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ABSTRACT

The relational Gompertz model is often used to obtain fertility estimates for sub-Saharan Africa
populations. This indirect estimation technique is dependent on a fertility standard - the Booth
standard. This standard was developed in 1979 using a selection of 33 Coale-Trussell schedules
congruent with high fertility patterns. However, evidence from 61 Demographic and Health Surveys
of sub-Saharan countries shows that fertility has decreased to levels that were considered medium
fertility at the time the standard was developed. This raises concerns about the continued relevance
of the (high fertility) Booth standard. In particular, the standard would appear to consistently
underestimate fertility among African women aged 45-49. This understatement occurs irrespective
of the level of total fertility and suggests that fertility may be generally higher at the older ages in
Africa than can be constructed with the Coale-Trussell schedules. In addition, further investigation
of the understatement highlighted that the patterns of fertility for 61 African DHS are broadly
similar. This result has two important implications: First, a pattern of fertility that is distinctly
African can be identified. Second, it suggests that an African standard be developed to utilize with
the relational Gompertz model in the analysis of fertility data. To this end a number of alternatives
are considered: 1) Two reworks of the Coale-Trussell model, 2) the Brass polynomial and 3) the
Hadwiger function. Of these, the two restatements of the Coale-Trussell model are dismissed due to
a continued misfit in the 45-49 age group. The appropriateness of the two remaining alternatives is
assessed using least squares methodology and graphical graduation and both yield apparently
reasonable results. However, the Brass polynomial has the advantage of being simpler than the
Hadwiger function and allows the direct calculation of cumulative fertility rates. Furthermore,
statistical tests show that the Brass polynomial is superior to the Hadwiger function, since the latter
fails both the smoothness and goodness-of-fit graduation tests. As a result, the Brass polynomial is
deemed to be the most suitable to model the African fertility pattern and is used to develop an

African fertility standard.
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1 INTRODUCTION

Demographic research focuses on the study of three variables - mortality, fertility and migration. As
such, demography is essentially concerned with the effect of these variables on population dynamics
and development.

For centuries the human fear of death focussed research on epidemiology and cause of death.
This focus on death - added to a strong influence from the actuarial profession - centred
demographic analysis primarily on modelling and understanding mortality until the 1950's. Such
studies resulted in the production of model life tables such as the Coale-Demeny families (Coale and
Demeny 1983).

However, during the 1960's and 1970's the high fertility rates and falling mortality rates
resulted in high population growth rates (Bongaarts 1994; Demeny 2003). This lead to neo-
Malthusian concerns of poverty resulting from over-population, further motivating research into
fertility - the second significant demographic determinant (Livi-Bacci 1968; Merrick 2002). We now
know that the population and poverty fears were never realised (Lam 2005), but many attempts were
made to model fertility during this period.

Many of these models are based on standards such as the one developed by Booth (1979). In
the period since the development of this standard, the levels and patterns of fertility have changed
dramatically across the developing world. For example, in the late 1970s and early 1980s high fertility
meant a total fertility rate (TFR) of 7 to 8 children per woman. However, by current standards a
TFR of 5 to 6 constitutes high fertility which would have been a medium fertility population at the
time Booth developed her standard.

Furthermore, other important factors have come to the fore: social and economic
development in developing countries (particularly Africa) has gathered pace (Cohen 1993, 1998;
Garenne and Joseph 2002) and HIV/AIDS has emerged as a global threat severely affecting both
mortality and fertility (Lewis, Ronsman, Ezeh and Gregson 2004; Zaba and Gregson 1998).

These changes in the demographic landscape raise questions about the validity of the
assumptions underlying the standard and the accuracy of methods based on the standard if these
assumptions are violated. Specifically, investigation is required into the systematic underestimation
of 45-49 fertility observed when using the Coale-Trussell schedules and the Booth standard to

model African populations.
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As a result, this dissertation focuses on maintaining and enhancing the relevance and utility of
the relational Gompertz model. It re-evaluates the Booth standard and, in particular, considers the
validity of the standard in different settings, the methodology used by Booth, the assumptions made
and the relevance of the underlying data from the Coale-Trussell model.

To this end, a series of programs were developed allowing the automated production of
fertility schedules using the Coale-Trussell fertility model. These programs are then evaluated to
determine their usefulness in deriving new standards for low and medium fertility populations,
particularly, in African societies.

Booth envisioned that each country or region may someday have an "internal" fertility
standard or a standard appropriate to the area (Booth 1984, p. 496). This has not happened. This
thesis renews research in this area as a step towards this vision. It specifically highlights the
differences between African fertility and the current standard and emphasizes the need for a new
standard to capture the shape, distribution and characteristics of fertility in sub-Saharan populations.

In order to achieve these aims the dissertation first reviews the available literature on data
quality, fertility estimation techniques, the Coale-Trussell model and alternative fertility functions
(Chapter 2). Chapter 3 discusses the use, limitations and restrictions of the Booth Standard within
the framework of the relational Gompertz model and identifies an African fertility pattern. Attempts
at addressing these problems and alternatives to the Booth standard are considered in Chapter 4 and
an African fertility standard is developed. Chapter 5 draws conclusions from the preceding chapters

and suggests possible areas of future research.
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2 FERTILITY MEASURES IN DEVELOPING COUNTRIES

2.1 Direct Methods and Data Quality

Demographic work is largely focussed on the analysis, understanding and interpretation of
quantitative data, although important qualitative information is collected. Since quantitative analysis
lies at the core of demography, the first question that arises in all demographic research pertains to
the quality of the data used (Brass 1996; United Nations 1983). The issue of data quality is so
important that all substantial research work should assess and discuss the integrity of the data used
in the analysis. According to Cleland (1996), the initial focus in developing countries was on
improving data collection methods and not data analysis. The reason for this emphasis on data
quality is not only to limit (and hopefully eliminate) errors and bias in the results, but good data also
eases calculation of estimates.

In the case of perfect (or near-perfect) data the use of direct methods of analysis enable easy
calculation and yield accurate results (Shryock and Siegel 1976). For example, directly calculated
fertility rates at age q, are obtained by dividing the number of births to women aged a by the person-
years lived by women age ain a given period.

Ideally data for measuring fertility would come from vital registration systems, but such
registers are typically incomplete in developing countries and especially in sub-Saharan Africa.
Consequently, data are usually obtained either from censuses or surveys (e.g. the Demographic and
Health Surveys and the World Fertility Surveys) in the form of women's responses to questions on
births in the last year and children ever born. Such data are also subject to many possible problems
that may introduce bias into the fertility estimates. Generally, these errors will either affect lifetime

fertility (parity) estimates or current fertility estimates.

2.1.1 Errors in lifetime fertility

Errors in lifetime fertility are characterised by increasing underreporting of parity as age increases.
This is seen in the frequently severe underreporting - observed by many authors - for the 45-49
cohort and frequently, also, the 40-44 cohort (Brass 1996; Cohen 1993; Potter 1977; Sloggett 1994;
Zaba 1981). Some authors argue that older women forget how many children they have had and that
this causes the observed underreporting of parity (Potter 1977; Cohen 1993). Others, for example
Zaba (1981) and Brass (1996), suggest the alternative - and possibly more plausible - explanation that

Defining a sub-Saharan Fertility Pattern and Standard 3



the underreporting may result from age exaggeration among women in combination with other
factors.

The omission of dead or absent children will reduce the reported lifetime fertility whereas the
inclusion of adopted or step children and stillbirths will increase parity estimates (Brass 1996; Zaba
1981; Moultrie and Timzus 2002). In addition, the impact of other problems may be unknown save
to say that there will be an effect. For example, the effect of the omission of the fertility of dead
women from a survey will depend on whether the deceased had a higher or lower parity than the
population surveyed. Similarly, the exclusion of emigrant women and the inclusion of immigrant
women will alter parity, but the size and direction of the impact will depend on the relative fertility
of migrant and non-migrant women. Excess mortality among women of higher parity will result in
reported lifetime fertility decreasing with age. By contrast, excess mortality (and emigration) of lower
parity women will increase reported lifetime fertility.

The last problem affecting parity is that census enumerators often mistakenly record parity
zero as not stated, especially in the youngest age groups (El-Badry 1961; Sloggett 1994). There are
primarily three methods of addressing this problem. The first is to exclude the not stated group
from the analysis. However, if the group is large relative to the total number of women interviewed
then relevant information may have been ignored and sample sizes could become an issue. Further,
ignoring this group is equivalent to assuming that the women in the not stated category experience
the same mean parity distribution as the remainder of the population. The second method of
resolving the problem, proportional reallocation of the not stated group, has an essentially similar
outcome. In most cases this assumption is probably not true and valuable information (of interest to
demographers and policy-makers alike) may be hidden in the social forces guiding response.

El-Badry (1961) proposes a third method of resolving the problem which is useful when
dealing with a large number of women with parity not stated. He argues that there is a linear
relationship between the women who are true not stated cases and those with parity zero. Using this
linear relationship the not stated group can be more suitably allocated and, in so doing, additional
information is gained (El-Badry 1961).

The net-result of parity-affecting errors is that the shape of lifetime fertility is distorted since
older women underreport lifetime fertility, whereas younger women are believed to accurately report

parit-,
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2.1.2 Errors in current fertility

There are also numerous problems impacting the data on current fertility. First, younger children -
those under 5 years old - are frequently and disproportionately omitted from censuses, surveys and
vital registration (Cohen 1993; Heaton and Stanecki 2003; Potter 1977). The omission of these
children will result in an underestimation of current fertility distorting both fertility estimates and
trends. It also affects other demographic measures such as age structures, sex ratios and dependency
ratios. Second, and similarly, the omission of twins and second births during the last year will
understate the current fertility.

A third concern is the interpretation of the question on births during the last 12 months. This
may be interpreted as births during "this year" which will result in underestimation since the year of
census has not been completed yet. An alternative interpretation is births during the "last yeat". This
will result in an underestimation if fertility is increasing and an overestimation if fertility is
decreasing.

The errors altering current fertility are believed to result in net-underreporting that is constant

across all ages, affecting only the level of fertility estimates but not the shape.

2.2 Indirect Techniques

The problems discussed above illustrate that, in almost every instance, the data are not perfect and
the direct analysis techniques usually cannot be correctly applied (Brass 1996; Cleland 1996; Potter
1977). Fortunately, many indirect techniques of estimation have been developed to analyse imperfect
data and, although these methods do not explicitly address the data problems, they provide methods
of estimation using the available information (Brass 1996). However, it must be stressed that the
existence of better analytical techniques applied to poor data can never replace good quality data.
The problems in the data remain irrespective of the method used and these techniques merely
attempt to utilise the available information to obtain fertility estimates in the absence of better
quality data.

These indirect techniques of fertility analysis have a long history. Brass developed the P/F
ratio method to analyse fertility using data on children ever born and births in the last year (Brass
1968). The method compares lifetime fertility with information on current fertility in order to
evaluate the internal consistency of the data based on the assumption that fertility is not changing

(Brass 1968; United Nations 1983).
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As discussed, the errors affecting parity alter the shape of the parity distribution, but the level
is assumed to be correctly reported for younger women. Given the assumption of constant fertility,
the level implied by the parity of younger women can be used to ascertain an indication of true
lifetime fertility in the population. By contrast, the errors impacting current fertility change the level,
but not the shape of the fertility distribution. Hence, by using the level implied by the parity data and
the pattern from the current fertility data a more accurate estimate is derived than by using only a
single data set.

Following on the development of the Brass P/F ratio Hobcraft, Goldman and Chidambaram
(1982) applied the method to birth histories demonstrating its versatility. In order to maintain the
relevance of the technique, in times of falling fertility, it was restated by Feeney to relax the
underlying assumption of constant fertility required in the original formulation (Feeney 1998).
However, Moultrie and Dorrington (2008) show that the Feeney restatement does not work well
when fertility is falling. Instead, they suggest using the adjustment recommended in Manual X
(United Nations 1983) whereby reported fertility is scaled using the P/F ratio at 20-24.

A more recent successor to the P/F method is the relational Gompertz model proposed by
Brass and further developed by Booth (1979) and Zaba (1981). As one of the most powerful
techniques available to estimate fertility from limited or defective data, the relational Gompertz
model continues the long history of analysis techniques based upon the ratio of lifetime fertility (or
parity), P, to cumulative fertility, F, and benefits from the use of a schedule capturing a standard
fertility pattern (Booth 1984; Brass and Airey 1988; Zaba 1981). It is this standard that is the

principle focus of this dissertation.

2.3 The Use of Standards
The use of a standard population is a common theme in demographic research since it is often
necessary to compare the experiences of different populations or population groups. Two methods
of using a standard stand out.

'The first, is to use a standard to eliminate the effects of confounding factors - through
standardisation - as explained by Shryock and Siegel (1976). According to Shryock and Siegel, a
suitable standard must reflect a large, clearly defined population. This population can be real or
theoretical provided it is constant and known (Shryock and Siegel 1976). An example of a physical

standard population is the fertility experience of women in the British National Healthcare System
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while that of a hypothetical (constructed) standard is the Coale-Demeny family of schedules (often
used in mortality analysis).

The second, an alternative to standardisation (and the one of greater importance in this
research), is the idea of comparing a population with a standard. Using this relational logic, one can
express the observed population in terms of its correspondence to (or deviation from) the standard.
This idea, of relating populations to a standard, lies at the core of many indirect methods of
estimation. For example, the Coale-McNeil nuptiality function (Coale and McNeil 1972) is widely
used to determine first marriage frequencies and the cumulative proportion married by age.

The Coale-Trussell model is an example of both a procedure to develop a standard as well as a
method using a standard. The Coale-Trussell model uses the Coale-McNeil nuptiality function to
derive a series of standard marital fertility distributions (Coale and Trussell 1974). The Coale-Trussell
schedules were subsequently used to derive a standard for use with the relational Gompertz model
(Booth 1979; Brass and Airey 1988).

In the case of the Coale-Trussell model the model relates age-specific (warital) fertility, f(a), to
the cumulative proportion ever married, G(a), derived from the standard Coale-McNeil function
using a multiplicative equation. By contrast, in other settings the idea of this relational construct is to

express the population rates as a linear transform of the standard rates of the form

Fix)=a+ pB*F,(x) Equation 2.1

where F,(x) and F(x) are the standard and (modelled) population rates respectively, a is the intercept
parameter and P the slope parameter. The principle behind this formulation is that - if such a
transform exists - the selection of different intercept and slope parameters can express the entire

range of possible populations.

2.4 'The Coale-Trussell Model

The Coale-Trussell schedules are frequently used as standards in fertility analysis, for example to
parameterise coefficients in the P/F method. They were developed - using the model proposed by
Coale and Trussell - to capture human fertility patterns (Coale and Trussell 1974). The schedules
describe various fertility patterns but do not attempt to represent fertility levels, since these can be

found by multiplying the standard rates at each age by the actual population TFR. Coale and Trussell
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reason that age-specific marital fertility, f(a), can be modelled as the product of the cumulative
proportion ever married, G(a), and the probability of married women having a live birth, r(a), both at

age a (Equation 2.2).

Sfla)=Ga)*r(a) Equation 2.2

The relationship in Equation 2.2 assumes homogeneity in marital fertility rates and the proportion
ever married at age @ It is also implicitly assumed that marriage rates are high and out-of-marriage
(illegitimate) fertility is trivial relative to total fertility.

According to Coale and Trussell, the formulation in Equation 2.2 allows the model to be
parameterised by three variables. Two parameters define the model schedule of marriage, G(a), and
the third parameter specifies the model marital fertility schedule, r(a). They deem it reasonable to
define G(a) by only two parameters on the basis that first-marriage frequencies tend to have the
same shape, but vary in respect of the age at which first marriage begins, a,, and the pace at which
tirst marriage occurs as indicated by the scale factor, k. Although no explicit expression of G(a)
exists, Coale and Trussell state that it can be found by integrating McNeil's equation, ,g(a), which is
reproduced in Equation 2.3 and parameterised by a, and K (Coale and Trussell 1974; Coale and
McNeil 1972)1.

0.19465  [_g.17a W —p (028810
gla) = ? e[ { ] Equation 2.3
where
. u—d, —6.06k .
W= Equation 2.4

" By using the stundard MeNeil nuprality equation, gia). to caleulate Gla) transforms cquation 2 info the multiplicative

relanon mentionged in section 2.3,
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Coale and Trussell (1974) explain that the scaling factor, K, models the deviation in the pace of
first marriage from the pace of the 19 * century Swedish population used as basis. The model is
constructed so that K = 1 signifies the same pace of marital progression - in the modelled population
- as the Swedish base-population. Similatly, K = (.5 indicates twice the pace observed in the standard
population. Furthermore, Coale and Trussell note that the pace of marriage in the Swedish
population determines that 50 per cent of the population ever-married will do so within 10 years of
the starting age, &. As a result, they assert that K = 0.5 implies that "one-half the cohort has
experienced marriage five years after &," (Coale and Trussell 1974, p. 187).

The second function, r(@), is the schedule of marital fertility. Coale and Trussell argue that
marital fertility can be parameterised by one parameter, m, where in is the extent of departure from
natural fertility and is treated as constant for all ages in a modelled population. In the absence of
voluntary birth control 1(a) follows natural (marital) fertility. However, in populations practising
deliberate birth limitation fertility deviates from natural fertility according to a typical pattern as age
increases (Coale and Trussell 1974). This pattern of deviation is captured by the vector, v(a), in
Equation 2.5. Coale and Trussell give the ratio at each age of marital fertility, r(a), to natural fertility,

n(a), as:

ri{a) - M e(m*v(“)) Equation 2.5
n(a) ’ .

The scale factor, M, is constant at a level such that 1),(4 = 0.0 for age 20-24 for each schedule i. This
means that M equals the ratio 1(20-24)/ n(20-24). Since m is constant for all ages, the selection of M at
age a, equates V(@) - the propensity to reduce fertility at age a- to zero for that age.

Given that M is a constant scale factor applicable at all the relevant ages it is not important
when determining the fertility schedules (Coale and Trussell 1974). The scale variable can be
removed from each age - as a common factor - resulting in a pattern of fertility independent of level.

The two constant vectors, N(@) and V(a), are derived by Coale and Trussell from empirical data 2,
The vector N(@) is obtained - for the age groups 20-24 to 45-49 - from ten of the schedules identified

as natural by Henry (1961). Table 2.1 reproduces the data from Henry (1961 p. 148).

' The values of n(8) and vicy are presented in Table A 1 in Appendix A.
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Table 2.1: Age-Specific Legitimate Fertility Rates per 1000

] Included in
Population 20-24 25-29 30-34 35-39 40-44 45-49 n(a

Hutterites marriages 1921-1930 550 502 447 406 222 61
Canada 509 495 484 410 231 30
Hutterites marriages before 1921 475 451 425 374 205 29
Bourgeoisie of Geneva wives of

men born 1600-1649 525 485 429 287 141 16
Europeans of Tunis 468 430 402 324 190 13
Sotteville-les-Rouen 480 450 410 315 125 10
Crulai 440 420 375 280 140 10
Norway 396 380 3 289 180 41
Iran 395 370 325 255 130 20
Bourgeoisie of Geneva wives of

men born before 1600 389 362 327 275 123 19
Taiwan 365 334 306 263 114 8
India 323 238 282 212 100 33
Guinea 357 320 273 183 74 32

Source: Henry (1961), 1).148

Coale and Trussell (1974) do not state which 10 schedules were used to determine n(a). However,
investigation of these schedules indicates that averaging the rows marked by "t" very closely
approximates the results by Coale and Trussell. Table 2.2 below compares the rates calculated from
the schedules identified in Table 2.1 with the n(a)-values reported by Coale and Trussell (1974, p.
188). The differences are trivial and no other combination of 10 schedules yields more accurate

results.

Table 2.2: Comparison of Coale-Trussell n(a) with Calculated Average

Age Group 20-24 25-29 30-34 35-39 40-44 45-49
Average of rows marked 0.460 0.431 0.395 0.322 0.167 0.024
n(a) from Coale-Trussell (1974) 0.460 0.431 0.396 0.321 0.167 0.024

To determine V(a) Coale and Trussell (1974) state that the marital fertility schedules from the 1965
United Nations Demographic Yearbook (United Nations 1966) were assessed to determine if they
were subject to errors such as age misreporting. The vector v(a) - also for the age groups 20-24 to
45-49 - was then calculated as an average of the 43 schedules believed to be free of such errors. For
both vectors the values derived were then extended to the two lower age groups - 10-14 and 15-19.

According to Coale and Trussell (1974, p. 190) the downward extension of n(a) is based on
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biomedical information. They contend that the dominant role of G{a) means that the specific n(a)-
values selected for ages 20 years is of little significance. Also, they state that non-zero values of v(a)
start at age 20 in order to avoid sudden changes around age 25 (Coale and Trussell 1974, p. 190).
That is, the propensity to limit or control fertility effectively begins at age 20.

Finally, the relational formulation (discussed in section 2.3) produces a family of standard
schedules by inserting different values of the three parameters into the FORTRAN program
provided by Coale and Trussell (1974). The benefit of this family of schedules is that it models a
wide range of fertility experience using demographic reasoning and features. By modelling such a
wide range of experience the schedules can be used, as Coale and Trussell suggested, to approximate
single-year fertility rates when only five-year rates are available. However, the Coale-Trussell
schedules can also be put to other uses such as basis for comparison or as a standard to be used with

indirect techniques like the relational Gompertz model. This is discussed in greater detail in the next

chapter.

2.5 Restatements of the Coale-Trussell Model

The model developed by Coale and Trussell (1974) depends on the accuracy of the two vectors Nn(a)
and v(a). However, Henry (1961) and Coale and Trussell (1974) are both subject to mounting
criticism. Blake (1985) and Wilson, Oeppen and Pardoe (1988) question the original formulation of
natural fertility and the manner in which the Coale-Trussell model is used. Faced by these criticisms
Xie (1990) and Xie and Pimentel (1992) attempt to maintain the relevance of the Coale-Trussell
model by reformulating the method.

Both investigations focus on the manipulation of the r(a)-ffinction to bring about changes to
the model. More specifically, since Al and m are assumed constant in the Coale-Trussell model (for a

particular schedule), a change in r(a) can only be affected by adjusting the vectors nfa) and v(a).

2.5.1 Coale Trussell using Xie n(a)

Xie (1990) addresses the concept of natural marital fertility, nfa), introduced by Henry (1961). Henry
argued that although the levels can differ the age pattern of natural fertility should be fairly constant.

However, Xie notes that this hypothesis, although reasonable, had not been tested before. Coale and
Trussell (1974) used the Henry data to determine the standard natural marital fertility pattern, nfa), as

discussed in section 2.4. Their development of a natural fertility standard exacerbated the problem
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of the unverified theory since, as Xie states, n(a) has subsequently "been treated as exactly known"
(Xie 1990, p. 656).

To test the data identified by Henry, Xie uses log-linear methods and maximum-likelihood
estimation. Three models were developed: 1) A Homogeneity model, 2) an Independence model and
3) a Fertility Control model (Xie 1990).

The homogeneity model argues that the levels and patterns are the same for all the populations
under investigation and that differences can be ascribed to random error. However, Xie echoes
Henry in rejecting this hypothesis (Xie 1990).

The second model assumes that a population-specific (level) factor exists that is independent
of age. This independence model is contrasted with the fertility control model which postulates that
the natural fertility populations from Henry (1961) are ordinary populations. The comparison of
these models by Xie shows that the independence version provides a good fit to the data and Xie
notes that the additional benefit gained by the fertility control model is negligible. As such, the
independence version is accepted as the final form of the log-linear model (Xie 1990).

Xie, like Henry, concludes from the independence model that a common age pattern exists
between the identified natural fertility populations but that these populations have different levels
(Xie 1990, p. 662). He further argues that the maximum likelihood method of parameter estimation
gives weighting to larger samples making estimates derived superior to those derived by the simple
average used by Coale and Trussell (1974). The new n(a) values derived for the age groups 20-24, 25-
29, ..., 40-44 and 45-49 are given in Table 2.3.

