PPAR-α in steatohepatitis development.

The MCD diet induced significant weight loss as was expected from previous findings, but was not normalised by the Wy-14,643 agonist. Administration of the MCD diet also induced macrovesicular steatosis which was more severe in PPAR-α deficient animals. However, Wy-14,643 administration prevented the onset of steatohepatitis development in wild-type MCD diet-fed mice through cessation of hepatic triglyceride accumulation and even lowered the concentration to levels below those observed in control-diet mice. Thus, activation of PPAR-α significantly reduces hepatic triglyceride levels by stimulating hepatic fatty acid disposal which consequently exhausts the liver of potential material capable of facilitating lipid peroxidation reactions. Additionally, CYP2E1 and CYP4A activity was not increased in MCD diet-fed PPAR-α deficient mice, whereas MCD diet-fed animals treated with Wy-14,643 displayed a huge increase of CYP4A activity despite the absence of steatohepatitis. This information suggests that CYP proteins are unlikely to be a main source of oxidative stress as originally postulated before the commencement of the study.
The activation of pathways involved for hepatic fatty acid turnover are regulated in part by PPAR-α expression which increases fatty acid uptake and β-oxidation and is therefore regarded as an important trigger in provoking the development of steatosis (Fan et al., 1996). However, PPAR-α hepatic expression in humans is significantly reduced in comparison to rodents (Hertz et al., 1998), proposing the possibility of alternative mechanisms being in force for control of lipid accumulation and fatty acid oxidation.

Recent work performed by Reifel-Miller et al., (2005), examined LSN862, an agonist of PPAR-α and PPAR-γ. Rodent models known to exhibit type II diabetes were administered with LSN862 which resulted in a noteworthy reduction of glucose and triglyceride levels. The lowering of triglycerides confirms the earlier work of Ip et al., (2003), while the decrease in glucose displayed an improvement in antidiabetic efficiency and provides strong evidence for using this dual agonist in future therapeutic treatment.

A further study concentrating on the role of PPAR-α was carried out by Crabb et al., (2004). Here the focus was whether PPAR-α mediated responses are altered in the presence of sustained ethanol metabolism. C57BL/6J mice were administered an ethanol-rich diet for 4 weeks and sacrificed. The livers were removed and examined for fatty oxidation, lipid content and DNA binding of PPAR-α/RXR-α complexes in comparison to untreated animals. The findings revealed that ethanol-feeding had induced fatty livers coupled with a 4-fold increase in triglycerides. Ethanol had no effect on PPAR-α mRNA, although RXR-α mRNA displayed a 20% reduction, possibly resulting from increased LPS levels (Uesugi et al., 2002). Ethanol-fed mice also experienced a reduction in expression of genes influenced by PPAR-α, including long chain acyl-CoA and acyl-CoA dehydrogenase and mirrors the fact that β-oxidation of fatty acids was not induced in these animals.

The PPAR-α agonist Wy-14,643 was administered to an additional group of ethanol-fed mice and again proved to lessen the accumulation of fat. The animals receiving Wy-14,643 also displayed a significant increase in free fatty acid oxidation and this coincided with a massive 50% elevation of PPAR-α expression, despite RXR-α levels being unaffected. Overall, functioning of PPAR-α appears to be central in facilitating the development of fatty liver enduring the strain of alcohol. Treatment with Wy-14,643 unblocked the ethanol-induced restriction of PPAR-α which stimulated fatty acid removal and consequently averted fatty liver. In conclusion, Wy-14,643
promotion of PPAR-α activities should be considered as a possible approach for alleviation of liver injury or fibrosis.

The resultant success achieved from work done with PPARs and relevant agonists in rodent models has proved to be critical in identifying components important to fatty liver disease development. However, this success has not been repeated in human studies and further work is required in adapting the findings in rodents to a positive outcome in human treatment (Kersten et al., 2002).

3.6 Methionine and Choline Deficient (MCD) Dietary Model

This section of the thesis has previously examined specialised mouse and rat types that have been specifically generated for studying NAFLD and the associated outcomes. Information generated from these models has played a significant role in understanding the mechanisms involved with the development and progression of the disease. However, several groups have been investigating the pathogenesis of NAFLD via the effects of a particular diet as opposed to a certain rodent model.

The MCD diet is deficient of methionine and choline and has been administered to a wide variation of animal models to induce the characteristics seen in humans with NAFLD. Previous studies fed animals with diets deficient in only choline which had partial success as steatosis did develop (Lombardi et al., 1968) but without the key features of inflammation and fibrosis regularly seen in NAFLD. A study carried out by Leclercq et al., (2000), displayed that MCD diet fed animals developed fibrosing steatohepatitis, and therefore set the trend for further work.

Methionine is an amino acid that is also involved in the transfer of methyl groups, including the formation of phospholipids. Choline is the trimethyl polar moiety of phosphatidylcholine. The synthesis of phosphatidylcholine is extremely important in the liver (Nanji, 2004) not only for membrane properties but also for export of lipoproteins and has potential to be adversely effected by MCDD.

Work undertaken by George et al., (2003) was aimed at studying the cell types and products of lipid peroxidation in high-fat, MCD diet-fed rats that acquire steatohepatitis and fibrosis. Male Sprague-dawley rats were fed the MCD diet ad libitum for up to 17 weeks and compared against a control, supplemented diet. The MCD rats displayed a 32% loss in body weight in comparison to the untreated animals. Livers from rats administered the MCD diet displayed signs of steatosis by
week 2, and by week 12, hepatic fibrosis had developed, prominently in zone 3 hepatocytes. Furthermore, glutathione (GSH) levels were significantly reduced and correlated with an increase in TBARS (47-fold by week 17), when compared to the control animals.

The histological features that appear in humans with NAFLD were replicated in the MCD diet-fed rats. In addition, the occurrence of lipid peroxidation in hepatocytes coupled with the development of liver injury and subsequent fibrosis is consistent with the chain of events in humans. This further enhances the theory that lipid peroxidation may be a primary stimulator of the liver damage and fibrosis or at least could be a strong marker for the process.

As previously stated, the formation of reactive oxygen species (ROS) is thought to be closely connected to the underlying mechanisms of NAFLD development by facilitating lipid peroxidation and consequently fibrosis (Yang et al., 2000). Vitamins C and E are antioxidant drugs which are known to react with ROS, intercepting their detrimental effects and therefore reduce the levels of oxidative stress and lipid peroxidation occurring in the liver.

A study performed by Oliveria et al., (2003), investigated the role of these antioxidant vitamins with regards to prevention of NAFLD. Wistar rats were administered the MCD diet for 4 weeks to induce fatty livers and subjected to daily doses of either vitamin C, vitamin E or the vehicle for control animals. The findings from the study revealed slight increases of AST and triglyceride levels which were comparable across all groups. In addition, the induction of macro- and microvesicular fat was noted in rats treated with the vehicle and vitamin E whereas vitamin C treated animals did not develop liver steatosis. It is therefore reasonable to claim that vitamin C may reduce oxidative stress, thus preventing the development of steatosis and associated outcomes. Interestingly, vitamin C is a watersoluble anti-oxidant that is involved in the recycling of tocopherol that can protect lipids against oxidation.

The effect of vitamin C supports the theory of antioxidants being able to defuse the outcomes normally brought about by ROS. However, vitamin E did not prevent the onset of steatosis, possibly owing to the inability to diminish oxidative stress, presumed to occur primarily in an aqueous environment. Further research must be undertaken in to evaluate whether anti-oxidant drugs can be therapeutic agents in combating the disease.
Drug-induced reversal of NAFLD is a further approach which has been taken in an attempt at treating the disease. Pentoxifylline (PTX) is regularly used for peripheral vascular disease but also displays antioxidant characteristics by reducing ROS (Bhat et al., 2001). PTX has also previously shown to decrease TNF-α expression after being treated with LPS (Streiter et al., 1988) and to reduce mortality in patients with alcoholic hepatitis (Akriviardis et al., 2000). Tumour necrosis factor – α (TNF-α) is already established as a major instigator of hepatocyte injury in NAFLD (Kugelmas et al., 2003), as are ROS and increased products of lipid peroxidation.

A study carried out by Koppe et al., (2004) investigated the effects of PTX in mice fed the MCD diet to determine whether PTX administration reduced the progression of steatohepatitis. Fatty livers were induced in C57BL/6J mice by administrating the MCD diet for 2 weeks. The treated animals were subjected to 5mg/ml PTX, administered i.p. at a dose of 100μg/g tid, compared to untreated animals receiving the vehicle. The observations confirmed the anti-inflammatory effects of PTX as serum ALT levels were significantly decreased, as were TNF-α levels, and inflammation was less severe in animals treated with PTX compared to untreated. However, the PTX treated mice illustrated a higher concentration of hepatic triglycerides in accordance with a higher degree of steatosis in comparison to the vehicle group. No specific explanation is available but it is possible that sparing FA from peroxidation could make more available for esterification to TG. In addition, PTX treatment did not make any difference to the weight loss induced by the MCD diet.

PTX demonstrated its usefulness by impeding the development of steatohepatitis in MCD diet-fed mice. An increased level of triglycerides normally results with an increase in inflammation, which did not occur in this study and was unexpected. Although, a single causative factor could not be identified for development and progression of NAFLD, consideration should be given to the use of PTX as a future therapeutic agent. Further work is required in assessing the pathogenesis applicable to lipid metabolism and the effects of administering PTX in the context of a fatty liver.

Another factor that is highly regarded as a major contributor in the disease process of NAFLD is insulin. The presence of insulin resistance is a common trait in NAFLD and is considered a fundamental metabolic abnormality. Despite the exact functions of insulin remaining unknown, they are presumed to be considerably influenced by TNF-α and free fatty acids (FFA) (Hotamisligi et al., 1999). Research performed by
Rinella et al., (2004), attempted to uncover the role of insulin in steatohepatitis, induced by the MCD diet.

Male FVB/NJ mice were fed the MCD diet for 10 days and 28 days in addition to a control group administered a methionine and choline supplemented diet. Steatohepatitis and elevated ALT levels were brought about by MCD diet administration regardless of the duration of feeding. Insulin sensitivity was assessed by insulin tolerance testing (ITT) and glucose tolerance testing (GTT) and revealed that MCD diet-fed mice displayed no indication of insulin resistance and was comparable with the controls.

Although evidence exists for a strong association between NAFLD and insulin resistance, a definitive relationship has yet to be proven. The experiment conducted by Rinella et al., (2004) indicates that insulin resistance does not appear to feature in animals developing NAFLD when fed the MCD diet. Insulin resistance may not be as critical to NAFLD development as previously thought but the role of insulin resistance in the complex pathogenesis of the disease may be to provide a metabolic stress.

A further probable contributor to NAFLD development may be cytochrome P450 2E1 (CYP2E1), which is believed to initiate lipid peroxidation through the production of oxidative stress (Lieber et al., 1997). A study embarked on by Leclercq et al., (2000), was aimed at ascertaining the role of hepatic CYP2E1 in the development of steatohepatitis. Female C57BL6/J mice were fed the MCD diet for 10 weeks to induce hepatic steatosis and were compared to animals receiving the control diet for the same period. The purpose of this was firstly to determine if CYP2E1 expression was affected by administration of the MCD diet and secondly to confirm lipid peroxidation in MCD diet-induced steatohepatitis. In addition to significant body weight loss and increased ALT levels, as was expected in MCD diet-fed mice, the findings indicated an increase in CYP2E1 enzyme activity when compared to the control group. Furthermore, lipid peroxidation was immensely enhanced in MCD diet-fed animals as verified by the rise in TBARs and 100-fold increase in lipid peroxides.

These results imply that increased CYP2E1 activity may assist in the accumulation of lipid peroxidation products. With this hypothesis, the next logical step was to feed the MCD diet to CYP2E1 deficient mice and their non-deficient heterozygous littermates as a comparison. Hepatic steatosis and necroinflammation were induced by the MCD diet in both sets of mice as expected, but, the CYP2E1 deficient animals displayed a
larger degree of fat accumulation which corresponded to elevated ALT levels and a major increase of lipid peroxides in comparison to the control group.

The data provided presents strong evidence that the enzymatic action of CYP2E1 is involved in the development of NAFLD. This enzyme is not crucial for the instigation of NAFLD but may influence the course of the disease by modulating the flux of TG and permitting increases in lipid peroxidation. It is concluded that further work is necessary to define the exact properties of CYP2E1 within the MCD model as well as the mechanisms promoting the development and progression of NAFLD and the associated outcomes.

The role of osteopontin (OPN) as a mediator of steatohepatitis development has also been investigated. OPN is a Th1 cytokine which is believed to be involved in the inflammatory process of fibrotic diseases such as atherosclerosis (Chiba et al., 2002). The synthesis and secretion of this cytokine occurs in numerous immune cells and is considered to play an important role in the recruitment of macrophages during inflammation (Mazzali et al., 2002). The definitive role of OPN in liver diseases is yet to be established, but a study performed by Sahai et al., (2004) attempted to identify the function of this cytokine from an NAFLD perspective. Female A/J mice were used out of a selection of 8 different strains as these were found to be more sensitive to the effects of the MCD diet. The diet was administered for up to 12 weeks to induce steatohepatitis and other complications surrounding the disease before comparing these animals to that receiving a control diet. The histological examination results revealed the presence of macrovesicular steatosis and progressive hepatic portal inflammation in MCD diet-fed mice. The biochemical analysis confirmed these findings which revealed an increase in CYP2E1 enzyme activity and ALT levels as previously confirmed. Additionally, the concentrations of triglycerides and TBARS were also significantly enhanced, as was TNF-α, in comparison to the controls up to 12 weeks. The elevated level of CYP2E1 is a probable cause of increased lipid peroxidation but consideration should be given to the increase in TBARS merely reflecting an increase in TG.

These results are again suggestive of elevated CYP2E1 activity being implicated in the production of lipid peroxidation and oxidative stress. With the liver histology and biochemistry results further outlining the effects of the MCD diet, the subsequent part of the study was to examine the effects of OPN within the MCD diet framework. OPN knockout mice were fed the MCD diet and compared to the wild type littermates who
were also administered the diet. The animals deficient in OPN displayed a decrease in liver damage and fibrosis. Furthermore, TNF-α expression was also lower in mice lacking the Th1 cytokine and lipid peroxidation and oxidative stress were reduced as well. OPN expression or at least macrophage activation, must not be ignored in defining the underlying mechanisms of NAFLD as it is regarded as an important signal messenger in the development of steatohepatitis.

Despite the relevance of findings generated from administration of the MCD diet, this approach still receives much criticism as it induces significant weight loss and does not involve insulin resistance in contrast to humans who gain mass and develop insulin resistance. Nevertheless many important revelations have appeared from using the MCD diet and it may remain a useful tool to evaluate the development or treatment of NAFLD.

3.7 Lipodystrophic Mouse Model

Lipodystrophic mice strains have genetic defects that affect the development and/or function of adipose tissue, leading to lipoatrophy or adipose tissue excess. Since adipose tissue is primarily responsible for leptin production some of these models are leptin-deficient or deficient for leptin receptors (Koteish and Diehl, 2002). Phenotypic characteristics displayed in the leptin-deficient ob/ob mouse model such as insulin resistance, elevated TNF-α levels and the occurrence of fatty liver disease are concordant with human NAFLD (Reitman et al., 1999).

Lipodystrophic model complication of lipoatrophy is the over-expression of sterol regulatory element binding protein-1 (SREBP-1) (Shimano et al., 1996). Hydroxymethyl glutaryl coenzyme A (HMG CoA), low density lipoprotein (LDL)-receptor and acetyl CoA carboxylase are genes heavily involved in fatty acid and cholesterol synthesis and are controlled by the important transcriptional regulator SREBP-1 (Koteish and Diehl, 2002). Resultantly, the enhanced expression of SREBP-1 can facilitate hepatic steatosis and increased ALT levels (Reitman et al., 1999).

The means by which lipid metabolism is disrupted and cytokine functioning is altered in this model remain to be clearly defined, but it is hypothesised that they are very similar to the pathogenic mechanisms in ob/ob mice which are also leptin-deficient. However, an important feature of the lipoatrophic mouse model is that the complication of obesity does not arise. The fact that progressive NAFLD and NASH
occur in lean individuals is truly reflected by the presence of fatty liver disease in these non-obese mice and stresses the importance of these models in understanding the pathogenic factors involved.

3.8 Leptin Deficient Mouse Model

The existence of leptin, first discovered in 1994, created a wealth of investigative work to identify the key processes of energy metabolism (Zhang et al., 1994). Leptin is a hormone product of white adipose tissue and appears primarily responsible for suppression of appetite and raised expenditure of energy (Campfield et al., 1996). Leptin is deficient in ob/ob mice, aptly named because of a genetic deficiency in the ob gene which results in these rodents becoming hyperphagic and severely obese. Most importantly, these rodents develop fatty livers (Nanji et al., 2004). Leptin has a significant role in controlling weight levels, and acts in a preventative measure against obesity. Recent research has also shown that leptin plays a crucial role in alterations of appetite and the relaying of information on fat reserves by orchestrating the storage of body fat in adipocytes (Unger, 2002).

Ogus et al., (2003) examined leptin-related functions in recently developed transgenic mice (LepTg). The genetic nature of LepTg mice prompts the over production of leptin resulting in these animals becoming hyperleptinaemic. The animals were administered a high-fat diet for 20 weeks to induce obesity and to determine if over-expressed leptin aided the responses of the liver to combat the onset of steatohepatitis. The findings from the study established that lean littermates remain in their morphologic state because of an increased production of leptin on a normal control diet. However, the subjection of the LepTg model to a high-fat diet resulted in near immediate development of obesity and suggests that exposure to high fat diets facilitates profuse production of adipose tissue which becomes differentiated causing accumulation of hepatic fat in the organism, including the adipose tissue and liver.

Hyperleptinaemia or partial lipodystrophy is an unusual condition characterised by an insufficiency of adipose tissue and a concerning inadequate supply of leptin (Peterson et al., 2002). As a result, the liver becomes fatty and develops NASH through accumulation of triglycerides. Javor et al., (2005) explored the possibility of reversing the progressive nature of fatty liver in lipodystrophic patients by leptin replacement therapy. The study contained 26 patients with known lipodystrophy but only 10 met the criteria for treatment. The patients received twice daily injections of
recombinant methionyl human leptin (r-metHuLeptin) for a mean duration of 6.6 months. Liver biopsies were obtained before and after intervention to evaluate the effects of therapy. Considerable reductions in transaminases, triglyceride levels and glucose concentrations were noted as well as lowered fat content. Leptin treatment thus ameliorated NASH. Despite the encouraging results with r-metHuLeptin, raised ALT and AST levels were not found in all test subjects and it is not known if the group of patients suffering from lipodystrophy are truly representative of NASH patients. The true action of leptin is not yet fully understood and additional work is required to investigate pathways relevant to fatty liver development, although Lee et al., (2002) has shown leptin to increase PPAR-α expression which has already been described as a possible modulator of fat accumulation.

Angiopoietin-like protein 3 (ANGPTL3) is a liver-specific secretory product. It was recently reported to considerably enhance plasma triglyceride concentrations as a result of inhibiting free fatty acid (FFA) and lipoprotein lipase (LPL) in humans and mice (Koishi et al., 2002). In an attempt to further investigate leptin function, a study undertaken by Shimamura et al., (2004) was aimed at trying to identify leptin as a responsible regulator of (ANGPTL3). Obese, leptin-deficient (ob/ob) mice were analysed and were found to exhibit increased values of ANGPTL3 in comparison to the control group. The elevations in ANGPTL3 were accompanied with rises in triglycerides and FFA. Additionally, in vitro, leptin and insulin presented the ability to decrease ANGPTL3 expression in hepatocytes. These findings indicate that obesity is correlated with a deficiency in leptin and elevated triglyceride levels and corroborate previous work of Unger et al., (2002). Leptin does not appear solely responsible for regulation of ANGPTL3 as insulin also clearly displays an effect. Variability of ANGPTL3 mRNA expression may influence lipid metabolism and thus contribute to the pathogenesis of the disease.

A study performed by Angulo et al., (2004), examined the effects of leptin in relation to liver fibrosis in human NAFLD. A total of 88 patients with liver biopsy proven NAFLD were enrolled in the study to determine the relationship between levels of leptin and (progression to) fibrosis of the liver. The experimental liver samples were graded for fibrosis. The advance of fibrosis was significantly correlated with increases in leptin concentration. However, patients with more severe fibrosis were also shown to be older, more insulin resistant and more commonly diabetic. Once these variabilities were accounted for, no direct relationship could be formed with leptin concentration and degree of fibrosis. It is therefore likely that increases in leptin
levels are representative of other confounding factors such as age, diabetic state and insulin resistance as opposed to stage of fibrosis, although additional work is required to fully define the role of leptin.

The evidence to date is suggestive of leptin being an enhancement factor for progression of fatty liver disease. TNF-α is also believed to be a causative agent in NASH patients and recent work performed by Shen et al., (2005) hypothesised that a further function of leptin was to increase TNF-α production. Observations in male zucker (fa/fa) rats revealed that leptin increases TNF-α in isolated kupffer cells in a dose-dependent manner, but only in the presence of lipopolysaccharide (LPS). Kupffer cells are the primary source of hepatic TNF-α when under LPS inducement (Ulevitch and Tobias, 1995) and because leptin administration boosts the production, it is resultantly regarded as a potential aggravator of the inflammatory response.

3.9 Fatty Liver Shionogi (FLS) Mouse Model
The FLS model is currently also employed to study fatty liver disease. FLS mice have been derived from inbreeding and develop spontaneous fatty liver without obesity, diabetes or hyperphagia (Soga et al., 1999). At birth, this particular model exhibits an abnormal elevation of triglyceride levels and by the age of 15 weeks, macrovesicular fat (large lipid droplets) occupy the hepatocytes, which is accompanied by hepatic cell disorder (Soga et al., 2003). Further evidence of liver injury was confirmed by elevated serum alanine aminotransferase (ALT) levels.

From their fatty livers, the FLS mice develop steatohepatitis and a high incidence of these animals (especially males) progress to develop tumours, including hepatocellular adenoma (HCA) and carcinoma (HCC). Hepatocarcinogenesis was not detected in the non-obese sister strain dd Shionogi (DS) and supports the theory that the tumours observed in the FLS mice are a consequence of chronic fatty liver (Soga et al., 2003).

Although obesity is normally a major factor contributing to the occurrence of NASH in humans, fatty liver also appears in non-obese individuals as with the FLS mice.

The FLS model could prove to be beneficial in improving our understanding the occurrence of hepatocarcinogenesis and NASH, although the exact mechanisms involved are unclear at present. Further studies are required in the pathogenesis of
this model as despite the appearance of liver tumours, liver cirrhosis was not evident in any of the animals and is normally a key finding in a NASH patient.

3.10 Zucker (fa/fa) Rat Models
Zucker fa/fa rats are similar to several other models being examined for NAFLD as they also possess the characteristics of obesity, leptin receptor deficiency, type II diabetes, hyperinsulinaemia and hepatic steatosis (Chua et al., 1996). A study performed by Nagao (2004) used the Zucker fa/fa rats as a dietary model by feeding them conjugated linoleic acid (CLA) for 8 weeks compared with control fed rats. CLA is a mixture of positional and geometric isomers of linoleic acid and is believed to alleviate liver injury through increased production of adiponectin (Nagao et al., 2004). Adiponectin is present in abundance in adipose tissue in rodents and humans. Its release under the influence of CLA has been shown to improve insulin action in vitro and in vivo, therefore indicating that adiponectin may play a protective role against insulin resistance which is one of the first pathological processes in the development of NAFLD (Yamauchi et al., 2001).

The findings in the study carried out by Nagao (2004) revealed that hepatic triglyceride (TG) levels and hepatic injury markers ALT and AST were significantly reduced in the CLA-fed animals in comparison with the controls. Furthermore, the mRNA expression of TNF-α (an inflammatory cytokine) was also suppressed when compared to the control group. It is therefore proposed that enhanced production of adiponectin may alleviate the development and progression of NAFLD in CLA-fed Zucker fa/fa rats.

Another study that was carried out using Zucker fa/fa rats was undertaken by Yang (1997) who proposed that the process of steatohepatitis development is accelerated when the animals are exposed to low doses of lipopolysaccharide (LPS). The release of several cytokines, (including IL-10, IL-12 and IFNγ), from macrophages and Kupffer cells is promoted by LPS stimulation (Tracey et al., 1993). Once unleashed, the cytokines proceed to stimulate the biological activity of TNF-α which has a significant influence on endotoxin liver injury. The observations from the study revealed obese fa/fa rats had a marked accumulation of liver injury markers AST and ALT in contrast to their lean littermates when subjected to LPS exposure. In addition, histological examination revealed all surviving obese fa/fa rats to have significantly developed steatohepatitis in comparison to the non-obese controls (Yang et al., 1997). This evidence displays that LPS and/or TNF-α stimulated endotoxins may play
a vital role in contributing to progressive liver damage in obese individuals which could have important clinical consequences.

An additional strain of fa/fa Zucker rats currently used to study metabolic disorders is the stroke-prone spontaneously hypertensive rat (SHRSP). SHRSP fatty (fa/fa) rats are derived by crossing a segment of the mutant leptin receptor gene from Zucker fatty (fa/fa) rats with the genetic background of SHRSP/lzm rats (Yamamoto et al., 2004). The new animal model develops obesity and hypertension simultaneously as well as displaying significantly elevated levels of total cholesterol, triglycerides, glucose and insulin in comparison with the SHRSP/lzm control rats. SHRSP fatty (fa/fa) rats are distinct as they are not only associated with metabolic abnormalities but also encounter cardiovascular disease.

Overall, the fa/fa model along with the subsequent strains, exhibit several key characteristics relevant for studying NAFLD and other associated conditions. However further work is required to determine the pathological processes linking obesity and liver disease.

3.11 Acyl-CoA Oxidase (AOX) Mouse Model

The AOX mouse model is deficient of acyl-CoA oxidase (AOX) and was generated by inactivation of the AOX encoding gene. In the normal liver, fatty acids are oxidised by mitochondria and peroxisomes via β-oxidation after activation to acyl-CoA. The acyl-CoA that remain unmetabolised in the absence of AOX may serve as a trigger for uncontrolled peroxisome propagation (Hashimoto et al., 1999) as these appear to be powerful agonists for the peroxisomal proliferator activator receptor x.

A study performed by Fan (1998), investigated the AOX mouse model and produced some interesting observations. The livers of mice deficient of AOX displayed severe microvesicular steatosis in liver parenchymal cells and by the age of 15 months, hepatic carcinomas had appeared. Acyl-CoA enzymes, which are abnormally regulated in AOX deficient mice, are believed to sustain proliferation of peroxisomes by acting as ligands for peroxisome proliferator-activated receptors (PPARs). The continued induction of these receptors by acyl-CoA enzymes may be partially responsible for the resultant tumour development (Fan et al., 1998).
The findings provide sufficient evidence to suggest that AOX plays a significant role in hepatic lipid metabolism and may contribute to developing fatty liver, although further studies are required to establish the true pathogenesis.

3.12 Human Studies

As discussed, many animal models have been tried and tested in order to generate a model suitable for studying NAFLD. The various experimental strains being investigated are susceptible to disease development because genetic factors and expression genes are purposely manipulated to manifest the adverse outcomes of NAFLD (Koteish et al., 2002). Although the arising pathology in rodent models is near identical to that in humans, caution should be taken when interpreting the findings because of the species difference which may result in alternative biological pathways being engaged.

Since research is ultimately directed at amelioration therapy or complete elimination of NAFLD in humans, the models discussed above must therefore serve as ideal test models. Additional complications arise in humans, including variation between patients and the practicality problems of sampling; this explains the efforts consumed in animal model experimentation. Many different components have been recognized in work carried out in animal models which has been invaluable in understanding development and progression of liver disease. However, various human studies have also been undertaken in an attempt to eliminate species variability and identify an ever elusive single causative factor.

Obesity is a significant feature being constantly associated with fatty liver due to links with surrounding complications such as diabetes, dyslipidaemia and hypertension (Kissebah et al., 1994). Appearance of obesity and the consequent escalation of these correlated outcomes have been collectively labelled as metabolic syndrome X in the context of a fatty liver.

Work orchestrated by Marceau et al., (1999), examined metabolic syndrome X using 580 patients over a 9 year period. Despite the varied range of disease-associated complications within the group, severe obesity remained a central feature. The study including males and females presented a mean age of 36 years, 95% had endured routine liver biopsies and no patient had any history of hepatitis, nor was it clinically suspected.
The study revealed a significant association between the degree of fat present in liver samples and the components of metabolic syndrome X; fat distribution, impaired glucose tolerance, hypertension and dislipidaemia. The results indicated a close link between elevated AST and ALT levels and the existence of steatosis, which was present in 86% of patients. In addition, the presence of diabetes was recorded as the statistically strongest predictor of cirrhosis (P<0.001), although the occurrence and subsequent progression of steatosis was also a reliable indicator. Furthermore, a strong correlation existed between fasting blood sugar, steatosis and the development of fibrosis. Unfortunately, a significant relationship was not established between any of the variables (including steatosis and fibrosis) and the presence of inflammation. It is therefore hypothesised that steatosis resulting from metabolic syndrome X related obesity is a separate assemblage of reactions to that taking place in non-alcoholic steatohepatitis (Bacon et al., 1994).

The pathogenesis of obesity and the surrounding associated effects are difficult to separate from the outcomes of fatty liver. The exact involvement of insulin, target cytokines and leptin are unclear, but overlapping pathways must exist due to major similarities. The variables of metabolic syndrome X contribute independently as predictors of fatty liver mechanisms, but their collective label of metabolic syndrome X allows the effects of fatty liver disease to be investigated by outlining the risk factors involved.

In addition to obesity, alcohol is a further extension to the growing list of reasons to which fatty liver can be attributed. Further investigative work carried out by Bellentani et al., (2000) examined the prevalence of obesity, alcohol and other risk factors involved in developing hepatic steatosis. Two hundred and fifty-seven people, 19-70 years of age, from Northern Italy partook in the study which comprised 4 different groups; controls, obese, heavy-drinkers and obese heavy-drinkers.

Steatosis was present in 58.3% of the cohort with raised levels of ALT, γ-glutamyltransferase and plasma triglycerides acting as positive indicators. Also detected by comparison with the controls, steatosis was found to be 2.8-fold more common in heavy drinkers whereas a 4.6-fold increase of development was discovered in the obese group. The group consisting of overweight heavy drinkers had a 5.8-fold increase when compared to the controls. Thus, steatosis appears to be more closely associated with obesity than excess alcohol intake, but obese heavy-drinkers are almost guaranteed to develop some form of steatosis. An
immediate reduction in caloric and alcohol intake is recommended in over-weight, high-alcohol consumption patients to decrease the chance of fibrosis and to lessen the effects of fatty liver.

There are many complications surrounding fatty liver disease and they are due to the multi-factorial pathways including steps acting as initiators and modulators of progression. Markers that can detect the extent of liver malfunction are of vital importance in determining if a patient has a fatty liver. Sorrentino et al., (2004) studied the liver enzymatic activity in plasma from 58 patients known to exhibit varying degrees of NASH and compared these to a control group known to display abnormal liver enzymes. The observations of the study revealed the severity of steatosis to be similar between NASH patients and those with irregular metabolism but hepatic mallory ballooning and glycogenated-nuclei were more prominent in patients presented with NASH. Although, age, presence of diabetes and period of being obese were typically linked with fatty liver development and was subsequently shown to significantly enhance the severity of liver damage independent of abnormal enzymatic activity. Despite the inability of liver enzymes to act in the capacity as a marker of NASH detection, the presence of ballooning degeneration may be essential to progression of fibrosis.

Additional human work undertaken by Seki et al., (2002) is of particular interest as it describes lipid peroxidation and oxidative DNA damage in NAFLD patients. 4-hydroxy-2'-nonenal (HNE) is a key metabolite involved in lipid peroxidation and is also regarded as a very reliable marker for this process (Esterbauer et al., 1992). 8-hydroxydeoxyguanosine (8-OHdG) is also believed to be a reliable marker (Kasai et al., 1997), but in the context of oxidative stress as this compound is predominantly produced by free radicals (Shibutani et al., 1991). The research that was carried out concentrated on the hepatic expression of these biomarkers to determine lipid peroxidation and oxidative damage.

The study was conducted using fatty liver samples from 40 patients. Non-alcoholic fatty liver disease (NAFLD) was present in 23 patients whereas non-alcohol steatohepatitis (NASH) had developed in the remaining 17 patients. The criteria for inclusion in the study were macrovesicular steatosis without necro-inflammation in the first group of 23 patients and the presence of macrovesicular steatosis without hepatocyte necrosis for the remainder. Samples from 7 histologically normal livers were used as a control group.
The study revealed a high expression of HNE adducts in hepatocyte cytoplasm in both sets of patients with fatty livers, although slightly higher levels were detected in the NASH group by comparison. Despite the differences, these elevated levels are still strongly indicative of lipid peroxidation. In addition, HNE may also provide a source capable of activating hepatic stellate cells (HSC), these are deemed precursors for collagen type 1 production and could therefore have another significant part in developing fibrogenesis of the liver (Friedman, 1993).

Another interesting observation of the study revealed 8-OHdG expression in only 2/23 NAFLD patients whereas 11/17 patients with NASH were found to exhibit 8-OHdG activity, mainly in hepatocytes. The expression of 8-OHdG is representative of oxidative DNA damage as it causes mispairing which can result in the occurrence of mutagenic and carcinogenic oxidative modification (Kasai et al., 1991). Although hepatocarcinogenesis has been reported in human NASH (Welltman et al., 1998), no defining link has been established between oxidative stress and hepatocellular carcinoma although the possibility still exists.

To concur, lipid peroxidation and oxidative damage are again closely associated with the clinical outcomes of fatty liver disease, but the varied pathological pathways involved in NASH and NAFLD still need to be accurately identified.
3.13 Overview of Various Rodent Models In NAFLD Research

3.13.1 Introduction

As stated previously, research undertaken in a wide array of rodent models has been invaluable in gaining a better understanding of the pathogenesis of NAFLD and the surrounding complications. The employment of rodent models to investigate the effects of NAFLD is not always ideal as it is widely documented that this disease is multifactorial and therefore many of the biological systems involved are not identical to those exhibited in humans. As a result, the facilitation and development of fatty liver and fibrosis in humans may be induced by alternative pathway in rodents and vice versa. For example, PPAR-α is present in large quantities in rodents but levels are considerably lower in humans who also do not experience peroxisome proliferation in response to treatment with fibrates (Crabb et al., 2004). Nonetheless, the information gained from rodent work remains the key at attempts to manage and ameliorate the wide spectrum of effects of NAFLD and NASH.

The data presented in the following tables further illustrates the importance of information acquired from studying various rodent models in the context of NAFLD and NASH. Some of the findings have already been discussed, but the additional information allows a more detailed comparison between the different models. The tables display many fields of omitted data which are parameters that were not recorded for the respective studies. The omissions reveal that too many different potential factors are involved in development and progression of the disease and as a result not all these parameters can be investigated in every study. The lack of a collective research protocol and difficulty in cross-referencing study data confirms the complexity of the disease and problem in finding a single causative factor.
3.13.2 (Ob/ob) Mouse Model

<table>
<thead>
<tr>
<th>Treatment / Phenotype</th>
<th>(wt/wt)</th>
<th>(L_{e}p_{\text{ob}o}) Vehicle</th>
<th>(L_{e}p_{\text{ob}o}) 1436 Aminosterol</th>
<th>(L_{e}p_{\text{ob}o}) FR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of Treatment</td>
<td></td>
<td>4 doses at 4 day intervals</td>
<td>4 doses at 4 day intervals</td>
<td>4 doses at 4 day intervals</td>
</tr>
<tr>
<td>Sex</td>
<td>Female</td>
<td>Female</td>
<td>Female</td>
<td>Female</td>
</tr>
<tr>
<td>Age</td>
<td>12 wks</td>
<td>12 wks</td>
<td>12 wks</td>
<td>12 wks</td>
</tr>
<tr>
<td>No. of Animals</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Terminal Body Mass (g)</td>
<td></td>
<td>22.8 ± 0.2</td>
<td>21.0 ± 0.2</td>
<td>21.8 ± 0.1</td>
</tr>
<tr>
<td>Liver Mass (g)</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Liver Mass / Body Mass x 100%</td>
<td></td>
<td>3.6 ± 0.2</td>
<td>3.3 ± 0.3</td>
<td>3.3 ± 0.1^</td>
</tr>
<tr>
<td>Conjugated Dienes ((\mu \text{mol/g liver}))</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LOOH (nmol LOOH/g liver)</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TTBARS (nmol/g liver)</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cholesterol (mg/dl)</td>
<td></td>
<td>80.5 ± 2^*</td>
<td>137 ± 5^*</td>
<td>82.3 ± 1^*</td>
</tr>
<tr>
<td>Triglycerides (mg/g liver)</td>
<td></td>
<td>78.2 ± 4^*</td>
<td>155 ± 6^*</td>
<td>95.4 ± 7^*</td>
</tr>
<tr>
<td>Glucose Concentration (mg/dl)</td>
<td></td>
<td>83 ± 6^*</td>
<td>381 ± 22^*</td>
<td>117 ± 7*</td>
</tr>
<tr>
<td>CYP2E1 Conc. (arbitrary units)</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AST (U/l)</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ALT (U/l)</td>
<td></td>
<td>13.2 ± 1^*</td>
<td>87.5 ± 4^*</td>
<td>12.8 ± 1^*</td>
</tr>
<tr>
<td>Insulin (ng/ml)</td>
<td></td>
<td>1.1 ± 0.2^*</td>
<td>24.3 ± 5^*</td>
<td>1.82 ± 0.2^*</td>
</tr>
</tbody>
</table>

Histology / Additional Observations:
Aminosterol 1436 administration resulted in decreased bwt, inhibited food intake, lowered circulatory lipids, reversed hepatic steatosis, decreased glucose and normalized ALT. Adiponectin and insulin levels were also elevated in response to 1436 which resulted in inhibition of TG synthesis and increased fatty acid oxidation. Treatment of 1436 is recommended to increase insulin sensitivity and may even reverse steatosis to a certain extent with good care and management.

^*P<0.01 vs. vehicle. FR = Food Restricted
^*P<0.001 vs. vehicle treated \(L_{e}p_{\text{ob}o} \) mice. ^*P<0.001 vs. wild-type. FR = Food Restricted
3.13.2 (Ob/ob) Mouse Model (continued)

<table>
<thead>
<tr>
<th>Memon et al., (2000)</th>
<th>(Ob/ob) Mice</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(ob/wt)</td>
</tr>
<tr>
<td>Treatment / Phenotype</td>
<td>Control</td>
</tr>
<tr>
<td>Duration of Treatment</td>
<td>10 days</td>
</tr>
<tr>
<td>Sex</td>
<td>Male</td>
</tr>
<tr>
<td>Age</td>
<td>5-10 wks</td>
</tr>
<tr>
<td>No. of Animals</td>
<td>10</td>
</tr>
<tr>
<td>Terminal Body Mass (g)</td>
<td>-</td>
</tr>
<tr>
<td>Liver Mass (g)</td>
<td>-</td>
</tr>
<tr>
<td>Liver Mass / Body Mass x 100%</td>
<td>-</td>
</tr>
<tr>
<td>Conjugated Dienes (μmol/g. liver)</td>
<td>-</td>
</tr>
<tr>
<td>LOOH (nmol LOOH/g. liver)</td>
<td>-</td>
</tr>
<tr>
<td>TTBARS (nmol/g. liver)</td>
<td>-</td>
</tr>
<tr>
<td>Cholesterol (mg/dl)</td>
<td>1.96 ± 0.1</td>
</tr>
<tr>
<td>Triglycerides (mg/g. liver)</td>
<td>1.2 ± 0.06</td>
</tr>
<tr>
<td>Glucose Concentration (mg/dl)</td>
<td>8.04 ± 0.3</td>
</tr>
<tr>
<td>CYP2E1 Conc. (arbitrary units)</td>
<td>-</td>
</tr>
<tr>
<td>AST (U/l)</td>
<td>36.3 ± 4.3</td>
</tr>
<tr>
<td>ALT (U/l)</td>
<td>44.8 ± 3.1</td>
</tr>
<tr>
<td>Serum FFA (mmol/l)</td>
<td>1.2 ± 0.07</td>
</tr>
</tbody>
</table>

Histology / Additional Observations:
Troglitazone (Tro) is ligand for activating PPAR-α and −γ. TG and FFA were lowered following Tro admin but had no effect on ALT and AST levels in both lean and obese mice. PPAR-γ activators (stimulated by Tro) induced expression of aP2, FAT/CD36 and UCP2 which is believed to have contributed to the significant decrease of total hepatic content in ob/ob mice. PPAR activation therefore improves lipid utilization in obese diabetic mice and provides mechanism whereby serum lipid levels can be decreased.

*P<0.01 relative to the control
**P<0.001 relative to the control, ^P<0.001 relative to ob/ob, (Tro) = Troglitazone.
3.13.3 TNF-R1 Knockout Mouse Model

<table>
<thead>
<tr>
<th>Yin et al., (1999)</th>
<th>TNF-R1 (knockout) Mice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment / Phenotype</td>
<td>(wt/wt)</td>
</tr>
<tr>
<td>Control</td>
<td>Alcohol</td>
</tr>
<tr>
<td>Duration of Treatment</td>
<td>4 wks</td>
</tr>
<tr>
<td>Sex</td>
<td>Male</td>
</tr>
<tr>
<td>Age</td>
<td>-</td>
</tr>
<tr>
<td>No. of Animals</td>
<td>6-7</td>
</tr>
<tr>
<td>Terminal Body Mass (g)</td>
<td>27.5 ± 0.2</td>
</tr>
<tr>
<td>Liver Mass (g)</td>
<td>-</td>
</tr>
<tr>
<td>Liver Mass / Body Mass x 100%</td>
<td>5.5 ± 0.2</td>
</tr>
<tr>
<td>Conjugated Dienes (μmol/g.liver)</td>
<td>-</td>
</tr>
<tr>
<td>LOOH (nmol LOOH/g.liver)</td>
<td>-</td>
</tr>
<tr>
<td>TTBARS (nmol/g.liver)</td>
<td>-</td>
</tr>
<tr>
<td>Cholesterol (mg/dl)</td>
<td>-</td>
</tr>
<tr>
<td>Triglycerides (mg/g. liver)</td>
<td>-</td>
</tr>
<tr>
<td>Glucose Concentration (mg/dl)</td>
<td>-</td>
</tr>
<tr>
<td>CYP2E1 Conc. (arbitrary units)</td>
<td>-</td>
</tr>
<tr>
<td>AST (U/l)</td>
<td>-</td>
</tr>
<tr>
<td>ALT (U/l)</td>
<td>30 ± 4</td>
</tr>
<tr>
<td>Pathology Score</td>
<td>0.0 ± 0.0</td>
</tr>
</tbody>
</table>

Histology / Additional Findings:
No fatty accumulation was present in control mice, wt/wt or TNF-R1 but 4 weeks of ethanol administration caused steatosis in 13% of midzonal area in wt/wt animals but TNF-R1 displayed less steatosis (3.9%; $p < 0.001$).
TNF-α is proinflammatory cytokine and its absence in knockout mice results in only moderate fatty accumulation with no inflammation or necrosis after ethanol exposure whereas the wt/wt which had micro- and macrovesicular steatosis present.

*P<0.05 vs. mice of the same genetic background fed a control diet
3.13.4 Sprague Dawley Rats

<table>
<thead>
<tr>
<th>Lieber et al., (2004)</th>
<th>Sprague Dawley Rats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment / Phenotype</td>
<td>Control</td>
</tr>
<tr>
<td>Duration of Treatment</td>
<td>3 Weeks</td>
</tr>
<tr>
<td>Sex</td>
<td>Male</td>
</tr>
<tr>
<td>Age</td>
<td>-</td>
</tr>
<tr>
<td>No. of Animals</td>
<td>22</td>
</tr>
<tr>
<td>Terminal Body Mass (g)</td>
<td>311 ± 9.8</td>
</tr>
<tr>
<td>Liver Mass (g)</td>
<td>11.8 ± 0.51</td>
</tr>
<tr>
<td>Liver Mass / Body Mass x 100%</td>
<td>3.79 ± 0.09</td>
</tr>
<tr>
<td>Conjugated Dienes (µmol/g liver)</td>
<td>-</td>
</tr>
<tr>
<td>LOOH (nmol LOOH/g liver)</td>
<td>-</td>
</tr>
<tr>
<td>TTBARS (nmol/g liver)</td>
<td>-</td>
</tr>
<tr>
<td>Cholesterol (mg/dl)</td>
<td>-</td>
</tr>
<tr>
<td>Triglycerides (mg/dl)</td>
<td>-</td>
</tr>
<tr>
<td>Glucose Concentration (mg/dl)</td>
<td>-</td>
</tr>
<tr>
<td>CYP2E1 Conc. (arbitrary units)</td>
<td>0.80 ± 0.07</td>
</tr>
<tr>
<td>AST (U/l)</td>
<td>-</td>
</tr>
<tr>
<td>ALT (U/l)</td>
<td>-</td>
</tr>
<tr>
<td>Tumour Development</td>
<td>-</td>
</tr>
</tbody>
</table>

Histology / Additional Observations:
Control; displayed minimal fat accumulation and few inflammatory cells.
High-Fat Diet; showed pronounced hepatic steatosis and abundant mononuclear inflammatory cells, also revealed abnormal mitochondria with degenerative changes.

