A cross-sectional analysis of the short-term outcomes of patients receiving prehospital treatment for symptomatic hypoglycaemia in Cape Town

Mohamed Ridhaa Booley
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
A cross-sectional analysis of the short-term outcomes of patients receiving prehospital treatment for symptomatic hypoglycaemia in Cape Town

Mohamed Ridhaa Booley

(BLYMOH001)

Mohamed.Booley@westerncape.gov.za

A Research Dissertation (60 credits) submitted to the University of Cape Town

In partial fulfilment of the requirements for the degree:

Master of Philosophy in Emergency Medicine

Department of Emergency Medicine

Faculty of Health Sciences

University of Cape Town

Supervisor: Dr Tyson Welzel (01421805)
Declaration

Name: Mohamed Ridhaa Booley
BLYMOH001

A cross-sectional analysis of the short-term outcomes of patients receiving prehospital treatment for symptomatic hypoglycaemia in Cape Town

1. I know that plagiarism is wrong. Plagiarism is to use another’s work and pretend that it is one’s own.

2. I have used the Vancouver convention for citation and referencing. Each contribution to, and quotation in, this essay/report/project from the work(s) of other people has been attributed, and has been cited and referenced.

3. This dissertation is my own work.

4. I have not allowed, and will not allow, anyone to copy my work with the intention of passing it off as his or her own work.

5. No conflict of interests to declare.

Signature:

Date: 14th August 2013
Index

Part A – Literature Review

Part B – Article

Part C – Study Proposal

Part D – HREC Approval

Part E – WCG – EMS Approval

Part F – AfJEM Journal Instructions
Part A
A cross-sectional analysis of the short-term outcomes of patients receiving prehospital treatment for symptomatic hypoglycaemia in Cape Town

Literature Review
Table of Contents

Background.. 3

1. Objectives of literature review... 5

2. Methodology... 6
 2.1 Search strategy... 6
 2.2 Inclusion and exclusion criteria... 6
 2.3 Quality criteria... 7
 2.4 Search and screening results.. 8

3. Literature review... 9

4. Summary of Main Findings... 26

References.. 28

Figure 1: Article search and screening process.. 9

Table 1: Study Designs and key findings of included papers.. 10

Table 2: Disease-Induced Symptomatic Hypoglycaemia.. 18
Prehospital emergency care refers to the management of patients in the out-of-hospital setting, which is provided by Emergency Medical Services (EMS). Two models of such EMS systems exist, namely: the Franco-German and Anglo-Saxon Model. The Franco-German model is focused on the on-scene treatment and stabilisation of a patient, whereas the Anglo-Saxon model encompasses the scoop-and-run concept.1 The South African EMS context is built on the combination of these models, which provides basic, intermediate and advanced levels of care on-scene. The basic and intermediate life support practitioners provide more of a “scoop-and-run” service, whereas the advanced life support practitioners may encompass a “stay-and-play” methodology. The South African state EMS system thus provides care to a vast array of prehospital emergencies. In the Western Cape context, these emergencies include medical, trauma, inter-facility transfer and rescue incidents. This case load represents 46% of medical emergencies, which commonly includes the management of acute-symptomatic hypoglycaemia.

Acute symptomatic hypoglycaemia (SH) refers to the decrease in blood glucose levels with concomitant decreased level of consciousness and subsequent sympathetic responses or seizures.2 Currently, various cut-off values for defining acute SH exist in the literature. These values have a range of 3.0mmol/l – 3.5mmol/l.3 In the South African prehospital context, it is defined as a blood glucose level of less than 3.5mmol/l with the presentation of an altered level of consciousness.3 Other manifestations include cardiovascular disturbances (such as myocardial infarctions and arrhythmias) and neurological abnormalities (such as transient ischemic attacks and cerebrovascular accidents).2 SH may also lead to death if left untreated.2

In the South African prehospital context, acute SH is classified as priority one call out, where response to such cases should be achieved in less than 15 minutes. Hence various governmental and non-governmental EMS agencies may respond to these callouts when they occur.

The primary underlying causes of SH are Type I and II diabetes mellitus. In a 2011 review, it was described that in Africa, Type I diabetes mellitus is poorly
characterised in terms of its aetiology and epidemiology, however did describe a lower prevalence thereof. In a 2008 cross-sectional survey of Type II diabetes mellitus in Bellville, Cape Town, the prevalence of Type II diabetes mellitus was 28.2% compared to a global trend of 3.5%. SH may be induced by underlying pathologies, medications or toxins, but is usually a direct result of the injectable insulin alone or concomitantly with oral diabetic treatment agents in Type 1 or II diabetes mellitus.

It has been common practice for an EMS crew to leave a patient at home post reversal of acute SH. This decision is based upon patient autonomy post-return of vital signs to within normal parameters, which specifically includes level of consciousness and blood glucose levels > 3.5 mmol/l. Discharge of these patients may also be based upon the patients’ wishes to receive further treatment and/or transport. Patients may also refuse further care based on external factors related to personal preferences and socioeconomic conditions. Current protocols as set out by the Health Professions Council of South Africa which governs prehospital emergency care, providers enforce that patients who have experienced an emergency event should be managed and transported to hospital by EMS. However, a patient has the right to refuse transport and treatment. In addition, these protocols are open to interpretation and therefore adherence is variable. These protocols are supposed to be updated every 5-years, but in actual fact have not been since 2006. In terms of the management of acute-SH in the prehospital environment, it does not specifically address management factors, in particular the aspect of discharge post-SH reversal. This protocol only describes oral glucose, intravenous dextrose and glucagon as the agents to be administered. Furthermore, the Western Cape EMS clinical standard operating procedures does not provide any guidelines on the management and disposition of acute SH patients in the prehospital environment.

These factors may lead to the premature discharge of acute SH patients and consequently may result in recurrent episodes. The criteria for leaving symptomatic hypoglycemic patients at home and the appropriateness of the procedure remain controversial; and often crucial associated underlying causes and complications are missed, with repeat episodes of SH potentially risking further morbidity and mortality. Another consideration in this discussion would be the additional burden
placed on an already stretched EMS system. Anecdotally, unnecessary and predictable repeat calls for SH episodes would simply add to this. By leaving these patients at home the causative factors are not determined and managed.

Without knowing the actual effect prehospital discharge of treated acute SH patients has, short- and long-term on patient care and outcomes such as underlying pathologies triggering the SH episode may not investigated and patients run the risk of recurrent episodes. In a recent review evaluating complications of acute SH at a Hospital in Johannesburg, South Africa, it was shown that in almost three-quarters of these patients, the precipitating causes included gastrointestinal abnormalities (20%) and inappropriate treatment (51%).

The role of prehospital emergency care practitioners with extended skills over and above those foreseen by the current protocols is evolving, enabling them to assess and treat patients in the community. These new models of care, including further assessment, triage, and treatment skills for prehospital care providers, have been recommended to help manage ever increasing demands for healthcare. Current evidence concerning safety, effectiveness, and costs to support these changes in practice is lacking.

1. Objectives of Literature Review

The primary objectives of this literature search were to determine:

- the number of patients experiencing their first ever episode of SH
- the short-term outcomes of patients experiencing their first episode of acute SH, and
- re-activation rates of EMS after the index episode, post reversal and discharge.

Secondary objectives included the following:

- determination of hospital admission rates, and
- the provision of follow-up care instructions provided by prehospital care providers prior to discharge.
These objectives were aimed at the prehospital care strategies in various EMS environments to provide a benchmark against which current practice in the Western Cape EMS context could be evaluated.

2. Methodology

2.1 Search Strategy

The following search strategy utilising MeSH terms and keywords as outlined below was used across two medical databases, namely EBSCO Host, Cochrane and Medline:

(prehospital OR out-of-hospital [Title/Abstract] OR paramedic [Title/Abstract] OR ambulance [Title/Abstract]) AND (treatment [Title/Abstract] OR management [Title/Abstract]) AND (symptomatic [Title/Abstract]) AND (hypoclycemia [Title/Abstract]) AND (discharge [Title/Abstract] OR treat-and-release [Title/Abstract] OR see-and-treat [Title/Abstract] OR outcomes [Title/Abstract] OR follow-up [Title/Abstract]) OR disposition [Title/Abstract]).

The following search limiters were applied during the search:

- Language: English only
- Articles: Linked full text, abstracts and all other article sources
- Publication Date: 1998 – 2013
- Publication Type: All
- Population Type: Human
- Age Groups: Adults 19+
- Gender: Male and female
- Geography: Open

2.2 Inclusion & Exclusion Criteria

Apart from the search limiters outlined above, the following parameters were also applied: The review includes all electronically indexed eligible articles up to and including 31st October 2013.
Part A – Literature Review

Inclusion Criteria:

- **Publication Types:** Primary and secondary sources, conceptual, anecdotal and clinical opinion
- **Population:** Male and female patients older than 19 years
- **Publication years:** 1998 – 2013
- **Primary Outcomes:** Short-term effects of prehospital discharge post hypoglycemic event reversal
- **Secondary Outcomes:** Emergency Centre management and outcomes of hypoglycemic patients post discharge in cases of *diabetes mellitus*

Exclusion Criteria:

- **Population:** Non-humans
- **Language:** Non-English publications
- **Setting:** Interventions not carried out in the primary or in-patient setting
- **Outcomes:** Primary and secondary outcomes that does not report the short-term effects hypoglycemic management

2.3 Quality Criteria

For each search string used, the resulting titles of the articles and abstracts were analyzed in alignment to the objectives of this review (see below). If the title and/ or abstract met the inclusion and exclusion criteria, the full articles were retrieved and read in their entirety. The references at the end of these articles were also reviewed to identify any missed articles. Lastly, the references of this final collection were also examined to identify any additional articles potentially missed during the initial search.
2.4 Search & Screening Results

The search strategy was adjusted within EBSCO Host, Cochrane and Medline and yielded 3833 articles. Advanced limiters were applied using the following key fields: prehospital, out of hospital, Emergency Medical Services (EMS), Emergency Medical Technician (EMT) and Paramedic; and yielded 767 potential articles. Based on the search strategy in correlation with the article titles and repeat hits, 35 were eliminated. A total of 41 articles were screened and 7 were omitted based on the abstract meeting the criteria. A remainder of 34 full-text articles was reviewed and 10 excluded based on the inclusion and exclusion criteria. In conclusion, 22 articles were included for the literature in alignment to the objectives. The following flow diagram (Figure. 1) summarizes the article search and screening process:
3. Literature Review

Based on the above, Table 1 outlines the sources of literature, the design, key findings and limitations of the 22 included articles, laid out in order of increasing level of evidence and oldest to youngest year of publication:
<table>
<thead>
<tr>
<th>Reference Number</th>
<th>Author, Date & Setting</th>
<th>Study Design</th>
<th>KeyFindings</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Capes et al, 2001</td>
<td>Systematic Review</td>
<td>In 26 articles, the relative risk for mortality and stroke post hyperglycaemia was calculated. Patients with hyperglycaemia were shown to be at risk of mortality or stroke.</td>
<td>Heterogeneity</td>
</tr>
<tr>
<td>8</td>
<td>Roberts et al, 2003</td>
<td>Systematic Review</td>
<td>Showed that out-of-hospital treatment protocols for hypoglycaemic patients were safe in 90% of patients.</td>
<td>Based on out-dated Literature (1990-1999)</td>
</tr>
<tr>
<td>14</td>
<td>Donelly et al, 2005</td>
<td>Systematic Review</td>
<td>In 267 patients treated with insulin, 45% had subsequent episodes of hypoglycaemia.</td>
<td>Variations in study designs, heterogeneity and inconsistent definitions of hypoglycaemia across studies</td>
</tr>
<tr>
<td>27</td>
<td>Nehme et al, 2009</td>
<td>Systematic Review</td>
<td>In 3651 potential articles, 24 articles that matched the inclusion criteria showed that 10% dextrose yielded and equal time to normal level of consciousness as compared to 50% dextrose.</td>
<td>Search limited to English articles only No hand-search for articles were conducted</td>
</tr>
<tr>
<td>20</td>
<td>Fitzpatrick et al 2009 UK EMS</td>
<td>Systematic Review</td>
<td>This review of 23 papers showed an incidence from 0.8% - 23% oral hypoglycaemia inducing agents. Incidents of repeat callout for SH events were between 2-7%.</td>
<td>Only English papers were retrieved. Little high quality papers were found.</td>
</tr>
<tr>
<td>24</td>
<td>Frias et al, 2010</td>
<td>Systematic Review</td>
<td>82 Cases of adverse events found in literature related to false glucose readings using GDH-PQQ test strips</td>
<td>Voluntary reporting. Small sample size</td>
</tr>
<tr>
<td></td>
<td>Study Authors</td>
<td>Year</td>
<td>Study Design</td>
<td>Results</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>------</td>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>29</td>
<td>Gerstein et al, 2008 Hospital</td>
<td>Randomised Controlled Trial</td>
<td>In terms of standard therapy vs. intensive glucose lowering agents in type 2 diabetes: Primary Outcome: Occurrence of non-fatal MI, stroke or death – Hazard Ratio 0.90 (0.78 – 1.04) 95% CI Secondary Outcome: Death from any cause – Hazard Ratio 1.22 (1.01 – 1.46) 95% CI</td>
<td>Non-standardised dosing strategies.</td>
</tr>
<tr>
<td>10</td>
<td>Frye et al, 2009 Multicenter Cardiac ICU patients</td>
<td>Randomised controlled trial</td>
<td>Of 2368 cardiac re-vascularization cases, 88.3% of were provided insulin. Of these 9.2% developed multiple episodes of hypoglycaemia.</td>
<td>Hypoglycaemia was not the primary or secondary end-points of this study.</td>
</tr>
<tr>
<td>21</td>
<td>Steinmetz et al, 2006 Prehospital and in hospital</td>
<td>Prospective cohort</td>
<td>Of 139 participants, 6 patients were left at home and required hospital admission through EMS within 48 hours.</td>
<td>Small sample size, patients managed in the prehospital context were managed by physicians.</td>
</tr>
<tr>
<td>22</td>
<td>Brackenbridge et al, 2006 District Emergency Departments & EMS, United Kingdom</td>
<td>Prospective Cohort</td>
<td>In 111 prehospital cases with diabetes, 51% of patients presented with a blood glucose of less than 4mmol/l. Of these, only 27% were transferred to hospital. In the hospital context, 251 cases presented to the units over 12-months with diabetes. 94 Patients presented with hypoglycaemia, which presented with the following underlying pathologies: UTI’s (n=6), low GCS (n=4), head injury (n=3), chest infections (n=3), diarrhoea</td>
<td>Hypoglycaemia as a measurable not clearly defined.</td>
</tr>
<tr>
<td>Study</td>
<td>Context</td>
<td>Methodology</td>
<td>Findings</td>
<td>Limitations</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>-------------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Strote et al, 2007</td>
<td>EMS context, USA</td>
<td>Prospective cohort</td>
<td>203 cases were surveyed out of 402 prehospital hypoglycaemic cases. There was a 16% repeat episode rate of SH, 14% reactivated EMS within 48 hours and 11% required hospitalisation.</td>
<td>Inconsistent study population, large portion of the study populations couldn’t be contacted.</td>
</tr>
<tr>
<td>Voulgari et al, 2011</td>
<td>Hospitalised Patients</td>
<td>Method Comparison</td>
<td>Three brands of glucose monitors were evaluated and compared to standard lab measurement. All three-blood glucose monitors under-sensed levels of blood glucose when compared to laboratory measurement.</td>
<td>After calibration of monitors no quality control measures were applied on a daily basis to ensure accuracy amongst monitors. Wide confidence intervals.</td>
</tr>
<tr>
<td>Mechem et al, 1998</td>
<td>Philadelphia EMS, USA</td>
<td>Prospective descriptive study</td>
<td>132 Patients enrolled, 103 patients were contacted by telephone, 94 patients had no recurrent SH episodes, nine had recurrent episodes and 8 of these patients were transported to hospital.</td>
<td>Inconsistent telephonic interviews and 22% of the sample population was missed for telephonic interviews.</td>
</tr>
<tr>
<td>Carter et al, 2002</td>
<td>Prospective descriptive study</td>
<td>A total of 157 patients were included in the study, however only 60 were contactable, who refused transport post SH reversal. There was a 31.58% repeat need for healthcare in the transported group compared to 14.63% in the refusal group.</td>
<td>Selection bias due to only 60% of eligible patients being contactable.</td>
<td></td>
</tr>
<tr>
<td>Desouza et al, 2003</td>
<td>Prospective descriptive</td>
<td>In 54 patients presenting with hypoglycaemia, cardiac chest pain symptoms were associated</td>
<td>Continuous glucose monitoring systems</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Year</td>
<td>Country</td>
<td>Methodology</td>
<td>Findings</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>---------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>Henderson et al, 2003</td>
<td>Retrospective survey</td>
<td>In 215 patients treated with insulin, 73% presented with hypoglycaemia.</td>
<td>Heterogeneity in study population</td>
<td></td>
</tr>
<tr>
<td>Holstein et al, 2003 EMS Germany</td>
<td>Prospective, population based survey</td>
<td>In 7804 prehospital cases, 215 cases were found to present with SH. Of these 50 patients presented with sulfonylurea induced SH.</td>
<td>1173 Cases were excluded due to ethical and inclusion reasons. Cases representative of a single EMS district</td>
<td></td>
</tr>
<tr>
<td>Leese et al, 2003 Ems Academic Hospital, United Kingdom</td>
<td>Retrospective cross-sectional survey</td>
<td>In 8655 cases of diabetes, 160 cases presented with 244 episodes of hypoglycaemia over a 12-month period.</td>
<td>Cases of hypoglycaemia treated outside the EMS or hospital environment were excluded.</td>
<td></td>
</tr>
<tr>
<td>Cain et al, 2003 EMS</td>
<td>Prospective Observational Study</td>
<td>In 220 calls for adult patients with hypoglycaemia, 75 resulted in transport, there were 17 further hypoglycaemic episodes requiring a repeat call for EMS (22.7%) and three recurrent episodes (4%). Of the 145 calls that did not accept transport, 40 recurrent episodes of hypoglycaemia (27.6%) were reported.</td>
<td>Inability to measure medication involvement in outcomes</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Raghavan et al, 2007.</td>
<td>Clinical Review</td>
<td>Antibiotics (Bactrim, Cephalosporins and Penicillin) known to induce hypoglycaemia</td>
<td>Clinical review, no formal evidence provided</td>
</tr>
<tr>
<td>----</td>
<td>----------------------</td>
<td>-----------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>25</td>
<td>Ginsberg et al, 2009</td>
<td>Review</td>
<td>Key glucose strip inaccuracies include strip, physical, patient, and pharmacological factors.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Sharma et al, 2009</td>
<td>Clinical Review</td>
<td>Hypoglycaemia yet uncommon, found in patients with diabetes on beta-blockers.</td>
<td>Clinical review, no formal evidence provided</td>
</tr>
</tbody>
</table>
Discussion