Table 2.3: Standardized n(a) values for the Xie Independence and Coale-Trussell models

Age Group 20-24 25-29 30-34 35-39 40-44 45-49
Xie n(a) 0.460 0.436 0.392 0.333 0.199 0.043
Coale-Trussell n(a) 0.460 0.431 0.395 0.322 0.167 0.024

Obtained from Table 2 by Xie (1990, p. 660)

It is clear from Table 2.3 that the differences between the Coale-Trussell n(a)-levels and the value
derived by Xie (1990) are only large at the oldest ages. The effect of this increase in n(45-49) is

expected to result in an increase in £(45-49).
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2.5.2 Coale-Trussell with alternative v(a)

Xie and Pimentel (1992) reformulate the Coale-Trussell model as a statistical method and deriving a

new series of v(a)-values (Xie and Pimentel 1992, p. 982). They use data from the World Fertility

Surveys (WES) to obtain the revised v(a). This has two benefits: a) the WES includes more recent
data - 1974 to 1982 - than used by Coale and Trussell and b) are of higher quality than preceding
surveys (Xie and Pimentel 1992)

To establish a new v(a)-series, Xie and Pimentel compare the results from a natural fertility
schedule, a log-linear and a log-multiplicative model. They applied these models to the natural
fertility standard developed by Coale and Trussell (1974) and the n(8) determined by Xie (1990). The
results were then compared using the Bayesian criterion, Log-likelihood statistic and the Pearson
Chi-square statistic. Xie and Pimentel (1992) establish that the log-multiplicative model using the Xie
n(a)-values yields better estimates of 1)(a) (given in Table 2.4) than were originally derived by Coale

and Trussell.

Table 2.4: Standardized v(a) values for the Coale-Trussell and Xie-Pimentel models

Age Group 20-24 25-29 30-34 35-39 40-44 45-49
Xie-Pimentel v(a) 0 0.329 0.713 1.194 1.671 1.082
Coale-Trussell v(a) 0 0.279 0.677 1.042 1.414 1.671

Notably, the v(a) are not monotonic over the entire age range as originally found by Coale and
Trussell (1974). Instead the V(@) increases over the age range 25-44, but decreases again for 45-49.
Xie and Pimentel attribute this to the fact that more recent data are used to determine the new V(a)-
estimates (Xie and Pimentel 1992, p.982). Like the n(a) derived by Xie (1990), the lower fertility

control at the oldest ages is expected to increase 45-49 fertility.

2.6 Alternatives to the Coale-Trussell Model

When developing or testing a standard it is important to also consider other options. For example,
Hoem et al. (1981) analyse Danish fertility data using a number of different fertility distributions.
They use the Coale-Trussell model, cubic splines, the Gamma density function, the Hadwiger
function, and the Brass polynomial and conclude that the cubic spline provides the best fit. The
Hadwiger function, Gamma density and Coale-Trussell model are determined joint second best and

the Brass polynomial is deemed less accurate (Hoem, et al. 1981).
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Gage (2001) also considers cubic splines, the Gamma density, the Brass polynomial and the
Hadwiger function for the analysis of seven mammalian populations. However, he dismisses cubic
splines for mammalian population since it "requires good undetlying empirical data" (Gage 2001,
p-490). By the same argument cubic splines are dismissed for the sub-Saharan populations due to the
enduring problems around data quality.

Among the seven mammalian populations investigated by Gage are two human populations -
Sweden 1967 and Costa Rica 1966. Using the remaining three methods Gage concludes that all three
yield good fits, but that the Gamma function appears to fit best based on absolute mean square error
(Gage 2001, p. 492). However, Gage proceeds to conduct other tests of fit since mean square error
does not allow for the relative differences in complexity arising from the different parameterisations
of the methods. From the additional statistical tests Gage concludes that, for six of the seven
populations, the Brass polynomial cannot be rejected (at a 5 per cent level) in favour of the more
complex Gamma or Hadwiger functions (Gage 2001). He further states that if the Bonferroni
adjustment is applied then the simpler Brass polynomial cannot be rejected even for the seventh
population. However, Hoem et al. (1981) successfully used the Hadwiger function to model early
Danish fertility and Gage (2001) found a good fit for the 1967 Swedish data.

Another alternative is one of the two mathematical formulae modelling age-specific fertility
rates that Pevistera and Kostaki (2007) proposed. They find that the exponential formulae proposed
perform better than the Hadwiger function, Gamma density model, Beta function and cubic splines
on data from the United States and European countries like the United Kingdom, Denmark, Spain,
Italy, Norway and Sweden. However, these countries all have fertility rates far below those currently
observed in sub-Saharan Africa and different patterns of fertility to those under consideration
throughout this thesis.

As a result, only the Brass polynomial and Hadwiger functions are investigated in this research

for its usefulness in measuring and capturing African fertility patterns.

2.6.1 Brass polynomial

Brass (1975) suggests using the polynomial given in Equation 2.6 to model fertility.

2
Fz)=c (x-s)sS+33-x) dx Equation 2.6
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Here ¢is a constant relating to the total fertility rate, s is the starting age and is the age to which
fertility is cumulated. Brass explains that the constant 33 arises from the length of the fertility period
which tends to range between 30 and 36 years with an average of about 33 years (Brass 1975).

Gage (2001) generalises this polynomial by replacing the constant 33 with a parameter, w,
representing the length of the fertility period for the population or sub-population under

observation (Equation 2.7).
z 2
I'(z) = CL {(x —s)(s+w—-x) dx Equation 2.7

However, integrals are cumbersome to work with and Appendix L uses the properties of integrals

and ferlity patterns to establish a convenient expression to calculate F(z) direetly (1iquation 2.8).

[-F(zy =4p* -3p° Equation 2.8

. - - - - . e - . t stw—2
where pis the portion of the fertlity period remaining atage v as givenbyp = — = ———,
l ’ ) ! W w
2.6.2 Hadwiger function

Hoem cr al. (1981) and Gage (2001) dicate that the second reasonable alrernative to the Coale-

Trussell model 1s the |ladwiger function (Fquation 2.9).

ab e YT L el o]
m . :(—]*[ ] * gl veoe L Equation 2.9

The Hadwiger function has four parameters - @, 4, ¢ and x. The parameter x is age and allowed to
vary between starting age s and maximum age # The parameter, 4, is 2 measure of total fertility.
According to Hoem et al. (1981) and Gage (2001) the other two parameters, » and ¢, have no clear
demographic interpretation. In addition, unlike the Brass polynomial discussed in section 2.6.1, the
more complex Hadwiger function does not have a convenient simplification to ease calculation.
However, despite these drawbacks the Hadwiger function is investigated since both Hoem et

al. and Gage have successfully used the Hadwiger function to model human populations.
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3 THE BOOTH STANDARD IN THE RELATIONAL GOMPERTZ MODEL

As discussed in Chapter 2, the indirect techniques of fertility analysis are of great importance since it
gives access to important information even when faced with limited, incomplete or poor quality

data.

3.1 The Brass Relational Gompertz Model

While working on indirect techniques of fertility analysis, Brass proposed the use of a relational
model to represent fertility (Brass 1974). This challenge was subsequently taken up by Booth (1979)
- a PhD supervised by Brass and further elaborated by Brass and Airey (1988). Brass hoped that the
method could be applied to poor quality data to yield reasonable fertility estimates. He found that
the ratio of cumulative fertility at age x to the total fertility rate can be quite well represented by the

Gompertz distribution as in Equations 3.1.

g Y T Ya

F(x)
=

= A Equation 3.1

F(x) is the cumulative fertility up to age T is the total fertility rate, x,, is the origin of the age range
and two constants, .4 and B, describe the pattern of fertility. A fertility function, Y (x), is generated
by performing a Gompertz transformation on Equation 3.1 and identifying the resulting equation as

a straight line (Equations 3.2, 3.3 and 3.4).

CEox
Y(x)=—In{ -In [__?E_}i]) Equation 3.2
=-In] -In( A)]+[-In( B[ x - x,] Equation 3.3
= a + b{x — x,) Equation 3.4
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where @ = -1In (-In (A4)) and b = -In B and Y() is a linear function of age only.
However, Brass further refines the method. He notes that Y(x) fits observed fertility well over
the middle ages (25-39) but not for the tails of the distribution. For the younger age groups Y (x) is

too high and for the oldest ages Y(x) is too low (Figure 3.1).

10

Y(x)
%]

Age

-3 Transformed Standard Cumulative Fertility — ~e~Trendline Fitted to Ages 20 to 35

Figure 3.1: Divergence in the tails of transformed cumulative fertility, Y(x), from a straight

line fitted to the middle ages

Brass argues that a better fit is possible by transforming the age scale (Brass 1974, Brass and Airey
1988). That is, by replacing the natural age scale with a stretched age scale, Z(x), will result in a better

tit, since Y (x) will lie on a straight line as shown by Equation 3.5 (Booth 1979).

Y x = a + bZ (X) Equation 3.5

Figure 3.2 illustrates this graphically. It shows the transformed cumulative fertility, Y (x), plotted

against age with the stretched age scale, Z(x), on the right hand y-axis.
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Figure 3.2: Transformed cumulative fertility against age and the stretched age scale

According to Booth, the quantity by which to expand the age scale is equivalent to the distances
between the ages on the right hand axis (Booth 1979, p. 30). However, each of the ages of the
expanded age scale, Z(x), intersects the original age scale at the point Y (x). That is, Z(x) = Y(x) at
the point of intersection for each age, Therefore, since Y (x) is the transformed fertility pattern,
the expanded age scale is itself also equal to the transformed fertility pattern.

Booth (1979) states that if F(x) is the standard pattern of cumulative fertility then this
transformed age scale can be represented by the Gompertz transform of cumulative fertility, Y,(x).
Then, in any population, the transformed observed fertility rates, Y (x), are linearly related to the

transformed standard rates, Y. (N), through Equations 3.6 and 3.7.

Vox)=-m{-n[F (0]} Equation 3.6
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Y(x)=a + Y (x) Equation 3.7

Combining Fquations 3.2 and 3.7, simplitying and reotganising to make I'(x) the subject, results in

Lguation 3.8 below.

{—e[ (« +ﬂ1".-(x1)]}

F{x) = Te Equation 3.8

In these equations, a and P are the location and spread parameters, respectively. Changes in these
two parameters reflect the timing and distribution of fertility for the population. A change in a varies

the timing of childbirth in a population (Figure 3.3).

0.30
025
0.20

0.156

ASFR

0.10

0.05

0.00
10-14 15-19 20-24 25-28 30-34 35-39 40-44 45-49

Age Group
3= -03 =1 =-B—a=0p3=1 o a=0.3 p=1
Figure 3.3: Effects of a change in « holding f = 1

For example, a negative a is equivalent to delaying births and a positive a brings childbearing

forward. However, the shape of the fertility distribution is also modified, since an early start to
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fertility is associated with a fast rise in ASFR at younger ages and delayed fertility steepens old-age

rates.

0.35
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wieeq=0,3=08 —#-a=0pL=1 wooa=0,f=1.25

Figurc 3.4: Effects of a change in 2 holding o constant at §

By contrast, Figure 3.4 shows that a rise in P narrows the spread of the fertility distribution and a

decrease flattens it. Clearly, this also has the effect of changing the shape of the fertility distribution.

3.2 Zaba's Restatement of the Relational Gompertz Model

A drawback of this formulation is that the original model requires knowledge of the total fertility
rate which will, in most applications of the method, not be known. This drawback resulted in Zaba
(1981) formulating the relational Gompertz model such that the TFR need not be known. Zaba
suggests two modifications to the relational Gompertz model. The first restated model is expressed

in terms of the ratio of cumulative fertility at ages and 1v+5 (Equation 3.9 below).
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o[ FG) )] _
Yix)= ln{ m[F(x+5)]J Eqguation 3.9

Equation 3.9 does not depend on a known TFR. Brass and Airey (1988) note that the Gompertz
transformation relating F(x)/F ¢<+5) to the standard, Y(x), is not exactly linear, but generally offers a

good approximation. Substituting Equation 3.8 into 3.9 and rearranging the terms results in

Equation 3.10 below.

F(x)=@a — In {e[‘ﬂ}"s-{x’]— e["ﬁ"-s-("“+5)]} Equation 3.10

liquadon 3.11 gives @ (3] which is defined by Zaba as the sccond term of Tguation 3.10. A Taylor

expansion of @ (B) around 3 = 1 vields the approximation tin Liquation 3.12.

% r(ﬂ) = —In {2[_)6};“‘ ('x)]_ e[_ﬁ};‘" (x+5)]} Lquation 3.11

2 "
O (B =D (N+(S-DD, (U"‘@G)x (H+... Equation 3.12

The primes, in the second and subscquent terms of the right hand side of the equaton, signity
differentiation with respect to B. Zaba (1981) cvaluates the expressions for P (1), @ (1) and @ (1)
and obrains the resulrs tabulated in Tables 3.1 and 3.2,

It can be scen that @ /1) 1s faitly constant tor the groups (20, 25); (25, 30) and (3t), 33).

Similarly, for (19V2, 244); (24Y2, 29%2) and (29V2, 34'/2) in Table 3.2, the @ (1) values are relatively

consistent.
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Table 3.1: Fertility cumulants - terms of Taylor expansion of @' (B) (without shift)

{(x, x+5} D) @,(1) (1)
(15, 20) -1.32718 -2.31376 0.91127
(20, 25) -0.02139 -1.37530 0.95825
(25. 30) 0.73793 -0.67479 0.96295 Average of ©,"(1)
(30, 35) 1.31432 0.03933 0.95096 0.9574
(35, 40) 1.86070 0.94501 0.89717
(40 45) 2.74551 2.34887 0.68203
(45, 50) B 4.80970 4.80970 0.00006

Souree. Laba 195

Table 3.2: Fertility camulants ~ terms of Taylor expansion of @ () (with % year shift)

(x, x+5) D(1) ®,(1) (1)
(14, 19%) -1.42600 -2.40198 0.90930
(19%, 24%) -0.11373 -1.45013 0.95673
(24%4, 29%) 0.67545 -0.74298 0.96338 Average of ®,"(1)
(29'%, 34%) 1.25957 -0.03818 0.95319 0.9578
(34, 3914) 1.80260 0.83562 0.90759
(39%, 44%4) 261577 2.18491 0.71962
(4474, 49%%) 4.50266 4.45641 0.18742

Source: Zaba 1981

Due to its evenness @ "7} 1s then replaced by constant, ¢ The values for the three age groups in
each table are then averaged and a value of about 0.96 is calculated for @ (7). Lquadon 3.13 is
identitied through the substtution of rerms and replacing the constant ¢ gives fse to Hquation 3.14

{Ziaba 1981).
F(x) -0, (MH+d(D=a+(f+ l:)2 %-i— ﬂq);(]) Lquation 3.13

Alternaavely,

Yi(x)—e(x)=a +0.48(8 - 1N + Bu(x) Equation 3.14
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The expression in Liquatdon 3.13 is a linear relationship between the left hand side and @ 11} with

slope 3 and intercept o + (8 — I_)2 - Lguation 3.14 1s a turther simplificadon using standard

o
2
tabulated values of ¢fx) and gfx) (Tables A 2 and A 3 in Appendix A). However, Zaba warns that the
parameter values must be within the range -0.3 < o < 0.3 and 0.8 < 8 < 1.25. If B lics outside thesc
bounds then the third and subsequent ditferences in the ‘lavlor expansion assumption used in
Fquatons 3.12 ro 3.14 become significant.

‘The sccond restated model that Zaba uses is concerned with correcting crrors in mean patitics.
She detines £3) as the parity in the 'th group where 7 = (0,1, 2, ..., 7 and refers 1o the ages 10-14,
15-19, ..., 45-49. In particular, errors reducing parity for women over 40 - for example omission of
children, excess mortalty among older women with higher parity and others  are to be corrected,

Lirst, note that £(7) can be defined in a similar fashion as ['(x) (Ilquation 3.15 below) and T, « and g

as before.

Col-Geproanl)

P(i)=Te Equation 3.15

Second, define the equation for Y 7).

Y (i)=—1Inf-In (P, (i))] Equation 3.16

P (i) 1s the standard mean parity for group /4 Using the ratio of consccutive parities in a way similar to

the cumulative teraliies above gives Equation 317 below,

Py

Y (i)=~In| -1
() S WITESS

Equation 3.17

By substituting Fguation 3.15 into Liquation 3.17 and simplifying, Y{7) can be expressed in the same

fashion as Y{(x) In Liquagon 3.12.

)
Y
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V(i =a -t el A0 OT v Il Baon 3.8

As betore, @4B) follows as the substitute for the second term on the right-hand side of Liquation

3.18.

O (f)=-1n J(—.’[_ﬁyf'(“]— e[‘f"”'f(””]} Equation 3.19

Zaba uses the same logic as for cumulative fertility and applies a ‘Faylor expansion around =1 ro
$(B). Again, using substmtion, reshuffling the terms and identitving the constant ¢ = @B}

establishes Tguation 3.20.

Y(i)-®,()+ @) =a+ (8 -1)° §+ LD (1) Equation 3.20
O,
Y(i)—e(i)=a+0.48(8 ~ 1) + Be(i) Equation 3.21

As for cumulative fertility above, Equation 3.21 follows directly for mean parities and the functions
e(7 and g(7) are tabulated in Table A 4 in Appendix A. Again, the caveat holds that the parameters a
and p must fall within the specified ranges, -0.3 < a < 0.3 and 0.8 < p < 1.25, to prevent the third
and subsequent differences becoming significant.

Applying this method and using the parity ratios that lie on a straight line, we can find an
estimate of the unknown TFR. The strength of this method lies in the fact that it uses the best
properties of both the fertility and parity data, thereby allowing the strengths of one data set to
correct errors in the other. Further, this method provides more flexibility since the analyst can
decide which data set to use thereby allowing the investigator to give preference to the data source

believed to be superior in quality. This results in better estimates and additional flexibility.
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3.3 Development of the Booth Standard

Both variants of the relational Gompertz model still require a standard fertility pattern when
deriving estimates. Brass envisioned using the method in high fertility populations where data quality
is poor (Brass 1974). This application of the relational Gompertz model to high fertility populations
is later reaffirmed by Booth (1979; 1984) and Zaba (1981). In fact, Booth states that the method will
be employed "to detect and correct the kinds of errors that are found in data from such (high fertility)
populations" (Booth 1984, p. 496). Given this emphasis - on high fertility populations - Booth

(1979) develops a standard pattern for use with the Brass variant of the relational Gompertz model
and this standard is also the foundation for the work by Zaba (1981). This section describes in detail

the methodology used to develop this standard - as well as the results obtained - so that it may be

analysed, modified and improved on in Sections 3.4 to 3.7 and Chapter 4.

In order to develop the standard, Booth uses the Coale-Trussell model since it provides a
method of easily obtaining a wide range of fertility patterns (Booth 1979; 1984). She sets out a
number of criteria to distinguish between the high and the low fertility patterns. First, she allows the
three parameter inputs required by the Coale-Trussell model to vary within specified ranges. The age
at first marriage, do, is started at 10 years and increased in steps of 0.5 years to a maximum of 15
years. The parameter ranges for k and m - which determine the shape of the fertility distribution -
were set to 0.1 < k < 1.3 and 0 < p;< 1. However, Booth notes that m can be restricted further to m

0.6, since, according to Booth, the other combinations of m and k are unlikely (Booth 1979, p.
49).

She also restricts the singulate mean age at marriage, M, to 21 years and uses the simplification,
M = a, + 11.37k, given by Coale and McNeil (1972). This restriction further constrains Kk for any
selected value of @, and, in particular, k must be less than 1 since a, has a starting value of 10 years.
The resulting schedules produced have mean, p, and standard deviation, a, such that 27c z> 29 and
6.75< 0 <8.

These criteria result in a selection of 33 Coale-Trussell schedules. Table 3.3 lists the parameter

combinations and derived statistics for each of these schedules (Booth 1979, p. 55).
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Table 3.3: Parameters and derived statistics of schedules identified by Booth

Generating Parameters

Derived Statistics

No. a0 K m p
1 10.0 0.7 0.2
2 10.0 0.7 0.6 27.41
3 10.0 0.9 0.4 28.79
4 10.5 0.6 0.2 28.45
5 10.5 0.6 0.6 27.20
6 10.5 0.8 04 28.63
7 11.0 0.5 0.2 28.22
8 11.0 0.6 0.6 27.42
9 11.0 0.8 04 28.85
10 11.5 0.4 04 27.34
11 11.5 0.5 0.6 27.19
12 11.5 0.6 0.2 28.87
13 12.0 0.4 0.2 28.18
14 12.0 0.5 0.6 27.41
15 12.0 0.7 0.4 28.91
16 12.5 0.3 0.2 27.93
17 12.5 04 0.6 2717
18 12.5 0.5 0.2 28.86
19 13.0 0.2 04 27.03
20 13.0 0.4 0.2 28.61
21 13.0 0.5 0.6 27.90
22 13.5 0.2 0.2 27.87
23 13.5 0.3 0.6 27.13
24 13.5 04 0.2 27.84
25 14.0 0.2 0.2 28.07
26 14.0 0.3 0.6 27.37
27 14.0 0.5 0.4 28.99
28 14.5 0.1 0.2 27.80
29 14.5 0.2 0.6 27.08
30 14.5 0.3 0.2 28.81
31 15.0 0.1 04 27.37
32 15.0 0.2 0.2 28.52
33 15.0 0.3 0.6 27.88

Source: Booth (1979, p 55); reproduced by the author

a

2865

7.54
7.21

7.25
7.56
7.22
7.24
7.59
7.14
7.16
7.46
7.16
7.39
7.56
7.08
7.07
7.62
7.10
7.33
7.51

7.37
6.91

7.61

7.06
7.27
7.51

6.97
6.89
7.62
7.03
7.23
7.33

7.31
6.78

17.96
17.96
20.23
17.32
17.32
19.60
16.68
17.82
20.10
16.05
17.18
18.32
16.55
17.68
19.96
15.91

17.05
18.18
15.27
17.55
18.69
15.77
16.91

18.05
16.27
17.41

19.69
15.64
16.77
17.91

16.14

17.27
18.41

The cumulative fertilities, F(x), of these schedules are transformed to Y (x) - using the Brass variant

of the relational Gompertz model (Equation 3.22) - for each of the five-year age bands.
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, Fox)
Y{(x)=-=-In{=-In ( ; ) ]) Equation 3.22
Where 1/(x) is cumulative fertility and T'is the total tertility rate as before. Towever, notng that 1=
1 in the Coale-Trussell model reduces Fquation 3.22 to Equation 3.23:

Y{x)==In{ - In( F{x))) Equation 3.23

Booth (1979) then uses the calewlated Y{x) values to obtain the first differences, AY(x), through

Fquanon 3.24.