*Significantly different from the Control; *P<0.05, **P<0.01, ***P<0.001*
3.13.5 (Db/db) Mouse Model

Sahai et al., (2004) (Db/db) Mice

<table>
<thead>
<tr>
<th>Treatment / Phenotype</th>
<th>(db/wt) Control</th>
<th>(db/wt) MCD</th>
<th>(db/db) Control</th>
<th>(db/db) MCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of Treatment</td>
<td>4 wks</td>
<td>4 wks</td>
<td>4 wks</td>
<td>4 wks</td>
</tr>
<tr>
<td>Sex</td>
<td>Female</td>
<td>Female</td>
<td>Female</td>
<td>Female</td>
</tr>
<tr>
<td>Age</td>
<td>10-12 wks</td>
<td>10-12 wks</td>
<td>10-12 wks</td>
<td>10-12 wks</td>
</tr>
<tr>
<td>No. of Animals</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Terminal Body Mass (g)</td>
<td>24.7 ± 1.0</td>
<td>15.1 ± 0.1</td>
<td>49.6 ± 3.0</td>
<td>42.4 ± 2.0</td>
</tr>
<tr>
<td>Liver Mass (g)</td>
<td>1.16 ± 0.1</td>
<td>1.17 ± 0.1</td>
<td>2.10 ± 0.1</td>
<td>3.0 ± 0.1</td>
</tr>
<tr>
<td>Liver Mass / Body Mass x 100%</td>
<td>46.7 ± 0.1</td>
<td>7.75 ± 1.0</td>
<td>* 4.16 ± 0.3</td>
<td>* 7.16 ± 0.2</td>
</tr>
<tr>
<td>Conjugated Dienes (µmol/g liver)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LOOH (nmol LOOH/g liver)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TTBARS (nmol/g liver)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cholesterol (mg/dl)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triglycerides (mg/g liver)</td>
<td>30 ± 6</td>
<td>121 ± 7</td>
<td>* 46 ± 3</td>
<td>* 91 ± 7</td>
</tr>
<tr>
<td>Glucose Concentration (mg/dl)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CYP2E1 Conc. (arbitrary units)</td>
<td>3.89 ± 0.3</td>
<td>6.73 ± 0.2</td>
<td>* 18.9 ± 1.0</td>
<td>* 52.7 ± 3.0</td>
</tr>
<tr>
<td>AST (U/l)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ALT (U/l)</td>
<td>25 ± 5</td>
<td>154 ± 15</td>
<td>* -</td>
<td>260 ± 20</td>
</tr>
<tr>
<td>Insulin (mg/dl)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Histology / Additional Observations:
Histology revealed hepatic steatosis and lobular inflammation in animal being fed MCD diet. The levels of TNF-α were also raised which corresponded with elevated ALT and worsening steatosis. The MCD exhibited stimulated expression of OB-Ra (leptin receptor) and enhanced signaling which may contribute to the increase in hepatic fibrosis. Levels of osteopontin (OPN) were also raised and are thought to play an important role in the pathogenesis of NASH through its part in increasing OB-Ra expression and leptin signalling.

*Significantly different from the Control; *P*<0.01

Page 67
3.13.6 PPAR-α Mouse Model

<table>
<thead>
<tr>
<th>Ip et al., (2003)</th>
<th>PPAR-α Mice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment / Phenotype</td>
<td>Wt Control</td>
</tr>
<tr>
<td>Duration of Treatment</td>
<td>5 wks</td>
</tr>
<tr>
<td>Sex</td>
<td>Male</td>
</tr>
<tr>
<td>Age</td>
<td>8-10 wks</td>
</tr>
<tr>
<td>No. of Animals</td>
<td>4</td>
</tr>
<tr>
<td>Mass Change (%)</td>
<td>+ 21</td>
</tr>
<tr>
<td>Liver Mass (g)</td>
<td>-</td>
</tr>
<tr>
<td>Liver Mass / Body Mass x 100%</td>
<td>4.0 ± 0.8</td>
</tr>
<tr>
<td>Conjugated Dienes (μmol/g.liver)</td>
<td>-</td>
</tr>
<tr>
<td>LOOH (nmol LOOH/g.liver)</td>
<td>-</td>
</tr>
<tr>
<td>TTBARS (μmol/g.liver)</td>
<td>0.10 ± 0.1</td>
</tr>
</tbody>
</table>

*P<0.05 relative to same genotype fed the MCD diet. **P<0.05 relative to same genotype fed the control diet.

Relative to same genotype fed the MCD diet.

***P<0.01 relative to same genotype fed the control diet.

Page 68
3.13.6 PPAR-α Mouse Model (continued)

<table>
<thead>
<tr>
<th></th>
<th>Plasma; (mmol/l)</th>
<th>Plasma; (mmol/l)</th>
<th>Plasma; (mmol/l)</th>
<th>Plasma; (mmol/l)</th>
<th>Plasma; (mmol/l)</th>
<th>Plasma; (mmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesterol</td>
<td>2.05 ± 0.55</td>
<td>0.70 ± 0.16<sup>$</sup></td>
<td>2.53 ± 0.90</td>
<td>2.92 ± 1.07</td>
<td>0.85 ± 0.34<sup>$</sup></td>
<td>0.87 ± 0.21</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>0.88 ± 0.11</td>
<td>0.69 ± 0.15<sup>$</sup></td>
<td>0.21 ± 0.05</td>
<td>1.20 ± 0.68</td>
<td>0.49 ± 0.19<sup>$</sup></td>
<td>0.47 ± 0.07</td>
</tr>
<tr>
<td>Glucose</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CYP4a10 Conc. (arbitrary units)</td>
<td>1.0 ± 0.09</td>
<td>0.97 ± 0.19</td>
<td>18 ± 7.4</td>
<td>0.68 ± 0.34</td>
<td>0.31 ± 0.18</td>
<td>0.17 ± 0.06</td>
</tr>
<tr>
<td>AST (U/I)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ALT (U/I)</td>
<td>20 ± 4</td>
<td>720 ± 100<sup>†</sup></td>
<td>175 ± 83<sup>***</sup></td>
<td>310 ± 200</td>
<td>790 ± 50<sup>‡</sup></td>
<td>890 ± 225</td>
</tr>
<tr>
<td>Steatosis Grading (scale = 0-3)</td>
<td>0.5 ± 1.0</td>
<td>2.3 ± 0.35<sup>$</sup></td>
<td>0.0 ± 0.0<sup>‡</sup></td>
<td>2.1 ± 1.5</td>
<td>3.0 ± 0.0<sup>‡</sup></td>
<td>3.0 ± 0.0</td>
</tr>
</tbody>
</table>

Histology / Additional Observations

Administration of MCD diet caused weight loss as expected and the addition of Wy-14,643 (PPAR-α agonist) did not modify weight loss in either group.

The wild-type mice fed MCD diet developed moderate steatohepatitis and macrovesicular steatosis with neutrophil polymorphs. Administration of Wy-14,643 almost completely prevented accumulation of lipid TBARS although slight elevations in CYP4a10 and 14 were noted.

Wy-14,643 did not affect liver histology in PPARα^{-/-} mice and serum ALT and lipid levels were unchanged compared with PPARα^{+/+} mice fed the MCD diet alone confirming requirement for PPARα to provoke these effects.

^{*,[†],[‡],[§],[†],[‡],[†] relative to same genotype fed the same diet}

^{P<0.05 relative to same genotype fed the MCD diet, [$]P<0.05 relative to same genotype fed the control diet}

^{**P<0.01 relative to same genotype fed the MCD diet, [‡] relative to same genotype fed the control diet}

^{***P<0.001 relative to same genotype fed the MCD diet, [‡] relative to same genotype fed the control diet}

^{‡P<0.001 relative to same genotype fed the MCD diet, [‡]P<0.001 relative to same genotype fed the control diet}

^{zP<0.05 compared to wt mice fed the same diet}
3.13.7 LepTg Mouse Model

<table>
<thead>
<tr>
<th></th>
<th>Ogus et al., (2004)</th>
<th>LepTg Mice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment / Phenotype</td>
<td>Wt Chow</td>
<td>LepTg Chow</td>
</tr>
<tr>
<td>Duration of Treatment</td>
<td>20 wks</td>
<td>20 wks</td>
</tr>
<tr>
<td>Sex</td>
<td>Male</td>
<td>Male</td>
</tr>
<tr>
<td>Age</td>
<td>9 wks</td>
<td>9 wks</td>
</tr>
<tr>
<td>No. of Animals</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Terminal Body Mass (g)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Liver Mass (g)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Liver Mass / Body Mass x 100%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Conjugated Dienes (μmol/g liver)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LOOH (nmol LOOH/g liver)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TTBARS (nmol/g liver)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cholesterol (mmol/l)</td>
<td>1.7 ± 0.1</td>
<td>1.5 ± 0.1</td>
</tr>
<tr>
<td>Triglycerides (mmol/l)</td>
<td>0.5 ± 0.06</td>
<td>0.1 ± 0.01</td>
</tr>
<tr>
<td>Glucose Concentration (mmol/l)</td>
<td>11.7 ± 0.5</td>
<td>7.8 ± 0.6</td>
</tr>
<tr>
<td>CYP2E1 Conc. (arbitrary units)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AST (U/l)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ALT (U/l)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tumour Development</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Histology / Additional Observations:
Chow fed LepTg mice adipocytes 76% smaller than normal mice. Chow does not cause fatty liver. Alterations in insulin levels were also noted between chow fed and high fat fed diets; 2.2-fold increase in normal mice and 10.7-fold increase in LepTg mice. In addition, LepTg mice fed a high fat diet had an increase in bwt gain 1.6-fold faster than lean littermates in same group. The small adipose quantities in LepTg mice may be caused by altered differentiation of preadipocytes and accumulation of triacylglycerols.

*Significantly different from the Control; *P<0.05, **P<0.01, P<0.001*
3.13.8 Fatty Liver Shionogi (FLS) Mouse Model

<table>
<thead>
<tr>
<th>Soga et al., (2004)</th>
<th>Fatty Liver Shionogi (FLS) Mice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment / Phenotype</td>
<td>-</td>
</tr>
<tr>
<td>Duration of Treatment</td>
<td>-</td>
</tr>
<tr>
<td>Sex</td>
<td>Male</td>
</tr>
<tr>
<td>Age</td>
<td>13-16 mths</td>
</tr>
<tr>
<td>No. of Animals</td>
<td>54</td>
</tr>
<tr>
<td>Terminal Body Mass (g)</td>
<td>-</td>
</tr>
<tr>
<td>Liver Mass (g)</td>
<td>-</td>
</tr>
<tr>
<td>Liver Mass / Body Mass x 100%</td>
<td>-</td>
</tr>
<tr>
<td>Conjugated Dienes (μmol/g.liver)</td>
<td>-</td>
</tr>
<tr>
<td>LOOH (nmol LOOH/g.liver)</td>
<td>-</td>
</tr>
<tr>
<td>TTBARS (nmol/g.liver)</td>
<td>-</td>
</tr>
<tr>
<td>Cholesterol (mg/dl)</td>
<td>-</td>
</tr>
<tr>
<td>Triglycerides (mg/dl)</td>
<td>-</td>
</tr>
<tr>
<td>Glucose Concentration (mg/dl)</td>
<td>-</td>
</tr>
<tr>
<td>CYP2E1 Conc. (arbitrary units)</td>
<td>-</td>
</tr>
<tr>
<td>AST (U/I)</td>
<td>-</td>
</tr>
<tr>
<td>ALT (U/I)</td>
<td>-</td>
</tr>
<tr>
<td>Tumour Development</td>
<td>HCA = 10</td>
</tr>
<tr>
<td></td>
<td>HCC = 12</td>
</tr>
</tbody>
</table>

Histology / Additional Observations:
None of these mice exhibit hyperphagia nor obesity but develop abnormal TG from birth and develop hepatic steatosis.
After 2-4 months, mononuclear cell infiltration and clusters of foamy cells appear in addition to fatty liver and corresponds with raised ALT levels.
These mice develop tumours following steatohepatitis but unclear whether this is definitive route for NASH patients.
3.13.9 Zucker (fa/fa) Rats

<table>
<thead>
<tr>
<th>Yang et al., (1997)</th>
<th>Zucker (fa/fa) Rats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment / Phenotype</td>
<td>(fa/wt)</td>
</tr>
<tr>
<td>Duration of Treatment</td>
<td>-</td>
</tr>
<tr>
<td>Sex</td>
<td>-</td>
</tr>
<tr>
<td>Age</td>
<td>-</td>
</tr>
<tr>
<td>No. of Animals</td>
<td>6-18</td>
</tr>
<tr>
<td>Terminal Body Mass (g)</td>
<td>304 ± 55</td>
</tr>
<tr>
<td>Liver Mass (g)</td>
<td>9.9 ± 1.6</td>
</tr>
<tr>
<td>Liver Mass / Body Mass (\times 100%)</td>
<td>3.26 ± 0.3</td>
</tr>
<tr>
<td>Conjugated Dienes ((\mu\text{mol/g.liver}))</td>
<td>-</td>
</tr>
<tr>
<td>LOOH ((\text{nmol LOOH/g.liver}))</td>
<td>-</td>
</tr>
<tr>
<td>TTBARS ((\text{nmol/g.liver}))</td>
<td>-</td>
</tr>
<tr>
<td>Cholesterol ((\text{mg/dl}))</td>
<td>70 ± 26</td>
</tr>
<tr>
<td>Triglycerides ((\text{mg/dl}))</td>
<td>104 ± 19</td>
</tr>
<tr>
<td>Glucose Concentration ((\text{mg/dl}))</td>
<td>185 ± 10</td>
</tr>
<tr>
<td>CYP2E1 Conc. ((\text{arbitrary units}))</td>
<td>-</td>
</tr>
<tr>
<td>AST ((\text{U/l}))</td>
<td>72 ± 2</td>
</tr>
<tr>
<td>ALT ((\text{U/l}))</td>
<td>56 ± 2</td>
</tr>
<tr>
<td>Tumour Development</td>
<td>-</td>
</tr>
</tbody>
</table>

Histology / Additional Observations; *(fa/wt)*; livers appeared normal, hepatic steatosis was not observed. *(fa/fa)*; grade 3-4 macro- & microvesicular steatosis in addition to hepatocyte apoptosis was evident in all animals.

*Significantly different from the Control; *\(P<0.05\), **\(P<0.01\), *\(P<0.001\)
3.13.9 Zucker (fa/fa) Rats (continued)

<table>
<thead>
<tr>
<th>Treatment / Phenotype</th>
<th>Hiraoka-Yamamoto et al. (2004)</th>
<th>Zucker (fa/fa) Rats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment / Phenotype</td>
<td>SHRSP/Izm</td>
<td>SHRSP/(fa/fa)</td>
</tr>
<tr>
<td>Duration of Treatment</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sex</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Age</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>No. of Animals</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terminal Body Mass (g)</td>
<td>251 ± 3</td>
<td>428 ± 6**</td>
</tr>
<tr>
<td>Liver Mass (g)</td>
<td>7.7 ± 0.1</td>
<td>12.2 ± 0.8**</td>
</tr>
<tr>
<td>Liver Mass / Body Mass x 100%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Conjugated Dienes (umol/g liver)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LOOH (nmol LOOH/g liver)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TTBARS (nmol/g liver)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cholesterol (mg/dl)</td>
<td>71 ± 3</td>
<td>98 ± 6**</td>
</tr>
<tr>
<td>Triglycerides (mg/dl)</td>
<td>55 ± 3</td>
<td>296 ± 24**</td>
</tr>
<tr>
<td>Glucose Concentration (mg/dl)</td>
<td>98 ± 1</td>
<td>155 ± 14**</td>
</tr>
<tr>
<td>CYP2E1 Conc. (arbitrary units)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AST (U/l)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ALT (U/l)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tumour Development</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Histology / Additional Observations:
Plasma leptin levels in SHRSP/(fa/fa) and (fa/fa) rats elevated 70- and 50-fold higher than SHRSP/Izm rats which explains noted abnormalities in metabolism. SHRSP (fa/fa) rats also display obesity, hypertension and hyperinsulaemia and although beneficial for fatty liver development, strain more concerned with cardiovascular abnormalities.

Significantly different from the Control: *P<0.05, **P<0.01, P<0.001

^ = P<0.05 compared with Zucker (fa/fa) rats.
3.13.9 Zucker (fa/fa) Rats (continued)

<table>
<thead>
<tr>
<th>Tomita et al., (2004)</th>
<th>Zucker (fa/fa) Rats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment / Phenotype</td>
<td>(fa/wt) Control</td>
</tr>
<tr>
<td>Duration of Treatment</td>
<td>6 wks</td>
</tr>
<tr>
<td>Sex</td>
<td>Male</td>
</tr>
<tr>
<td>Age</td>
<td>4 wks</td>
</tr>
<tr>
<td>No. of Animals</td>
<td>10</td>
</tr>
<tr>
<td>Terminal Body Mass (g)</td>
<td>-</td>
</tr>
<tr>
<td>Liver Mass (g)</td>
<td>-</td>
</tr>
<tr>
<td>Liver Mass / Body Mass x 100%</td>
<td>2.3 ± 0.1</td>
</tr>
<tr>
<td>Conjugated Dienes (μmol/g.liver)</td>
<td>-</td>
</tr>
<tr>
<td>LOOH (nmol LOOH/g.liver)</td>
<td>-</td>
</tr>
<tr>
<td>TTBARS (nmol/g.liver)</td>
<td>-</td>
</tr>
<tr>
<td>Cholesterol (mg/dl)</td>
<td>-</td>
</tr>
<tr>
<td>Triglycerides (mg/g.liver)</td>
<td>15 ± 3</td>
</tr>
<tr>
<td>Glucose Concentration (mg/dl)</td>
<td>-</td>
</tr>
<tr>
<td>CYP2E1 Conc. (arbitrary units)</td>
<td>-</td>
</tr>
<tr>
<td>AST (U/l)</td>
<td>-</td>
</tr>
<tr>
<td>ALT (U/l)</td>
<td>50 ± 8</td>
</tr>
<tr>
<td>Tumour Development</td>
<td>-</td>
</tr>
</tbody>
</table>

Histology / Additional Observations:
Alcohol-fed mice in both groups were shown to have increased plasma FFA and increased fat accumulation with moderate inflammation. Furthermore, the genetic disposition of leptin deficiency in these rats suppresses hepatic metallothionein (MT-1) and increases TNF-α which both enhance sensitivity to steatohepatitis. The data suggests that leptin deficiency causes a worse, more severe steatohepatitis following chronic ethanol exposure.

*P<0.05 vs. the other groups, **P<0.05 vs. the control groups
3.13.9 Zucker (fa/fa) Rats (continued)

<table>
<thead>
<tr>
<th>Nagao et al., (2004)</th>
<th>Zucker (fa/fa) Rats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment / Phenotype</td>
<td>(fa/fa) Control</td>
</tr>
<tr>
<td>Duration of Treatment</td>
<td>8 wks</td>
</tr>
<tr>
<td>Sex</td>
<td>Male</td>
</tr>
<tr>
<td>Age</td>
<td>6 wks</td>
</tr>
<tr>
<td>No. of Animals</td>
<td>6</td>
</tr>
<tr>
<td>Terminal Body Mass (g)</td>
<td>-</td>
</tr>
<tr>
<td>Liver Mass (g)</td>
<td>-</td>
</tr>
<tr>
<td>Liver Mass / Body Mass x 100%</td>
<td>4.74 ± 0.36</td>
</tr>
<tr>
<td>Conjugated Dienes (μmol/g.liver)</td>
<td>-</td>
</tr>
<tr>
<td>LOOH (nmol LOOH/g.liver)</td>
<td>-</td>
</tr>
<tr>
<td>TTBARS (nmol/g.liver)</td>
<td>-</td>
</tr>
<tr>
<td>Cholesterol (mg/dl)</td>
<td>-</td>
</tr>
<tr>
<td>Triglycerides Plasma; (mmol/l)</td>
<td>2.08 ± 0.15</td>
</tr>
<tr>
<td>Glucose Concentration (mg/dl)</td>
<td>-</td>
</tr>
<tr>
<td>CYP2E1 Conc. (arbitrary units)</td>
<td>-</td>
</tr>
<tr>
<td>AST (U/l)</td>
<td>66 ± 13</td>
</tr>
<tr>
<td>ALT (U/l)</td>
<td>48 ± 7</td>
</tr>
<tr>
<td>MTP (nmol/mg. protein)</td>
<td>1.65 ± 0.10</td>
</tr>
</tbody>
</table>

Histology / Additional Observations:
Administration of CLA (conjugated linoleic acid) was shown to protect against hepatic injury through raising levels of adiponectin production. CLA also improved insulin sensitivity and suppressed expression of TNF-α.

Significantly different from the Control; *P<0.05, **P<0.01, P<0.001
3.13.10 A/J Mouse Model

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment / Phenotype</td>
<td>A/J Mice Control</td>
</tr>
<tr>
<td>Duration of Treatment</td>
<td>12 wks</td>
</tr>
<tr>
<td>Sex</td>
<td>Female</td>
</tr>
<tr>
<td>Age</td>
<td>7-8 wks</td>
</tr>
<tr>
<td>No. of Animals</td>
<td>3-5</td>
</tr>
<tr>
<td>Terminal Body Mass (g)</td>
<td>-</td>
</tr>
<tr>
<td>Liver Mass (g)</td>
<td>-</td>
</tr>
<tr>
<td>Liver Mass / Body Mass x 100%</td>
<td>3.63 ± 0.10</td>
</tr>
<tr>
<td>Conjugated Dienes (μmol/g liver)</td>
<td>-</td>
</tr>
<tr>
<td>LOOH (nmol LOOH/g liver)</td>
<td>-</td>
</tr>
<tr>
<td>TTBARS (nmol/g liver)</td>
<td>0.67 ± 0.08</td>
</tr>
<tr>
<td>Cholesterol (mg/dl)</td>
<td>-</td>
</tr>
<tr>
<td>Triglycerides (mg/dl)</td>
<td>10 ± 2.5</td>
</tr>
<tr>
<td>Glucose Concentration (mg/dl)</td>
<td>-</td>
</tr>
<tr>
<td>CYP2E1 Conc. (arbitrary units)</td>
<td>1.00 ± 0.10</td>
</tr>
<tr>
<td>AST (U/l)</td>
<td>-</td>
</tr>
<tr>
<td>ALT (U/l)</td>
<td>27 ± 5.2</td>
</tr>
<tr>
<td>Tumour Development</td>
<td>-</td>
</tr>
</tbody>
</table>

Histology / Additional Observations:
Macrovesicular steatosis in zones 2 and 3 after only 1 wk of the MCD diet with portal inflammation resulting after 4 wks. OPN expression was elevated early in development of NASH and preceded increases in TNF-α and oxidative stress.

*Significantly different from the Control, *P<0.01
3.13.11 C57Bl/6 J Mouse Model

<table>
<thead>
<tr>
<th>Treatment / Phenotype</th>
<th>C57Bl/6/J Mice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>MCD</td>
</tr>
<tr>
<td>Duration of Treatment</td>
<td>10 wks 10 wks</td>
</tr>
<tr>
<td>Sex</td>
<td>Female Female</td>
</tr>
<tr>
<td>Age</td>
<td>8-10 wks 8-10 wks</td>
</tr>
<tr>
<td>No. of Animals</td>
<td>4 4</td>
</tr>
<tr>
<td>Terminal Body Mass (g)</td>
<td>24 ± 1.1 12 ± 0.1 **</td>
</tr>
<tr>
<td>Liver Mass (g)</td>
<td>1.01 ± 0.08 0.5 ± 0.01 ***</td>
</tr>
<tr>
<td>Liver Mass / Body Mass x 100%</td>
<td>4.22 ± 0.16 4.14 ± 0.05</td>
</tr>
<tr>
<td>Conjugated Dienes (µmol/g liver)</td>
<td>- -</td>
</tr>
<tr>
<td>LOOH (nmol LOOH/g liver)</td>
<td>56 ± 8 100 ± 19 *</td>
</tr>
<tr>
<td>TTBARS (nmol/g liver)</td>
<td>- -</td>
</tr>
<tr>
<td>Cholesterol (mg/dl)</td>
<td>- -</td>
</tr>
<tr>
<td>Triglycerides (mg/g. wet liver)</td>
<td>24 ± 9 79 ± 6 *</td>
</tr>
<tr>
<td>Glucose Concentration (mg/dl)</td>
<td>- -</td>
</tr>
<tr>
<td>CYP2E1 Conc. (arbitrary units)</td>
<td>57 ± 18 167 ± 16 **</td>
</tr>
<tr>
<td>AST (U/l)</td>
<td>- -</td>
</tr>
<tr>
<td>ALT (U/l)</td>
<td>22 ± 3 637 ± 128 **</td>
</tr>
<tr>
<td>Serum FFA (mmol/l)</td>
<td>- -</td>
</tr>
</tbody>
</table>

Histology / Additional Observations:
Control mice displayed no fat accumulation whereas the MCD diet induced steatosis mainly in zone 2 with large areas of inflammatory infiltrate. Collagen fibre deposits were also noted and confirmed pericellular fibrosis.

*Significantly different from the Control: *P<0.05, **P<0.01, P<0.001*
3.13.12 Acyl CoA Oxidase Deficiency (AOX) Mouse Model

Unfortunately, results generated from work undertaken by Hashimoto et al., (1999) are presented in such a manner that many fields of data are not applicable to the parameters being examined and contrasted in the other studies. This further illustrates the difficulty in comparing findings from different research papers. However, the data generated from the study conducted by Hashimoto et al., (1999) was deemed relevant to the parameters being examined in this thesis and therefore has been included despite the alternative mode of presentation.

The work carried out by Hashimoto et al., (1999) used PPARα⁺, AOX⁻, and PPARα⁺/AOX⁻ mouse genotypes in an attempt to demonstrate the role of PPARα and fatty acid oxidation in the pathogenesis of fatty liver. The schematic representation depicted below (figure 3.13.12.1) reveals the different extent of liver injury exerted on each model and the different steps involved in getting hepatic damage.

<table>
<thead>
<tr>
<th>PPARα⁺</th>
<th>AOX⁻</th>
<th>PPARα⁺/AOX⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased VLCFAs, related substrates, their acyl-CoAs</td>
<td>Increased VLCFAs, related substrates, their acyl-CoAs</td>
<td>Increased VLCFAs, related substrates, their acyl-CoAs</td>
</tr>
<tr>
<td>↓ PPARα hyperfunction</td>
<td>↓ PPARα deficiency</td>
<td>↓ PPARα deficiency</td>
</tr>
<tr>
<td>↓ Induction of CYP4A ω-oxidation</td>
<td>↓ No induction of CYP4A ω-oxidation</td>
<td>↓ No induction of CYP4A ω-oxidation</td>
</tr>
<tr>
<td>↓ Increased DCAs</td>
<td>↓ DCA levels constitutive</td>
<td>↓ DCA levels constitutive</td>
</tr>
<tr>
<td>↓ Absent peroxisomal β-oxidation of DCAs</td>
<td>↓ Absent peroxisomal β-oxidation of DCAs</td>
<td>↓ Absent peroxisomal β-oxidation of DCAs</td>
</tr>
<tr>
<td>↓ Severe DCA-related mitochondrial toxicity, β-oxidation inhibition</td>
<td>↓ Minimal DCA toxicity</td>
<td>↓ Minimal DCA toxicity</td>
</tr>
<tr>
<td>↓ Fatty liver (mild large droplet, centrilobular)</td>
<td>↓ Fatty liver (severe microvesicular, panlobular)</td>
<td>↓ Fatty liver (mild, microvesicular, perportal)</td>
</tr>
</tbody>
</table>

Figure 3.13.12.1 PPARα⁺, AOX⁻, and PPARα⁺/AOX⁻ represent the mouse genotypes. In PPARα⁺ mice, constitutive mitochondrial β-oxidation is reduced and leads to slow progression of large droplet centrilobular steatosis in liver. The constitutive extra-mitochondrial fatty acid metabolism (peroxisomal and CYP4A metabolism of LCFA and VLCFA) is not adversely unaffected in the absence of PPARα. In AOX⁻ mice, the sustained hyperactivity of PPARα because of ligands that are not metabolized because of AOX deficiency results in overexpression of CYP4A enzymes and the LCFA and VLCFA not metabolized by peroxisomal β-oxidation because of lack of AOX are converted to DCA by CYP4A ω-oxidation. Extensive microvesicular steatosis is considered a reflection of DCA induced inhibition of mitochondrial β-oxidation. In mice nullizygous for both PPARα and AOX, the absence of PPARα and lack of CYP4A induction resulted in the blunting of microvesicular steatosis (Hashimoto et al., 1999).

In conclusion, alterations in PPARα and AOX can effect lipid homeostasis and it is proposed that VLC and LC Acyl CoAs may play an important role in provoking...
spontaneous peroxisomal proliferation by functioning as PPARα ligands in the facilitation of microvesicular steatosis. Considering all the results from this study, it is proposed that both PPARα and AOX are considerable factors in hepatic lipid metabolism and in the pathogenesis of fatty liver development and progression.
Chapter 4; Methods and Materials

4.1 Introduction

The research being performed in this thesis is of dual nature as the livers were examined for histology and biochemistry, spanning 2 different laboratories. The different aspects being investigated are from separate scientific backgrounds, but it was hoped that the biochemistry data would correlate with the histology findings. Despite significant biochemistry data being strongly indicative of hepatic damage in several instances, histology findings often failed to reveal the extensive injury that was anticipated. Therefore, histology and biochemistry methods and results have been described separately for clarity.

4.2 Histology

4.2.1 Tissue Processing

Immediately after sacrifice, fresh liver slices were obtained from the left lobe of the liver and stored in 10% formalin at room temperature until they could be processed. The processing begins with washing the tissue in 70% alcohol, before immersion in two changes of 10% neutral formalin for 2h and 1h respectively. The tissue was then dehydrated in two changes of 96% ethanol (10 mins each), followed by four changes of 100% ethanol (15 mins each). Once dehydrated, the tissue was immersed in two changes of xylol (15 mins each). Finally, the tissue was subjected to four changes of embedding wax (two changes at 20 mins each and two changes at 30 mins each) before being embedded in paraffin wax.

4.2.2 Stains / Light Microscopy

Sections were cut 4-6μm thick with a micrometer and stains were performed by standard laboratory techniques before being viewed under a light microscope.

These included;

(1) (H&E) - haematoxylin and eosin stain. This is the most widely used stain as it clearly illustrates a wide variety of different cell and tissue structures, is cost effective and not time-consuming. Haematoxylin stains the cell nuclei a blue-black colour and provides good, clearly visible intra-nuclear detail whereas the eosin component stains the cell cytoplasm and connective tissue fibres in shades of pink, orange and red (Bancroft and Stevens, 1990). This stain is used for overall assessment of hepatic injury and cell disruption.
(2) (SR) sirius red stain. This stain uses the cotton dye Sirius red F3B for the detection of amyloid. This is used to gauge the extent of fibrosis and is dependent on the linearity of the dye molecule and β-pleated sheet configuration (Bancroft and Stevens, 1990).

(3) (D/PAS) periodic-acid Schiff after diastase digestion stain. This reaction is useful for detecting tissue carbohydrates, specifically for glycogen when a diastase digestion stage is incorporated into the stain (Bancroft and Stevens, 1990). Periodic acid promotes an oxidative cleavage of carbon-to-carbon bonds or amino derivatives to form dialdehydes which react with fuschin-sulphurous acid and forms a magenta colour upon binding with paraosaniline (Stoward, 1967). This stain is of particular use in evaluation of debris-containing Kupffer cells.

4.3 Biochemistry

4.3.1 Lipid Extraction

The original method for extracting lipids described by Folch (1957) is now commonly referred to as the Folch technique. There were however, practicality problems with the original process as it was time consuming and used large volumes of solvent making it in-appropriate for lipid peroxidation studies. An improved modification to the Folch technique was made by Bligh and Dyer (1959) making the method simpler, less time consuming and as a result is well adapted for routine lipid analyses.

The essential concept underlying the technique is that homogenised tissue in a mixture of chloroform and methanol creates a monophasic solution which then separates into a biphasic solution when diluted with chloroform and an aqueous solvent. The lipid fraction remains in the chloroform layer (non-aqueous phase) while the non-lipid impurities are contained in the methanol and water layer (aqueous phase). Chloroform, being the denser liquid is below the aqueous phase.

Freshly frozen liver samples were thawed on ice and approximately 70mg of each liver sample was homogenised in 2ml chilled SEAP (0.15M NaCl, 0.02M NaH₂PO₄, 0.01g % NaN₃, 0.001M EDTA) using a Virtis Handishear®. The resulting solution was sonicated with twenty 1 sec bursts at an output power of 4-6 watts using a Virtis Virsonic®. Sonication was carried out to completely obliterate any remaining subcellular structure. The homogenate from each liver sample was aliquoted (0.8ml per tube) and utilised for measurement of lipid peroxidation. The remaining homogenate of each sample (1.2ml) was stored at -80°C.
To 0.8ml chilled homogenised liver, 1ml chilled chloroform and 2ml chilled methanol were added and vortexed for ten seconds. The solution was then centrifuged at 3000 rpm for 15 mins at 4°C in a Beckman GS-6R centrifuge. The resulting supernatent was then transferred to a clean tube on ice. The remaining pellet was washed by addition of 1ml chloroform, 2ml methanol, 0.8ml SEAP and vortexed for ten seconds. The solution was subjected to further centrifugation as described above. To remove non-lipid impurities from the collected supernatant, a phase split was necessary and was achieved by addition of 2ml chloroform, 2ml SEAP, vortexing for ten seconds and then centrifugation at 3000 rpm for 10 mins at 4°C. The upper aqueous phase, containing the impurities, was removed by suction, leaving the lower non-aqueous phase that contains the lipids. The lower phase was dried in a Pierce Reacti-therm module under nitrogen gas at room temperature. The resultant dried extract was then re-suspended in 200µl chloroform and 20µl aliquots were placed in microreaction vials (eppendorf tubes). The eppendorf tubes were then placed in the Pierce Reacti-therm module as described above, to completely dry the solvent. The dried lipid extractions were stored in the dark at -80°C freezer until required for biochemical assessment.

Owing to small sample volumes, plasma lipid studies were not practicable. The plasma was used where possible for glucose and alcohol, as well as transaminase alterations.

4.3.2 Conjugated Dienes (CD)

Conjugated dienes manifest in unsaturated fatty acids as an early indicator of lipid peroxidation reactions (Vasankari et al., 1995). Their appearance is due to a rearrangement of double bonds following free radical attack (Recknagel and Glende, 1984). The molecules containing CD are characterized by an intense absorption (K band) which may range from 215 to 250 nm, depending on the presence of nearby substituent groups (Recknagel and Glende, 1984). The spectra of lipids that contain CD are characterised by an intense K band near 233 nm with a lesser secondary absorption in the region of 260-280 nm due to ketone dienes.

Conjugated dienes were measured using a GBC UV/VIS 916 spectrophotometer. The baseline was established using distilled water and the absorbance of a cyclohexane blank was measured to verify purity. At 234 nm, unoxidised cyclohexane has an optical density of 0.049.
The CD content of each sample was measured by adding 1ml cyclohexane to the 20μl dried lipid extract and vortexing for ten seconds. The mixture containing cyclohexane and the experimental lipid sample were transferred to a quartz cuvette for reading in the spectrophotometer. The absorbance of each sample (in duplicate) was read at 234 nm immediately after mixing. The concentration of conjugated dienes from each sample was calculated using a molar extinction coefficient (Σ) of 2.95x10⁴ M⁻¹ cm⁻¹.

4.3.3 Lipid Hydroperoxides (LOOH)

Lipid peroxidation reactions are complex and involve alterations of biosynthetic unsaturated fatty acids. These reactions yield conjugated dienes as previously described, lipid hydroperoxides (LOOH) and other fragmentation products including aldehydes and carboxylic acids. Jiang et al. (1991) modified a method, initially described by Gupta (1973) which resultant measures the LOOH indirectly through the oxidation of Fe²⁺ → Fe³⁺ by peroxides. This occurs in the presence of a ferric-complexing dye, xylenol orange, which has maximal absorption at 560 nm. The method will detect Fe³⁺, H₂O and lipid hydroperoxides but lipid extracts will by definition only contain lipid hydroperoxides. The determination of these lipid hydroperoxides will assist in the evaluation of the oxidative stress occurring in the liver (Jiang et al., 1991).

To measure the LOOH concentration, several reaction components were added to the dried lipid extract. Firstly, addition of 100μl chloroform and vortexing for ten seconds was necessary to re-dissolve the lipid. Secondly, 350μl of methanol was added and vortexed for ten seconds to generate a monophase. The aqueous component of the assay is subsequently added, 50μl "nanopure" H₂O, and vortexed for ten seconds. Finally, 600μl of FOX 2 Mix® was added and vortexed for ten seconds. Standard reactions were prepared as described above, except 50μl of the relevant standard was used as a replacement for nanopure H₂O. The tubes were left at room temperature for 20 mins for the reaction to occur and the absorbance was read immediately after at 560 nm. The concentration of lipid hydroperoxides in each experimental sample (in duplicate) was determined from a non-linear regression curve of the t-butyl hydroperoxide (t-BHP) standards. The reliability of the assay was assessed by the calculating the ratio of t-BHP to FeCl₃ at an absorbance of 1.00. The recorded value was 6.79 ± 0.23.
*Fox 2 Mix: 1 part FOX 2A (2.5mM ferrous ammonium sulphate, 2mM Xylenol Orange in 0.25mM H₂SO₄) 4.5 part FOX 2B (0.88mM BHT in methanol), always prepared fresh.

<table>
<thead>
<tr>
<th>FeCl₃ Standards</th>
<th>Volume of Water (μl)</th>
<th>Concentration of Working Solution [mM]</th>
<th>Quantity of Ferric Chloride [nMol]</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>975</td>
<td>0.1</td>
<td>5</td>
</tr>
<tr>
<td>50</td>
<td>950</td>
<td>0.2</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>900</td>
<td>0.4</td>
<td>20</td>
</tr>
<tr>
<td>200</td>
<td>800</td>
<td>0.8</td>
<td>40</td>
</tr>
<tr>
<td>400</td>
<td>600</td>
<td>1.6</td>
<td>80</td>
</tr>
<tr>
<td>500</td>
<td>500</td>
<td>2.0</td>
<td>100</td>
</tr>
<tr>
<td>800</td>
<td>200</td>
<td>3.2</td>
<td>160</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>t-BHP Standards</th>
<th>Volume of Water (μl)</th>
<th>Concentration of Working Solution [mM]</th>
<th>Quantity of Butylated Hydroperoxides [nMol]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>995</td>
<td>0.0042</td>
<td>0.2</td>
</tr>
<tr>
<td>10</td>
<td>990</td>
<td>0.0075</td>
<td>0.35</td>
</tr>
<tr>
<td>20</td>
<td>980</td>
<td>0.015</td>
<td>0.75</td>
</tr>
<tr>
<td>40</td>
<td>960</td>
<td>0.03</td>
<td>1.5</td>
</tr>
<tr>
<td>200</td>
<td>800</td>
<td>0.14</td>
<td>7</td>
</tr>
<tr>
<td>400</td>
<td>600</td>
<td>0.28</td>
<td>14</td>
</tr>
<tr>
<td>800</td>
<td>200</td>
<td>0.56</td>
<td>28</td>
</tr>
</tbody>
</table>

4.3.4 Thiobarbituric Acid Reactive Substances (TBARS)

TBARS are intermediate to late products in the process of lipid peroxidation damage. The process by which TBARS produce a secondary product red dye, after reaction with malondialdehyde (MDA) has been widely used as a sensitive assay method for lipid peroxidation in animal tissues (Ohkawa et al., 1978). The assay measures the red chromogen, formed as a result of MDA reacting with two molecules of thiobarbituric acid and was carried out according to the method of Asakawa and Matasushita (1979), with slight modifications.

To determine the concentrations of TBARS from experimental samples, 50μl chloroform was initially added to each dried extract and vortexed for ten seconds to re-dissolve the lipid. This was transferred to a tube, to which 50μl 0.27% FeCl₃ was added and also vortexed for ten seconds. The next step was to add either 100μl ethanol for measurement of "total" TBARS (i.e. the amount present at time of death and those generated during tissue handling) or 100μl 0.22% butylated hydroxytoluene (BHT), an antioxidant for measurement of "free" TBARS (i.e. the amount of TBARS present in the sample at time of death) and vortexed for ten seconds. These may be lost in the process of extraction. To all tubes, 750μl glycine buffer, pH 3.6 (0.2M glycine HCl) was added and vortexed for ten seconds, after which 750μl TBA reagent (0.5% thiobarbituric acid, 0.3% SDS) was added and
vortexed again. Chloroform and water blanks were prepared by the same method, except that 50μl chloroform and 50μl were added in place of the re-suspended dried extract respectively. A glass bead was inserted to each tube, which was then capped by marbles and boiled at 100°C on a Techne® DB-3A dri-block. After 20 mins, the tubes were removed and allowed to cool to room temperature.

After cooling, 250μl of the pink aqueous phase from each experimental lipid sample was transferred to a microtitre plate. The absorbance of each sample (in duplicate) was read at 540 nm. The concentration of total TBARS and free TBARS was calculated using a molar extinction coefficient (ε) of 1.09x10^5 M^-1 cm^-1.

Free TBARS can be measured but were not viewed as significant in extracts because of potential losses of volatile compounds and were therefore not analysed in the studies presented in this thesis.

4.3.5 Total Cholesterol (TC)
Total cholesterol concentration was measured using a commercial kit (KAT™) (No. AD704CH). The enzymatic method used in the kit is derived from the procedure described by Allain et al., (1974). Cholesterol esters are hydrolysed using cholesterol esterase as a catalyst to produce cholesterol and fatty acids. The resultant cholesterol is oxidised with cholesterol oxidase and forms cholestene-3-one and hydrogen peroxide. Under the catalytic influence of peroxidase and phenol, the hydrogen peroxide reacts with 4-aminoantipyrine to produce the chromogenic red indicator quinoneimine (see below).

\[
\text{Cholesterol ester} + \text{H}_2\text{O} \xrightarrow{\text{Cholesterol esterase}} \text{Cholesterol} + \text{Fatty Acids}
\]
\[
\text{Cholesterol} + \text{O}_2 \xrightarrow{\text{Cholesterol Oxidase}} \text{Cholestene-3-one} + \text{H}_2\text{O}_2
\]
\[
2\text{H}_2\text{O}_2 + \text{phenol} + 4\text{-aminoantipyrine} \xrightarrow{\text{Peroxidase}} \text{Quinoneimine} + 4\text{H}_2\text{O}
\]

The supplied commercial standard was not used as more accurate standard curves were being produced from the supply of cholesterol in the laboratory. However, the provided enzyme reagent was still used for TC determination.

A series of standards were prepared by dissolving cholesterol (1μg/μl) in measured volumes of ethanol and mixing, as described in table (4.3.5.1). The standards were dried in the fume cupboard after mixing. To the dried cholesterol standards, 50μl
ethanol, 15\mu l 1\% Triton X-100 and 500\mu l 0.9\% NaCl were added and vortexed for ten seconds after each. Experimental samples were prepared by adding 50\mu l ethanol, 15\mu l 1\% Triton X-100 and 500\mu l 0.9\% NaCl to 20\mu l dried extract and vortexing for ten seconds after each. From the prepared standards and sample mixtures, 125\mu l was transferred to a microtitre plate, to which 125\mu l of the provided enzyme reagent was added and mixed. The plate was then left at room temperature for 30 mins for the reaction to occur. The absorbance was read at 500nm with the quantity [\mu g] of TC of each sample (in duplicate) being calculated from a linear regression curve of the standards.

4.3.5.1 Cholesterol Standards

<table>
<thead>
<tr>
<th>Weight of Cholesterol (\mu g)</th>
<th>Volume of Ethanol (\mu l)</th>
<th>Cholesterol Content (\mu g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.5</td>
<td>0</td>
</tr>
<tr>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Precinorm® U, a commercially provided standard with a TG range of 111-153 mgdL⁻¹ was used as a calibrator.

4.3.6 Hepatic Triglycerides (TG)

Hepatic triglyceride concentration was measured using a commercial kit (KAT™) (No. AD801T). The method derived from Werner (1981), Triglycerides are hydrolysed using lipases to produce glycerol and fatty acids. The resultant glycerol is phosphorylated with the assistance of glycerol kinase (GK) and consequent oxidation with glycerol-3-phosphate oxidase (GPO) forms dihydroxyacetone phosphate and hydrogen peroxide. Under the catalytic influence of peroxidase (POD), the hydrogen peroxide reacts with 4-aminoantipyrine and 4-chlorophenol to produce the chromogenic indicator red quinone (see below).

\[
\text{Lipase} \quad \text{Glycerol + Fatty Acids} \\
\text{Glycerol + ATP} \quad \text{Glycerol-3-phosphate + H}_2\text{O}_2 \\
\text{Glycerol-3-phosphate + O}_2 \quad \text{Dihydroxyacetone phosphate + H}_2\text{O}_2 \\
\text{POD} \quad \text{Red quinone + 4 H}_2\text{O}
\]
A series of standards was prepared, using the supplied commercial standard, by mixing measured volumes with 0.9% NaCl, as described in table (4.3.6.1). The standards were then mixed with 50µl ethanol and 15µl 1% Triton X-100. Experimental samples were prepared by adding 50µl ethanol, 15µl 1% Triton X-100 and 500µl 0.9% NaCl to 20µl dried extract and vortexing for ten seconds after each. From the prepared standards and sample mixtures, 125µl was transferred to a microtitre plate, to which 125µl of the provided enzyme reagent was added and mixed. The plate was then placed in an oven at 37°C for 5 mins for the reaction to occur. The absorbance was read at 500nm with the quantity [µg] of TG in each sample (in duplicate) being calculated from a linear regression curve of the standards.

<table>
<thead>
<tr>
<th>Volume of TG Standard (µl)</th>
<th>Volume of 0.9% NaCl (µl)</th>
<th>Triglyceride Content (µg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>499</td>
<td>2</td>
</tr>
<tr>
<td>2.5</td>
<td>497.5</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>495</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>490</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>480</td>
<td>40</td>
</tr>
<tr>
<td>25</td>
<td>475</td>
<td>50</td>
</tr>
<tr>
<td>30</td>
<td>470</td>
<td>60</td>
</tr>
<tr>
<td>40</td>
<td>460</td>
<td>80</td>
</tr>
<tr>
<td>50</td>
<td>450</td>
<td>100</td>
</tr>
</tbody>
</table>

Precinorm® U, a commercially provided standard with a TG range of 111-153 mg/dl was used as a calibrator.