The management of acute SH includes patient assessment and the administration of anti-hypoglycaemic agents with the aim of returning blood glucose levels to normoglycaemia. Prehospital and in-hospital protocols for acute SH include the treat-and-release of patients post-SH reversal. However, the literature showed that the factors and effects, which should be considered, include:

1. Patient autonomy for refusal of transport post-SH reversal
2. Prehospital capabilities to determine underlying SH causative pathologies
3. Medication induced acute SH
4. Increased risks for repeat SH episodes post discharge and repeat EMS callouts
5. Hospital admission post-discharge
6. Follow-up care strategies post-discharge
7. Tools and drugs for prehospital SH management
8. Drug availability in the context of prehospital treatment of acute SH

3.1 **Patient autonomy for refusal of transport post SH reversal**

Post-acute SH reversal, the patient may elect to seek further medical care which includes hospital admission or may refuse further care. Patient autonomy and legal right to refuse further care need to be taken into consideration if the patient is mentally able to make such a decision. This mental ability is a subjective compound assessment based on both Glasgow coma scale and background mental age, as well as any comorbidities. This may ultimately be in conflict with the patient’s welfare. However, decision making ability may be impaired immediately following an episode of SH. One of the hallmarks of severe SH includes an altered level of consciousness, with possible resultant confusion, which may hamper decision making, decrease the ability to reason and present with short-term memory loss. This may constitute a danger to the patient and bystanders. These bystanders
may constitute family members or the public in close proximity to the patient. The lack of reasoning capability may thus result in harmful abnormal behavioural patterns.2 In a recent psychology review, it was shown that hypoglycaemia may result in aggression, criminality, violence and the ability to inflict self-harm.31 However, this review was specific in hypoglycemic patients and not applied within the context of other underlying causative pathologies, linked to the prehospital context. An emerging factor was that of treat and release protocols in with respect to prehospital acute-SH patients. However, no published clinical trials were found with specific measurement against the prehospital discharge of acute SH post reversal and the outcomes thereof in specific relation to these protocols. Acute SH is often underestimated by patients’ post-reversal. They often may not consider it to be a serious side-effect to diabetes mellitus or representative of underlying pathologies.8 Thus they may be misinformed in terms of their presenting condition and this may result in negative patient outcomes.

3.2 Prehospital capabilities to determine underlying SH causative pathologies

SH may be disease-, medication-, or toxin induced. The determination of the underlying cause plays a key role in the effective management and secondary prevention of SH and the associated negative outcomes. In a recent review it was found that there was a close association between Type 2 DM and concomitant hypertension, dyslipidaemia and underlying cardiac pathologies and dysrhythmias.9 The development of acute SH and recurrent episodes thereof may be indicative of the worsening of these comorbidities. A study based on continuous electrocardiogram (ECG) and glucose monitoring during SH reversal showed that 10 out of 54 SH cases showed ECG changes.9 This may particularly predispose SH patient with underlying cardiac pathologies to dysrhythmias. However, in the Bypass Angioplasty Revascularization Investigation 2 Diabetes (Bari 2D) trial it was shown that severe hypoglycaemia was 9.2% more frequent in patients with
underlying cardiac pathologies whilst on insulin therapy for diabetes treatment.9

The 2008 ACCORD trial evaluating 10 251 patients with underlying cardiovascular risk and glycaemic control, showed a 35% increase in mortality due to a cardiovascular event.29 Cardiac medications such as beta-blockers and salicylates has also been shown to predispose cardiac patients to incidents of acute SH, if the patients had underlying Type 2 diabetes mellitus. However no evidence was found of acute SH episodes directly causing such cardiac events.10 It was also further found that acute-SH may mimic transient ischemic attacks, ischemic strokes, arrhythmias and myocardial infarctions.12 However no articles were found in relation to the long-term outcomes of these presentations and its diagnosis from acute-SH patients managed and discharged in the prehospital context.

Predisposition to acute-SH may also be associated with multiple drug interactions in the treatment of chronic underlying conditions.

A review analysing key aspects of symptomatic hypoglycaemia also showed various diseases which may induce hypoglycaemia (Table 2), however little evidence was found linking these disease causation to acute SH in the prehospital context post reversal.12
Adrenal insufficiency can cause hypoglycaemia due to the lack in adrenal hormone secretion such as adrenalin, noradrenalin or cortisol, which plays a vital role in regulating sugar levels. Carcinomas and insulinomas may induce hypoglycaemia, due to the secreted insulin being hampered by tumour cells. Thus insulin secretion is not controlled by glucose and may result in lower than normal blood glucose levels. Liver cirrhosis results in the interference of the structural, intracellular and chemical makeup of the liver. Any change of these components results in inadequate glucose level controls by limiting the ability of gluconeogenesis by the liver. Pregnancy-induced hypoglycaemia may also occur as a result of the increased hormone levels which regulates insulin secretion.

In terms of the above disease-induced causes of hypoglycaemia, no evidence was found internationally and locally evaluating the prevalence and effects of prehospital discharge of acute-SH patients.

In a 2002 retrospective cross-sectional survey in which assessed patient satisfaction post SH reversal in 100 cases in the prehospital setting. In this survey, in which 60 participants were contactable, a
repeat callout rate 14.63% was found. Within this latter group, three patients were diagnosed with chest infection, myocardial infarction and a foot infection respectively. These diagnoses thus suggest a need for further clinical investigations to rule out underlying causes and pathologies which may be represented by an acute SH episode.

In the Western Cape EMS context, there is very little scope for the detection and management of these diseases in the pre-hospital environment. The protraction of these diseases may lead to an increase in morbidity and mortality. Furthermore, it may also result in an increase in healthcare demand in an already resource confined setting.

3.3 Medication induced acute SH

The following medication related factors were found in the literature in terms of acute-SH:

1. Concomitant medication usage
2. Insulin dosage
3. Sulfonylurea adverse effects
4. Antibiotic effects

Acute SH can also be induced by medication use (including hyperglycaemic agents) alone or in combination with multiple medication dosages. Elderly patients may specifically be predisposed to acute SH by multiple drug interactions due to increased tissue sensitivity to concomitant medication usage. In a 2009 case review evaluating drug interactions and renal disease, it was described that renal disease often results in adverse drug reactions and as a result increases the risk of acute SH. The decreased glomerular filtration rate and subsequent creatinine clearance impairs the elimination of multiple renal cleared medications.

In the South African prehospital context, callouts are often received for patients on multiple medications due to a number of chronic diseases.
In relation to this, the EMS curriculum for practitioners does not include the interpretation application of these medications. No evidence was found evaluating the presentation of these patients on concomitant medications, acute-SH and outcomes post discharge in the South African prehospital context.

Type I diabetes mellitus is primarily managed through the administration of rapid, short or long acting insulin. In cases of Type II diabetes mellitus insulin (rapid, short or long acting), sulfonylureas and/or metformin may be administered. A prospective study evaluating the treatment of Type 1 and Type 2 DM in 267 patients showed that 45% of the cases were treated with insulin and had a single or multiple episode/s of SH over a period of time. However, the study duration was short and was unable to ascertain how many dosage adjustments were made in relation to subsequent SH episodes. In another retrospective cross sectional study evaluating the treatment of 215 Type 2 diabetes mellitus patients, it was found that 64% had a subsequent acute SH event, of which 15% were classified as “severe”, defined as a blood glucose level less than 2.5mmol/l and an altered level of consciousness.

Both these studies concluded that post the index SH episode, insulin dosage adjustments had to be made to mitigate subsequent episodes, with hospital admission and monitoring required. These insulin adjustments required close monitoring in relation to blood glucose levels and fasting glucose laboratory investigations. However these studies lacked in providing the adequate timeframe for admission and monitoring required.

A prospective cohort study evaluating the care of prehospital hypoglycaemia found that 4.9% of 213 SH cases were as a result of sulfonylurea use, an agent widely used in Cape Town. Another population based dataset analysis investigating 160 cases showed that SH episodes were induced by sulfonylurea and metformin administration in 23 and 69 of cases respectively. These study
outcomes were similar when comparing the results of agents used and the number of acute-SH episodes. It was thus evident that hypoglycaemic agents play a major role in causing SH, especially if injectable insulin is used.

Antibiotics used for the treatment of infections may often cause symptomatic hypoglycaemia by increasing insulin secretion.12 This may be potentiated in patients with type 2 diabetes mellitus on sulfonylurea treatment. It was also further described that ethanol can precipitate a SH response, as it results in decreased endogenous glucose production and glycogenolysis. Ethanol abuse may particularly be of concern in patients from poor socio-economic status, with resulted malnutrition, decreased endogenous glycogen and glucose stores and resultant recurrent acute SH episodes.

In chronically-ill patients on broad medication usage, dosage and administration adjustments may need to be considered to prevent adverse medication events, such as medication induced hypoglycaemia. These adjustments are dependent on continuous clinical and laboratory investigations which cannot be administered in the prehospital context.

3.4 Increased risk for repeat SH episodes post discharge and repeat EMS callouts

Repeat episodes post SH reversal and prehospital discharge was an emerging theme throughout the screened literature. A follow-up survey comparing outcomes of 203 paramedic treated SH patients in the prehospital setting, showed that 9\% (n=19) of cases experienced a repeat SH episode.15 In another prospective short-term outcome based survey of 103 insulin-dependent SH patients who refused transport after dextrose administration, 91\% (n=94) had no recurrent SH episode.2 However both these studies did not mention the time period within which the repeat SH episode occurred relative to the index episode.
In contradistinction, another prospective cohort study evaluating the outcomes of 220 SH patients treated and not transported in the prehospital context, it was found that of the 34% (n=75) patients who were transported, 22.7% (n=17) had recurrent SH episodes in 24 hours, and 4% (n=3) within 48 hours. However these episodes were not evaluated against special investigations and resultant clinical cause.

As a result of repeat episodes, a fair percentage of acute SH patients will require repeat access to healthcare, usually via the EMS system. In a telephonic survey evaluating patient satisfaction post discharge amongst 41 candidates, it was found that 14.6% (n=6) required repeat access to healthcare for general complaints and 4.8% (n=2) for a recurrent SH episode. In another follow-up survey evaluating prehospital emergency care providers’ treatment of hypoglycaemia, it was found that of the 199 cases, 11% (n=8) reactivated EMS through the call centre. These studies took place in the urban USA prehospital context – a context with vast differences as compared to the Western Cape population. These studies did not describe the population-mix and timeframe within which EMS was activated and the specific short and long-term outcomes thereof. These repeat EMS callouts may have significant cost implications for EMS systems and may affect the availability of resources.

All of the studies listed above were conducted outside of Africa. No local studies were found that investigated the issue here. Inconsequently there has also been no local health economic evaluation of this particular type of presentation, practice, repeat episode and discharge.

3.5 Hospital admission post discharge

In a 2006 prospective cohort study assessing 139 prehospital SH patients’, it was found that 6% (n=8) required hospital admission post prehospital discharge. However, this study did not identify the
underlying causative factors for hospital admission. In another follow-up survey of 199 discharged SH patients post reversal within the prehospital context, it was found that 16% (n=17) required hospital admission.18 In this study it was also noted that severe cases of hypoglycaemia were shown to have an 18% recurrence rate within 48 hours. This study showed a link between prehospital discharges of acute SH patients and the requirement for hospital admission in the context of Type II diabetes mellitus.

3.6 Follow-up instructions and patient information post discharge

Within the literature search, two criteria for safe discharge emerged which included follow-up instructions and patient information. These were defined together as the provision of effective information in terms of patient education and advice to prevent and management subsequent SH episodes. The key findings included:

1. Educating patients prior discharge reduced SH recurrence
2. In certain cases, the presenting condition may affect decision making capabilities and thus hamper the receipt of information provided
3. Patient education should include medication administration methods
4. Content of follow-up and patient information

Acute SH is related to secondary brain dysfunction. It has been shown that frequent recurrent episodes of acute SH may result in decreased brain function.18 This may affect a patient’s ability to understand follow-up instructions and make coherent decisions on further treatment and transport to hospital for further diagnostic investigations. In one follow-up survey of 203 discharged SH patients, it was found that in 48% (n=97) received follow-up instructions; however no description of the follow-up content and procedures were provided in this study.18 This study also showed no link between the provision of these instructions and the outcomes thereof. No further evidence relating to the provision
of follow-up instructions was found. In a 2006 prospective cohort study evaluating the use of emergency services by diabetic patients, it was described that patient education with reference to diet and blood glucose control with diabetic agents was lacking.21 It was further described in this study that the required education in diabetic care was not standard for prehospital care providers, which may have been linked to their scope of practice.21 Furthermore no evidence was found on the methodology and how to overcome communication barriers with which follow-up strategies should be provided to patients post SH reversal. This is of particular concern in South Africa considering the cultural diversity.