AY{(x.x+4)=Y(x+5)-VY{(x) Equation 3.24

The values of F(x} for the 33 schedules identified by Booth are histed m 'Table 3.4 T'his process also
produces 33 series of Y{x) and AY(x) for age groups 15-19, 20-24, 25-29, 30-34, 35-39 and 40-44

shown in Tables 3.5 and 3.6.
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Table 3.4: Cumulative Fertility, F(x), by age group for the 33 schedules identified by Booth

10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49

I 0.01150 0.13846  0.35821 0.58006 0.77254 0.91884 0.98991 !
20.01371 0.16504  0.41974  0.65328 0.82882 0.94442 0.99373 !
3 0.00792 0.11728  0.34164 0.57956  0.78016  0.92475 0.99106 !
4 0.01147 0.14707  0.37133 0.59086 0.77892 0.92119 0.99020 1
50.01362 0.17454  0.43340 0.66354  0.83433  0.94627 0.99394 !
6 0.00728 0.12159  0.35202 0.58951 0.78638 0.92707  0.99135 1
70.01165 0.15778  0.38555 0.60176 0.78513 0.92345 0.99049 1
8 0.00976 0.16106  0.42114 0.65576 0.83043 0.94500  0.99380 !
9 0.00513 0.10976  0.33826 0.57950 0.78090  0.92516 0.99112 1
10 0.01327 0.18599  0.43248 0.64933 0.81937 0.93860  0.99273 !
11 0.00941 0.17235  0.43642 0.66664  0.83610  0.94687 0.99401 1
12 0.00549 0.12295 0.34739 0.57413 0.76970  0.91789 0.98979 1
13 0.00785 0.15816  0.38991 0.60548 0.78727  0.92422 0.99058 I
14 0.00591 0.15750 0.42355 0.65869 0.83215  0.94559 0.99386 I
15 0.00275  0.10181 0.33539 0.58001 0.78192 0.92565 0.99119 1
16 0.00812 0.17368 0.40551 0.61607  0.79302 0.92628 0.99084 1
17 0.00533 0.17121 0.44050  0.67006 0.83790 0.94747  0.99408 !
18 0.00279 0.11887  0.34926 0.57713 0.77171 0.91866 0.98989 !
19 0.01003 0.20747  0.45255 0.66220 0.82603 0.94087  0.99300 !
20 0.00221 0.13034  0.36591 0.58961 0.77868 0.92116  0.99020 1
21  0.00163 0.12594  0.39443 0.64049 0.82310  0.94265 0.99353 I
22 0.00398 0.17820 0.41058  0.61944  0.79484  0.92692 0.99092 1
23 0.00192 0.17182 0.44553 0.67359 0.83969  0.94805 0.99414 1
24 0.00086  0.11542  0.35233 0.58057  0.77379 0.91942 0.98999 !
25 0.00106 0.16392 0.40010 0.61267  0.79119 0.92562 0.99076 1
26 0.00050 0.15388 0.43195 0.66554  0.83573 0.94677  0.99400 I
27 0.00017 0.08499 0.33242 0.58317  0.78478  0.92680 0.99133 1
28 0.00053 0.18374 0.41498  0.62228 0.79637  0.92747  0.99099 !
29 0.00013 0.17506 0.45103 0.67700 0.84136  0.94859 0.99420 !
30 0.00005 0.11319  0.35662 0.58425 0.77586 0.92016 0.99008 1
31 0.00000 0.18434  0.43686  0.65252 0.82105 0.93917 0.99280 1
32 0.00000 0.13139 0.37577 0.59695  0.78272 0.92260 0.99038 !
33 0.00000 0.11498 0.40070  0.64693 0.82658 0.94380 0.99366 l

Source: Booth (1979, p. 58); reproduced by the author
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Table 3.5: Y(x) values by 5 year age groups of the 33 schedules used by Booth

10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49
1 -1.49636 -0.68167 -0.02629  0.60766 1.35452  2.46931 4.59114
2 -1.45620 -0.58866  0.14143  0.85390 1.67263  2.86148  5.06884
3 -1.57658 -0.76230 -0.07139  0.60608 1.39329  2.54808 4.71273
4 -1.49695 -0.65068  0.00938  0.64212 1.38691 2.49995  4.62045
5 -1.45773 -0.55710  0.17901 0.89119 1.70856  2.89630  5.10301
6 -1.59384 -0.74531 -0.04312  0.63778 1.42580 2.58063  4.74586
7 -1.49345 -0.61332  0.04805 0.67748 1.41921 2.53026  4.65064
8 -1.53244 -0.60212  0.14527  0.86284 1.68302  2.87227  5.08010
9 -1.66253 -0.79275 -0.08060  0.60589 1.39712  2.55376  4.71950
10 -1.46378 -0.52002 0.17648  0.83976 1.61335  2.75883  4.92035
11 -1.54030 -0.56431 0.18735  0.90262 1.72033  2.90784  5.11466
12 -1.64959 -0.74002 -0.05573  0.58897 1.34035 2.45716  4.57926
13 -1.57841 -0.61202  0.05992  0.68969 1.43052  2.54078 4.66019
14 -1.63532 -0.61428 0.15189  0.87347 1.69422  2.88336  5.08985
15 -1.77430 -0.82621 -0.08843  0.60750 1.40241 2.56059  4.72745
16 -1.57141 -0.55992  0.10246  0.72486 1.46142  2.56944  4.68831
17 -1.65525 -0.56807  0.19864  0.91532 1.73242  2.91951 5.12645
18 -1.77185 -0.75599 -0.05063  0.59840 1.35036  2.46700  4.58915
19 -1.52653 -0.45284  0.23211 0.88628 1.65483  2.79770  4.95833
20 -1.81071 -0.71178 -0.00535 0.63810 1.38567  2.49956  4.62045
21 -1.85929 -0.72849  0.07223  0.80851 1.63641 2.82920  5.03734
22 -1.70955 -0.54514  0.11633  0.73618 1.47135 2.57850 4.69712
23 -1.83345 -0.56606  0.21259  0.92853 1.74456  2.93092  5.13667
24 -1.95424 -0.76973 -0.04228  0.60928 1.36080  2.47679  4.59914
25 -1.92417 -0.59243  0.08769  0.71350 1.45151 2.56017  4.67958
26 -2.02827 -0.62678  0.17501 0.89856 1.71786  2.90591 5.11299
27 -2.16099 -0.90228 -0.09654 0.61753 1.41736  2.57679  4.74354
28 -2.02057 -0.52723  0.12837  0.74578 1.47976  2.58634  4.70490
29 -2.19143 -0.55539  0.22788  0.94139 1.75599  2.94165  5.14699
30 -2.29289 -0.77872 -0.03061 0.62096 1.37127  2.48642  4.60822
31 undefined -0.52530  0.18857  0.85117 1.62368  2.76846  4.93006
32 undefined -0.70783  0.02145 0.66180 1.40658 2.51876  4.63908
33 undefined -0.77149  0.08933  0.83122 1.65832  2.85006  5.05770
Source: Booth (1979, p. 59); reproduced by the author
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Table 3.6: AY(x) by 5 year age groups as calculated by Booth

10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49

{ undefined 0.81469 0.65538 0.63395 0.74686 1.11479 2.12183

2 undefined 0.86754  0.73008 0.71248 0.81873  1.18884 2.20736

3 undefined 0.81428  0.69091 0.67747 0.78722  1.15478  2.16465

4 undefined 0.84626  0.66006  0.63274 0.74479  1.11304  2.12050

5 undefined 0.90064  0.73611 0.71218 0.81737  1.18774  2.20671

6 undefined 0.84853 0.70219  0.68091 0.78802  1.15483  2.16522

7 undefined 0.88013 0.66137  0.62943 0.74173  1.11105 2.12038

8 undefined 0.93032 0.74738 0.71758 0.82018  1.18925 2.20783

9 undefined 0.86979 0.71214 0.68649 0.79123  1.15664  2.16574
10 undefined 0.94376  0.69650 0.66328 0.77359  1.14548 2.16152
11 undefined 0.97599 0.75166  0.71527  0.81771 1.18751 2.20682
12 undefined 0.90957 0.68429 0.64469 0.75138  1.11681 2.12210
13 undefined 0.96639 0.67194  0.62977 0.74084 1.11025 2.11941
14 undefined 1.02104 0.76617 0.72158 0.82075  1.18915  2.20649
15 undefined 0.94809 0.73778  0.69594  0.79491 1.15818 2.16686
16 undefined 1.01148 0.66239 0.62239 0.73656  1.10802 2.11888
17 undefined 1.08718  0.76671 0.71668 0.81710  1.18710  2.20694
18 undefined 1.01586 0.70536 0.64904 0.75196 1.11664 2.12216
19 undefined 1.07369 0.68495 0.65416 0.76856  1.14286 2.16064
20 undefined 1.09893 0.70642 0.64346 0.74757 1.11388  2.12090
21 undefined 1.13080 0.80072 0.73628 0.82790  1.19279  2.20814
22 undefined 1.16441 0.66147  0.61985 0.73517  1.10714  2.11863
23 undefined 1.26739 0.77864 0.71595 0.81603 1.18636  2.20575
24 undefined 1.18452  0.72745 0.65156  0.75153  1.11599  2.12235
25 undefined 1.33174 0.68012 0.62580  0.73801 1.10866  2.11940
26 undefined 140148 0.80180 0.72354 0.81930 1.18805 2.20708
27 undefined 1.25871 0.80574  0.71407 0.79984  1.15943  2.16674
28 undefined 149334 0.65560 0.61740 0.73399 1.10658 2.11855
29 undefined 1.63603 0.78327 0.71352 0.81460 1.18566 2.20534
30 undefined 1.51416  0.74811 0.65157  0.75031 1.11514 212181
31 undefined undefined 0.71387 0.66260  0.77251 1.14477  2.16161
32 undefined undefined 0.72928 0.64035 0.74478 1.11218 2.12032
33 undefined undefined 0.86083 0.74189 0.82710 1.19174 2.20764

Source: Booth (1979, p. 6()); reproduced by the author
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However, Booth like Brass (1974) - discussed in section 3.1 - finds that Y (x) for the middle age
groups (20-24, 25-29, 30-34 and 35-39) lies on a fairly straight line, but that there is a divergence in
the tails of the distribution (Figure 3.5).
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~&~Transformed Standard Cumuiative Fenrtility —#—Trendline Fitted to Ages 20 to 35

Figure 3.5: Demonstration of the misfit in the tails of the Y(x) distribution

As a result of this misfit in the tails, Booth recognizes the need to weight the tails of the fertility
distributions to ensure that the resulting standard will more adequately reflect patterns observed for
high fertility populations. She notes that, given the close fit over the central ages, any transformation
should leave the values in this range relatively unchanged while still altering the tails (Booth 1979).

To do so, Booth follows a three step procedure. First, she determines the correct level for the
central ages. She calculates the average AY(x) of all 33 schedules identified for the age groups 25-29,
30-34 and 35-39. These average values are then used as the standard for each age group - AY,(25-
29), AY,(30-34) and AY,(35-39).

Second, Booth determines the schedules to be used for the upper and lower tails and calculate
the AY(x) of these schedules. She sets out two criteria to determine which of the schedules to use

for calculating the lower and upper tails. Booth reasons that, since £(10-14) and £(45-49) are small,
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the age groups must be grouped to ensure that at least ten percent of fertility will occur in each
categorisation (Booth 1979, p. 61). As a result, for the first criterion Booth combines the 10-14 and
15-19 age groups and determines that a schedule must have £(10-19) > 0.15 to qualify for the lower
tail.

Similarly, Booth groups the fertility for the 40-44 and 45-49 age group to obtain £(40-49).
However, £(40-49) is still less than 10 per cent of total fertility and, consequently, the 35-39 fertility
must also be included in the grouping for the upper tail. This allows Booth to set the second
condition - £(35-49) > 0.21 (Booth 1979, p. 56).

Based on the criteria, 17 schedules are chosen for use in the lower tail and 16 schedules are
used for the upper tail. Table 3.7 below shows the values of £(10-19) and £(35-49) for the 33 Coale-

Trussell schedules as well as the tail that the schedule was used for as indicated in column 7.
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Table 3.7: Identifying the schedules used in each tail

Schedule a0 k m f(10-19) f(35-49) Used For
1 10 0.7 0.2 0.1385 0.2275 Upper Tall
2 10 0.7 0.6 0.1650 0.1712 Lower Tail
3 10 0.9 0.4 0.1173 0.2198 Upper Tall
4 10.5 0.6 0.2 0.1471 0.2211 Upper Tail
5 10.5 0.6 0.6 0.1745 0.1657 Lower Tail
6 10.5 0.8 04 0.1216 0.2136 Upper Tail
7 " 0.5 0.2 0.1578 0.2149 Both Tails
8 11 0.6 0.6 0.1611 0.1696 Lower Tail
9 11 0.8 0.4 0.1098 0.2191 Upper Tail

10 11.5 0.4 0.4 0.1860 0.1806 Lower Tail
" 11.5 0.5 0.6 0.1724 0.1639 Lower Tail
12 11.5 0.6 0.2 0.1230 0.2303 Upper Tail
13 12 0.4 0.2 0.1582 0.2127 Both Tails
14 12 0.5 0.6 0.1575 0.1679 Lower Tail
15 12 0.7 0.4 0.1018 0.2181 Upper Tail
16 12.5 0.3 0.2 0.1737 0.2070 Lower Tail
17 12.5 0.4 0.6 0.1712 0.1621 Lower Tail
18 12.5 0.5 0.2 0.1189 0.2283 Upper Tail
19 13 0.2 0.4 0.2075 0.1740 Lower Tail
20 13 0.4 0.2 0.1304 0.2213 Upper Tail
21 13 0.5 0.6 0.1259 0.1769 Neither Tail
22 13.5 0.2 0.2 0.1782 0.2052 Lower Tail
23 13.5 0.3 0.6 0.1718 0.1603 Lower Tail
24 13.5 0.4 0.2 0.1154 0.2262 Upper Tail
25 14 0.2 0.2 0.1639 0.2088 Lower Tail
26 14 0.3 0.6 0.1539 0.1643 Lower Tail
27 14 0.5 0.4 0.0850 0.2152 Upper Tail
28 14.5 0.1 0.2 0.1838 0.2036 Upper Tail
29 14.5 0.2 0.6 0.1751 0.1586 Lower Tail
30 14.5 0.3 0.2 0.1132 0.2241 Upper Tail
31 15 0.1 0.4 0.1844 0.1789 Lower Tail
32 15 0.2 0.2 0.1314 0.2173 Upper Tail
33 15 0.3 0.6 0.1150 0.1734 Neither Tail

Source: Booth (1979, p. 58); reproduced by the author

Once the schedules were selected the average AY(x) were calculated. Table 3.8 gives the average

AY(x) values for all 33 schedules - used for the middle section of the standard - in column 2. The 17

lower tail schedules are listed in column 3 and the 16 upper tail schedules are shown in column 4.
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Table 3.8: Average AY(x) values by 5 year age groups

All Schedules Lower Tail Upper Tail

AY (10-14)

AY (15-19) 1.07356 1.09120 1.03088
AY (20-24) 0.72354 0.72320 0.70338
\Y (25-29) 0.67436 0.67976 0.65492
\Y (30-34) 0.77872 0.78638 0.76042
\Y (35-39) 1.14730 1.15692 1.12689
AY (40-44) 2.15989 2.17299 2.13486
AY (45-49) 00 o 00

It is clear from the table that the AY(x) values are different for the three columns. Of particular

concern are the differences in the middle age groups where fertility should be relatively constant and

this indicates disparity in the fertility levels and distribution.

Since the intention was to alter the tails while leaving the middle age groups largely unchanged,

Booth uses adjustment factors to bring the middle age groups of all three columns (2, 3 and 4) to the

same level (Booth 1979, p. 61). The two factors k, and k, are calculated using Equations 3.25 and

3.26:
o dverage AY(25 -39)  for __Fc_n’:’ schedules
b average AY (25 -39)  for lower  tuil
_ 0.67436 +0.77872 +1.14730
T 0.67976 + 0.78638 +1.15692
= 0.99135
Similarly,
f, o Yverage AY(25 -39)  for all  schedules
2 aVErage AY (25 -39)  for wpper  lail

_0.67436 +0.77872 +1.14730
©0.65492 +0.76042 +1.12689

[.02287

Equation 3.25

Equation 3.26
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The adjustment factor k, is used to adjust the average AY(15-19) and AY(20-24) values, whilst k, is
used to adjust AY(40-44) to give the standard values AY,(15-19), AY,(20-24) and AY,(40-44) in Table
3.9 (Booth 1979, p.61).

In order to convert the standard AY,(x) values into a useful age-specific fertility schedule a
tixed starting point is required and Booth selects Y,(30) = 0.7. She states that the selection of Y,(30)
= 0.7 is "arbitrary" (Booth 1979, p. 63) and that other selections will result in other age-specific
schedules being obtained (Booth 1979; 1984). The standard Y,(x) is derived from AY,(x) using the
fixed starting point - Y. (30) = 0.7 - and recursive Equations 3.27(for ages under 30) and 3.28 (for

ages over 30).

Yxy=Y (x+3)-AY,(x o x+4) Equation 3.27

F(x+5)=Y (x)+ AV (x fo x+4) Equation 3.28

I'or example:

Y (25)= ¥ (30) = A¥ (25 - 29)
= 0.7 - 0.67436
= 0.02564

Similarly,

Y. (35)=F,(30)F AY (30 - 34)
= 0.7 + 0.77872
—1.47872

The Y,(x) values obtained are then converted back to a standard cumulative fertility schedule, F,(x),
by means of an anti-gompit (columns 6 and 7 in Table 3.9). These are then differenced to obtain the
standard fertility schedule, f. (x), by five year age group (column 8). The standard obtained in this
fashion applies to exact ages 15, 20, ..., 45 and 50.
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Table 3.9: Dctermination of Booth standard from the adjusted AY(x) values

Age group AY (%) Weight  Adjusted AY(x) Exact age Yo(x) Fs(x) f(x)
M . _@ (3) (4= 2r(3) G_ __ _ ) ) (8)
10-14 oo 15 -1.773068  0.00277 000277
15-19 1.09120 0.99135 1.08176 20 -0.6813C 0.13584  0.13307
20-24 0.72320 09%135 0.71694 25 0.02564 037731 024147
25-29 0.67436 1 087436 30 0.70000 0.60861 0.23124
30-34 0.77872 1 077872 35 1.47872 0.79618  0.18757
35-39 1.14730 1 1.14730 40 2.62802 083019  0.13401
40-44 2.13486 102287 2.18368 45 480970 099188 0.06169
45-49 . 50 1 0.00812

Souree: Boudy [L79 po 62 reproduced by the auhuor

Booth (1979), however, generalizes the five-year standard by producing a single-year standard in the

same fashion. Finally, after calculating both the 5-year and single-year standards, Booth provides a
function' (given in Equation 3.29) to obtain average parity values, F, (x, x + 4) . This average patity

function yields values that, according to Booth, "refer to the ages at which average and actual

parities are equal” and not to the exact midpoint of the usual age intervals (Booth 1979, p.80).

— _ i .
Felx.x+dy=F . (x)Y+ =457/ (x)y+3.5f{x+1)
c{x,x } 5 (X) 3 4.5 fo(x) Jelx + 1 Equation 3.29

+ 25 (x+2Y+ 153, (x+3)+0.5f,(x+ 4}]

3.4 Apparent Anomalies
As discussed in section 3.3, Booth (1979) identifies 33 Coale-Trussell schedules with high fertility

patterns and recognises that the tails need to be weighted to more accurately reflect the pattern of
fertility observed for high fertility populations.

She splits the 33 schedules into two groups using the predefined criteria £f(10-19) > 0.15 for
the lower tail and £(35-49) > 0.21 for the upper tail (Booth 1979, p. 56). That is, Booth uses
schedules with the highest early fertility to model the lower tail and the highest late fertility for the
upper tail. The first impression is that this methodology (of using the schedules with the highest
early fertility to model the fertility for the 10-14, 15-19 and 20-24 age groups) will inflate early

fertility rates. Further, seeing as fertility rates are cumulative, an early inflation of fertility must be

* This function can be derived from the trapezium rule approximation to an integral (Zaba 1981).
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offset by later compression. That is, the fertility rates for the older age groups - in particular the 45-

49 ASFR - must be suppressed below what would otherwise have been the case.

If this is the case then the impact of Booth's procedure defeats her reasons for using the high

fertility schedules to calculate the upper tail. However, contrary to first impressions, Table 3.10

shows that the method results in lower ASFR for the age groups below 25.

Table 3.10: Comparison betwcen the Booth Standard Rates and the Average Ratcs

__AgeGroup  Arithmetic Average of 33 Schedules Standard as derived by Booth
10-14 0.005636 0.00277
16-19 0.14286 0.13307
20-24 0.24586 0.24147
25-28 0.22711 0.23130
30-34 0.18181 0.18757
3539 0.12936 0.13401
40 - 44 0.05955 0.08189
45-49 ocogtt 0.00812_

By contrast, there is an increase in ASFR for the age groups above 25 and negligible effect in the 45-

49 age group. That is, the method shifts fertility slightly from the earlier ages to the later age groups.

This shift results from the selection of Y(30) = 0.7 which is lower than the average value observed

for the 33 schedules used by Booth - Y(30) = 0.74208. The lower Y (30) translates into a smaller

portion of fertility completed by age 30. Put differently, there is a larger portion of fertility remaining

after age 30 for lower values of Y(30) which means higher levels of fertility in the older age groups.*

Despite the seemingly reasonable nature of the results in Table 3.10, some apparent

irregularities came to light while replicating Booth's results and these are recorded here. Table 3.11

shows the values of £f(10-19) and £(35-49) for the 33 Coale-Trussell schedules used by Booth.

+ The effect of alternative selections of Y(30) is discussed more fully later.
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Table 3.11: The 33 Coale-Trussell Schedules and the f(10-19) and £(35-49) values

Schedule ao K M f(10-19) f(35-49) Based on Criteria Used by Booth
(1) (2) (3) (4) (5) (6) (7) (8) (9)
1 10 0.7 0.2 0.1385 0.2275 Upper Tail Upper Talil
2 10 0.7 0.6 0.1650 0.1712 Lower Tail Lower Tail
3 10 0.9 0.4 0.1173 0.2198 Upper Talil Upper Tall
4 105 0.6 0.2 0.1471 0.2211 Upper Tail Upper Tail
5 105 0.6 0.6 0.1745 0.1657 Lower Tail Lower Tail
6 105 0.8 0.4 0.1216 0.2136 Upper Tail Upper Tall
7 1" 0.5 0.2 0.1578 0.2149 Both Tails Both Tails
8 11 0.6 0.6 0.1611 0.1696 Lower Tail Lower Tail
9 11 0.8 0.4 0.1098 0.2191 Upper Tail Upper Tail
10 115 0.4 0.4 0.1860 0.1806 Lower Tail Lower Tail
11 11.5 0.5 0.6 0.1724 0.1639 Lower Tail Lower Tail
12 115 0.6 0.2 0.1230 0.2303 Upper Tail Upper Talil
13 12 0.4 0.2 0.1582 0.2127 Both Tails Both Tails
14 12 0.5 0.6 0.1575 0.1679 Lower Tail Lower Tail
15 12 0.7 0.4 0.1018 0.2181 Upper Tail Upper Tall
16 125 0.3 0.2 0.1737 0.2070 Lower Tail Lower Tail
17 125 04 0.6 0.1712 0.1621 Lower Tail Lower Tail
18 125 0.5 0.2 0.1189 0.2283 Upper Tail Upper Talil
19 13 0.2 0.4 0.2075 0.1740 Lower Tail Lower Tail
20 13 0.4 0.2 0.1304 0.2213 Upper Tail Upper Talil
21 13 0.5 0.6 0.1259 0.1769 Neither Tail Neither Tail
22 135 0.2 0.2 0.1782 0.2052 Lower Tail Lower Tail
23 135 0.3 0.6 0.1718 0.1603 Lower Tail Lower Tail
24 135 0.4 0.2 0.1154 0.2262 Upper Tail Upper Tail
25 14 0.2 0.2 0.1639 0.2088 Lower Tail Lower Tail
26 14 0.3 0.6 0.1539 0.1643 Lower Tail Lower Tail
27 14 0.5 0.4 0.0850 0.2152 Upper Tail Upper Tail
28 145 0.1 0.2 0.1838 0.2036 Lower Tail Upper Talil
29 145 0.2 0.6 0.1751 0.1586 Lower Tail Lower Tail
30 145 0.3 0.2 0.1132 0.2241 Upper Tail Upper Talil
31 15 0.1 0.4 0.1844 0.1789 Lower Tail Lower Tail
32 15 0.2 0.2 0.1314 0.2173 Upper Tail Upper Talil
33 15 0.3 0.6 0.1150 0.1734 Neither Talil Neither Tail

Column 7 in the table indicates the schedules that qualify for inclusion in the tails based on the

criteria set out above. Column 8 reproduces the results from Table 3.4 in Booth (1979, p. 57) and

shows the tail to which Booth allocates each schedule - 17 for the lower tail and 16 for the upper

tail.