4.3.7 Bicinchoninic Acid (BCA) Assay of Proteins

BCA is a water-soluble compound that is a highly specific reagent for cuprous ions (Cu⁺). The biuret reaction of BCA and Cu⁺ yields an intense purple colour that is very stable and displays maximal absorption at 562nm. Protein quantitation by BCA was measured according to the method of Smith et al., (1985). The method of Lowry et al., (1951) is more commonly used for measurement of proteins and is very similar in context to that of Smith et al., (1985) as both techniques are dependent on the formation of a colour complex produced from a biuret reaction. However the quantitative method of Smith et al., (1985) was preferred as it is regarded as being simpler, sensitive and more tolerant to interfering substances (Brown et al., 1989).

To determine the protein concentration, homogenate was firstly diluted 1:20 with nanopure H₂O. 10µl of this diluted mixture was transferred to a microtitre plate and brought to a final volume of 100µl, also using nanopure H₂O, then shaken for one
minute. 100µl of BCA-µD (see BCA solution list below) was added and shaken for a further minute and repeated again. The addition of BCA-µD was carried out in two stages to ensure thorough mixing of the homogenate and the BCA solution. After the addition of BCA-µD and shaking, the microtitre plate was floated on the surface of a waterbath at 60°C for 1 hr for the reaction to occur. The microtitre plate was then briefly cooled and shaken for 1 min before the absorbance was read at 560 nm which has an optical density between 0.2 and 1.6. The concentration of proteins in each experimental sample (in duplicate) was determined from a non-linear regression curve of the bovine serum albumin (BSA) standards. Standard reactions were prepared by diluting BSA in nanopure H₂O as detailed in the table below (4.3.7.1).

BCA Solutions:
- **BCA-µA** (8% Na₂CO₃, 1.6% NaOH, 1.6% Na₂ tartate and NaHCO₃, pH 11.25)
- **BCA-µB** (4% BCA in nanopure H₂O)
- **BCA-B** (4g CuSO₄ in 100ml nanopure H₂O)
- **BCA-µC** (100 parts BCA-µB +4 parts BCA-B), unstable and should be made fresh.
- **BCA-µD** (equal parts of BCA-µA + BCA-µC), unstable and should be made fresh.

4.3.7.1 Albumin Standards

<table>
<thead>
<tr>
<th>Volume of Stock Solution (µl)</th>
<th>Concentration of Stock Solution (µg/µl)</th>
<th>Volume of Water (µl)</th>
<th>Quantity of Albumin [µg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
<td>98</td>
<td>0.5</td>
</tr>
<tr>
<td>4</td>
<td>0.25</td>
<td>96</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>0.25</td>
<td>90</td>
<td>2.5</td>
</tr>
<tr>
<td>20</td>
<td>0.25</td>
<td>80</td>
<td>5</td>
</tr>
<tr>
<td>40</td>
<td>0.25</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>96</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>92</td>
<td>40</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>84</td>
<td>80</td>
</tr>
</tbody>
</table>

4.3.8 Measurement of Aminotransferases

Aminotransferases are identified as a family of enzymes that operate as catalysts in the interconversions of amino acids and α-oxoacids through transfer of amino groups. The release of aminotransferases indicates the presence of hepatic injury, however, these enzymes may be released before the clinical manifestations of liver disease become evident (Tietz, 1987). The measurement of aminotransferases was determined as described by Tietz (1987).

Blood samples were taken at time of termination of the animals and were immediately subjected to centrifugation in a Labnet Spectrafuge 16M at 14,000 rpm for 10 mins to produce serum. The serum was stored into 30µl aliquots at -70°C until required for biochemical assessment.
4.3.8.1 Alanine aminotransferase (ALT)

ALT is a liver-specific enzyme which catalyses an amino transfer reaction. Under the catalytic influence of ALT, an amino group is transferred from L-alanine to α-oxoglutarate with the assistance of pyridoxal-5'-phosphate (P-5-P), to generate pyruvate and L-glutamate. However, the direct measurement of aminotransferase activity is difficult and has resulted in the activity being determined indirectly by assessing pyruvate production via lactate (as displayed below).

\[
\begin{align*}
\alpha\text{-oxoglutarate} & \quad \text{L-alanine} & \quad \text{Lactate} & \quad \text{NAD}^+ \quad \text{ALT} \\
\text{L-glutamate} & \quad \text{Pyruvate} & \quad \text{NADH}^+ + \text{H}^+ \quad \text{LDH}
\end{align*}
\]

Aminotransferase buffer (13.6g KH₂PO₄, 3.3g NaOH in 1 litre distilled H₂O, pH 7.4) and oxaloacetic acid (0.73g oxaloacetic acid in 30ml buffer, pH 7.4, adjusted to a final volume of 50ml) were prepared and stored at 4°C and -20°C, respectively.

In addition, a mixture containing 36mg NADH, 19ml buffer, 50μl lactate dehydrogenase (25mg/2.5ml H₂O) and L-alanine (7.6g L-alanine in 100ml buffer, pH 7.4) was freshly prepared, of which 650μl was added to 50μl serum and mixed. The solution remained at room temperature for 15 mins to permit the NADH-dependent reduction of endogenous oxoacids. Finally, 50μl oxaloacetic acid was added to all samples and vortexed for ten seconds. The absorbance was read at 340nm every 30 secs for 5 mins and the catalytic activity (quantity of enzyme that catalyzes reaction of 1μl substrate per min) was represented as U/L.

4.3.8.2 Aspartate aminotransferase (AST)

Elevated AST activity signifies a disruption in liver cell integrity and the key concept for determination of AST levels is similar to that for ALT (Tietz, 1987). The notable difference being that, under the catalytic influence of AST, amino groups are transferred from L-aspartate to α-oxoglutarate and resultantly generate α-oxaloacetate and L-glutamate. As mentioned previously, the direct measurement of aminotransferase activity is difficult and has also resulted in AST activity being determined indirectly by measuring α-oxaloacetate production via L-malate (as displayed below).
Aspartic acid solution (pH 7.4) was prepared by mixing 2.66mg aspartic acid in 100ml aminotransferase buffer. Malate dehydrogenase (MDH) was prepared in distilled water to a concentration of 5mg·mL⁻¹. Oxaloacetic acid solution was prepared by dissolving 0.735g oxaloacetic acid in 50ml buffer and was stored at -20°C in 5ml aliquots.

In addition, a reaction mixture containing 36mg NADH, 19ml buffer, 4.5ml aspartic acid solution and 50µl MDH was freshly prepared, of which 650µl was added to 50µl serum and mixed. The solution remained at room temperature for 15 mins to permit the NADH-dependent reduction of endogenous oxoacids. Finally, 50µl oxaloacetic acid was added to all samples and vortexed for ten seconds. The absorbance was read at 340nm every 30 secs for 5 mins and the catalytic activity was represented as U/L.

4.3.9 Measurement of Blood Alcohol Levels

Ethanol concentration was measured using a quantitative assay for gauging levels of alcohol in mouse serum. A commercial kit (AxSYM REA Ethanol Reagent Pack) (Ref 3B32-20) was based on the enzymatic method described by Shaffar and Stroupe (1983) using an Abbot Axsym® Analyser. The oxidation of ethanol is catalysed by alcohol dehydrogenase (ADH) which produces acetaldehyde and reduction of the coenzyme nicotinamide adenine dinucleotide NAD (Tietz, 1970). The resultant NAD reacts with monotetrazolium dye (MTT) in the presence of diaphorase to generate a colour change by which ethanol concentration can be determined (see below).

\[
\text{Ethanol} + \text{NAD}^+ \xrightarrow{\text{ADH}} \text{Acetaldehyde} + \text{NADH} + \text{H}^+ \\
\text{NAD} + \text{H}^+ \text{MTT} \xrightarrow{\text{Diaphorase}} \text{NAD}^+ + \text{MT} + \text{Formazan}
\]

The assay of ethanol concentration used 200µl of mouse serum which was stored frozen at 4°C prior to use. The samples, along with ethanol calibrators were loaded
onto reaction wells in the Abbot AxSYM® Analyser and mixed with the 3 ethanol reagents from the commercial kit to determine the concentration of ethanol present. Low, medium and high dose calibrators were commercially provided (X Systems® REA Ethanol Calibrators) and displayed the range values as described in table (4.3.9.1). The reagents supplied included 5% nicotinamide adenine dinucleotide (NAD) in sodium citrate buffer, 5% yeast alcohol dehydrogenase and <1% diaphorase in a protein stabiliser solution and <1% monotetrazolium dye and <0.01% fluorescein in solvent. Once the reactions were complete, values of experimental samples were calculated for ethanol concentration using a calibrated curve derived from the ethanol calibrators.

<table>
<thead>
<tr>
<th>Dose Level</th>
<th>Ethanol Concentration (mmol/l)</th>
<th>Range (mmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>10.85</td>
<td>7.38 – 14.32</td>
</tr>
<tr>
<td>Medium</td>
<td>21.71</td>
<td>16.94 – 26.47</td>
</tr>
<tr>
<td>High</td>
<td>54.27</td>
<td>43.50 – 65.03</td>
</tr>
</tbody>
</table>

AxSYM® system specific for this assay was used to calibrate controls. The values falling below the minimum range were calculated using a linear curve.

4.4 Statistical Analyses

Statistical analyses were performed using GraphPad Prism 4 Software. Comparisons were conducted between 2 treatment groups (e.g. heterozygous mice (db/wt) and homozygous mice (db/db)) using non-parametric, two-sided tests. To compare the effect of one treatment within groups (e.g. effects of alcohol in (db/wt) or (db/db) groups), non-parametric single variable analyses of variance (Kruskall-Wallis test) were conducted. Differences achieved statistical significance when $p < 0.05$. Linear regression was available on the same software.

The majority of values being presented for statistical analyses will be displayed with 3 decimal places unless more are required.
4.5 Animal Studies

4.5.1 Assessment of the db/db Mouse Model on Regular Chow over 20 Weeks.

Male and female 20 week old wild type (wt/wt), heterozygous (db/wt) and homozygous (db/db) mice were received from an in-house breeding programme at the UCT Animal Facility. However, due to poor littering numbers, this study could not be conducted concurrently and as a result the animals were placed on the protocol and sacrificed as they became available over a 15 month period. The animal ethics approval reference for this study is 03/042.

The mice were allocated into 3 different groups dependent on their genotype and assigned an animal number prior to termination. The resultant 3 groups based on the limited number of animals that did become available were made up as follows;

- 6 Male and 6 Female wild type mice (wt/wt)
- 16 Male, 8 Female heterozygous mice (db/wt)
- 10 Male, 14 Female homozygous mice (db/db)

During the study and prior to termination, the mice were housed by genotype, sex and litter parentage to minimise fighting. The animals were fed on a diet of regular chow (EPOL mice cubes reg no. V1787) over the 20 week period which consisted of the following; protein – 180g/kg, moisture – 120g/kg, fibre – 60g/kg, fat – 25g/kg, calcium – 18g/kg and phosphorous – 7g/kg. Sterilised wood shavings were used as bedding and suitable nesting material was also provided. The shavings and nesting were changed at least once a week. Temperature and humidity conditions were constantly controlled and a 12 hour light/dark cycle in operation. The mice were housed in Room 132 of the Rodent Accommodation Section at Chris Barnard Building, Cape Town South Africa.

Body weights and glucose concentration were recorded at termination.

The scheduled terminations occurred when the animals were 20 weeks old. The animals were killed by cardiac puncture, followed by exsanguination under a combination anaesthetic of ketamine and xylazine. The anaesthetic drugs are obtained from the suppliers with the following concentrations; 100mg/ml and 20 mg/ml respectively. 1.2 ml of ketamine is mixed with 0.8 ml of xylazine and 8 ml of saline is added to give a final volume of 10 ml. Each mouse is injected with a dose of 0.2 ml (i/p).
Blood was collected in eppendorf tubes for protein and enzyme determination. Livers were removed after dissection and weighed before being wrapped in tin foil and snap-frozen in liquid nitrogen. The liver samples were stored at -80 °C until required for biochemical analysis. Another portion of the liver was processed for histological examination.

4.5.2 Impact of Various Oils, Administered via the Diet (4 Weeks)

Male and female 12 week old heterozygous (db+/+ mice were received from an in-house breeding programme at the UCT Animal Facility on 24 January 2005. The animal ethics approval reference for this study is 04/029.

The mice were randomly allocated into 4 treatment groups, assigned an animal number and allowed to acclimatise for a 1 week period prior to commencement of treatment. The 4 groups were made up as follows;

- 3 Male and 3 Female heterozygous mice (db/wt) = Control; chow only
- 3 Male and 3 Female heterozygous mice (db/wt) = Sunflower Oil
- 3 Male and 3 Female heterozygous mice (db/wt) = Canola Oil
- 3 Male and 3 Female heterozygous mice (db/wt) = Sunflower Oil and Cholesterol

The mice were housed by sex and dose group. Sterilised wood shavings were used as bedding and suitable nesting material was also provided. The shavings and nesting were changed at least once a week. Temperature and humidity conditions were constantly controlled and a 12 hour light/dark cycle in operation. The study was conducted in Room 132 of the Rodent Accommodation Section at Chris Barnard Building, Cape Town South Africa.

The feed used during this study was EPOL mice cubes reg no. V1787 (same nutritional contents as described previously 4.5.1) and was mixed with the various oils at 5g oil per 100g chow. The cholesterol was added at 60mg per 100g chow in addition to sunflower oil for the respective treatment group. The specially formulated diets were made available ad libitum to the animals. The diets were analysed for early, intermediate and late lipid peroxidation contents in an attempt to gauge the differences between the diets being administered to the animals (figure 4.5.2.1). Water was also made ad libitum to the mice.
The animals were dosed continuously via their diet for 4 consecutive weeks. Body weights were recorded weekly and at termination. The scheduled terminations occurred after completion of 4 weeks of treatment. The animals were killed by cardiac puncture, followed by exsanguination under ketamine and xylazine anaesthesia (as described in 4.5.1). Blood was collected in eppendorf tubes for protein determination. Livers were dissected and weighed before being wrapped in tin foil and snap frozen in liquid nitrogen. The liver samples were stored at -80 °C until required for biochemical analysis. Another portion of the liver was processed for histological examination.

4.5.3 Study of Short Period of Alcohol Administration (4 Weeks)

Male and female 14 week old wild type (wt/wt), heterozygous (db/wt) and homozygous (db/db) mice were received from an in-house breeding programme at the UCT Animal Facility. However, due to poor littering numbers, this study could not be conducted concurrently and as a result the animals were added as they became available over a 7 month period. The animal ethics approval reference for this study is 03/042.

The mice were allocated into 6 treatment groups, assigned an animal number and allowed to acclimatise for a 1 week period prior to commencement of treatment. The resultant 6 groups based on the limited number of animals that did become available were made up as follows; (please note that saccharine was used to disguise the taste of alcohol to ensure the mice drunk from their water bottles).

<table>
<thead>
<tr>
<th>CD (µmol/g. liver)</th>
<th>LOOH (µmol/g. liver)</th>
<th>TBARS (µmol/g. liver)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular Chow</td>
<td>3.4</td>
<td>0.261</td>
</tr>
<tr>
<td>Sunflower Oil</td>
<td>27</td>
<td>24.4</td>
</tr>
<tr>
<td>Canola Oil</td>
<td>17</td>
<td>20.0</td>
</tr>
</tbody>
</table>

1M, 1F wild type mice (wt/wt) = Water and 0.025% (w/v) Saccharine
1M, 1F wild type mice (wt/wt) = 20% Ethanol and 0.025% (w/v) Saccharine
2M, 2F heterozygous mice (db/wt) = Water and 0.025% (w/v) Saccharine
2M, 2F heterozygous mice (db/wt) = 20% Ethanol and 0.025% (w/v) Saccharine
2M, 2F homozygous mice (db/db) = Water and 0.025% (w/v) Saccharine
1M, 3F homozygous mice (db/db) = 20% Ethanol and 0.025% (w/v) Saccharine
The mice were housed by genotype, dose group and litter parentage to minimise fighting. Sterilised wood shavings were used as bedding and suitable nesting material was also provided. The shavings and nesting were changed at least twice a week. Temperature and humidity conditions were constantly controlled and a 12 hour light/dark cycle in operation. The water-ethanol mixes were prepared twice weekly and stored under a seal to prevent evaporation of alcohol. The study was conducted in Room 132 of the Rodent Accommodation Section at Chris Barnard Building, Cape Town South Africa.

The animals being treated with 20% ethanol and 0.025% (w/v) saacharine, were given a 2 week adaptation period to reach the required concentration of ethanol. At the start of treatment, the ethanol concentration was 3% and increased by 3% intervals every 2 days until the required 20% concentration was achieved. These animals were then treated with the desired 20% concentration for 4 weeks. The ethanol and water for their respective treatment groups were made available ad libitum to the animals. The feed used during this study was EPOL mice cubes and was also made ad libitum.

All animals were dosed continuously via their water bottles for 6 consecutive weeks. The animals being treated with ethanol had 2 weeks adaptation and 4 weeks at 20% concentration. Body weights were recorded weekly and at termination.

The scheduled terminations occurred when the animals were 20 weeks old. The animals were killed by cardiac puncture, followed by exsanguination under ketamine and xylazine anaesthesia (as described in 4.5.1). Blood was collected in eppendorf tubes for protein and enzyme determination. Livers were dissected and were unfortunately not weighed before being wrapped in tin foil and snap frozen in liquid nitrogen due to a technical error. The liver samples were stored at -80 °C until required for biochemical analysis. Another portion of the liver was processed for histological examination.

4.5.4 Impact of Alcohol Administered over 8 Weeks in db/wt and db/db Mice

Male 5 week old heterozygous (db/wt) mice and homozygous (db/db) mice were received from Jackson Laboratory, Bar Harbour, Maine, USA on 28 January 2005 and were immediately housed in the UCT Animal Facility for a 4 week acclimatisation period prior to commencement of treatment. The animal ethics approval reference for this study is 03/042.
Following the acclimatisation period, the mice (all male) were randomly allocated into 4 treatment groups and assigned an animal number. The 4 groups were made up as follows; (please note that saccharine was used to disguise the taste of alcohol to ensure the mice drank from their water bottles).

7 heterozygous mice (db/wt) = Water and 0.025% (w/v) Saccharine
6 heterozygous mice (db/wt) = 20% Ethanol and 0.025% (w/v) Saccharine
7 homozygous mice (db/db) = Water and 0.025% (w/v) Saccharine
5 homozygous mice (db/db) = 20% Ethanol and 0.025% (w/v) Saccharine

The mice were housed by genotype, dose group and litter parentage to minimise fighting. Sterilised wood shavings were used as bedding and suitable nesting material was also provided. The shavings and nesting were changed at least twice a week.

Temperature and humidity conditions were constantly controlled and a 12 hour light/dark cycle in operation. The water-ethanol mixes were prepared twice weekly and stored under a seal to prevent evaporation of alcohol. The study was conducted in Room 132 of the Rodent Accommodation Section at Chris Barnard Building, Cape Town South Africa.

The animals being treated with 20% ethanol and 0.025% (w/v) saccharine were given a 3 week adaptation period to reach the required concentration of ethanol. At the start of treatment, the ethanol concentration was 2% and increased by 2% intervals every 2 days until the required 20% concentration was achieved. These animals were then treated with the desired 20% concentration for 8 weeks. The ethanol and water for their respective treatment groups were made available ad libitum to the animals. The feed used during this study was EPOL mice cubes and was also made ad libitum.

All animals were dosed continuously via their water bottles for 11 consecutive weeks. The animals being treated with ethanol had 3 weeks adaptation and 8 weeks at 20% concentration. Body weights were recorded weekly and at termination.

The scheduled terminations occurred when the animals were 20 weeks old. The animals were killed by cardiac puncture, followed by exsanguination under ketamine and xylazine anaesthesia (as described in 4.5.1). Blood was collected in eppendorf
tubes for protein and enzyme determination. Livers were dissected and weighed before being wrapped in tin foil and snap frozen in liquid nitrogen. The liver samples were stored at -80 °C until required for biochemical analysis. Another portion of the liver was processed for histological examination.

4.5.5 Impact of Alcohol Administered over 20 Weeks in db/wt and db/db Mice

Male 5 week old heterozygous (db/wt) mice and homozygous (db/db) mice were received from Jackson Laboratory, Bar Harbour, Maine, USA on 28 January 2005 and were immediately housed in the UCT Animal Facility for a 4 week acclimatisation period prior to commencement of treatment. The animal ethics approval reference for this study is 03/042.

Following the acclimatisation period, the mice (all male) were randomly allocated into 4 treatment groups and assigned an animal number. The 4 groups were made up as follows; (please note that saccharine was used to disguise the taste of alcohol to ensure the mice drunk from their water bottles).

7 heterozygous mice (db/wt) = Water and 0.025% (w/v) Saccharine
7 heterozygous mice (db/wt) = 20% Ethanol and 0.025% (w/v) Saacharine
7 homozygous mice (db/db) = Water and 0.025% (w/v) Saccharine
7 homozygous mice (db/db) = 20% Ethanol and 0.025% (w/v) Saacharine

The mice were housed by genotype, dose group and litter parentage to minimise fighting. Sterilised wood shavings were used as bedding and suitable nesting material was also provided. The shavings and nesting were changed at least twice a week. Temperature and humidity conditions were constantly controlled and a 12 hour light/dark cycle in operation. The water-ethanol mixes were prepared twice weekly and stored under a seal to prevent evaporation of alcohol. The study was conducted in Room 132 of the Rodent Accommodation Section at Chris Barnard Building, Cape Town South Africa.

The animals being treated with 20% ethanol and 0.025% (w/v) saacharine, were given a 3 week adaptation period to reach the required concentration of ethanol. At the start of treatment, the ethanol concentration was 2% and increased by 2% intervals every 2 days until the required 20% concentration was achieved. These animals were then treated with the desired 20% concentration for 20 weeks. The ethanol and water for their respective treatment groups were made available ad
libitum to the animals. The feed used during this study was EPOL mice cubes and was also made ad libitum.

All animals were dosed continuously via their water bottles for 20 consecutive weeks. The animals being treated with ethanol had 3 weeks adaptation and 20 weeks at 20% concentration. Body weights were recorded weekly and at termination.

The scheduled terminations occurred when the animals were 32 weeks old. The animals were killed by cardiac puncture, followed by exsanguination under ketamine and xylazine anaesthesia (as described in 4.5.1). Blood was collected in eppendorf tubes for protein and enzyme determination. Livers were dissected and weighed before being wrapped in tin foil and snap frozen in liquid nitrogen. The liver samples were stored at -80 °C until required for biochemical analysis. Another portion of the liver was processed for histological examination.
Chapter 5; Results of Studies

The results are presented for both biochemical and histological studies. The raw data are tabulated and appended (chapters 8&9 respectively) and the process data shall be presented in this chapter. The anthropometric data of each study will be presented before liver composition and health related parameters (glucose, alcohol and transaminases). The lipid peroxidation having to be presented in this context will be presented last. Although some comment is made in this chapter, the interpretation of the information will take place in the next chapter. The emphasis is to give an account of all the data generated in each study. This will take the format mainly of histograms. The aim is to examine macroscopic, microscopic and biochemical features of the liver as well as morphometric aspects of animal on regular chow for 20 wks in wt/wt, db/wt and db/db animals.

5.1 Assessment of the db/db Mouse Model on Regular Chow for 20 Weeks

![Graph showing body mass comparison](image)

Figure 5.1.1: Body mass of *wt/wt* (n=12), *db/wt* (n=24) and *db/db* (n=24) mice on regular chow for 20 weeks. The mass in *db/db* animals was significantly elevated in comparison to the *wt/wt* (*p<0.0001*) and *db/wt* animals (*p<0.0001*). The *db/wt* group displayed a slightly increased mean body mass when compared to the *wt/wt* group (*p=0.0003*). Data represented as mean ± SD.
Figure 5.1.2: Liver mass of wt/wt (n=12), db/wt (n=12) and db/db (n=12) mice on regular chow for 20 weeks. The increase in liver mass of db/db mice is significant when compared to wt/wt and db/wt mice (p<0.0001 for both). The db/wt group revealed a slight increase relative to the wt/wt group (p=0.011). Data represented as mean ± SD.

Figure 5.1.3: Liver proportion of body mass of wt/wt (n=12), db/wt (n=12) and db/db (n=12) mice on regular chow for 20 weeks. The resultant liver mass/body mass ratios were not statistically significant. Data represented as mean ± SD.
Figure 5.1.4: Plasma glucose concentration in livers from wt/wt (n=12), db/wt (n=24) and db/db (n=24) mice on regular chow for 20 weeks. Glucose levels were significantly increased in db/db animals when compared to the wt/wt and db/wt groups; (p<0.0001 for both). The slight increase in the average glucose db/wt group in contrast to the wt/wt group was not statistically significant. Data represented as mean ± SD.

Figure 5.1.5: Triglycerides in livers from wt/wt (n=12), db/wt (n=24) and db/db (n=24) mice on regular chow for 20 weeks. TG were significantly raised in db/db mice when compared to wt/wt mice (p<0.0001) and db/wt mice (p<0.0001), but there was no significant differences when comparing db/wt and wt/wt groups. Data represented as mean ± SD.
Figure 5.1.6: Total cholesterol concentrations in livers from wt/wt (n=12), db/wt (n=24) and db/db (n=24) mice on regular chow for 20 weeks. TC was significantly elevated in db/db mice in contrast to wt/wt and db/wt mice (p<0.0001 for both). Concentrations for wt/wt and db/wt groups were similar. Data represented as mean ± SD.

Figure 5.1.7: Conjugated dienes as early lipid peroxidation products in livers from wt/wt (n=12), db/wt (n=24) and db/db (n=24) mice on regular chow for 20 weeks. Conjugated Dienes were significantly higher in db/db animals (p<0.0001) in comparison to wt/wt and db/wt respectively. A statistically significant increase is also present in the db/wt group when contrasted to the wt/wt group (p<0.0001). Data represented as mean ± SD.
Figure 5.1.8: LOOH as intermediate lipid peroxidation products mean in livers from *wt/wt* (n=12), *db/wt* (n=24) and *db/db* (n=24) mice on regular chow for 20 weeks. Statistical significance pertained when *db/db* mice were compared to the *wt/wt* and *db/wt* animals (*p*<0.0001 for both). Data represented as mean ± SD.

Figure 5.1.9: TTBARS as late lipid peroxidation products in livers from *wt/wt* (n=12), *db/wt* (n=24) and *db/db* (n=24) mice on regular chow for 20 weeks. Concentrations of TTBARS in *db/db* mice vs *wt/wt* mice was not statistically significant (*p*=0.247) whereas *db/db* vs *db/wt* did attain statistical significance (*p*<0.0001). Data represented as mean ± SD.
5.2 Impact of Various Oils, Administered via the Diet (4 Weeks)

The aim was to evaluate the impact on lipid and lipid peroxide parameters in the livers of db/wt mice fed diets enriched with edible oils and cholesterol over 4 weeks subsequent to a 2 wk acclimatisation period. Canola oil provides MUFA and sunflower oil provides PUFA in addition to dietary fatty acids. The mouse model is db/wt.

![Weekly Body Weights](image)

Figure 5.2.1: Body mass in control (chow only) (n=6) and 4 week supplemented sunflower oil (n=6), canola oil (n=6) or sunflower oil and cholesterol (n=6) in db/wt mice aged 17 weeks. The body mass was recorded for 1 week acclimatisation prior to the 4 week treatment period. There is slight variation in body weight gain and loss over the treatment period but the mean weight gain of all groups is reasonably comparable, controls; +1.2g, sunflower oil; +1.2g; canola oil; +0.8g, sunflower oil and cholesterol; +0.7g. Data represented as mean ± SD.

<table>
<thead>
<tr>
<th>Group / Treatment</th>
<th>M</th>
<th>C (y when x=0)</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Control</td>
<td>0.252 ± 0.06</td>
<td>18.9 ± 0.84</td>
<td>0.8283</td>
</tr>
<tr>
<td>(b) Sunflower Oil</td>
<td>0.301 ± 0.12</td>
<td>18.3 ± 1.79</td>
<td>0.6019</td>
</tr>
<tr>
<td>(c) Canola Oil</td>
<td>0.111 ± 0.12</td>
<td>21.6 ± 1.69</td>
<td>0.1875</td>
</tr>
<tr>
<td>(d) Sunflower Oil / Cholesterol</td>
<td>0.198 ± 0.15</td>
<td>21.1 ± 2.16</td>
<td>0.3102</td>
</tr>
</tbody>
</table>

a v b; ($p=0.73$) not statistically significant
a v c; ($p=0.31$) not statistically significant
a v d; ($p=0.74$) not statistically significant

Figure 5.2.2: The gradients of mean weight gain were contrasted for the alcohol-supplemented and control groups for control (chow only) (n=6) and 4 week supplemented sunflower oil (n=6), canola oil (n=6) or sunflower oil and cholesterol (n=6) in db/wt mice aged 17 weeks. Statistical significance was not attained in either treatment group relative to the controls. Data represented as mean ± SD.
Figure 5.2.3: Liver mass in control (chow only) (n=6) and 4 week supplemented sunflower oil (n=6), canola oil (n=6) or sunflower oil and cholesterol (n=6) in db/wt mice aged 17 weeks. The groups were comparable, no statistically significant change was achieved in any group and specific comparison to the controls revealed no differences: sunflower oil; (p=0.82), canola oil; (p=0.21), sunflower oil and cholesterol; (p=0.87). Data represented as mean ± SD.

Figure 5.2.4: Liver proportion of body mass in control (chow only) (n=6) and 4 week supplemented sunflower oil (n=6), canola oil (n=6) or sunflower oil and cholesterol (n=6) in db/wt mice aged 17 weeks. The canola oil group had a statistically significant difference from controls; (p=0.0019), whereas this was not achieved in the other groups, sunflower oil; (p=0.48), sunflower oil and cholesterol; (p=0.20). Data represented as mean ± SD.
Figure 5.2.5: Plasma glucose concentration in control (chow only) (n=6) and 4 week supplemented sunflower oil (n=6), canola oil (n=6) or sunflower oil and cholesterol (n=6) in db/wt mice aged 17 weeks. Statistical significance was not achieved in any treatment group, sunflower oil; (p=0.38), canola oil; (p=0.34), sunflower oil and cholesterol; (0.083). Data represented as mean ± SD.

Figure 5.2.6: Triglycerides in livers from control (chow only) (n=6) and 4 week supplemented sunflower oil (n=6), canola oil (n=6) or sunflower oil and cholesterol (n=6) in db/wt mice aged 17 weeks. Statistical significance was only reached in canola oil treated animals; (p=0.036) whereas sunflower oil; (p=0.28) and sunflower oil and cholesterol; (p=0.25) did not differ significantly. Data represented as mean ± SD.
Figure 5.2.7: Total cholesterol concentrations in livers from control (chow only) (n=6) and 4 week supplemented sunflower oil (n=6), canola oil (n=6) or sunflower oil and cholesterol (n=6) in db/wt mice aged 17 weeks. The levels of total cholesterol were increased in the treatment groups in contrast to control animals, reaching statistical significance in mice treated with sunflower oil; (p=0.0018) and with sunflower oil and cholesterol; (p=0.007), but not for the canola oil group; (p=0.11). Data represented as mean ± SD.

Figure 5.2.8: Conjugated dienes as early lipid peroxidation products in livers from control (chow only) (n=6) and 4 week supplemented sunflower oil (n=6), canola oil (n=6) or sunflower oil and cholesterol (n=6) in db/wt mice aged 17 weeks. Statistical significance was achieved in the sunflower oil treated mice; (p=0.0019) and the sunflower oil and cholesterol treated mice; (p=0.0002). The canola oil treated animals did not reach statistical significance; (p=0.101). Data represented as mean ± SD.
Figure 5.2.9: LOOH as intermediate lipid peroxidation products in livers from control (chow only) (n=6) and 4 week supplemented sunflower oil (n=6), canola oil (n=6) or sunflower oil and cholesterol (n=6) in db/wt mice aged 17 weeks. In comparison to the control animals, statistical significance was not displayed in any group, sunflower oil; (p=0.49), canola oil; (p=0.71), sunflower oil and cholesterol; (p=0.77). Data represented as mean ± SD.

Figure 5.2.10: TTBARS as late lipid peroxidation products in livers from control (chow only) (n=6) and 4 week supplemented sunflower oil (n=6), canola oil (n=6) or sunflower oil and cholesterol (n=6) in db/wt mice aged 17 weeks. No statistical significance was found, sunflower oil; (p=0.18), canola oil; (p=0.45), sunflower oil and cholesterol; (p=0.31). Data represented as mean ± SD.
Figure 5.2.11: BCA protein in homogenate from control (chow only) (n=6) and 4 week supplemented sunflower oil (n=6), canola oil (n=6) or sunflower oil and cholesterol (n=6) in db/wt mice aged 17 weeks. No statistically significant difference was found when comparing the control group with those consuming: sunflower oil; (p=0.86), canola oil; (p=0.58), sunflower oil and cholesterol; (p=0.48). Data represented as mean ± SD.
5.3 Study of Short Period of Alcohol Administration (4 Weeks)

The aim is to examine macroscopic, microscopic and biochemical features of the liver as well as morphometric aspects of animal on 20% alcohol for 4 weeks in wt/wt, db/wt and db/db animals.

![Graph](image)

Figure 5.3.1: Body mass in control and 4 weeks alcohol-supplemented wt/wt (n=4), db/wt (n=8) and db/db (n=8) mice aged 20 weeks. The body mass was recorded for 2 weeks prior to the 4 weeks alcohol administration during which the alcohol-treated animals were allowed to acclimatise to increasing concentrations of alcohol until the full 20% concentration was achieved. The mean weight gain for alcohol vs. control animals in wt/wt, db/wt and db/db groups were comparative. Data represented as mean ± SD.

<table>
<thead>
<tr>
<th>Group / Treatment</th>
<th>m</th>
<th>C (y when x=0)</th>
<th>(r^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) wt/wt – Control (H2O)</td>
<td>0.268 ± 0.09</td>
<td>14.2 ± 1.61</td>
<td>0.6181</td>
</tr>
<tr>
<td>(b) wt/wt – Alcohol (20%)</td>
<td>0.214 ± 0.07</td>
<td>14.9 ± 1.19</td>
<td>0.6545</td>
</tr>
<tr>
<td>(c) db/wt – Control (H2O)</td>
<td>0.250 ± 0.03</td>
<td>20.7 ± 0.59</td>
<td>0.9119</td>
</tr>
<tr>
<td>(d) db/wt – Alcohol (20%)</td>
<td>0.041 ± 0.04</td>
<td>21.8 ± 0.65</td>
<td>0.1875</td>
</tr>
<tr>
<td>(e) db/db – Control (H2O)</td>
<td>0.291 ± 0.09</td>
<td>32.6 ± 1.50</td>
<td>0.6898</td>
</tr>
<tr>
<td>(f) db/db – Alcohol (20%)</td>
<td>0.629 ± 0.07</td>
<td>26.0 ± 1.23</td>
<td>0.9392</td>
</tr>
</tbody>
</table>

a v b; (p=0.657) not statistically significant
c v d; (p=0.002) statistically significant
e v f; (p=0.014) statistically significant

Figure 5.3.2: The gradients of mean weight gain were contrasted for the alcohol-supplemented and control groups for wt/wt (n=4), db/wt (n=8) and db/db (n=8) mice aged 20 weeks. The difference between wt/wt animals was not statistically significant (p=0.66) whereas statistical significance was attained when comparing control and alcohol-supplemented animals for db/wt and db/db groups (p=0.002 and p=0.014 respectively). Data represented as mean ± SD.
Figure 5.3.3: Triglycerides in livers from control and 4 weeks alcohol-supplemented wt/wt (n=4), db/wt (n=8) and db/db (n=8) mice aged 20 weeks. Triglyceride concentration was increased in alcohol-treated db/db mice relative to the controls (p<0.0001). The triglyceride content was also increased in the other groups, although statistical significance could only be evaluated in the alcohol-treated and control db/wt animals (p=0.009). Data represented as mean ± SD.

Figure 5.3.4: Total cholesterol concentration in livers from control and 4 weeks alcohol-supplemented wt/wt (n=4), db/wt (n=8) and db/db (n=8) mice aged 20 weeks. Alcohol-treated mice again exhibited slightly higher values than controls but only the elevation in db/wt alcohol-treated mice was of statistical significance against their respective controls (p=0.005). Data represented as mean ± SD.
Figure 5.3.5: Conjugated dienes as early lipid peroxidation products in livers from control and 4 weeks alcohol-supplemented wt/wt (n=4), db/wt (n=8) and db/db (n=8) mice aged 20 weeks. Conjugated dienes were slightly raised in alcohol-treated animals when compared to the controls of their respective wt/wt, db/wt, and db/db groups. Data represented as mean ± SD.

Figure 5.3.6: LOOH as intermediate lipid peroxidation products in livers from control and 4 weeks alcohol-supplemented wt/wt (n=4), db/wt (n=8) and db/db (n=8) mice aged 20 weeks. All alcohol-treated groups in comparison with their respective water-treated control animals, appeared to have small increases of average LOOH but statistical significance was not achieved (p>0.10). Data represented as mean ± SD.
Figure 5.3.7: TTBARS as late lipid peroxidation products in livers from control and 4 weeks alcohol-supplemented wt/wt (n=4), db/wt (n=8) and db/db (n=8) mice aged 20 weeks. All alcohol-treated groups displayed increases when compared to their respective control groups. The levels of TTBARS were shown to be statistically significant for db/wt alcohol-treated vs. control (p=0.037) and db/db alcohol-treated vs. control (p=0.0003). Data represented as mean ± SD.
5.4 Impact of Alcohol Administered over 8 Weeks in db/wt and db/db Mice

The aim is to examine macroscopic, microscopic and biochemical features of the liver as well as morphometric aspects of animal on 20% alcohol for 8 weeks in db/wt and db/db animals.

Figure 5.4.1: Body mass in control and 8 week alcohol-supplemented db/wt (n=7, n=6 respectively) and db/db (n=6, n=5) mice aged 20 weeks. The body mass was recorded for 3 weeks prior to the 8 weeks alcohol administration of 20% ethanol concentration during which the alcohol-treated animals were allowed to acclimatise to increasing concentrations of alcohol until the full 20% concentration was achieved. The mean body mass of alcohol-treated db/wt mice was comparable to their respective controls throughout the entire treatment period, however the mean weight gain over the same duration was slightly decreased for the alcohol-treated group; +4.5g compared with +6.8g for the controls. The body mass for the db/db animals were comparable for the first half of the treatment period but notable changes became apparent soon after and also resulted in a decreased weight gain for the alcohol treated db/db mice; +5.2g compared with +7.4g for the controls. Data represented as mean ± SD.

<table>
<thead>
<tr>
<th>Group / Treatment (8wk)</th>
<th>m</th>
<th>C (y when x=0)</th>
<th>r²</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) db/wt - Control (H₂O)</td>
<td>0.655 ± 0.06</td>
<td>20.2 ± 0.83</td>
<td>0.9324</td>
</tr>
<tr>
<td>(b) db/wt - Alcohol (20%)</td>
<td>0.414 ± 0.28</td>
<td>23.6 ± 0.41</td>
<td>0.9577</td>
</tr>
<tr>
<td>(c) db/db - Control (H₂O)</td>
<td>0.601 ± 0.10</td>
<td>41.1 ± 1.54</td>
<td>0.7728</td>
</tr>
<tr>
<td>(d) db/db - Alcohol (20%)</td>
<td>0.397 ± 0.09</td>
<td>43.1 ± 1.38</td>
<td>0.6480</td>
</tr>
</tbody>
</table>

a v b; (p=0.0009) statistically significant
c v d; (p=0.155) not statistically significant

Figure 5.4.2: The gradients of mean weight gain were contrasted for 8 week alcohol-supplemented db/wt (n=7, n=6 respectively) and db/db (n=6, n=5) mice aged 20 weeks. The difference between db/db animals was not statistically significant (p=0.155) whereas statistical significance was attained when comparing control and alcohol-supplemented animals for db/wt groups (p=0.0009). Data represented as mean ± SD.
Figure 5.4.3: Liver mass in control and 8 week alcohol-supplemented db/wt (n=7, n=6 respectively) and db/db (n=6, n=5) mice aged 20 weeks. The increases in alcohol-treated db/wt mice compared with the controls was found to be statistically significant (p<0.0001), but not for the db/db mice (p=0.99). Data represented as mean ± SD.

Figure 5.4.4: Liver proportion of body mass in control and 8 week alcohol-supplemented db/wt (n=7, n=6 respectively) and db/db (n=6, n=5) mice aged 20 weeks. The liver mass/body mass ratios demonstrated a significant increase in alcohol-treated db/wt mice when compared to controls (p<0.0001) but not for the db/db animals (p=0.57). Data represented as mean ± SD.
Figure 5.4.5: Plasma glucose concentrations in blood from control and 8 week alcohol-supplemented db/wt (n=7, n=6 respectively) and db/db (n=6, n=5) mice aged 20 weeks. Glucose concentrations were decreased in alcohol-treated animals, attaining statistical significance in db/wt mice; (p=0.006) but not in db/db mice; (p=0.54). Data represented as mean ± SD.

Figure 5.4.6: Alcohol concentrations in blood in serum from control and 8 week alcohol-supplemented db/wt (n=7, n=6 respectively) and db/db (n=6, n=5) mice aged 20 weeks. The alcohol-treated animals displayed higher levels of ethanol than their respective controls but statistical significance was not achieved in either group, db/wt mice; (p=0.055), db/db mice; (p=0.17). Data represented as mean ± SD.
Figure 5.4.7: Plasma AST and ALT levels in serum from control and 8 week alcohol-supplemented db/wt (n=7, n=6 respectively) and db/db (n=6, n=5) mice aged 20 weeks. (A) Mice treated with alcohol displayed no significant increase in AST in either group, db/wt mice; (p=0.29), db/db mice (p=0.26). (B) ALT levels were not significantly different between controls and alcohol-supplemented groups, db/wt mice (p=0.49), db/db mice (p=0.83). Data represented as mean ± SD.
Figure 5.4.8: Triglycerides in livers from control and 8 week alcohol-supplemented db/wt (n=7, n=6 respectively) and db/db (n=6, n=5) mice aged 20 weeks. Triglycerides had a statistically significant increase in alcohol-treated groups in contrast to their controls, db/wt mice; (p=0.004) and db/db mice; (p=0.008) Furthermore the elevated levels in db/wt alcohol treated mice were marginally raised in contrast to the db/db controls but was not statistically significant. Data represented as mean ± SD.

Figure 5.4.9: Mean total cholesterol concentrations in livers from control and 8 week alcohol-supplemented db/wt (n=7, n=6 respectively) and db/db (n=6, n=5) mice aged 20 weeks. Total cholesterol attained statistically significant increases in alcohol-treated animals when compared to their respective controls, db/wt mice; (p=0.008) and db/db mice; (p=0.010). Data represented as mean ± SD.
Figure 5.4.10: Conjugated dienes as early lipid peroxidation products in livers from control and 8 week alcohol-supplemented \(db/\text{wt} \) (n=7, n=6 respectively) and \(db/db \) (n=6, n=5) mice aged 20 weeks. Conjugated dienes were significantly increased in alcohol-treated animals for \(db/\text{wt} \) and \(db/db \) groups; \((p=0.027)\) and \((p<0.0001)\) respectively. Data represented as mean ± SD.

Figure 5.4.11: LOOH as intermediate lipid peroxidation products in livers from control and 8 week alcohol-supplemented \(db/\text{wt} \) (n=7, n=6 respectively) and \(db/db \) (n=6, n=5) mice aged 20 weeks. The concentrations of lipid hydroperoxides displayed statistically significant increases in alcohol-treated groups for \(db/\text{wt} \) and \(db/db \) animals; \((p<0.0001)\) for both groups. Data represented as mean ± SD.
Figure 5.4.12: TTBARS as late lipid peroxidation products in livers from control and 8 week alcohol-supplemented *db/wt* (n=7, n=6 respectively) and *db/db* (n=6, n=5) mice aged 20 weeks. Increases in TTBARS were statistically significant for alcohol-treated groups in *db/wt* mice; (*p*<0.0001) and *db/db* mice; (*p*<0.0001) when compared to respective controls. Data represented as mean ± SD.

Figure 5.4.13: BCA protein in livers from control and 8 week alcohol-supplemented *db/wt* (n=7, n=6 respectively) and *db/db* (n=6, n=5) mice aged 20 weeks. BCA concentrations were determined for all groups and despite small increased changes being recorded for alcohol-treated animals, statistical significance was not attained in *db/wt* mice; (*p*=0.26) or *db/db* mice (*p*=0.35). Data represented as mean ± SD.
5.5 Impact of Alcohol Administered over 20 Weeks in db/wt and db/db Mice

The aim is to examine macroscopic, microscopic and biochemical features of the liver as well as morphometric aspects of animal on 20% alcohol for 20 weeks in db/wt and db/db animals.