3.7 Tools for Prehospital SH Management

The capability of measuring an accurate blood glucose level must exist. In a 2011 method-comparison study, comparing blood glucose measurements of three brands of blood glucose monitors to that of clinical laboratory analysis within a hospital setting found that these monitors performed poorly at extreme blood glucose values, i.e. resulted in an underestimation of hypoglycaemia and an overestimation of hyperglycaemia.23 In another review evaluating adverse events associated with false glucose readings, it was described that the following factors affect the accuracy of blood glucose readings:24, 25

1. Blood glucose strip accuracy
2. Physical factors (altitude and temperature),
3. Underlying patient constraints (glucometer usage)
4. Concomitant drug therapies

Strip accuracy is affected by strip-to-strip variation, enzyme reactivity, sufficient sample and expiry date. Physical factors include altitude and temperature as biochemical and blood reactivity varies under these extremes. Patient constraints such as incorrect machine coding, inadequate technique and hand washing may affect readings.
Concomitant drug therapies may also cause cross reactivity and hamper blood glucose level readings.24, 25

No studies were found with reference to environmental factors affecting the accuracy of blood glucose readings within the prehospital context, thus leading to speculation of its effects. Equipment in the South African prehospital environment in general and Cape Town in particular, is exposed to extremes in temperature and humidity, which one can speculate may result in incorrect blood glucose levels with test strip and glucose monitors.

3.8 Drug availability in the context of prehospital treatment of acute SH

In the South African prehospital context, the following agents are available to treat SH:

1. Oral glucose
2. Intravenous dextrose
3. Glucagon (intramuscular and intravenous)

Intravenous dextrose is a hypertonic solution which increases blood glucose levels in hypoglycaemia and is a source of carbohydrates. Its major function is to prevent the depletion of glycogen stores in the liver, and thus plays a vital role in metabolism. Current protocols suggest the administration of a 50% intravenous dextrose infusion in SH patients.3 However, a recent review evaluating the efficacy of 10% versus high-concentration intravenous glucose in the out-of-hospital context, it was concluded that 10% intravenous dextrose yielded the same response time to normoglycemia as compared to 50% dextrose.27 It was also shown that high concentrations of glucose did not match the rate of whole body uptake and may result in recurrent SH episodes. However, this study did not evaluate the correlation to prehospital discharge of SH patient post 50% intravenous dextrose administration and the short- and long-term outcomes thereof.
Current protocols for South African prehospital care providers also include the administration of oral anti-hypoglycaemic agents in cases where intravenous access cannot be established, or where care is provided by basic life support practitioners. In a recent systematic review, it was concluded that the reversal of SH using oral agents was short acting and often resulted in recurrent SH episodes. However, a major limitation to this review was the determination of timeframes with reference to recurrent SH episodes post administration of oral agents and recovery within the prehospital context.

Glucagon is counter-regulatory hormone acting against insulin and the effects thereof. In a 2011 review evaluating the efficacy of glucagon administration, it was described that glucagon should be the first line of therapy in cases of acute-SH. After intramuscular or intravenous administration, it rapidly mobilises endogenous glycogen and glucose stores. However, one of the disadvantages is that it has a short half-life and is only available to ALS providers. Thus the majority of practitioners in the Western Cape do not have access to glucagon for the management of acute-SH.

Summary of Main Findings

In patients presenting with Acute SH in the prehospital environment, refusal of further treatment and transport to hospital post SH reversal may occur. However, decision making ability in these patients may be hampered by underlying pathologies or the acute effect of the SH. The capabilities and scope of EMS personnel to detect these underlying pathologies are limited. Various medications and pathologies may induce symptomatic hypoglycaemia, and if not correctly managed may result in recurrent episodes. This may be further exacerbated by the type of SH reversal that was applied by the EMS responder. These episodes may result in subsequent EMS callouts and protracted hospital admission rates. Repeat episodes may also increase the risk to these patients in terms of an increased mortality and morbidity. In cases where EMS has discharged these patients, follow-up instructions with reference to
further care in the mitigation of recurrent episodes prior discharge, were found to be inadequate.
References

Part B
A cross-sectional analysis of the short-term outcomes of patients receiving prehospital treatment for symptomatic hypoglycaemia in Cape Town
Table of Contents

Abbreviations...3
Abstract..4
 1. Introduction...5
 2. Materials and Methods..6
 2.1 Study Setting...6
 2.2 Methodology...6
 3. Results..7
 4. Discussion...10
 5. Limitations...13
 6. Conclusions...14
Acknowledgments..16
References...17

Table 1: Demographics and characteristics of cases studied.................................8
Figure 1: Flowchart of outcome sample... 7
Figure 2: Recurrent SH episodes within 7-days post EMS discharge...............8
Figure 3: Comparison of levels of care, recurrent acute SH episodes and follow-up
 Instructions..10
Appendix A: Prehospital Acute SH Discharge Instructions................................. 19
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALS</td>
<td>Advanced Life Support</td>
</tr>
<tr>
<td>BLS</td>
<td>Basic Life Support</td>
</tr>
<tr>
<td>EC</td>
<td>Emergency Centre</td>
</tr>
<tr>
<td>EMS</td>
<td>Emergency Medical Services</td>
</tr>
<tr>
<td>HPCSA</td>
<td>Health Professions Council of South Africa</td>
</tr>
<tr>
<td>ILS</td>
<td>Intermediate Life Support</td>
</tr>
<tr>
<td>PI</td>
<td>Principal Investigator</td>
</tr>
<tr>
<td>SH</td>
<td>Symptomatic Hypoglycaemia</td>
</tr>
</tbody>
</table>
ABSTRACT

Background: There has been a growing prevalence of patients with chronic medical conditions in South Africa, *diabetes mellitus* being one of them. Acute symptomatic hypoglycaemia (SH) refers to decreased level of plasma glucose <3.5mmol/l accompanied by an altered level of consciousness. Prehospital management of such episodes includes reversal by oral and/or intravenous glucose administration, or intramuscular glucagon administration. Post-reversal, patients may refuse transport to hospital, which may result in recurrent episodes of acute SH.

Methods: A retrospective cross-sectional study design was used. Patient report forms from patients with SH managed prehospital between May 2012 and September 2012 in the greater Cape Town area were extracted from the Emergency Medical Services (EMS) database. A follow-up survey using a closed-ended questionnaire was administered to these same patients within 7 days post-reversal to evaluate the efficacy of prehospital discharge of SH patients.

Results: A total of 110 eligible patients were identified and telephonically interviewed. It was found that 21(19%) of cases had subsequently died. Of the 89 remaining cases, 30 (34%) reactivated EMS within 7 days of discharge, independent of SH being the chief complaint. In total, 48 (54%) had recurrent episodes of SH within 7 days of discharge by EMS. In 47 (53%) of cases discharged by EMS, no follow-up instructions were provided to mitigate recurrent SH episodes or complications.

Conclusion: More than half of patients who received pre-hospital treatment and discharge for SH have recurrent symptoms post reversal by EMS staff, with a third needing to recall the EMS. This would suggest that the current strategy of dealing with such cases needs careful re-evaluation to improve the quality management of this patient population.
1. Introduction

The South African state Emergency Medical Services (EMS) serve as an entry point into the health system for the majority of the population, in particular in previously disadvantaged communities. Over the past decade, there has been a growing prevalence of patients with chronic medical conditions such as heart disease, diabetes mellitus, hypertension and infectious diseases. Consequently, amongst the diabetic population, this has resulted in increased EMS callouts for patients presenting with symptomatic hypoglycaemia (SH).

In the South African EMS context it is defined as a blood glucose of less than 3.5mmol/l with the presentation of an altered level of consciousness. There are multiple underlying causes and potentiating factors that may precipitate or exacerbate SH. Over the long-term, SH, especially if recurrent, may lead to increased morbidity and mortality. Even though the three levels of prehospital care (basic (BLS), intermediate (ILS) and advanced life support (ALS)) provide differing levels of intervention, by protocol they are all obliged to transport a patient to hospital unless they refuse. However, anecdotally, this refusal is usually strongly based on the follow-up information provided by the provider. Prehospital management of SH includes immediate reversal strategies, with the paramedic, if available, making the call to discharge post reversal or to transport to hospital, based on the patient’s preference. In cases where the paramedic is unavailable, ILS and BLS practitioners may discharge the patient based on the patient refusing further care.

South African prehospital emergency care providers have three pharmaceutical agents available to reverse low plasma glucose levels, namely: oral glucose, intravenous dextrose and glucagon, which is aligned to the national protocols as set out by the Health Professions Council of South Africa. The prehospital environment is also limited in terms of diagnostic capabilities. Consequently the practitioner is not in a position to necessarily identify the cause of the SH they are treating. Furthermore, no formal “treat and discharge” protocols existing within the Western Cape EMS.

The aim of this study was to determine the outcome of a sample of adult SH patients who were treated and discharged prehospitaly, without taking them on to further definitive care. The primary objective was to determine the number of SH patients who experienced a repeat episode of hypoglycaemia after discharge and made a repeat call to EMS for a subsequent episode of SH within 7 days of the primary event. The secondary objectives were to determine if hospital admission was required subsequent to the index episode of
SH. In addition, this study also assessed if emergency care providers recommended follow-up care and provided patients with information upon discharge.

2. Materials and Methods

2.1 Study Setting

The patients for this study were selected from the Northern, Southern and Western districts of Cape Town, South Africa, in alignment with the Western Cape EMS districts. These patients were identified from the specific Western Cape EMS district database system. This database is updated daily by data capturers from patient care report forms. Data fields include case types, response and mission times, clinical assessment and interventions with disposition methods. Patients with SH as a primary or secondary diagnosis, were selected from this database within the study period in the districts surveyed.

2.2 Methodology

A retrospective cross-sectional study design was used. Patient report forms for patients with a primary or secondary diagnosis of SH between May 2012 and September 2012 were extracted from the EMS database, yielding a convenience sample of 110 consecutive eligible SH cases. A telephonic follow-up survey based on a closed-ended questionnaire was conducted within 7 days of the initial reversal to evaluate the outcome of the prehospital discharge.

This study included all adult SH patients (over 18 years of age), who had a blood glucose level less than 3.5mmol/l and a reduced level of consciousness. Blood glucose levels had to have been determined by glucose monitors (i.e. no colorimetric visualisation methods allowed). Patients needed to have been discharged in the prehospital environment post-reversal using oral and/or intravenous and/or intramuscular hyperglycaemic agents. SH patients outside the Western, Southern and Northern Districts were excluded, as were those managed by the Cape Town Fire and Rescue Services and private sector EMS providers and inter-facility transfers. During the telephonic interview, patients unable to speak and understand English, Afrikaans or Xhosa were excluded, as these represent the most common languages spoken in the Western Cape.
Patient report forms with illegible or absent patient and/or next of kin data were also excluded.

A protocol existed for contacting patients and/or their next of kin in a systematic manner for up to three tries, after which they were regarded as non-contactable. The telephonic surveys were conducted by the PI and a trained secondary reviewer in English, Afrikaans or Xhosa, dependent on the patient’s language preference. The interviews were conducted off a script that was available in all three languages following forwards and backwards translation for accuracy. The figure below outlines the sampling process:

3. **Results**

110 SH patients were eligible to be included in the telephonic interview. Of note, speaking to third parties, 21 (19%) of the original cases were subsequently found to have died following the initial EMS activation and therefore unavailable for the telephonic survey. The scope of this survey did not allow for the investigation of the presumed causes of death in these patients. The breakdown of cases is shown in Table 1. Of specific interest is the mean age of 56 years (SD=13) for this cohort and that cases were almost equally distributed between males and females.
Table 1 Demographics and characteristics of cases studied

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>110</td>
</tr>
<tr>
<td>Age (years)*</td>
<td>56 (30-83)</td>
</tr>
<tr>
<td>Sex (male/female)</td>
<td>59 (54%)/51 (46%)</td>
</tr>
<tr>
<td>Deceased</td>
<td>21 (19%)</td>
</tr>
</tbody>
</table>

Level of prehospital care provided (including deceased cases):
- BLS: 39 (35%)
- ILS: 56 (51%)
- ALS: 15 (14%)

*Median (range) values

Of the contactable 89 cases, 54 (61%) had subsequent recurrent episode/s of SH within 7 days of discharge by EMS, with 30 (34%) of these cases re-activating EMS in the same time period (Figure 2). This was independent of SH being the chief complaint and motivation for re-activation of EMS.

Cases with a recurrent episode of SH used the following chronic diabetic medication: 12 (23%) oral diabetic agents, 26 (50%) insulin only and 14 (27%) were oral and insulin diabetic agents, with 36 of the 89 (41%) eligible patients not using any medication at the time of the incident.

Hospital admission within 7 days post EMS discharge was required for 46 of the 89 SH cases (52%). The reasons for admission included infections (11%); hypoglycaemia
(9%); hypertension (6%); cerebrovascular accidents (6%); and hyperglycaemia (4%), which all may have been linked to chronic underlying diabetes mellitus.

Prior discharge post SH reversal, follow-up and patient information was provided to 35 (39%) of patients, and 7 (8%) unable to recall the information or whether this information was provided.

Figure 3 stratifies the various levels of prehospital care provided, by recurrent SH episodes and provision of follow-up instructions by level of care. Notably it can be seen that there was a related amount of recurrent SH episodes amongst all levels of care. It can also be seen that despite the provision of these instructions, recurrency was still present. Of the 35 BLS, 45 ILS and 12 ALS managed cases; 21(24%), 24(27%) and 9(10%) had recurrent episodes respectively. In the 89 cases, 59(66%) reactivated the EMS system within 7 days of the index prehospital discharge.

It was also found that post-discharge after SH reversal patients had experienced the following abnormal signs and symptoms respectively: headaches with/ without dizziness 30 (27%), increased levels of sweating 15(14%), abdominal discomfort 14 (13%), nausea and vomiting 12 (11%), and weakness and confusion 9(8%).
4. Discussion

Symptomatic hypoglycaemia is considered a potentially serious complication of diabetes mellitus. SH may be disease-induced or precipitated by single or multiple medications used in combination. The treatment of prehospital SH is often limited to short term management strategies, with minimal capabilities for the detection of underlying pathologies contributing to the index event.

In this study it was shown that recurrent SH episodes were associated with the reactivation of EMS resources. Deciding to discharge a patient post reversal in the prehospital environment, is often motivated by their refusal of hospital admission and further care. This request cannot be denied on the basis of patient autonomy and legal right. However, more than one third (34%) of cases eventually re-activated EMS within the study period, although the trigger for the second call was not ascertained as it was out of the scope of this study.

The outcomes of this study can be compared to a 1998 prospective descriptive study from the USA, evaluating the short-term outcomes of acute SH patients post discharge. Then it was shown that 91% of cases had recurrent episodes within 72 hours, with 9% of this case re-activating EMS. Though the recurrence rate was higher in the US study, the need to reactivate EMS was higher in our local cohort. Within our prehospital context, this could be attributed to poor socio-economic circumstances and reduced access to definitive care.

Within the Western Cape prehospital context, EMS providers utilize blood glucose monitors as part of their scope of practice. These monitors have inherent limitations as they usually require calibration, a quality assurance step not usually performed. Test strip accuracy may be influenced by expiration and extreme temperature fluctuations and humidity. These factors may lead to under-sensed or over-sensed blood glucose levels, which influences treatment and discharge strategies.

In cases where intravenous access cannot be established or BLS care was provided, oral hyperglycaemic agents are administered. These agents are short acting and may take a longer period of time to achieve the desired blood glucose level, thus potentiating neurological fallout. This can be linked to the outcomes of this study where 24% of the BLS cases experienced recurrent episodes, as oral glucose may have resulted in inappropriate premature discharge.
ILS and ALS protocols for the management of acute SH patients include the administration of intravenous dextrose 50%, intramuscular or intravenous glucagon and oral anti-hypoglycemic agents. The current dextrose dosage results in a faster time to restore blood glucose levels to normoglycaemia. High concentration dextrose may induce hyperglycaemia in the short term and/ or result in renewed hypoglycaemia in the longer term. This phenomenon may also have played a role in this study in which 27% and 10% of ILS and ALS cases respectively experienced recurrent episodes of SH. An additional treatment is the biosynthetic form of glucagon. It stimulates the release of glucose from the liver by the process of glycogenolysis, thus increasing blood glucose levels. However it is dependent on adequate endogenous glucose stores, which may already have been exhausted due to repeated episodes of hypoglycaemia, starvation, extensive liver damage or adrenal insufficiency. These factors are often unknown to prehospital providers.