The inclusion of 17 schedules for the lower tail and 16 for the upper tail creates the impression

that all 33 schedules are used for the tails. However, as can be seen from column 8 of the table, this

is not case. Two schedules (7 and 13 marked with t in column 9) are used for both tails and two
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schedules (21 and 33 indicated by t) are not used for either tail. In addition, schedule 28 (marked *)
is included by Booth for the upper tail although it does not meet the pre-defined criterion since £(35-
49) 0.204. Moreover, seeing as f(10-19) 0.184, schedule 28 should be included in the group used
to calculate the standard fertility for the age bands 10-14, 15-19 and 20-24 i.c. for the lower tail'. The
reasons for these inclusions and omissions are never explained, but the effect is negligible

Once the schedules were selected, the transformations were applied and the AY , (x) values
were calculated. As stated before, the method requires a fixed starting point Y,(x) in order to
transform the AY, (x) into Y,(x) and, finally, calculate a useful ASFR. This raises a question about
how the selection of the fixed Y,(x) affects the resulting ASFR and how this starting point was
determined.

Booth (1979) asserts that changing the value of Y,(x) is the same as changing the origin of the
standard. She demonstrates that a change of origin amounts to a vertical movement of the Y-curve

such that Equation 3.30 holds at all ages.

Y (x)-Y,(x)=14d Equation 3.30

FIEH

Carrying this through to the Gompertz function implies that the cumulative fertility (under the new

origin) is related by a constant power function to the cumulative fertility of the original standard (see

Equation 3.31).
I = ¥pew (x)
¢
Fopew (x) = e
=y txy—d |
= e ¢ ;
e~ d
= [Fg(x)] Equation 3.31

In order to determine the standard, Booth selects the starting point Y. (30) = 0.7 (Booth, 1979).

However, alternative selections of a starting point will give rise to different distributions in

s Appendix B shows the impact of correctly using schedule 28 for the lower tail
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accordance with Equation 3.31. Such an alternative selection can dramatically change the pattern of

standard fertility as shown by Tables 3.12 and 3.13 and Figures 3.6 and 3.7

Table 3.12: Comparative standards arising from alternative starting values

Standard Schedule if Y(30) is:

Age Group Y(30)=1.2 Y(30)=0.7 Y(30)=0.2
10-14 0.02811 0.00277 0.00006
15-19 0.26984 0.13307 0.03714
20-24 0.25572 0.24147 0.16329
25-29 0.18626 0.23130 0.24050
30-34 0.13095 0.18757 0.24575
35-39 0.08617 0.13401 0.20079
40-44 0.03801 0.06169 0.09912
45-49 0.00493 0.00812 0.01335_

Table 3.13: Cumulative fertility arising from alternative starting values

Standard Cumulative Fertility if Y(30) is:

Age Group Y(30)=1.2 Y(30)=0.7 Y(30)=0.2
10-14 0.02811 0.00277 0.00006
15-19 0.29795 0.13583 0.03720
20-24 0.55368 0.37731 0.20049
25-29 0.73993 0.60861 0.44099
30-34 0.87088 0.79618 0.68675
35-39 0.95706 0.93019 0.88753
40-44 0.99507 0.99188 0.98665
45-49 { ! 1
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The selection of starting point Y,(30) = 0.7 indicates that Booth believes about 60 per cent of
fertility will occur by age 30. By contrast, Y,(30) = 0.2 and Y,(30) = 1.2, respectively, imply that 44
and 74 per cent of fertility will occur by age 30 (Figure 3.7).

Once the 5-year standard was determined it was extended to single years and a third apparent
irregularity is noticed. Booth (1979, p. 65) states that the "same adjustment factors" are used when
calculating the single-year standard as were used for the five-year standard. The factors derived by
Booth are k, = 0.99135 and k, = 1.02287. As discussed in section 3.3, Booth multiplies the AY
values - for all ages below 25 - with the adjustment factor k,.

Consequently, one would expect that the standard AY's (in column 3 of Table 3.14) divided by

the average AY's (in column 2) will give implied k, values equal to the k, value calculated by Booth.

Tablc 3.14: Average and Standard AY values and k, implied by these valnes

Age Average AY Standard AY implied k;
10-11 o0 w0
11-12 0.4927 048844 0.99135
12-13 0.32898 0.32713 0.99138
13-14 0.30295 0.30033 0.96135
14-15 0.30217 0.29958 0.99136
15-16 0.28611 0.28020 0.97934
18-17 0.24783 0.24225 0.67748
17-18 0.21108 0.20582 0.97508
18-18 0.19061 0.18552 0.87330
19-20 0.17290 0.18797 0.97148
20-21 0.15944 0.15805 0.89128
21-22 0.14931 0.14801 0.99129
22-23 0.14224 0.14101 0.99135
23-24 0.13759 0.13840 0.99135
24-25 ) 0.13463 0.13347 098138

suuee: Bootl (1981, 1. 34015

From the table it is clear that the implied k, values (in column 4) for the ages 15 to 19 do not equal
the value of k, calculated by Booth. Although this may initially be perceived as an irregularity, Booth
explains that this inconsistency is necessary. In particular, it ensures that cumulating the single-year
standard (in five year age groups) gives the same result as the derived five year standard (Booth

1979, p. 65).
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Finally, after calculating both the 5-year and single-year standards, Booth calculates the average
parity values corresponding "to the ages at which average and actual parities are equal" and not to

the exact midpoint of the age intervals (Booth 1979, p.80).

_ |
Fo(x,x+4)y=F, —[4.5/5(x)+ 3.5 f (x+]
s(rox £ 4) = Fo(d L1450+ 3.5/, (v + 1) Equation 3.32

2.5 [ (x+ D) F1.5F(x+3)+0.5f,(x+4)]

The above equation for P,(x to x+4) is derived through a linear approximation of the integral over
cach age range. Although the equation is mathematically correct, the coefficients derived using this
linear approximation have the effect of weighting parity-estimates towards the first age in the age
group. Although this may be reasonable for the middle and older ages, it seems inappropriate for the
10-14 and 15-19 age bands where most of the fertility occurs towards the end of the age category.

As a result, the parities for the lower age groups are too low.

3.5 Problems of Misfit

According to Booth (1979; 1984) and Brass and Airey (1988), the standard was designed for use with
the relational Gompertz model in order to correct data problems commonly found in high fertility
populations. As such, the standard should be particularly useful in Africa and especially sub-Saharan
Aftrica, since this is the region with the highest total fertility rates and arguably the poorest quality
data in the world. According to Guengant and May (2001), about a third of African countries were

vet to experience large fertility declines by the 1990's.

Evidence from the sub-Saharan Demographic and Health Surveys (DHS) show that, although
the TFR is still high by developed countries' standards, fertility in the region has indeed declined and
is still declining, supporting the findings by Cohen (1993; 1998), Garenne and Joseph (2002) and
Caldwell and Caldwell (2002). In particular, the data exhibits widespread declines in total fertility
rates for the region starting two decades ago.

Irrespective of the cause of these declines the result remains that fertility rates can no longer
be termed high by 1980 standards. Given this decline one must consider that Booth (1979; 1984)
warns against using the standard if the high fertility assumption is not met. She and others (notably,
Zaba (1981) and Brass and Airey (1988)) argue that differences in the shapes of fertility will result in

poor estimates if the standard is incorrectly used. The reason is that the Relation Gompertz Model is
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based on the premise that the standard fertility pattern adequately represents the fertility pattern of
the population being modelled.

By contrast to Booth, Brass and Zaba, some authors and analysts (e.g. Udjo 2003) consistently
apply the relational Gompertz model, using the Booth standard, with disregard for these specified
restrictions. By using the relational Gompertz model for analysis despite these warnings, it is argued
implicitly that the magnitude of the location parameter a and spread parameter ]) does not adversely
affect the accuracy of the analysis. This would be true if the age-specific fertility patterns were the
same in high and low fertility settings, since the problem will reduce merely to an estimation of the
differences in level. In addition, since Zaba's restatement already eliminates the effect of differences
in level, the Booth standard may be used if the patterns of fertility are consistent among all
populations. However, Figure 3.8 demonstrates that fertility patterns are not the same for all

populations.
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Figurc 3.8; Standardised ASFR for the Booth standatd, low and high fettility populations®

“The high- and low fernlity populanons are, respecnvely, the African and Whire populanons of South Africa. The 1996
Census data are used for the white population. This population is used because there were sample size problems for this
group i the 1998 DHS (Moultrie and Timwews, 2002, p. 19).
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As a result, the appropriateness of the Booth standard for different populations is more completely

investigated in sections 3.5.1 to 3.5.3.

3.5.1 The Booth standard and low fertility populations

The degree of deviation observed in Figure 3.8 between the standard and the low fertility population
is strongly suggestive that the Booth standard cannot be used to model this population. The reason
is that the misfit between the schedules will impose bias upon the fertility estimates, since an
inappropriate pattern of fertility is forced upon the analysis.

In particular, as already discussed, Booth and others warn that estimates derived using the
relational Gompertz model with the Booth standard when the undetlying pattern of fertility differs
will result in poor and biased estimates. If the parameters fall outside the ranges specified by Zaba
(1981) then the assumption that limits the Taylor expansion to two difference terms is violated and
the third and subsequent terms of the expansion become significant.

An example of this occurs in the handling of the South African fertility data by Udjo (2003).
He applies the relational Gompertz model to both the high and low fertility populations. However,
Udjo's results (p. 422-423) show that 5 of the 16 current estimates and 9 of the 24 period estimates
have the p-parameter outside the critical range specified by Zaba. Significantly, all these estimates are
for the two low fertility populations — Indian and White. In fact, for the two low fertility populations
5 of the 8 current estimates and 9 of the 12 period estimates fall outside Zaba's range.

Undoubtedly, it is the lack of statistical correspondence observed in the patterns of fertility -
illustrated by Figure 3.8 - that results in these significant B-estimates . This strongly suggests that the
relational Gompertz model cannot be applied to such dissimilar distributions since the conclusions

drawn and estimates detived must be flawed even if the results seem reasonable.

3.5.2 The Booth standard and high fertility
By contrast, there is fair correspondence between the South African high fertility population and the
standard. The similarity in shape immediately suggests that the Booth standard may be appropriate
when modelling this population.

However, the overstatement of 20-24 fertility and severe underestimate for 45-49 fertility
raises concerns. These discrepancies may come from differences in timing, location and tilt between
the high fertility population and the standard and this could result in significant a-values in the

relational Gompertz model. Although significant a-values still affect the shape of the fertility
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distribution the problem is less serious, since the simplification applied to the Taylor expansion
remains valid.

Despite the large difference in the upper tail there is a much closer fit between the standard
and the high fertility population than for the low fertility population discussed in section 3.5.1. This
close tit; B-estimates within an acceptable range; and the fact that Booth (1979; 1984), Zaba (1981)
and Brass and Airey (1988) all state the model should be used to correct errors in high fertility
populations create the impression that the standard is applicable to all high fertility settings. In
addition, the standard has been used for high fertility populations - and, on occasion, inappropriately
for low fertility populations - for more than two decades. This supports the belief that the standard
is appropriate for analysis in high fertility settings.

Investigations were undertaken on 61 sub-Saharan Demographic and Health Surveys in order
to establish if the standard can be employed in these high fertility populations. Figure 3.9 compares

the standardised age-specific fertility data from the 61 DHS schedules to the Booth standard.
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61 African DHS Popuiations  --&-Booth

Figurce 3.9: Standardiscd ASFR of the Booth Standard compared to 61 African DIIS
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From Figure 3.9 one could deduce that the standard is indeed applicable to all high fertility settings.
The large number of schedules plotted in Figure 3.9, however, obscures actual differences. Also,
looking at the 45-49 age group it appears that the understatement in old age fertility persists for the

sub-Saharan DHS.

3.6 The African Pattern and the Booth Standard

The consistent underestimate of 45-49 fertility and the broadly similar patterns of fertility observed
in Figure 3.9 suggest that a distinct African pattern exists among the sub-Sahara African DHS. In
addition, deriving an African pattern will ease comparison within the region as well as with the
Booth standard. Although the standard will clearly understate 45-49 fertility for the African pattern,
since it understates £f(45-49) for the individual DHS schedules, it will nevertheless allow a more

practical quantification of this disparity.

3.6.1 Developing an African pattern

In order to investigate and develop an African pattern it is important to determine which schedules
to include. The age-specific fertility rates were ranked for each of the seven age groups. For each
survey a value of one was given to the age group with the highest ASFR and a value of seven to the

age group with the lowest ASFR. The results of this ranking process are given in Table 3.16.

Table 3.15: Ranking of ASFR for the 78 Sub-Saharan Africa DHS

Sum 20-24
DHS 15-19  20-24 2529  30-34 35-38  40-44 4549  and 25-29
1 South Africa 1998 4 2 1 3 5 6 7 3
2 Lesotho 2004 5 1 2 3 4 6 7 3
3 Zimbabwe 1999 4 1 2 3 5 6 7 3
4  (Gabon 2000 4 1 2 3 5 B 7 3
5 Namibia 2000 5 2 1 3 4 B 7 3
6 Zimbabwe 1994 5 1 2 3 4 6 7 3
7 Ghana 1998 5 2 1 3 4 5] 7 3
8 Ghana 2003 4 1 2 3 5 6 7 3
9 Mauritania
2000/01 4 1 2 3 5 6 7 3
10 Comoros 1996 5 1 2 3 4 5] 7 3
11 Kenya 1998 5 1 2 3 4 6 7 3
12 Nigeria 1998 (1) 5 1 2 3 4 5] 7 3
13 Sudan 1980 4 1 2 3 5 6 7 3
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14 Cameroon 1998
15 Congo 2005
16 Eritrea 2002
17 Botswana 1988
18 Kenya 2003
19 Cameroon 2004

20 CAR 1994/95
21 Cote
d'lvoire 1998/99

22 Ghana 1993
23 Madagascar 2003/
2004

24 Mozambique 1997
25 Togo 1998

26 Cote d'lvoire 1994
27 Senegal 2005

28 Kenya 1993

29 Zimbabwe 1988
30 Ethiopia 2005

31 Namibia 1992

32 Guinea 1999

33 Mozambique 2003
34 Ethiopia 2000

35 Benin 2001

36 Tanzania 1999

37 Guinea 2005

38 Tanzania 2004

39 Nigeria 2003

40 Senegal 1997

41 Cameroon 1991
42 Tanzania 1996

43 Rwanda 2000

44 Burkina Faso 2003
45 Zambia 2001/02 (2)
46 Ondo State 1986
47 Benin 1996

48 Madagascar 1997
49 Malawi 2004

50 Nigeria 1990

51 Senegal 1992/93
52 Eritrea 1995

53 Madagascar 1992
54 Zambia 1996

55 Rwanda 2005
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56 Tanzania 1992 4 1 2 3 5 6 7 3
57 Rwanda 1992 5 1 2 3 4 6 7 3
58 Chad 2004 4 1 2 3 5 6 7 3
59 Malawi 2000 4 1 2 3 5 6 7 3
60 Burkina

Faso 1998/99 4 1 2 3 5 6 7 3
61 Chad 1996/97 5 2 1 3 4 6 7 3
62 Ghana 1988 5 3 1 2 4 6 7 4
63 Senegal 1986 6 3 1 2 4 5 7 4
64 Togo 1988 5 3 1 2 4 6 7 4
65 Burkina

Faso 1992/93 6 3 1 2 4 5 7 4
66 Zambia 1992 6 3 1 2 4 5 7 4
67 Kenya 1989 5 3 1 2 4 6 7 4
68 Liberia 1986 5 3 1 2 4 6 7 4
69 Malawi 1992 5 3 1 2 4 6 7 4
70 Mali 1995/96 5 3 1 2 4 6 7 4
71 Mali 2001 5 3 1 2 4 6 7 4
72 Uganda 1995 6 3 1 2 4 5 7 4
73 Uganda 2000/01 6 3 1 2 4 5 7 4
74 Burundi 1987 6 3 1 2 4 5 7 4
75 Niger 1992 6 3 1 2 4 5 7 4
76 Mali 1987 7 3 1 2 4 5 6 4
77 Niger 1998 6 3 2 1 4 5 7 5
78 Uganda 1988 5 3 2 1 4 6 7 5

Source: Measure DHS STATCompiler

For 61 of the 78 surveys, the sum of the ranks for these two age groups (given in the last column) is
equal to three. That is, fertility was highest between ages 20 and 29 years while exhibiting the same
tlat distribution over the remaining age ranges. For this reason these 61 schedules (78 per cent) are
believed to represent sub-Saharan African fertility. By contrast, the majority of the schedules
excluded are West African and, in particular, Sahelian - Ghana, Burkina Faso, Mali, Niger and
Senegal.'

From the 61 selected schedules a mean and variance are calculated for the standardised fertility
rates in each age group. These statistics are then used to identify the 11 schedules containing outliers
in one or more age groups. However, only two of these have outliers in more than one age group

and the exclusion of these schedules has a negligible effect on the calculated pattern of age-specific

7 This suggests the presence of a second pattern pertaining specifically to the Sahelian region. However, this thesis
focuses only on the 61 surveys that have a similar shape.
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fertility. Given that no schedules are excluded the mean fertility rates for each group can be used to

obtain an average age-specific fertility schedule (Table 3.17 and Figure 3.10).

Table 3.16: Booth Standard compared to African Pattern

_Age Groups Booth Standard  African Pattern

15-19 0.13584 0.12707
20-24 0.24147 0.22663
25-29 0.23130 0.22020
30-34 0.18757 0.18969
35-39 0.13401 0.13968
40-44 0.06169 0.07053
45-49 0.00812 0.02621

The schedule given in Table 3.17 also minimises the sum of squared deviations and gives the
maximum likelihood estimates for each age group. As a result, it is believed to best represent the

pattern of African fertility.

3.6.2 Misfit of the Booth standard to the African pattern
As expected, given that the Booth standard understated 45-49 fertility for the individual DE-IS

schedules, the Booth standard also underestimates the African pattern (Figure 3.10).
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In fact, £(45-49) in the Booth standard is only 31 per cent of the average DHS fertility level. This
casts serious doubts over the appropriateness of the Booth standard for sub-Saharan African
settings.

Figure 3.10, combined with the results from section 3.5, demonstrates that problems can arise
for both high and low fertility populations. It is observed that there are differences between the
shapes of the Booth standard and the populations discussed irrespectively of the fertility level.
Critically, the conclusion must then be reached that it is the paztern of fertility that determines the
appropriateness of the standard and not the level of fertility. Although, of course, pattern and level
are not separate from each other or independent. As such, it seems inappropriate to refer to a high

fertility pattern and reference should instead be made to the African pattern observed for these

populations.

Figure 3.9 shows that the Booth standard not only understates f(45-49) but f(40-44) is also low and lies near the
bottom of the cluster of DHS schedules. Figure 3.10 shows that the African pattern has a slightly higher f(40-44) than
the Booth standard. Although this difference appears small it is significant. In particular, only 13 of the 61 DI IS
schedules have f(40-44) smaller than the Booth standard but 32 schedules lie below the African standard.
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3.7 Data and Criteria Concerns

As a result of the misfits observed in sections 3.5.2 and 3.6.2, the standard must be further
investigated to ascertain the reason for the consistent understatement. It is reasonable to begin by
interrogating the data and criteria upon which the standard is based. As discussed in section 3.3,
Booth selected 33 Coale-Trussell schedules as basis for the development of the standard, but
recognised the need to increase fertility in the tails of the distribution. Two criteria were set to
achieve this - £f(10-19) > 0.15 and £(35-49) > 0.21. The former ensures that schedules with high early
fertility are used to determine fertility at the youngest ages. Similarly, the latter criterion guarantees
that schedules with high old age fertility are used to obtain the standard levels for the older age
groups.
These two conditions are compared to the age-group specific fertility rates observed for the 61

DI-IS populations (Table 3.18).

Table 3.17: Iivaluation of the Booth Criteria for inclusion in the dataset

33 Coale-Trussell Schedules 61 DHS Populations
_fr10-19) f(35-49) f(10-19)° £(35-49)
Average 0.14818 0.19701 0.12706 0.23892
Minimum 0.08499 0.15864 0.08549 0.18505
_Maximum 020747  0.23030 0.16845 0.29814

The table results suggest that the criterion £f(10-19) > 0.15 is too high. This is evidenced by Booth
schedules with a 17 per cent higher average and approximately 25 per cent higher maximum than
the DHS schedules. This higher average level of early fertility will suppress 45-49 fertility since
fertility is cumulative and must always reach its maximum by age 50 (the accepted end of the fecund
period).

By contrast, the second criterion - £(35-49) > 0.21 - would appear to be too low. As can be
seen in the table the maximum of the DHS populations is 29.5 per cent above the Booth equivalent.
The disparity is further emphasised by the fact that even the average of the DHS schedules is higher
than the maximum of the 33 Coale-Trussell schedules. Although the criterion states "greater than" -
leaving the upper end open - the starting value of 0.21 clearly allows the inclusion of too many low

values and, consequently, 45-49 fertility is further restricted.

° The DHS data does not include f(10-14) and it is assumed to be negligible with the result that f(10-14) 0.0.
Consequently, f(10-19) = f(15-19) for these populations.
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These results suggest that the problem lies not with the methodology Booth employed, but
with the dataset upon which the standard is based. As such, it becomes important to assess the
dataset used by Booth. She sets the criteria 10 < a,,« 15,0.1 < k<1, 0 <m < 0.6 and SMAM" <
21 to select a sub-set of 33 Coale-Trussell schedules believed to capture high fertility patterns (Booth
1979, p. 49).

Exploration of the data in Sections 3.5.2 and 3.6.2 reveal that the disparity between the DHS
and Booth data is most evident in the 45-49 age group. Table 3.19 compares the average, minimum

and maximum values of fertility for the 45-49 age group.

Table 3.18: Compatison of the {(45-49) values

33 Coale-Trussell 61 DHS
o Schedules Foputations
Average 0.00810 0.02621
Minimum 0.00580 0.00949
Maximum 0.01021 0.05324

The table shows that the Coale-Trussell values are significantly lower than the equivalent measures
for the 61 surveyed populations. The average and maximum of the sub-Saharan populations are
respectively 220 per cent and 420 per cent higher than the equivalents for the data used by Booth.
Critically, the maximum of the 33 Coale-Trussell schedules - £(45-49) = 0.01021 - is barely higher
than the minimum for the DHS populations - £(45-49) = 0.00949.

Figure 3.11, similarly, illustrates the disparity between the fertility rates of the 61 DHS surveys
and the Booth standard for the 45-49 age group.

-'SMANI is a frequently used abbreviation for the Singulate Mean Age at Marriage.
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Figure 3.11: Ratio of the 45-49 fertility of the sub-Saharan DHS to the Booth Standard

Having removed the level effect - by standardising the data to a TFR of one - inspection of Figure
3.11 shows that the difference between the Booth standard and sub-Saharan fertility rates for the 45-
49 age group ranges from 17 per cent (Gabon 2000) to 555 per cent (Nigeria 1990) with an average
difference of 224 per cent.

This supports the finding that it is the pattern of fertility - and not the fertility level - that
determines if a standard is appropriate. In addition, from Tables 3.18 and 3.19 as well as Figures 3.10
and 3.11, one must conclude that the Booth standard does not and cannot capture the effect of old

age fertility for these African populations.
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4 ALTERNATIVES TO THE BOOTH STANDARD

Chapter 3 showed that the Booth standard is not appropriate for use in the analysis of sub-Saharan
Africa populations and that the data used by Booth cannot be employed to develop an alternative
standard for African settings. However, the Coale-Trussell model cannot be summarily rejected as a
data source based on evidence from only 33 schedules. As a result, the Coale-Trussell model must
be reinvestigated to establish if an alternative data set can be found that will yield a standard fertility

pattern more appropriate to the African DHS populations.

4.1 Automating the Coale-Trussell Model

Booth (1979) reworks the original Coale-Trussell model, written in FORTRAN, to include two more
ages at the bottom end in order to fully capture high fertility patterns. This meant extending v(a) and
n(a) by two more values and Booth uses the logical (linear) extensions: v(10) = 0.0, v(11) = 0.0, n(10)
=0.005 and n(11) = 0.100 (Booth 1979, p. 232).