![Graph showing weekly body weight in control and 20 week alcohol-supplemented db/wt (n=7, n=4 respectively) and db/db (n=6, n=6) mice aged 32 weeks. The body mass was recorded for 3 weeks prior to the 20 weeks alcohol administration of 20% ethanol concentration during which the alcohol-treated animals were allowed to acclimatise to increasing concentrations of alcohol until the full 20% concentration was achieved. The body mass of alcohol-treated animals and their respective controls were comparable at the start of the treatment period for db/wt and db/db mice. However after approximately 4-5 weeks of treatment, both sets of controls appear to have a slightly increased rate of weight gain when compared to the alcohol-treated mice. This lower degree of weight gain is never recovered and is demonstrated by the resulting differences between the groups over the treatment period. In db/wt mice, the mean weight gain for the controls is +6.4g compared with 1.2g for alcohol-treated animals whereas the respective gains for db/db mice are +12.3g and +6.8g. Data represented as mean ± SD.](image)

Figure 5.5.1: Body mass in control and 20 week alcohol-supplemented db/wt (n=7, n=4 respectively) and db/db (n=6, n=6) mice aged 32 weeks. The body mass was recorded for 3 weeks prior to the 20 weeks alcohol administration of 20% ethanol concentration during which the alcohol-treated animals were allowed to acclimatise to increasing concentrations of alcohol until the full 20% concentration was achieved. The body mass of alcohol-treated animals and their respective controls were comparable at the start of the treatment period for db/wt and db/db mice. However after approximately 4-5 weeks of treatment, both sets of controls appear to have a slightly increased rate of weight gain when compared to the alcohol-treated mice. This lower degree of weight gain is never recovered and is demonstrated by the resulting differences between the groups over the treatment period. In db/wt mice, the mean weight gain for the controls is +6.4g compared with 1.2g for alcohol-treated animals whereas the respective gains for db/db mice are +12.3g and +6.8g. Data represented as mean ± SD.

<table>
<thead>
<tr>
<th>Group / Treatment (20wk)</th>
<th>m</th>
<th>C (y when x=0)</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) db/wt – Control (H₂O)</td>
<td>0.215 ± 0.04</td>
<td>29.9 ± 0.82</td>
<td>0.5942</td>
</tr>
<tr>
<td>(b) db/wt – Alcohol (20%)</td>
<td>0.159 ± 0.02</td>
<td>26.8 ± 0.32</td>
<td>0.8385</td>
</tr>
<tr>
<td>(c) db/db – Control (H₂O)</td>
<td>0.473 ± 0.07</td>
<td>45.1 ± 1.54</td>
<td>0.6673</td>
</tr>
<tr>
<td>(d) db/db – Alcohol (20%)</td>
<td>0.200 ± 0.05</td>
<td>46.5 ± 1.11</td>
<td>0.4093</td>
</tr>
</tbody>
</table>

a v b; (p=0.18) not statistically significant

b c v d; (p=0.003) statistically significant

Figure 5.5.2: Slope analysis mass in control and 20 week alcohol-supplemented db/wt (n=7, n=4 respectively) and db/db (n=6, n=6) mice aged 32 weeks. The body mass was recorded for 3 weeks prior to the 20 weeks alcohol administration of 20% ethanol concentration. Results from the gradient analysis were contrary to 8wk study as difference between db/wt animals was not statistically significant (p=0.18) whereas statistical significance was attained when comparing control and alcohol-supplemented animals for db/db groups (p=0.003). Data represented as mean ± SD.
Figure 5.5.3: Liver mass in control and 20 week alcohol-supplemented *db/wt* (n=7, n=4 respectively) and *db/db* (n=6, n=6) mice aged 32 weeks. There was no statistical significance reached in *db/db* mice; (p=0.55). In *db/wt* mice; statistical significance was achieved; (p=0.007). Data represented as mean ± SD.

Figure 5.5.4: Liver proportion of body weight in control and 20 week alcohol supplemented *db/wt* (n=7, n=4 respectively) and *db/db* (n=6, n=6) mice aged 32 weeks. Liver mass/body mass ratios from alcohol-treated animals, the differences between the *db/db* groups achieved statistical significance (p=0.033) as did *db/wt* mice ratios, (p=0.003).
Figure 5.5.5: Plasma glucose concentrations in blood from control and 20 week alcohol-supplemented \textit{db/wt} (n=7, n=4 respectively) and \textit{db/db} (n=6, n=6) mice aged 32 weeks. The glucose concentrations were lower for both groups in comparison to the controls, but the results did not show statistical significance for either \textit{db/wt} mice; ($p=0.63$) or \textit{db/db} mice; ($p=0.29$). Data represented as mean ± SD.

Figure 5.5.6: Alcohol concentrations in blood from control and 20 week alcohol-supplemented \textit{db/wt} (n=7, n=4 respectively) and \textit{db/db} (n=6, n=6) mice aged 32 weeks. The increase in \textit{db/wt} alcohol-treated mice was shown to be statistically significant in comparison to the controls; ($p=0.0054$) but not in alcohol-treated \textit{db/db} mice; ($p=0.31$). Data represented as mean ± SD.
Figure 5.5.7: AST and ALT levels in serum from control and 20 week alcohol-supplemented db/wt (n=7, n=4 respectively) and db/db (n=6, n=6) mice aged 32 weeks. (A) The AST levels gained statistical significance for db/wt mice; (p=0.037) but not for db/db mice; (p=0.64). (B) The levels of ALT between alcohol-treated and control animals of their respective groups were not statistically significantly different for db/wt mice; (p=0.75) and db/db mice; (p=0.62). Data represented as mean ± SD.
Figure 5.5.8: Triglycerides in livers from control and 20 week alcohol-supplemented db/wt (n=7, n=4 respectively) and db/db (n=6, n=6) mice aged 32 weeks. Triglycerides were increased in alcohol-treated groups in contrast to their respective controls for db/wt mice; (p=0.0012) and db/db mice; (p=0.0030). Data represented as mean ± SD.

Figure 5.5.9: Total cholesterol concentration in livers from control and 20 week alcohol-supplemented db/wt (n=7, n=4 respectively) and db/db (n=6, n=6) mice aged 32 weeks. The increases of total cholesterol detected in alcohol-treated animals were statistically significant when compared to the control groups for db/wt mice and db/db mice; (p=0.0010) and (p=0.0046) respectively. Data represented as mean ± SD.
Figure 5.5.10: Conjugated dienes as early lipid peroxidation products in livers from control and 20 week alcohol-supplemented db/wt (n=7, n=4 respectively) and db/db (n=6, n=6) mice aged 32 weeks. Conjugated dienes of alcohol-treated animals displayed significantly elevated levels in comparison to the control groups, db/wt mice; (p=0.031) and db/db mice (p=0.0025). Data represented as mean ± SD.

Figure 5.5.11: LOOH as intermediate lipid peroxidation products in livers from control and 20 week alcohol-supplemented db/wt (n=7, n=4 respectively) and db/db (n=6, n=6) mice aged 32 weeks. Increased concentrations of lipid hydroperoxides were shown in db/wt and db/db alcohol-treated animals when contrasted against the controls, db/wt mice; (p=0.0002) and db/db mice; (p=0.0109) respectively. Data represented as mean ± SD.
Figure 5.5.12: TTBARS as late lipid peroxidation products in livers from control and 20 week alcohol-supplemented db/wt (n=7, n=4 respectively) and db/db (n=6, n=6) mice aged 32 weeks. The TTBARS concentrations gained statistical significance in db/wt mice; (p=0.0002) and db/db mice; (p=0.030), Data represented as mean ± SD.

Figure 5.5.13: BCA protein in homogenate from control and 20 week alcohol-supplemented db/wt (n=7, n=4 respectively) and db/db (n=6, n=6) mice aged 32 weeks. No statistical significance was attained when compared to respective controls, db/wt mice; (p= 0.24) and db/db mice; (p=0.30). Data represented as mean ± SD.
5.6.1 Summary of Results for the db/db Mouse Model on Regular Chow for 20 Weeks

<table>
<thead>
<tr>
<th></th>
<th>Wild Type (wt/wt)</th>
<th>Heterozygous (db/wt)</th>
<th>Homozygous (db/db)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>M</td>
<td>F</td>
<td>M</td>
</tr>
<tr>
<td>No. of Animals</td>
<td>6</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>Terminal Body Mass (g)</td>
<td>22.4 ± 0.8</td>
<td>17.3 ± 1.6</td>
<td>26.4 ± 2.4</td>
</tr>
<tr>
<td>Liver Mass (g)</td>
<td>0.78 ± 0.06</td>
<td>0.75 ± 0.08</td>
<td>1.27 ± 0.13</td>
</tr>
<tr>
<td>Conjugated Dienes (μmol/g.liver)</td>
<td>2.07 ± 0.21</td>
<td>1.89 ± 0.12</td>
<td>2.58 ± 0.35</td>
</tr>
<tr>
<td>Lipid Hydroperoxides (nmol LOOH/g.liver)</td>
<td>217 ± 76</td>
<td>137 ± 91</td>
<td>176 ± 71</td>
</tr>
<tr>
<td>TTBARS (nmol/g.liver)</td>
<td>1795 ± 87</td>
<td>1309 ± 149</td>
<td>1264 ± 225</td>
</tr>
<tr>
<td>Cholesterol (mg TC/g.liver)</td>
<td>4.71 ± 0.39</td>
<td>4.85 ± 0.33</td>
<td>4.47 ± 0.43</td>
</tr>
<tr>
<td>Triglycerides (mg TG/g.liver)</td>
<td>1.94 ± 0.44</td>
<td>1.81 ± 0.39</td>
<td>1.19 ± 0.22</td>
</tr>
<tr>
<td>Glucose Concentration (mmol/l)</td>
<td>5.5 ± 1.7</td>
<td>5.1 ± 1.0</td>
<td>9.1 ± 3.4</td>
</tr>
</tbody>
</table>
5.6.2 Summary of Results from the Impact of Various Oils, Administered via the Diet (4 Weeks)

<table>
<thead>
<tr>
<th>Sex / No. Animals</th>
<th>Treatment</th>
<th>Terminal Body Mass (g)</th>
<th>Mean Mass Gain (g) Weeks 12-17</th>
<th>Liver Mass (g)</th>
<th>Conjugated Dienes (μmol/g liver)</th>
<th>Lipid Hydroperoxides (nmol LOOH/g liver)</th>
<th>TTBARS (nmol/g liver)</th>
<th>Cholesterol (mg TC/g liver)</th>
<th>Triglycerides (mg TG/g liver)</th>
<th>BCA Protein (μg/µg liver)</th>
<th>Glucose Concentration (mmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3M + 3F</td>
<td>Chow Only (control)</td>
<td>23.4 ± 3.6</td>
<td>+ 1.2</td>
<td>0.91 ± 0.17</td>
<td>2.00 ± 0.20</td>
<td>400 ± 251</td>
<td>3532 ± 410</td>
<td>2.33 ± 0.52</td>
<td>20.1 ± 3.5</td>
<td>71.3 ± 11.9</td>
<td>6.8 ± 1.9</td>
</tr>
<tr>
<td>3M + 3F</td>
<td>Sunflower Oil</td>
<td>23.6 ± 2.7</td>
<td>+ 1.2</td>
<td>0.88 ± 0.13</td>
<td>2.66 ± 0.33</td>
<td>561 ± 235</td>
<td>3173 ± 461</td>
<td>4.47 ± 1.13</td>
<td>22.8 ± 4.7</td>
<td>72.2 ± 4.0</td>
<td>7.6 ± 1.0</td>
</tr>
<tr>
<td>3M + 3F</td>
<td>Canola Oil</td>
<td>24.1 ± 3.2</td>
<td>+ 0.8</td>
<td>1.03 ± 0.13</td>
<td>2.26 ± 0.30</td>
<td>500 ± 90</td>
<td>3314 ± 546</td>
<td>3.43 ± 1.46</td>
<td>24.4 ± 2.8</td>
<td>75.0 ± 10.8</td>
<td>8.0 ± 2.2</td>
</tr>
<tr>
<td>3M + 3F</td>
<td>Sunflower Oil / Cholesterol</td>
<td>24.5 ± 5.0</td>
<td>+ 0.7</td>
<td>0.89 ± 0.16</td>
<td>2.46 ± 0.05</td>
<td>497 ± 188</td>
<td>3204 ± 632</td>
<td>3.99 ± 1.08</td>
<td>22.2 ± 2.4</td>
<td>75.5 ± 17.7</td>
<td>4.5 ± 2.2</td>
</tr>
</tbody>
</table>

All animals in this study, both male and female were Heterozygous (db/wt)
5.6.3 Summary of Results from the Impact of a Short Period of Alcohol Administration (4 Weeks)

<table>
<thead>
<tr>
<th></th>
<th>Wild Type (wt/wt)</th>
<th>Heterozygous (db/wt)</th>
<th>Homozygous (db/db)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex / No. of Animals</td>
<td>1M + 1F</td>
<td>1M + 1F</td>
<td>2M + 2F</td>
</tr>
<tr>
<td>Treatment</td>
<td>H₂O</td>
<td>20% alcohol</td>
<td>H₂O</td>
</tr>
<tr>
<td>Terminal Body Mass (g)</td>
<td>22.4 ± 0.8</td>
<td>17.3 ± 1.6</td>
<td>26.4 ± 2.4</td>
</tr>
<tr>
<td>Mean Mass Gain (g)</td>
<td>+ 2.2</td>
<td>+ 1.8</td>
<td>+ 1.8</td>
</tr>
<tr>
<td>Weeks 14-20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conjugated Dienes (μmol/g.liver)</td>
<td>1.81</td>
<td>1.98</td>
<td>1.71 ± 0.31</td>
</tr>
<tr>
<td>Lipid Hydroperoxides</td>
<td>93</td>
<td>291</td>
<td>158 ± 44</td>
</tr>
<tr>
<td>TTBARS (nmol/g.liver)</td>
<td>1490</td>
<td>1577</td>
<td>1175 ± 72</td>
</tr>
<tr>
<td>Cholesterol (mg TC/g.liver)</td>
<td>3.54</td>
<td>4.53</td>
<td>2.62 ± 0.72</td>
</tr>
<tr>
<td>Triglycerides (mg TG/g.liver)</td>
<td>1.53</td>
<td>1.84</td>
<td>1.05 ± 0.08</td>
</tr>
</tbody>
</table>

Please note that a standard deviation value could not be calculated for wild type (wt/wt) animals as the numbers were too small.
5.6.4 Summary of Results from the Impact of Alcohol Administered over 8 Weeks in db/wt and db/db Mice

<table>
<thead>
<tr>
<th></th>
<th>Heterozygous (db/wt)</th>
<th>Homozygous (db/db)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex / No. Animals</td>
<td>7M 6M 6M 5M</td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>H₂O 20% alcohol</td>
<td>H₂O 20% alcohol</td>
</tr>
<tr>
<td>Terminal Body Mass (g)</td>
<td>32.0 ± 2.7 31.8 ± 1.1</td>
<td>51.8 ± 5.3 49.5 ± 8.7</td>
</tr>
<tr>
<td>Mean Mass Gain (g) Weeks 9-20</td>
<td>+ 6.8 + 4.5</td>
<td>+ 7.4 + 5.2</td>
</tr>
<tr>
<td>Liver Mass (g)</td>
<td>1.06 ± 0.06 1.45 ± 0.12</td>
<td>2.83 ± 0.57 2.84 ± 0.42</td>
</tr>
<tr>
<td>Conjugated Dienes (μmol/g.liver)</td>
<td>1.60 ± 0.31 2.00 ± 0.23</td>
<td>2.66 ± 0.07 3.45 ± 0.16</td>
</tr>
<tr>
<td>Lipid Hydroperoxides (nmol LOOH/g.liver)</td>
<td>339 ± 54 724 ± 107</td>
<td>1073 ± 92 1486 ± 118</td>
</tr>
<tr>
<td>TTBARS (nmol/g.liver)</td>
<td>1762 ± 154 2529 ± 266</td>
<td>1862 ± 230 2962 ± 257</td>
</tr>
<tr>
<td>Cholesterol (mg TC/g.liver)</td>
<td>3.35 ± 0.95 5.03 ± 0.91</td>
<td>5.91 ± 1.02 8.46 ± 1.58</td>
</tr>
<tr>
<td>Triglycerides (mg TG/g.liver)</td>
<td>4.00 ± 1.63 6.61 ± 0.78</td>
<td>6.55 ± 1.41 10.33 ± 2.25</td>
</tr>
<tr>
<td>BCA Protein (µg/µg. liver)</td>
<td>55.3 ± 10.5 60.7 ± 3.6</td>
<td>69.4 ± 12.4 76.7 ± 12.2</td>
</tr>
<tr>
<td>AST Levels (U/l)</td>
<td>32.6 ± 17.3 41.7 ± 11.1</td>
<td>53.8 ± 21.4 77.8 ± 43.4</td>
</tr>
<tr>
<td>ALT Levels (U/l)</td>
<td>18.6 ± 10.5 22.3 ± 8.0</td>
<td>65.3 ± 46.9 71.0 ± 33.9</td>
</tr>
<tr>
<td>Blood / Alcohol Levels (mmol/l)</td>
<td>0.53 ± 0.46 1.33 ± 0.86</td>
<td>1.12 ± 0.56 4.73 ± 6.0</td>
</tr>
<tr>
<td>Glucose Concentration (mmol/l)</td>
<td>13.8 ± 3.4 8.6 ± 1.6</td>
<td>31.2 ± 2.0 29.2 ± 2.8</td>
</tr>
</tbody>
</table>
5.6.5 Summary of Results from the Impact of Alcohol Administered over 20 Weeks in db/wt and db/db Mice

<table>
<thead>
<tr>
<th></th>
<th>Heterozygous (db/wt)</th>
<th>Homozygous (db/db)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex / No. Animals</td>
<td>7M</td>
<td>4M</td>
</tr>
<tr>
<td>Treatment</td>
<td>H₂O</td>
<td>20% alcohol</td>
</tr>
<tr>
<td>Terminal Body Mass (g)</td>
<td>33.4 ± 2.7</td>
<td>31.3 ± 2.1</td>
</tr>
<tr>
<td>Mean Mass Gain (g)</td>
<td>+ 6.4</td>
<td>+ 1.2</td>
</tr>
<tr>
<td>Weeks 9-32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver Mass (g)</td>
<td>1.37 ± 0.05</td>
<td>1.53 ± 0.11</td>
</tr>
<tr>
<td>Conjugated Dienes (µmol/g.liver)</td>
<td>1.64 ± 0.18</td>
<td>2.19 ± 0.29</td>
</tr>
<tr>
<td>Lipid Hydroperoxides (nmol LOOH/g.liver)</td>
<td>195 ± 60</td>
<td>452 ± 78</td>
</tr>
<tr>
<td>TTBARS (nmol/g.liver)</td>
<td>1617 ± 30</td>
<td>2816 ± 349</td>
</tr>
<tr>
<td>Cholesterol (mg TC/g.liver)</td>
<td>3.88 ± 0.50</td>
<td>5.58 ± 0.67</td>
</tr>
<tr>
<td>Triglycerides (mg TG/g.liver)</td>
<td>3.72 ± 0.54</td>
<td>5.35 ± 0.59</td>
</tr>
<tr>
<td>BCA Protein (µg/µg. liver)</td>
<td>58.6 ± 8.0</td>
<td>64.8 ± 6.0</td>
</tr>
<tr>
<td>AST Levels (U/l)</td>
<td>23.3 ± 9.2</td>
<td>37.5 ± 9.5</td>
</tr>
<tr>
<td>ALT Levels (U/l)</td>
<td>15.1 ± 7.8</td>
<td>16.8 ± 7.9</td>
</tr>
<tr>
<td>Blood / Alcohol Levels (mmol/l)</td>
<td>0.64 ± 0.49</td>
<td>12.65 ± 9.09</td>
</tr>
<tr>
<td>Glucose Concentration (mmol/l)</td>
<td>13.6 ± 3.5</td>
<td>12.3 ± 5.2</td>
</tr>
</tbody>
</table>
5.7 Histology Findings

5.7.1 Results for the db/db Mouse Model on Regular Chow for 20 Weeks

Figure 5.7.1: Histological liver sections stained with H&E from (A) heterozygous (db/wt) mouse on regular chow for 20wks (B) homozygous (db/db) mouse on regular chow for 20wks.
Figure 5.7.1; Histological liver sections stained with H&E from (C) heterozygous (db/wt) mouse on regular chow for 20wks (D) homozygous (db/db) mouse on regular chow for 20 wks.
Results from the Impact of Various Oils, Administered via the Diet (4 Weeks)

Figure 5.7.2: Histological liver sections stained with H&E from heterozygous mice (db/wt) fed the following diets; (A) Control; regular chow for 4wks (B) regular chow supplemented with sunflower oil for 4wks (C) regular chow supplemented with canola oil for 4wks (D) regular chow supplemented with sunflower oil and cholesterol for 4wks. The histology was normal for all groups.
5.7.3 Results from the Impact of Alcohol Administered over 8 Weeks in db/wt and db/db Mice

Figure 5.7.3 Histological liver section stained with H&E from (A) heterozygous (db/wt) mouse on 20% alcohol + 0.025% (w/v) saccharine for 8 wks.

Please note that there were slight processing problems with the H&E staining for Control; heterozygous (db/wt) mouse on water + 0.025% (w/v) saccharine for 8 wks which is why the liver section is not presented here.
Figure 5.7.3 Histological liver sections stained with H&E from (B) Control; homozygous (db/db) mouse on water + 0.025% (w/v) saccharine for 8wks (C) homozygous (db/db) mouse on 20% alcohol + 0.025% (w/v) saccharine for 8wks.
Figure 5.7.3 Histological liver sections stained with H&E from (D) Control; homozygous (db/db) mouse on water + 0.025% (w/v) saccharine for 8wks (E) homozygous (db/db) mouse on 20% alcohol + 0.025% (w/v) saccharine for 8wks.
Figure 5.7.3 Histological liver sections stained with H&E from (F) Control; homozygous (db/db) mouse on water + 0.025% (w/v) saccharine for 8wks (G) homozygous (db/db) mouse on 20% alcohol + 0.025% (w/v) saccharine for 8wks.
5.7.4 Results from the Impact of Alcohol Administered over 20 Weeks in db/wt and db/db Mice

Figure 5.7.4 Histological liver sections stained with H&E from (A) Control; heterozygous (db/wt) mouse on water + 0.025% (w/v) saccharine for 20wks (B) heterozygous (db/wt) mouse on 20% alcohol + 0.025% (w/v) saccharine for 20wks.
Figure 5.7.4 (C) Control; homozygous (db/db) mouse on water + 0.025% (w/v) saccharine for 20wks (D) homozygous (db/db) mouse on 20% alcohol + 0.025% (w/v) saccharine for 20wks.
Figure 5.7.4 Histological liver section stained with H&E from (E) Control; homozygous (db/db) mouse on water + 0.025% (w/v) saccharine for 20wks.

Figure 5.7.4 Histological liver section stained with sirius red for collagen; (F) Control; homozygous (db/db) mouse on water + 0.025% (w/v) saccharine for 20wks (G) homozygous (db/db) mouse on 20% alcohol + 0.025% (w/v) saccharine for 20wks.
Chapter 6: Interpretation of Results

6.1 Assessment of the db/db Mouse Model on Regular Chow for 20 Weeks

The db/db mouse was investigated to test its suitability as an appropriate model to study the development of fatty liver in the context of NAFLD and NASH. Alcohol was used as a possible trigger factor for NASH as it is known to induce enzymes and to cause changes similar to NASH in humans. Based on physical appearance alone, it was apparent from the outset that there could be considerable biochemical differences between the homozygous, heterozygous and wild-type strains of the db/db mouse model as the pictures in figure 6.1.1 clearly reveal. The assessment of wt/wt, db/wt and db/db animals was undertaken in an attempt to fully characterize the model. Furthermore, the graphs display results for combined sexes, male and female, to assess each genotype as a single constituent but grouped sexes and individual results are presented in the tables and appendix sections respectively.

Figure 6.1.1: From left to right, the picture displays the size difference between the homozygous (db/db), heterozygous (db/wt) and wild-type (wt/wt) strains.

The analysis of these animals revealed several characteristics that mirror those typically witnessed in humans and confirms its usefulness as a model to study NAFLD and NASH. Firstly, the db/db mice were obese, laden with visceral fat (see
figure 6.1.2) and exhibited body weights which dramatically increased in size in comparison to the lean wt/wt and db/wt mice; (43.5g vs. 19.9g and 23.6g respectively), and attained statistical significance ($p<0.0001$ for both). Additionally, the mean difference in body mass between the wt/wt and db/wt animals is 3.7g which is statistically significant ($p=0.0003$). Despite this disparity in body mass being small, it could possibly be attributed to an effect of the db gene and may influence responses, especially in the setting of hyperglycaemia.

The mass of liver was also noticeably increased in db/db mice in contrast to the wt/wt and db/wt mice (see figure 6.1.3), achieving statistical significance of $p<0.0001$ for both which reflects the larger body mass of the homozygous mice. Besides this, liver mass was slightly elevated in the db/wt animals when compared to the wt/wt animals and again reached statistical significance ($p=0.011$). This information provides further evidence that the db gene is possibly causing an effect, and although it is slight, a definite trend is beginning to occur. Furthermore, the relative liver weight: body weight ratios were assessed for wt/wt, db/wt and db/db animals which resulted in all groups being comparative. Therefore, despite the db/db mice having larger livers, they do appear to be in appropriate proportion to their body mass. An additional observation emerging from the db/db mice is that, although the mean body mass for
both sexes is comparable, a marginal decrease in female body mass does exist when contrasted against the males; (42.2g vs. 44.8g respectively), yet conversely, female liver mass is increased in comparison to the males (2.09g vs. 1.77g respectively), although statistical significance is not attained (p=0.103). It is unclear whether gender may be affecting the discrepancy in liver mass as previous studies have displayed the females to be at higher risk of fatty liver development (Angulo et al., 1999), but there are too few animals in the groups to determine if this is a 'true' causative effect.

Figure 6.1.3: From left to right, the picture displays the variation in liver size of homozygous (db/db) and heterozygous (db/wt) mice strains.

Additionally, the livers of db/db animals were shown to have yellow coloration and were significantly enlarged in contrast to the wt/wt and db/wt groups; (p<0.0001 for both). Despite the significant increase of liver mass in db/db animals, the liver was proportionate to body mass when adjusted for body mass ratios and was found to be comparative to that of wt/wt and db/wt groups. However, the extent of fat accumulation and the low degree of inflammatory response was not significant enough to facilitate NASH in these mice. As a result the aptness of this model could be slightly restricted, meanwhile posing the question whether some sort of contributing factor is missing in the genetic make-up that prevents the progression to NASH. Alternatively, the inflammatory response of mice may differ. It is also possible
that dietary fat may need to be increased significantly more, possibly with heated fat to resemble humans.

In comparison, histological examination of the lean wt/wt and db/wt groups displayed hepatocytes which were normal in structure and function with no aggregations of fat droplets present. There were no noteworthy histological differences detected between male and female livers in wt/wt, db/wt or db/db groups respectively. Although marked steatosis was evident in the db/db mice, the inflammation and fibrotic processes of NASH were absent in the control and alcohol groups. These findings indicate that histology, though sensitive for qualitative changes such as the presence of inflammation and fibrosis is insensitive in detecting more subtle change.

Biochemical analysis was undertaken to assess early, intermediate and late products of lipid peroxidation and all these parameters were found to be elevated in db/db mice. Conjugated dienes are considered to be a reliable marker as early products of lipid peroxidation. The increase in CD in db/db mice attained statistical significance when compared to the wt/wt and db/wt groups (p<0.0001 for both), highlighting the difference in fatty acid metabolism. There was also a slight increase in CDs in db/wt mice when compared to the wt/wt group which demonstrated statistical significance (p<0.0001) and therefore continues to emphasize the growing trend that the db gene may be influential in FA metabolism and consequently the development of fatty liver. Furthermore, CD concentrations of male vs. female were analysed for wt/wt, db/wt and db/db groups and although they were comparative for wt/wt and db/wt groups; (1.81 vs. 1.98 and 1.71 vs. 2.18 µmol/g. liver respectively), the values were slightly elevated in the females. This may show an inherent difference in peroxidation activities or susceptibility between the genders. A superior increase was observed in females when comparing sexes in the db/db mice; (2.90 vs. 3.62 µmol/g. liver respectively), but this did not achieve statistical significance either (p=0.36). In addition, it must be noted that all increases of LOOH occurred in the female gender and despite statistical significance not being reached in all groups, a slight effect of gender difference could be attributed for the change. A clear effect cannot, however be determined due to the small group sizes.

Lipid hydroperoxides are classified as intermediate products of lipid peroxidation. They were found to be significantly increased in db/db animals when evaluated against the wt/wt and db/wt animals (p<0.0001 for both). In comparison, there was no significant difference between the wt/wt and db/wt groups and therefore the db gene
does not appear to display an effect on LOOH concentration. Additionally, no notable changes were exhibited when comparing sexes for wt/wt and db/wt groups, but the difference proved to be significant in db/db animals (p<0.0001) due to a dramatic increase in male mice. This finding contradicts the present trend of female gender being influential but a reasonable degree of variation did exist within all groups as demonstrated by the standard deviations.

Late products of lipid peroxidation; total TBARS, were analysed and the increases exhibited in db/db mice were found to be statistically significant in comparison to the db/wt group; (p=0.0095). The db/db animals also displayed increases of TTBARS when contrasted against the wt/wt group but these were only slight and did not attain statistical significance (p=0.79 and p=0.25 respectively). The values were comparable for wt/wt and db/wt groups, although levels were marginally elevated in wt/wt animals. The methods in the numerous published studies are not consistent, thus making a comprehensive comparison of experiments difficult, especially for products of lipid peroxidation.

Hepatic triglyceride content was also significantly increased in db/db mice in comparison to the lean wt/wt and db/wt groups (p<0.0001 for both). The massive difference could be due to abnormal TG synthesis or decreased oxidation and export (or all these processes) in the db/db group. The increase of lipid peroxidation products could, in part, reflect oxidative stress from enhanced oxidation that does not compensate for altered fluxes into the liver of FA or de novo synthesis. Furthermore, the db gene did not exert any influence on TG concentration in the heterozygous state as the content was slightly higher in wt/wt mice in contrast to the db/wt group, although the values were relatively comparable. The TG content was comparable between wt/wt male and female mice; (1.81 vs. 1.91 mg TG/g. liver) and db/wt male and female mice; (1.19 vs. 1.41 mg TG/g. liver respectively). Despite the fact that no statistical significance was reached, values were marginally higher in female animals. Additionally, the increases in female mice of db/db group were statistically significant in contrast to the males (p=0.019) and provides evidence of a slight effect which could be attributed to female gender.

Concentrations of total cholesterol were examined and again revealed statistically significant increases in db/db mice when contrasted against wt/wt and db/wt; (p<0.0001 for both). Increases in cholesterol can not be the consequence of the diet as all animals were fed regular chow for 20 weeks. Therefore, the significant increase
must be attributed as a resulting defect of the db/db model. TC was comparable between wt/wt and db/wt groups (4.78 vs. 4.51 mg TC/g liver respectively), although levels were slightly raised in wt/wt animals and therefore demonstrated no influence from the db gene. Minor increases were observed in females when compared to males in their respective wt/wt, db/wt and db/db groups but the differences were too small to be successfully attributed to female gender.

Glucose concentrations in plasma were shown to continue the growing trend of increases in db/db mice being statistically significant when compared to wt/wt and db/wt groups (p<0.0001 for both). The prevailing increase in glucose in db/db mice is indicative of diabetes being present in this genotype. Slight increases were observed in db/wt animals in contrast to the wt/wt group values were comparative and no statistical significance was attained. Additionally, glucose concentrations were revealed to be increased in males when compared against the females from wt/wt, db/wt and db/db groups. The difference was insignificant between sexes of wt/wt and db/db animals but did achieve statistical significance in db/wt; (p=0.02). It is possible that in the longer term, more striking differences will emerge in db/wt mice as diabetes may progress.

Assessment of the varying genotypes within this mouse model revealed that db/db mice were obese in comparison to the lean mice; wt/wt and db/wt, which was confirmed by exhibiting mean body mass approximately double in size. Increases in liver mass of db/db mice were also statistically significant in comparison to the wt/wt and db/wt animals but after adjusting for liver mass: body mass ratios, liver of db/db group was found to be in appropriate proportion to body mass resulting in all 3 groups displaying relatively similar values. CDS, LOOH, TTBARS, TC, and TG were all notably higher in db/db mice in comparison to the wt/wt and db/wt and although statistical significance was not reached in every parameter investigated, evidence does suggest that severely altered fatty acid metabolism is occurring within these homozygous mice. The occurrence of obesity and steatosis are prominent characteristics of NAFLD and could be attributed to the resulting derangement of FA metabolism. The progression from fatty liver to NASH did not transpire in these animals and the reasoning remains undefined. In addition, the significant increase of plasma glucose is strongly indicative of diabetes which is also strongly associated with NAFLD and further enhances the credibility of the db/db mouse as a suitable model. Additionally, the presence of the db gene did appear to provoke various increases in body mass, liver mass, CDS, LOOH and glucose concentration in
comparison to the wt/wt group and potentially may be a slight effect. However, the
db/wt group displayed slight decreases for TTBARS, TC and TG in comparison to the
wt/wt animals and resultantly obscures the correct interpretation. The question of
female gender being attributed as an effect is also debatable, despite displaying
some statistically significant increases, results were very variable and unpredictable
and not consistent throughout the groups. Consequently, any small difference cannot
be attributed to female gender and further studies with larger group sizes would have
to be undertaken to establish an effect.

Overall, the db/db mouse mirrors several characteristics often distinguished in
NAFLD patients such as obesity, diabetes and fatty livers. However, further stress
must be exerted on this model in an attempt to facilitate the progression to NASH
and therefore help identify a cause behind this disease.

6.2 Impact of Various Oils, Administered via the Diet (4 Weeks)

In society today, various oils are utilized for cooking and preparation of many
foodstuffs. Human evolution might not have been on a continuously high
consumption of TG. The purpose of this study was therefore aimed at determining
whether the lipids contained within any particular oil were present in significant
amounts to produce increased levels of fat accumulation. It could also test whether
PUFA, being more prone to peroxidation, significantly influenced these parameters in
the short term. In an attempt to provoke hepatic fatty change, lean db/wt mice were
used as it was thought that any minor change that may occur would be masked in the
already obese, diabetic db/db mice. Unfortunately, due to limitations with animal
numbers, all groups only contained 3 males and 3 females which were pooled
together for statistical reasons.

The initial observations that were made comprised the weekly recording of body
weights which were comparable over the treatment period. However, after the first
week of treatment, the controls were the only group to have an increase in mean
body mass gain; (+0.3g). The sunflower oil-treated group displayed no change
whereas the canola oil-treated mice and sunflower oil/cholesterol-treated mice were
shown to lose weight; (-0.6g and -1.0g respectively). This anomaly can be accredited
to the diet modification as the oil-treated animals would have possibly taken a dislike
to the new taste and would therefore not have consumed normal quantities in the
beginning. This is reflected by all groups displaying an increased mean weight gain in
comparison to the controls the following week; (+0.1g vs. +0.3g, +0.2g and +1.5g respectively). As these changes are negligible and values were comparable over the treatment period it must be concluded that administration of any oil or combination with cholesterol did not have any effect on body weight gain. This is further confirmed by contrasting gradients for the treated groups against the control animals as no statistical significance was attained; (p=0.73, p=0.31 and p=0.74 respectively). In spite of this, there are a small number of individuals who still develop NAFLD and NASH without becoming obese so even though an obvious increase in body mass did not occur, the possibility of developing fatty liver still remains.

Liver mass was also comparable for all groups despite the canola oil treated animals having a slightly higher mean value than the controls; (1.025g vs. 0.905g respectively). However the canola oil group did have a statistically significant increase of liver weight: body weight ratio; (p=0.002) and although this change was minor, it could be the outcome of fat accumulation attributed to a slight effect of treatment with canola oil. Histological examination of the liver sections provided conflicting evidence as no significant findings were produced. There was no indication of fat accumulation in either treatment group as all hepatocytes appeared to be normal in structure without the present of steatosis. The slight increase in liver mass of canola oil-treated animals can therefore not be attributed to treatment and again signifies that the surplus of ingested lipids from oil administration does not appear to have an effect in contrast with the control animals.

In light of the insignificant histology findings, livers were analysed for products of lipid peroxidation to assess whether the oil administration affected the livers at a biochemical level. No single treatment group achieved a consistent increase in any of the parameters investigated and the control animals even had slightly elevated TTBARS when compared to the treatment groups. These findings suggest that under near physiologic conditions, dietary fat alone does not stress the liver severely. Conjugated dienes represent one of the early products of lipid peroxidation and were found to be slightly raised in all treatment groups in contrast to the controls. Gaining statistical significance in the sunflower oil and sunflower oil/cholesterol-treated animals; (p=0.0019 and p=0.0002 respectively), and revealing a possible trend for the canola oil group; (p=0.10) is not surprising as oils contain more CD.

The concentrations of LOOH were determined to depict the middle products of lipid peroxidation. Although the treatment groups maintained slight increases when
compared to the control mice, all values were fairly comparable and no statistical significance was attained in any group. The increase in CD thus did not promote LOOH. This is in accordance with the belief that more than one hit is required.

TTBARS were marginally raised in the control group in comparison to the treatment groups but the values were all comparable nonetheless. The significance of this finding is unclear but the low numbers of animals and mixed sex grouping are potentially confounding factors. Although many studies correlate fat accumulation with TBARS concentrations, it is actually the levels of TG which is a more accurate indicator of lipid content. TG levels were increased in all treatment groups in contrast to the control group. Despite, canola oil treated animals being the only group to reach statistical significance; \(p=0.036 \), it is possible to speculate that the increases in triglyceride concentration which were incurred were done so through increased fatty acid flux from excess dietary fat in the oils. Bigger differences may be observed on higher fat diets and/or more prolonged exposure.

The concentrations of total cholesterol were also assessed with values being considerably increased in all treatment groups in contrast to the control mice. Statistical significance was achieved in the sunflower oil; \(p=0.002 \) and sunflower oil/cholesterol-treated animals; \(p=0.007 \). The canola oil-treated animals did not attain statistical significance but this was because the values were unevenly distributed amongst the group which would have possibly been more prominent had the group numbers been larger. High cholesterol can be a contributing factor of fatty liver development but is considered more damaging in the context of cardiovascular problems. It is not only TC that is involved in facilitating the development of a fatty liver as numerous more steps are involved in the complex process which explains why results from TG analysis may be more useful in outlining the underlying causes of NAFLD and NASH.

The levels of circulating protein were shown to be comparable for all treatment groups when compared to the control group and consequently displayed no effect of oil administration. The results of glucose concentration again highlighted the inconsistency of the findings generated form small numbers of study animals. The levels of glucose displayed in the sunflower oil and canola oil groups were slightly higher than the controls whereas the values in the sunflower and cholesterol treated animals was considerably lower but still comparable resulting in statistical significance not being achieved and glucose concentrations not being effected.
Overall, there does not appear to be a significant effect of the oil treatment on the db/wt mice, but lack of animal numbers and insufficient loading of dietary lipids could be at fault for not inciting a more definitive outcome. Another point of significance is that humans are the only species that heat food before consumption, so the administration of unheated oil to mice involved in this study is not a true representation of human dietary activities. Resultantly, any future work carried out under the same scope as this experiment should possibly aim at heating oils before administration as this promotes further oxidisation of the lipids involved and may be the extra influence required to overload biochemical pathways and influence fatty liver development.

6.3 Study of Short Period of Alcohol Administration (4 Weeks)

NAFLD and NASH by definition asserts that these disorders only develop in patients who consume immaterial quantities of alcohol but the actual amount which is deemed insignificant has come under great debate as Bacon et al., (1994) believed values of ≥20g/day to be inappropriate whereas other authors such as Brunt et al., (1999) considered 20g/day to be within acceptable limits. Investigative work on this model has already established the db/db mice to be obese and diabetic with mixed steatosis, although liver damage was not severe enough to warrant the diagnosis of NASH. Therefore, the purpose of this study was to determine whether alcohol is a contributing factor in the facilitation of fatty liver disease in the reputed non-drinker or act as a catalyst for the progression to NASH. In addition, due to animal availability and restrictions of pilot study agenda, the animal numbers were kept to a minimum but were in sufficient quantities to obtain histological, biochemical and statistical information in order to gauge whether a main study should occur. Liver mass and glucose concentrations were not taken for these animals in error.

Body mass was recorded over the entire treatment period to monitor whether alcohol administration has any notable effects in either of the 3 treatment groups; wt/wt, db/wt or db/db when compared to their respective controls. The mean gain for alcohol-treated wt/wt mice was comparable to their respective controls; despite being marginally decreased; (+2.2g vs. +1.8g). As the difference is too small and there are only 2 animals per group, this potential effect cannot be attributed to treatment for wt/wt animals. The alcohol-treated animals in the db/wt group displayed a mean gain of +0.5g in contrast to +1.8g of their respective controls. The slopes of growth generated overtime for alcohol-treated and control db/wt groups were analysed using the equation (y = m(x) + c) to determine if there was any differences in the rate of
mean body mass gain. The gradient of the \textit{db/wt} control animals was shown to be significantly steeper than that of the respective \textit{db/wt} alcohol-treated group; ($p=0.002$) and is therefore concluded that alcohol administration results in a decreased mean body mass gain in \textit{db/wt} treated mice over a period of 4 weeks. Similarly, the control mice in the \textit{db/db} group revealed a decrease in mean body mass gain when compared to the alcohol-treated animals; (+3.5g vs. +4.2g) and when the gradients were contrasted, this difference was also demonstrated to be statistically significant; ($p=0.014$).

Previous findings generated from assessing this mouse model revealed that a certain magnitude of stress pre-exists in the \textit{db/db} mice by virtue of their metabolic deficiency. Results produced from administering alcohol for 4 weeks in \textit{db/db} animals have significantly proven to have a supplementary effect on body mass. Furthermore, the effects of alcohol administration also significantly altered the mean body mass gain of \textit{db/wt} animals in contrast to the respective control group and it could therefore be argued that the \textit{db/wt} animals contain various precursors for fatty change which alcohol manipulates to impose an effect. Gender could not be investigated in this pilot study as both sexes had to be combined to generate sufficient group numbers.

Histological examination of the fresh liver sections displayed alcohol to have no effect in \textit{wt/wt}, \textit{db/wt} or \textit{db/db} groups by comparison with the respective controls. The observations confirmed the presence of NAFLD in \textit{db/db} control mice as confirmed earlier through H&E sections displaying grade 2 and 3 micro- and macrovesicular steatosis. The \textit{db/db} alcohol-treated mice revealed no additional signs of hepatic injury or fat accumulation resulting in the inability of alcohol to provoke the subsequent progression to NASH. Alcohol administration also failed to generate a response in \textit{wt/wt} and \textit{db/wt} mice in contrast to their respective controls. Livers sampled from alcohol-treated mice and controls in \textit{wt/wt} and \textit{db/wt} groups were found to be comparable as all individuals displayed hepatocytes which were normal in structure and function with no steatosis present. Alcohol does not seem to have any substantial effect on the histology of these livers, but it must be noted that the alcohol was made available to the animals \textit{ad libitum} and therefore may not have been consumed in significant quantities to generate a noteworthy change. The period of 4 weeks for which the alcohol was administered may also be insignificant to incur any sizeable injury.
Investigations into the concentrations of CDs displayed slight increases in the 3 alcohol-treated groups in contrast to the control animals but this difference was more pronounced in the \(\text{db/db} \) mice. Furthermore, values were unevenly distributed and not elevated enough to gain statistical significance in either of the treatment groups but does display a trend in that alcohol could be responsible for contributing to an increase in early products of lipid peroxidation. In addition, the increase observed in \(\text{db/db} \) controls when contrasted to \(\text{db/wt} \) control was found to be statistically significant (\(p=0.011 \)) which was expected from previous comparison of the different genotypes. However, the alcohol-treated animals from \(\text{db/wt} \) and \(\text{db/db} \) groups were also compared and although statistical significance was attained (\(p=0.039 \)) the change was more considerable between the controls. Resultantly, despite the stress of alcohol acting as a potential exacerbator of early lipid peroxidation products, it appears as though the presence of the \(\text{db} \) gene is causing a more significant effect.

The results produced from assessment of LOOH revealed increases in the 3 alcohol-treated groups when contrasted to their respective controls. The difference was only minor in the \(\text{db/wt} \) control vs. alcohol; (158 vs. 182 nmol LOOH/g. liver respectively) whereas the increases in the alcohol-treated animals was more definitive in the \(\text{wt/wt} \) and \(\text{db/db} \) groups; (93 vs. 291 and 434 vs. 654 nmol LOOH/g. liver respectively). The discrepancies were not considerable enough to reach statistical significance in either group, but provides further evidence of a growing trend that alcohol may be causing a slightly increased effect on lipid peroxidation products. The control animals were compared from the \(\text{db/wt} \) and \(\text{db/db} \) groups and again the increase in the \(\text{db/db} \) animals was established as being statistically significant (\(p=0.015 \)) as was the increase when comparing the alcohol-treated animals from the same groups (\(p=0.21 \)). Although the administration of alcohol is beginning to display a trend in contrast to the respective controls, the difference between the controls from \(\text{db/wt} \) and \(\text{db/db} \) groups attains more pronounced statistical significance and adds scope to whether the presence of the \(\text{db} \) gene causing a more detrimental effect than the administration of alcohol. There was also an increase in \(\text{wt/wt} \) alcohol-treated animals when contrasted to the \(\text{db/wt} \) alcohol-treated group but this can be explained by inter-group variation and small group numbers.

TTBARS were shown to be elevated in all alcohol-treated groups in comparison to the respective control animals and attained statistical significance for \(\text{db/wt} \) mice; (\(p=0.038 \)) and \(\text{db/db} \) mice (\(p=0.0003 \)). Furthermore, values for \(\text{wt/wt} \) alcohol-treated animals and controls and \(\text{db/wt} \) alcohol treated animals were all exhibited to be
marginally increased in comparison to db/db controls, but no statistical significance was achieved. Alcohol could be attributed as an effect but small numbers in the wt/wt groups, no accumulation of fat in respective livers and inadequate manifestation of significant statistics provides conflicting evidence and therefore any true causative effect remains unresolved.

The concentrations of total cholesterol were examined for all groups and slight increases were again observed in wt/wt, db/wt and db/db alcohol-treated mice in contrast to the controls. Statistical significance was only reached between the db/wt animals; \((p=0.005)\), but adds further support that alcohol may be producing a slight effect in these animals.