Within the Western Cape EMS system, SH patients are primarily discharged prehospitaly if they refuse further care, or show normalisation of blood glucose levels and a return to their pre-episode level of consciousness on-scene. The current prehospital discharge practice is not sensitive to risk mitigation, as they are not tempered by the underlying causative factors. Recurrent SH episodes may also be linked to medication usage, with specific emphasis on self-administered insulin and dose related errors. Common oral agents such as the sulfonylureas, metformin and antibiotics have been shown to potentiate SH. The increased rate of subsequent SH episodes and EMS reactivation shown in this study, may have been linked to inadequate dosing of these agents (73% of cases were using anti-hyperglycaemic agents), and concomitant medication usage. The data in this study also showed that recurrent SH was especially evident in patients using insulin (48%) when compared to oral diabetic agent use only (27%). This outcome is supported by a recent systematic review, in which 47% of a group of 267 patients who had been treated with insulin, presented with recurrent SH episodes.

Participants in the study period reported abnormal signs and symptoms post-discharge. These included headaches with/ without dizziness, increased levels of sweating, abdominal discomfort, nausea and vomiting, and confusion. This compares favourably to possible serious underlying pathologies, often independent diabetes mellitus precipitating the index event.
Current levels of prehospital care with the Western Cape EMS include Basic, BLS, ILS and ALS, with the vast majority of practitioners only having BLS and ILS training. In this study 39% and 53% of acute SH patient were managed by BLS and ILS practitioners respectively, with a combined SH recurrency of 51%. This may have posed a significant risk to patients due to the limited capabilities of this practitioners.12, 14

In terms of follow-up instructions and patient information, this study showed that all levels of EMS personnel provided similar follow-up instructions, resulting in similar levels of recurrence (21% and 27% respectively). Thus, patient outcomes may have been independent of follow-up instructions. In addition, prehospital care providers omitted the provision of follow-up instructions or patient information prior to prehospital discharge, post SH reversal, in a large proportion of patients. It was also shown that in certain cases where these instructions were verbally provided to the patient, they were unable to recall such instructions. What role the manner in which the provider provided the information played, or whether it is associated with the poor cognitive states post SH reversal remains uncertain.5 Decreased levels of plasma glucose results in sympatho-adrenal nervous system stimulation and subsequent further drops in glucose may result in an increase in mortality and morbidity. Consequently, multiple recurrent SH episodes increase the risk for neurological deficits with resultant long term local and systemic morbidities.6 Furthermore these neurological deficits may have affected cognitive function and thus the patient’s ability to reason and make adequate decisions around further care strategies.7 This is not usually considered in the prehospital discharge process. It thus becomes a concern in this study population, in which 8% of cases experienced weakness and confusion post-discharge.

Follow-up care instructions play a key role in the safe disposition and discharge of patients, particularly in the prehospital context. These instructions should ideally be in writing, evidence-based and vetted against patient outcomes (Appendix A). It should also include standardised information cards for the patient or bystanders to identify early signs and symptoms of recurrent SH. These criteria should also be linked to differential underlying pathologies which may flag serious comorbidities, upon which the patient or bystanders may appropriately act upon. However, a disadvantage of this may be linked to the inability of patients to interpret this information due to the longstanding effects of \textit{diabetes mellitus} e.g. inadequate vision.
Subsequent to repeat activation of EMS post initial discharge, 52% of the study patients required hospitalisation. In a similar study conducted in 2008, 199 acute SH patients were followed up post reversal after prehospital discharge. In this group 16% required hospital admission. It was also noted that severe cases of hypoglycaemia were shown to have an 18% recurrence rate within a 48-hour period.

In a recent cohort study it was shown that patients with recurrent SH had extended hospital stays, increased morbidity and an increased need for specialised nursing. In another recent review of costing impact per patient presenting with hypoglycaemia in Spain, it was described that a single episode may cost in excess of €3500 (≈ZAR 52 500 at current exchange rates). Thus, repeat SH episodes may prove to be very costly for patients and funders. A major compounding factor is that of quality of life for the patient in terms of long-term effects of recurrent SH episodes. The scope of this study did not include the evaluation of the health economics the premature SH discharge, however the results may be extrapolated within its effects.

Though the study was not designed to further explore the causative factors leading up to the death, a high proportion of SH cases initially discharged were found to be have died upon telephonic follow-up. One would also have to assume that a number of those patients who did not respond to the telephonic challenge themselves might have died. In which way the original disposition strategy may have contributed remains speculative in specific relation to prehospital discharge post SH reversal and the detection of underlying causative pathologies and should form the basis of further investigation.

5. Limitations

The study population was limited to three Metropole EMS divisions, thus the data cannot automatically be extrapolated to the remainder of the Western Cape population as a whole. However, as detailed, these divisions are fairly typical and major differences at least within the Western Cape are not expected. In terms of the data collection, inconsistencies may have existed in relation to data entry. A major constraint in this was the identification of pure SH cases, due to often ambivalent data. A further limitation was the exclusion of data from Fire Services, private EMS agencies, Inter-hospital transfers and other first responders. There was also a degree of recall bias during the telephonic interview; however this was limited by putting in place the 7-day time limit within which it was conducted. The detailed analysis of time sequences in
both prior and post-index SH episode relative to underlying co-morbidities was not possible. In terms of the deceased cases, a detailed analysis of causal pathways and associations to the index SH episode was not possible with the study methodology employed.

With reference to the need for hospital admission post SH reversal, the diagnosis provided by patients or relatives may not have been on the causal pathway from the index SH episode. The diagnostic capabilities and provision of patient follow-up information by the prehospital care providers may also have been limited by levels of adequate training.

This study also lacked a control group measuring the rate of recurrent visits to Emergency Centres and EMS callouts, for those patients managed in the Emergency Centres within the included EMS districts. Thus it is difficult to determine if the recall or TTH rate was average high or low for this service.

6. Conclusions

The determination of the underlying causative factors is a vital part of the treatment of SH. Even in this small review, 52% of patients required hospitalisation following their initial treatment and prehospital discharge. Therefore, effective treat and release protocols should be developed to prevent repeat episodes, reduce the repeat call out rate for SH episodes and mitigate risks. These protocols should demonstrate a systematic approach to the management of acute SH to all levels of prehospital care providers. The management strategies should include effective history taking and diagnostic procedures to identify underlying pathologies. A key criterion here would include risk stratification tools. These mitigation strategies will also reduce the development and progression of co-morbidities and would have to be developed in conjunction with hospital-based Emergency Centres that would deal with these patients. Currently, no evidence exists on the long and short-term outcomes of the implementation of such strategies. This is of importance in the Western Cape and South Africa as a whole, as resources in both the prehospital and inhospital context are limited.

Comprehensive and understandable information is an important treatment component when considering prehospital discharge of any patient. Effective patient and relative information cards should be developed and implemented to enable the patient and their
family to make informed choices on their further care. These cards should include pertinent information such as emergency contact numbers, disposition options and symptoms of a recurrent SH episode. Importantly it should be easy to understand and available in the locally relevant languages.
Acknowledgements

Permission to conduct this study was granted by the Western Cape Government - Department of Health, Emergency Medical Services. The Research Ethics Committee of the University of Cape Town approved the research protocol. Thank you to these departments, administration, staff and practitioners for their continued support throughout this study.
References

 JEPHC. 2009; 7(3).

General Information

The prehospital care provider has treated you for an acute episode of hypoglycaemia (low blood sugar levels). Your sugar levels were corrected through intravenous and/or oral glucose agents. He/she has tested your sugar levels and found it to have improved to normal levels. Please follow the instructions below:

Follow-up Care

- Please contact your doctor as soon as possible and inform him/her that your blood sugar levels had dropped below the normal levels.
- Consult with your doctor in terms of follow up care in relation to your diabetes.
- Limit all physical activity over the next 24hrs. These activities include sports, driving or any other activity where a sudden loss of consciousness may harm yourself or others.
- Eat something as soon as possible and maintain regular meals.
- Abstain from alcoholic beverages or recreational drugs over the next 24hrs.

Should you experience any of the following symptoms please call 10177 from a landline or 112 from your mobile phone:

- Unusual weakness, numbness or inability to move a leg or arm
- Excessive drowsiness, confusion or slurred speech
- Visual disturbances
- Fainting
- Seizures
- Nausea or vomiting
- Headaches
- Any other symptoms which may be similar or worse than previous problems

DO NOT SIGN THIS FORM IF YOU WANT TO BE TAKEN TO HOSPITAL FOR FURTHER CARE
Part C
Cross-sectional analysis of the short term outcomes of patients receiving prehospital treatment for symptomatic hypoglycaemia in Cape Town

Research Proposal
1. **Abstract**

Background:
Acute symptomatic hypoglycaemia (SH) is a condition, managed in the pre-hospital environment by emergency care providers. Post-reversal, patients often refuse further treatment and transport.

Purpose:
To retrospectively determine the number of adult symptomatic hypoglycaemic patients who required further intervention post-reversal following pre-hospital discharge in the Western Cape Metropole.

Objectives:
- To determine the number of SH patients who experienced a repeat episode after discharge.
- To determine how many repeat calls were made to EMS for a subsequent episode of SH within 7 days after the primary event.
- To determine if hospital admission was required subsequent to the index episode of SH.
- To assess if follow-up care strategies were provided by pre-hospital emergency care providers upon discharge.

Study Design:
A retrospective cross-sectional design.

Setting:
This study will take place in the pre-hospital context in three Cape Town EMS districts.

Study Population:
SH patients treated by pre-hospital emergency care providers.

Study Sample:
Convenience sampling will be employed, which will retrospectively identify a minimum of 110 consecutive SH patients.

Data Collection Methods:
The Western Cape EMS database will be queried and applicable patient report forms extracted. A telephonic interview will be conducted using a closed-ended questionnaire.

Statistical Methods:
Basic statistics, including proportions and corresponding confidence intervals will be determined per question.
2. Introduction

Acute symptomatic hypoglycaemia refers to decreased plasma glucose levels, which may result in sympathetic nervous system stimulation and/or altered levels of consciousness. Decreased plasma glucose results in decreased glucose supply to cerebral tissue; which may manifest as central nervous system neuro-pathologies including confusion, dizziness, irritability, hallucinations, focal impairment with resultant coma and eventual death. Furthermore, this results in the stimulation of the sympatho-adrenal nervous system which manifests as sweating, palpitations, anxiety, and hunger.¹

The prognosis of patients presenting with acute symptomatic hypoglycaemia is dependent on the determination of the causative factors with early effective and efficient increase in plasma glucose levels. In the pre-hospital setting, emergency care providers have three pharmaceutical agents available to reverse low plasma glucose levels, namely: oral glucose, dextrose and glucagon. Incorrect or unidentified causative factors of hypoglycaemia may result in deleterious effects on the outcomes as currently no treat and release protocols exist within the Western Cape Emergency Medical Services. This study will evaluate the effectiveness of pre-hospital discharge within the context of patients presenting with acute symptomatic hypoglycaemic episodes post reversal.

2.1 Literature Review

Pre-hospital emergency care providers play a pivotal role in the detection and management of symptomatic hypoglycaemic (SH) patients. The key focus should be the identification of causative factors, reversal of the symptomatic hypoglycaemic state; and safe and efficient patient disposition strategies.
SH may be induced by a number of diseases (see Table 1).

<table>
<thead>
<tr>
<th></th>
<th>Disease-Induced Symptomatic Hypoglycaemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Type 2 Diabetes – Also associated with hypertension and dyslipidaemia</td>
</tr>
<tr>
<td>2</td>
<td>Renal disease</td>
</tr>
<tr>
<td>3</td>
<td>Adrenal insufficiency</td>
</tr>
<tr>
<td>4</td>
<td>Local & systemic infections</td>
</tr>
<tr>
<td>5</td>
<td>Islet cell adenoma</td>
</tr>
<tr>
<td>6</td>
<td>Liver cirrhosis</td>
</tr>
<tr>
<td>7</td>
<td>Idiopathic hypoglycaemia</td>
</tr>
<tr>
<td>8</td>
<td>Autoimmune compromise</td>
</tr>
<tr>
<td>9</td>
<td>Pregnancy induced hypoglycaemia</td>
</tr>
<tr>
<td>10</td>
<td>Renal glycosuria</td>
</tr>
<tr>
<td>11</td>
<td>Hormonal insufficiencies</td>
</tr>
</tbody>
</table>

Type 2 diabetes serves as a major contributing factor for the induction of SH. In a recent review it was described that in Sub-Saharan Africa, the number of people with Type 2 diabetes will double between the year 2000 and 2030 with a death rate of 40-80/100 000 people nationally. Globally, the prevalence of type 2 diabetes in the year 2000 was 2.8% and 6.9% undiagnosed type 2 diabetes globally, which indicates the poor investigation of presented signs and symptoms amongst these patients. Type 2 diabetes is commonly associated with hypertension, dyslipidaemia and underlying cardiac pathologies. Patients with type 2 diabetes may average 16 hypoglycaemic events annually which is closely related to inadequate dosage and administration of medications such as metformin, insulin and sulfonylurea. There is a close association between diabetes and cardiac disease. Cardiac patients receiving beta-blockers and salicylates as a means to mitigate dysrhythmias and atherosclerosis, are predisposed to incidents of SH (Table 2). In a recent review, it was described that renal disease often results in adverse drug reactions and as a result induces SH. This is caused by the impairment of medication elimination due to a decrease in glomerular filtration rate and creatinine clearance.
Adrenal insufficiency may also induce SH due to decreased secretion of adrenalin and noradrenalin from the adrenal medulla.\(^5\)

In chronic conditions where glycogen stores are depleted, the patient will require constant dextrose infusions and monitoring; otherwise a simple reversal may result in metabolic acidosis, respiratory failure or hemodynamic instability.\(^8\)

SH can also be caused by medication use alone or in combination with multiple medication dosages (see Table 2).

Table 2

| Medications prone to inducing Symptomatic Hypoglycaemia alone or in combination |
|-------------------------------|-------------------------------|
| 1 Metformin | 2 Insulin |
| 3 Sulfonylurea | 4 Antibiotics |
| 5 Ethanol | 6 Beta-blockers |
| 7 Salicylate | |

Secretagogues such as sulfonylureas are common causes of SH in type 2 diabetics.\(^9\) Sulfonylurea-induced SH is correlated to inadequate caloric intake, pharmacological interactions and initial exposure, and thus careful monitoring of these patients are required.\(^9\) Antibiotics used for the treatment of infections may often cause symptomatic hypoglycaemia by increasing insulin secretion.\(^7\) This may further be potentiated in patients with type 2 diabetes sulfonylurea treatment.

A recent study has shown that in South Africa the prevalence of alcohol abuse occurs at 6%.\(^10\) This indicates an increased potential for alcohol induced SH. Ethanol causes potent SH responses which results in decreased endogenous glucose production and glycogenolysis, thus presents with life-threatening consequences.

When dealing with the pre-hospital treatment of SH, a third aspect to consider is the means of diagnosis. Blood glucose monitors are the mainstay diagnostic modality;
however they have a number of shortfalls. These include calibration errors, test strip accuracy correlated to expiration and external environmental factors. In a recent hospital study evaluating the accuracy of blood glucose monitors, it was found that these monitors often over-sensed or under-sensed blood glucose readings. Thus, episodes of hypoglycaemia may be underdiagnosed and those of hyperglycaemia over diagnosed, which could be extrapolated to the prehospital setting as the similar blood glucose monitors are used.

Glucose monitors have varying sensing levels toward different sugars thus may produce stable levels of the incorrect sugar type. Ketones may also cross-react on strips resulting in false positive or false negative results. These factors may be mitigated against in hospitals as a result of on-going observation and monitoring as well as recourse to laboratory checks.

In the South African pre-hospital context, pharmacological management of SH includes the administration of oral glucose (oral hypoglycaemic agents), intravenous dextrose or glucagon. Oral hypoglycaemic agents may result in recurrent SH episodes. In a recent systematic review it was shown that the administration of oral hypoglycaemic agents may result in recurrent SH episodes.