In order to assess the approptiateness of the Coale-Trussell model, Booth's extended version
was reprogrammed using MS Excel. The problem is that this model only produces one schedule at a
time and identifying sufficient schedules to analyse takes considerable time and effort. To avoid this,
the coding has been automated using the macro functionality in MS Excel" and the constraints
Booth places on the three input parameters (8,, k and m) are dropped to ensure the capture of a
broader, more inclusive range of fertility distributions.

To this end, the value of a, is allowed to vary within the range [9.25, 19] in increments of 0.25
years. Similarly, the parameters k and m are both allowed to take values between 0.05 and 2
(inclusive) in intervals of 0.05. This yields 40 categories for each parameter and results in a total of
64000 (40x40x40) schedules.

Each of these schedules includes a 10-14 age category that is not included in the DI IS which
starts at the 15-19 age group. In order to accurately compare the model schedules with the observed
DHS populations this irregularity must be addressed. There are two possible ways of dealing with
this. First, the fertility for the 10-14 age group can be proportionately reallocated to all other age
groups. The alternative method - adopted here - is to include the 10-14 fertility in the 15-19 fertility.

It is intuitively reasonable, since £(10-14) is part of early fertility, to include it with other early

" The automated MS Excel code is included in Appendix C.
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tertility. However, since £(10-14) is small, the effect of its inclusion in f(15-19) is negligible as regards
the shape of fertility for these schedules. After this alteration the model schedules and the DHS
populations both apply to the same age groups (15-19, 20-24, ..., 45-49) and can be compared

sensibly.

4.2 Comparing the Coale-Trussell Model and DHS Populations

The comparison begins by applying the procedure, discussed in section 3.5, for ranking the age-
group specific fertility rates. It was observed that for 61 of the 78 DHS for sub-Saharan Africa
populations the majority of fertility occurs in the 20-24 and 25-29 age groups. Put differently, if the
age-group specific fertility rates are ranked in decreasing order, then the sum of the ranks for £(20-
24) and £(25-29) equal three.

This methodology is extended in an analogous manner to the age-specific fertility rates of the
64000 schedules produced using the automated version of the model. The ranks of the 20-24 and
25-29 age groups are added and the totals recorded. Only schedules with a total sum of ranks of
three are included for analysis resulting in a subset of 23864 schedules. These schedules form the
complete set that can possibly be used to establish a new standard for sub-Saharan populations.

Investigation of these schedules shows that the understatement of £(45-49) observed for the
Booth schedules is not an artefact of the selection criteria. Instead, this underestimate exists for all
23864 Coale-Trussell schedules. In fact, the subset maximum of £(45-49) = 0.0135 is only 52 per
cent of the average level observed for the 61 DHS populations - £f(45-40) = 0.0262.

Furthermore, the schedule with the highest 45-49 fertility does not reflect the pattern of the
African fertility pattern (Figure 4.1). By contrast, the Coale-Trussell schedule defined by the
parameters @, = 12.5, £ = 0.45 and m = 0.15 provides the closest fit to the African pattern based on
minimising the sum of squared error.

However, as seen in Figure 4.1, despite the remarkably close fit over the ages 15 to 44 a
dramatic underestimate is observed for the 45-49 age group. In fact, the best-fitting schedule

understates 45-49 fertility by more than 150 per cent.
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Figure 4.1: Comparison of average DHS fertility with two Coale-Trussell populations

4.3 Coale-Trusscll Model Reworked

The ditferences observed 1n sections 3.5 and 4.1 nccessitate a reassessment of the Coale-Trussell
tormulation. However, as discussed i secnon 2.5, Xie (1990) and Xic and Pimentel (1992) already
reformulate the Coale-1'tussell model 1n an attempt to matntain its relevance in the face of mountng

criticism. Xie (1990) focuses on adjusting the vecror #fa) whilst Xie and Pimentel (1992) modity g/

43.1 Coale-Trussell using Xie n(a)
Nie (1990) destved revised values of #fe) and these values - tor the age groups 20-24, 25-29 ... 40-

44 and 45-49 - arc grven i "lable 4.1,

Table 4.1; Standardized n(a) values for the Xie Independence and Coale-Trussell modcls

Age Group 2024 2529 30-34 3539 4044 4549
Xie n(a) 0460 0436 0392 0333 0199  0.043
Coale-Trussell n(a) 0.460  0.431 0395 0322 0167 0.024

Obtamed from Table 2 by Xie (1990 p 66()
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As can be seen, the differences between the n(a)-values derived by Xie and Coale-Trussell values are
only large in the last age group. This increase suggests that fertility modelled using the revised n(a)
will have higher fertility for the 45-49 age group. In particular, it must be tested if this increase will
result in a sufficient increase in £(45-49) to adequately model the African pattern.

However, to test this the n(a)-values need to be extended to include the 10-14 and 15-19 age
groups. Examination of the sub-Saharan DHS population fertility rates suggests a value for the 15-
19 age group of 57 per cent of the ASFR for the 20-24 is reasonable. By contrast, the fertility for the
10-14 age range is small and a value of 0.05 is used.

Since the Coale-Trussell model requires age-specific values of n(a) the values derived for the
age groups must be separated into single year values. This extension to single years was done using
Beers' formula (Shryock and Siegel 1976) and results in the n(a) values given in Table 4.2 and figure
4.2.

Table 4.2: Xic single-year n(a) resulting from Bects

Age Xie n{a) after applying Beers Age . Xie n{a) after applying Beers
10 0.000 3 0.404
11 0.006 32 0.385
12 0.049 33 0.385
13 0.094 34 0.374
14 0.140 35 0.361
15 0.185 36 0.346
16 0.232 37 0.329
17 0278 38 0.308
18 0.323 39 0.285
19 0.385 40 0.258
20 0.401 | 41 0.228
21 0.431 42 0195
22 0.452 43 0.162
23 0.464 44 0.128
24 0.468 45 0.087
25 0.464 | 46 0.069
26 0.456 47 0.045
27 0.445 48 0.028
28 0434 49 0.013
29 0423 50 0.007
30 - 0.413
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Figure 4.2: Natural fertility schedule, n(a), as derived by Xie (1990)

Next, the new n(a) standard - listed in Table 4.2 - is included in the automated Coale-Trussell model.
Using the same process as before establishes an alternative dataset of 64000 schedules based on
these revised values. Although the resulting schedules are unlikely to be too different the hope is
that the schedules will be sufficiently different in the last age group to overcome the misfit observed
for the original Coale-Trussell model.

Following the same procedure as before the age-group specific fertility rates are ranked from
large to small and the ranks are summed. Of the 64000 schedules 27144 have a sum of three for the
ranks of the 20-24 and 25-29 age groups.

Not only do more schedules meet the sum of ranks criterion but, as expected given the higher
n(45-49), £(45-49) is also higher for the second model than in the original formulation. Inspection of
the new subset shows that the maximum ASFR in the oldest age category has increased by 32 per
cent from f(45-49) = 0.0135 to £(45-49) 0.0178 . However, this is still only about 68 per cent of the
average African level - £(45-49) = 0.0262.
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In addition, as before, the population with the highest 45-49 fertility rate (given by the
parameters @, = 18.5, K = 0.2 and m = 0.05) does not reflect the African pattern. A better overall fit
can be achieved by an alternative parameterisation (a, = 10.5, K = 0.55 and m = 0.15) but with a

disparity of 90 per cent for the oldest age group (Figure 4.3).
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Figure 4.3: Comparison of the African pattern with two schedules using changed n(a)

Consequently, the modified Coale-Trussell model still cannot accurately model the African fertility
pattern and the problem clearly persists for the oldest age group despite the increases recorded in

f(45-49).

4.3.2 Coale Trussell with alternative v(a)

The improvement in old age fertility is encouraging since the second rework by Xie and Pimentel
(1992) - discussed in section 2.5.2 - is also expected to increase £f(45-49). The reformulation by Xie
and Pimentel tries to rescue the Coale-Trussell model by restating it as a statistical method and
deriving a new series of v(a)-values. Table 4.3 compares the v(a)-values derived by Xie and Pimentel

(1992) with the original v(a) determined by Coale and Trussell (1974).

Defining a sub-Saharan Fertility Pattern and Standard 60



Table 4.3: Standardized v(a) values for the Coale-Trussell and Xic-Pimentel models

Age Group 20-24 25-28 30-34 _35-38 40-44 45-49
Xie-Pimentel v{a) 0 -0.329 -0.713 -1.194 -1.671 -1.082
_Coale-Trussell v{a) 0 -0.279 0677 1042 -1.414 -1.671

By contrast to the original v(a)-values, the v(a) schedule derived by Xie and Pimentel decreases over
the age range 25-44, but increases again for 45-49. The upshot of the increase in v(a) for the 45-49
age group is that fertility schedules derived using these V(&) should show higher 45-49 fertility since
the reduction effect - fertility control - is smaller.

To test this, the Coale-Trussell model utilized in section 4.2.1 is extended further to include
the new estimates of v(a). This is achieved by, first, converting the v(a)-values listed in Table 4.3 to
single year values'- (Table 4.4 and Figure 4.4) and, second, replacing the original v(a) in the Coale-

Trussell model with the revised values.

Table 4.4: Xie and Pimentel single-year v(a) tesulting from Beers

Age Xie and Pimente| v(a) Age Xie and Pimentel v(a)

10 0 31 -0.629
1 0 32 -0.715
12 0 33 -0.805
13 0 34 -0.588
14 0 35 -1.001
15 0 36 -1.115
16 0 37 -1.235
17 0 38 -1.356
18 0 39 -1.470
19 0 40 -1.556
20 0 41 -1.601
21 0 42 -1.602
22 -0.012 43 -1.557
23 -0.051 44 -1.473
24 -0.103 | 45 -1.365
25 -0.166 46 -1.246
26 -0.238 47 -1.133
27 -0.313 48 -1.036
28 -0.391 49 -0.968
29 -0.469 | 50 -0.937
30 -0.548 |

12 This 15 again dene using Beers” formula and selting via) Lo 0.0 for ages 20 and below.
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Figure 4.4: Schedule of fertlity control, v(a), derived by Xie and Pimentel (1992)

This latest revision incorporates both the revised n(a) and v(a) and produces another dataset of
64000 schedules. As before, the sum of ranks criterion is used to identify a subset of schedules most
likely to be appropriate for African populations. Using the sum of ranks constraint reduces the
dataset to 29570 schedules for analysis.

Examination shows that these schedules have a maximum £(45-49) of approximately 0.0195
obtained for the schedule given by a,= 11, k =2 and m = 1.3. This is a further increase of 9.6 per
cent over the maximum recorded in section 4.2.1. Despite the improvement of almost 44 per cent
over the original 45-49 fertility, this maximum is about 35 per cent below the equivalent African
level and the problem clearly persists. In addition, this schedule - like the schedules in sections 4.2
and 4.3.1 - must be rejected for the African populations since it does not sufficiently resemble the
African fertility pattern (Figure 4.5).

As with the two models discussed in sections 4.1 and 4.2.1, a better overall fit to the African
pattern can be found with an alternative parameterisation. The schedule with the best overall fit (i.e.

the lowest sum of squared error) is defined by the parameters a, = 9.5, kK = 0.65 and 7z = 0.15.
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TMowever, this schedule reports age-group specific tertility for the 45-49 age group of 0.0151 which

is a 72 per cent understatement relatve to the average sub-Saharan DLIS level.

0.35
0.30
0.25

0.20

ASFR

6.15

0.10

0.05

0.00
15-19 20-24 25-29 30-34 35-39 40-44 45-49

Age Group

-~ African Pattern —ii~Best Fitting: a0 =95 k=085 m=015
<= Highest f{45-49): a0 =11, k=2, m=13

Figure 4.5: Comparison of the African pattern with two schedules nsing changed v(a)

Despite the improvements by Xie (1990) and Xie and Pimentel (1992) the model continues to
understate fertility in the oldest age group. Although successfully adjusting r(a) and increasing

fertility in the oldest age group, even the best-fitting schedule understates £f(45-49) by more than 70

per cent.

4.4 Problems with the Coale-Trussell Model

The systematic underestimation of the 45-49 fertility observed in all three formulations of Coale-
Trussell model indicates problems underlying the model. As discussed in section 2.4, the model

calculates age-specific fertility rates using Equation 4.1.

fla) =G (a) *r(a) Equation 4.1
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That is, fertlity at age ais the product of the marital fertlity, r(a), and the proportion of women
married by that age, G(8). However, this formulation assumes that fertility occurs mostly within
marriage and that the proportion ever-married is high. Critically, Coale and Trussell state that
problems can be expected "when nuptiality is changing rapidly" suggesting that the method is highly
dependent on nuptiality (Coale and Trussell 1974, p. 193).

4.4.1 Emphasis on marital fertility

The initial emphasis on marital fertility was appropriate because marriage acted as a proxy for
entrance into sexual activity and exposure to fertility. However, since the 1960s there has been an
increase in non-marital fertility. In particular, Anderson and Silver (1992) and Hinde (1998) report
high non-marital fertility in the United Kingdom (30 per cent reported by Hinde) and the rest of
Europe. In addition, Tomasson finds that 54 per cent of Swedish fertility occurred out-of-marriage
in 1996 (Tomasson 1998). These results suggest that marriage is no longer a good indicator of
fertility (Anderson and Silver 1998; Tomasson 1998; Department of Health 2007).

Hinde argues that the legal definition of marriage is too narrow and that fertility analysis
should rather consider cohabitation (Hinde 1998, p. 122). This reformulation appears to be
strengthened by the results obtained by Tomasson (1998) which shows that single-parenting is much
lower (below 16 per cent) than non-marital fertility demonstrating a shift in attitudes towards
marriage and the timing of marriage. Regarding Africa, Budlender, Chobokoane and Simelane (2004)
show that marriage in South Africa is not clear owing to differences in definition between cultures
and religions. Similar differences can be expected in many other African countries since the same
problems - as described by Budlender, Chobokoane and Simelane (2004) - exist for these
populations.

In terms of the Coale-Trussell method, the observed increase in illegitimate births, difficulty in
defining marriage and changing attitudes towards marriage violate the core assumptions of the
method. This necessitates the re-evaluation of the model formulation and the functions G(a) and
r(a).

One alternative is to build on Hinde's reasoning and possibly recast G(8) and r(a) in terms of
sexual exposure rather than marriage. Although outside the scope of the current project - which
emphasises the use of alternative methods to the Coale-Trussell model for analysis of African data -

this will require a reassessment of both r(a) and the Coale-McNeil function G(a).
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Conversely, it can be argued that people are still marrying but that this occurs later - as implied
by the results from Tomasson (1998) - yet they are gtill exposed to the same risk of fertility through
sexual activity (possibly while cohabiting or in stable sexual relationships). Using this reasoning the
progression into "stable sexual union" or "sexual activity" could conceivably follow the same pattern
as was previously used for marriage - the Coale-McNeil Ga).

With such a large portion of fertility occurring out of marriage one can, further, reason that
fertility occurs at the desired time. That is, the timing of births are no different to what it would have
been had the persons been married. Again, although outside the scope of this project, this
hypothesis should be tested. However, if the hypothesis is accepted, then one can conclude that the
same control as before, v(a), is exercised to restrict fertility below natural levels, nfa). As a result, the
Coale-Trussell model can be used unchanged except for the interpretation of the functions G(a) and
r(a) and vectors nfa) and v(a). This hypothesis, then, would imply that the Coale-Trussell method can
be used to model fertility and develop a fertility standard.

However, the fundamental problem with the continued use of the Coale-Trussell method is
that it does not address the misfit observed between the model and empirical data. In particular, r(a)
has already been altered by Xie (1990) and Xie and Pimentel (1992), through changes to n{a) and v(a),
with little impact on the underestimate of £(45-49). This necessitates an investigation of the function

Gla).

4.4.2 Small values of k

According to Coale and Trussell (1974) the function G(a) depends on two variables a, and k. As
explained in section 2.4, a is the starting age and k represents the deviation in the pace of first
marriage from that of the 19t century Swedish population used as a standard.

In particular, a value of k = 0.5 is equivalent to stating that 50 per cent - of those who will
eventually marry - do so within 5 years after the starting age. Similarly, k = 0.3 and k = 0.1 imply 50
per cent are married within 3 years and 1 year, respectively.

This is of concern since, to obtain a reasonable fit over the majority of the age intervals, the
value of k must be small. For example 23 of the 33 schedules identified by Booth as having high
fertility patterns report k.5 0.5. Of these, 12 have k 5 0.3 with two schedules giving k = 0.1.
Likewise, the best-fitting schedules from the three models discussed in sections 4.1 and 4.2 give two

k-values of 0.45 and one of 0.65.
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The problem is illustrated graphically in Figure 4.2 where the small k-values result in a sharp
increase of marriage rates. In particular, the figure shows a rapid progression to marriage as
demonstrated by schedule 28 from Booth (defined by parameters a, = 14.5, k = 0.1 and in = 0.2).
This schedule goes from O per cent married at age 14 to more than 90 per cent married at age 16.

The majority of the other schedules Booth identified experience similarly quick marital rates.
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Figure 4.6: Proportion married by age, G(a), for schedules 15 and 28 identified by Booth

4.4.3 Shape of G(a)
Figure 4.6 shows the high eatly marriage rates that result from small values of k, but also reflects the

S-shape of G(a). Figure 4.7 further demonstrates the differences in shape of the nuptiality curve,

Gf(a), for different levels of k for a, = 10.
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Figure 4.7: Proportion married by age, G(a), for different levels of k holding a, constant

The S-shape of Gifa) is clear even for the highest values of £ and this can be explained using

liquanons 4.2 and 4.3.

19465 .
gla) = uexr}[ —0.174 W — exp{ -0.2881 W )] Equation 4.2
where
W= a-4ag __60?1 Equation 4.3

k

Since & and @, arc positive constants, the value of gfe) increases up to a maximum at age

a=7.8103 *k +a, (Appendix D). This translates into an increase in () at an increasing rate
untl gl reaches its maximum. After gfe) reaches its maximum it begins to decreasc and the rate of

increase in G slows down giving tise to the observed S-shape.
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The asymptotic approach to 50 resulting from the S-shape, combined with the rapid
progression to marriage, makes it virtually impossible to achieve the appropriate level of 45-49
fertility. The reason is that given the cumulative nature of fertility the inflated early fertility will
suppress later fertility. In addition, the gradual approach to the maximum occurs in small, decreasing

increments further suppressing 45-49 fertility.

4.5 Alternatives to the Coale-Trussell Model

The misfit of 45-49 fertility observed in section 4.2 and the problems leading to these
underestimates (discussed in section 4.3) necessitate an analysis of alternative methods of
representing sub-Saharan Africa data, particularly if a different standard is to be developed.

Hoem et al. (1981) analyse Danish fertility data using a number of different fertility
distributions. They conclude that the cubic spline provides the best fit and that the Brass polynomial
is less accurate. They also find that the Hadwiger function, Gamma density and Coale-Trussell
model produce equally good results for human populations and deem these functions joint second
best (Hoem, et al. 1981). As a result, the Gamma density is dismissed for the purposes of analysing
the sub-Saharan populations since it provides no additional benefit over the Coale-Trussell model
and Hadwiger function.

However, section 4.2 has already shown that the Coale-Trussell model is not appropriate for
the sub-Saharan populations being considered. Gage also dismisses cubic splines for mammalian
populations since it "requires good undetlying empirical data" (Gage 2001, p.490). Hence, by the
same argument cubic splines are dismissed for the sub-Saharan populations due to the enduring
problems around data quality.

Gage further shows that the Brass polynomial cannot be rejected in favour of other, more
complex, methods (Gage 2001). Consequently, both the Brass polynomial and Hadwiger functions
are investigated for the usefulness in measuring and capturing African fertility patterns. These

functions will then be evaluated against each other using graduation methods.

4.5.1 Brass polynomial
As shown in Section 2.6.1 and Appendix E, the Brass polynomial can be generalised and simplified
to express the age-specific cumulative fertility rates in terms of the starting age, s, and the length of

the fertility period, iv.
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In order to determine the appropriateness of the Brass polynomial to an African pattern this
generalised equation was applied to the DHS data. As before, a macro in MS Excel 2007 was used to
automate the production of these schedules. The parameters were allowed to vary such that 9 <s <
21 and 22 5_ w < 52. This produced 36000 schedules for analysis and the resultant age-specific
fertility rates are ranked using the same procedure as before. Investigation shows that 11055 meet
the criterion that the sum of the ranks for the 20-24 and 25-29 age groups equals three. The average
DHS fertility rates are then compared to the approximately 11000 remaining schedules by
minimising the sum of squared differences (SSE).

The best fit is achieved by the schedule with parameters S = 13.2 and w = 38.9 (SSE =
0.00034). However, like the Booth standard and the Coale-Trussell models discussed above, this
schedule gtill understates 45-49 fertility by almost 27 per cent. Although this is an improvement, a
closer match to £(45-49) is achieved with the parameters S= 13 and n) = 39.8 while maintaining good

overall fit (SSE = 0.00040). Table 4.5 compares the African pattern to the latter model schedule.

Table 4.5: Model schedule using the Brass polynomial

X African f(x.x+4) Model Schedule f(x.x+4) Percentage Error
15-19 0.12707 0.13285 4.5%
20-24 0.22663 0.20925 -7.7%
25-29 0.22020 0.22360 1.5%
30-34 0.18969 0.19410 2.3%
35-39 0.13968 0.13899 -0.5%
40-44 0.07053 0.07646 8.4%
45-49 0.02621 0.02475 -5.6%
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Figure 4.8: Compatison of ASFR for the African pattern and Brass model schedule

Using the Brass polynomial has reduced the error in the fertility for the oldest age group to 5.6 per
cent. This is a significant improvement over the Coale-Trussell schedules which showed under-
estimates of 151, 90 and 72 per cent, respectively, for the original, Xie and Xie and Pimentel

formulations discussed earlier.

4.5.2 Hadwiger function
As discussed in section 2.6.2, Hoem et al. (1981) and Gage (2001) indicate that a reasonable
alternative to the Coale-Trussell model may be the Hadwiger function. Despite having two
parameters, & and # with no clear demographic interpretation and being more complex than the
Brass polynomial, the Hadwiger function must be considered. The reason for this is that both Hoem
et al. and Gage show that the Hadwiger function consistently provides higher estimates of 45-49
fertility than the Coale-Trussell model.

As with the Brass polynomial and Coale-Trussell models a procedure was set up in MS Excel
to automate the production of fertility schedules using the Hadwiger function. Since the

investigation is concerned with pattern rather than level the total fertility parameter, a, is given a
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value of one. The remaining parameters — 4, ¢, s and # — were allowed to take values within
predefined ranges: 1.7 £ 5 3.4 with step-size 0.1, 23 ¢ 5- 34 in steps of 0.25,47 5 # 5 53 where u
takes only integer values and 11 s 5 17 at half-year ages. However, analysis showed that no
additional benefit is gained by including half-year ages for s or incrementing ¢ by 0.25.

As a result, the parameter ¢ was set to increase by steps of 0.5 and starting age, s, takes on
integer ages. This process results in 20286 schedules to be compared with the sub-Saharan Africa
experience and the average fertility derived from the 61 DHS populations. Of these schedules,
10731 satisfied the ranking criterion that fertility must be highest between ages 20 and 30.

A number of Hadwiger schedules may be used to describe the average DHS fertility pattern.
Some of these schedules slightly overstate and some understate 45-49 fertility. However, the best
fitting schedule is defined by the parameters # = 1.9, ¢ = 31 and 17c x 5_ 47. That is, x starts at age §
= 17 and ends at the maximum » = 47. Table 4.6 and Figure 4.5 compare this model schedule to

the DHS average age-group specific fertility rates.

Table 4.6: Model schedule using the Hadwiger function

X DHS Average f(x.x+4) Model Schedule f(x.x+4) Percentage Error
15-19 0.12707 0.13020 2.5%
20-24 0.22663 0.22570 -0.4%
25-29 0.22020 0.22538 2.4%
30-34 0.18969 0.18143 -4.4%
35-39 0.13968 0.12872 -7.8%
40-44 0.07053 0.08440 19.7%
45-49 0.02621 0.02417 -7.8%
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Figure 4.9: ASFR of African pattern compared to Hadwiger modcel schedule

As with the Brass polynomial, there is an improvement in the estimates of £f(45-49) on those
obtained from the Coale-Trussell schedules discussed in sections 4.1 and 4.2. The Hadwiger-based

standard understates 45-49 fertility by 7.8 per cent and has SSE 0.00042.