TG levels were investigated and demonstrated that the content for db/db alcohol-treated mice was dramatically increased in comparison with the control group; \((p<0.0001)\). Statistical significance was also achieved for an increase in alcohol-treated db/wt animals \((p=0.009)\) in contrast to the controls. A marginal increase was noted in the alcohol-treated animals of the wt/wt group as well and even though these differences are being demonstrated to be small, there is a definite trend developing which may become more distinctive if further hepatic damage was incurred. Triglyceride content is an excellent marker of lipid droplet formation and potential problems of fat accumulation which makes this a powerful finding. The more sensitive detection of quantitative changes gives this biochemistry approach an advantage over the histology. The TG content in the db/db controls is significantly raised in comparison to the wt/wt and db/ wt groups without the addition of alcohol as a further stress factor. When alcohol is administered, the db/db treated animals display concentrations which are more than double that of the db/db controls; \((2.93 \text{ vs. } 6.44 \text{ mg TG/g. liver})\). Therefore, despite db/db mice already having disrupted metabolic functions, the addition of alcohol may further aggravate the situation. Despite the gain in TG, and same increase in lipid peroxidation markers, histological examination did not reveal necrosis and inflammatory changes. Alcohol may have a preferred route of being incorporated into fatty acids, producing fatty acid palmitate. This fatty acid is not subject to the lipid peroxidation products being examined in this study.

In conclusion, although alcohol has not made a statistically significant impact on all parameters being investigated, a slight trend is evident. Increasing the period of alcohol administration may cause a significant change that would facilitate the
progression to NASH or enable a noteworthy change in wt/wt or db/wt mice. If alterations in fatty acid synthesis or any other metabolic pathway which is involved in development and progression of fatty liver were to become induced by alcohol, it is hoped that a main study would be able to highlight when and where the changes occur in attempt at alleviating the disease.

6.4 Impact of Alcohol Administered over 8 and 20 Week Periods in db/wt and db/db Mice

The results obtained from the alcohol pilot study were deemed significant enough to proceed to a study over longer periods. The period of alcohol administration necessary to cause a more pronounced effect was uncertain so it was decided to split the animals into 2 batches; one batch undertaking 8 weeks of alcohol administration (short-term) whereas the second batch of animals had a duration of 20 weeks alcohol administration (long-term). Alcohol-treated animals were compared against their respective controls and were assessed in an attempt to identify any significant changes that may facilitate or lead to further progression of this disease. For the purposes of reporting and clarity, both 8 week and 20 week alcohol administration studies will be discussed together.

Body mass was recorded over a 3wk adaptation period for all animals prior to the respective 8wk and 20wk administration of alcohol for treated animals, or water for the controls. The 8wk study demonstrated that db/wt alcohol-treated animals had a slightly decreased mean body mass gain in contrast to the controls; (+4.5g vs. +6.8g respectively). The 8wk db/db alcohol-treated mice also exhibited a decrease when compared to the control group; (+5.2g vs. +7.4g respectively). Despite 8wk alcohol-treated db/wt and db/db groups displaying a decrease in mean body mass gain when contrasted against the controls, the differences were only significant in db/wt animals upon assessing the gradients; (p=0.0009). In comparison, the body mass of 20wk db/wt and db/db alcohol-treated mice was comparable to their respective controls at the start of treatment, however, after 4-5 weeks both sets of controls appear to increase their rate of mean body mass gain and the resultant reduced gain experienced by the db/wt and db/db alcohol-treated animals is not regained by the time of termination. This is reflected in the mean body mass gain values of 20wk db/wt alcohol-treated animals which was decreased in comparison to the control group; (+6.4g vs. +1.2g respectively) as were the db/db alcohol-treated mice from the 20wk study when compared to the controls; (+12.3g vs. +6.8g respectively). Nevertheless, statistical significance is only achieved between the db/db groups
which arises from analysing the gradients; \((p=0.003)\). Overall, all 8wk and 20wk alcohol-treated \(db/wt\) and \(db/db\) groups display a reduced mean body mass gain in comparison to the controls, but statistical significance is only reached in 8wk \(db/wt\) and 20wk \(db/db\). This finding is somewhat contradictory, as the trend of alcohol inducing a causative effect continues, but the duration of administration and susceptibility of genotype is somewhat misleading. The 8wk study gives the impression that the \(db/wt\) treated mice are more prone to the effects of alcohol administration whereas the 20wk study reveals the \(db/db\) animals having a higher propensity to a reduction in body weight gain. This finding is considered to be spurious. Repeat studies with increased group numbers may give a more accurate indication of whether this observation is real.

Observations made from comparing the 8wk and 20wk studies indicate that the increased duration of alcohol administration may be a causative factor in reducing mean body mass gain. Since food and drink consumption were not specifically monitored, it is not known whether the alcohol affected the amount of food taken nor the amount of liquid taken in. The mean gain for 8wk \(db/wt\) controls revealed an increased difference of +2.3g in comparison to the respective alcohol-treated animals, whereas the difference in mean gain for 20wk \(db/wt\) controls was +5.2g when contrasted against the alcohol-treated animals. Similar results were also displayed when comparing the \(db/db\) mice. The 8wk \(db/db\) controls were shown to have an elevated mean body mass gain difference of +2.2g in contrast to the 8wk \(db/db\) alcohol-treated group whilst the difference between 20wk controls and alcohol-treated mice was +5.5g. As a result, although 8wk alcohol administration certainly causes a reduction in weight gain in \(db/wt\) and \(db/db\) mice, evidence suggests that the effect is more definitive in animals who have endured administration for 20 wks.

Liver mass was recorded for all animals from 8wk and 20wk groups, but unfortunately could not be compared with the pilot study as this data was not noted in error. Statistically significant increases in mean liver mass were noted for 8wk and 20wk \(db/wt\) alcohol-treated animals in comparison to the controls; \((p<0.0001\) and \(p=0.0068\) respectively). Slight increases were also observed for 8wk and 20wk \(db/db\) alcohol-treated groups in contrast to the control animals but this was not of noteworthy difference to attain statistical significance; \((p=0.99\) and \(p=0.55\) respectively). These findings suggest that although alcohol may be eliciting an effect in all treated groups, the changes in mean liver mass are more noticeable in the \(db/wt\) groups from the 8wk and 20wk studies in comparison to the \(db/db\) animals.
This evidence indicates that db/wt animals are possibly more prone to metabolic alterations from exposure to alcohol than db/db animals. The changes that are causing the liver to increase in size in db/wt mice may have already occurred in db/db mice through an alternative mechanism of metabolism and that is why the values of db/db animals are comparable regardless of 8wk or 20wk alcohol administration. It would be of considerable interest to determine how alcohol results in an increased liver mass in db/wt but not db/db mice.

When comparing 8wk and 20wk studies, the differing periods of alcohol administration did not appear to have made any significant difference to the mean liver mass despite marginal increments being noted in the db/wt and db/db 20 wk alcohol-treated animals in contrast to the db/wt and db/db 8 wk alcohol-treated groups; (1.53g vs. 1.45g and 2.99g vs. 2.84g respectively). The 8wk db/wt alcohol-treated mice exhibited a larger increase in liver mass when contrasted against their respective controls in comparison to the difference between 20wk db/wt alcohol treated mice and the control group; (+0.39g vs. +0.16g). However, this discrepancy results from 8wk db/wt control mice having a significantly decreased mean liver mass in comparison to the 20wk db/db controls; (1.06g vs. 1.37g), but since 8wk and 20wk db/wt alcohol-treated animals are comparable, this finding was considered to be spurious.

Liver mass / body mass ratios were analysed to determine if liver mass was proportional to body mass. The results demonstrated statistically significant increases for 8wk and 20wk db/wt alcohol-treated animals in comparison to the controls; (p<0.0001 and p=0.003 respectively). The liver mass increase from the 8wk and 20wk db/wt alcohol-treated groups are considered to be out of proportion and provides support for that the increases in liver mass are a direct result of alcohol consumption. Slight increases were also observed for 8wk and 20wk db/db alcohol-treated groups in contrast to the control animals but did not reach statistical significance for 8wk administration; (p=0.57) but was achieved for 20wk; (p=0.033). Therefore, despite any change in liver mass not being significantly apparent between db/db controls and alcohol-treated animals from 8wk and 20wk, when adjustments are brought about to bring body mass into consideration, the 20wk alcohol-treated db/db animals display liver mass which appears slightly out of proportion from the body mass. Furthermore as 8wk db/db alcohol-treated mice still exhibit proportionate liver mass after adjustments, it could again be speculated that the longer duration of alcohol administration has had a causative aspect. In addition it could also be argued
that db/wt mice are more susceptible to alterations in metabolism as a direct result of alcohol than db/db animals.

Histological examination of the livers did not display any significant differences between 8wk animals and their respective counterparts in the 20wk study. As a result, administering alcohol for longer periods did not induce additional hepatic injury, NASH was not induced and observations were comparable. It appears that the biochemistry v. histology are at a variance about the fat content in the liver when the results of the 8 and 20 wk studies for db/wt with alcohol and db/db without alcohol are compared. The latter group, though displaying frank macrovesicular steatosis do not achieve the absolute TG concentration specified for fatty liver to be diagnosed. As stated in the review, the TG content should be > 50mg/g. liver. Since calculations were checked and spectrophotometric analysis was excluded as technical reasons for a low reading in the db/db mice, the only other biochemical explanation is that losses may occur in processing very fatty liver samples. The fat noticeably sticks to glass tubes and may not be fully suspended by the small amounts of detergent in assays. It is also possible that the distribution of the fat is different, i.e. in cytosolic droplets in db/db animals and dispersed in membranes and lipoproteins in the other animals.

Results for early lipid peroxidation products were found to be somewhat conflicting. Conjugated dienes were shown to be statistically significantly increased for 8wk and 20wk alcohol-treated db/wt animals when contrasted against the controls; (p=0.027 and p=0.031 respectively). CDS were also demonstrated to be statistically significant for 8wk and 20wk alcohol-treated db/db groups in comparison to the controls; (p<0.0001 and p=0.0025 respectively). This adds further evidence to the developing trend that alcohol administration affects metabolic pathways and leads to altered biochemical functions. However, the inconsistency arises when the 8wk period of alcohol administration is weighed against the 20wk study. The db/wt control and alcohol-treated animals from the 8wk study exhibit a CDs content which is slightly decreased in contrast to the db/wt control and alcohol-treated animals from the 20wk study; (1.60 vs. 1.64 and 2.00 vs. 2.19 μmol/g. liver respectively). On the other hand, db/db control and alcohol-treated animals from the 8wk study display statistically significant increases when compared to the db/wt control and alcohol-treated animals from the 20wk study; (2.66 vs. 2.22 and 3.45 vs. 2.58 μmol/g. liver respectively). The reason behind this is not clear, although it does suggest that despite alcohol triggering a causative effect in db/wt and db/db animals, the period of administration
does not appear to be relevant. The concentrations of CDs may decrease with age, but there is no data to properly confirm this possibility. It is also possible that different batches of animals or other incidental factors not recognized at the moment are playing a role in the variability of the data.

Lipid hydroperoxides were assessed to monitor intermediate lipid peroxidation products. These were revealed to be dramatically increased in db/wt and db/db alcohol-treated animals in comparison to the relative controls for 8wk; \((p<0.0001\) for both) and 20wk studies; \((p=0.0002\) and \(p=0.0109\) respectively). In addition, the db/wt control and alcohol-treated mice from the 8wk study were shown to have statistically significant increases when contrasted against the db/wt control and alcohol-treated mice for the 20wk study; \((p=0.0007\) and \(p=0.0025\) respectively). Increases were evident in db/db control and alcohol-treated mice from the 8wk study in comparison to the 20wk groups which also attained statistical significance; \((p=0.0005\) and \(p<0.0001\) respectively). Again, alcohol administration demonstrates a causative effect by inducing increases in intermediate lipid peroxidation products in db/wt and db/db mice for both 8wk and 20k periods. The increases encouraged by alcohol administration in the 8wk and 20wk studies are more definitive than those achieved in the 4wk pilot study as no statistical significance was attained over that period.

Resultantly, it can be concluded that 4 weeks of alcohol administration is not sufficient to produce a significant change in LOOH concentration whereas 8 weeks duration does inflict a noteworthy effect. Additionally, an increased alcohol administration period of 20 weeks does not provoke further change and therefore a treatment period of 8 weeks may be optimal to reveal this effect. The inability of alcohol to stimulate the development of NASH even after a further 12 weeks of alcohol administration means that this process alone is not enough to elicit NASH. Histological findings were also comparable for db/wt and db/db mice from 8wk and 20 wk studies.

TTBARS also reflected the notable effects of alcohol administration: the increases in 8wk and 20wk db/wt alcohol-treated animals were statistically significant in contrast to the controls; \((p<0.0001\) and \(p=0.0002\) respectively). The raised values in the alcohol-treated groups for 8wk and 20wk db/db animals also achieved statistical significance in comparison to the control groups; \((p<0.0001\) and \(p=0.03\) respectively). It is clearly evident that alcohol is altering metabolism in a way that enhances lipid
peroxidation in the treated mice from the 8wk and the 20wk studies, but whether the longer period of alcohol administration further exacerbates the damage remains unclear. The comparison of TTBARS for 8wk and 20wk studies for db/wt and db/db alcohol-treated animals does not reveal any differences that are of statistical significance; \(p=0.18 \) and \(p=0.11 \) respectively. Although TTBARS are significantly elevated in the 20wk study for alcohol-treated db/db mice when compared to 8wk alcohol-treated db/db mice, there is no other evidence to suggest that longer alcohol administration prompts further increases in late lipid peroxidation production. As previously mentioned, histology also indicates that as inflammatory infiltrate does not occur; nor does fibrosis.

Triglycerides were again dramatically increased in 8wk and 20wk db/wt animals in contrast to the controls and attained statistical significance; \(p=0.004 \) and \(p=0.001 \) respectively. TG was also shown to be significantly elevated in 8wk and 20wk db/db animals when compared against the control groups; \(p=0.008 \) and \(p=0.003 \) respectively. Further evidence of a trend developing in favour of 20wk alcohol administration inciting increased damage was noted through statistically significant values being exhibited in 20wk treated db/wt and db/db animals in comparison to the 8wk groups; \(p=0.026 \) and \(p=0.02 \) respectively. Again, the TG content observed in the 8wk and 20wk studies was not met through 4wk alcohol administration in the pilot study and casts further speculation of a minimal duration of intervention before eliciting an effect. Alcohol is definitely aggravating the near-normal metabolic functioning of db/wt mice and also enhancing the already existing TG accumulation in the db/db mice but neither the db/wt nor the db/db animals are more susceptible to NASH over this period.

The enhanced duration of alcohol administration in the 20wk study also failed to make a more significant impact than 8wk groups when investigating total cholesterol concentrations. The 8wk and 20wk alcohol-treated db/wt animals were shown to display statistically significant increases in TC when contrasted against the controls; \(p=0.008 \) and \(p=0.001 \) respectively) as did the db/db groups for 8wk and 20wk studies; \(p=0.01 \) and \(p=0.005 \) respectively). However, statistical significance was not attained when comparing 8wk and 20wk db/wt alcohol-treated mice; \(p=0.33 \) nor db/db alcohol-treated mice; \(p=0.47 \). Although the TC increases in 20wk db/wt and db/db alcohol-treated animals did not achieve statistical significance over their respective 8wk counterparts, a slight trend may exist but the group sizes are inadequate to determine a real effect and therefore larger numbers would be required.
to confirm or disregard this possibility. Furthermore, the levels of TC observed in db/wt and db/db animals in the 4wk pilot study did not reach that of db/wt and db/db groups in 8wk and 20wk studies. This implies that alcohol administration requires a particular time but this point is not known from these studies. It appears as though 4wk administration is insignificant, whereas the disruption caused at 20wk approximates that of the 8wk. Sustained alcohol administration beyond 20wks may or may not further metabolic and liver damage, with the onset of NASH. Further studies would be needed to establish when this occurs and whether there is an optimal duration of alcohol administration that produces a proportionate hepatic effect. Indeed, the human may be prone to NASH on the basis of long term stress.

Fibrosis may increase the liver protein content. The levels of protein in the liver were marginally raised for 8wk alcohol-treated db/wt and db/db animals in comparison to the controls but these differences were not deemed significant; (p=0.26 and p=0.35 respectively). Similar minor increases were observed in 20wk alcohol-treated db/wt and db/db groups and again were found to be statistically insignificant in contrast to the control animals; (p=0.23 and p=0.30 respectively). Overall, despite the small increases, all groups displayed comparable values and therefore, duration of alcohol administered or genotype had no effect on protein concentrations.

Plasma aspartine transaminase (AST) and alanine transaminase (ALT) were examined because augmentation of these hepatic enzymes is strongly indicative of liver damage. Increases in AST levels were evident in 8wk and 20wk alcohol-treated db/wt animals in comparison to the controls, but these differences only attained statistical significance in the 20wk group; (p=0.29 and p=0.037 respectively). Minor increases were also noted in the 8wk and 20wk alcohol-treated db/db mice when contrasted with their controls, however, statistical significance was not reached in either group; (p=0.26 and p=0.64 respectively). The ALT levels were found to be slightly increased in 8wk and 20wk studies for both db/wt and db/db alcohol-treated animals in comparison to the control groups, but statistical significance was not achieved. Furthermore, the period of alcohol administration did not provoke further disruption in AST values or ALT values. Differences between the 8wk and 20wk db/wt alcohol-treated animals and 8wk and 20wk db/db alcohol treated animals were shown to be insignificant for both parameters; AST (p=0.56 and p=0.16 respectively), ALT (p=0.31 and p=0.78 respectively).
The previous findings have illustrated that alcohol administration alters hepatocyte metabolism as many of the db/wt and db/db treated animals have exhibited significant increases in lipid peroxidation products in addition to elevated TC and TG content. However, the extent of liver damage observed at histology suggests that the liver is only in the early stages of fatty development. The progression to steatohepatitis and possibly fibrosis did not occur. The results of AST and ALT levels suggests that significant hepatocyte damage did not occur. The hepatic injury being incurred with alcohol alone has not reached the point of inflammation and fibrosis either because of inadequate timing or severity of stress or because the appropriate additional hit(s) were not present.

Blood/alcohol levels were carried out in an attempt to establish that treated animals had consumed alcohol, how such consumption affected the plasma and whether it reflected the proportionate amount of disruption which was incurred. The alcohol was administered ad libitum and it is therefore impossible to guarantee equal intake throughout the different groups. Furthermore, as the alcohol was available to the treated animals up until termination, it is also possible that some animals would have consumed their last drink just before sacrifice whereas others may have had their last intake the night before. The high degree of variation between respective alcohol-treated animals reflected the experimental difficulties with administering the alcohol ad libitum.

The 8wk alcohol-treated db/wt and db/db animals displayed increases in blood alcohol in comparison to the relevant controls but these differences did not attain statistical significance; (p=0.055 and p=0.17). This suggests that a number of db/wt and db/db alcohol-treated animals did not consume any alcohol before termination, although db/db alcohol-treated mouse 23 exhibited a concentration 15.33 mmol/l. This reading is dramatically increased in contrast to the other alcohol-treated animals (db/wt and db/db) as evidenced by the mean bar being totally skewed. It could be the result of drinking alcohol just before termination. The reason owing to 8wk db/db animals displaying a higher blood/alcohol concentration than 8wk db/wt can only be explained by the reasons given previously and any future studies should consider withdrawing the alcohol from the treated animals 24hr prior to sacrifice.

Conversely, the 20wk db/wt animals revealed an increased blood/alcohol level in contrast to the 20wk db/db animals, although this was not statistically significant due to the high degree of variation. This discrepancy can be part explained by the same
reasoning as before in that these concentrations only reflect how recently the animal in question consumed alcohol. However, it is possible that there is a greater capacity to metabolise alcohol in the db/db mice. In addition, db/wt alcohol-treated animals 9 and 12 and db/db alcohol-treated animal 22 displayed concentrations which were radically raised compared with any other animal; (20.89, 19.32 and 23.05 mmol/l respectively). This demonstrates the unreliability of random blood/alcohol measurements, rather than individual metabolic differences. It raises the possibility of fluctuating alcohol levels. The 20wk db/wt and db/db alcohol-treated groups did exhibit increases in blood/alcohol levels when compared against the controls as expected, but only the db/wt mice were shown to be significant; (p=0.005 and p=0.31 respectively).

It is already established that db/db animals have diabetes, thus, the analysis of glucose concentrations was undertaken to determine whether alcohol administration further exacerbates the metabolic pathways involved or acts as a mechanism whereby similar effects insulin deficiency are induced in the non-diabetic db/wt animals. Glucose concentrations for 8wk and 20wk, db/wt and db/db alcohol-treated animals are actually decreased in comparison to the control groups. These differences are not significant for the 20wk study; (p=0.63 and p=0.29 respectively), nor 8wk db/db animals; (p=0.54) but does attain statistical significance for 8wk db/wt mice; (p=0.006). The reasoning for this finding is unknown but alcohol may have an anti-gluconeogenic effect or may have induced starvation. When contrasting 8wk db/wt and db/db, control and alcohol-treated animals against the respective 20wk groups, the findings were revealed to be comparable and again displays that an increased duration of alcohol exposure from 8wks to 20wks does not make a significant difference.

In conclusion, alcohol administration has a definite effect on body and liver mass, products of lipid peroxidation, hepatic TC and TG and central markers of hepatic injury are altered to a limited extent. The pilot study displayed a trend for these changes after only 4 weeks of alcohol administration, whereas the results exhibited from the main 8wk and 20wk studies were more pronounced. However, there was no significant difference between the 8wk and 20wk duration and therefore the extra 12wks of alcohol administration had no additional deleterious effect. It remains unclear whether db/wt or db/db mice are more susceptible to metabolic stress in response to alcohol administration. Although a trend in db/wt mice may be present, the changes are small. Gender may still play a role in determining an individual's
susceptibility but this aspect could not be assessed as the mice were all male. Any future studies should be directed at confirming or rejecting this theory in addition to highlighting changes that are associated with facilitation and development of fatty liver.

6.5 Histopathology Analysis
6.5.1 Results for the db/db Mouse Model on Regular Chow for 20 Weeks
Analysis of livers from db/wt and db/db mice (figure 5.7.1 (A-D)) revealed histopathological differences and further confirmed the diversity between the db genotypes. (A) + (C) reveal the liver of heterozygous (db/wt) mice to be normal as liver sections showed preservation of normal architecture, with no fibrosis, steatosis, inflammation or necrosis. In contrast, livers from homozygous (db/db) mice; (B) + (D) showed grade 2 and 3 micro- and macrovesicular steatosis, predominantly present in zone 3 and is characteristic of this genotype. Necroinflammation was not observed. Despite the presence of significant steatosis, no steatohepatitis was present evidenced by a lack of lobular inflammatory foci. This raises the possibility of additional contributing factors being required for progression to steatohepatitis in the db/db model.

Similar to heterozygous (db/wt) mice, livers from wild type (wt/wt) animals were shown to be normal, displaying hepatocytes which appeared normal over many fields with no aggregations of fat droplets present. There were no histological differences between male and female livers in wt/wt, db/wt or db/db groups respectively.

6.5.2 Impact of Various Oils, Administered via the Diet (4 Weeks)
The histological findings generated from the administration of various oils in db/wt mice (figure 5.7.2) uncovered no significant differences in the liver of the control group on regular chow for 4wks and the relevant treatment groups; sunflower oil, canola oil and sunflower oil and cholesterol respectively. The control animals showed normal liver architecture, as expected, with no signs of steatosis. The addition of the various oil supplements did not have any notable effect (figure 5.7.2 (A-D)). This supports the fact that no major differences were observed from the biochemical assessment. Oil supplementation is therefore insufficient for the induction of steatosis in heterozygous mice. One concludes that the oil-supplemented diets with modest amounts of oils in the short term had no effect. There were no differences between male and female mice.
6.5.3 Impact of a Short Period of Alcohol Administration (4 Weeks)

Analysis of liver sections revealed that alcohol administration for 4 wks had no effect on liver architecture for wt/wt, db/wt and db/db animals. Unfortunately, the H&E stained sections of these livers were misplaced after examination and therefore cannot be presented. The wt/wt and db/wt control mice displayed normal hepatic structure as expected, without the accumulation of fat or infiltration of inflammatory cells. It was anticipated that 4wks of 20% alcohol administration would induce a fatty liver or even steatohepatitis in alcohol-treated wt/wt and/or db/wt mice, but no significant histological differences were observed between the respective groups.

In contrast, db/db mice (with and without alcohol) showed mixed micro- and macrovesicular steatosis but no inflammation or fibrosis was presented and no differences were observed between the db/db mice receiving alcohol and db/db animals not receiving alcohol with respect to steatosis, inflammation and fibrosis. It is proposed that an increased period of alcohol exposure may still provoke the development and possible progression of fatty liver. The duration of 4wks may not be significant to trigger an effect, but some encouraging data from the biochemistry parameters being investigated was sufficient to proceed to a longer study.

6.5.4 Impact of Alcohol Administered over 8 Weeks in db/wt and db/db Mice

The H&E liver sections (figure 5.7.3) from control and alcohol-treated db/wt animals (A) were comparable as both groups showed normal liver hepatocytes, no inflammatory infiltrate and no steatosis or fibrosis. Control db/db animal (B) showed macrovesicular steatosis without inflammatory infiltrate. Moderate macrovesicular steatosis was predominantly located in zones 2 and 3, but also located in zone 1 in the alcohol-treated db/db mice (C). There is inflammation present in the portal tract but this is considered to be non-specific.

Upon increasing the magnification of control and alcohol-treated db/db animals (figure 5.7.3) the differing levels of inflammation become more apparent. (D) and (F) reveal no signs of inflammation for the db/db control animals whereas (E) and (G) illustrate necroinflammatory foci in the hepatic nodules along with polymorphs and lymphocytes in mixed inflammation in alcohol-supplemented db/db mice. Fibrosis is not present in the db/db genotype, even after exposure to 20% alcohol for 8wks. This raises the possibility that an additional stressor or 'second-hit' is required to promote chronic change over time. It appears as though alcohol may have a slight effect on
liver of \(db/db \) mice, while there is no effect of alcohol on \(db/wt \) animals. Longer studies are required to evaluate fibrosis with these inflammatory responses.

The amount of fat present in each liver (table 6.5.4.1) was graded ‘blind’ by an independent pathologist. Unblindly, the analyses revealed that alcohol had no significant effect on hepatic structure in \(db/wt \) mice. The change in fat was slightly elevated for alcohol-treated \(db/db \) animals when compared to the respective controls but this change was not significant. The levels of inflammatory aggregates were also comparable for control and alcohol-treated \(db/wt \) animals but this was not the case for the \(db/db \) mice where the amounts detected are higher for the alcohol-supplemented group in contrast to the controls \((p=0.005)\), however larger group sizes would determine if this was a ‘real’ effect or not.

Table 6.5.4.1

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>No. Animals</th>
<th>Fat Change (0-3) ± SD</th>
<th>Inflammatory Aggregates* ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ((db/wt))</td>
<td>H2O Control</td>
<td>7</td>
<td>0.0 ± 0.0</td>
<td>0.0 ± 0.0</td>
</tr>
<tr>
<td>2 ((db/wt))</td>
<td>20% Alcohol</td>
<td>6</td>
<td>0.17 ± 0.41</td>
<td>0.0 ± 0.0</td>
</tr>
<tr>
<td>3 ((db/db))</td>
<td>H2O Control</td>
<td>6</td>
<td>2.33 ± 0.52</td>
<td>1.33 ± 1.63</td>
</tr>
<tr>
<td>4 ((db/db))</td>
<td>20% Alcohol</td>
<td>5</td>
<td>2.80 ± 0.45</td>
<td>6.00 ± 2.55</td>
</tr>
</tbody>
</table>

* = Inflammatory aggregates; 20 x objective, 20 fields counted

6.5.5 Impact of Alcohol Administered over 20 Weeks in \(db/wt \) and \(db/db \) Mice

The administration of alcohol does not appear to affect the histopathology of \(db/wt \) and \(db/db \) mice when compared with their respective controls, despite the animals being supplemented for 20wks (an additional exposure of 12wks in comparison to the previous study). The findings (figure 5.7.4) showed \(db/wt \) mice (with and without alcohol, (A) and (B)) to have normal liver histology with no steatosis, inflammation or fibrosis. Alcohol also failed to induce additional liver damage in \(db/db \) animals, as zone 2 and 3 steatosis with minimal inflammation and no fibrosis was evident in alcohol-treated \(db/db \) mice (D), which was comparative to the respective controls (C). Figure 5.7.4 (E) displays unmistakable macrovesicular steatosis in a \(db/db \) control animals and is also representative of the similar liver morphology observed in the alcohol-treated animals.

Fatty change was also assessed semi quantitatively for the 20wk animals (table 6.5.5.1). Alcohol had no significant effect on liver architecture in \(db/wt \) mice.
change in fat was slightly elevated for alcohol-treated db/db animals but this was not statistically significant. Inflammatory aggregate values were unexpected for db/wt and db/db animals as control values were higher than the respective alcohol-treated groups. This cannot be fully explained as it contradicts all previous histology data. Larger group sizes in future studies may be able to prove or disprove this finding.

Table 6.5.5.1

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>No. Animals</th>
<th>Fat Change (0-3) ± SD</th>
<th>Inflammatory Aggregates* ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H2O Control</td>
<td>7</td>
<td>0.0 ± 0.0</td>
<td>2.86 ± 3.87</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>4</td>
<td>0.25 ± 0.50</td>
<td>1.25 ± 1.5</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H2O Control</td>
<td>6</td>
<td>1.83 ± 0.75</td>
<td>3.5 ± 1.64</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>6</td>
<td>2.0 ± 0.0</td>
<td>1.5 ± 1.64</td>
</tr>
</tbody>
</table>

* = Inflammatory aggregates; 20 x objective, 20 fields counted

The sirius red stain (figure 5.7.4) displays levels of normal collagen present in db/db animals, (F) and (G), and again reveals no significant differences between the control and alcohol-treated mice. The examination of these findings revealed that db/db mice develop simple steatosis coupled with the presence of lobular inflammation, but again fibrosis was not evident in these animals. Alcohol is not compounding the already present changes, but they are still there. Though some inflammation is attributable to alcohol, it is not significantly changing the histologic picture after 20 weeks of administration.
Chapter 7; Discussion and Conclusion

This chapter will briefly summarise the studies before considering the model and integrating the pathogenesis of fatty liver.

7.1 Assessment of the db/db Mouse Model on Regular Chow for 20 Weeks

Compared with the control (wt/wt) animals, the heterozygous (db/wt) animals displayed marginal differences in some parameters whereas the homozygous (db/db) animals differed greatly in all parameters.

The db/wt status does influence body mass and liver mass making the obese mouse not entirely a ‘recessive’ condition. The liver remains the same proportion of the body as the ratio of liver mass / body mass was not abnormal. Interestingly, the db/wt mice liver had high CD concentration, but no increased LOOH or TTBARS, TC, TG and glucose.

The db/db mice were strikingly larger, with larger livers but the same liver mass / body mass ratio. In these mice the liver CD and LOOH were prominently higher, as were TC, TG and glucose. The TTBARS were increased but not so markedly so.

From these results it appeared that the db/wt mice could have some increased sensitivity towards fatty liver and were preferred as the investigative line along with the obviously highly deranged db/db model. These findings also suggest that there may be an increase in early peroxidation products with the increase in body and proportionally increased liver mass, and that the full obese phenotype is not essential for these changes. These changes are also suggestive of early metabolic stress without frank diabetes. Whether there is insulin resistance that could provide a similar stress to diabetes, can only be resolved with more detailed experiments including insulin concentration and glucose disposal studies. Fluxes of fatty acid in plasma, hepatocyte TG, PL and VLDL synthesis or oxidation could be investigated further by studies in liver slices or whole body.

7.2 Impact of Various Oils, Administered via the Diet (4 Weeks)

When the differently enriched diets are compared with the control diet for their effects on the parameters studied in this thesis, only minor differences became apparent. Note that the background diet was found to comprise of 3.4, 0.26 and 1.87 μmol/g liver of CD, LOOH and TTBARS respectively. Additionally, the oils were not heated in contrast to man’s fatty diet.
Although small numbers of animals were used, statistical analysis identified some interesting observations. Even though mean body mass did not differ, the livers of canola oil-fed db/wt mice (diet high in MUFA) appeared heavier but their ratio to body mass was the same as for control animals. Sunflower oil-fed db/wt mice (diet high in PUFA) consumed more CD and had a higher CD content in their livers, with and without additional dietary cholesterol. The LOOH and TTBARS did not differ. Interestingly, the hepatic TC was increased by PUFA (+ or − cholesterol) but liver TG was minimally increased only by the MUFA oil. Glucose was unaffected.

Unlike previous studies, this moderately fat-enriched diet did not elicit a significant fat accumulation. The PUFA dietary fats did however influence the CD content. It must be noted, however, that this supplement did not resemble the human diet because the oils were not heated. If this study was to be repeated it is recommended that oils should be heated before administration to maximize oxidative products and increase stress on the liver in an attempt to induce a noteworthy effect. The period of administration should also be increased.

7.3 Impact of a Short Period of Alcohol Administration (4 Weeks)

The db/wt mice were larger than the wt/wt, and the db/db were larger again, suggesting that there is a gene dose effect on body size even though the db/wt was not frankly obese. The administration of 20% alcohol in water to wt/wt, db/wt and db/db mice over a short period of 4 weeks revealed some differences in response in growth.

Whereas alcohol administration did not affect the growth rate of the wt/wt mice, it appeared to impair the growth of the db/wt mice. Regrettably, there were too few animals in the wt/wt cohort to examine for differences by conventional statistics. The starting points of the db/db mice destined to be controls or consumers of alcohol were different and could thus influence the response. But the growth rate appeared rapid initially and the animals converged on the same mean body mass with no apparent deleterious effect of alcohol administration.

The impact of short term alcohol administration on lipid peroxidation was different for the 3 animal variants but the small number of wt/wt mice results in some lack of confidence. The apparent increases of CD with alcohol administration were not statistically significant, nor were those of LOOH. There was also an increase of TTBARS with alcohol administration in each category of animal but TTBARS were
not very different in absolute concentration in the db/db model that distincty has a fatty liver.

In all instances, alcohol administration resulted in an increase in the hepatic TG content; for wt/wt, db/wt and db/db animals. The statistical analysis could not be done on the wt/wt animals to evaluate the apparent increase of TG but increases in db/wt and db/db animals were shown to be statistically significant (p=0.009 and p<0.0001 respectively). Interestingly, it appears that there may be some increase in hepatic cholesterol content with the administration of alcohol. It is not clear whether such an increase, if real, reflects a passive phenomenon (storage in same compartment as TG) or active phenomenon (in which alcohol influences cholesterol metabolism).

Taken together, these studies suggest that over a relatively short period (4 weeks), of alcohol administration, liver cells accumulate TG and TC and that db/db mice are more vulnerable to the TG accumulation than db/wt mice. Despite the fact that there is much more TG in the hepatocyte of the db/db mouse on alcohol, the lipid peroxidation products did not increase proportionally; indicating that the 2 processes are not directly coupled, i.e. the peroxidation products are not proportionally included in TG. Indeed, they may even be metabolically quite distinct. This is in accordance with publications in the review where liver damage occurred in the absence of TG when fatty acid oxidation was promoted. The suggestion is that inadequate fatty acid disposal (by oxidation) ± inadequate inhibition of synthesis can be witnessed by TG accumulation while TG accumulation per se does not lead to steatohepatitis (even when stressed by alcohol in this model).

7.4 Impact of Alcohol Administered over 8 Weeks in db/wt and db/db Mice
Contrary to the impression from the 4 wk study, the administration of alcohol, though still retarding growth, had a smaller impact over 8 wk than over 4 wk. Although alcohol administration increased the liver mass and the proportion of liver / body mass in the db/wt mice, the same was not seen for db/db mice. Inspection of figure 6.4.1 suggests that around the age of 15 weeks both alcohol-fed groups had lower growth rates. Such alcohol feeding may thus impose malnutrition on these animals, in contrast to the 4 weeks experiment.

Noting that there was a gene dose effect on liver mass in the standard chow, it would have been interesting to see the effect of alcohol in the short term on liver mass but regrettably these studies were not done. At the 8 week exposure, alcohol appears to
have significantly affected only db/wt animals although a relatively small increase may be masked in the variability in the current data set for the db/db mice.

Liver enzyme release into plasma showed no apparent hepatocyte damage with alcohol. Despite no change in plasma enzymes, alcohol increased the early lipid peroxidation products (figure 6.4.4) in both db/wt and db/db animals, again suggesting an uncoupling of LOOH products and TG storage, or an independent effect of alcohol to increase oxidative stress. In contrast to the 4 week study, LOOH increased in both gene groups and, like CD, may show an uncoupling of lipid peroxidation from storage and suggests that a period of >4 weeks is necessary for this effect. The same applies to TBARS.

Alcohol did not appear to affect the plasma glucose concentration of the db/db mice but, if anything, had an ‘antidiabetic’ effect on the db/wt mice, compatible with an anti-gluconeogenic effect reported for alcohol.

The biochemical findings of alcohol administration over 8 wks confirm a change in fat content and a consistent increase in lipid peroxidation products.

7.5 Impact of Alcohol Administered over 20 Weeks in db/wt and db/db Mice
Inspection of figure 6.5.1 reveals that the growth slopes of the animals fed alcohol changed soon after the introduction of alcohol and after 20 weeks the alcohol-fed animals weighed less than their controls. The graph also suggests that the animals reach maturity at 15 and 18 weeks. Alcohol increased the liver mass by a small proportion after 20 weeks in the db/wt (figure 6.5.3) but increased the proportion the liver makes to the body mass in both db/wt and db/db animals. Glucose concentration was not effected whilst alcohol concentration was higher in both groups that had alcohol supplemented, possibly more so in the smaller animals (db/wt). Whilst AST was mildly increased by alcohol in the db/wt group, no significant changes of plasma ALT occurred. Alcohol increased the TG content in both groups and affected protein content. Like the 8 week interpretation, alcohol increased the hepatic TC content in db/wt and db/db animals.

As in the 8 week group, CD levels were increased by alcohol, as were the LOOH and TTBARS. The concentration of the TTBARS appeared higher in the 32wk db/db control mice than 8wk whereas the CD and LOOH content were higher in 8wk db/db control mice when compared with the respective 32wk control animals.
Overall, the deleterious effects of alcohol administration on health are in evidence with a significant reduction in body mass in db/wt and db/db groups. Consistent with the previous studies the TG content increased together with cholesterol content but protein content changed little. AST increased in the plasma of alcohol-consuming db/wt. Plasma ALT, strikingly higher in db/db mice did not change with alcohol consumption. Random plasma alcohol was increased in db/wt mice, but not significantly in db/db mice.

7.6 The Mouse as a Model

Rodents are good animals to study because they are inexpensive, genetic manipulation is possible and interventions can be controlled. However, certain disadvantages arise from using mice and rats in medical research. These include time scale; a process requiring years in humans may not be suitably studied, especially if the process is not equivocally sped up in the rodent model, and, adaptations in metabolism with evolution may not make it susceptible to some processes in man despite the similarity in basic biochemistry and immune systems.

Rodents have regulated energy uptake. Though dietary constituents are varied, energy intake remains similar day to day. In contrast, obesity associated with fatty liver in humans is associated with a decrease in energy expenditure and increase in energy intake, often with much fat that is heated. Potentially, such thermally stressed oils are predisposed to the putative inflammation inciting products such as HNE. In this context insulin resistance, dietary stress and susceptible fatty acids converge on a potentially differently primed hepatocyte and immune systems to rodents to elicit fatty liver. Humans also have different lipoprotein metabolism and store more TG in adipose tissues.

The db/db model is an extreme one in which obesity, diabetes and fatty liver mimic human condition but appears not to promote inflammation and fibrosis until possibly the addition of alcohol. More dietary lipid stress together with alcohol may promote a steatohepatitis that approaches the histological and possibly clinical outcome to cirrhosis. Additional oxidative stressors may be required, although such a complete model may not be apt, it could test therapeutic strategies that, if successful, need to be tested in human for verification.
The db/wt model may be of interest to pursue in the longer term as the animals appears to gain TG almost to the biochemical point of fatty liver of db/db mice or with alcohol.

7.7 An Integrated View

A normal liver contains TG in various locations of the cell, including cytosolic droplets, lipoproteins and likely (non polar) membranes. The metabolic processes increasing the fat content can be the result of several stressors, and may or may not be coupled with cellular events that elicit cell damage, accumulation of cytosolic droplets visible on microscopy and an inflammatory and fibrotic response. The diagram (figure 7.7.1) depicts the multiple pathways in the liver that a fatty acid may follow to arrive in the liver and be processed. Numerous enzymes are involved in these pathways and several errors or stressors may induce TG accumulation and/or inflammatory response.

Absence of apo B and absence of MTP, both causing a β-lipoproteinaemia will disrupt export. Complete disruption of fatty acid oxidation through mitochondria and peroxisomes would also dramatically induce fatty liver. If these processes are within the normal activity, then excessive FA entry into the cells through lipid peroxidation and/or fatty acid transport could lead to TG accumulation if no induction of β-oxidation occurs. Increased FA synthesis could further overload the β-oxidation. However, increased β-oxidation can increase lipid peroxidation, causing cell damage, apoptosis and necrosis, eliciting inflammation and fibrosis. Thus for similar metabolic stresses, much variation in response can be attributed to the genetic and environmental factors pertaining in a given individual. The fatty liver relating to alcohol may thus also have a variable contribution from alcohol, especially at lower dosage.