In the South African pre-hospital context, a major component of EMS systems are Basic Life Support providers, where oral hypoglycaemic agents are the only pharmacological SH agents which may be administered within their scope of practice. Oral hypoglycaemic agents can also be administered by Intermediate and Advanced Life Support practitioners in the absence of intravenous access for the administration of dextrose. In the South African pre-hospital context, current protocols include the administration of 50% intravenous dextrose. Studies have shown that high concentrations of dextrose may result in an excessive increase in blood glucose levels to hyperglycaemic levels. This may pose as a potential risk to SH patients and lead to a false sense of security where patients may refuse transport to definitive care with resultant pre-hospital discharge by emergency care providers. This may also result in rapid blood glucose level decrease with recurrent SH.
Effective management of SH patients in the pre-hospital context includes safe and efficient disposition strategies. Patients presenting with SH in the pre-hospital environment often prefer discharge with no hospital admission post SH reversal.16,17,21 Pre-hospital discharge of SH post reversal has been shown to be safe in primarily in Type 1 diabetic patients as they had received formal patient education which may prevent recurrent SH episodes.18,23

Pre-hospital discharge of SH patient post-reversal may present with inherent complications. In a recent prospective case series study it was concluded that pre-hospital discharge post-reversal led to an 8% complication rate.23 Pre-hospital discharge post reversal has been shown to be effective in conditions where adequate discharge information is provided to patients to prevent recurrent SH episodes.24,25 In a recent follow-up survey evaluating outcomes of 203 patient post discharge within 48 hours, it was concluded that there were 8% recurrent episodes, 5% repeat Emergency Medical Service callouts and 11% hospital admissions upon recurrent callout.26 Pre-hospital discharge post SH reversal may expose patients to clinical risk due to incorrect diagnosis, pharmacological treatment and ineffective referral pathways with patient education and advice provided by pre-hospital emergency care providers.

2.2 Motivation for Study

South African pre-hospital emergency care is a complex field which has rapidly advanced over the past decade, and serves as an entry point into the health system for patients, especially in previously disadvantaged communities. Over the past decade there has been a growing incidence of patients with chronic medical conditions such as heart disease, diabetes mellitus, hypertension and infectious diseases, thus increasing the number of patients accessing Emergency Medical Services.

There is an increased incidence of callouts are received for patients presenting with symptomatic hypoglycaemia. SH is a complex condition with varying causes which may be induced by underlying causes and inefficient management may potentiate these causes thus increasing morbidity and mortality. Pre-hospital management of SH includes reversal strategies and discharge post reversal of SH. Currently no
discharge protocols exist within the context of pre-hospital discharge of SH patients post-reversal due to a lack of evidence based on the outcomes of these patients, although performed on a daily basis. This study will identify the outcomes of these patients post-discharge following the current practice of pre-hospital discharge by emergency care providers.

2.3 Research Question

Are subsequent interventions required to treat further episodes of symptomatic hypoglycaemia in adults who were treated for the same in the pre-hospital context by Emergency Medical Care providers and subsequently discharged in the field?

2.4 Aim

To retrospectively determine the outcomes of adult symptomatic hypoglycaemic patients who were treated and discharged pre-hospitally.

2.5 Objectives

- To determine the number of SH patients who experienced a repeat episode of hypoglycaemia after discharge.
- To determine how many repeat calls were made to EMS for a subsequent episode of SH within 7 days after the primary event.
- To determine if hospital admission was required subsequent to the index episode of SH.
- To assess if follow-up care strategies were provided by pre-hospital emergency care providers upon discharge.

3. Methodology

3.1 Study Design

A retrospective cross-sectional study design will be used as it will provide individual characteristics, effect of risk factors and information with regard to an event outcome. Patient report forms from symptomatic hypoglycaemic patients managed by pre-hospital emergency medical care providers will be extracted from the EMS
database. These forms will be collected from the Western Cape Emergency Medical Services Metropolitan Area – Northern, Southern and Western Districts. A minimum of 110 patients will be interviewed, matching the inclusion criteria. Patients will be contacted via telephone to conduct a telephonic interview. If a patient is unreachable after the first attempt, a second attempt will be made 24 hours later. However, if the patient remains unreachable, they will be excluded from the study. Patients will also be excluded if no or illegible telephone numbers occur on the patient care report form. A follow-up survey using a closed-ended questionnaire (Annexure 1) will be applied to evaluate the short-term outcomes (7 days) efficacy of pre-hospital discharge of hypoglycaemic patients' post-reversal.

3.2 Study Population

The Western Cape Provincial mortality due to diabetes was 100 per 100 000 population as at 2006, with higher prevalence rates among Coloureds, Indians and Whites.²⁷ These population groups are mostly located in the Northern, Southern and Western regions. Collectively these regions account for most of the Western Cape’s population due to its dense residential occupancies. The Western Cape Emergency Medical Services (EMS) often responds to SH patients as a result of poor glucose control with diabetes. The Western Cape EMS (Metropole region) responds to approximately 10 000 incidents monthly, of which a percentage includes SH patients with poor glucose control; with underlying diabetes. In relation to the population distribution, a great percentage of these incidents occur in these regions.

The patients for this study will selected from the Northern, Southern and Western regions of the Western Cape in alignment to the EMS districts. These patients will be identified from the Western Cape EMS district data system. Patients who presented to EMS in these districts with symptomatic hypoglycaemia as a primary or secondary diagnosis, which post-reversal and discharged pre-hospital will be selected for this study.
3.3 Sampling

Convenience sampling will be employed, which will retrospectively identify a minimum of 110 SH patients who had presented to the three metropolitan districts and was discharged post-hypoglycaemic reversal. A target sample of 110 SH cases will be aimed for to compensate for possible attrition. These patients will be contacted and interviewed within 7 days of the initial callout. The process will be conducted until a total of 110 patients that have met the criteria to be interviewed have been reached across the three EMS districts.

3.3.1 Inclusion Criteria

This study will include all adult symptomatic hypoglycaemic patients (over 18 years of age) who presented to the Western Cape EMS Metropolitan Area – Western, Southern and Northern Districts. Symptomatic criteria would include patients with a blood glucose level less than 3.5mmol/l and with an altered level of consciousness. This study will only include patients where blood glucose levels were determined by glucose monitors. Accu-Chek® Active monitors will be used (standard issue within the Western Cape EMS), as these monitors are self-calibrated upon insertion of coding chip which accompanies each specific test strip package. Expiry dates of test strips are regularly checked by pharmacists upon issue to practitioners. These test strips are only valid for a three month period upon opening of the package. The study will include patients matching these criteria in relation to primary pre-hospital management by a basic, intermediate or advanced life support pre-hospital emergency medical practitioners. Only adults (over the age of 18) will be included. This study will only include patients with the above criteria, who were discharged in the pre-hospital environment.

2.3.1 Exclusion Criteria

This study will exclude symptomatic hypoglycaemic patients outside the Western Cape EMS Metropolitan Area – Western, Southern and Northern Districts. Symptomatic hypoglycaemic patients managed by the Cape Town Fire and Rescue Services; and private sector Emergency Medical Service providers will be excluded. Symptomatic hypoglycaemic patients managed by primary facilities requiring inter-
facility transfer via EMS to secondary or tertiary facilities omitted. Patients with asymptomatic hypoglycaemia or low blood glucose in the absence of an altered level of consciousness will not be included. During the telephonic interview, patients unable to speak and understand English, Afrikaans or Xhosa will be excluded. Patient report forms with illegible or absent patient and/or next of kin data will also be excluded. Upon introduction in the telephonic interview, the investigator will seek consent from the patient and given the option to withdraw from the study at any point during questioning. Patients not providing consent or choosing to withdraw from participation will also be excluded from this study.

3.4 Data Collection and Management

Data for this study will be collected from the Western Cape EMS district data capture tools, patient report forms and telephonic interviews (through questionnaires). The Western Cape EMS – Northern, Western and Southern Districts’ monthly incident statistics will be retrieved through databases. These incident statistics will identify all diabetic incidents for these regions, hence identifying the pre-hospital diabetic incidents. This data will provide specific dates, times and location of incidents in order to retrieve patient care report forms (Annexure 2). Patient care report forms will be collected from the Western Cape EMS central data store. Patient care report forms will be used as a tool to retrieve patient contact details to conduct the telephonic closed-ended questionnaire. Illegible entries within patient care report forms will be excluded. A record will be kept with regards to the number of patients thus excluded. Illegible or inconsistent entries will likewise be excluded from the study and reported upon. To avoid duplication of data, each SH case will be removed from the data sheet and the corresponding patient care report form.

The patients’ past medical and medication history will be captured from the patient report form and confirmed through the telephonic questionnaire. The EMS level of care data will also be captured.

The telephonic survey will be conducted in English, Afrikaans or Xhosa dependent on the patient’s language preference, as these are the most common languages in the Western Cape. The interview will be conducted by the principal investigator to cater for English and Afrikaans participants, and a secondary interviewer to conduct
the Xhosa survey if required. This secondary interviewer will be trained by the principal investigator with the aid of simulated interviews. To ensure accurate translation, forwards and backwards translation will be applied. If a patient is unreachable after the first attempt, the patient care report form will be put aside and a second attempt will be done within 24 hours. However, if the patient remains unreachable, they will be passed-over. If the telephone details provided are that of a third party, an attempt will be made to get the telephonic contact details of the patient, however if contact cannot be made due to any reason telephonically in this 24 hour period, the patient will be passed over.

Each completed questionnaire will be bound to a copy of the corresponding patient report form with copies of district statistics which will be held in lever-arch files secured in a lockable metal cabinet at the Western Cape EMS – College of Emergency Care. Inability to contact patients during the telephonic interview sessions will be noted and reasoning captured and analysed. Prior administration of the telephonic questionnaire, the procedure shall be explained to the patient.

Throughout the data collection phase duplicate copies of these files and compact discs will be made with corresponding updated data. These duplicate data files will be stored with the principal investigator.

Data from the questionnaires will be retrieved and captured onto Microsoft Excel 2010, where it will be backed up on external USB storage devices and remote storage server which will only be accessible to the principal investigator and supervisors of this study. The captured data will also be encrypted and password protected to limit access to the principal investigator and supervisor upon request.

The retrieved data will be analysed in specific relation to the aims and objectives of this study.
3.5 Timeline

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>Jan</td>
<td>• Formulation of research proposal</td>
</tr>
<tr>
<td></td>
<td>February</td>
<td>• Submission to Divisional Research Committee</td>
</tr>
<tr>
<td></td>
<td>March</td>
<td>• Submission to Surgical Divisional Research Committee</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Submission to UCT Human Research Ethics Committee</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Approval – Institutional – Western Cape EMS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Data collection and capturing</td>
</tr>
<tr>
<td>2012</td>
<td>April</td>
<td>• Data Collection and capturing</td>
</tr>
<tr>
<td></td>
<td>May</td>
<td>• Data Collection and capturing</td>
</tr>
<tr>
<td></td>
<td>June</td>
<td>• Data analysis</td>
</tr>
<tr>
<td></td>
<td>July</td>
<td>• Thesis write-up & submission – Study Supervisor</td>
</tr>
<tr>
<td></td>
<td>August</td>
<td>• Feedback – Study Supervisor – Apply corrections</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Final submission for grading</td>
</tr>
<tr>
<td></td>
<td>Sept</td>
<td>• Feedback</td>
</tr>
<tr>
<td></td>
<td>Oct</td>
<td>• Feedback</td>
</tr>
<tr>
<td></td>
<td>Nov</td>
<td>• Feedback</td>
</tr>
</tbody>
</table>
4. Statistical and Data Analysis

4.1 Sample Analysis

The primary analysis method in this study will be the calculation of the proportion and corresponding confidence interval for the questions listed in the telephonic questionnaire data capture sheet. The required sample size was therefore based on this proportion and achieving the desired precision in the 95% confidence interval. A sample size of 93 valid responses will be sufficient to achieve a 10% precision in the estimate of the population proportion.

4.2 Data Analysis

Microsoft Excel™ 2010 will be used to capture the data and STATISTICA™ version 10 will be used to analyse the data.

The primary objective of the study is to determine the number of SH patients who experienced a repeat hypoglycaemic episode after discharge in the pre-hospital environment.

Summary statistics will be used to describe the variables. The distributions of variables will be presented with histograms and/or frequency tables. Medians or means will be used as the measures of central location for ordinal and continuous responses and standard deviations and quartiles as indicators of spread.

Relationships between two continuous variables will be analysed with regression analysis and the strength of the relationship measured with the Pearson correlation, or Spearman correlation, if the continuous variables are not normally distributed. If one continuous response variable is to be related to several other continuous input variables, multiple regression analysis will be used and the strength of the relationship measured with multiple correlation.

The relationships between continuous response variables and nominal input variables will be analysed using appropriate analysis of variance (ANOVA). The ordinal response variables will be compared to a nominal input variable, non-parametric ANOVA method will be used. For completely randomized designs the
Mann-Whitney test or the Kruskal-Wallis test will be used and for repeated measures the Wilcoxon- or Friedman tests will be used.

The relation between two nominal variables will be investigated with contingency tables and likelihood ratio chi-square tests. A p-value of $p < 0.05$ will represent statistical significance in hypothesis testing and 95% confidence intervals will be used to describe the estimation of unknown parameters.

5. Ethical and Legal Considerations

Primarily, patient autonomy and confidentiality will be maintained throughout the phases of this study. Verbal consent will be obtained telephonically as per the Helsinki protocol. All patients will be informed of the background, aims and objectives of this study (Annexure 3). Permission shall be obtained and documented (Annexure 4) from the Western Cape Department of Health EMS to obtain data from their internal databases and patient care report forms. These will only be made available to the principal investigator and supervisors of this study. All participants will be made aware of this facility. Interviews conducted by participants including the principal investigator will complete a patient confidentiality form (Annexure 5). All interview data will only be made available to the principal investigator, supervisors and the Western Cape Department of Health.

During the telephonic interviews, patients may be dissatisfied with services rendered by the Western Cape Department of Health EMS practitioners. These patients will be directed to the specific Continuous Quality Improvement EMS official within their district.

6. Limitations

This study will only investigate SH patients managed in the pre-hospital setting by the Western Cape Department of Health – EMS practitioners in three districts. Patients managed by Cape Town Fire & Rescue Services, and private sector EMS providers in these and other districts will be excluded, therefore limiting external validity.
The recruitment process of SH patients into this study may affect internal validity. Selection bias may occur as a result of patient pass-over instances. This may also occur as a result of patients refusing to partake in the study, illness, death, migration or missing data.

This study will only include cases where Accu-Chek® Active glucose monitors were used as it is standard issue to Western Cape EMS personnel. Colourmetric blood glucose levels determination using test strips will be excluded and other brands of glucose monitors. As a result of this, bias toward Accu-Chek® Active glucose monitors may be displayed.

The study survey will not be conducted in all eleven official languages of South Africa; hence some patients will be excluded from the sample group.

A non-validated closed-ended questionnaire will be used to survey patients. Closed-ended questions will enable the allocation of quantitative methods which will allow for statistical interpretation. These types of questions are more specific, thus similar meanings during interview responses will be interpreted. However, the questionnaire may result in leading or suggestive answers wanted by the investigator. Closed ended questionnaires also do not allow room for further discussion and emergence of themes related which may contribute to the aims and objectives of this study.
7. Resources

7.1 Available Resources

<table>
<thead>
<tr>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Statistical Services</td>
<td>Centre for Statistical Consultation, Stellenbosch University UCT and US Joint Division of Emergency Medicine</td>
</tr>
<tr>
<td>2 Travel Services</td>
<td>Principal Investigator</td>
</tr>
<tr>
<td>3 Telephone communication</td>
<td>Western Cape Department of Health EMS – Contact Centre</td>
</tr>
<tr>
<td>4 Internet access and email facilities</td>
<td>Principal Investigator</td>
</tr>
<tr>
<td>5 Computer including Microsoft Word and Excel</td>
<td>Principal Investigator</td>
</tr>
<tr>
<td>6 Printing and copying</td>
<td>Principal Investigator</td>
</tr>
</tbody>
</table>

7.2 Budget

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Unit cost</th>
<th>No. of Units</th>
<th>Total cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Communication</td>
<td>Phone services</td>
<td>R0.00</td>
<td></td>
<td>R800.00</td>
</tr>
<tr>
<td></td>
<td>Internet and Email services</td>
<td>R100.00/month</td>
<td>8</td>
<td>R800.00</td>
</tr>
<tr>
<td>2. Specialized services</td>
<td>Bio statistical Services</td>
<td>R185.00/hr</td>
<td>10</td>
<td>R1850.00</td>
</tr>
<tr>
<td>3. Office supplies, printing & reproduction for data collection</td>
<td>Printing</td>
<td>R0.40 / page</td>
<td>1000</td>
<td>R400.00</td>
</tr>
<tr>
<td>4. Travel to sites</td>
<td>Travel cost</td>
<td>R3.61/km</td>
<td>500</td>
<td>R1805.00</td>
</tr>
<tr>
<td>Total Direct Costs</td>
<td></td>
<td></td>
<td></td>
<td>R5855.00</td>
</tr>
<tr>
<td>Indirect Costs (12%)</td>
<td></td>
<td></td>
<td></td>
<td>R702.60</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>R5557.60</td>
</tr>
</tbody>
</table>
8. Reporting and Implementation of Results

Upon conclusion of the study, the results will be made available to the Western Cape Emergency Medical Services and the Health Professions Council of South Africa. These results will serve as a platform for further investigation into the discharge of SH patients post-reversal in other similar prehospital environments. Hence, this will encourage the review of current practice in the management and discharge of SH patient’s post-reversal.