4.6 Comparing the Brass Polynomial and Hadwiger Function

Both the Brass polynomial and the Hadwiger function show improvements over the Coale-Trussell
based models. Seeing as both methods yield reasonable results a decision must be made on which
method to use.

The Brass polynomial has two mathematical advantages over the Hadwiger function. First, the
polynomial requires one fewer parameter and the parameters have clear demographic interpretations
- cis a measure of TFR whilst s is the starting age and w the length of the fertility period.

Second, the Brass cumulative fertility function can be simplified using the properties of
integrals. This allows the direct calculation of cumulative and age-specific fertility rates once s and w
are set. By contrast, the Hadwiger function cannot be explicitly evaluated and numerical methods or

statistical packages are required to obtain the cumulative and age-specific fertility rates.
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Although both these arguments favour the Brass polynomial neither is sufficient to dismiss
the Hadwiger function. As such, graduation tests must be conducted on both standards to consider
both smoothness and goodness-of-fit to the African fertility pattern (Appendix F). The results of the

goodness-of-fit tests are summarised in Table 4.7.

Table 4.7: Compatison of Brass and Iadwiger standards with the African fertility pattern

African Hadwiger Signs of Signs of
_Age Group ASFR standard Differences Brass standard Differences

15-19 0.12707 0.13020 + 0.13285 +
20-24 0.22663 0.22570 - 0.20925 -
25-29 0.22020 0.22538 + 0.22360

30-34 0.18969 0.18143 - 0.19410 +
35-39 0.13968 0.12872 - 0.13899 -
40-44 0.07053 0.08440 + 0.07648 +
45-49 0.02621 0.02417 - 0.02475 -
SSE (15-48) 0.00042 0.00040

SSE (35-49) 0.00032 0.00004

First, both tests show good overall fit to the data as a result of minimising the squared difference
terms. The Brass polynomial has lower SSE than the Hadwiger function over the entire age range.
The second test is for consistent over- or underestimation identified by excessive numbers of
deviations with the same sign. For both standards there is no evidence of a consistent under- or
overestimation since both have three deviations of one sign and four with the other sign. The third
check tests for correlation between deviations and looks for runs of the same sign. Again, both
fertility schedules give no evidence to indicate correlation between differences.

As shown in Appendix F, despite meeting the goodness-of-fit criterion both schedules must
still be tested for smoothness. Smoothness is defined as smooth third differences. Based on this
measure of smoothness the standard derived using the Brass polynomial is smooth whereas the
Hadwiger-based standard is not. As such, the Hadwiger schedule is dismissed based on lack of
smoothness.

In addition, although both series have good overall fit, it is the fit in the older age groups that
has consistently been the problem (Sections 3.5 to 4.3). Critically, the Brass polynomial fits the older

age groups better than the Hadwiger function as illustrated by the lower SSE for the 35-49 age

group.
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So, in terms of simplicity, goodness-of-fit and smoothness the Brass polynomial with

parameters s = 13 and iv =39.8) yields a better standard for the African pattern than the Hadwiger

function.

4.7 The African Standard and the Relational Gompertz Model Coefficients

The chosen standard was derived to assist in the analysis of African fertility data and, in particular,

when using the relational Gompertz model. The relational Gompertz model requires cumulative

fertility rates without a half-year shift, camulative fertility with a half-year shift and average parities

(Table 4.8). In addition, the single-year standardised age-specific fertility rates of this standard are

presented in Table 4.9.

Table 4.8: P(i), f(x, x+4) and F(x) for standard excluding the 10-14 age group

Age F(x) without shift F(x) with shift Age Group f(x,x+4) P(i)

20 0.13285 0.11535 115-19 0.13285  0.07548

25 0.34210 0.31974 2 20-24 0.20925 0.24084

30 0.56570 0.54395 3 25-29 0.22360 0.45302

35 0.75980 0.74232 4 30-34 0.19410  0.66640

40 0.89879 0.88740 5 35-39 0.13899 0.83427

45 0.97525 0.96998 6 40-44 0.07646 0.94186

50 1.00000 0.99903 7 45-49 0.02475 0.99087

Table 4.9: Single _year ASFR for standard excluding the 10_14 age group
Age f(x) Age f(x) Age f(x)
15 0.01687 27 0.04507 39 0.02277
16 0.02237 28 0.04445 40 0.02021
17 0.02721 29 0.04350 41 0.01768
18 0.03141 30 0.04226 42 0.01521
19 0.03499 31 0.04076 43 0.01282
20 0.03799 32 0.03903 44 0.01055
21 0.04043 33 0.03709 45 0.00842
22 0.04235 34 0.03497 46 0.00647
23 0.04377 35 0.03271 47 0.00472
24 0.04472 36 0.03033 48 0.00320
25 0.04524 37 0.02786 49 0.00194
26 0.04534 38 0.02533
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However, the standard rates in Table 4.8 sand 4.9 are applicable to populations, like the 61 sub-
Saharan DHS, where no data are available for the 10-14 age group. By contrast to the DHS data,
some fertility data includes the 10-14 age group. The inclusion of this age group means that the
standard rates in Tables 4.8 and 4.9 cannot be used without the loss of potentially valuable
information about early fertility.

Tables 4.10 and 4.11 give the cumulative fertility rates, age-specific fertility rates and parity for
the standard when data are available for the 10-14 age group. As before, the Brass polynomial with

parameters s = 13 and /v = 39.8 is used and ensures consistency between the standards.

Table 4.10: P(i), f(x, x+4) and F(x) for standard including the 10-14 age group

Agex E(x) without shift F(x) with shift ' Age Group f(x.x+4) P(i)
15 0.01417 0.00892 0 10-14 0.01417  0.01202
20 0.14514 0.12789 1 15-19 0.13097  0.08858
25 0.35142 0.32938 2 20-24 0.20628 0.25160
30 0.57185 0.55041 3 25-29 0.22043  0.46250
35 0.76321 0.74597 4 30-34 0.19135 0.67113
40 0.90022 0.88900 5 35-39 0.13702  0.83662
45 0.97560 0.97040 6 40-44 0.07538 0.94268
50 1.00000 0.99904 7 4549 0.02440 0.99100

Table 4.11: Single year ASFR for standard including the 10 14 age group

Age f(x) Age f(x) Age f(x)

10 0 24 0.04409 37 0.02746
" 0 25 0.0446 38 0.02497
12 0 26 0.0447 39 0.02245
13 0.00367 27 0.04443 40 0.01992
14 0.01051 28 0.04382 41 0.01743
15 0.01663 29 0.04288 42 0.01499
16 0.02206 30 0.04166 43 0.01264
17 0.02683 31 0.04018 44 0.01040
18 0.03096 32 0.03847 45 0.00830
19 0.03449 33 0.03656 46 0.00638
20 0.03745 34 0.03447 47 0.00465
21 0.03986 35 0.03224 48 0.00315
22 0.04175 36 0.0299 49 0.00192
23 0.04315
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The relational Gompertz model requires the calculation of the coefficients e(x) and g(x) from the
cumulative fertility rates (with and without '/2-year shift). Similarly, the average parities require that
e(l) and g(i) be calculated. Table 4.12 lists the coefficients of the relational Gompertz model

associated for the African pattern where the 10-14 age group is excluded.

Table 4.12: Standard relational Gompertz model parameters (10-14 age group excluded)

No Shift IA-year Shift Parity

Age  e(x) ax) Age e(x) ax) Age Group e(i) a(i)
20 1.4750 -1.4193 2 % 1.4651 -1.4844 15-19 15321  -1.6807
25 1.4741 -0.7869 2+ 1% 14825  -0.8502 20-24 1.5475  -1.0884
30 1.3374 -0.1166 2° % 1.3570  -0.1888 25-29 14214  -0.4694
35 1.0924 0.691534¥21 .1 239 0.5991 30-34 12418  0.2513
40 0.7123 1.793039 "O. 7625 1.6569 35-39 0.9480 1.1615
45 0.0000 3.6865 44 11 0.1 459 3.3772 40-44 0.5054  2.4758
45-49 0 46917

For the standard including the 10-14 age group, the model coefficients are recalculated and given in

Table 4.13.

Table 4.13: Standard relational Gompertz model parameters (10-14 age group included)

No Shift 1/2-year Shift Parity
Age e(x X Age e(x X Age Grou e(i i
15 1.2603 -2.1046 14 12 1.2138 -2.1932 10-14 1.0628 -2.645
20 1.5052 -1.3822 19 2 1.4999 -1.4444 15-19 1.2897 -1.7438
25 1.4837 -0.764 24 2 1.4931 -0.8265 20-24 1.4252 -1.0157
30 1.341 -0.0985 29 12 1.361 -0.1703 25-29 1.3726 -0.3355
35 1.0937 0.7074 34 7/ 1.1254 0.6152 30-34 1.1421 0.4391
40 0.7127 1.8079 39 12 0.7629 1.6719 35-39 0.7061 1.5117
45 0.0001 3.701 44 12 0.1459 3.3917 40-44 0.2765 3.2104
45-49 0 6.0547

4.8 Comparison of Relational Gompertz Results from the Booth and African Standards

The final test of the revised African standard is to apply the relational Gompertz model - with the
African standard - to actual data from sub-Saharan populations. The results can then be compared

to those obtained using the Booth standard. Two populations were selected from the available sub-
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Saharan censuses and assessed (Appendix G. In particular, it was decided not use Demographic and
Health Survey data since: a) There is little need to use relational Gompertz models on DHS data and
b) this may lead to incorrect conclusions about the appropriateness of the African standard given
that the standard was derived using this data. Furthermore, the Kenya Census 1979 was chosen to
represent old surveys (before the onset of HIV) whereas the Botswana Census 2001 represents more
recent censuses and surveys.

Table 4.14 shows the original census data for Kenya 1979 and the standardised results
obtained from the Booth and African standards. The last column of the table shows the percentage

difference between the Booth estimates and the African estimates.

Table 4.14: Standardised relational Gompertz model results for Kenya Census 1979

% Difference between Booth

Age Group Original Booth African and African standards
15-19 0.08416 0.10957 0.11865 8%
20-24 0.22580 0.22991 0.21251 -8%
25-29 0.23589 0.23629 0.23417 -1%
30-34 0.19329 0.19960 0.20139 1%
35-39 0.14771 0.14656 0.13942 -5%
40-44 0.07757 0.06885 0.07253 5%
45-49 0.03558 0.00923 0.02133 131%

As can be seen from Table 4.14 the Kenya census exhibits the classic, African uptick in 45-49
fertility. A look at the estimates derived using the Booth and African standard show that the Booth
standard dramatically understates £(45-49) by almost 75 per cent. By contrast, the estimate based on
the African standard is much higher at 60 per cent of the observed level. This constitutes a 35 per
cent reduction in the understatement and an increase of 131 per cent over the Booth estimate for
the oldest age group.

Table 4.15, in an analogous fashion to Table 4.14, presents the census data for Botswana 2001

as well as the relational Gompertz estimates derived using the Booth and African standards.
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Table 4.15: Standardised relational Gompertz model results for Botswana Census 2001

% Difference between Booth

Age Group Original Booth African and African standards
15-19 0.07812 0.09800 0.11080 13%
20-24 0.22759 0.21085 0.19101 -9%
25-29 0.20620 0.22887 0.21944 -4%
30-34 0.19616 0.20532 0.20289 -1%
35-39 0.16087 0.16147 0.15410 -5%
40-44 0.09459 0.08284 0.09010 9%
45-49 0.03647 0.01266 0.03164 150%

As with the Kenyan data, the Botswana census exhibits high fertility in the 40-44 and, particularly,
45-49 age groups. The African standard again yields estimates of 45-49 fertility that are markedly
higher than those obtained when using the Booth standard while still maintaining comparable levels
over the remainder of the age range. In fact, the estimates of f(45-49) based on the Booth standard
are only about 35 per cent of the observed levels in the Botswana population. By contrast, the
estimates derived from the African standard are 150 per cent higher than those derived using the
Booth standard and at about 87 per cent of the observed rate.

For both censuses the relational Gompertz model using the Booth standard understates
fertility in the oldest age group. As explained in previous chapters this results not from Booth's
methodology, but from the data upon which the standard is based.

Nevertheless, both the models using the Booth standard are found to provide slightly better
overall fit to the data than the models using the African standard (0.0015 against 0.0017 for Kenya
and 0.0020 against 0.0027 for Botswana). The reason for this lies in the relative magnitude of the
age-specific fertility rates. In particular, a 10 per cent error in the 15-24 age group has a much larger
effect of the sum of squared error than a 10 per cent deviation in the 40-49 age group.

The difference in the overall error is, however, small and the estimates obtained using the

African standard are more representative of the African fertility pattern.
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5 CONCLUSION

In all demographic enquiries, it is preferable that direct methods of analysis be used to obtain

fertility rates. Unfortunately, the data collected in sub-Saharan Africa censuses are generally of such

poor quality that direct techniques cannot be used. One might question why censuses in this region

are not abandoned completely and substituted by, for example, the demographic and health surveys.

The reason is that demographic and health surveys have relatively small sample sizes and are subject
all the statistical problems related to small samples. Censuses, by contrast, provide full enumeration

and large sample sizes (with all the associated benefits). In addition, the DHS sometimes do not

work well, for example South Africa 2003.

Hence indirect techniques are required to obtain reasonable estimates of fertility and the
foremost among these is the relational Gompertz model. As discussed in Chapter 2, the main
drawback to this model is that it requires the use of a standard fertility pattern appropriate to the
population under investigation and, since 1979, the Booth standard has been the benchmark most
widely (and sometimes incorrectly) used.

However, the preceding chapters have described how changes in the demographic landscape
since the development of the standard affect the way it is used. In particular, it necessitated an
investigation into the applicability of the Booth standard - for sub-Saharan populations - in order to
maintain the relevance of the relational Gompertz model as analysis tool.

To this end the DF-IS data for sub-Saharan Africa was analysed and an African fertility pattern
was identified to ease the testing of possible standards for use in African settings. The findings in
Chapter 3 showed that the Booth standard does not produce good fits to the individual DHS
populations nor the identified African pattern. In particular, the standard understates the fertility in
the 45-49 age group and fails to capture the observed uptick at the oldest ages. As a consequence,
estimates derived using this standard may be biased with the result that vital statistics and population
growth rates are incorrect. In addition, decisions relating to reproductive health, intervention

programmes, economic and social development are all based on biased results.

5.1 Methodology

In order to overcome the observed underestimation of fertility at older ages and its associated

problems, a number of alternative fertility distributions were considered to develop an African
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fertility standard for use with the relational Gompertz model: Three versions of the Coale-Trussell
model, the Brass polynomial, the Hadwiger function, cubic splines and the Gamma density. In
addition, the possibility that G(a) and r(@) in the Coale-Trussell model be reformulated in terms of
sexual exposure rather than marriage was investigated.

However, three of these alternatives were dismissed. First, the method of cubic splines was
rejected because it requires good quality data and introduces unnecessary complexity into the model.
The second method dismissed is the Gamma function, since both the Coale-Trussell model and the
Hadwiger function has been found to deliver equally good results for human populations. Finally,
the recasting of the Coale-Trussell r(8) and G(a) in terms of sexual exposure was set aside for two
reasons: a) It falls outside the scope of the current thesis which focuses on methods other than the
Coale-Trussell model and b) the data are currently not available in terms of sexual exposure and
exposure to marriage is the generally accepted approximation.

The remaining five alternatives were extensively investigated and for each of these models a
minimum of 20000 model schedules were produced. This means that every model had a large
sample from which an African standard can be developed if an appropriate schedule (or schedules)
can be identified. The sum of squared error method - which is statistically appropriate - was used to
analyse these schedules and test overall goodness-of-fit.

Once suitable schedules were identified they had to be compared and assessed to determine
which schedule best represents African fertility. The comparison was done using graduation tests to
check for adherence-to-data as well as smoothness of progression of standard rates. Finally, the
selected African standard was tested on empirical data from two DHS to ascertain its
appropriateness by compare estimates derived using the relational Gompertz model based on the
new standard with estimates based on the Booth standard.

This methodology guarantees the appropriateness of the standard and the Brass polynomial,
with parameters s = 13 and w = 39.8, was identified as the most suitable schedule. In particular, it
has good overall adherence to the data and it reduces the understatement in the 45-49 age group
from almost 70 per cent to less than 6 per cent. The closer match in the oldest age group and the

superior overall fit is indicative of a standard more appropriate to the sub-Saharan populations.

5.2 Uses and Benefits of African Standard

Using the identified schedule as the African standard goes some way to addressing the misfit

observed for the Booth standard and mitigating the problems that it causes. In particular, the use of
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the Booth standard for sub-Saharan populations can impose an incorrect shape on the analysis and
introduce error and bias into the estimates derived. By contrast, the African standard was developed
for use in these populations and has the appropriate shape. As such, it does not introduce the bias
associated with the Booth estimates, but produces improved rates - particularly for the oldest age
group.

The elimination of this bias does not merely lead to more accurate statistics, but generally
more accurate information about fertility and population changes. Having access to accurate,
unbiased fertility estimates allows decision makers to make informed choices regarding reproductive
health programs, schools, healthcare and social development. The improved estimates also allow
researchers to better understand trends in fertility, the factors affecting it and the social dynamics
surrounding childbearing in a particular population.

In addition, the development of a distinctly African fertility standard is the first step towards
Booth's vision of region specific standards. It is a move away from a single standard that is
indiscriminately applied to all situations and towards multiple standards that are suitable for the
populations being analysed. The existence of a region-specific standard, such as the African pattern,
eases comparison of fertility rates within the region and provides a benchmark for comparison in the
absence of more information.

The development of this standard thus ensures the continued relevance of the relational
Gompertz method as an important tool in fertility analysis. In particular, since data in the sub-

Saharan region is of such poor quality.

5.3 Limitations

Despite these improvements the African standard developed in Chapter 4 has a number of
limitations. Foremost among these is the fact that the standard does not explicitly address the issue
of HIV. This is of specific concern since HIV is likely to be the greatest single determinant of the
future demographic composition of populations in Sub-Saharan Africa, in particular, since these
countries are currently experiencing the most severe HIV epidemics.

Figure 5.1 reproduces the distinctive distribution of age-specific fertility observed by Zaba

and Gregson (1998) for the HIV-positive population and contrasts this with the African standard.
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L'igure 5.1: ASI'R of the African standard and the TTTV-positive population

The figure shows that at the youngest ages, the fertility of the sero-positive population can be seen
to be higher than the African standard. By contrast, for the oldest the HIV-positive population has
lower fertility rates than the standard.

In particular, the difference for the youngest age group results from a selection effect at these
ages (Lewis, Ronsman, Ezeh and Gregson 2004). That is, the women falling pregnant in the
youngest age group are also those exposed to HIV at an early age due to their sexual activities. For
this group the risk behaviour - resulting in exposure to pregnancy and HIV - dominates the
debilitating biological effects of the disease. In particular, the impact of the biological factors is
limited because duration since infection is relatively short and, consequently, the burden that the
disease places on the body is still minor.

Given that standardised fertility rates are cumulative, the inflated early fertility - in conjunction
with the debilitating effects of the illness - results in the low ASFR observed for the oldest age
group. The dissimilarity in the shape of fertility, as shown in Figure 5.1, means that the standard

cannot be used to model the HIV population and derive reasonable, unbiased fertility estimates.
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A major drawback of not being able to model the fertility for the HIV-positive population
separately is that the impact of interventions or changes in the disease prevalence cannot be catered
for. However, despite this restriction the changes at population level can be observed and modelled
using the developed African fertility pattern since it models the total population including data for
the HIV-positive sub-population.

The second limitation is that one standard can never be appropriate to all populations.
Although the African standard developed in Chapter 4 is a step towards Booth's vision of region
specific standards, as a single standard it cannot capture all possible fertility patterns. The caveat
remains that the standard used in the relational Gompertz model must be appropriate to the
population under investigation. If this is not the case, then the same limitations and problems apply
to this standard as was observed for the Booth standard when the latter was incorrectly used. So, for
example, the African standard cannot be used for the low fertility sub-populations of South Africa
despite being suitable for the high fertility group. Similarly, the standard is also not appropriate for
the Sahelian countries that demonstrate a different fertility pattern reflecting differences in attitudes
towards fertility.

Finally, some critics may argue that the uptick observed for the African populations stems
from age misreporting and that the standard - being based on empirical IDHS) data - incorrectly
tracks and models an error in the data. In a sense, these critics are correct as there, surely, is an
element of age misreporting present. In particular, it may be the case that 45-49 fertility is overstated
as a result of the grandmother effect whereby the child is incorrectly matched to the grandmother
(United Nations 1983, p. 183). This is particularly likely where mothers are absent due to migration
or the effect of AIDS.

However, the uptick is too consistent among the African populations to be explained away by
one factor (age misreporting). The belief that the uptick disappears the moment better data becomes
available also appears flawed on two counts. First, the sub-Saharan DHS data does not seem to
show this. For example, the South African fertility data from the 1996 Census and 1998 DHS also
exhibits this fertility pattern despite relatively reliable data. Second, the DHS is designed to minimise
age reporting errors and, as such, if the uptick is present it is likely to be an actual feature of the
fertility pattern and should be reflected by the standard. Finally, if the uptick disappears when better
quality data are available this may be the result of other factors. Although it is true that improved
education and socio-economic circumstances will eliminate age misreporting, these factors will also

affect fertility through the proximate determinants. As a result, this may lead to a change in fertility
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preferences and, consequently, the fertility pattern which could - just as easily as the elimination of
age misreporting - account for the disappearance of the uptick.

In addition, the standard developed in Chapter 4 slightly understates 45-49 fertility relative to
the average African pattern and slightly overstates the 40-44 fertility. As a result, the standard allows

for both an element of age misreporting as well as reflecting the consistent uptick in 45-49 fertility.

5.4 Looking to the Future

Despite these limitations the standard provides a means of improving fertility estimation using the
relational Gompertz model in sub-Saharan Africa, whilst the limitations indicate possible areas of
future research. For example, some evidence exists to suggest that there is more than one fertility
pattern present in sub-Saharan African. Evidence from the sub-Saharan DHS suggests that the
pattern of fertility may be linked to geographic location and the level of fertility. As already
discussed, the Sahelian countries exhibit a different pattern to other sub-Saharan populations and a
standard needs to be developed for these West African populations.

Apart from the Sahelian countries, the DHS data also hints at other potential patterns related
to region and total fertility. In particular, this means that future research may possibly result in a
family of sub-Saharan fertility standards being developed (for example consisting of North, South,
East and West standards) in much the same way as the Coale-Demeny mortality patterns.

The second significant area for future research is HIV. Given the debilitating effects of HIV
and its importance when looking into the future, further research is imperative to gain information
on the factors driving the disease and the impacts of intervention campaigns and ART (anti-
retroviral therapy). Specifically, a method is required to explicitly model fertility of the HIV-positive
population and develop a sub-Saharan HIV standard. This will enable better understanding,
planning and analysis of the disease and its effects on fertility.

A blending function is then envisioned to obtain population age-specific fertility rates by using
the age-specific HIV prevalence rates in combination with the HIV standard and a non-HIV

standard (Equation 5.1).
fr(x.x +4) = (l - p)* o (% x + 4)+ p*fy (x_._ X+ 4) Equation 5.1

Where p is the HIV prevalence for age group (x, x+4) and f, (x, x+4), f, (x, x+4) and f,,(x, x+4) are

the ASFRs for the total, HIV-negative and HIV-positive populations, respectively. The standard for
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the HIV-positive population and this blending function can then be extended to incorporate the
duration since infection and the availability of anti-retroviral drugs as more data becomes available.