Further studies of fatty liver disease should address the mechanisms involved by determining fluxes of FA in plasma, oxidation (even if indirectly by tracer studies of CO₂ in breath) and lipid peroxidation export. Furthermore, multiple gene micro-array studies could declare metabolic and immune responses and variation within these.
Figure 7.7.1: Overview of FA metabolism; including dietary assimilation, plasma transport as lipoproteins and albumin bound fatty acids, intracellular processes of β-oxidation, lipid peroxidation, lipoprotein formation and storage of TG droplets. Abbreviations – LCAD; long chain acyl dehydrogenase, LCHAD; long chain hydroxyl acyl dehydrogenase, MCAD; medium chain acyl dehydrogenase, SCAD; short chain acyl dehydrogenase, LRP; LDL receptor-related protein, SER; smooth endoplasmic reticulum, RER; rough endoplasmic reticulum, MTP; mitochondrial triglyceride transfer protein.
Chapter 8: Tables – Group Mean Values

8.1 Db Mouse Model – Group Mean Values: Males and Females

Table 8.1.1 Terminal Body Mass (g) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group</th>
<th>Genotype</th>
<th>No. Animals / Sex</th>
<th>Body Weight (g) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wild Type (wt/wt)</td>
<td>6M</td>
<td>22.4 ± 0.8</td>
</tr>
<tr>
<td>2</td>
<td>Wild Type (wt/wt)</td>
<td>6F</td>
<td>17.3 ± 1.6</td>
</tr>
<tr>
<td>3</td>
<td>Heterozygous (db/wt)</td>
<td>16M</td>
<td>26.4 ± 2.4</td>
</tr>
<tr>
<td>4</td>
<td>Heterozygous (db/wt)</td>
<td>8F</td>
<td>20.8 ± 1.7</td>
</tr>
<tr>
<td>5</td>
<td>Homozygous (db/db)</td>
<td>10M</td>
<td>44.8 ± 2.4</td>
</tr>
<tr>
<td>6</td>
<td>Homozygous (db/db)</td>
<td>14F</td>
<td>42.2 ± 3.9</td>
</tr>
</tbody>
</table>

Table 8.1.2 Liver Mass (g) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group</th>
<th>Genotype</th>
<th>No. Animals / Sex</th>
<th>Liver Weights (g) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wild Type (wt/wt)</td>
<td>6M</td>
<td>0.78 ± 0.06</td>
</tr>
<tr>
<td>2</td>
<td>Wild Type (wt/wt)</td>
<td>6F</td>
<td>0.75 ± 0.08</td>
</tr>
<tr>
<td>3</td>
<td>Heterozygous (db/wt)</td>
<td>6M</td>
<td>1.27 ± 0.13</td>
</tr>
<tr>
<td>4</td>
<td>Heterozygous (db/wt)</td>
<td>6F</td>
<td>0.75 ± 0.09</td>
</tr>
<tr>
<td>5</td>
<td>Homozygous (db/db)</td>
<td>6M</td>
<td>1.77 ± 0.18</td>
</tr>
<tr>
<td>6</td>
<td>Homozygous (db/db)</td>
<td>6F</td>
<td>2.09 ± 0.39</td>
</tr>
</tbody>
</table>
Table 8.1.3

Db Mouse Model – Group Mean Values: Males and Females

Glucose Concentration (mmol/l) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group</th>
<th>Genotype</th>
<th>No. Animals / Sex</th>
<th>Glucose Concentration (μmol/g. liver) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wild Type (wt/wt)</td>
<td>6M</td>
<td>5.5 ± 1.7</td>
</tr>
<tr>
<td>2</td>
<td>Wild Type (wt/wt)</td>
<td>6F</td>
<td>5.1 ± 1.0</td>
</tr>
<tr>
<td>3</td>
<td>Heterozygous (db/wt)</td>
<td>16M</td>
<td>9.1 ± 3.4</td>
</tr>
<tr>
<td>4</td>
<td>Heterozygous (db/wt)</td>
<td>8F</td>
<td>6.0 ± 1.0</td>
</tr>
<tr>
<td>5</td>
<td>Homozygous (db/db)</td>
<td>10M</td>
<td>23.0 ± 2.9</td>
</tr>
<tr>
<td>6</td>
<td>Homozygous (db/db)</td>
<td>14F</td>
<td>20.4 ± 8.0</td>
</tr>
</tbody>
</table>

Table 8.1.4

Db Mouse Model – Group Mean Values: Males and Females

Triglycerides (mg TG/g. liver) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group</th>
<th>Genotype</th>
<th>No. Animals / Sex</th>
<th>Triglycerides (mg TG/g. liver) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wild Type (wt/wt)</td>
<td>6M</td>
<td>1.94 ± 0.44</td>
</tr>
<tr>
<td>2</td>
<td>Wild Type (wt/wt)</td>
<td>6F</td>
<td>1.81 ± 0.39</td>
</tr>
<tr>
<td>3</td>
<td>Heterozygous (db/wt)</td>
<td>16M</td>
<td>1.19 ± 0.22</td>
</tr>
<tr>
<td>4</td>
<td>Heterozygous (db/wt)</td>
<td>8F</td>
<td>1.41 ± 0.49</td>
</tr>
<tr>
<td>5</td>
<td>Homozygous (db/db)</td>
<td>10M</td>
<td>3.16 ± 1.13</td>
</tr>
<tr>
<td>6</td>
<td>Homozygous (db/db)</td>
<td>14F</td>
<td>4.14 ± 0.81</td>
</tr>
</tbody>
</table>
Db Mouse Model – Group Mean Values: Males and Females

Table 8.1.5

<table>
<thead>
<tr>
<th>Group</th>
<th>Genotype</th>
<th>No. Animals / Sex</th>
<th>Cholesterol (mg chol/g. liver) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wild Type (wt/wt)</td>
<td>6M</td>
<td>4.71 ± 0.39</td>
</tr>
<tr>
<td>2</td>
<td>Wild Type (wt/wt)</td>
<td>6F</td>
<td>4.85 ± 0.33</td>
</tr>
<tr>
<td>3</td>
<td>Heterozygous (db/wt)</td>
<td>16M</td>
<td>4.47 ± 0.43</td>
</tr>
<tr>
<td>4</td>
<td>Heterozygous (db/wt)</td>
<td>8F</td>
<td>4.54 ± 0.73</td>
</tr>
<tr>
<td>5</td>
<td>Homozygous (db/db)</td>
<td>10M</td>
<td>6.67 ± 0.80</td>
</tr>
<tr>
<td>6</td>
<td>Homozygous (db/db)</td>
<td>14F</td>
<td>6.68 ± 0.62</td>
</tr>
</tbody>
</table>

Table 8.1.6

<table>
<thead>
<tr>
<th>Group</th>
<th>Genotype</th>
<th>No. Animals / Sex</th>
<th>Conjugated Dienes (µmol/g. liver) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wild Type (wt/wt)</td>
<td>6M</td>
<td>2.07 ± 0.21</td>
</tr>
<tr>
<td>2</td>
<td>Wild Type (wt/wt)</td>
<td>6F</td>
<td>1.89 ± 0.12</td>
</tr>
<tr>
<td>3</td>
<td>Heterozygous (db/wt)</td>
<td>16M</td>
<td>2.58 ± 0.35</td>
</tr>
<tr>
<td>4</td>
<td>Heterozygous (db/wt)</td>
<td>8F</td>
<td>2.70 ± 0.34</td>
</tr>
<tr>
<td>5</td>
<td>Homozygous (db/db)</td>
<td>10M</td>
<td>3.48 ± 0.23</td>
</tr>
<tr>
<td>6</td>
<td>Homozygous (db/db)</td>
<td>14F</td>
<td>3.63 ± 0.47</td>
</tr>
</tbody>
</table>
Db Mouse Model – Group Mean Values: Males and Females

Table 8.1.7

Lipid Hydroperoxides (nmol LOOH/g. liver) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group</th>
<th>Genotype</th>
<th>No. Animals / Sex</th>
<th>Lipid Hydroperoxides (nmol LOOH/g. liver) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wild Type (wt/wt)</td>
<td>6M</td>
<td>217 ± 76</td>
</tr>
<tr>
<td>2</td>
<td>Wild Type (wt/wt)</td>
<td>6F</td>
<td>137 ± 91</td>
</tr>
<tr>
<td>3</td>
<td>Heterozygous (db/wt)</td>
<td>16M</td>
<td>176 ± 71</td>
</tr>
<tr>
<td>4</td>
<td>Heterozygous (db/wt)</td>
<td>8F</td>
<td>216 ± 49</td>
</tr>
<tr>
<td>5</td>
<td>Homozygous (db/db)</td>
<td>10M</td>
<td>704 ± 151</td>
</tr>
<tr>
<td>6</td>
<td>Homozygous (db/db)</td>
<td>14F</td>
<td>433 ± 111</td>
</tr>
</tbody>
</table>

Db Mouse Model – Group Mean Values: Males and Females

Table 8.1.8

TTBARS (nmol/g. liver) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group</th>
<th>Genotype</th>
<th>No. Animals / Sex</th>
<th>TTBARS (nmol/g. liver) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wild Type (wt/wt)</td>
<td>6M</td>
<td>1795 ± 87</td>
</tr>
<tr>
<td>2</td>
<td>Wild Type (wt/wt)</td>
<td>6F</td>
<td>1309 ± 149</td>
</tr>
<tr>
<td>3</td>
<td>Heterozygous (db/wt)</td>
<td>16M</td>
<td>1264 ± 225</td>
</tr>
<tr>
<td>4</td>
<td>Heterozygous (db/wt)</td>
<td>8F</td>
<td>1337 ± 127</td>
</tr>
<tr>
<td>5</td>
<td>Homozygous (db/db)</td>
<td>10M</td>
<td>1559 ± 162</td>
</tr>
<tr>
<td>6</td>
<td>Homozygous (db/db)</td>
<td>14F</td>
<td>1731 ± 260</td>
</tr>
</tbody>
</table>
Impact of Various Oils, Administered via the Diet (4 Weeks) –
Group Mean Values: Males and Females Combined

Table 8.2.1 Weekly Body Mass (g) ± Standard Deviation

<table>
<thead>
<tr>
<th>Age (Weeks)</th>
<th>Group / Treatment</th>
<th>1 Control</th>
<th>2 Sunflower Oil</th>
<th>3 Canola Oil</th>
<th>4 Sunflower Oil and Cholesterol</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td></td>
<td>22.2 ± 3.1</td>
<td>22.4 ± 2.9</td>
<td>23.3 ± 3.7</td>
<td>23.8 ± 4.8</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>22.0 ± 3.4</td>
<td>22.0 ± 2.2</td>
<td>23.3 ± 3.5</td>
<td>23.8 ± 5.8</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>22.3 ± 3.4</td>
<td>22.0 ± 3.0</td>
<td>22.7 ± 3.5</td>
<td>22.8 ± 5.3</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>22.4 ± 3.6</td>
<td>22.3 ± 2.3</td>
<td>22.9 ± 3.1</td>
<td>24.3 ± 5.7</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>22.8 ± 3.2</td>
<td>23.5 ± 2.9</td>
<td>23.1 ± 3.5</td>
<td>24.5 ± 4.9</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>23.4 ± 3.6</td>
<td>23.6 ± 2.7</td>
<td>24.1 ± 3.2</td>
<td>24.5 ± 5.0</td>
</tr>
</tbody>
</table>

Mean Weight Gain (g) Weeks 12-17

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>1.2</td>
<td>0.8</td>
<td>0.7</td>
<td></td>
</tr>
</tbody>
</table>

Impact of Various Oils, Administered via the Diet (4 Weeks) –
Group Mean Values: Males and Females Combined

Table 8.2.2 Liver Mass (g) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>No. Animals / Sex</th>
<th>Liver Weights (g) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>Control</td>
<td>3M + 3F</td>
<td>0.905 ± 0.17</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>Sunflower Oil</td>
<td>3M + 3F</td>
<td>0.884 ± 0.13</td>
</tr>
<tr>
<td>3 (db/wt)</td>
<td>Canola Oil</td>
<td>3M + 3F</td>
<td>1.025 ± 0.13</td>
</tr>
<tr>
<td>4 (db/wt)</td>
<td>Sunflower Oil and Cholesterol</td>
<td>3M + 3F</td>
<td>0.889 ± 0.16</td>
</tr>
</tbody>
</table>
Table 8.2.3
Glucose Concentration (mmol/l) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>No. Animals / Sex</th>
<th>Glucose Concentration (mmol/l) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>Control</td>
<td>3M + 3F</td>
<td>6.8 ± 1.9</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>Sunflower Oil</td>
<td>3M + 3F</td>
<td>7.6 ± 1.0</td>
</tr>
<tr>
<td>3 (db/wt)</td>
<td>Canola Oil</td>
<td>3M + 3F</td>
<td>8.0 ± 2.2</td>
</tr>
<tr>
<td>4 (db/wt)</td>
<td>Sunflower Oil and Cholesterol</td>
<td>3M + 3F</td>
<td>4.5 ± 2.2</td>
</tr>
</tbody>
</table>

Table 8.2.4
Triglycerides (mg TG/g liver) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>No. Animals / Sex</th>
<th>Triglycerides (mg TG/g liver) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>Control</td>
<td>3M + 3F</td>
<td>20.1 ± 3.5</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>Sunflower Oil</td>
<td>3M + 3F</td>
<td>22.8 ± 4.7</td>
</tr>
<tr>
<td>3 (db/wt)</td>
<td>Canola Oil</td>
<td>3M + 3F</td>
<td>24.4 ± 2.8</td>
</tr>
<tr>
<td>4 (db/wt)</td>
<td>Sunflower Oil and Cholesterol</td>
<td>3M + 3F</td>
<td>22.2 ± 2.4</td>
</tr>
</tbody>
</table>
Impact of Various Oils, Administered via the Diet (4 Weeks) –
Group Mean Values: Males and Females Combined

Table 8.2.5

Cholesterol (mg chol/g. liver) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>No. Animals / Sex</th>
<th>Cholesterol (mg chol/g. liver) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>Control</td>
<td>3M + 3F</td>
<td>2.33 ± 0.52</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>Sunflower Oil</td>
<td>3M + 3F</td>
<td>4.47 ± 1.13</td>
</tr>
<tr>
<td>3 (db/wt)</td>
<td>Canola Oil</td>
<td>3M + 3F</td>
<td>3.43 ± 1.46</td>
</tr>
<tr>
<td>4 (db/wt)</td>
<td>Sunflower Oil and Cholesterol</td>
<td>3M + 3F</td>
<td>3.99 ± 1.08</td>
</tr>
</tbody>
</table>

Impact of Various Oils, Administered via the Diet (4 Weeks) –
Group Mean Values: Males and Females Combined

Table 8.2.6

Conjugated Dienes (μmol/g. liver) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>No. Animals / Sex</th>
<th>Conjugated Dienes (μmol/g. liver) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>Control</td>
<td>3M + 3F</td>
<td>2.00 ± 0.20</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>Sunflower Oil</td>
<td>3M + 3F</td>
<td>2.66 ± 0.33</td>
</tr>
<tr>
<td>3 (db/wt)</td>
<td>Canola Oil</td>
<td>3M + 3F</td>
<td>2.26 ± 0.30</td>
</tr>
<tr>
<td>4 (db/wt)</td>
<td>Sunflower Oil and Cholesterol</td>
<td>3M + 3F</td>
<td>2.46 ± 0.05</td>
</tr>
</tbody>
</table>
Table 8.2.7

Impact of Various Oils, Administered via the Diet (4 Weeks) – Group Mean Values: Males and Females Combined

Lipid Hydroperoxides (nmol LOOH/g. liver) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>No. Animals / Sex</th>
<th>Lipid Hydroperoxides (nmol LOOH/g. liver) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>Control</td>
<td>3M + 3F</td>
<td>400 ± 251</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>Sunflower Oil</td>
<td>3M + 3F</td>
<td>561 ± 235</td>
</tr>
<tr>
<td>3 (db/wt)</td>
<td>Canola Oil</td>
<td>3M + 3F</td>
<td>500 ± 90</td>
</tr>
<tr>
<td>4 (db/wt)</td>
<td>Sunflower Oil and Cholesterol</td>
<td>3M + 3F</td>
<td>497 ± 188</td>
</tr>
</tbody>
</table>

Table 8.2.8

Impact of Various Oils, Administered via the Diet (4 Weeks) – Group Mean Values: Males and Females Combined

TTBARS (nmol/g. liver) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>No. Animals / Sex</th>
<th>TTBARS (nmol/g. liver) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>Control</td>
<td>3M + 3F</td>
<td>3532 ± 410</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>Sunflower Oil</td>
<td>3M + 3F</td>
<td>3173 ± 461</td>
</tr>
<tr>
<td>3 (db/wt)</td>
<td>Canola Oil</td>
<td>3M + 3F</td>
<td>3314 ± 546</td>
</tr>
<tr>
<td>4 (db/wt)</td>
<td>Sunflower Oil and Cholesterol</td>
<td>3M + 3F</td>
<td>3204 ± 632</td>
</tr>
</tbody>
</table>
Table 8.2.9 BCA Protein (µg/µg liver) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>No. Animals / Sex</th>
<th>BCA Protein (µg/µg liver) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>Control</td>
<td>3M + 3F</td>
<td>71.3 ± 11.9</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>Sunflower Oil</td>
<td>3M + 3F</td>
<td>72.2 ± 4.0</td>
</tr>
<tr>
<td>3 (db/wt)</td>
<td>Canola Oil</td>
<td>3M + 3F</td>
<td>75.0 ± 10.8</td>
</tr>
<tr>
<td>4 (db/wt)</td>
<td>Sunflower Oil and Cholesterol</td>
<td>3M + 3F</td>
<td>75.5 ± 7.7</td>
</tr>
</tbody>
</table>

Impact of Various Oils, Administered via the Diet (4 Weeks) – Group Mean Values: Males and Females Combined
Study of Short Period of Alcohol Administration (4 Weeks)

Group Mean Values: Males and Females Combined

Table 8.3.1 Weekly Body Mass (g) ± Standard Deviation

<table>
<thead>
<tr>
<th>Age (Weeks)</th>
<th>Group / Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 (wt/wt) H₂O Control</td>
</tr>
<tr>
<td>14</td>
<td>17.3 ± 1.7</td>
</tr>
<tr>
<td>15</td>
<td>18.8 ± 1.7</td>
</tr>
<tr>
<td>16</td>
<td>19.0 ± 1.7</td>
</tr>
<tr>
<td>17</td>
<td>18.5 ± 1.7</td>
</tr>
<tr>
<td>18</td>
<td>19.3 ± 1.7</td>
</tr>
<tr>
<td>19</td>
<td>19.0 ± 1.7</td>
</tr>
<tr>
<td>20</td>
<td>19.5 ± 1.7</td>
</tr>
</tbody>
</table>

Mean Weight Gain (g) Weeks 9-20

| + 2.2 | + 1.8 | + 1.8 | + 0.5 | + 3.5 | + 4.2 |

Please note that a standard deviation value could not be calculated for groups 1 and 2, as the number of animals was too small.
Study of Short Period of Alcohol Administration (4 Weeks) – Group Mean Values: Males and Females Combined

Table 8.3.2
Triglycerides (mg TG/g. liver) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>No. Animals / Sex</th>
<th>Triglycerides (mg TG/g. liver) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (wt/wt)</td>
<td>H₂O Control</td>
<td>1M + 1F</td>
<td>1.53</td>
</tr>
<tr>
<td>2 (wt/wt)</td>
<td>20% Alcohol</td>
<td>1M + 1F</td>
<td>1.84</td>
</tr>
<tr>
<td>3 (db/wt)</td>
<td>H₂O Control</td>
<td>2M + 2F</td>
<td>1.05 ± 0.08</td>
</tr>
<tr>
<td>4 (db/wt)</td>
<td>20% Alcohol</td>
<td>2M + 2F</td>
<td>1.28 ± 0.09</td>
</tr>
<tr>
<td>5 (db/db)</td>
<td>H₂O Control</td>
<td>2M + 2F</td>
<td>2.93 ± 0.26</td>
</tr>
<tr>
<td>6 (db/db)</td>
<td>20% Alcohol</td>
<td>1M + 3F</td>
<td>6.44 ± 0.48</td>
</tr>
</tbody>
</table>

Please note that a standard deviation value could not be calculated for groups 1 and 2, as the number of animals was too small.

Study of Short Period of Alcohol Administration (4 Weeks) – Group Mean Values: Males and Females Combined

Table 8.3.3
Cholesterol (mg chol/g. liver) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>No. Animals / Sex</th>
<th>Cholesterol (mg chol/g. liver) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (wt/wt)</td>
<td>H₂O Control</td>
<td>1M + 1F</td>
<td>3.54</td>
</tr>
<tr>
<td>2 (wt/wt)</td>
<td>20% Alcohol</td>
<td>1M + 1F</td>
<td>4.53</td>
</tr>
<tr>
<td>3 (db/wt)</td>
<td>H₂O Control</td>
<td>2M + 2F</td>
<td>2.62 ± 0.72</td>
</tr>
<tr>
<td>4 (db/wt)</td>
<td>20% Alcohol</td>
<td>2M + 2F</td>
<td>4.49 ± 0.51</td>
</tr>
<tr>
<td>5 (db/db)</td>
<td>H₂O Control</td>
<td>2M + 2F</td>
<td>4.65 ± 1.02</td>
</tr>
<tr>
<td>6 (db/db)</td>
<td>20% Alcohol</td>
<td>1M + 3F</td>
<td>5.15 ± 1.42</td>
</tr>
</tbody>
</table>

Please note that a standard deviation value could not be calculated for groups 1 and 2, as the number of animals was too small.
Study of Short Period of Alcohol Administration (4 Weeks) –
Group Mean Values: Males and Females Combined

Table 8.3.6 TTBARS (nmol/g. liver) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>No. Animals / Sex</th>
<th>TTBARS (nmol/g. liver) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (wt/wt)</td>
<td>H₂O Control</td>
<td>1M + 1F</td>
<td>1490</td>
</tr>
<tr>
<td>2 (wt/wt)</td>
<td>20% Alcohol</td>
<td>1M + 1F</td>
<td>1577</td>
</tr>
<tr>
<td>3 (db/wt)</td>
<td>H₂O Control</td>
<td>2M + 2F</td>
<td>1175 ± 72</td>
</tr>
<tr>
<td>4 (db/wt)</td>
<td>20% Alcohol</td>
<td>2M + 2F</td>
<td>1367 ± 125</td>
</tr>
<tr>
<td>5 (db/db)</td>
<td>H₂O Control</td>
<td>2M + 2F</td>
<td>1307 ± 144</td>
</tr>
<tr>
<td>6 (db/db)</td>
<td>20% Alcohol</td>
<td>1M + 3F</td>
<td>1849 ± 26</td>
</tr>
</tbody>
</table>

Please note that a standard deviation value could not be calculated for groups 1 and 2, as the number of animals was too small.
Impact of Alcohol Administered over 8 Weeks in db/wt and db/db Mice – Group Mean Values: Males

Table 8.4.1 Weekly Body Mass (g) ± Standard Deviation

<table>
<thead>
<tr>
<th>Age (Weeks)</th>
<th>Group / Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 (db/wt)</td>
</tr>
<tr>
<td></td>
<td>H₂O Control</td>
</tr>
<tr>
<td>9</td>
<td>25.2 ± 1.5</td>
</tr>
<tr>
<td>10</td>
<td>26.5 ± 1.7</td>
</tr>
<tr>
<td>11</td>
<td>27.3 ± 1.7</td>
</tr>
<tr>
<td>12</td>
<td>28.1 ± 1.5</td>
</tr>
<tr>
<td>13</td>
<td>29.0 ± 1.8</td>
</tr>
<tr>
<td>14</td>
<td>29.6 ± 2.1</td>
</tr>
<tr>
<td>15</td>
<td>31.2 ± 2.3</td>
</tr>
<tr>
<td>16</td>
<td>30.9 ± 2.4</td>
</tr>
<tr>
<td>17</td>
<td>31.7 ± 2.6</td>
</tr>
<tr>
<td>18</td>
<td>32.3 ± 3.1</td>
</tr>
<tr>
<td>19</td>
<td>32.4 ± 2.5</td>
</tr>
<tr>
<td>20</td>
<td>32.0 ± 2.7</td>
</tr>
</tbody>
</table>

| Mean Weight Gain (g) Weeks 9-20 | 6.8 | 4.5 | 7.4 | 5.2 |
Table 8.4.2
Liver Mass (g) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>No. Animals</th>
<th>Liver Weight (g) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>7</td>
<td>1.06 ± 0.06</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>6</td>
<td>1.45 ± 0.12</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H₂O Control</td>
<td>6</td>
<td>2.83 ± 0.57</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>5</td>
<td>2.84 ± 0.42</td>
</tr>
</tbody>
</table>

Table 8.4.3
Glucose Concentration (mmol/l) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>No. Animals</th>
<th>Glucose Concentration (mmol/l) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>7</td>
<td>13.8 ± 3.4</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>6</td>
<td>8.6 ± 1.6</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H₂O Control</td>
<td>6</td>
<td>31.2 ± 2.0</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>5</td>
<td>29.2 ± 2.8</td>
</tr>
</tbody>
</table>

Table 8.4.4
Blood/Alcohol Levels (mmol/l) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>No. Animals</th>
<th>Blood/Alcohol Levels (mmol/l) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>7</td>
<td>0.53 ± 0.46</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>6</td>
<td>1.33 ± 0.86</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H₂O Control</td>
<td>6</td>
<td>1.12 ± 0.56</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>5</td>
<td>4.73 ± 6.00</td>
</tr>
</tbody>
</table>
Table 8.4.5
Aspartine Transaminase (AST) Levels (U/I) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>No. Animals</th>
<th>AST Levels (U/I) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>7</td>
<td>32.6 ± 17.3</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>6</td>
<td>41.7 ± 11.1</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H₂O Control</td>
<td>6</td>
<td>53.8 ± 21.4</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>5</td>
<td>77.8 ± 43.4</td>
</tr>
</tbody>
</table>

Table 8.4.6
Alanine Transaminase (ALT) Levels (U/I) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>No. Animals</th>
<th>ALT Levels (U/I) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>7</td>
<td>18.6 ± 10.5</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>6</td>
<td>22.3 ± 8.0</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H₂O Control</td>
<td>6</td>
<td>65.3 ± 46.9</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>5</td>
<td>71.0 ± 33.9</td>
</tr>
</tbody>
</table>

Table 8.4.7
Triglycerides (mg TG/g. liver) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>No. Animals</th>
<th>Triglycerides (mg TG/g. liver) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>7</td>
<td>4.00 ± 1.63</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>6</td>
<td>6.61 ± 0.78</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H₂O Control</td>
<td>6</td>
<td>6.55 ± 1.41</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>5</td>
<td>10.33 ± 2.25</td>
</tr>
</tbody>
</table>
Table 8.4.8
Impact of Alcohol Administered over 8 Weeks in db/wt and db/db Mice – Group Mean Values: Males
Cholesterol (mg chol/g. liver) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>No. Animals</th>
<th>Cholesterol (mg chol/g. liver) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>7</td>
<td>3.35 ± 0.95</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>6</td>
<td>5.03 ± 0.91</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H₂O Control</td>
<td>6</td>
<td>5.91 ± 1.02</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>5</td>
<td>8.46 ± 1.58</td>
</tr>
</tbody>
</table>

Table 8.4.9
Impact of Alcohol Administered over 8 Weeks in db/wt and db/db Mice – Group Mean Values: Males
Conjugated Dienes (μmol/g. liver) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>No. Animals</th>
<th>Conjugated Dienes (μmol/g. liver) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>7</td>
<td>1.60 ± 0.31</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>6</td>
<td>2.00 ± 0.23</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H₂O Control</td>
<td>6</td>
<td>2.66 ± 0.07</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>5</td>
<td>3.45 ± 0.16</td>
</tr>
</tbody>
</table>

Table 8.4.10
Impact of Alcohol Administered over 8 Weeks in db/wt and db/db Mice – Group Mean Values: Males
Lipid Hydroperoxides (nmol LOOH/g. liver) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>No. Animals</th>
<th>Lipid Hydroperoxides (nmol LOOH/g. liver) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>7</td>
<td>339 ± 54</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>6</td>
<td>724 ± 107</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H₂O Control</td>
<td>6</td>
<td>1073 ± 92</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>5</td>
<td>1486 ± 118</td>
</tr>
</tbody>
</table>
Impact of Alcohol Administered over 8 Weeks in db/wt and db/db Mice – Group Mean Values: Males

Table 8.4.11 TTBARS (nmol/g. liver) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>No. Animals</th>
<th>TTBARS (nmol/g. liver) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>7</td>
<td>1762 ± 154</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>6</td>
<td>2529 ± 266</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H₂O Control</td>
<td>6</td>
<td>1862 ± 230</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>5</td>
<td>2962 ± 257</td>
</tr>
</tbody>
</table>

Impact of Alcohol Administered over 8 Weeks in db/wt and db/db Mice – Group Mean Values: Males

Table 8.4.12 BCA Protein Assay (µg/µg. liver) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>No. Animals</th>
<th>Protein Concentration (µg/µg. Liver) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>7</td>
<td>55.3 ± 10.5</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>6</td>
<td>60.7 ± 3.6</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H₂O Control</td>
<td>6</td>
<td>69.4 ± 12.4</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>5</td>
<td>76.7 ± 12.2</td>
</tr>
</tbody>
</table>

Impact of Alcohol Administered over 8 Weeks in db/wt and db/db Mice – Group Mean Values: Males

Table 8.4.13 Fat Change and Inflammation Grading ± Standard Deviation

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>No. Animals</th>
<th>Fat Change (0-3) ± SD</th>
<th>Inflammatory Aggregates* ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>7</td>
<td>0.0 ± 0.0</td>
<td>0.0 ± 0.0</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>6</td>
<td>0.17 ± 0.41</td>
<td>0.0 ± 0.0</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H₂O Control</td>
<td>6</td>
<td>2.33 ± 0.52</td>
<td>1.33 ± 1.63</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>5</td>
<td>2.80 ± 0.45</td>
<td>6.00 ± 2.55</td>
</tr>
</tbody>
</table>

* = Inflammatory aggregates; 20 x objective, 20 fields counted
Impact of Alcohol Administered over 20 Weeks in db/wt and db/db Mice – Group Mean Values: Males

Table 8.5.1 Weekly Body Mass (g) ± Standard Deviation

<table>
<thead>
<tr>
<th>Age (Weeks)</th>
<th>1 (db/wt) H₂O Control</th>
<th>2 (db/wt) 20% Alcohol</th>
<th>3 (db/db) H₂O Control</th>
<th>4 (db/db) 20% Alcohol</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>27.0 ± 0.8</td>
<td>27.6 ± 0.5</td>
<td>45.1 ± 1.3</td>
<td>43.4 ± 1.8</td>
</tr>
<tr>
<td>10</td>
<td>28.1 ± 1.2</td>
<td>27.9 ± 1.0</td>
<td>45.4 ± 0.9</td>
<td>46.3 ± 1.4</td>
</tr>
<tr>
<td>11</td>
<td>28.8 ± 1.1</td>
<td>28.5 ± 0.9</td>
<td>46.2 ± 1.1</td>
<td>47.1 ± 1.0</td>
</tr>
<tr>
<td>12</td>
<td>29.4 ± 1.1</td>
<td>28.2 ± 1.2</td>
<td>50.6 ± 3.1</td>
<td>49.8 ± 1.6</td>
</tr>
<tr>
<td>13</td>
<td>30.9 ± 1.0</td>
<td>28.7 ± 1.3</td>
<td>51.8 ± 2.2</td>
<td>50.1 ± 2.2</td>
</tr>
<tr>
<td>14</td>
<td>31.4 ± 1.3</td>
<td>29.3 ± 1.2</td>
<td>53.5 ± 2.8</td>
<td>51.0 ± 2.9</td>
</tr>
<tr>
<td>15</td>
<td>32.5 ± 2.0</td>
<td>29.8 ± 1.0</td>
<td>54.8 ± 3.6</td>
<td>51.8 ± 2.5</td>
</tr>
<tr>
<td>16</td>
<td>32.6 ± 1.7</td>
<td>30.4 ± 1.1</td>
<td>56.2 ± 3.6</td>
<td>51.3 ± 2.4</td>
</tr>
<tr>
<td>17</td>
<td>33.1 ± 2.1</td>
<td>30.1 ± 1.3</td>
<td>55.4 ± 3.7</td>
<td>51.5 ± 2.9</td>
</tr>
<tr>
<td>18</td>
<td>33.5 ± 2.0</td>
<td>30.4 ± 1.2</td>
<td>56.8 ± 4.0</td>
<td>51.8 ± 3.2</td>
</tr>
<tr>
<td>19</td>
<td>33.5 ± 2.2</td>
<td>30.1 ± 1.0</td>
<td>57.4 ± 3.8</td>
<td>51.4 ± 3.5</td>
</tr>
<tr>
<td>20</td>
<td>33.4 ± 2.8</td>
<td>29.6 ± 0.8</td>
<td>56.6 ± 4.4</td>
<td>51.8 ± 3.3</td>
</tr>
</tbody>
</table>

Page 194
Table 8.5.1
Impact of Alcohol Administered over 20 Weeks in db/wt and db/db Mice – Group Mean Values: Males
(continued)
Weekly Body Mass (g) ± Standard Deviation

<table>
<thead>
<tr>
<th>Age (weeks)</th>
<th>Group / Treatment</th>
<th>1 (db/wt) H2O Control</th>
<th>2 (db/wt) 20% Alcohol</th>
<th>3 (db/db) H2O Control</th>
<th>4 (db/db) 20% Alcohol</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td></td>
<td>33.4 ± 2.4</td>
<td>30.1 ± 1.3</td>
<td>56.0 ± 3.7</td>
<td>51.3 ± 2.9</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>32.9 ± 2.6</td>
<td>29.6 ± 1.1</td>
<td>56.3 ± 4.2</td>
<td>50.8 ± 3.2</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>33.9 ± 2.8</td>
<td>30.7 ± 0.8</td>
<td>56.3 ± 5.0</td>
<td>50.4 ± 3.6</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>33.3 ± 2.9</td>
<td>30.5 ± 1.0</td>
<td>54.5 ± 4.4</td>
<td>49.9 ± 3.5</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>33.4 ± 2.8</td>
<td>31.0 ± 1.1</td>
<td>56.5 ± 4.4</td>
<td>51.2 ± 3.8</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>33.9 ± 3.0</td>
<td>31.6 ± 0.9</td>
<td>57.9 ± 4.8</td>
<td>51.8 ± 4.6</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>32.7 ± 2.8</td>
<td>31.6 ± 1.4</td>
<td>57.7 ± 4.5</td>
<td>51.8 ± 4.9</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>32.9 ± 3.2</td>
<td>31.5 ± 1.3</td>
<td>58.6 ± 4.3</td>
<td>52.8 ± 5.0</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>33.4 ± 2.8</td>
<td>30.9 ± 1.5</td>
<td>59.0 ± 5.0</td>
<td>53.5 ± 5.7</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>33.8 ± 2.1</td>
<td>31.6 ± 1.7</td>
<td>58.3 ± 4.5</td>
<td>52.7 ± 5.8</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>33.5 ± 3.3</td>
<td>31.5 ± 2.1</td>
<td>57.4 ± 4.2</td>
<td>51.3 ± 5.7</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>33.4 ± 2.7</td>
<td>31.3 ± 2.1</td>
<td>57.4 ± 5.5</td>
<td>50.2 ± 5.7</td>
</tr>
<tr>
<td>Total Weight Gain (g) Weeks 9-32</td>
<td>+ 6.4</td>
<td>+ 1.2</td>
<td>+ 12.3</td>
<td>+ 6.8</td>
<td></td>
</tr>
</tbody>
</table>
Table 8.5.2 Liver Mass (g) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>No. Animals</th>
<th>Liver Weight (g) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H2O Control</td>
<td>7</td>
<td>1.37 ± 0.05</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>4</td>
<td>1.53 ± 0.11</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H2O Control</td>
<td>6</td>
<td>2.84 ± 0.44</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>6</td>
<td>2.99 ± 0.38</td>
</tr>
</tbody>
</table>

Table 8.5.3 Glucose Concentration (mmol/l) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>No. Animals</th>
<th>Glucose Concentration (mmol/l) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H2O Control</td>
<td>7</td>
<td>13.6 ± 3.5</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>4</td>
<td>12.3 ± 5.2</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H2O Control</td>
<td>6</td>
<td>31.4 ± 0.8</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>6</td>
<td>29.2 ± 4.8</td>
</tr>
</tbody>
</table>

Table 8.5.4 Blood/Alcohol Levels (mmol/l) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>No. Animals</th>
<th>Blood/Alcohol Levels (mmol/l) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H2O Control</td>
<td>7</td>
<td>0.64 ± 0.49</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>4</td>
<td>12.65 ± 9.09</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H2O Control</td>
<td>6</td>
<td>0.56 ± 0.27</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>6</td>
<td>4.49 ± 9.09</td>
</tr>
</tbody>
</table>
Table 8.5.5 Aspartine Transaminase (AST) Levels (U/I) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>No. Animals</th>
<th>AST Levels (U/I) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>7</td>
<td>23.3 ± 9.2</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>4</td>
<td>37.5 ± 9.5</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H₂O Control</td>
<td>6</td>
<td>37.3 ± 9.6</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>6</td>
<td>43.5 ± 30.3</td>
</tr>
</tbody>
</table>

Table 8.5.6 Alanine Transaminase (ALT) Levels (U/I) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>No. Animals</th>
<th>ALT Levels (U/I) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>7</td>
<td>15.1 ± 7.8</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>4</td>
<td>16.8 ± 7.9</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H₂O Control</td>
<td>6</td>
<td>65.2 ± 44.8</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>6</td>
<td>76.3 ± 28.6</td>
</tr>
</tbody>
</table>

Table 8.5.7 Triglycerides (mg TG/g. liver) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>No. Animals</th>
<th>Triglycerides (mg TG/g. liver) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>7</td>
<td>3.72 ± 0.54</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>4</td>
<td>5.35 ± 0.59</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H₂O Control</td>
<td>6</td>
<td>5.74 ± 1.06</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>6</td>
<td>7.67 ± 0.60</td>
</tr>
</tbody>
</table>
Table 8.5.9: Conjugated Dienes (µmol/g. liver) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>No. Animals</th>
<th>Conjugated Dienes (µmol/g. liver) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>7</td>
<td>1.64 ± 0.18</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>4</td>
<td>2.19 ± 0.29</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H₂O Control</td>
<td>6</td>
<td>2.22 ± 0.15</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>6</td>
<td>2.58 ± 0.17</td>
</tr>
</tbody>
</table>

Table 8.5.10: Lipid Hydroperoxides (nmol LOOH/g. liver) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>No. Animals</th>
<th>Lipid Hydroperoxides (nmol LOOH/g. liver) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>7</td>
<td>195 ± 60</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>4</td>
<td>452 ± 78</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H₂O Control</td>
<td>6</td>
<td>789 ± 110</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>6</td>
<td>998 ± 121</td>
</tr>
</tbody>
</table>
Impact of Alcohol Administered over 20 Weeks in db/wt and db/db Mice – Group Mean Values: Males

Table 8.5.11 TTBARS (nmol/g. liver) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>No. Animals</th>
<th>TTBARS (nmol/g. liver) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H2O Control</td>
<td>7</td>
<td>1617 ± 300</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>4</td>
<td>2816 ± 349</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H2O Control</td>
<td>6</td>
<td>2891 ± 164</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>6</td>
<td>3336 ± 399</td>
</tr>
</tbody>
</table>

Table 8.5.12 BCA Protein Assay (μg/μg. liver) ± Standard Deviation

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>No. Animals</th>
<th>Protein Concentration (μg/μg. liver) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H2O Control</td>
<td>7</td>
<td>58.6 ± 8.0</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>4</td>
<td>64.8 ± 6.0</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H2O Control</td>
<td>6</td>
<td>82.5 ± 10.9</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>6</td>
<td>88.5 ± 8.0</td>
</tr>
</tbody>
</table>

Table 8.5.13 Fat Change and Inflammation Grading ± Standard Deviation

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>No. Animals</th>
<th>Fat Change (0-3) ± SD</th>
<th>Inflammatory Aggregates* ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H2O Control</td>
<td>7</td>
<td>0.0 ± 0.0</td>
<td>2.86 ± 3.87</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>4</td>
<td>0.25 ± 0.50</td>
<td>1.25 ± 1.5</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H2O Control</td>
<td>6</td>
<td>1.83 ± 0.75</td>
<td>3.5 ± 1.64</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>6</td>
<td>2.0 ± 0.0</td>
<td>1.5 ± 1.64</td>
</tr>
</tbody>
</table>

* = Inflammatory aggregates; 20 x objective, 20 fields counted
Chapter 9: Appendices – Individual Values

Wild Type Mice (wt/wt) – Individual Values: Males and Females

Appendix A1 Terminal Body Mass (g)

<table>
<thead>
<tr>
<th>Sex</th>
<th>Animal</th>
<th>Body Mass (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1</td>
<td>22.7</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>22.5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>21.2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>22.1</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>23.5</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>22.6</td>
</tr>
<tr>
<td>F</td>
<td>7</td>
<td>17.7</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>17.5</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>17.9</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>19.6</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>16.0</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>15.2</td>
</tr>
</tbody>
</table>

Appendix A2 Liver Mass (g)

<table>
<thead>
<tr>
<th>Sex</th>
<th>Animal</th>
<th>Liver Mass (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1</td>
<td>0.8731</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.7377</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.7484</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.7784</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.8145</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.7113</td>
</tr>
<tr>
<td>F</td>
<td>7</td>
<td>0.7979</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.8575</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.6443</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.8132</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0.6987</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.7158</td>
</tr>
</tbody>
</table>

Appendix A3 Liver Mass / Body Mass x 100 (%)

<table>
<thead>
<tr>
<th>Sex</th>
<th>Animal</th>
<th>Liver Weight / Mass x 100 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1</td>
<td>3.69</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.28</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.53</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.52</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3.47</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3.15</td>
</tr>
<tr>
<td>F</td>
<td>7</td>
<td>4.51</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>4.15</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>4.37</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>4.71</td>
</tr>
</tbody>
</table>
Appendix A4 Glucose Concentration (mmol/l)

<table>
<thead>
<tr>
<th>Sex</th>
<th>Animal</th>
<th>Glucose conc. (mmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6.3</td>
</tr>
<tr>
<td>F</td>
<td>7</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>5.7</td>
</tr>
</tbody>
</table>

Appendix A5 Triglycerides (mg TG/g. liver)

<table>
<thead>
<tr>
<th>Sex</th>
<th>Animal</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1</td>
<td>2.46</td>
<td>2.56</td>
<td>2.51</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.18</td>
<td>2.49</td>
<td>2.34</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.94</td>
<td>1.82</td>
<td>1.88</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.99</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.27</td>
<td>1.74</td>
<td>1.51</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.33</td>
<td>1.44</td>
<td>1.39</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2.38</td>
<td>2.19</td>
<td>2.29</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2.10</td>
<td>2.40</td>
<td>2.25</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.98</td>
<td>1.76</td>
<td>1.87</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.38</td>
<td>1.73</td>
<td>1.56</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1.17</td>
<td>1.49</td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1.54</td>
<td>1.99</td>
<td>1.57</td>
</tr>
</tbody>
</table>

Appendix A6 Cholesterol (mg chol/g. liver)

<table>
<thead>
<tr>
<th>Sex</th>
<th>Animal</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1</td>
<td>4.29</td>
<td>4.41</td>
<td>4.35</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4.53</td>
<td>4.48</td>
<td>4.51</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5.12</td>
<td>4.96</td>
<td>5.04</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4.97</td>
<td>5.07</td>
<td>5.02</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.15</td>
<td>4.35</td>
<td>4.25</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5.24</td>
<td>4.99</td>
<td>5.12</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>5.27</td>
<td>5.16</td>
<td>5.22</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>5.37</td>
<td>4.75</td>
<td>5.06</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>4.18</td>
<td>4.80</td>
<td>4.49</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5.25</td>
<td>5.02</td>
<td>5.14</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>4.32</td>
<td>4.68</td>
<td>4.50</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>4.86</td>
<td>4.51</td>
<td>4.69</td>
</tr>
</tbody>
</table>
Wild Type Mice (wt/wt) – Individual Values: Males and Females
Appendix A7
Conjugated Dienes (μmol/g. liver)

<table>
<thead>
<tr>
<th>Sex</th>
<th>Animal</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1</td>
<td>1.87</td>
<td>1.62</td>
<td>1.75</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.00</td>
<td>1.99</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.23</td>
<td>2.09</td>
<td>2.16</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.31</td>
<td>2.46</td>
<td>2.39</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.18</td>
<td>2.07</td>
<td>2.13</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.93</td>
<td>2.06</td>
<td>2.00</td>
</tr>
<tr>
<td>F</td>
<td>7</td>
<td>2.11</td>
<td>2.03</td>
<td>2.07</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.71</td>
<td>1.74</td>
<td>1.73</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.67</td>
<td>2.06</td>
<td>1.87</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2.07</td>
<td>1.57</td>
<td>1.82</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1.95</td>
<td>2.01</td>
<td>1.98</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1.58</td>
<td>2.22</td>
<td>1.90</td>
</tr>
</tbody>
</table>

Wild Type Mice (wt/wt) – Individual Values: Males and Females
Appendix A8
Lipid Hydroperoxides (nmol LOOH/g. liver)

<table>
<thead>
<tr>
<th>Sex</th>
<th>Animal</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1</td>
<td>42</td>
<td>101</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>232</td>
<td>185</td>
<td>209</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>283</td>
<td>244</td>
<td>264</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>258</td>
<td>216</td>
<td>237</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>219</td>
<td>245</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>280</td>
<td>298</td>
<td>289</td>
</tr>
<tr>
<td>F</td>
<td>7</td>
<td>255</td>
<td>203</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>296</td>
<td>256</td>
<td>276</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>44</td>
<td>85</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>88</td>
<td>59</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>87</td>
<td>109</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>53</td>
<td>114</td>
<td>84</td>
</tr>
</tbody>
</table>

Wild Type Mice (wt/wt) – Individual Values: Males and Females
Appendix A9
TTBARS (nmol/g. liver)

<table>
<thead>
<tr>
<th>Sex</th>
<th>Animal</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1</td>
<td>1828</td>
<td>1810</td>
<td>1819</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1920</td>
<td>1828</td>
<td>1874</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1883</td>
<td>1810</td>
<td>1847</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1682</td>
<td>1755</td>
<td>1719</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1571</td>
<td>1737</td>
<td>1655</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1883</td>
<td>1810</td>
<td>1847</td>
</tr>
<tr>
<td>F</td>
<td>7</td>
<td>1243</td>
<td>1426</td>
<td>1335</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1188</td>
<td>1353</td>
<td>1271</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1225</td>
<td>1060</td>
<td>1143</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1463</td>
<td>1499</td>
<td>1481</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1517</td>
<td>1426</td>
<td>1472</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1079</td>
<td>1225</td>
<td>1152</td>
</tr>
</tbody>
</table>
Heterozygous Mice (db/wt) – Individual Values: Males and Females

Appendix B1 Terminal Body Mass (g)

<table>
<thead>
<tr>
<th>Sex</th>
<th>Animal</th>
<th>Body Mass (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1</td>
<td>25.6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>25.9</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>29.3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>27.9</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>29.0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>27.2</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>19.5</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>27.7</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>26.7</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>29.9</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>25.8</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>26.2</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>24.4</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>24.5</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>26.2</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>26.7</td>
</tr>
<tr>
<td>F</td>
<td>17</td>
<td>18.6</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>20.0</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>23.0</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>21.5</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>22.0</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>19.4</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>19.2</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>22.5</td>
</tr>
</tbody>
</table>
Heterozygous Mice (db/wt) – Individual Values: Males and Females

Appendix B2 Liver Mass (g)

<table>
<thead>
<tr>
<th>Sex</th>
<th>Animal</th>
<th>Liver Mass (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1</td>
<td>1.1560</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.3540</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.3691</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.4012</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.0999</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.2154</td>
</tr>
<tr>
<td></td>
<td>7*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>8*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>9*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>10*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>11*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>12*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>13*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>14*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>15*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>16*</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>17</td>
<td>0.5912</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>0.7265</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>0.7806</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.8103</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>0.7415</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>0.8272</td>
</tr>
<tr>
<td></td>
<td>23*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>24*</td>
<td>-</td>
</tr>
</tbody>
</table>

* = The liver mass of these animals were not taken in error
Heterozygous Mice (db/wt) – Individual Values:
Males and Females

Appendix B3 Liver Mass / Body Mass x 100 (%)

<table>
<thead>
<tr>
<th>Sex</th>
<th>Animal</th>
<th>Liver Mass / Body Mass x 100 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1</td>
<td>4.52</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5.23</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.67</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5.02</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.04</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>4.47</td>
</tr>
<tr>
<td></td>
<td>7*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>8*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>9*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>10*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>11*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>12*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>13*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>14*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>15*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>16*</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>17</td>
<td>3.18</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>3.63</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>3.40</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>3.77</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>3.37</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>4.26</td>
</tr>
<tr>
<td></td>
<td>23*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>24*</td>
<td>-</td>
</tr>
</tbody>
</table>

* = The liver mass of these animals were not taken in error
Heterozygous Mice (db/wt) -- Individual Values: Males and Females

Appendix B4
Glucose Concentration (mmol/l)

<table>
<thead>
<tr>
<th>Sex</th>
<th>Animal</th>
<th>Glucose conc. (mmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>8.4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7.6</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>7.2</td>
</tr>
<tr>
<td>M</td>
<td>8</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>14.0</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>13.9</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>9.9</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>12.7</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>14.6</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>11.8</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6.6</td>
</tr>
<tr>
<td>F</td>
<td>21</td>
<td>7.3</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>6.2</td>
</tr>
</tbody>
</table>
Heterozygous Mice (db+) – Individual Values:
Males and Females
Appendix B5 Triglycerides (mg TG/g, liver)