It will also be made available to the University of Cape Town’s Department of Emergency Medicine and other Paramedical training institutions, locally and nationally. Dissemination to pre-hospital emergency care providers’ training institutions will raise awareness and responsiveness to the management and discharge of these patients.

The outcomes of this study will serve as the basis for future research within the context of pre-hospital discharge for symptomatic hypoglycaemic patients within the Western Cape. This study will demonstrate the safety and efficacy of pre-hospital discharge of hypoglycaemic patient’s post-reversal by emergency care providers.
References

ANNEXURE 1

PATIENT QUESTIONNAIRE

- **Incident Date:** ________________
 Incident Time: ___
- **Dispatch No:** ________________
 Shift: ___
- **Patient Report Form No:** ________________
 Patient Age: ___
- **Patient Gender:** ___
 Patient Language: ___
- **Ambulance Diagnosis:** ________________
- **Prehospital Level of Care (circle):** A
- **Interviewer:** ________________
 Interview Date: ___

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Was this your first episode of low blood sugar levels when you activated the Ambulance Service?</td>
<td>Yes</td>
</tr>
</tbody>
</table>
| 2 | What diabetic medication are you utilising? (please √) | Oral agents only 1
 Insulin only 2
 Oral agents & insulin 3
 None 4 |
| 3 | Did you have to go to the hospital within 7 days after discharge by EMS? | Yes | No |
| 4 | If yes to question 4, what was the hospital diagnosis? | Nausea & vomiting
 Headaches or dizziness
 Increased sweating levels
 Abdominal discomfort
 Weakness & confusion |
<table>
<thead>
<tr>
<th></th>
<th>Question</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Do you have a glucose monitor at home?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>When you experienced any of the above, did you or your family check your glucose (sugar) levels with your glucometer?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>If yes to question 7, was it low, high or normal? (please √)</td>
<td>Low</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Normal</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>Upon discharge by the ambulance staff, did they provide you with follow-up instructions after your first episode of symptomatic hypoglycaemia should you have felt ill again? (please √)</td>
<td>Yes</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unable to recall</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>Did you have to call the ambulance service within 7 days after discharge by the Ambulance Services?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>11</td>
<td>Post discharge by the ambulance personnel, did you have another episode of symptomatic hypoglycaemia within 7 days?</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Reason for inability to contact:

<table>
<thead>
<tr>
<th>Reason</th>
<th>Please √</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Contactable</td>
</tr>
<tr>
<td>2</td>
<td>No answer</td>
</tr>
<tr>
<td>3</td>
<td>Wrong number</td>
</tr>
<tr>
<td>4</td>
<td>Refused</td>
</tr>
<tr>
<td>5</td>
<td>Not available</td>
</tr>
<tr>
<td>6</td>
<td>Ill/Hospital</td>
</tr>
<tr>
<td>7</td>
<td>Deceased</td>
</tr>
</tbody>
</table>

Inclusion Criteria Check List to PRF:

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Please √</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Northern/Western/Southern District</td>
<td></td>
</tr>
<tr>
<td>2 Adult > 18yrs</td>
<td></td>
</tr>
<tr>
<td>3 GCS < 15/15</td>
<td></td>
</tr>
<tr>
<td>4 Discharged by EMS post reversal</td>
<td></td>
</tr>
</tbody>
</table>

ATTACH TO CORRESPONDING COPY OF PATIENT CARE REPORT FORM
ANNEXURE 2

DATA CAPTURE SHEET

<table>
<thead>
<tr>
<th>No</th>
<th>Incident Date</th>
<th>Incident Time</th>
<th>Dispatch No.</th>
<th>PRF No.</th>
<th>Shift</th>
<th>Age</th>
<th>Gender</th>
<th>Language</th>
<th>Prehospital Level of Care</th>
<th>First Episode</th>
<th>Type of Diabetic Medication Use</th>
<th>Hospital Adm within 7 Days</th>
<th>Hospital Diagnosis</th>
<th>Symptoms post EMS Discharge</th>
<th>Home Glucose Monitor</th>
<th>Re-assessment of glucose at home using a glucometer</th>
<th>HGT Levels at home (Low, Normal or High)</th>
<th>EMS Follow-up Instructions provided</th>
<th>Activation of EMS within 7 days of discharge</th>
<th>Re-current SH within 7 days of EMS discharge</th>
<th>Meets inclusion Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/2/2012</td>
<td>16:30</td>
<td>10146</td>
<td>546321</td>
<td>D</td>
<td>47</td>
<td>M</td>
<td>E</td>
<td>I</td>
<td>Y</td>
<td>1</td>
<td>2</td>
<td>Y</td>
<td>Pneumonia</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>Y</td>
<td>V</td>
<td>Y</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
ANNEXURE 3

PATIENT INFORMATION SHEET FOR TELEPHONIC INTERVIEW

TITLE OF THE RESEARCH PROJECT: Pre-hospital Discharge of Hypoglycemic Patients Post-Reversal

REFERENCE NUMBER: BLYMOH001

PRINCIPAL INVESTIGATOR: Mohamed Ridhaa Booley

ADDRESS: University of Cape Town – Joint Division of Emergency Medicine

CONTACT NUMBER: 072 672 2223/ 021 938 6730

The following will be read to the patient over the telephone

Good Day

My name is Mohamed Booley. Do you speak and understand English, Afrikaans or Xhosa?

I would like to invite you to participate in a research project that aims to look at the current practice of discharging patients directly after intervening during an episode of low blood sugar to which the ambulance crew responded.

Also, your participation is entirely voluntary and you are free to decline to participate. If you say no, this will not affect you negatively in any way whatsoever. You are also free to withdraw from the study at any point, even if you do agree to take part.

This study has been approved by the Health Research Ethics Committee (HREC) at the University of Cape Town.

This study will consist of a questionnaire, comprising of 11 questions which will evaluate your experience post discharge by ambulance personnel and will take approximately 5 minutes to complete.

Please note that this call is record for record purposes and all personal information will be kept confidential.
<table>
<thead>
<tr>
<th></th>
<th>Patient Information Checklist</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Do you understand that which I have explained to you?</td>
</tr>
<tr>
<td>2</td>
<td>Do you consent to partake in this study</td>
</tr>
</tbody>
</table>

Mohamed R. Booley

Principal Investigator
ANNEXURE 4

INSTITUTION AUTHORIZATION

TITLE OF THE RESEARCH PROJECT: Pre-hospital Discharge of Hypoglycemic Patients Post-Reversal

REFERENCE NUMBER: BLYMOH001

PRINCIPAL INVESTIGATOR: Mohamed Ridhaa Booley

ADDRESS: University of Cape Town – Joint Division of Emergency Medicine

CONTACT NUMBER: 072 672 2223/ 021 938 6730

To whom it may concern,

I ……………………………………………………………………………………………. representing the Western Cape Government Department of Health-Emergency Medical Services under his/her capacity as Director: Western Cape Emergency Medical Services - herewith authorize that this study be conducted in light of the principal investigator retrieving patient care report which will provide critical data to enable the administration of a telephonic interview for hypoglycaemic patients discharged in the pre-hospital setting. I also herewith authorize the principal investigator to make use of the Western Cape Emergency Medical Services contact centre in order to conduct a telephonic survey to meet the aims and objectives of the research project.

It is accepted by the principal researcher that all legal and ethical aspects of this study will be considered and mitigated as outlined in the presented study proposal and adhered to at all times.

Signed at (place) ………………………………………………… On () …………………………… 2012.

.. ..
Signature Print Name in full
ANNEXURE 5

PATIENT CONFIDENTIALITY – TELEPHONIC INTERVIEWER

TITLE OF THE RESEARCH PROJECT: Pre-hospital Discharge of Hypoglycemic Patients Post-Reversal

REFERENCE NUMBER: BLYMOH001

PRINCIPAL INVESTIGATOR: Mohamed Ridhaa Booley

ADDRESS: University of Cape Town – Joint Division of Emergency Medicine

CONTACT NUMBER: 072 672 2223/ 021 938 6730

I __________________________ understand and acknowledge that:

1. I shall respect and maintain the confidentiality of all discussions, deliberations, patient care records and any other information generated in connection with individual patient care, risk management and/or peer review activities.

2. It is my legal and ethical responsibility to protect the privacy, confidentiality and security of all medical records, proprietary information and other confidential information relating to the Provincial Government Western Cape Department of Health – Emergency Medical Services and its affiliates, including business, employment and medical information relating to our patients, members, employees and health care providers.

3. I shall only access or disseminate patient care information in the performance of my assigned duties and where required by or permitted by law, only with the express approval of my supervisor or designee. I shall make no voluntary disclosure of any discussion, deliberations, patient care records or any other patient care, peer review or risk management information, except to persons authorized to receive it.
4. I agree to discuss confidential information only in the workplace and only for job related purposes and to not discuss such information outside of the workplace or within hearing of other people who do not have a need to know about the information.

5. I understand that the law specially protects psychiatric and drug abuse records, and that unauthorized release of such information may make me subject to legal and/or disciplinary action.

6. My obligation to safeguard patient confidentiality continues after my termination of services with the principal investigator.

I hereby acknowledge that I have read and understand the foregoing information and that my signature below signifies my agreement to comply with the above terms. In the event of a breach or threatened breach of the Confidentiality Agreement, I acknowledge that the University of Cape Town, its partners and affiliates involved in this study may, as applicable and as it deems appropriate, pursue disciplinary action via internal or external legal processes.

Signed at (place) .. On () 2012.

... ...
Signature Print Name in full
Part D
HREC REF: 160/2012

Mr M Booley
c/o Dr T Welzel
Department of Surgery
Emergency Medicine

Dear Mr Booley

PROJECT TITLE: CROSS-SECTIONAL ANALYSIS OF THE SHORT TERM OUTCOMES OF PATIENTS RECEIVING PREHOSPITAL TREATMENT FOR SYMPTOMATIC HYPOGLYCAEMIA IN CAPE TOWN.

Thank you for responding to the issues raised by the Faculty of Health Sciences Human Research Ethics Committee in your letter received on 3rd May 2012.

It is a pleasure to inform you that the HREC has formally approved the above-mentioned study.

Approval is granted for one year till the 15th May 2013

Please submit a progress form, using the standardised Annual Report Form if the study continues beyond the approval period. Please submit a Standard Closure form if the study is completed within the approval period.

(Forms can be found on our website: www.health.uct.ac.za/research/humanethics/forms)

Please note that the ongoing ethical conduct of the study remains the responsibility of the principal investigator.

Please quote the HREC. REF in all your correspondence.

Yours sincerely

PROFESSOR M BLOCKMAN
CHAIRPERSON, HSF HUMAN ETHICS
Federal Wide Assurance Number: FWA00001637.
Institutional Review Board (IRB) number: IRB00001938

This serves to confirm that the University of Cape Town Human Research Ethics Committee complies to the Ethics Standards for Clinical Research with a new drug in patients, based on the Medical Research Council (MRC-SA), Food and Drug Administration (FDA-USA), International Convention on Harmonisation Good Clinical Practice (ICH GCP) and Declaration of Helsinki guidelines. The Human Research Ethics Committee granting this approval is in compliance with the ICH Harmonised Tripartite Guidelines E6: Note for Guidance on Good Clinical Practice (CPMP/ICH/135/95) and FDA Code Federal Regulation Part 50, 56 and 312.
Part E

ANNEXURE 4

INSTITUTION AUTHORIZATION

<table>
<thead>
<tr>
<th>TITLE OF THE RESEARCH PROJECT:</th>
<th>Pre-hospital Discharge of Hypoglycemic Patients Post-Reversal</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFERENCE NUMBER:</td>
<td>BLYMOH001</td>
</tr>
<tr>
<td>PRINCIPAL INVESTIGATOR:</td>
<td>Mohamed Ridhaa Booley</td>
</tr>
<tr>
<td>ADDRESS:</td>
<td>University of Cape Town – Joint Division of Emergency Medicine</td>
</tr>
<tr>
<td>CONTACT NUMBER:</td>
<td>072 672 2223/ 021 938 6730</td>
</tr>
</tbody>
</table>

To whom it may concern,

I, Dr. Cleave Robertson, representing the Western Cape Government Department of Health-Emergency Medical Services under his/her capacity as **Director: Western Cape Emergency Medical Services**, herewith authorize that this study be conducted in light of the principal investigator retrieving patient care report which will provide critical data to enable the administration of a telephonic interview for hypoglycaemic patients discharged in the pre-hospital setting. I also herewith authorize the principal investigator to make use of the Western Cape Emergency Medical Services contact centre in order to conduct a telephonic survey to meet the aims and objectives of the research project.

It is accepted by the principal researcher that all legal and ethical aspects of this study will be considered and mitigated as outlined in the presented study proposal and adhered to at all times.

Signature ..

Print Name in full ...
Part F
The African Journal of Emergency Medicine (AfJEM) is the official journal of the African Federation for Emergency Medicine. It is an international, peer-reviewed journal aimed in particular at supporting emergency care across Africa. AfJEM publishes original research, reviews, brief reports of scientific investigations, case reports as well as commentary and correspondence related to topics of scientific, ethical, social and economic importance to emergency care in Africa. Articles will be of direct importance to African emergency care, but may have originated from elsewhere in the world.

AfJEM publishes manuscripts of international quality. This is ensured through a process of rigorous peer-review where manuscripts are evaluated for accuracy, novelty and importance. It is however recognised that African researchers in emergency care are disadvantaged in the available range of journals into which they can publish their work. The editorial team is aware that this is due to many reasons, including that developing world topics are often considered too basic for western Emergency Medicine journals, or that topics are concerned with conditions which are largely irrelevant to those audiences. Furthermore, the quality of submitted manuscripts is often lower than acceptable international journal standards due to inadequate research training. AfJEM is dedicated to support all authors who wish to make an attempt at publication on an African Emergency care topic. In order to maintain and produce a high quality, international standard Emergency Medicine journal, AfJEM has devised Author Assist. AfJEM uses a team of experienced volunteers to help improve the quality of manuscripts before peer-review submission. In this capacity AfJEM may, in suitable cases, be able to direct authors towards publication of suitably significant findings of an international interest in other international journals. AfJEM’s Author Assist functions independently from peer-review and assistance rendered does not constitute an automatic indication of publication, but rather a process to improve an author’s chances in succeeding at peer review.