Finally, and critically, attention must be given and emphasis placed on improving data
collection methods. It is clear that the enduring problem in demographic analysis remains the quality
of the data available and - no matter what other future research is conducted to improve estimation
procedures - the results will remain constrained by the data quality.

However, until such time as better quality data are collected in the sub-Saharan countries the
only alternative remains estimating fertility rates using indirect techniques like the relational
Gompertz model, but ensuring that an appropriate standard fertility pattern - like the African

standard for sub-Saharan populations - is used.
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APPENDIX A

Table A 1: Single-year values of n(a) and v(a)

Age n(a v(a Age n(a v(a)
0 0.000 0.000 21 0.420 -0.520
1 0.005 0.000 22 0.410 -0.600
2 0.100 0.000 23 0.400 -0.680
3 0.175 0.000 24 0.389 -0.760
4 0.225 0.000 25 0.375 -0.830
5 0.275 0.000 26 0.360 -0.900
6 0.325 0.000 27 0.343 -0.970
7 0.375 0.000 28 0.325 -1.040
8 0.421 0.000 29 0.305 -1.110
9 0.460 0.000 30 0.280 -1.180
10 0.475 0.000 3 0.247 -1.250
1 0.477 -0.004 32 0.207 -1.320
12 0.475 -0.030 33 0.167 -1.390
13 0.470 -0.060 34 0.126 -1.460
14 0.465 -0.100 35 0.087 -1.530
15 0.460 -0.150 36 0.055 -1.590
16 0.455 -0.200 37 0.035 -1.640
17 0.449 -0.250 38 0.021 -1.670
18 0.442 -0.310 39 0.011 -1.690
19 0.435 -0.370 40 0.003 -1.700
20 0.428 -0.440

Source: Coale and Trussell 1979

Table A 2: Standard e(x) and g(x) values (no shift)

Age

e(x a(x)
15 0.9866 -2.3138
20 1.3539 -1.3753
25 1.4127 -0.6748
30 1.2750 0.0393
35 0.9157 0.9450
40 0.3966 2.3489
45 — 4.8097

Table 3 in Brass (1988) and Table 3A in /.aba (1981)
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Table A 3: Standard e(x) and g(x) values (1/2-year shift)

Age e(x) g(x)
14.5 0.9760 -2.4020
19.5 1.3364 -1.4501
24.5 1.4184 -0.7430
29.5 1.2978 -0.0382
34.5 0.9670 0.8356
39.5 0.4509 2.1649
44.5 0.0462 4.4564
49.5 -

Source: Brass (1988) and Zaba (1981)

Table A 4: Standard e(i) and g(i) values

Age e o(i)
10-14 1.0632 -2.6447
15-19 1.2897 -1.7438
20-24 1.4252 -1.0157
25-29 1.3725 -0.3353
30-34 1.1421 0.4391
35-39 0.7061 1.5117
40-44 0.2763 3.2105
45-49 -

Source: Brass (1988) and Zaba (1981)
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APPENDIX B

As discussed in section 3.5.1 Booth incorrectly uses schedule 28 in Table 18 for the upper tail when
it should have been used for the lower tail. Tables B 1 to B 6 below illustrates the steps in the
procedure used by Booth as well as showing the impact of correctly classifying schedule 28 in the
lower tail. In each of the tables the first column is the age group, the second column the values as
derived by Booth and the third column the calculated after including schedule 28 in the lower tail
and excluding it from the upper tail. Table B 1 compares the AY(x) values derived by Booth with the

AY(x) based on the criteria. Table B 2 gives the adjustment factors calculated by Booth and those

based on the criteria.

Table B 1: Comparison of the Booth and Criteria AY(x)

Age Group Booth Criteria
10-14 0
15-19 1.09120 1.11470
20-24 0.72320 0.71944
25-29 0.67436 0.67435
30-34 0.77872 0.77903
35-39 1.14730 1.14731
40-44 2.13486 2.13598
45-49

Table B 2: The Adjustment Factors used by Booth and based on the Criteria

Adjustment Factors Booth Criteria
k1 0.99135 0.99494
k2 1.02287 1.02074

Table B 3 shows the Y(x) values after back-transforming the AY (x) values and B 4 shows the Y(x)

values after applying the adjustment factors in Table B 2.
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Table B 3: Y(x) for Booth and Criteria

Age Group Booth Criteria
10-14 00 00
15-19 1.09120 1.11470
20-24 0.72320 0.71944
25-29 0.67436 0.67435
30-34 0.77872 0.77903
35-39 1.14730 1.14731
40-44 2.13486 2.13598
45-49 00 00

Table B 4: Adjusted Y(x) for Booth and Criteria

Age Group Booth Criteria

10-14

15-19 1.08176 1.10906
20-24 0.71694 0.71580
25-29 0.67436 0.67435
30-34 0.77872 0.77903
35-39 1.14730 1.14731
40-44 2.18368 2.18029
45-49 00 00

Finally, the cumulative fertility, F(x), values are derived by reversing the Gompertz transform (Table

B 5) and these are differenced to obtain the age-group specific fertility rates, f(x), in Table B 6.

Table B 5: Derived cumulative fertility, F(x)

Age Group Booth Criteria
10 0 0
15 0.00277 0.00237
20 0.13584 0.13615
25 0.37731 0.37731
30 0.60861 0.60861
35 0.79618 0.79624
40 0.93019 0.93021
45 0.99188 0.99186
50 1 1
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Table B 6: Derived standard age-group specific fertility, f(x)

Age Group Booth Criteria
10 - 14 0.00277 0.00237
15-19 0.13307 0.13378
20-24 0.24147 0.24117
25-29 0.23130 0.23129
30-34 0.18757 0.18763
35-39 0.13401 0.13398
40 - 44 0.06169 0.06165
45 -49 0.00812 0.00814
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APPENDIX C

Included in this appendix is the VBA code used to generate the three Coale-Trussell models (section
C.1), the Brass polynomial data (section C.2) and the Hadwiger function schedules (section C.3) in
MS Excel 2007. The code for the Coale-Trussell model utilizes the original N(@) and v(a) values given

by Booth. To obtain the other two models the values of n(a) and v(a) must be changed.

C1 Coale-Trussell Model

Sub CTSchedules()

"{(J1'Schedules Macto

1

Application. ScreenUpdating = I'alse

" Name sheers
Sheets("Sheet1™).Select
Sheets("Sheet1").Name = "Model”
Sheets("Sheet2™). Select
Sheets("Sheet2'). Name = "Results”

'T.abel columns and gencrare output
Applicadon.Run "Labels"
Applicaton.Run "Mulaple”

'Saves workbook in a new tolder called Results as CoaleTrussell
MkDir "Results"
ChbDir "Resules"
AcaveWorkbook. SaveAs Filename: = _
"CoaleTrussell.xlsm"”, Filel'ormat:= _
xlOpenX M1 WorkbookMacrolinabled, CreateBackup:=lalse
Lind Sub

Sub Tabels()

'T.abels Macro

" Set Labels
sheets("Resulrs™) . Scleet
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Range("A1").8clect
ActiveCell.FormulaR1C1T = "AQ"
Range("B1").Select
ActiveCell. FormulaR 11
Range("C1").Sclect
ActveCell. FormulaR1C1T = "M
Range("ID1™).Sclect
ActveCell.lormulaR1¢1 =™"-"
Range("F.1").Sclect
AcoveCel.FormulaR1CT = ™"
Range("11").Select
AcoveCall.lFormulaR1C1 = "Mean”
Range("G1").Select
ActveCelllFormulaR1CT = "Srd Dev"
Range(" 11").Sclect
ActaveCell.FormulaR1CT = "R1"
Range("11"}).Scleet
ActiveCell 'ormulaR1C1 = "PIy 1"
Range("J1"}.Sclect
ActiveCell FormulaR1C1 = "PTY 2"
Range("K1").Sclect
ActveCell FormulaR1CT = "PIy3"
Range("T.1").8clect
ActveCell.'ormulaR1C1T = "PART"
Range("M1").5elect
ActiveCell.FormulaR1CT = "PAR2"
Range("N1").Select
ActiveCell F'ormulaR1CT = """
Fori=10"T0 49 Step 1
Sheets("Resules™).Cells(1, 1 + 5).8elcer
ActiveCell.l'ormulaR1CT =1
Nextl
Range{"BC1") Select
ActveCell. FormalaR1CT = "2
Fori=0"To 7 Swep 1
Sheets{"Results™).Cells(1, 36 + 1).8clect
ActiveCel FormulaR1 C1 = "™ & (10 + 5~ i) & "-" & (14 + 5 * )
Next1
Range("BIL1").Sclect
ActiveCell.l'ormulaR1CT = "Sam Rank"
Lind Sub

I!'I'..\'\rl

Public Sub GenOutput{aaa As Double, kkk As Double, mmm As Double)

" GenOutput Macro

Dim BB(7), £8(423), 7Z8S(501), EM2(41), F(#1), T(8), V({#1), N(41), RR(6), ZU(423) As Double
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Dim Sumf, w, 85, 'R, TT, last, first, A, cons, sum, Sumsq As Double
Dim sigma, smean, R1, Q1,Q2, Q3, PAR1, PAR2 As Double
Dim 1, | As Integer

Application.ScreenlUpdating = lalse

" Initalize #fu) and #fa)
V{y ="0"
V{1 = "o
V(2) = "0"
V(3 ="o"
Vi4y ="0"
V{5 = "o"
V) ="0"
V(T) = "0
V(g ="o"
y ="
(

V(1) = "-0.004"
V(12) = " 0.03"
V(13) = "-0.06"
V{4 ="01"

V(15) = "0.15"
V(16 = "0.2"

V(7 = "0.25"
VA8) = "0.31"

V(19) = "-0.37"
V(20) = "0.44"
V(21) = "-0.52"
V(22) = "-0.6"

V(23) = "-0.68"
V(24) = "-0.76"
V(25) = "-0.83"
V(26) = "-0.9"
V(27) = "-0.97"
V(28) = "-1.04"
V(29) — "-1.11"
V(30) = "-1.18"
V(31) = "-1.25"
V(32) = "-1.32"
V(33) = "-1.39"
V(34) = "-1.46"
V(35) = "-1.53"
V(36) = "1.59"
V(37) = "-1.64"
V3R) = "-1.67"
V(39) = "1.69"
V{a0) = 17"
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( ) — Fl{'}"
N(1) = "0.005"
N(2) = 0.1
N(3) = "0.175"
N(4) = "0.225"
N(5) = "0.275"
N(6) = "0.325"
N(7) = "0.375"
N(®) = "0.421"

) =

N{(9) = "0.46"
N(10) = "0 475"
N(11) = ") A77"
Ni(12) = "0.475"
N(13) = "0.47"
N(14) = "0.465"
N(15) = "0.46"
N(16) = "0.455"
N(17) = "0.449"
N(18) = "0.442"

) = "0.435"
N(20) = ").428"
N(21) = "0.42"

) = "0.41"
N(23) = "0.4"
N(24) = ").389"
N(25) = "0.375"
N(26) = "0.36"
N(27) = "0.343"
N(28) = "0.325"
N(29) = "0.305"
N(30) = "0.28"
N(31) = ") 247"
N(32) = "0.207"
N(33) = "0.167"
N(34) = "0.126"
N(35) = "0.087"
N(36) = "0.055"
NGT) = "0.035"
N(38) = "0.021"
N(39) = "0.011"
N(40) = "0.003"

' Establishes the cumulative of the cumulative cver married
"schedule 1n 0.1 vear Intervals with age () as origin
Z8(y =0
ZU0) = 019465 / kKkk) * Lixp((-0.174 / kkky * { 6.06 7 kKkk} - Lxp((-0.2881 / kkk) * ( 6.06 *
kkl)y)
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l'ori=1To 422
w=1/10
ZUE = {(0.19465 / Kkl * Lixp{(-0.174 / kkk} * {(w - 0.06 * kkk) - Lixp{((-0.2881 / kkk) = (w -
6.06 = kkk)y)
750 = 781 - 1) + (005 * (ZUQ) + ZU4 - D))
Next 1

" Shift the Ongin of the cumulative ever married schedule to al)
T = Int(10* aaa)
last = 5(0) - |

Fori=1"Tolast Step 1
1=]+1
ZS85(]} = Z.5()

Next 1

' Tistablish the average tor each year of age by averaging the
'cumulatve of the cumulative ever married schedule for the 100
"values in cach year of age
lori=1"To40 Step 1
k= 100 4+ 10+ 1
w =10
Forl =1 To 10 Swep 1
w=w+ 05¥ (/8S(k-1+ 1) + 785k - 1)
MNexrl
EM20) = w /10
Nexti

'The following scetion fits an exponental to the 15-19 seetion of
"the ASL schedule such that the arca under the curve is the same
"hetore and atter transformation
[ori—17To 40 Step 1
F{) = EM2(@1) * N@) * Lxp(mmm * V(1))
Next1

Fork=1To7 Step 1

BB{k) =t}

Forl=17Ta 5 5ep 1
s=1+5"(k-13+5
BB3{k) = BB(k) + 1'(s)

Nextl

Tk) = BB(k) / 5

Next k

first = (F(1) + FQ2) + B@) + FA) + F(5)) / 5

Tt aaa >= 15 Then
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Fori=1"Tob5 Step

RRA) ~cons = (i~ (SS+ 1)) / (88 + 1)
Nexti
1'(6) = RR(1)

Fork =210 b Sep 1

l=k+5
') = RIYK) - RR(k - 1}
Nextk
Tind If

' Calculare the mean, standard devianon, parides and R1
Fori=17To40 Srep 1
Sumt = {1y | Sumf
Nexti

Fori=1To 8 Swep 1
Ty —1[) S Sumf
Nexri

first = tirst / Sumf
AT 105

Fori=1To 40 Step 1
1) = I°() / Sumt
sum = sum + A ¥ F()
Sumsq = Sumsq + A * A * (1)
ATA+1

Next i

sigma = (Sumsq - sum = sum) 1/ 12

SITeam = sum

Q1= (5% F(6) + 3.5 1'(7) + 25 ¥ F®) + 1.3 % F(O) + 057 LAD) / 5 + (5 first)

Q2 = (45 7 T(L1) + 3.5 % [(12) + 2.5 % FU3) + 1.5 * I(14) + 05 = (A5 / 5 1 5% (I(1) +
fiest

)Q?) = (45 ¥ L(L6) 4 3.5 ¢ F(T) + 25 ¥ F(I8) + 15+ F(19) + 05 ¥ FROY) / 5+ 5 7 ([(2) ~

(1) + first)

PART = Q1 / Q2

PAR2 = Q2 / (03

R1 = T(1) / T2)

" Output data
Sheers("Model").Select
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Range("A4™).Select

ActiveCell. FormulaR1¢1 = "-"
Range("A5™) Select
ActveCcllFormulaR1C1 = "-"
Range("AG").Sclect
ActveCell.l'ormutaR1CT = smean
Range("A7").8clect

ActiveCell. FormulaR1CT = sigma
Range(" A8™.Scleer

ActiveCell. FormulaR1C1 = R1
Range("A9").Select
ActveCell.FormulaR1C1 — Q1
Range("A10") . Select
ActiveCell.FormulaR1C1T = Q2
Range("A11").Sclect
ActveCdl.FormulaR1C1 = Q3
Range(" A12").Scleet

ActveCell. FormulaR1C1 = PAR1
Range("A13").Scleet

ActoveCell. FormulaR1C1T = PAR2
Range("A14™) Select
ActiveCell.FormulalR1C1 = "-"

Fori =017 Step 1
Fork =010 4 Sep 1
Sheets("Model").Cells{5 ¥ i + k + 15, T}.5clcet

ActiveCellFormulaR1CT = 1000000 * 115 <1 + k + 15

Next k
Next1

Range("A55").Scleer
ActiveCell 'ormulaR1CT = "-"

lori=0"To 7 Srep
Sheets("Model™).Cells(56 + 1, 1).5clect
Ifi= 0 'Then
ActveCell. l'ormulaR 11
Lilse
ActveCell 'ormulaR 1C1
Lnd If

Next1

1000000 ~ first

(1) * 1000000

Range(" A64").Seleer
ActveCell. FormulaR1C1 =

"=RANKR[-6]CR[-8HCR]-1CO)+RANKRI-5|CR] B|C:R[-1]C)"

I'nd Sub

Sub Multiple()
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" Multiple Macro

12im x As Double, v As Double, 2 As Double
Dim 1 aaa As Double, 1_kkk As Double, I_mmm As Double
Dim ¢ As Double, d As Double, ¢ As Double

c—=2

Applicadon ScreenUpdanng = lalse

' Create schedule output
Forx=1"To 40 Step 1
lLasa= 9+ (x/ 4
Shecets{"Model"). Select
Range(" A1"}.Sclecr
ActiveCelll'ormulalR1CT = 1_aaa

Fory=1To 40 Swep 1

Lkkk =y /20
Sheets("Model").Select
Range("A2").Sclect

ActveCaell 'ermulaR1C1 = 1_kkk

Forz=1"1o 40 Swep 1

1 = 2 /20
Sheets("Model").Select

Range(" A3").Scleet

ActiveCell FormulaR1C1 = 1_mmm

' Gencrate output
Call GenQOutput{l_aaa, I_kkk, |_mmmj

" Copy ourput to Resulrs Sheet
Range("A1").Scleer
Range(Selection, Sclection. Fnd{xlDown)).Select
Selecnon.Copy
b=c+d+e
Worksheets("Resuls™). Select
Sheets("Resuls™).Cells(b, 1).Sclect
Selecdon.PasteSpecial Paste:=xIPasteValues, Operadon:=xtNone, SkipBlanks _
=lialse, Transpose:="l'ruc
e=z+2
Next 7

I mmm =10
d=404y
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c=2

Nexrv

L kkk =0
c = 1600 * x
d=10
Next x
L'nd Sub

C.2 Brass Polynomial
Sub Brass()

"BBrass Macro

Applicaton.Screenlpdating = I-alse

' Name worksheets
Sheets("Sheet1™).Sclecr
Sheers{"Sheerl").Name = "BrassCalc”
Sheets("Sheet2").Sclect
Sheets("Sheet2'").Name = "Results”

' Label columns and generate output
Application.Run "Tabels"
Applicatdon.Run "Multiple”

'Number lF'ormatdng
Range("D2:BM2™) . Select
Range(Sclecdon, Sclection Lind(xiDown)) Select
Sclection. NumberFormar = "0.00000"

' Saves workbook in a new folder called Results as Brass.xlsm
MEDir "Resulrs”
Chir "Resulrs"
AcouveWorkbook.SaveAs Iilename:= _
"Brass.xlsm". FilcFormat:= _
OpenXMLWorkbookMacroFnabled, CreateBackup:=I"alse
Fnd Sub

Sub Labels()

‘labels Macro

Dim j As Integer, 1 As Tnteger
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Applicadon. Screentipdating — lalse

'Set columnn headings on Results sheet

Sheets("Results™).Select
Range("A1").Select
ActveCell.FormulaR1C1 =
Range("B1"}.Select
ActiveCell. FormulaR1C1 = "w
Range("C1").Select
ActiveCell.FormulaR1C1

"H10) to £(53)

Forl = 0To 4 Step 1
Sheets("Resules™).Seleer

Sheets("Resules™).Cells(l, 5 * + 1 + 4).Scleer
ActveCellFormulaR1CT = "1 &5+ + 1+ 9 & ™"

Next ]
Next |

Range("D1").Scleet
ActveCelll'ormulaR 11 = "-"
Range(" AST").Scleet
ActiveCell. FormulaR1¢1 ="-"
Range("AV1") Select
ActiveCell.FormulaR1CT = "-"
V10-14) to £(45-49)
ory=1To 8 Step 1

Sheets{"Results™).Cells(1, 45 + j}.Sclecr
ActveCell 'ormulaR1CT = "f{" & 5* 1+ 5 & """ & 57 |+ 9 & ™)"

Next |

Sheets{"Results™).Seleer
Range("BB17).Scleer
ActiveCell FormulaRiC1 ="-"

"{{15-19) to £(45-49)
l'ory=2To 8 Step 1

Sheers("Results™).Cells(1, 33 + j).Sclect
ActiveCell l'ormulaR1CT ="t" &S+ 5& " &5*F7+9& ™"

Next ]

Range("B]1").Sclect
AcgveCell. FormulaR1CT = "-"
Range("BK1").Scleer

ActuveCelllFommulalR1CT = "Rank"
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End Sub

Public Sub GenQurput(sss As Double, www As Double)

" GenQutput Macro
Dim x As Integer, | As Inreger, k As Integer
12im asfr(34) As Double, cumf(54) As Double, FF(8) As Double
I>im T As Double
Application.Sereentipdatng = lalse

" Produce 36000 schedules as output taking values 9 <= s <= 209 and 22 <= w <= 51.9
Shects("BrassCale").Sclect
Range("A3") Select
ActiveCell. FormulaR1¢T = "-"

" Loop through age x

cumf(l) = 0
asfe{} =0

lorx=1"To 54
Tf x <2 sss Then
cumnf(x) = ()
lilsc
Hx <= (sss + www) Then
cumf(x) — 3+ ((sss T www - x) / www) T4 4F (555 + www - x) S www) T3+ 1

Else
cumi(x) = 1
End If
lind If
asfr(x - 1) = cumt{x) - cumf(x - 1)
Next x

T = cumf(3() - cumf{10}

Pori=17To 8 Step 1
4G = cumf(3 * 1+ 1)) - cumnt(5 *1 + 5}
Next 1

‘Ourpurt results
Forr= 0108 Step |
Fork =0To 4 Step 1
Sheers(MBrassCale).Cells(5 =1 + k + 4, 1).5¢lect
ActveCell.FormulaR1CT = asfe(5¥i+k+ 9/ 1
Nexr k
Nexti
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Range{" A45").Select
AcoveCell. FormulaR1C1 = "-"

Lori=1"To85ep 1
Sheets("BrassCale™).Cells(45 + 1, 1).Select
ActiveCell. FormulaR1C1 = UG /1
Sheets("BrassCale™).Cells(53 + 1, 1).8cleet

' It1 =2 Then
' ActiveCell FormulaR1Ct = (1) + 112y /1
' Llse
' ActiveCell. l'ormulaR1CL = L@y /T
' End It
ActiveCell.l'ormulaR1C1 = L@ / (1" - FF(1))
Nexri

Range(" A4") Sclect

ActiveCell lF'ormulaR1C1 = "1

Range("A34") . Select

ActiveCell. l'ormulaR1¢1 = "-"

Range("A62™) Select

ActveCell. FormulaR1CT ="

Range("A63") Select

ActveCell.FormulaR1¢C1 = _

"=RANK(R|-7|C,R[S]CR[-2]C)+RANK (R[-6]C,R[-8]C:R[-2] )"
Fnd Sub

Sub Multple()

" Multiple Macro

r

Dim y As Integer, z As Integer, b As Double
Dim s As Double, w As Double
Application.Screenlpdating = [alsce

L=2

' Creare schedule ourpur
Lory =0To 119 Step 1
s =9+ (v / 10}
Sheets{"BrassCale").Sclect
Range{"A1").Sclect
ActiveCell.FormulaR1CT = s

Forz =0"To 299 Swep 1
w=22+2/10
sheets("BrassCale").Scleer
Range{"A2").Select
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ActveCell FormulaR1CT = w

" GGenerare output

Call GenOumput(s, w)

" Copv ourput to Results Sheet
Sheers{"BrassCale™).Seleet
Range("Al").5elect
Range(Sclection, Sclection. lind(xiDown)).Sclect
Selection.Copy
Worksheets("Results").Sclect
Sheets(" Results™).Cells(b, 1).Select
Selection PastcSpecial Paste:=xIPPasteValues, Operation:=xINone, SkipBlanks _
:—False, Transposer=True
b=b+1
Next z
Nexty
F.nd Sub

C3 Hadwiger Function
Sub Hadwiger()

" Hadswiger Macro

r

Application.ScreenUpdanng = alse

" Name worksheers
Sheets("Sheetl™) Select
Sheets{"Sheetl ™). Name
Sheets{"Sheet2™) Select
Shecets("Sheet2").Name