<table>
<thead>
<tr>
<th>Sex</th>
<th>Animal</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1</td>
<td>1.17</td>
<td>1.31</td>
<td>1.24</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.06</td>
<td>1.21</td>
<td>1.14</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.42</td>
<td>1.44</td>
<td>1.43</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.75</td>
<td>1.56</td>
<td>1.66</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.04</td>
<td>0.99</td>
<td>1.02</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.03</td>
<td>1.32</td>
<td>1.18</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.91</td>
<td>1.00</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.10</td>
<td>1.18</td>
<td>1.14</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.94</td>
<td>1.15</td>
<td>1.05</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.97</td>
<td>1.12</td>
<td>1.05</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0.93</td>
<td>1.01</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.86</td>
<td>1.39</td>
<td>1.13</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1.26</td>
<td>1.16</td>
<td>1.21</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.16</td>
<td>1.02</td>
<td>1.09</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.02</td>
<td>1.22</td>
<td>1.12</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1.78</td>
<td>1.57</td>
<td>1.68</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1.38</td>
<td>1.41</td>
<td>1.40</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1.31</td>
<td>1.58</td>
<td>1.45</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1.29</td>
<td>1.06</td>
<td>1.18</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.69</td>
<td>1.54</td>
<td>1.62</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>2.13</td>
<td>1.99</td>
<td>2.06</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>0.98</td>
<td>1.27</td>
<td>1.13</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>1.05</td>
<td>1.30</td>
<td>1.18</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>0.99</td>
<td>1.61</td>
<td>1.30</td>
</tr>
</tbody>
</table>
Heterozygous Mice (db/wt) – Individual Values: Males and Females

Appendix B6 Cholesterol (mg chol/g. liver)

<table>
<thead>
<tr>
<th>Sex</th>
<th>Animal</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1</td>
<td>4.73</td>
<td>4.69</td>
<td>4.71</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4.31</td>
<td>3.98</td>
<td>4.15</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.60</td>
<td>5.10</td>
<td>4.85</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4.77</td>
<td>5.25</td>
<td>5.01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.65</td>
<td>3.59</td>
<td>4.12</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3.6</td>
<td>3.70</td>
<td>3.68</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>4.20</td>
<td>4.12</td>
<td>4.16</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>4.27</td>
<td>4.36</td>
<td>4.32</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>4.27</td>
<td>4.46</td>
<td>4.37</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>4.54</td>
<td>4.52</td>
<td>4.53</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>5.15</td>
<td>5.25</td>
<td>5.20</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>5.41</td>
<td>4.98</td>
<td>5.20</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>4.23</td>
<td>4.71</td>
<td>4.47</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>4.19</td>
<td>4.23</td>
<td>4.21</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>3.99</td>
<td>4.19</td>
<td>4.09</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>4.65</td>
<td>4.43</td>
<td>4.54</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>3.72</td>
<td>3.74</td>
<td>3.73</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>3.51</td>
<td>3.73</td>
<td>3.62</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>4.44</td>
<td>3.96</td>
<td>4.20</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>4.79</td>
<td>4.87</td>
<td>4.83</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>5.26</td>
<td>5.20</td>
<td>5.23</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>5.33</td>
<td>5.48</td>
<td>5.41</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>5.27</td>
<td>5.27</td>
<td>5.27</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>3.99</td>
<td>4.05</td>
<td>4.02</td>
</tr>
</tbody>
</table>
Heterozygous Mice (db/wt) – Individual Values:
Males and Females

Appendix B7 **Conjugated Dienes (μmol/g. liver)**

<table>
<thead>
<tr>
<th>Sex</th>
<th>Animal</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1</td>
<td>2.43</td>
<td>2.59</td>
<td>2.51</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.26</td>
<td>2.31</td>
<td>2.29</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.18</td>
<td>2.09</td>
<td>2.14</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.47</td>
<td>2.58</td>
<td>2.53</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.42</td>
<td>2.42</td>
<td>2.42</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2.18</td>
<td>2.20</td>
<td>2.19</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3.31</td>
<td>2.99</td>
<td>3.15</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2.31</td>
<td>2.57</td>
<td>2.44</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>2.46</td>
<td>2.45</td>
<td>2.46</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2.48</td>
<td>2.36</td>
<td>2.42</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>2.53</td>
<td>2.50</td>
<td>2.52</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>2.50</td>
<td>2.50</td>
<td>2.50</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>2.03</td>
<td>2.68</td>
<td>2.46</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>3.46</td>
<td>3.00</td>
<td>3.23</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>3.23</td>
<td>3.29</td>
<td>3.26</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>2.95</td>
<td>2.76</td>
<td>2.86</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>3.02</td>
<td>3.07</td>
<td>3.05</td>
</tr>
<tr>
<td>F</td>
<td>18</td>
<td>2.61</td>
<td>2.83</td>
<td>2.72</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>2.97</td>
<td>3.08</td>
<td>3.03</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>2.94</td>
<td>2.65</td>
<td>2.80</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>3.01</td>
<td>2.75</td>
<td>2.88</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>2.72</td>
<td>2.22</td>
<td>2.47</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>2.71</td>
<td>2.56</td>
<td>2.64</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>2.02</td>
<td>1.98</td>
<td>2.00</td>
</tr>
</tbody>
</table>
Heterozygous Mice (db/wt) – Individual Values:
Males and Females

Appendix B8 Lipid Hydroperoxides (nmol LOOH/g. liver)

<table>
<thead>
<tr>
<th>Sex</th>
<th>Animal</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1</td>
<td>206</td>
<td>195</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>237</td>
<td>237</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>167</td>
<td>169</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>196</td>
<td>202</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>135</td>
<td>170</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>26</td>
<td>84</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>80</td>
<td>92</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>78</td>
<td>56</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>81</td>
<td>89</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>250</td>
<td>254</td>
<td>252</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>279</td>
<td>245</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>243</td>
<td>281</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>118</td>
<td>193</td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>248</td>
<td>222</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>192</td>
<td>216</td>
<td>204</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>181</td>
<td>173</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>219</td>
<td>184</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>296</td>
<td>265</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>240</td>
<td>277</td>
<td>259</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>246</td>
<td>259</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>235</td>
<td>237</td>
<td>236</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>154</td>
<td>154</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>178</td>
<td>223</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>113</td>
<td>178</td>
<td>146</td>
</tr>
</tbody>
</table>
Heterozygous Mice (db/wt) – Individual Values: Males and Females

Appendix B9
TTBARS (nmol/g. liver)

<table>
<thead>
<tr>
<th>Sex</th>
<th>Animal</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1</td>
<td>987</td>
<td>1060</td>
<td>1024</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>969</td>
<td>1115</td>
<td>1042</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1097</td>
<td>969</td>
<td>1033</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1079</td>
<td>1115</td>
<td>1097</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1426</td>
<td>1536</td>
<td>1481</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1426</td>
<td>1609</td>
<td>1518</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1371</td>
<td>1389</td>
<td>1380</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1335</td>
<td>1389</td>
<td>1362</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1554</td>
<td>1572</td>
<td>1563</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1481</td>
<td>1390</td>
<td>1436</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1609</td>
<td>1463</td>
<td>1536</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1408</td>
<td>1517</td>
<td>1463</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1134</td>
<td>1225</td>
<td>1180</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1134</td>
<td>1280</td>
<td>1207</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>878</td>
<td>1006</td>
<td>942</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>914</td>
<td>1006</td>
<td>960</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1444</td>
<td>1335</td>
<td>1390</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1335</td>
<td>1371</td>
<td>1353</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1371</td>
<td>1481</td>
<td>1426</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1298</td>
<td>1134</td>
<td>1216</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1371</td>
<td>1316</td>
<td>1344</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>1645</td>
<td>1463</td>
<td>1554</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>1042</td>
<td>1261</td>
<td>1152</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1207</td>
<td>1316</td>
<td>1262</td>
</tr>
</tbody>
</table>
Homozygous Mice (db/db) – Individual Values: Males and Females

Appendix C1 Terminal Body Mass (g)

<table>
<thead>
<tr>
<th>Sex</th>
<th>Animal</th>
<th>Body Mass (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1</td>
<td>45.3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>41.4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>46.1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>42.7</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>45.5</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>43.4</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>45.2</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>43.4</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>45.2</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>47.3</td>
</tr>
<tr>
<td>F</td>
<td>11</td>
<td>44.7</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>49.6</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>47.2</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>43.9</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>38.0</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>45.9</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>36.6</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>42.2</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>41.9</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>42.7</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>39.8</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>36.5</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>41.8</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>40.1</td>
</tr>
</tbody>
</table>
Homozygous Mice (db/db) – Individual Values: Males and Females

Appendix C2 Liver Mass (g)

<table>
<thead>
<tr>
<th>Sex</th>
<th>Animal</th>
<th>Liver Mass (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1</td>
<td>1.9814</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.4321</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.7746</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.8221</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.8354</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.7866</td>
</tr>
<tr>
<td></td>
<td>7*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>8*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>9*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>10*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1.9867</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>2.5272</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>2.0883</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>2.1109</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.4141</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>2.3851</td>
</tr>
<tr>
<td></td>
<td>17*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>18*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>19*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>20*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>21*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>22*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>23*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>24*</td>
<td>-</td>
</tr>
</tbody>
</table>

* = The liver mass of these animals were not taken in error
Homozygous Mice (db/db) – Individual Values: Males and Females

Appendix C3 Liver Mass / Body Mass x 100 (%)

<table>
<thead>
<tr>
<th>Sex</th>
<th>Animal</th>
<th>Liver Mass / Body Mass x 100 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1</td>
<td>4.37</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.46</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.85</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.03</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>4.17</td>
</tr>
<tr>
<td></td>
<td>7*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>8*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>9*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>10*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>4.44</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>5.09</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>4.42</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>4.81</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>3.72</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>5.19</td>
</tr>
<tr>
<td></td>
<td>17*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>18*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>19*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>20*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>21*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>22*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>23*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>24*</td>
<td>-</td>
</tr>
</tbody>
</table>

* = The liver mass of these animals were not taken in error
Homozygous Mice (db/db) – Individual Values: Males and Females

Appendix C4 Glucose Concentration (mmol/l)

<table>
<thead>
<tr>
<th>Sex</th>
<th>Animal</th>
<th>Glucose conc. (mmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>1</td>
<td>20.9</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>23.4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>23.4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>20.3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>25.3</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>21.9</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>23.6</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>29.5</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>19.9</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>21.4</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>13.6</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>12.6</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>16.9</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>19.5</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>14.9</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>10.3</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>24.8</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>33.1</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>28.1</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>27.2</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>19.2</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>23.3</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>27.5</td>
</tr>
</tbody>
</table>
Homozygous Mice (db/db) – Individual Values: Males and Females

Appendix C5 Triglycerides (mg TG/g. liver)

<table>
<thead>
<tr>
<th>Sex</th>
<th>Animal</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1</td>
<td>2.59</td>
<td>2.83</td>
<td>2.71</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.29</td>
<td>2.76</td>
<td>2.53</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.12</td>
<td>2.41</td>
<td>2.27</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.32</td>
<td>2.12</td>
<td>2.22</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3.29</td>
<td>2.95</td>
<td>3.12</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5.59</td>
<td>4.68</td>
<td>5.14</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>5.42</td>
<td>4.83</td>
<td>5.13</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2.25</td>
<td>2.90</td>
<td>2.53</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3.75</td>
<td>3.55</td>
<td>3.62</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.85</td>
<td>2.62</td>
<td>2.24</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>4.90</td>
<td>4.53</td>
<td>4.72</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>2.50</td>
<td>2.76</td>
<td>2.68</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>3.03</td>
<td>3.18</td>
<td>3.11</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>3.76</td>
<td>3.59</td>
<td>3.68</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>4.24</td>
<td>3.79</td>
<td>4.02</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>4.48</td>
<td>4.04</td>
<td>4.26</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>3.53</td>
<td>4.02</td>
<td>3.78</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>4.45</td>
<td>4.58</td>
<td>4.52</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>5.09</td>
<td>4.67</td>
<td>4.88</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>5.48</td>
<td>5.45</td>
<td>5.47</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>5.10</td>
<td>5.32</td>
<td>5.26</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>3.74</td>
<td>4.85</td>
<td>4.30</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>3.98</td>
<td>4.39</td>
<td>4.19</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>2.77</td>
<td>3.70</td>
<td>3.24</td>
</tr>
</tbody>
</table>
Homozygous Mice (db/db) – Individual Values: Males and Females

Appendix C6 Cholesterol (mg chol/g. liver)

<table>
<thead>
<tr>
<th>Sex</th>
<th>Animal</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1</td>
<td>5.41</td>
<td>5.08</td>
<td>5.25</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5.72</td>
<td>5.93</td>
<td>5.83</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7.32</td>
<td>7.97</td>
<td>7.65</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>7.36</td>
<td>7.11</td>
<td>7.24</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6.48</td>
<td>7.02</td>
<td>6.75</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6.44</td>
<td>7.53</td>
<td>6.99</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8.27</td>
<td>7.04</td>
<td>7.66</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>6.56</td>
<td>7.36</td>
<td>6.96</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>6.71</td>
<td>6.22</td>
<td>6.47</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5.95</td>
<td>5.98</td>
<td>5.97</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>6.63</td>
<td>6.63</td>
<td>6.63</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>7.58</td>
<td>7.14</td>
<td>7.36</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>6.67</td>
<td>6.77</td>
<td>6.72</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>6.93</td>
<td>7.08</td>
<td>7.01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>7.01</td>
<td>6.74</td>
<td>6.98</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>5.99</td>
<td>6.00</td>
<td>6.00</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>6.61</td>
<td>6.78</td>
<td>6.70</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>7.28</td>
<td>7.00</td>
<td>7.14</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>7.36</td>
<td>7.18</td>
<td>7.27</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6.70</td>
<td>6.73</td>
<td>6.72</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>5.65</td>
<td>5.19</td>
<td>5.42</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>7.82</td>
<td>7.15</td>
<td>7.49</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>5.96</td>
<td>5.35</td>
<td>5.65</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>5.86</td>
<td>7.06</td>
<td>6.46</td>
</tr>
</tbody>
</table>
Homozygous Mice (db/db) – Individual Values: Males and Females

Appendix C7 Conjugated Dienes (µmol/g liver)

<table>
<thead>
<tr>
<th>Sex</th>
<th>Animal</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1</td>
<td>2.92</td>
<td>3.14</td>
<td>3.03</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.70</td>
<td>3.46</td>
<td>3.53</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.69</td>
<td>3.71</td>
<td>3.70</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.41</td>
<td>3.51</td>
<td>3.46</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3.55</td>
<td>3.93</td>
<td>3.74</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3.57</td>
<td>3.32</td>
<td>3.45</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>4.04</td>
<td>3.95</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3.03</td>
<td>3.50</td>
<td>3.27</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3.09</td>
<td>3.61</td>
<td>3.35</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>3.45</td>
<td>3.05</td>
<td>3.25</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>3.44</td>
<td>3.22</td>
<td>3.33</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>3.35</td>
<td>3.47</td>
<td>3.41</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>3.27</td>
<td>3.19</td>
<td>3.23</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>4.38</td>
<td>4.26</td>
<td>4.32</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>4.24</td>
<td>4.13</td>
<td>4.19</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>4.52</td>
<td>4.44</td>
<td>4.48</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>3.58</td>
<td>3.90</td>
<td>3.74</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>3.74</td>
<td>3.56</td>
<td>3.64</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>3.93</td>
<td>3.59</td>
<td>3.76</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>4.03</td>
<td>3.81</td>
<td>3.92</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>3.18</td>
<td>3.57</td>
<td>3.38</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>3.44</td>
<td>3.53</td>
<td>3.49</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>3.29</td>
<td>3.10</td>
<td>3.20</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>2.60</td>
<td>2.99</td>
<td>2.80</td>
</tr>
</tbody>
</table>
Homozygous Mice (db/db) – Individual Values: Males and Females

Appendix C8 Lipid Hydroperoxides (nmol LOOH/g. liver)

<table>
<thead>
<tr>
<th>Sex</th>
<th>Animal</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1</td>
<td>586</td>
<td>502</td>
<td>544</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>967</td>
<td>886</td>
<td>927</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>609</td>
<td>704</td>
<td>657</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>566</td>
<td>623</td>
<td>595</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>887</td>
<td>715</td>
<td>801</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>783</td>
<td>717</td>
<td>790</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>686</td>
<td>732</td>
<td>709</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>656</td>
<td>680</td>
<td>668</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>995</td>
<td>851</td>
<td>923</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>417</td>
<td>526</td>
<td>472</td>
</tr>
<tr>
<td>F</td>
<td>11</td>
<td>550</td>
<td>411</td>
<td>481</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>748</td>
<td>627</td>
<td>688</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>470</td>
<td>538</td>
<td>504</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>319</td>
<td>402</td>
<td>361</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>340</td>
<td>353</td>
<td>347</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>368</td>
<td>356</td>
<td>357</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>470</td>
<td>388</td>
<td>429</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>331</td>
<td>313</td>
<td>322</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>409</td>
<td>407</td>
<td>408</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>362</td>
<td>329</td>
<td>346</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>354</td>
<td>347</td>
<td>351</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>333</td>
<td>362</td>
<td>348</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>548</td>
<td>516</td>
<td>532</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>601</td>
<td>573</td>
<td>587</td>
</tr>
</tbody>
</table>
Homozygous Mice (db/db) – Individual Values: Males and Females

Appendix C9
TTBARS (nmol/g. liver)

<table>
<thead>
<tr>
<th>Sex</th>
<th>Animal</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1</td>
<td>1426</td>
<td>1517</td>
<td>1472</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1810</td>
<td>1755</td>
<td>1783</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1517</td>
<td>1481</td>
<td>1499</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1682</td>
<td>1554</td>
<td>1618</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1316</td>
<td>1206</td>
<td>1261</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1828</td>
<td>1719</td>
<td>1774</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1481</td>
<td>1463</td>
<td>1472</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1572</td>
<td>1444</td>
<td>1508</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1499</td>
<td>1481</td>
<td>1490</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1719</td>
<td>1700</td>
<td>1710</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1737</td>
<td>1517</td>
<td>1627</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1499</td>
<td>1645</td>
<td>1572</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1627</td>
<td>1389</td>
<td>1508</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1609</td>
<td>1389</td>
<td>1499</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1901</td>
<td>1737</td>
<td>1819</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1645</td>
<td>1700</td>
<td>1673</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1536</td>
<td>1645</td>
<td>1591</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1517</td>
<td>1645</td>
<td>1501</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1499</td>
<td>1517</td>
<td>1508</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1463</td>
<td>1499</td>
<td>1481</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1974</td>
<td>2011</td>
<td>1993</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>2377</td>
<td>2139</td>
<td>2258</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>2084</td>
<td>1963</td>
<td>2039</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>2176</td>
<td>2011</td>
<td>2094</td>
</tr>
</tbody>
</table>
Impact of Various Oils, Administered via the Diet (4 Weeks) – Individual Values: Males and Females

Appendix D1

Weekly Body Mass (g)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal / Sex</th>
<th>Age (weeks)</th>
<th>Body Mass Gain / Loss (g) 12-17 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>1 (db/wt)</td>
<td>Control (chow only)</td>
<td>1M</td>
<td>25.0</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2M</td>
<td>25.5</td>
<td>25.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3M</td>
<td>24.5</td>
<td>24.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4F</td>
<td>19.0</td>
<td>19.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5F</td>
<td>20.0</td>
<td>20.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6F</td>
<td>19.0</td>
<td>18.0</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>Sunflower Oil</td>
<td>7M</td>
<td>23.5</td>
<td>22.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8M</td>
<td>24.5</td>
<td>24.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9M</td>
<td>25.0</td>
<td>24.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10F</td>
<td>19.0</td>
<td>20.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11F</td>
<td>24.0</td>
<td>22.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12F</td>
<td>18.5</td>
<td>19.0</td>
</tr>
<tr>
<td>3 (db/wt)</td>
<td>Canola Oil</td>
<td>13M</td>
<td>24.5</td>
<td>25.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14M</td>
<td>28.0</td>
<td>27.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15M</td>
<td>26.0</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16F</td>
<td>23.0</td>
<td>23.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17F</td>
<td>19.5</td>
<td>19.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18F</td>
<td>18.5</td>
<td>19.0</td>
</tr>
<tr>
<td>4 (db/wt)</td>
<td>Sunflower Oil and Cholesterol</td>
<td>19M</td>
<td>28.5</td>
<td>29.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20M</td>
<td>29.0</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21M</td>
<td>27.0</td>
<td>27.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22F</td>
<td>19.5</td>
<td>20.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23F</td>
<td>19.5</td>
<td>18.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24F</td>
<td>19.5</td>
<td>18.0</td>
</tr>
</tbody>
</table>
Impact of Various Oils, Administered via the Diet (4 Weeks) – Individual Values: Males and Females

Appendix D2 Liver Mass (g)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal</th>
<th>Liver Mass (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>Control (chow only)</td>
<td>1</td>
<td>1.120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1.031</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1.014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0.769</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>0.812</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>0.681</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>Sunflower Oil</td>
<td>7</td>
<td>0.836</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>0.998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>0.977</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>0.695</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>1.017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>0.782</td>
</tr>
<tr>
<td>3 (db/wt)</td>
<td>Canola Oil</td>
<td>13</td>
<td>1.147</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>1.109</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>1.097</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>1.081</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>0.882</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>0.832</td>
</tr>
<tr>
<td>4 (db/wt)</td>
<td>Sunflower Oil and Cholesterol</td>
<td>19</td>
<td>0.984</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>1.062</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>1.004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>0.896</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>0.707</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>0.679</td>
</tr>
</tbody>
</table>
Impact of Various Oils, Administered via the Diet (4 Weeks) – Individual Values: Males and Females

Appendix D3
Liver Mass / Body Mass $\times 100$ (%)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal</th>
<th>Liver Mass / Body Mass $\times 100$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>Control (chow only)</td>
<td>1</td>
<td>4.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>3.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>3.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>3.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>3.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>3.58</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>Sunflower Oil</td>
<td>7</td>
<td>3.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>4.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>3.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>3.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>3.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>3.91</td>
</tr>
<tr>
<td>3 (db/wt)</td>
<td>Canola Oil</td>
<td>13</td>
<td>4.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>4.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>4.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>4.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>4.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>4.27</td>
</tr>
<tr>
<td>4 (db/wt)</td>
<td>Sunflower Oil and Cholesterol</td>
<td>19</td>
<td>3.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>3.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>3.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>4.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>3.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>3.57</td>
</tr>
</tbody>
</table>
Impact of Various Oils, Administered via the Diet (4 Weeks) – Individual Values: Males and Females

Appendix D4 Glucose Concentration (mmol/l)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal / Sex</th>
<th>Glucose conc. (mmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>Control (chow only)</td>
<td>1M</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2M</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3M</td>
<td>9.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4F</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5F</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6F</td>
<td>6.5</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>Sunflower Oil</td>
<td>7M</td>
<td>9.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8M</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9M</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10F</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11F</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12F</td>
<td>8.2</td>
</tr>
<tr>
<td>3 (db/wt)</td>
<td>Canola Oil</td>
<td>13M</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14M</td>
<td>11.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15M</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16F</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17F</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18F</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19M</td>
<td>8.2</td>
</tr>
<tr>
<td>4 (db/wt)</td>
<td>Sunflower Oil and Cholesterol</td>
<td>20M</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21M</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22F</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23F</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24F</td>
<td>2.1</td>
</tr>
</tbody>
</table>
Impact of Various Oils, Administered via the Diet (4 Weeks) – Individual Values: Males and Females

Appendix D5 Triglycerides (mg TG/g. liver)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal / Sex</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>Control (chow only)</td>
<td>1M</td>
<td>19.67</td>
<td>16.48</td>
<td>18.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2M</td>
<td>18.01</td>
<td>16.82</td>
<td>17.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3M</td>
<td>18.30</td>
<td>19.06</td>
<td>18.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4F</td>
<td>21.87</td>
<td>17.47</td>
<td>19.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5F</td>
<td>19.81</td>
<td>20.13</td>
<td>19.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6F</td>
<td>30.83</td>
<td>22.96</td>
<td>26.90</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>Sunflower Oil</td>
<td>7M</td>
<td>20.15</td>
<td>18.22</td>
<td>19.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8M</td>
<td>19.32</td>
<td>18.39</td>
<td>18.86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9M</td>
<td>18.08</td>
<td>19.97</td>
<td>19.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10F</td>
<td>29.23</td>
<td>24.61</td>
<td>26.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11F</td>
<td>32.30</td>
<td>27.45</td>
<td>29.88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12F</td>
<td>25.05</td>
<td>21.33</td>
<td>23.19</td>
</tr>
<tr>
<td>3 (db/wt)</td>
<td>Canola Oil</td>
<td>13M</td>
<td>21.96</td>
<td>22.08</td>
<td>22.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14M</td>
<td>25.72</td>
<td>23.32</td>
<td>24.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15M</td>
<td>21.55</td>
<td>26.10</td>
<td>23.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16F</td>
<td>26.28</td>
<td>29.14</td>
<td>27.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17F</td>
<td>25.59</td>
<td>28.29</td>
<td>26.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18F</td>
<td>21.63</td>
<td>21.55</td>
<td>21.59</td>
</tr>
<tr>
<td>4 (db/wt)</td>
<td>Sunflower Oil and Cholesterol</td>
<td>19M</td>
<td>23.46</td>
<td>21.76</td>
<td>22.61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20M</td>
<td>20.89</td>
<td>15.16</td>
<td>18.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21M</td>
<td>19.92</td>
<td>22.01</td>
<td>20.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22F</td>
<td>24.34</td>
<td>22.28</td>
<td>23.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23F</td>
<td>24.05</td>
<td>24.90</td>
<td>24.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24F</td>
<td>22.74</td>
<td>24.83</td>
<td>23.79</td>
</tr>
</tbody>
</table>
Impact of Various Oils, Administered via the Diet (4 Weeks) – Individual Values: Males and Females

Appendix D6 Cholesterol (mg chol/g. liver)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal / Sex</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>Control (chow only)</td>
<td>1M</td>
<td>1.80</td>
<td>2.17</td>
<td>2.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2M</td>
<td>1.99</td>
<td>1.90</td>
<td>1.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3M</td>
<td>1.94</td>
<td>1.88</td>
<td>1.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4F</td>
<td>2.29</td>
<td>2.34</td>
<td>2.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5F</td>
<td>2.89</td>
<td>2.10</td>
<td>2.50</td>
</tr>
<tr>
<td></td>
<td>2 Sunflower Oil</td>
<td>6F</td>
<td>3.23</td>
<td>3.32</td>
<td>3.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7M</td>
<td>5.21</td>
<td>4.72</td>
<td>4.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8M</td>
<td>5.31</td>
<td>5.30</td>
<td>5.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9M</td>
<td>2.37</td>
<td>2.42</td>
<td>2.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10F</td>
<td>5.30</td>
<td>5.26</td>
<td>5.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11F</td>
<td>5.01</td>
<td>4.91</td>
<td>4.96</td>
</tr>
<tr>
<td></td>
<td>3 Canola Oil</td>
<td>12F</td>
<td>4.07</td>
<td>3.76</td>
<td>3.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13M</td>
<td>2.69</td>
<td>2.45</td>
<td>2.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14M</td>
<td>2.00</td>
<td>2.12</td>
<td>2.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15M</td>
<td>2.01</td>
<td>1.98</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16F</td>
<td>3.63</td>
<td>3.77</td>
<td>3.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17F</td>
<td>4.88</td>
<td>4.74</td>
<td>4.81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18F</td>
<td>5.39</td>
<td>5.45</td>
<td>5.42</td>
</tr>
<tr>
<td>4 (db/wt)</td>
<td>Sunflower Oil and Cholesterol</td>
<td>19M</td>
<td>3.55</td>
<td>3.61</td>
<td>3.58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20M</td>
<td>2.75</td>
<td>3.00</td>
<td>2.88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21M</td>
<td>3.04</td>
<td>2.26</td>
<td>3.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22F</td>
<td>5.85</td>
<td>5.82</td>
<td>5.84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23F</td>
<td>4.90</td>
<td>4.14</td>
<td>4.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24F</td>
<td>4.07</td>
<td>3.82</td>
<td>3.94</td>
</tr>
</tbody>
</table>
Impact of Various Oils, Administered via the Diet (4 Weeks) –
Individual Values: Males and Females

Appendix D7 Conjugated Dienes (μmol/g. liver)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal / Sex</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>Control (chow only)</td>
<td>1M</td>
<td>2.26</td>
<td>2.46</td>
<td>2.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2M</td>
<td>1.87</td>
<td>1.79</td>
<td>1.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3M</td>
<td>2.11</td>
<td>1.95</td>
<td>2.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4F</td>
<td>2.00</td>
<td>2.04</td>
<td>2.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5F</td>
<td>1.82</td>
<td>1.97</td>
<td>1.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6F</td>
<td>2.00</td>
<td>1.70</td>
<td>1.85</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>Sunflower Oil</td>
<td>7M</td>
<td>2.50</td>
<td>2.55</td>
<td>2.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8M</td>
<td>2.56</td>
<td>2.38</td>
<td>2.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9M</td>
<td>2.32</td>
<td>2.32</td>
<td>2.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10F</td>
<td>3.05</td>
<td>3.30</td>
<td>3.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11F</td>
<td>2.62</td>
<td>2.84</td>
<td>2.78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12F</td>
<td>2.81</td>
<td>2.83</td>
<td>2.82</td>
</tr>
<tr>
<td>3 (db/wt)</td>
<td>Canola Oil</td>
<td>13M</td>
<td>2.28</td>
<td>2.40</td>
<td>2.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14M</td>
<td>2.38</td>
<td>2.41</td>
<td>2.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15M</td>
<td>2.73</td>
<td>2.78</td>
<td>2.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16F</td>
<td>2.04</td>
<td>2.07</td>
<td>2.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17F</td>
<td>1.85</td>
<td>2.17</td>
<td>2.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18F</td>
<td>2.11</td>
<td>1.89</td>
<td>2.00</td>
</tr>
<tr>
<td>4 (db/wt)</td>
<td>Sunflower Oil and Cholesterol</td>
<td>19M</td>
<td>2.78</td>
<td>2.02</td>
<td>2.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20M</td>
<td>2.41</td>
<td>2.43</td>
<td>2.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21M</td>
<td>2.39</td>
<td>2.50</td>
<td>2.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22F</td>
<td>2.83</td>
<td>2.20</td>
<td>2.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23F</td>
<td>2.81</td>
<td>2.24</td>
<td>2.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24F</td>
<td>2.37</td>
<td>2.48</td>
<td>2.43</td>
</tr>
</tbody>
</table>
Impact of Various Oils, Administered via the Diet (4 Weeks) – Individual Values: Males and Females

Appendix D8 Lipid Hydroperoxides (nmol LOOH/g. liver)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal / Sex</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>Control (chow only)</td>
<td>1M</td>
<td>303</td>
<td>357</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2M</td>
<td>277</td>
<td>271</td>
<td>274</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3M</td>
<td>394</td>
<td>372</td>
<td>383</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4F</td>
<td>461</td>
<td>449</td>
<td>455</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5F</td>
<td>399</td>
<td>315</td>
<td>357</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6F</td>
<td>961</td>
<td>955</td>
<td>958</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>Sunflower Oil</td>
<td>7M</td>
<td>374</td>
<td>386</td>
<td>380</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8M</td>
<td>351</td>
<td>337</td>
<td>344</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9M</td>
<td>305</td>
<td>330</td>
<td>318</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10F</td>
<td>753</td>
<td>827</td>
<td>790</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11F</td>
<td>732</td>
<td>825</td>
<td>789</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12F</td>
<td>699</td>
<td>787</td>
<td>743</td>
</tr>
<tr>
<td>3 (db/wt)</td>
<td>Canola Oil</td>
<td>13M</td>
<td>400</td>
<td>452</td>
<td>426</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14M</td>
<td>502</td>
<td>454</td>
<td>483</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15M</td>
<td>388</td>
<td>370</td>
<td>379</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16F</td>
<td>548</td>
<td>498</td>
<td>523</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17F</td>
<td>551</td>
<td>579</td>
<td>565</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18F</td>
<td>623</td>
<td>625</td>
<td>624</td>
</tr>
<tr>
<td>4 (db/wt)</td>
<td>Sunflower Oil and Cholesterol</td>
<td>19M</td>
<td>354</td>
<td>357</td>
<td>356</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20M</td>
<td>349</td>
<td>381</td>
<td>365</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21M</td>
<td>349</td>
<td>405</td>
<td>376</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22F</td>
<td>683</td>
<td>726</td>
<td>709</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23F</td>
<td>749</td>
<td>783</td>
<td>766</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24F</td>
<td>372</td>
<td>357</td>
<td>408</td>
</tr>
</tbody>
</table>
Impact of Various Oils, Administered via the Diet (4 Weeks) – Individual Values: Males and Females

Appendix D9
TTBARS (nmol/g. liver)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal / Sex</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>Control (chow only)</td>
<td>1M</td>
<td>3401</td>
<td>3291</td>
<td>3346</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2M</td>
<td>3273</td>
<td>3474</td>
<td>3374</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3M</td>
<td>3035</td>
<td>3108</td>
<td>3072</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4F</td>
<td>3383</td>
<td>3310</td>
<td>3347</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5F</td>
<td>4168</td>
<td>3583</td>
<td>3876</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6F</td>
<td>4498</td>
<td>3858</td>
<td>4178</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>Sunflower Oil</td>
<td>7M</td>
<td>3492</td>
<td>3548</td>
<td>3520</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8M</td>
<td>3327</td>
<td>2486</td>
<td>2907</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9M</td>
<td>3346</td>
<td>2687</td>
<td>3017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10F</td>
<td>2505</td>
<td>2395</td>
<td>2450</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11F</td>
<td>3784</td>
<td>3236</td>
<td>3510</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12F</td>
<td>3437</td>
<td>3831</td>
<td>3634</td>
</tr>
<tr>
<td>3 (db/wt)</td>
<td>Canola Oil</td>
<td>13M</td>
<td>4278</td>
<td>4004</td>
<td>4141</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14M</td>
<td>3583</td>
<td>3276</td>
<td>3430</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15M</td>
<td>3035</td>
<td>3602</td>
<td>3319</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16F</td>
<td>2669</td>
<td>2986</td>
<td>2829</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17F</td>
<td>3547</td>
<td>3555</td>
<td>3556</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18F</td>
<td>2834</td>
<td>2377</td>
<td>2606</td>
</tr>
<tr>
<td>4 (db/wt)</td>
<td>Sunflower Oil and Cholesterol</td>
<td>19M</td>
<td>2980</td>
<td>3199</td>
<td>3090</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20M</td>
<td>2157</td>
<td>2395</td>
<td>2276</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21M</td>
<td>2541</td>
<td>2852</td>
<td>2697</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22F</td>
<td>3656</td>
<td>3401</td>
<td>3529</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23F</td>
<td>4552</td>
<td>3218</td>
<td>3985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24F</td>
<td>3876</td>
<td>3620</td>
<td>3748</td>
</tr>
</tbody>
</table>
BCA Protein (μg/μg liver)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal / Sex</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>Control (chow only)</td>
<td>1M</td>
<td>72.4</td>
<td>58.8</td>
<td>65.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2M</td>
<td>67.0</td>
<td>61.3</td>
<td>64.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3M</td>
<td>66.9</td>
<td>62.7</td>
<td>64.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4F</td>
<td>101.2</td>
<td>88.7</td>
<td>95.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5F</td>
<td>64.1</td>
<td>66.9</td>
<td>66.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6F</td>
<td>71.0</td>
<td>72.4</td>
<td>71.7</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>Sunflower Oil</td>
<td>7M</td>
<td>64.4</td>
<td>67.1</td>
<td>65.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8M</td>
<td>74.8</td>
<td>65.9</td>
<td>70.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9M</td>
<td>79.6</td>
<td>73.6</td>
<td>76.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10F</td>
<td>79.2</td>
<td>72.4</td>
<td>75.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11F</td>
<td>73.5</td>
<td>74.0</td>
<td>73.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12F</td>
<td>72.8</td>
<td>69.2</td>
<td>71.0</td>
</tr>
<tr>
<td>3 (db/wt)</td>
<td>Canola Oil</td>
<td>13M</td>
<td>73.2</td>
<td>76.6</td>
<td>74.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14M</td>
<td>61.8</td>
<td>65.0</td>
<td>63.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15M</td>
<td>62.8</td>
<td>66.5</td>
<td>64.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16F</td>
<td>88.6</td>
<td>90.3</td>
<td>89.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17F</td>
<td>89.1</td>
<td>82.9</td>
<td>86.0</td>
</tr>
<tr>
<td>4 (db/wt)</td>
<td>Sunflower Oil and Cholesterol</td>
<td>18F</td>
<td>70.0</td>
<td>73.2</td>
<td>71.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19M</td>
<td>64.9</td>
<td>67.1</td>
<td>66.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20M</td>
<td>77.0</td>
<td>69.5</td>
<td>73.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21M</td>
<td>76.6</td>
<td>81.7</td>
<td>79.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22F</td>
<td>72.7</td>
<td>75.6</td>
<td>74.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23F</td>
<td>71.1</td>
<td>72.6</td>
<td>71.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24F</td>
<td>92.2</td>
<td>84.8</td>
<td>88.5</td>
</tr>
</tbody>
</table>

Animal Cage Assignments

Please note – the animals were allocated on a random basis
Study of Short Period of Alcohol Administration (4 Weeks) – Individual Values: Males and Females

Appendix E1
Weekly Body Mass (g)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal / Sex</th>
<th>Age (weeks)</th>
<th>Body Mass Gain / Loss (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>1 (wt/wt)</td>
<td>H₂O Control</td>
<td>1M</td>
<td>17.5</td>
<td>19.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2F</td>
<td>17.0</td>
<td>18.0</td>
</tr>
<tr>
<td>2 (wt/wt)</td>
<td>20% Alcohol</td>
<td>3M</td>
<td>19.5</td>
<td>20.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4F</td>
<td>15.5</td>
<td>16.5</td>
</tr>
<tr>
<td>3 (db/wt)</td>
<td>H₂O Control</td>
<td>5M</td>
<td>25.0</td>
<td>26.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6F</td>
<td>28.0</td>
<td>28.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7F</td>
<td>21.5</td>
<td>22.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8F</td>
<td>21.5</td>
<td>20.5</td>
</tr>
<tr>
<td>4 (db/wt)</td>
<td>20% Alcohol</td>
<td>9M</td>
<td>24.0</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10M</td>
<td>25.0</td>
<td>25.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11F</td>
<td>22.0</td>
<td>21.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12F</td>
<td>17.5</td>
<td>18.0</td>
</tr>
<tr>
<td>5 (db/db)</td>
<td>H₂O Control</td>
<td>13M</td>
<td>39.0</td>
<td>40.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14M</td>
<td>45.0</td>
<td>45.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15F</td>
<td>28.0</td>
<td>28.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16F</td>
<td>33.5</td>
<td>35.0</td>
</tr>
<tr>
<td>6 (db/db)</td>
<td>20% Alcohol</td>
<td>17M</td>
<td>34.0</td>
<td>36.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18F</td>
<td>35.0</td>
<td>35.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19F</td>
<td>31.5</td>
<td>33.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20F</td>
<td>36.5</td>
<td>38.0</td>
</tr>
</tbody>
</table>
Appendix E2
Study of Short Period of Alcohol Administration (4 Weeks) – Individual Values: Males and Females

Triglycerides (mg TG/g. liver)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal / Sex</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (wt/wt)</td>
<td>H2O Control</td>
<td>1M</td>
<td>1.77</td>
<td>1.56</td>
<td>1.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2F</td>
<td>1.31</td>
<td>1.45</td>
<td>1.38</td>
</tr>
<tr>
<td>2 (wt/wt)</td>
<td>20% Alcohol</td>
<td>3M</td>
<td>1.96</td>
<td>1.79</td>
<td>1.88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4F</td>
<td>1.99</td>
<td>1.61</td>
<td>1.80</td>
</tr>
<tr>
<td>3 (db/wt)</td>
<td>H2O Control</td>
<td>5M</td>
<td>0.97</td>
<td>1.08</td>
<td>1.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6M</td>
<td>1.13</td>
<td>1.19</td>
<td>1.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7F</td>
<td>1.03</td>
<td>1.05</td>
<td>1.04</td>
</tr>
<tr>
<td>4 (db/wt)</td>
<td>20% Alcohol</td>
<td>8F</td>
<td>0.94</td>
<td>0.99</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9M</td>
<td>1.50</td>
<td>1.23</td>
<td>1.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10M</td>
<td>1.38</td>
<td>1.25</td>
<td>1.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11F</td>
<td>1.15</td>
<td>1.19</td>
<td>1.17</td>
</tr>
<tr>
<td>5 (db/db)</td>
<td>H2O Control</td>
<td>12F</td>
<td>1.40</td>
<td>1.08</td>
<td>1.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13M</td>
<td>3.07</td>
<td>3.19</td>
<td>3.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14M</td>
<td>3.28</td>
<td>3.07</td>
<td>3.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15F</td>
<td>2.55</td>
<td>2.84</td>
<td>2.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16F</td>
<td>2.86</td>
<td>2.56</td>
<td>2.72</td>
</tr>
<tr>
<td>6 (db/db)</td>
<td>20% Alcohol</td>
<td>17M</td>
<td>7.04</td>
<td>6.83</td>
<td>6.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18F</td>
<td>6.52</td>
<td>6.89</td>
<td>6.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19F</td>
<td>5.86</td>
<td>5.82</td>
<td>5.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20F</td>
<td>5.80</td>
<td>6.72</td>
<td>6.26</td>
</tr>
</tbody>
</table>

Appendix E3
Study of Short Period of Alcohol Administration (4 Weeks) – Individual Values: Males and Females

Cholesterol (mg chol/g. liver)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal / Sex</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (wt/wt)</td>
<td>H2O Control</td>
<td>1M</td>
<td>3.65</td>
<td>4.47</td>
<td>4.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2F</td>
<td>3.09</td>
<td>2.94</td>
<td>3.02</td>
</tr>
<tr>
<td>2 (wt/wt)</td>
<td>20% Alcohol</td>
<td>3M</td>
<td>3.97</td>
<td>4.99</td>
<td>4.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4F</td>
<td>4.99</td>
<td>4.16</td>
<td>4.58</td>
</tr>
<tr>
<td>3 (db/wt)</td>
<td>H2O Control</td>
<td>5M</td>
<td>3.89</td>
<td>2.94</td>
<td>3.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6M</td>
<td>3.26</td>
<td>2.78</td>
<td>3.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7F</td>
<td>1.87</td>
<td>2.05</td>
<td>1.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8F</td>
<td>2.00</td>
<td>2.13</td>
<td>2.07</td>
</tr>
<tr>
<td>4 (db/wt)</td>
<td>20% Alcohol</td>
<td>9M</td>
<td>4.50</td>
<td>4.86</td>
<td>4.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10M</td>
<td>4.61</td>
<td>5.63</td>
<td>5.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11F</td>
<td>3.39</td>
<td>4.65</td>
<td>4.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12F</td>
<td>3.99</td>
<td>4.30</td>
<td>4.15</td>
</tr>
<tr>
<td>5 (db/db)</td>
<td>H2O Control</td>
<td>13M</td>
<td>6.52</td>
<td>4.63</td>
<td>5.58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14M</td>
<td>5.41</td>
<td>5.39</td>
<td>5.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15F</td>
<td>4.21</td>
<td>4.10</td>
<td>4.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16F</td>
<td>3.04</td>
<td>3.83</td>
<td>3.44</td>
</tr>
<tr>
<td>6 (db/db)</td>
<td>20% Alcohol</td>
<td>17M</td>
<td>7.44</td>
<td>6.84</td>
<td>7.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18F</td>
<td>4.13</td>
<td>3.38</td>
<td>3.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19F</td>
<td>5.05</td>
<td>4.81</td>
<td>4.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20F</td>
<td>5.07</td>
<td>4.47</td>
<td>4.77</td>
</tr>
</tbody>
</table>
Study of Short Period of Alcohol Administration (4 Weeks) – Individual Values: Males and Females

Conjugated Dienes (μmol/g. liver)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal / Sex</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (wt/wt)</td>
<td>H₂O Control</td>
<td>1M</td>
<td>1.69</td>
<td>1.96</td>
<td>1.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2F</td>
<td>1.91</td>
<td>2.09</td>
<td>2.12</td>
</tr>
<tr>
<td>2 (wt/wt)</td>
<td>20% Alcohol</td>
<td>3M</td>
<td>1.84</td>
<td>1.86</td>
<td>1.84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4F</td>
<td>1.75</td>
<td>1.70</td>
<td>1.73</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H₂O Control</td>
<td>5M</td>
<td>1.77</td>
<td>2.04</td>
<td>1.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6F</td>
<td>1.85</td>
<td>2.02</td>
<td>1.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7F</td>
<td>1.28</td>
<td>1.24</td>
<td>1.26</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>8M</td>
<td>2.39</td>
<td>2.48</td>
<td>2.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9M</td>
<td>2.41</td>
<td>2.57</td>
<td>2.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10F</td>
<td>1.99</td>
<td>1.88</td>
<td>1.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11F</td>
<td>2.10</td>
<td>1.57</td>
<td>1.64</td>
</tr>
<tr>
<td>5 (db/db)</td>
<td>H₂O Control</td>
<td>12M</td>
<td>3.34</td>
<td>3.50</td>
<td>3.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13M</td>
<td>3.22</td>
<td>3.47</td>
<td>3.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14F</td>
<td>2.29</td>
<td>2.55</td>
<td>2.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15F</td>
<td>2.13</td>
<td>2.65</td>
<td>2.39</td>
</tr>
<tr>
<td>6 (db/db)</td>
<td>20% Alcohol</td>
<td>16M</td>
<td>5.36</td>
<td>4.85</td>
<td>5.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17M</td>
<td>2.21</td>
<td>3.14</td>
<td>2.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18F</td>
<td>2.89</td>
<td>3.86</td>
<td>3.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19F</td>
<td>2.72</td>
<td>3.87</td>
<td>3.30</td>
</tr>
</tbody>
</table>

Study of Short Period of Alcohol Administration (4 Weeks) – Individual Values: Males and Females