AfJEM is uniquely tailored to the needs and requirements of emergency care workers dedicated to improving emergency medicine in Africa. It will be ideal reading material for physicians, nurses and pre-hospital care workers wishing to improve their knowledge on general emergency medicine, trauma care, paediatrics, injury and disease prevention, service improvement, policy and ethics, disaster preparedness and response, and all other aspects of emergency care. In keeping with the African Federation for Emergency Medicine, it is our aim to be recognised as the international voice of quality emergency medical care in Africa.
EDITORIAL BOARD

Co-Editors-in-Chief:
Lee A Wallis, Professor of Emergency Medicine, University of Cape Town and Stellenbosch University, South Africa, Email: lewallis@pgwc.gov.za
Stevan R Brujins, Specialist Emergency Physician, University of Cape Town, South Africa, Email: stevan.brujins@afem.info

Production Editors:
Rachel L. Allgaier, Research Coordinator, Division of Emergency Medicine, University of Cape Town and Stellenbosch University, South Africa
Jared Sun, MD Candidate, Yale School of Medicine; PhD Candidate, University of Cape Town Division of Emergency Medicine, Chief Adviser, Emergency First Aid Response System, Connecticut, USA

Nursing
Section Editor:
Petra Brysiewicz, Professor, School of Nursing, University of KwaZulu-Natal, President of Emergency Nurses Society of South Africa, South Africa

International Advisor:
Heather M. McClelland, Nurse Consultant, Calderdale & Huddersfield NHS Trust, UK

EMS
Section Editor:
Raveen Naidoo, Lecturer, Department of Emergency Medical Care and Rescue; Faculty of Health Sciences, Durban University of Technology, South Africa

Technical Rescue
Section Editor:
Craig Lambert, Head of Department, Emergency Medical Care and Podiatry, Faculty of Health Sciences, University of Johannesburg, South Africa

International Advisor:
Russell MacDonald, Associate Professor, Division of Emergency Medicine, Faculty of Medicine, University of Toronto; Medical Director, Research and Development, Ornge Transport Medicine, Ontario, Canada

International Development
Section Editor:
Terence Mulligan, Assistant Professor of Emergency Medicine, University of Maryland School of Medicine, Department of Emergency Medicine, Baltimore, Maryland, USA; Honorary Senior Lecturer, Stellenbosch University, Cape Town, South Africa

Surgical Emergencies & Trauma
Section Editors:
Timothy C Hardcastle, Honorary Senior Lecturer - Dept of Surgery, University of KwaZulu-Natal; Head of Clinical Unit: Trauma Surgery, Inkosi Albert Luthuli Central Hospital, Durban, South Africa

Trauma:
Rockefeller R. A. O. Oteng, Acting Head of Department Komfo Anokye Teaching Hospital Kumasi Ghana; Clinical Instructor University of Michigan Hospitals, Ann Arbor, Michigan; Acting Head of Department Komfo Anokye Teaching Hospital Kumasi, Ghana; Clinical Instructor University of Michigan Hospitals, Ann Arbor, Michigan, USA

International Advisors:

Trauma:
Aristomenis K Exacatylos, Senior Lecturer and Clinical Lead Department of Emergency Medicine; Director Research and Clinical Development, Division of Anaesthesia, Intensive Care and Emergency Medicine, Inselspital Bern, University Hospital, Switzerland

Surgical Emergencies:
Fausto Catena, Consultant General Surgeon, St Orsola- Malpighi University Hospital, Italy
Disaster

Section Editor:
Wayne Smith, Head Disaster Medicine, Provincial Government of the Western Cape and Division of Emergency Medicine UCT/US, South Africa

International Advisor:
Giles Cattermole, Consultant in Emergency Medicine, South London Healthcare NHS Trust, United Kingdom

Critical Care

Section Editor:
Roger Dickerson, Principal Specialist and Head, Department of Emergency Medicine, Chris Hani Baragwanath Hospital and University of the Witwatersrand; Specialist Intensivist, Main Intensive Care Unit, Chris Hani Baragwanath Hospital, South Africa

International Advisor:
Bret Nicks, Assistant Dean of Global Health, Assistant Professor of Emergency Medicine; Medical Director, Clinical Operations, Department of Emergency Medicine, Wake Forest University Baptist Medical Center, North Carolina, United States

Paediatrics

Section Editors:
Baljit Cheema, Honorary Lecturer, Division of Emergency Medicine, Universities of Cape Town and Stellenbosch; Paediatric Emergency Specialist, Red Cross Children's War Memorial Hospital, Cape Town, South Africa
Elizabeth Molyneux, Professor of Pediatrics, College of Medicine, Blantyre, Malawi

International Advisor:
David M. Walker, Assistant Professor, Pediatric Emergency Medicine, Yale University School of Medicine; Clinical Instructor, Yale University School of Nursing; Honorary Faculty, Department of Paediatrics and Child Health, College of Medicine, University of Malawi, USA

Management and Systems

Section Editor:
Ian Higginson, Consultant in Emergency Medicine, Derriford Hospital, Plymouth, United Kingdom

International Advisor:
Valerie Krym, Associate Professor, Faculty of Medicine, University of Toronto; Attending Staff, Emergency Medicine, Sunnybrook Health Sciences Centre, Toronto; Senior Medical Consultant, Public Health Division, Ministry of Health and Long-Term Care, Government of Ontario; Director, International Emergency Medicine Fellowship Program, University of Toronto; Chair, International Emergency Medicine Committee, Canadian Association of Emergency Physicians, Ottawa, Canada

Emergency Ultrasound

Section Editor:
Hein Lamprecht, Senior Lecturer, Division of Emergency Medicine, Stellenbosch University; Senior Honorary Lecturer, Division of Emergency Medicine, University of Cape Town; Programme Director, Point of Care Emergency Ultrasound, South Africa

International Advisor:
Bob Jarman,

Resuscitation

Section Editor:
Mike Wells, Consultant, Senior Lecturer and Director of Ultrasound Training, Division of Emergency Medicine, University of the Witwatersrand, Johannesburg, South Africa

International Advisor:
Charles O. Ottieno, University of California, Los Angeles (UCLA), United States

Education

Section Editors:
Rob Rogers, Associate Professor of Emergency Medicine and Medicine; Director of Undergraduate Medical Education, University of Maryland, USA
Conrad Buckle, Foundation Fellow of Faculty of Emergency Medicine, Ghana College of Physicians and Surgeons; Member of Ministerial Committee to Oversee Development of Emergency Medical Services in Ghana, Vice-President and Chair of Education Committee, Ghanaian Doctors and Dentists Association, United Kingdom

Mental Health

Section Editor:
Kirsten Cohen, Emergency Medicine Physician, Joint Division Emergency Medicine, UCT and US, Western Cape, South Africa

International Advisor:
Scott Zeller, Chief, Psychiatric Emergency Services, Alameda County Medical Center, Oakland, California, United States

Toxicology

Section Editor:
Melanie Stander, Lecturer, Division of Emergency Medicine, Stellenbosch University, South Africa

International Advisor:
Nik H. Rahman, Chairman, Malaysian Conjoint Board of Emergency Medicine; Associate Professor and Head of Department, Department of Emergency Medicine, School Of Medical Sciences, University Sains, Malaysia

Acute Medicine & Infectious Disease

Section Editor:
Niel Van Hoving, Lecturer, Stellenbosch University; Specialist in Emergency Medicine, Tygerberg Hospital, Tygerberg, South Africa

International Advisors:

- **Acute Medicine:**
 Eric Wilke, Associate Professor, Texas A&M College of Medicine, United States

- **Infectious Disease:**
 Tenagne Haile-Mariam, Assistant Professor of Emergency Medicine, The George Washington University Medical School, United States

Case Reports

Section Editors:
Wyness T. Gondwe, Deputy Head, Clinical Nursing Department, University of Malawi, Kamuzu College of Nursing, Malawi
Shania Yusuf, Tanzania

Regulars

Section: Practice Pearls
Eric R. E. Hodgson, Clinical Unit Head and Honorary Senior Lecturer, Dept. of Anaesthesia, Critical Care and Pain Management, Addington Hospital and Nelson R Mandela School of Medicine, Ethekwini-Durban, South Africa

Section: Africa Diary
Heike Geduld, Emergency Physician, Division of Emergency Medicine, University of Cape Town, South Africa

Section: Journal Watch
Benjamin Wachira, Registrar in Emergency Medicine, University of Cape Town, South Africa

Language Editors (French)
Gabrielle A. Jacquet, Denver Health Residency in Emergency Medicine, Denver Health Medical Center, Denver, Colorado
Georges R. Ramalanjaona, Clinical Associate Professor of Emergency Medicine, Mt Sinai School of Medicine, New York, United States
Andrew M. Kestler, Acting Head, Department of Emergency Medicine, University of Botswana School of Medicine, Botswana
Christopher N. Mills, Physician, Department of Emergency Medicine, Inova Fairfax Hospital, Falls Church, Virginia, United States
Sebastian M. Spencer, Emergency Medicine Consultant, Médecins Sans Frontières, Operational Centre, Brussels, Belgium
BEFORE YOU BEGIN

Ethics in publishing
For information on Ethics in publishing and Ethical guidelines for journal publication see http://www.elsevier.com/publishingethics and http://www.elsevier.com/ethicalguidelines.

Policy and ethics
The work described in your article must have been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans http://www.wma.net/en/30publications/10policies/b3/index.html; EU Directive 2010/63/EU for animal experiments http://ec.europa.eu/environment/chemicals/lab_animals/legislation_en.htm; Uniform Requirements for manuscripts submitted to Biomedical journals http://www.icmje.org. This must be stated at an appropriate point in the article.

Conflict of interest
All authors must disclose any financial and personal relationships with other people or organisations that could inappropriately influence (bias) their work. Examples of potential conflicts of interest include employment, consultancies, stock ownership, honoraria, paid expert testimony, patent applications/registrations, and grants or other funding. See also http://www.elsevier.com/conflictsofinterest.

Submission declaration
Submission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere including electronically in the same form, in English or in any other language, without the written consent of the copyright-holder.

Authorship
All authors should have made substantial contributions to all of the following: (1) the conception and design of the study, or acquisition of data, or analysis and interpretation of data, (2) drafting the article or revising it critically for important intellectual content, (3) final approval of the version to be submitted.

Changes to authorship
This policy concerns the addition, deletion, or rearrangement of author names in the authorship of accepted manuscripts:
Before the accepted manuscript is published in an online issue: Requests to add or remove an author, or to rearrange the author names, must be sent to the Journal Manager from the corresponding author of the accepted manuscript and must include: (a) the reason the name should be added or removed, or the author names rearranged and (b) written confirmation (e-mail, fax, letter) from all authors that they agree with the addition, removal or rearrangement. In the case of addition or removal of authors, this includes confirmation from the author being added or removed. Requests that are not sent by the corresponding author will be forwarded by the Journal Manager to the corresponding author, who must follow the procedure as described above. Note that: (1) Journal Managers will inform the Journal Editors of any such requests and (2) publication of the accepted manuscript in an online issue is suspended until authorship has been agreed.
After the accepted manuscript is published in an online issue: Any requests to add, delete, or rearrange author names in an article published in an online issue will follow the same policies as noted above and result in a corrigendum.

Clinical trial results
In line with the position of the International Committee of Medical Journal Editors, the journal will not consider results posted in the same clinical trials registry in which primary registration resides to be prior publication if the results posted are presented in the form of a brief structured (less than 500 words) abstract or table. However, divulging results in other circumstances (e.g., investors’ meetings) is discouraged and may jeopardise consideration of the manuscript. Authors should fully disclose all posting in registries of results of the same or closely related work.

Copyright
Upon acceptance of an article, authors will be asked to complete a ‘Journal Publishing Agreement’ (for more information please contact the society.)
Retained author rights
As an author you (or your employer or institution) retain certain rights; for details you are referred to: http://www.elsevier.com/authorsrights.

Role of the funding source
You are requested to identify who provided financial support for the conduct of the research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. If the funding source(s) had no such involvement then this should be stated. Please see http://www.elsevier.com/funding.

Funding body agreements and policies
Elsevier has established agreements and developed policies to allow authors whose articles appear in journals published by Elsevier, to comply with potential manuscript archiving requirements as specified as conditions of their grant awards. To learn more about existing agreements and policies please visit http://www.elsevier.com/fundingbodies.

Open access
This journal offers you the option of making your article freely available to all via the ScienceDirect platform. To prevent any conflict of interest, you can only make this choice after receiving notification that your article has been accepted for publication. The fee of $3,000 excludes taxes and other potential author fees such as colour charges. In some cases, institutions and funding bodies have entered into agreement with Elsevier to meet these fees on behalf of their authors. Details of these agreements are available at http://www.elsevier.com/fundingbodies. Authors of accepted articles, who wish to take advantage of this option, should complete and submit the order form (available at http://www.elsevier.com/locate/openaccessform.pdf). Whatever access option you choose, you retain many rights as an author, including the right to post a revised personal version of your article on your own website. More information can be found here: http://www.elsevier.com/authorsrights.

Language and language services
Please write your text in UK English by setting your wordprocessor to English (U.K.). Authors who require information about language editing and copyediting services pre- and post-submission please visit http://webshop.elsevier.com/languageediting or our customer support site at http://support.elsevier.com for more information.

Submission
Submission to this journal proceeds totally online and you will be guided stepwise through the creation and uploading of your files. The system automatically converts source files to a single PDF file of the article, which is used in the peer-review process. Please note that even though manuscript source files are converted to PDF files at submission for the review process, these source files are needed for further processing after acceptance. All correspondence, including notification of the Editor’s decision and requests for revision, takes place by e-mail removing the need for a paper trail.

Submit your article
Please submit your article via http://ees.elsevier.com/afjem/

Referees
Please submit, with the manuscript, the names, addresses and e-mail addresses of three potential referees. Note that the editor retains the sole right to decide whether or not the suggested reviewers are used.

TYPES OF ARTICLES
Original Research: Original studies of basic or clinical investigations in areas relevant to emergency medicine. References and a structured abstract are required. Maximum length: 3,000 words, 5 tables and/or figures, plus the abstract (300 words) and references (max 50).

Brief Research Reports: Reports of preliminary data and findings or studies with small numbers demonstrating the need for further investigation. References and a structured abstract are required. Maximum length: 1,500 words, plus the abstract (max 300 words) and references (max 10) and 3 tables and/or figures.
Concepts: Descriptions of clinical and nonclinical problems and solutions; descriptions of novel approaches to planning, management, or provision of emergency services; and practical "how-to" articles describing aspects of emergency medicine management. A narrative abstract is required. Maximum length: 3,000 words, plus the abstract (max 300 words) and references (max 50).

Review Articles (commissioned): Extensive reviews of the literature on a narrow clinical topic. References must include, but need not be limited to, the past 3 years of the literature. A narrative abstract is required. Do not combine a case report with a literature review. Maximum length: 3,000 words, plus the narrative abstract (max 300 words) and references (max 50).

Case Conferences (commissioned): Presentation and discussion of a case by an expert, focused on the problem-solving approach toward a particular clinical problem and discussion of differential diagnoses and subsequent management at various stages of the patient's evaluation. Maximum length: 3,000 words plus the abstract (max 300 words) and references (max 50).

Case Reports: Brief descriptions of a previously undocumented disease process, a unique unreported manifestation or treatment of a known disease process, or unique unreported complications of treatment regimens. Case reports should contain an introduction, narrative, and a discussion focusing on the implications of the case reported. They should not contain a review of the literature. Maximum length: 1,000 words, plus abstract (max 150 words) and references (max 10), and 1 table or figure.

Editorials (commissioned): Authoritative comments or opinions on major current problems of emergency physicians or on controversial matters with significant implications for emergency medicine; or, qualified, thorough analysis and criticism of articles appearing in AfJEM. Maximum length: 1,500 words plus references (max 5).

Brief Commentaries (commissioned): Brief discussion focusing on 1 or 2 key points about a single study-strengths, weaknesses, where it fits in the context of other studies, controversies, how it should or should not change our clinical practice, or how it illustrates some important principle of science or methodology. Maximum length: 750 words plus references (max 5).

Correspondence: Discussion, observations, opinions, corrections, and comments on topics appearing in AFJEM; very brief reports or other items of interest. Maximum length: 500 words, plus references (max 5). Letters discussing an AFJEM article should be received within 6 weeks of the article's publication. Authors of articles about which letters are received will be given the opportunity to reply, which will not be shared with the letter writer prior to publication. Letters of political or other topics unrelated to the science of medicine, as well as those containing personal criticisms, will not be published.

Erratum: Corrections on topics appearing in AFJEM. Maximum length: 300 words, plus references (max 5). Authors of articles about which letters are received will be given the opportunity to reply, which will not be shared with the letter writer prior to publication. Letters of political or other topics unrelated to the science of medicine, as well as those containing personal criticisms, will not be published.