"HadwigerCale”

"Resuls”

' Label columns and generate output
Applicatdon.Run "Labels"
Application Run "Multiple”

Number [Formatting
Range('D2:BM2").Sclect
Range(Sclecnon, Sclection. Lnd(xlDown)).Selecr
Sclection. Numberl‘ormar = "0.00000"

' Saves workbook in a new tolder called Results as Tladwiger.xlsm
MkIr "Results”
ChbDir "Resulrs”
ActiveWorkbook.SaveAs Filename: = _
"Hadwiger.xlsm”, Lilebormat= _
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x1OpenXM]L.WorkbookMacroEnabled, CreateBackup:=False
Lind Sub

Sub Labels(}

"Labels Macro

T

Dim j As Integer, 1 As Integer
Application.ScreenUpdating = False

" Set column headings on Results sheet
Sheets("Results™) . Sclect
Range("A1").Select
ActiveCell. FormulaR1¢C1T ="
Range("B1"}.5clect
ActiveCell.FormulaR1CT = "u"
Range("C1").Select
ActiveCell ormulaR 1C1T = "b"
Range("D1").Sclect
ActiveCell I'ormulaR 11 = "c"
Range("F.1").Sclect
ActiveCell I'ormulaR1¢C1 ="

"1 to £(53)

Forj—107To 8 Step 1
Forl=0To4 Step 1
Sheets("Resulrs").Seleer
Sheets("Resules™).Cells(1, 5= 1 + T4 G).8elect
ActiveCell'ormulaR1CE ="f{" & 5+ )+ 1+ 9 &™)
Next !
Next )

Range("I'1"}).5Select
ActveCell.FormulaR1CT = "-"
Range("AL1").Select
ActiveCell ormulaR1CL = "-"

TE(10-14) to £{45-49)
Fori=1To 8 Step 1
Sheets("Results™).Cells(1, 47 -+ [).Sclect
ActiveCell FormulaR1CT = "f(" & 5+ ]+ 5& ", & 51+ 0& ™"
Next g

Sheers("Results™).Scleer
Range("BID1™).8cleer
ActiveCell. FormulaR1C1 = "-"
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' E(15-19) 1o £(45-49)
lorj—=2To 8 Step 1
Sheets("Results").Cells(1, 55 + j).Seclect
ActveCall.FormulaR1CT ="M & 5*j+ 53& """ &5+ 9& ™"
Next |

Range("BL1").Select

ActveCell. FormulaR1C1 = """

Range("BM1").8clect

ActveCell FormulaR1C1 = "Rank"
Lnd Sub

Public Sub GenOutput(b As Double, ¢ As Double, s As Double, u As Double)

' GenOutpur Macro

Dim x As Inreger, 1 As Integer, k As Integer
Dim astr(54) As Double, I7(54) As Double, F2(54) As Double, m(34) As Double, I'I'{8) As Double
Dim ‘T As Double, 1L As Double
" Dim asfr2(54) As Double
Application ScreenlUpdanng = lralse

' Produce 36000 schedules as outpur taking values 9 <= s <= 20.9 and 22 <= v <~ 51.9
Sheets{"HadwigerCale™). Select
Range("A5").Select
ActiveCell.FormutaR1CT = -7

' T.oop through age x
T=0
TT =10
m{lh =0
astr(() = 0
Fin =0

L'orx =110 353 Siep 1
Ifx<s Orx > u'lhen
mi{x) = #
I'lsc
m() = (/) (/)" (/2 Fxp(b"2) “ e/ x +x [ ¢-2)
lind If
Next x

Torx =1 To 53 Step 1
I(x) = mx) + I'{(x- 1}
1 ="t"+ m{x)

Next x

[Jefining a sub-Saharan Fernlity Parrern and Standard 105



Forx =110 53 Swep 1
12 = 1(x) /T

Next x

Forx =110 52 Step 1
astr(x) = F2(x + 1) - 1'2(x)
Next x
asfr(33) = 1 - F2(53)

T = F2(50) - F2(10)

Fori=1"To 8 Step 1
FU@ = 1205 %1+ WY -12(3*1 + 5)
Nexri

'‘Ourpur results
For1=0"To 8 Step |
Vork =0To 4 Step 1
Sheets (" TadwigerCalc™).Calls(5 ¥ 1+ k + 6, 1).8clect
ActiveCelll'ormulaR1CT = asfr(S =i+ k +9 /I
Nextk
Nexti

Range("A47") . Select
ActiveCell.l'ormulaR1CT = -

Lori=1To 8 Step 1
Sheets("HadwigerCale™).Cells(47 4 1, 1).Scleer
ActiveCell.'ormulaR1C1 = LIG) /T
Sheers("HadwigerCale").Cells(55 + 1, 1}.Scleer
ActveCelll'ormulaR1CT = 1@ / (I- LETY)

Next 1

Sheets{("HadwigerCale™). Select
Range("A6™).Scleer
ActiveCell.FormulaR1CT ="-"
Range("A56™).Select
ActiveCell. FormulalR1¢€C1 = "-"
Range("A04").Select
ActiveCell.FormulalR1C1 = -
Range("A65").Select
ActveCell.lFormuwaR1CT —
YL RANK(R[-7)C,R[SCR[-2)C) FRANKR|-6]C,R[-8]CR[-2]CO)"
End Suhb

Subs Muldple{)

" Multiple Macro
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DYim rowi As Double, bbb As Double, coc As Double, sss As Double, nue As Double
Application.ScreenUpdating = False
rowl = 2

' Create schedule outpur
For bbb = 1.7 l'c 3.4 Step 0.1
Sheers("l ladwigerCale").Select
Range("A3").Select
ActveCell. FormulaR1C1T = bhb

lFor ccc = 23 To 34 Step 0.5
Sheets("HadwigerCalc").Sclect
Range("A4").Sclect
ActveCell.FormulaR1C1 = cee

Forsss = 9 To 19 Swep 1
Sheers("HadwigerCale™).Sclect
Range(" A1").Sclect
ActiveCellI'ormulaR1C1T = sss

Foruuu = 47 To 53 Step 1
Sheers("] ladwigerCale™). Select
Range("A2") Select

ActiveCell. FormulaR1C 1T = uun

" Generate ourpur
Call GenOutpur(bbb, cce, sss, uuu)

" Copy output to Results Sheer
Sheers{"HadwigerCalc”).Sclect
Range("" A1™M).Scleer
Range(Scleetion, Selecton Fnd{xlDown)) Select
Selection.Copy
Worksheets{"Results'™).Sclect
Sheers("Results").Cells(rowt, 1).5elect
Selection. PasteSpecial Paste:=xiPastcValues, Operation:=xtNone, SkipBlanks _

:=lalse, Transpose:="T'ruc
rowl = rowl + 1
Next uuu
Next 588
NCxF ece
Nexr bbb
Fnd Sub
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APPENDIX D

Lquations .1 and D.2 are the identifying equations of gfa) in the Coale-"Trussell model.

1946
g(a) = Q—Léggi—cxp[-—OAl?4 W — exp( —0.2881 ¥ )]

where

a-ap-6.06k

W =
k

Equation D. 1

Equation D. 2

Figure .1 illustrates g(a) and Gfa) for an example populanon where 4, = 10 and & = 0.8.

0.10 = = I
0.09 0.9
0.08 0.8
0.07 0.7
0.06 08
5 005 05 F
0.04 G4
0.03 0.3
0.02 02
0.01 0.1
000 A et g O
40 45 50
Age
—e-g(ay —e-Gla)
Figure D. 1: A plot of g(a) and G(a) on the same x-axis
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Since Gfa) 1s found by integrating gfaj, the value of Gfa) increases at an increasing rate as gfw)
increases to its maximum. Atter gfe) reaches its peak it decreases and the rate of mcerease for Gla)
slows down giving rise to the characteristic S-shape (Ligure D.1). The maximum point of gfwj can
also be seen to be the inflection point ot Ge).

For further analysss it 1s usetul to detine a function, fa), such that Liquaton 1.3 holds.
flay=—-0.174W —exp(—0.2881 1) Equation D. 3

where W is defined as in Fquatton D.2. Dehiming t{a) in such a2 way changes Fquation 1.1 to
Hquaron [D.4.

gla) = %exp[ fla) Equation D. 4

ligure .2 shows plots fa) on the same x-axis as g} It can be seen that gfa) increases as f(a)
increases and decrcases when f(a) decreases. In order to find the inflection point of Gfa) the
maximum of g7} must be found. [lowever, mspeetion ot igure 1.2 shows that this can be achieved

by finding the maximum of t{a).
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Figure D. 2: f(a) and g(a) plotted on the same x-axis

The masimum of f{a) can be found by seting the dedvatve, £772), cqual to zero and solving tor the
3 tey , » €4 5

age, a (Lquation D.5 and 12.6).

0288 l*[a—c:(]__lé_.ﬂék ]}

_ "-[ a—ap —6.06k { k
j'(a):a‘L- —0.174*( Ok J—e J Equation D. 5

|
= —0.174 *(“’-} 0.288] *[a]i
k k

‘ W —G.06 kY
—0.2881 *L “ 9o ] b6 & i}
/. Equation D. 6

By semng Fquaton 12.6 equal to zero and solving for o gives the age tor the mflecron point of Ga)

{l'quaton D.7).
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a=ag+7.8103k Equation D, 7

For the example population, used in Figures 11 and 1.2, where &, = 10 and & = (1.8 the maximum

of f{a) and gfe} - the inflection point of Gifa) - 1s o = 16.248 years,

Detining a sub-Saharan Ferality Pattern and Standard 111



APPENDIX E

Fquation F.1 1s the tormula tor the Brass polynomial as given by Gage {2001).

F{zy=c¢|(x—s¥s+w-— x)2 elx Equadon E. 1

[ N

Tt rhis integral can be cvaluated directly to produce estimates of F(z) and F(z} without numerical
procedurcs it would speed caleuladon and provide a useful alternative to the Coale-l'tussell

schedules. Consequently, the integral was manipulated using the properties of definite Integrals in an

cttort to simplity the equation.

Liirst, quation .2 is cstablished by adding and subtracting w i the first term of the integral.

F{z)=¢ [ (x—s—w+wis+w-— )2 dx Equation E. 2

£

Using the propertics of integrals and rearranging rermis resubts in Liquation .3 and simplitving to
give Hquatdon L4, The integral can now be solved to give Lquadon 1.5 and cvaluated benween s

and z to yield Fquanon 12.0.

Fzy~- (:[}. (x—s—w)s+w-— x)2 dv + wI (s+ w-— x}zdx] Equation E. 3
5 5
Fiz)= c’[j— (s +w— x)';dx + wi.(s | W — x}zdx] Equation E. 4

&

| Equation E. 5

;|

F{z) = LLL (8 +w— _\‘)4 lj - ;—w(.s W - ,\7)3
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F(z)= CU_(S +w - z)? - ;—w(.s +w— )k —w4—‘ Equation E. 6

By dividing through by the roral fertlity rate (TI'R), the cumulative tertility, F(z), takes on a value of
one at the end of the reproductive life. Standardising the cumulative fertility in this way removes the
effect of level while leaving the pattern of fertility unchanged. Since the end of reproductive lite by
definition occurs at 7 = s + w then li(z) = F(s + w) = 1. This constraint allows the value of the

12

constant, ¢, o be caleulated as ¢ — —;
1.].'

Replacing ¢ in Equation 1.6 establishes Hquaton 117 and by mulnplying through by 12 inside

the bracket and dividing by 12 outside gives Equation 128,

: I : 3.1 . :
Fiz)y= 12 ]—(5 + 9w - z)4 - ]—w(.s' +w—z) 4 oyt Equation E. 7
wr 4 3 12
F(z)= —14 (s +w - :)4 dwis o+ ow - 2]3 +ow } Equation E, 8
W
Sett = s + w —z and simplity to yield Lguanon E.Y.
{4 wi 3 .
F{z)=3——4—+1 Equation E. 9
W w

Hquation 1:.10 is cstablished by subtracting one both sides and multiplying by -1.

wi 3 ¢ .
|- F{z}=4 -3 — Equation E. 10

w 4 W 4

The first term on the left-hand side of Beuation F.10 can be simplitied ro give Fquanon [L11

- F(z)=4 3 : Equation E. 11

hoid ‘
e
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t S+w-z . - - o . . -- . -
letp = — = === he the portton of the fertlity period remaining, then Fquation FL12 results.
w w : =

- ti(z)=4dp° -3p°

Equation E. 12
‘The equation is a function of the portion, g, of the fernlity petiod remaining at age z and provides a
simple and convenient way of determining cumulatve fermliry.

Retherford (1979) highlights additional properdes of the original tormulanon of the Brass
polynomial. In particular, he derives tormulae for the mean age ar childbearing, mean partes,
median age ar childbearing and the tme distribution ot children ever born. These formulae can
easily be extended to apply to the generalised polynomial derived above and, as a consequence, any

specific case once v and w have been selected.
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APPENDIX F

The two standards developed in Chapter 4 can be interpreted as graduated rates. In order for a
graduation (in this case the standards) to be appropriate a balance must be found between two often
conflicting ideals: 1) adherence-to-data and 2) smoothness.

On the one hand 100 per cent adherence-to-data implies following the data exactly. This may
lead to fluctuating rates and erratic progression. By contrast, smoothing observed rates may remove
vital information. For example, if mortality rates are smoothed too much then the "accident hump"
may be flattened out as a data anomaly.

In fact, the consistent understatement of £(45-49) for African populations arises from the
mistaken belief that the observed uptick in 45-49 fertility is a data problem. In particular, poor data
quality resulting from illiteracy and enumerator error, amongst others, has been blamed. However,
evidence from the sub-Saharan Africa DI-IS indicates that this upwards trend is not an anomaly to
be ignored and smoothed away.

A good standard must satisfactorily meet both of these contrasting goals. As such, to
formalise the comparison of the standards with the average DHS fertility rates a number of

graduation tests are used.

F.1 Goodness-of-Fit

Normally, four tests are required to check goodness-of-fit: a) A test for overall adherence to data, b)
a test checking for a few large discrepancies offset by many small ones, c) the signs or cumulative
deviations test for overall bias and d) a check for runs of over- or underestimation (Benjamin and
Pollard 1992, p. 222 — p. 227)

The Chi-square statistic, test a), is normally used to check adherence-to-data, that is, to
compare how closely the graduation fits the observed data. Similarly, the individual standardised
deviations test is used to expose problem b). However, it came to light during the comparison of the
standards that tests for a) and b) cannot be used in this analysis. A caveat of the Chi-square test -
used in both a) and b) above - is that it does not work for small values (Benjamin and Pollard 1992).

Fortunately, the method used to obtain the two standards being investigated minimises the
sum of squared error (abbreviated SSE) thus identifying the best-fitting schedules. These schedules

are then investigated and a small observed error indicates a relatively close overall adherence to the
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data (fable F.1). If the observed squared-error is sufficiently small then this methodology
approximates the Chi-square test.

The second test looks for a few large differences offset by many small differences. In such a
case, the overall goodness-of-fit test may well be passed when, in fact, there is a significant misfit in
one (or more) ages or age groups. Since the individual standardised deviations test cannot be used
with these small values an alternative method must be found. Given that the problem with the
Booth standard and the Coale-Trussell model is an understatement of fertility in the oldest age
group, it is particularly important to check adherence in the 35-39, 40-44 and 45-49 age group.

As a result, the same procedure is followed as for overall goodness-of-fit and the sum of

squared differences for the last three age groups are compared (Table F.1).

Table F. 1: Brass and Hadwiger differences used in the Signs and Grouping of Signs tests

Age African Hadwiger Squared Brass Squared

Group ASER standard Error % Difference standard Error % Difference
15-19 0.12707 0.13020 0.00001 2.5% 0.13285 0.00003 4.5%
20-24 0.22663 0.22570 0.00000 -0.4% 0.20925 0.00030 -1.7%
25-29 0.22020 0.22538 0.00003 2.4% 0.22360 0.00001 1.5%
30-34 0.18969 0.18143 0.00007 -4.4% 0.19410 0.00002 2.3%
35-39 0.13968 0.12872 0.00012 -7.8% 0.13899 0.00000 -0.5%
40-44 0.07053 0.08440 0.00019 19.7% 0.07646 0.00004 8.4%
45-49 0.02621 0.02417 0.00000 -7.8% 0.02475 0.00000 -5.6%
SSE (15-49) 0.00042 0.00040

SSE (35-49) 0.00032 0.00004

The results in Table F.1 show that the Brass-based standard has better overall adherence-to-data and
superior fit to the 35-49 age groups.

Since the least squares methodology uses squared error it ignores the direction of the
differences. As such, it is possible that the majority of the age groups could have errors is the same
direction - all positive or all negative - resulting in problem b). Two tests can be used to identify
overall bias - the signs test and the cumulative deviations test. However, the cumulative deviations
test has a zero value by design, since the standards and the DHS average population rates

accumulate to one.

As a result, the signs test must be used. Table F.2 shows the differences between the derived

standards and the DHS average population (columns 5 and 6 respectively).
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Table F. 2: Brass and Hadwiger differences used in the Signs and Grouping of Signs tests

Brass Hadwiger Brass Hadwiger
Age DHS based based Difference Difference Brass Hadwiger
Group Average Standard Standard Values Values Signs Signs
15-19 0.12707 0.13285 0.13020 0.00578 0.00313 + +
20-24 0.22663 0.20925 0.22570 -0.01738 -0.00093 - -
25-29 0.22020 0.22360 0.22538 0.00340 0.00518 + +
30-34 0.18969 0.19410 0.18143 0.00441 -0.00826 + -
35-39 0.13968 0.13899 0.12872 -0.00069 -0.01096 - -
40-44 0.07053 0.07646 0.08440 0.00593 0.01387 + +
45-49 0.02621 0.02475 0.02417 -0.00146 -0.00204 - _

Table F.2 shows that there are four positive signs and three negatives signs for the Brass-based
standard. Conversely, there are four negative signs and three positives for the Hadwiger-based
standard. In both cases logic dictates that three values of a particular sign and four of the other sign
demonstrates no consistent bias above or below the DHS population. In addition, the p-value
calculated using a binomial test confirms these results. In both cases the p-value of 0.5 far exceeds
the critical level of 0.05. As such the null hypothesis that there is no overall bias cannot be rejected.

Table F.2 would, usually, also be used for the grouping of signs test for runs of the same sign,
but the low number of age groups makes the test unreliable. Similarly, the alternative test for runs or
clumps - serial correlations test - cannot be used either. However, no clear evidence exists in
columns 7 and 8 of Table F.2 to suggest that runs of the same sign exist.

Based on the above results, both standards appear to adhere well to the data. However, the
standard derived using the Brass polynomial is superior in both the overall adherence and the
adherence to the data for the oldest age groups. As such, the Brass based standard is favoured based

on goodness-of-fit.

F.2 Third Differences

The second requirement of a good graduation is that the rates should progress smoothly. The test
commonly used for smoothness is to analyse third differences. So, the standard rates calculated
using the Brass polynomial and the Hadwiger function should show a regular progression in third

differences. Tables F.3 and F.4 show the Brass polynomial and Hadwiger results respectively.
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Table F. 3: First, second and third differences for Brass-based standard

Age Group f(x.x+4) 1st Differences 2nd Differences 3rd Differences

15-19 0.13285

-0.07640
20-24 0.20925 -0.06206

-0.01435 -0.01822
25-29 0.22360 -0.04384

0.02949 -0.01822
30-34 0.19410 -0.02562

0.05512 -0.01822
35-39 0.13899 -0.00741

0.06252 -0.01822
40-44 0.07646 0.01081

0.05172
45-49 0.02475

Table F. 4: First, second and third differences for Hadwiger based standard

Age Group f(x.x+4) 1st Differences 2nd Differences 3rd Differences

15-19 0.13020

-0.09551
20-24 0.22570 -0.09583

0.00032 -0.05219
25-29 0.22538 -0.04364

0.04396 -0.03489
30-34 0.18143 -0.00875

0.05270 -0.01713
35-39 0.12872 0.00838

0.04432 0.02429
40-44 0.08440 -0.01591

0.06023
45-49 0.02417

The standard derived using the Brass polynomial shows smooth third differences (Table F.3). By
contrast, the standard derived using the Hadwiger function exhibits an irregular progression in third
differences (Table F.4).

As with the adherence to data, the standard derived using the Brass polynomial meets the
criterion. By contrast the Hadwiger-based standard fails the smoothness test. Consequently, the
standard based on the Hadwiger function can be rejected for the average African population because
it fails both the smoothness and the goodness-of-fit criteria (greater misfit to 35-49 fertility than the
Brass polynomial). By contrast, the Brass-based standard is accepted as the most appropriate for use

in sub-Saharan Africa settings.
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APPENDIX G

In order to test the suitability of the African standard in sub-Saharan settings, two census

populations - Kenya 1979 and Botswana 2001 - were analysed. The relational Gompertz model was

used without half-year shift for both populations.

Table G.1 gives the original data for the Kenya population.

Table G. 1: Original data from the 1979 Kenya Census

Age Group P(i) f(x)

15-19 0.3206 0.0984
20-24 1.8529 0.2640
25-29 3.6521 0.2758
30-34 5.3881 0.2260
35-39 6.4703 0.1727
40-44 7.0215 0.0907
45-49 71735 0.0416

Applying the standard relational Gompertz model as set out by Zaba (1981) and using the Booth

standard gives the results in Table G.2.

Table G. 2: Summary results using the Booth Standard

ASFRs Parities
Age Group Shift No Shift
10-14 0.0016 0.0029 0.0016
15-19 0.1482 0.1767 0.3201
20-24 0.3615 0.3709 1.7917
25-29 0.3837 0.3812 3.7150
30-34 0.3294 0.3220 5.4916
35-39 0.2459 0.2364 6.8966
40-44 0.1253 0.1111 7.7858
45-49 0.0202 0.0149 8.0584
TER 8.0712 8.0653
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Applying the African standard developed in Chapter 4 and using the recalculated e(x), z(x), e(i) and

z(i) values yields the results in Table G.3 for the 1979 Kenya Census.

Table G. 3: Summary results using the African Standard

ASFRs Parities
Age Group Shift No Shift
10-14 0.0081 0.0139 0.0574
15-19 0.1671 0.1881 0.5779
20-24 0.3269 0.3369 1.8664
25-29 0.3720 0.3713  3.6287
30-34 0.3270 0.3193 5.3839
35-39 0.2318 0.2210 6.7457
40-44 0.1250 0.1150 7.5814
45-49 0.0403 0.0338 7.9372
TFR 7.9504 7.9268

Similarly, the 2001 Botswana Census data (Table G.4) can be analysed using the relational Gompertz

model with the Booth standard (Table G.5) and the African standard (Table G.6).

Table G. 4: Original data from the 2001 Botswana Census

Age Group P(i) f(x)

15-19 0.13407 0.04220
20-24 0.85889 0.12293
25-29 1.68648 0.11138
30-34 2.66135 0.10595
35-39 3.61718 0.08689
40-44 4.57589 0.05109
45-49 5.27185 0.01970
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Table G. 5: Summary results using the Booth Standard

ASFRs Parities
Age Group Shift No Shift
10-14 0.0008 0.0015 0.0009
15-19 0.0663 0.0790 0.1451
20-24 0.1649 0.1699 0.8063
25-29 0.1846 0.1844 1.7109
30-34 0.1682 0.1655 2.5958
35-39 0.1343 0.1301 3.3411
40-44 0.0745 0.0668 3.8493
45-49 0.0136 0.0102 4.0211
TER 4.0320 4.0294

Table G. 6: Summary results using the African Standard

ASFRs Parities
Age Group Shift No Shift
10-14 0.0054 0.0088 0.0370
15-19 0.0806 0.0895 0.2924
20-24 0.1496 0.1544 0.8821
25-29 0.1766 0.1773 1.7027
30-34 0.1666 0.1640 2.5693
35-39 0.1292 0.1245 3.2990
40-44 0.0781 0.0728 3.7948
45-49 0.0296 0.0256 4.0356
TER 4.0517 4.0409
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