The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
A Theoretical Assessment of Fuel Combustion Attributes to Enhance the Operational Envelope of HCCI Engines

Author:
Sibusiso C. Londleni

Supervised by:
Mr André Swarts and Prof. Andrew D. B. Yates

A dissertation submitted to the Department of Mechanical Engineering, University of Cape Town, in partial fulfilment of the requirements for the degree of Master of Science in Engineering

Cape Town, South Africa
31 March 2006

© Copyright by University of Cape Town, 2006
Declaration

1. Plagiarism is the illegal use another’s work and pretending that it is one’s own.

2. I have used the Harvard convention for citation and referencing. Each significant contribution to, and quotation in, this project from the work(s) of other people has been attributed, and has been cited and referenced.

3. This project is my own work and has also not been submitted for any purpose or examination to any other Department or University.

4. I have not allowed, and will not allow anyone to copy my work with the intention of passing it off as his/her own work.

Signature: ..

Date: 20/03/2006
Acknowledgements

This project was initiated and sponsored by:

Sasol
reaching new frontiers

First and foremost, the author wishes to thank the Lord Jesus Christ for providing strength and courage even through difficult times to put this project to completion.

Also, the author wishes to thank the following people for their enormous help and contributions in making this project a success:

Mr. André Swarts – Project supervisor, and many thanks for being more than just a project supervisor, Sasol Advanced Fuels Laboratory (SAFL)

Prof. Andrew D. B Yates – Project co-supervisor, and your advice is highly appreciated, SAFL

Mr. Carl Viljoen – Assistance with Chemkin modelling and useful fuel data, SAFL

Prof. Hiroshi Kawanabe – Assistance with the burn duration correlation, Kyoto University, Japan

Mrs. Joey Swarts – For being a parent away from home and providing help when needed the most, HR personnel, SAFL

Mr. and Mrs. Tsana and the Members – For the prayers, encouragements and for becoming friends when it mattered most.

To all those who contributed directly or indirectly, and all those not mentioned your help is highly appreciated. "May the good Lord, Jesus Christ, richly bless you all."

University of Cape Town
Abstract

Homogeneous Charge Compression Ignition (HCCI) is an alternative internal combustion (IC) engine that can provide high efficiencies while producing ultra-low nitrous oxides (NO\textsubscript{x}) and particulate matter (PM) emissions compared to existing compression ignition (CI) and spark ignition (SI) engines. HCCI engines operate on the principle of having a dilute, premixed charge that reacts and burns volumetrically throughout the cylinder as it is compressed by the piston. The large amounts of charge dilution also dramatically reduce the peak burned gas temperatures resulting in low NO\textsubscript{x} emissions. Since there is no fuel-rich diffusion burning taking place, the PM emissions are at near zero levels. In theory, HCCI combustion can be achieved with any fuel that evaporates readily and autoignite under the conditions typically found in an internal combustion engine.

In some regards, HCCI incorporates the best features of both SI and CI engine. As in a SI engine, the charge is well mixed, which minimises particulate emissions and as in a CI engine, the charge is compression ignited and has no throttling losses, which leads to high thermal efficiencies. However, unlike either of these conventional engines, the combustion occurs simultaneously throughout the combustion chamber without a flame front, eliminating the flammability limits associated with SI combustion. The HCCI engine can provide efficiencies as high as compression ignition engines while generating extremely low NO\textsubscript{x} emissions, as low as 1-5% tailpipe NO\textsubscript{x} of a conventional SI engine.

Lack of direct control of combustion phasing and a limited load and speed operating range are some of the barriers to overcome before HCCI engine technology can be brought to the market. Faced with the challenges of HCCI combustion and the demand for cleaner fuels, Sasol identified an opportunity for future business and funded this research project to develop a simple mathematical model that could be used as a tool to simulate HCCI combustion. In addition, a secondary aim was to explore fuel combustion characteristics that would enable HCCI operation over the full range of speed and load.

A simple mathematical model that could be used as a tool to simulate HCCI combustion was developed and validated against experimental data. Despite the relative simplicity of the model, it proved able to predict the start of combustion within reasonable accuracy. Moreover, the model produced results that were in good agreement with literature and available measurements.
Abstract

The compression ratio was identified to be one of the most important parameters when designing a fuel for HCCI combustion. For example, if the fuel was designed for low compression ratios and used at high compression ratios engine knock would result and vice versa. With a suitable compression ratio it was possible to conceive fuel properties that could be operated through the load and speed range. The fuel allowed HCCI combustion throughout the speed range (1000 – 5000 rpm) and load range (0.2 ≤ φ ≤ 1) without any forced induction. However, high peak pressures and heat release rates appeared to be inevitable at high loads.

It was recommended to conduct an investigation on how much heat is released during cool flames and to confirm the association of the start of cool flames with the low temperature ignition delay. These findings need to be implemented in the model to improve the model predictions of combustion phasing of fuels with two-stage ignition.