PREPARATION

Use of wordprocessing software

It is important that the file be saved in the native format of the wordprocessor used. The text should be in single-column format. Keep the layout of the text as simple as possible. Most formatting codes will be removed and replaced on processing the article. In particular, do not use the wordprocessor's options to justify text or to hyphenate words. However, do use bold face, italics, subscripts, superscripts etc. When preparing tables, if you are using a table grid, use only one grid for each individual table and not a grid for each row. If no grid is used, use tabs, not spaces, to align columns. The electronic text should be prepared in a way very similar to that of conventional manuscripts (see also the Guide to Publishing with Elsevier: http://www.elsevier.com/guidepublication). Note that source files of figures, tables and text graphics will be required whether or not you embed your figures in the text. See also the section on Electronic artwork.

To avoid unnecessary errors you are strongly advised to use the 'spell-check' and 'grammar-check' functions of your wordprocessor.

Article structure
Subdivision - numbered sections

Divide your article into clearly defined and numbered sections. Subsections should be numbered 1.1 (then 1.1.1, 1.1.2, ...), 1.2, etc. (the abstract is not included in section numbering). Use this numbering also for internal cross-referencing: do not just refer to 'the text'. Any subsection may be given a brief heading. Each heading should appear on its own separate line.

Introduction

State the objectives of the work and provide an adequate background, avoiding a detailed literature survey or a summary of the results.

Material and methods

Provide sufficient detail to allow the work to be reproduced. Methods already published should be indicated by a reference: only relevant modifications should be described.

Theory/calculation

A Theory section should extend, not repeat, the background to the article already dealt with in the Introduction and lay the foundation for further work. In contrast, a Calculation section represents a practical development from a theoretical basis.

Results

Results should be clear and concise.

Discussion

This should explore the significance of the results of the work, not repeat them. A combined Results and Discussion section is often appropriate. Avoid extensive citations and discussion of published literature.

Conclusions

The main conclusions of the study may be presented in a short Conclusions section, which may stand alone or form a subsection of a Discussion or Results and Discussion section.

Appendices

If there is more than one appendix, they should be identified as A, B, etc. Formulae and equations in appendices should be given separate numbering: Eq. (A.1), Eq. (A.2), etc.; in a subsequent appendix, Eq. (B.1) and so on. Similarly for tables and figures: Table A.1; Fig. A.1, etc.

Essential title page information

- **Title.** Concise and informative. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible.
- **Author names, affiliations and contribution.** Where the family name may be ambiguous (e.g., a double name), please indicate this clearly. Present the authors' affiliation addresses (where the actual work was done) below the names. Indicate all affiliations with a lower-case superscript letter immediately after the author's name and in front of the appropriate address. Provide the full postal address of each affiliation, including the country name, and, if available, the e-mail address of each author. The contribution of each author must also be described briefly. This should be done in a paragraph below the names and affiliations and must reference the names of all authors. This is discussed under the heading authorship above.
- **Conflict of interest statement.** Conflict of interest exists when a participant in the publication process has a competing interest that could unduly influence (or be reasonably seen to do so) his or her involvement in the publication process. Authors are expected to make a clear statement of any competing interests. Examples are discussed under the heading Conflict of interest above.
- **Corresponding author.** Clearly indicate who will handle correspondence at all stages of refereeing and publication, also post-publication. Ensure that telephone and fax numbers (with country and area code) are provided in addition to the e-mail address and the complete postal address. Contact details must be kept up to date by the corresponding author.
- **Present/permanent address.** If an author has moved since the work described in the article was done, or was visiting at the time, a "Present address" (or "Permanent address") may be indicated as a footnote to that author's name. The address at which the author actually did the work must be retained as the main, affiliation address. Superscript Arabic numerals are used for such footnotes.
Abstract
A concise and factual abstract of no more than 300 words is required. The abstract should state briefly
the purpose of the research, the principal results and major conclusions. An abstract is often presented
separately from the article, so it must be able to stand alone. A maximum of three references can
be used. Non-standard or uncommon abbreviations should be avoided, but if essential, it must be
defined at the first mention.
Types of abstracts include:
• Research abstracts should adhere to the following format: Introduction, Methods, Results and
 Conclusion.
• Case reports should contain an introduction, narrative and a discussion focusing on the implications
 of the case reported.
• Other narrative abstracts are acceptable for non-research abstracts (opinions, concepts and
 commentary).
Graphical abstract
A Graphical abstract is optional and would only be required on request from the editor. It
should summarize the contents of the article in a concise, pictorial form designed to capture the
attention of a wide readership online. Authors must provide images that clearly represent the
work described in the article. Graphical abstracts should be submitted as a separate file in the
online submission system. Image size: Please provide an image with a minimum of 531 × 1328
pixels (h × w) or proportionally more. Preferred file types: TIFF, EPS, PDF or MS Office files. See
http://www.elsevier.com/graphicalabstracts for examples.
Highlights
Highlights are a short collection of bullet points that convey the core findings of the article. Highlights
should be submitted in a separate file in the online submission system. Please use 'Highlights' in the
file name and include 3 to 5 bullet points (maximum 85 characters per bullet point including spaces).
See http://www.elsevier.com/highlights for examples.
African relevance
African relevance is a short collection of bullet points that convey the relevance of the article in the
African context. African relevance should be submitted in a separate file in the online submission
system. Please use 'African relevance' in the file name and include 3 to 5 bullet points (maximum 85
characters per bullet point including spaces).
Keywords
Immediately after the abstract, provide a maximum of 6 keywords, using American spelling and
avoiding general and plural terms and multiple concepts (avoid, for example, 'and', 'of'). Be sparing
with abbreviations: only abbreviations firmly established in the field may be eligible. These keywords
will be used for indexing purposes.
Abbreviations
Define abbreviations that are not standard in this field in a footnote to be placed on the first page
of the article. Such abbreviations that are unavoidable in the abstract must be defined at their first
mention there, as well as in the footnote. Ensure consistency of abbreviations throughout the article.
Acknowledgements
Collate acknowledgements in a separate section at the end of the article before the references and do
not, therefore, include them on the title page, as a footnote to the title or otherwise. List here those
individuals who provided help during the research (e.g., providing language help, writing assistance
or proof reading the article, etc.).
Math formulae
Present simple formulae in the line of normal text where possible and use the solidus (/) instead of
a horizontal line for small fractional terms, e.g., X/Y. In principle, variables are to be presented in
italics. Powers of e are often more conveniently denoted by exp. Number consecutively any equations
that have to be displayed separately from the text (if referred to explicitly in the text).
Footnotes
Footnotes should be used sparingly. Number them consecutively throughout the article, using
superscript Arabic numbers. Many wordprocessors build footnotes into the text, and this feature may
be used. Should this not be the case, indicate the position of footnotes in the text and present the
footnotes themselves separately at the end of the article. Do not include footnotes in the Reference
list.
Table footnotes
Indicate each footnote in a table with a superscript lowercase letter.

Artwork
Electronic artwork
General points
• Make sure you use uniform lettering and sizing of your original artwork.
• Save text in illustrations as "graphics" or enclose the font.
• Only use the following fonts in your illustrations: Arial, Courier, Times, Symbol.
• Number the illustrations according to their sequence in the text.
• Use a logical naming convention for your artwork files.
• Provide captions to illustrations separately.
• Produce images near to the desired size of the printed version.
• Submit each figure as a separate file.

A detailed guide on electronic artwork is available on our website:
http://www.elsevier.com/artworkinstructions
You are urged to visit this site; some excerpts from the detailed information are given here.

Formats
Regardless of the application used, when your electronic artwork is finalised, please "save as" or convert the images to one of the following formats (note the resolution requirements for line drawings, halftones, and line/halftone combinations given below):
EPS: Vector drawings. Embed the font or save the text as "graphics".
TIFF: colour or grayscale photographs (halftones): always use a minimum of 300 dpi.
TIFF: Bitmapped line drawings: use a minimum of 1000 dpi.
TIFF: Combinations bitmapped line/halftone (colour or grayscale): a minimum of 500 dpi is required.
If your electronic artwork is created in a Microsoft Office application (Word, PowerPoint, Excel) then please supply "as is".
Please do not:
• Supply files that are optimised for screen use (like GIF, BMP, PICT, and WPG); the resolution is too low;
• Supply files that are too low in resolution;
• Submit graphics that are disproportionately large for the content.

Colour artwork
Please make sure that artwork files are in an acceptable format (TIFF, EPS or MS Office files) and with the correct resolution. If, together with your accepted article, you submit usable colour figures then Elsevier will ensure, at no additional charge, that these figures will appear in colour on the Web (e.g., ScienceDirect and other sites) in addition to colour reproduction in print. For further information on the preparation of electronic artwork, please see http://www.elsevier.com/artworkinstructions.

Figure captions
Ensure that each illustration has a caption. Supply captions separately, not attached to the figure. A caption should comprise a brief title (not on the figure itself) and a description of the illustration. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used.

Tables
Number tables consecutively in accordance with their appearance in the text. Place footnotes to tables below the table body and indicate them with superscript lowercase letters. Avoid vertical rules. Be sparing in the use of tables and ensure that the data presented in tables do not duplicate results described elsewhere in the article.

References
Citation in text
Please ensure that every reference cited in the text is also present in the reference list (and vice versa). Any references cited in the abstract must be given in full. Unpublished results and personal communications are not recommended in the reference list, but may be mentioned in the text. If these references are included in the reference list they should follow the standard reference style of the journal and should include a substitution of the publication date with either 'Unpublished results' or 'Personal communication'. Citation of a reference as 'in press' implies that the item has been accepted for publication.
Web references
As a minimum, the full URL should be given and the date when the reference was last accessed. Any further information, if known (DOI, author names, dates, reference to a source publication, etc.), should also be given. Web references can be listed separately (e.g., after the reference list) under a different heading if desired, or can be included in the reference list.

References in a special issue
Please ensure that the words 'this issue' are added to any references in the list (and any citations in the text) to other articles in the same Special Issue.

Reference style
Text: Indicate references by superscript numbers in the text. The actual authors can be referred to, but the reference number(s) must always be given.
List: Number the references in the list in the order in which they appear in the text.
Examples:
Reference to a journal publication:
Reference to a book:
Reference to a chapter in an edited book:
3. Mettam GR, Adams LB. How to prepare an electronic version of your article. In: Jones BS, Smith RZ, editors. Introduction to the electronic age, New York: E-Publishing Inc; 1999, p. 281–304. Note shortened form for last page number. e.g., 51–9, and that for more than 6 authors the first 6 should be listed followed by "et al." For further details you are referred to "Uniform Requirements for Manuscripts submitted to Biomedical Journals" (J Am Med Assoc 1997;277:927–934) (see also http://www.nlm.nih.gov/bsd/uniform_requirements.html).

Journal abbreviations source
Journal names should be abbreviated according to
List of title word abbreviations: http://www.issn.org/2-22661-LTWA-online.php;

Video data
Elsevier accepts video material and animation sequences to support and enhance your scientific research. Authors who have video or animation files that they wish to submit with their article are strongly encouraged to include these within the body of the article. This can be done in the same way as a figure or table by referring to the video or animation content and noting in the body text where it should be placed. All submitted files should be properly labelled so that they directly relate to the video file's content. In order to ensure that your video or animation material is directly usable, please provide the files in one of our recommended file formats with a preferred maximum size of 50 MB. Video and animation files supplied will be published online in the electronic version of your article in Elsevier Web products, including ScienceDirect: http://www.sciencedirect.com. Please supply 'stills' with your files: you can choose any frame from the video or animation or make a separate image. These will be used instead of standard icons and will personalize the link to your video data. For more detailed instructions please visit our video instruction pages at http://www.elsevier.com/artworkinstructions.
Note: since video and animation cannot be embedded in the print version of the journal, please provide text for both the electronic and the print version for the portions of the article that refer to this content.

Supplementary data
Elsevier accepts electronic supplementary material to support and enhance your scientific research. Supplementary files offer the author additional possibilities to publish supporting applications, high-resolution images, background datasets, sound clips and more. Supplementary files supplied will be published online alongside the electronic version of your article in Elsevier Web products, including ScienceDirect: http://www.sciencedirect.com. In order to ensure that your submitted material is directly usable, please provide the data in one of our recommended file formats. Authors should submit the material in electronic format together with the article and supply a concise and descriptive caption for each file. For more detailed instructions please visit our artwork instruction pages at http://www.elsevier.com/artworkinstructions.
Submission checklist
The following list will be useful during the final checking of an article prior to sending it to the journal for review. Please consult this Guide for Authors for further details of any item.

Ensure that the following items are present:

One Author designated as corresponding Author:
- E-mail address
- Full postal address
- Telephone and fax numbers

All necessary files have been uploaded including:
- Highlights (uploaded as separate document)
- African relevance (uploaded as separate document)
- Keywords
- All figure captions
- All tables (including title, description, footnotes)

Further considerations
- Author affiliations and contribution to manuscript described
- Conflict of interest statements
- Manuscript has been "spellchecked" and "grammar-checked"
- References are in the correct format for this journal
- All references mentioned in the Reference list are cited in the text, and vice versa
- Permission has been obtained for use of copyrighted material from other sources (including the Web)
- Colour figures are clearly marked as being intended for colour reproduction on the Web (free of charge) and in print or to be reproduced in colour on the Web (free of charge) and in black-and-white in print
- If only colour on the Web is required, black and white versions of the figures are also supplied for printing purposes

For any further information please visit our customer support site at http://support.elsevier.com.

AFTER ACCEPTANCE

Use of the Digital Object Identifier
The Digital Object Identifier (DOI) may be used to cite and link to electronic documents. The DOI consists of a unique alpha-numeric character string which is assigned to a document by the publisher upon the initial electronic publication. The assigned DOI never changes. Therefore, it is an ideal medium for citing a document, particularly 'Articles in press' because they have not yet received their full bibliographic information. The correct format for citing a DOI is shown as follows (example taken from a document in the journal Physics Letters B):

doi:10.1016/j.physletb.2010.09.059

When you use the DOI to create URL hyperlinks to documents on the web, the DOIs are guaranteed never to change.

Proofs
One set of page proofs (as PDF files) will be sent by e-mail to the corresponding author (if we do not have an e-mail address then paper proofs will be sent by post) or, a link will be provided in the e-mail so that authors can download the files themselves. Elsevier now provides authors with PDF proofs which can be annotated; for this you will need to download Adobe Reader version 7 (or higher) available free from http://get.adobe.com/reader. Instructions on how to annotate PDF files will accompany the proofs (also given online). The exact system requirements are given at the Adobe site: http://www.adobe.com/products/reader/tech-specs.html.

If you do not wish to use the PDF annotations function, you may list the corrections (including replies to the Query Form) and return them to Elsevier in an e-mail. Please list your corrections quoting line number. If, for any reason, this is not possible, then mark the corrections and any other comments (including replies to the Query Form) on a printout of your proof and return by fax, or scan the pages and e-mail, or by post. Please use this proof only for checking the typesetting, editing, completeness and correctness of the text, tables and figures. Significant changes to the article as accepted for publication will only be considered at this stage with permission from the Editor. We will do everything possible to get your article published quickly and accurately – please let us have all your
corrections within 48 hours. It is important to ensure that all corrections are sent back to us in one
communication: please check carefully before replying, as inclusion of any subsequent corrections
cannot be guaranteed. Proofreading is solely your responsibility. Note that Elsevier may proceed with
the publication of your article if no response is received.

Offprints
The corresponding author, at no cost, will be provided with a PDF file of the article via e-mail. For an
extra charge, paper offprints can be ordered via the offprint order form which is sent once the article
is accepted for publication. The PDF file is a watermarked version of the published article and includes
a cover sheet with the journal cover image and a disclaimer outlining the terms and conditions of use.

AUTHOR INQUIRIES
For inquiries relating to the submission of articles (including electronic submission) please
visit this journal's homepage. Contact details for questions arising after acceptance of
an article, especially those relating to proofs, will be provided by the publisher. You
can track accepted articles at http://www.elsevier.com/trackarticle. You can also check
our Author FAQs (http://www.elsevier.com/authorFAQ) and/or contact Customer Support via

© Copyright 2011 Elsevier | http://www.elsevier.com