Lipid Hydroperoxides (nmol LOOH/g. liver)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal / Sex</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (wt/wt)</td>
<td>H₂O Control</td>
<td>1M</td>
<td>101</td>
<td>99</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2F</td>
<td>62</td>
<td>108</td>
<td>85</td>
</tr>
<tr>
<td>2 (wt/wt)</td>
<td>20% Alcohol</td>
<td>3M</td>
<td>277</td>
<td>306</td>
<td>292</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4F</td>
<td>299</td>
<td>280</td>
<td>290</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H₂O Control</td>
<td>5M</td>
<td>151</td>
<td>178</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6M</td>
<td>232</td>
<td>201</td>
<td>217</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7F</td>
<td>157</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>8F</td>
<td>82</td>
<td>143</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9M</td>
<td>200</td>
<td>256</td>
<td>228</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10M</td>
<td>219</td>
<td>220</td>
<td>220</td>
</tr>
<tr>
<td>5 (db/db)</td>
<td>H₂O Control</td>
<td>11F</td>
<td>125</td>
<td>136</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12F</td>
<td>142</td>
<td>158</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13M</td>
<td>512</td>
<td>472</td>
<td>492</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14F</td>
<td>711</td>
<td>545</td>
<td>628</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15F</td>
<td>776</td>
<td>311</td>
<td>254</td>
</tr>
<tr>
<td>6 (db/db)</td>
<td>20% Alcohol</td>
<td>16F</td>
<td>405</td>
<td>276</td>
<td>321</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17M</td>
<td>1054</td>
<td>999</td>
<td>1027</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18F</td>
<td>656</td>
<td>714</td>
<td>685</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19F</td>
<td>709</td>
<td>480</td>
<td>595</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20F</td>
<td>380</td>
<td>235</td>
<td>308</td>
</tr>
</tbody>
</table>
Study of Short Period of Alcohol Administration (4 Weeks) – Individual Values: Males and Females

Appendix E6 TTBARS (nmol/g. liver)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal / Sex</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (wt/wt)</td>
<td>H₂O Control</td>
<td>1M</td>
<td>1517</td>
<td>1481</td>
<td>1499</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2F</td>
<td>1481</td>
<td>1481</td>
<td>1481</td>
</tr>
<tr>
<td></td>
<td>20% Alcohol</td>
<td>3M</td>
<td>1572</td>
<td>1481</td>
<td>1527</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4F</td>
<td>1609</td>
<td>1645</td>
<td>1627</td>
</tr>
<tr>
<td>2 (wt/wt)</td>
<td>H₂O Control</td>
<td>5M</td>
<td>1261</td>
<td>1188</td>
<td>1225</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6M</td>
<td>1207</td>
<td>1251</td>
<td>1234</td>
</tr>
<tr>
<td></td>
<td>20% Alcohol</td>
<td>7F</td>
<td>1060</td>
<td>1097</td>
<td>1079</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8F</td>
<td>1134</td>
<td>1188</td>
<td>1161</td>
</tr>
<tr>
<td>3 (db/wt)</td>
<td>H₂O Control</td>
<td>9M</td>
<td>1261</td>
<td>1335</td>
<td>1298</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10M</td>
<td>1298</td>
<td>1316</td>
<td>1307</td>
</tr>
<tr>
<td></td>
<td>20% Alcohol</td>
<td>11F</td>
<td>1591</td>
<td>1517</td>
<td>1554</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12F</td>
<td>1335</td>
<td>1280</td>
<td>1308</td>
</tr>
<tr>
<td>4 (db/wt)</td>
<td>20% Alcohol</td>
<td>13M</td>
<td>1481</td>
<td>1517</td>
<td>1499</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14M</td>
<td>1426</td>
<td>1225</td>
<td>1326</td>
</tr>
<tr>
<td></td>
<td>H₂O Control</td>
<td>15F</td>
<td>1280</td>
<td>1207</td>
<td>1244</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16F</td>
<td>1188</td>
<td>1134</td>
<td>1161</td>
</tr>
<tr>
<td>5 (db/db)</td>
<td>20% Alcohol</td>
<td>17M</td>
<td>1901</td>
<td>1810</td>
<td>1856</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18F</td>
<td>1865</td>
<td>1792</td>
<td>1829</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19F</td>
<td>1847</td>
<td>1920</td>
<td>1884</td>
</tr>
<tr>
<td>6 (db/db)</td>
<td>20% Alcohol</td>
<td>20F</td>
<td>1810</td>
<td>1847</td>
<td>1829</td>
</tr>
</tbody>
</table>
Impact of Alcohol Administered over 8 Weeks in db/wt and db/db Mice - Individual Values: Males

Appendix F1

Weekly Body Mass (g)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal</th>
<th>Age (Weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>1</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>26.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>26.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>26.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>26.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>22.0</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>8</td>
<td>28.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>27.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>25.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>27.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>26.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>28.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14*</td>
<td>43.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>43.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>47.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>39.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>47.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>47.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>44.0</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H₂O Control</td>
<td>21</td>
<td>41.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>42.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>41.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>47.0</td>
</tr>
</tbody>
</table>

* = Animal No. 14 was found dead aged 15 weeks
Impact of Alcohol Administered over 8 Weeks in db/wt and db/db Mice – Individual Values: Males

Weekly Body Mass (g)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal</th>
<th>Age (Weeks)</th>
<th>Body Weight Mass / Loss (g) 9-20 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>1</td>
<td>29.0</td>
<td>29.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>31.5</td>
<td>32.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>32.0</td>
<td>33.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>33.0</td>
<td>33.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>34.0</td>
<td>35.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>29.0</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>27.5</td>
<td>28.0</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>8</td>
<td>30.5</td>
<td>31.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>31.0</td>
<td>30.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>29.5</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>31.0</td>
<td>31.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>29.0</td>
<td>29.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>31.5</td>
<td>32.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H₂O Control</td>
<td>15</td>
<td>45.0</td>
<td>45.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>57.0</td>
<td>58.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>54.5</td>
<td>55.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>56.5</td>
<td>56.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>50.5</td>
<td>49.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>50.0</td>
<td>49.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>54.0</td>
<td>55.0</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>22</td>
<td>50.5</td>
<td>51.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>40.5</td>
<td>38.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>47.5</td>
<td>47.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>57.0</td>
<td>58.0</td>
</tr>
</tbody>
</table>

* = Animal No. 14 was found dead aged 15 weeks
Impact of Alcohol Administered over 8 Weeks in db/wt and db/db Mice – Individual Values: Males

Appendix F2 Liver Mass (g)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal</th>
<th>Liver Mass (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>1</td>
<td>1.0213</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0.9649</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1.0617</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>1.0932</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>1.1143</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>1.0912</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>1.0716</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>8</td>
<td>1.3854</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>1.4263</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>1.3767</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>1.6781</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>1.4904</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>1.3683</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H₂O Control</td>
<td>14*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>1.9390</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>2.6287</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>2.6939</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>3.6215</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>3.2134</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>2.8890</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>21</td>
<td>2.8804</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>2.9219</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>2.4681</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>2.4433</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>3.4698</td>
</tr>
</tbody>
</table>

* = Animal No. 14 was found dead aged 15 weeks
Appendix F4
Impact of Alcohol Administered over 8 Weeks in db/wt and db/db Mice – Individual Values: Males

Glucose Concentration (mmol/l)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal</th>
<th>Glucose conc. (mmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H<sub>2</sub>O Control</td>
<td>1</td>
<td>10.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>13.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>12.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>15.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>19.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>9.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>16.8</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>8</td>
<td>8.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>9.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>9.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>7.6</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H<sub>2</sub>O Control</td>
<td>14*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>30.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>28.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>32.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>32.6</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>20</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>20.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>32.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>31.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>32.7</td>
</tr>
</tbody>
</table>

* = Animal No. 14 was found dead aged 15 weeks
x = Animal No.'s 18, 20 and 24 glucose concentration was too high to record
Impact of Alcohol Administered over 8 Weeks in db/wt and db/db Mice – Individual Values: Males

Appendix F5 **Blood/Alcohol Levels (mmol/l)**

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal</th>
<th>Blood/Alcohol Levels (mmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>1</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>0.99</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>8</td>
<td>1.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>1.56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>1.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>2.81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>0.64</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H₂O Control</td>
<td>14*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>1.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>1.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>1.94</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>21</td>
<td>2.56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>3.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>15.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>1.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>1.19</td>
</tr>
</tbody>
</table>

* = Animal No. 14 was found dead aged 15 weeks
Impact of Alcohol Administered over 8 Weeks in db/wt and db/db Mice – Individual Values: Males

Appendix F6 Aspartic Transaminase (AST) Levels (U/I)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal</th>
<th>AST levels (U/I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>1</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>67</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>8</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>40</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H₂O Control</td>
<td>14*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>43</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>21</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>82</td>
</tr>
</tbody>
</table>

* = Animal No. 14 was found dead aged 15 weeks
Impact of Alcohol Administered over 8 Weeks in db/wt and db/db Mice – Individual Values: Males

Appendix F7 Alanine Transaminase (ALT) Levels (U/l)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal</th>
<th>ALT levels (U/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>1</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>23</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>8</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H₂O Control</td>
<td>14*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>43</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>20</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>73</td>
</tr>
</tbody>
</table>

* = Animal No. 14 was found dead aged 15 weeks
Impact of Alcohol Administered over 8 Weeks in db/wt and db/db Mice – Individual Values: Males

Appendix F8 Triglycerides (mg TG/g. liver)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H<sub>2</sub>O Control</td>
<td>1</td>
<td>6.03</td>
<td>5.71</td>
<td>5.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>4.43</td>
<td>4.54</td>
<td>4.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>3.06</td>
<td>5.31</td>
<td>4.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>5.64</td>
<td>4.16</td>
<td>4.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>3.44</td>
<td>1.40</td>
<td>2.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>1.29</td>
<td>1.07</td>
<td>1.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>4.71</td>
<td>5.20</td>
<td>4.96</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>8</td>
<td>5.53</td>
<td>7.07</td>
<td>6.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>5.26</td>
<td>6.30</td>
<td>5.78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>7.13</td>
<td>5.04</td>
<td>6.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>6.58</td>
<td>7.24</td>
<td>6.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>7.62</td>
<td>8.34</td>
<td>7.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>6.74</td>
<td>6.41</td>
<td>6.58</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H<sub>2</sub>O Control</td>
<td>14*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>4.49</td>
<td>3.99</td>
<td>4.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>6.63</td>
<td>5.86</td>
<td>6.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>6.74</td>
<td>5.81</td>
<td>6.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>7.84</td>
<td>8.34</td>
<td>8.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>7.29</td>
<td>8.68</td>
<td>7.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>6.41</td>
<td>6.52</td>
<td>6.47</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>21</td>
<td>6.41</td>
<td>7.07</td>
<td>6.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>10.54</td>
<td>11.86</td>
<td>11.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>10.21</td>
<td>11.47</td>
<td>10.84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>10.54</td>
<td>9.49</td>
<td>10.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>12.30</td>
<td>13.35</td>
<td>12.83</td>
</tr>
</tbody>
</table>

* = Animal No. 14 was found dead aged 15 weeks
Impact of Alcohol Administered over 8 Weeks in db/wt and db/db Mice – Individual Values: Males

Appendix F9
Cholesterol (mg chol/g. liver)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H2O Control</td>
<td>1</td>
<td>4.85</td>
<td>4.47</td>
<td>4.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>5.08</td>
<td>2.06</td>
<td>3.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>2.70</td>
<td>4.17</td>
<td>3.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>4.14</td>
<td>3.23</td>
<td>3.69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>2.82</td>
<td>2.14</td>
<td>2.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>1.81</td>
<td>1.71</td>
<td>1.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>3.64</td>
<td>3.99</td>
<td>3.82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>3.84</td>
<td>3.48</td>
<td>3.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>5.01</td>
<td>4.63</td>
<td>4.82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>4.93</td>
<td>4.37</td>
<td>4.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>5.08</td>
<td>6.35</td>
<td>5.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>6.25</td>
<td>6.35</td>
<td>6.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>5.06</td>
<td>4.93</td>
<td>5.00</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>14*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>5.26</td>
<td>5.95</td>
<td>5.61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>8.21</td>
<td>6.71</td>
<td>7.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>5.46</td>
<td>4.85</td>
<td>5.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>4.52</td>
<td>4.96</td>
<td>4.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>7.01</td>
<td>6.56</td>
<td>6.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>5.69</td>
<td>5.74</td>
<td>5.72</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H2O Control</td>
<td>21</td>
<td>7.16</td>
<td>7.29</td>
<td>7.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>7.34</td>
<td>8.16</td>
<td>7.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>7.04</td>
<td>8.26</td>
<td>7.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>8.82</td>
<td>8.16</td>
<td>8.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>10.89</td>
<td>11.43</td>
<td>11.16</td>
</tr>
</tbody>
</table>

* = Animal No. 14 was found dead aged 15 weeks
Impact of Alcohol Administered over 8 Weeks in db/wt and db/db Mice – Individual Values: Males

Appendix F10 Conjugated Dienes (μmol/g. liver)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>2.06</td>
<td>2.20</td>
<td>2.13</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>1.61</td>
<td>1.39</td>
<td>1.50</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>1.54</td>
<td>1.63</td>
<td>1.59</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>1.31</td>
<td>1.46</td>
<td>1.39</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>2.09</td>
<td>1.71</td>
<td>1.90</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>1.23</td>
<td>1.17</td>
<td>1.20</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>1.39</td>
<td>1.63</td>
<td>1.51</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>2.16</td>
<td>2.14</td>
<td>2.15</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>1.83</td>
<td>1.88</td>
<td>1.86</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>1.71</td>
<td>2.01</td>
<td>1.86</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>1.61</td>
<td>1.85</td>
<td>1.73</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>1.87</td>
<td>2.25</td>
<td>2.04</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>2.26</td>
<td>2.45</td>
<td>2.36</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H₂O Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>2.85</td>
<td>2.74</td>
<td>2.80</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>2.61</td>
<td>2.60</td>
<td>2.61</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>2.65</td>
<td>2.68</td>
<td>2.67</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>2.75</td>
<td>2.48</td>
<td>2.62</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td>2.65</td>
<td>2.54</td>
<td>2.60</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>2.60</td>
<td>2.76</td>
<td>2.68</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td>3.11</td>
<td>3.38</td>
<td>3.25</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td>3.83</td>
<td>3.57</td>
<td>3.70</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td>3.43</td>
<td>3.38</td>
<td>3.41</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td>3.44</td>
<td>3.51</td>
<td>3.48</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td>3.55</td>
<td>3.25</td>
<td>3.40</td>
</tr>
</tbody>
</table>

* = Animal No. 14 was found dead aged 15 weeks
Impact of Alcohol Administered over 8 Weeks in db/wt and db/db Mice – Individual Values: Males

Appendix F11 Lipid Hydroperoxides (nmol LOOH/g. liver)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H2O Control</td>
<td>1</td>
<td>205</td>
<td>310</td>
<td>258</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>293</td>
<td>298</td>
<td>296</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>390</td>
<td>276</td>
<td>338</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>382</td>
<td>407</td>
<td>395</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>394</td>
<td>441</td>
<td>416</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>331</td>
<td>335</td>
<td>333</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>352</td>
<td>323</td>
<td>338</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>8</td>
<td>614</td>
<td>875</td>
<td>745</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>542</td>
<td>681</td>
<td>612</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>706</td>
<td>803</td>
<td>755</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>824</td>
<td>803</td>
<td>814</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>512</td>
<td>1165</td>
<td>839</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>542</td>
<td>609</td>
<td>576</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H2O Control</td>
<td>14*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>816</td>
<td>1047</td>
<td>932</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>1149</td>
<td>1191</td>
<td>1170</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>1057</td>
<td>951</td>
<td>1004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>989</td>
<td>1141</td>
<td>1065</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>1068</td>
<td>1157</td>
<td>1113</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>20</td>
<td>1250</td>
<td>1056</td>
<td>1153</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>1473</td>
<td>1326</td>
<td>1400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>1178</td>
<td>1506</td>
<td>1342</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>1776</td>
<td>1350</td>
<td>1563</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>1587</td>
<td>1679</td>
<td>1633</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>1772</td>
<td>1216</td>
<td>1494</td>
</tr>
</tbody>
</table>

* = Animal No. 14 was found dead aged 15 weeks
Impact of Alcohol Administered over 8 Weeks in db/wt and db/db Mice – Individual Values: Males

Appendix F12 TTBARS (nmol/g. liver)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>1</td>
<td>1810</td>
<td>1627</td>
<td>1719</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1956</td>
<td>1316</td>
<td>1636</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1700</td>
<td>1938</td>
<td>1919</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>2084</td>
<td>1846</td>
<td>1965</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>1883</td>
<td>1335</td>
<td>1609</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>1901</td>
<td>2011</td>
<td>1956</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>1627</td>
<td>1627</td>
<td>1627</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>8</td>
<td>2870</td>
<td>2486</td>
<td>2678</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>2066</td>
<td>1974</td>
<td>2020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>2596</td>
<td>2962</td>
<td>2779</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>2925</td>
<td>2304</td>
<td>2615</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>2541</td>
<td>2614</td>
<td>2578</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>2834</td>
<td>2176</td>
<td>2505</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H₂O Control</td>
<td>14*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>1682</td>
<td>1499</td>
<td>1591</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>2212</td>
<td>1755</td>
<td>1984</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>2322</td>
<td>1920</td>
<td>2121</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>1810</td>
<td>1737</td>
<td>1774</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>1773</td>
<td>1481</td>
<td>1627</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>20</td>
<td>2120</td>
<td>2029</td>
<td>2075</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>3126</td>
<td>2632</td>
<td>2879</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>2888</td>
<td>3071</td>
<td>2980</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>3437</td>
<td>3218</td>
<td>3328</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>3034</td>
<td>2980</td>
<td>3007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>2541</td>
<td>2687</td>
<td>2614</td>
</tr>
</tbody>
</table>

* = Animal No. 14 was found dead aged 15 weeks
Impact of Alcohol Administered over 8 Weeks in db/wt and db/db Mice – Individual Values: Males

Appendix F13 BCA Protein Assay (µg/µg liver)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Protein (µg/µg liver)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H2O Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>58.7</td>
<td>59.5</td>
<td>59.1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>49.4</td>
<td>46.5</td>
<td>47.9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>50.8</td>
<td>53.0</td>
<td>51.9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>69.2</td>
<td>67.1</td>
<td>68.2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>45.4</td>
<td>30.9</td>
<td>38.2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>55.9</td>
<td>55.9</td>
<td>55.9</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>66.9</td>
<td>65.5</td>
<td>66.2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>57.3</td>
<td>60.5</td>
<td>58.9</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>20% Alcohol</td>
<td>64.8</td>
<td>64.4</td>
<td>64.6</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>20% Alcohol</td>
<td>65.3</td>
<td>65.2</td>
<td>65.3</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>20% Alcohol</td>
<td>63.8</td>
<td>57.7</td>
<td>60.8</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>20% Alcohol</td>
<td>61.2</td>
<td>55.8</td>
<td>58.5</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>20% Alcohol</td>
<td>53.1</td>
<td>59.5</td>
<td>56.3</td>
<td></td>
</tr>
<tr>
<td>14*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>H2O Control</td>
<td>60.5</td>
<td>61.1</td>
<td>60.8</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>H2O Control</td>
<td>79.1</td>
<td>80.2</td>
<td>79.6</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>H2O Control</td>
<td>84.4</td>
<td>74.8</td>
<td>79.6</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>H2O Control</td>
<td>52.8</td>
<td>50.3</td>
<td>51.5</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>H2O Control</td>
<td>62.9</td>
<td>64.9</td>
<td>63.9</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>H2O Control</td>
<td>80.5</td>
<td>81.7</td>
<td>81.1</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>20% Alcohol</td>
<td>86.9</td>
<td>81.2</td>
<td>84.4</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>20% Alcohol</td>
<td>87.2</td>
<td>86.8</td>
<td>87.0</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>20% Alcohol</td>
<td>86.1</td>
<td>83.7</td>
<td>84.9</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>20% Alcohol</td>
<td>62.9</td>
<td>71.2</td>
<td>67.0</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>20% Alcohol</td>
<td>57.7</td>
<td>62.9</td>
<td>60.3</td>
<td></td>
</tr>
</tbody>
</table>

* = Animal No. 14 was found dead aged 15 weeks
Impact of Alcohol Administered over 8 Weeks in db/wt and db/db Mice – Individual Values: Males

Appendix F14 Fat Change and Inflammation Grading

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal</th>
<th>Fat Change (0-3)</th>
<th>Inflammatory Aggregates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H2O Control</td>
<td>1^</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2^</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3^</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4^</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5^</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6^</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7^</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H2O Control</td>
<td>14^**</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15^</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16^</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>25</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

* = Animal No. 14 was found dead aged 15 weeks

+ ~ 20 x objective, 20 fields counted

^ = Artefact was present in these sections due to a technical problem. Assessment predominantly occurred in the periphery sections and is hopefully representative of the tissue as a whole.

x = The quantity of artefact was to severe for this animal to be fairly assessed.

Impact of Alcohol Administered over 8 Weeks in db/wt and db/db Mice – Individual Values: Males

Appendix F15 Animal Cage Assignments

<table>
<thead>
<tr>
<th>Cage Number</th>
<th>Animal No.s</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>B</td>
<td>6, 9, 10</td>
</tr>
<tr>
<td>C</td>
<td>14, 15, 16, 17</td>
</tr>
<tr>
<td>D</td>
<td>21, 22, 23, 24, 25</td>
</tr>
<tr>
<td>E</td>
<td>6, 7</td>
</tr>
<tr>
<td>F</td>
<td>11, 12, 13</td>
</tr>
<tr>
<td>G</td>
<td>18, 19, 20</td>
</tr>
</tbody>
</table>

Please note – the animals were allocated on a random basis.
Impact of Alcohol Administered over 20 Weeks in db/wt and db/db Mice – Individual Values: Males

Weekly Body Mass (g)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal</th>
<th>Age (Weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>1</td>
<td>26.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>27.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>27.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>27.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>28.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>27.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>26.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>28.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>28.0</td>
</tr>
<tr>
<td></td>
<td>20% Alcohol</td>
<td>10*</td>
<td>27.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11*</td>
<td>27.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>27.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13*</td>
<td>27.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>27.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>46.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>45.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>46.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18*</td>
<td>46.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>44.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>42.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>45.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>41.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23*</td>
<td>41.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>42.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>45.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>44.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>43.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>45.5</td>
</tr>
</tbody>
</table>

* = Animal No. 18 was found dead aged 21 weeks
* = Animal No. 23 was found dead aged 14 weeks
* = Animal Nos. 10, 11 and 13 were found dead aged 29 weeks
Appendix G1

Impact of Alcohol Administered over 20 Weeks in db/wt and db/db Mice – Individual Values: Males

Weekly Body Mass (g)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal</th>
<th>Age (Weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>1</td>
<td>29.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>31.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>34.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>33.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>35.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>32.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>31.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>29.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10*</td>
<td>28.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11*</td>
<td>29.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>31.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13*</td>
<td>31.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>31.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>32.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>31.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>29.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>29.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>29.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>32.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>31.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>29.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>29.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>29.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>29.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>29.5</td>
</tr>
</tbody>
</table>

* = Animal No. 18 was found dead aged 21 weeks

* = Animal No. 23 was found dead aged 14 weeks

* = Animal No's 10, 11 and 13 were found dead aged 29 weeks

Page 251
Impact of Alcohol Administered over 20 Weeks in db/wt and db/db Mice – Individual Values: Males

Weekly Body Mass (g)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal</th>
<th>Age (Weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>1</td>
<td>30.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>32.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>35.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>34.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>37.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>32.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>32.0</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>8</td>
<td>29.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>28.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10*</td>
<td>30.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11*</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>31.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13*</td>
<td>31.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>31.5</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H₂O Control</td>
<td>15</td>
<td>58.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>58.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>61.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18*</td>
<td>fd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>54.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>52.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>51.5</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>22</td>
<td>53.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23*</td>
<td>fd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>45.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>52.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>53.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>51.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>52.0</td>
</tr>
</tbody>
</table>

* = Animal No. 18 was found dead aged 21 weeks
* = Animal No. 23 was found dead aged 14 weeks
* = Animal No's 10, 11 and 13 were found dead aged 29 weeks
Impact of Alcohol Administered over 20 Weeks in db/wt and db/db Mice – Individual Values: Males

Weekly Body Mass (g)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal</th>
<th>Age (Weeks)</th>
<th>Body Mass Gain / Loss (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H₂O</td>
<td>1</td>
<td>27 28 29 30 31 32</td>
<td>30.5 30.0 31.0 32.0 29.0 30.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>31.0 31.5 33.5 34.0 31.5 32.0</td>
<td>+ 5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>36.5 37.0 37.5 37.0 38.0 37.0</td>
<td>+ 10.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>35.0 35.5 35.5 35.0 34.5 33.5</td>
<td>+ 8.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>37.5 38.0 37.5 37.0 38.0 37.5</td>
<td>+ 9.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>32.0 32.0 32.0 32.5 33.5 32.5</td>
<td>+ 5.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>32.0 31.0 31.5 32.5 32.5 32.0</td>
<td>+ 5.5</td>
</tr>
<tr>
<td></td>
<td>20% Alcohol</td>
<td>8</td>
<td>34.0 34.0 33.0 34.0 34.5 34.0</td>
<td>+ 5.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>30.5 30.5 30.5 30.5 31.0 31.0</td>
<td>+ 3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10*</td>
<td>31.0 31.0 - - - -</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11*</td>
<td>30.0 30.5 - - - -</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>32.0 32.5 30.5 30.5 29.5 29.0</td>
<td>+ 2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13*</td>
<td>31.0 30.5 - - - -</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>32.5 31.5 29.5 31.5 31.0 31.0</td>
<td>+ 3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>59.5 60.5 60.5 60.5 60.5 60.5</td>
<td>+ 14.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>61.0 62.0 63.5 62.0 61.0 62.0</td>
<td>+ 16.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>64.0 64.5 65.5 64.0 62.0 64.5</td>
<td>+ 18.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18*</td>
<td>- - - - - - -</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>55.5 55.5 56.5 53.5 53.0 53.0</td>
<td>+ 9.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>53.5 54.5 55.0 55.5 54.0 52.5</td>
<td>+ 10.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>52.5 54.5 53.0 54.5 54.0 52.0</td>
<td>+ 6.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>55.0 56.5 56.0 56.0 55.5 55.5</td>
<td>+ 14.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23*</td>
<td>- - - - - - -</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>42.0 43.0 42.0 41.0 40.0 39.0</td>
<td>- 3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>52.5 52.5 55.0 55.0 53.5 52.0</td>
<td>+ 6.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>54.5 55.0 57.0 55.0 53.5 52.5</td>
<td>+ 8.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>54.0 55.5 56.5 55.5 54.0 51.5</td>
<td>+ 8.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>53.0 54.0 54.5 53.5 51.5 50.5</td>
<td>+ 5.0</td>
</tr>
</tbody>
</table>

* = Animal No. 18 was found dead aged 21 weeks
* = Animal No. 23 was found dead aged 14 weeks
* = Animal Nos. 10, 11 and 13 were found dead aged 29 weeks
Impact of Alcohol Administered over 20 Weeks in db/wt and db/db Mice – Individual Values: Males

Appendix G2 Liver Mass (g)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal</th>
<th>Liver Mass (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>1</td>
<td>1.3364</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1.4096</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1.3206</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>1.4007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>1.4060</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>1.4173</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>1.3154</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>1.5816</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>1.6246</td>
</tr>
<tr>
<td></td>
<td>20% Alcohol</td>
<td>10*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>1.3716</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>1.5659</td>
</tr>
<tr>
<td></td>
<td>H₂O Control</td>
<td>15</td>
<td>3.4396</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>2.8176</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>3.1934</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>2.9237</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>2.9380</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>2.2932</td>
</tr>
<tr>
<td></td>
<td>20% Alcohol</td>
<td>22</td>
<td>3.1161</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>2.8193</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>3.6237</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>3.0893</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>2.4968</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>2.8072</td>
</tr>
</tbody>
</table>

* = Animal No. 18 was found dead aged 21 weeks
* = Animal No. 23 was found dead aged 14 weeks
* = Animal No's 10, 11 and 13 were found dead aged 29 weeks
Impact of Alcohol Administered over 20 Weeks in db/wt and db/db Mice – Individual Values: Males

Appendix G3 Liver Mass / Body Mass x 100 (%)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal</th>
<th>Liver Mass / Body Mass x 100 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>1</td>
<td>4.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>4.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>3.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>4.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>3.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>4.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>4.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>4.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>5.24</td>
</tr>
<tr>
<td></td>
<td>20% Alcohol</td>
<td>10*</td>
<td>-</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td></td>
<td>11*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>4.73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>5.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>5.69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>4.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>4.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>5.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>4.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>4.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>5.61</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H₂O Control</td>
<td>23*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>7.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>6.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>5.88</td>
</tr>
<tr>
<td></td>
<td>20% Alcohol</td>
<td>27</td>
<td>4.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>5.56</td>
</tr>
</tbody>
</table>

* = Animal No. 18 was found dead aged 21 weeks
* = Animal No. 23 was found dead aged 14 weeks
* = Animal No's 10, 11 and 13 were found dead aged 29 weeks
Impact of Alcohol Administered over 20 Weeks in db/wt and db/db Mice – Individual Values: Males

Appendix G4

Glucose Concentration (mmol/l)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal</th>
<th>Glucose conc. (mmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H2O Control</td>
<td>1</td>
<td>9.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>9.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>18.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>12.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>16.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>15.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>19.1</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>9</td>
<td>13.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>9.0</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H2O Control</td>
<td>15</td>
<td>30.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>31.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>32.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>31.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>32.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>28.5</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>23*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>20.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>32.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>31.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>33.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>29.2</td>
</tr>
</tbody>
</table>

* = Animal No. 18 was found dead aged 21 weeks

* = Animal No. 23 was found dead aged 14 weeks

* = Animal No’s 10, 11 and 13 were found dead aged 29 weeks
Impact of Alcohol Administered over 20 Weeks in db/wt and db/db Mice – Individual Values: Males

Appendix G5 Blood/Alcohol Levels (mmol/l)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal</th>
<th>Blood/Alcohol Levels (mmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>1</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>1.17</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>8</td>
<td>1.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>20.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>19.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>8.68</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H₂O Control</td>
<td>15</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>0.77</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>22</td>
<td>23.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>0.85</td>
</tr>
</tbody>
</table>

* = Animal No. 18 was found dead aged 21 weeks
* = Animal No. 23 was found dead aged 14 weeks
* = Animal No's 10, 11 and 13 were found dead aged 29 weeks
Impact of Alcohol Administered over 20 Weeks in db/wt and db/db Mice – Individual Values: Males

Appendix G6 Aspartic Transaminase (AST) Levels (U/l)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal</th>
<th>AST Levels (U/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>26</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>9</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>25</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H₂O Control</td>
<td>22</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>26</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>28</td>
<td>34</td>
</tr>
</tbody>
</table>

* = Animal No. 18 was found dead aged 21 weeks
* = Animal No. 23 was found dead aged 14 weeks
* = Animal No's 10, 11 and 13 were found dead aged 29 weeks
Impact of Alcohol Administered over 20 Weeks in db/wt and db/db Mice – Individual Values: Males

Appendix G7 Alanine Transaminase (ALT) Levels (U/l)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal</th>
<th>ALT Levels (U/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H₂O Control</td>
<td>15</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>39</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>22</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>112</td>
</tr>
</tbody>
</table>

* = Animal No. 18 was found dead aged 21 weeks
** = Animal No. 23 was found dead aged 14 weeks
*** = Animal No’s 10, 11 and 13 were found dead aged 29 weeks
Impact of Alcohol Administered over 20 Weeks in db/wt and db/db Mice – Individual Values: Males

Appendix G8
Triglycerides (mg TG/g. liver)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>1</td>
<td>3.19</td>
<td>3.67</td>
<td>3.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2.45</td>
<td>4.04</td>
<td>3.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>5.01</td>
<td>4.26</td>
<td>4.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>3.33</td>
<td>3.92</td>
<td>3.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>4.80</td>
<td>3.31</td>
<td>4.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>3.39</td>
<td>4.57</td>
<td>3.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>2.94</td>
<td>3.18</td>
<td>3.07</td>
</tr>
<tr>
<td></td>
<td>20% Alcohol</td>
<td>8</td>
<td>5.01</td>
<td>4.83</td>
<td>4.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>6.12</td>
<td>6.39</td>
<td>6.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>3.77</td>
<td>6.48</td>
<td>5.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>5.56</td>
<td>4.70</td>
<td>5.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>3.29</td>
<td>4.82</td>
<td>4.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>4.17</td>
<td>5.96</td>
<td>5.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>5.34</td>
<td>7.05</td>
<td>6.20</td>
</tr>
<tr>
<td></td>
<td>3 (db/db)</td>
<td>18*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>6.80</td>
<td>7.49</td>
<td>7.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>4.89</td>
<td>7.08</td>
<td>5.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>5.13</td>
<td>6.81</td>
<td>5.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>8.43</td>
<td>5.90</td>
<td>7.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>6.66</td>
<td>7.78</td>
<td>7.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>9.02</td>
<td>8.12</td>
<td>8.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>7.54</td>
<td>7.54</td>
<td>7.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>8.62</td>
<td>7.85</td>
<td>8.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>6.09</td>
<td>8.41</td>
<td>7.25</td>
</tr>
</tbody>
</table>

* = Animal No. 18 was found dead aged 21 weeks
* = Animal No. 23 was found dead aged 14 weeks
* = Animal No's 10, 11 and 13 were found dead aged 29 weeks
Impact of Alcohol Administered over 20 Weeks in db/wt and db/db Mice – Individual Values: Males

Appendix G9

Cholesterol (mg chol/g. liver)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>1</td>
<td>3.08</td>
<td>4.80</td>
<td>3.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2.72</td>
<td>3.48</td>
<td>3.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>2.03</td>
<td>4.80</td>
<td>3.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>3.32</td>
<td>5.82</td>
<td>4.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>3.92</td>
<td>4.64</td>
<td>4.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>3.28</td>
<td>4.20</td>
<td>3.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>3.96</td>
<td>4.20</td>
<td>4.08</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>8</td>
<td>5.17</td>
<td>5.73</td>
<td>5.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>5.09</td>
<td>5.21</td>
<td>5.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>3.72</td>
<td>6.57</td>
<td>5.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>7.62</td>
<td>5.49</td>
<td>6.56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>5.57</td>
<td>3.56</td>
<td>4.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>7.62</td>
<td>5.13</td>
<td>6.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>2.55</td>
<td>7.05</td>
<td>4.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>10.07</td>
<td>6.17</td>
<td>8.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>5.97</td>
<td>6.69</td>
<td>6.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>6.49</td>
<td>6.81</td>
<td>6.65</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H₂O Control</td>
<td>22</td>
<td>10.11</td>
<td>12.68</td>
<td>11.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>7.86</td>
<td>7.33</td>
<td>7.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>6.29</td>
<td>9.02</td>
<td>7.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>10.31</td>
<td>7.78</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>9.42</td>
<td>7.82</td>
<td>8.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>10.75</td>
<td>10.67</td>
<td>10.71</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>10*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* = Animal No. 18 was found dead aged 21 weeks
* = Animal No. 23 was found dead aged 14 weeks
* = Animal No's 10, 11 and 13 were found dead aged 29 weeks
Impact of Alcohol Administered over 20 Weeks in db/wt and db/db Mice – Individual Values: Males

Appendix G10 Conjugated Dienes (μmol/g. liver)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>1</td>
<td>1.54</td>
<td>1.58</td>
<td>1.56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1.65</td>
<td>1.47</td>
<td>1.56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1.69</td>
<td>1.63</td>
<td>1.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>1.70</td>
<td>1.73</td>
<td>1.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>1.78</td>
<td>1.73</td>
<td>1.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>1.90</td>
<td>1.87</td>
<td>1.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>1.48</td>
<td>1.17</td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td>20% Alcohol</td>
<td>8</td>
<td>2.70</td>
<td>2.43</td>
<td>2.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>2.04</td>
<td>2.10</td>
<td>2.07</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>H₂O Control</td>
<td>10*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>2.26</td>
<td>2.20</td>
<td>2.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>20% Alcohol</td>
<td>14</td>
<td>1.82</td>
<td>1.99</td>
<td>1.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>2.52</td>
<td>2.39</td>
<td>2.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>2.39</td>
<td>2.00</td>
<td>2.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>2.23</td>
<td>2.20</td>
<td>2.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H₂O Control</td>
<td>19</td>
<td>2.09</td>
<td>2.11</td>
<td>2.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>1.97</td>
<td>2.11</td>
<td>2.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>2.31</td>
<td>2.28</td>
<td>2.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>2.66</td>
<td>2.36</td>
<td>2.51</td>
</tr>
<tr>
<td></td>
<td>20% Alcohol</td>
<td>23*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>2.40</td>
<td>2.46</td>
<td>2.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>2.47</td>
<td>2.59</td>
<td>2.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>2.45</td>
<td>2.45</td>
<td>2.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>2.78</td>
<td>2.68</td>
<td>2.73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>2.86</td>
<td>2.81</td>
<td>2.84</td>
</tr>
</tbody>
</table>

* = Animal No. 18 was found dead aged 21 weeks
* = Animal No. 23 was found dead aged 14 weeks
* = Animal Nos 10, 11 and 13 were found dead aged 29 weeks
Impact of Alcohol Administered over 20 Weeks in db/wt and db/db Mice – Individual Values: Males

Appendix G11 Lipid Hydroperoxides (nmol LOOH/g. liver)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H2O Control</td>
<td>1</td>
<td>40</td>
<td>225</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>244</td>
<td>84</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>288</td>
<td>327</td>
<td>308</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>230</td>
<td>199</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>212</td>
<td>86</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>212</td>
<td>235</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>124</td>
<td>226</td>
<td>175</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>8</td>
<td>478</td>
<td>549</td>
<td>514</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>354</td>
<td>416</td>
<td>385</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>531</td>
<td>239</td>
<td>385</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>651</td>
<td>399</td>
<td>525</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H2O Control</td>
<td>15</td>
<td>571</td>
<td>761</td>
<td>666</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>571</td>
<td>730</td>
<td>651</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>744</td>
<td>951</td>
<td>848</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>655</td>
<td>898</td>
<td>777</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>934</td>
<td>823</td>
<td>879</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>1053</td>
<td>770</td>
<td>912</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>22</td>
<td>792</td>
<td>920</td>
<td>856</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>1141</td>
<td>987</td>
<td>1064</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>1026</td>
<td>1371</td>
<td>1199</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>969</td>
<td>881</td>
<td>925</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>898</td>
<td>991</td>
<td>945</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>938</td>
<td>1053</td>
<td>996</td>
</tr>
</tbody>
</table>

* = Animal No. 18 was found dead aged 21 weeks

* = Animal No. 23 was found dead aged 14 weeks

* = Animal No's 10, 11 and 13 were found dead aged 29 weeks
Impact of Alcohol Administered over 20 Weeks in db/wt and db/db Mice – Individual Values: Males

Appendix G12 TTBARS (nmol/g. liver)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>1</td>
<td>1589</td>
<td>1407</td>
<td>1498</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1535</td>
<td>1498</td>
<td>1517</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1754</td>
<td>1151</td>
<td>1453</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>968</td>
<td>1352</td>
<td>1160</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>1845</td>
<td>2119</td>
<td>1982</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>1936</td>
<td>2028</td>
<td>1982</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>1845</td>
<td>1608</td>
<td>1727</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>2503</td>
<td>2923</td>
<td>2713</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>3288</td>
<td>3343</td>
<td>3316</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>2338</td>
<td>2667</td>
<td>2503</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>20% Alcohol</td>
<td>14</td>
<td>2503</td>
<td>2959</td>
<td>2731</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>2064</td>
<td>3690</td>
<td>2877</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>3160</td>
<td>2393</td>
<td>2777</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>3380</td>
<td>3051</td>
<td>3216</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>2722</td>
<td>2905</td>
<td>2814</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>2338</td>
<td>3252</td>
<td>2795</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>2740</td>
<td>2996</td>
<td>2868</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>H₂O Control</td>
<td>22</td>
<td>2905</td>
<td>3361</td>
<td>3133</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>3964</td>
<td>3708</td>
<td>3836</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>4403</td>
<td>2868</td>
<td>3636</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>2722</td>
<td>3124</td>
<td>2923</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>3142</td>
<td>4019</td>
<td>3581</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>2594</td>
<td>3215</td>
<td>2905</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H₂O Control</td>
<td>19</td>
<td>2722</td>
<td>2905</td>
<td>2814</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>2338</td>
<td>3252</td>
<td>2795</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>2740</td>
<td>2996</td>
<td>2868</td>
</tr>
<tr>
<td></td>
<td>20% Alcohol</td>
<td>22</td>
<td>2905</td>
<td>3361</td>
<td>3133</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>3964</td>
<td>3708</td>
<td>3836</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>4403</td>
<td>2868</td>
<td>3636</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>2722</td>
<td>3124</td>
<td>2923</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>3142</td>
<td>4019</td>
<td>3581</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>2594</td>
<td>3215</td>
<td>2905</td>
</tr>
</tbody>
</table>

* = Animal No. 18 was found dead aged 21 weeks

* = Animal No. 23 was found dead aged 14 weeks

* = Animal No's 10, 11 and 13 were found dead aged 29 weeks
Impact of Alcohol Administered over 20 Weeks in db/wt and db/db Mice – Individual Values: Males

Appendix G13 BCA Protein Assay (μg/μg. liver)

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H₂O Control</td>
<td>1</td>
<td>49.9</td>
<td>48.9</td>
<td>49.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>51.6</td>
<td>69.9</td>
<td>60.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>70.5</td>
<td>70.7</td>
<td>70.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>67.7</td>
<td>60.0</td>
<td>63.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>54.6</td>
<td>48.0</td>
<td>51.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>49.6</td>
<td>53.0</td>
<td>51.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>59.4</td>
<td>66.4</td>
<td>63.9</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>8</td>
<td>61.6</td>
<td>63.7</td>
<td>62.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>69.3</td>
<td>74.7</td>
<td>71.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>63.2</td>
<td>70.3</td>
<td>66.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>60.4</td>
<td>55.4</td>
<td>57.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>66.3</td>
<td>74.5</td>
<td>70.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>99.7</td>
<td>91.2</td>
<td>95.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>96.8</td>
<td>93.5</td>
<td>95.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>84.8</td>
<td>81.9</td>
<td>83.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>76.1</td>
<td>79.5</td>
<td>77.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>74.6</td>
<td>70.9</td>
<td>72.7</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H₂O Control</td>
<td>22</td>
<td>85.7</td>
<td>86.3</td>
<td>86.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>93.1</td>
<td>91.1</td>
<td>92.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>98.6</td>
<td>97.8</td>
<td>98.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>88.1</td>
<td>87.9</td>
<td>88.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>94.6</td>
<td>89.7</td>
<td>92.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>78.9</td>
<td>70.1</td>
<td>74.5</td>
</tr>
</tbody>
</table>

* = Animal No. 18 was found dead aged 21 weeks

* = Animal No. 23 was found dead aged 14 weeks

* = Animal No's 10, 11 and 13 were found dead aged 29 weeks
Impact of Alcohol Administered over 20 Weeks in db/wt and db/db Mice – Individual Values: Males

Appendix G14 Fat Change and Inflammation Grading

<table>
<thead>
<tr>
<th>Group / Genotype</th>
<th>Treatment</th>
<th>Animal</th>
<th>Fat Change (0-3)</th>
<th>Inflammatory Aggregates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (db/wt)</td>
<td>H2O Control</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 (db/wt)</td>
<td>20% Alcohol</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3 (db/db)</td>
<td>H2O Control</td>
<td>22</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4 (db/db)</td>
<td>20% Alcohol</td>
<td>27</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

* = Animal No. 18 was found dead aged 21 weeks

* = Animal No. 23 was found dead aged 14 weeks

* = Animal No's 10, 11 and 13 were found dead aged 29 weeks

+ = 20 x objective, 20 fields counted

Impact of Alcohol Administered over 20 Weeks in db/wt and db/db Mice – Individual Values: Males

Appendix G15 Animal Cage Assignments

<table>
<thead>
<tr>
<th>Cage Number</th>
<th>Animal No.s</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1, 2</td>
</tr>
<tr>
<td>B</td>
<td>8, 9</td>
</tr>
<tr>
<td>C</td>
<td>15, 16, 17, 18, 19</td>
</tr>
<tr>
<td>D</td>
<td>22, 23, 24</td>
</tr>
<tr>
<td>E</td>
<td>3, 4, 5, 6, 7</td>
</tr>
<tr>
<td>F</td>
<td>10, 11, 12, 13, 14</td>
</tr>
<tr>
<td>G</td>
<td>20, 21</td>
</tr>
<tr>
<td>H</td>
<td>25, 26, 27, 28</td>
</tr>
</tbody>
</table>

Please note – the animals were allocated on a random basis
References

Anthenelli R.M., Despres J.P., 2004. "Effects of rimonabant in the reduction of major cardiovascular risk factors. Results from the STRATUS-US Trial (Smoking cessation in smokers motivated to quit) and the RIO-LIPIDS Trial (Weight reducing and metabolic effects in overweight/obese patients with dyslipidemia)." *Session Late Breaking Clinical Trials II Annual Scientific Session, New Orleans LA, March 9, 2004.*

Desvergne B., Michalik L., Wahli W., 2004. “Be fit or be sick: PPARs are down the road.” *Molecular Endocrinology* **18**: 1321-1332.

Tanaka T., Masuzaki H., Nakao K., 2005. “Role of PPARs in the pathophysiology of nonalcoholic fatty liver disease.” Nippon Rinsho 63(4): 700-706. [Japanese Article] [Abstract in English]

alcoholic steatohepatitis through suppression of metallothionen.” American Journal of Gastrointestinal Liver Physiology 287: G1078-G1085.