It was further recommended to conduct more experiments and 3-D modelling with different engines using different fuels and operating conditions to establish data that can be used to refine the combustion duration correlation. Furthermore, it was recommended to match the ignition delay characteristics with different known fuels and blends to obtain the designer fuel thermodynamic and physical properties.
Contents

DECLARATION I

ACKNOWLEDGEMENTS II

ABSTRACT III

CONTENTS V

LIST OF FIGURES VII

LIST OF TABLES X

NOMENCLATURE XI

1 INTRODUCTION 1-1

1.1 PROJECT BACKGROUND 1-1

1.2 PROJECT OBJECTIVES 1-2

1.3 PLAN OF DEVELOPMENT 1-2

2 LITERATURE REVIEW 2-1

2.1 HCCI DESCRIPTION 2-1

2.2 ADVANTAGES OF HCCI 2-2

2.3 DISADVANTAGES OF HCCI 2-3

2.4 CONTROL STRATEGIES AND OPERATING RANGE EXTENSION 2-4

2.5 FUEL PERSPECTIVE ON HCCI 2-8

2.6 AUTOIGNITION OF HYDROCARBON FUELS 2-9

2.7 AUTOIGNITION MODELS 2-11

2.8 HEAT RELEASE RATE AND COMBUSTION DURATION 2-15

3 COMBUSTION MODELLING 3-1

3.1 ENGINE MODEL 3-1

3.2 IGNITION DELAY MODEL 3-3

3.3 HCCI ENGINE MODEL 3-5

3.4 THEORETICAL APPROACH 3-7

4 RESULTS AND ANALYSIS 4-1

4.1 MODEL VALIDATION 4-1

4.2 SENSITIVITY STUDY 4-8

4.3 EFFECT OF INLET PARAMETERS 4-10

v
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>Known Fuels Study</td>
<td>4-18</td>
</tr>
<tr>
<td>4.5</td>
<td>Fuel Design</td>
<td>4-25</td>
</tr>
<tr>
<td>5</td>
<td>Conclusion</td>
<td>5-1</td>
</tr>
<tr>
<td>6</td>
<td>Recommendations</td>
<td>6-1</td>
</tr>
<tr>
<td>7</td>
<td>References</td>
<td>7-1</td>
</tr>
</tbody>
</table>

Appendix

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Engine Model Details</td>
<td>A-1</td>
</tr>
<tr>
<td>B</td>
<td>CHEMKIN Results</td>
<td>B-1</td>
</tr>
<tr>
<td>C</td>
<td>Fuel Characterisation</td>
<td>C-1</td>
</tr>
</tbody>
</table>
List of Figures

Figure 2-1: Comparison between HCCI and CI engine emissions. Adopted from Velji et al. (2005) 2-2
Figure 2-2: Comparison of HCCI (Controlled Autoignition, CAI) and SI load speed operating range. Adopted from Zhao H. (2005) 2-3
Figure 2-3: Different temperature regimes observed in two-stage ignition of hydrocarbon fuel 2-10
Figure 2-4: Difference between fuels with single-stage ignition (Toluene) and two-stage ignition (n-Heptane) at 26 bar 2-11
Figure 2-5: Comparison between the 3-part Exponential model and Douaud and Eyzat model at 12 bar for iso-octane 2-14
Figure 2-6: Comparison between the 3-part Arrhenius model and Douaud and Eyzat model at 40 bar for iso-octane 2-15
Figure 3-1: Effect of in-cylinder equivalence ratio and speed on boost pressure 3-11
Figure 3-2: Flow diagram for the calculation of the pressure and temperature at the nine operating conditions for the design of the fuel 3-13
Figure 4-1: Pressure trace at $\lambda = 2$ and CR 7.65:1 4-1
Figure 4-2: Pressure trace at $\lambda = 2.5$ and CR 8.14:1 4-2
Figure 4-3: Pressure trace at $\lambda = 3$ and CR 9.2:1 4-2
Figure 4-4: Pressure trace at $\lambda = 3.5$ and CR 11.8:1 4-2
Figure 4-5: Pressure trace at $\lambda = 4$ and CR 14.0:1 4-3
Figure 4-6: Pressure trace at $\lambda = 3.5$ and CR 11.8:1, with modified Woschni and burn duration correlations 4-4
Figure 4-7: Pressure trace at $\lambda = 4$ and CR 14.0:1, with modified Woschni and burn duration correlations 4-5
Figure 4-8: Methanol fuelled HCCI pressure profile at $\lambda = 4$; CR 19.55:1; 1 bar; 390 K; 0% EGR and 1000 rpm with improved correlations 4-5
Figure 4-9: Comparative total heat release for n-heptane HCCI combustion at $\lambda = 2$; CR 7.95:1; 1 bar; 340 K; 0% EGR and 1000 rpm 4-6
Figure 4-10: Comparative total heat release for n-heptane HCCI combustion at $\lambda = 4$; CR 14.0:1; 1 bar; 340 K; 0% EGR and 1000 rpm 4-6
Figure 4-11: Comparative total heat release for methanol HCCI combustion at $\lambda = 4$; CR 19.55:1; 1 bar; 390 K; 0% EGR and 1000 rpm 4-7
Figure 4-12: Effect of 10% variation of the proportionality constants, A_j, at 40 bar and $\lambda = 1$

Figure 4-13: Effect of 10% variation of the pressure coefficients, n_j, at 40 bar and $\lambda = 1$

Figure 4-14: Effect of 10% variation of the temperature coefficient, B_j, at 40 bar and $\lambda = 1$

Figure 4-15: Effect of 10% variation of the pressure coefficient n_j at 1000 rpm, 1 bar, 300 K, 13:1, 0% EGR and equivalence ratio of 0.3

Figure 4-16: Effect of inlet temperature on HCCI combustion at 1 bar inlet pressure, 15:1 compression ratio, 0% EGR, 0.25 equivalence ratio and 2500 rpm engine speed

Figure 4-17: Ignition delay (ms) for n-Heptane at 40 bar, $\lambda = 1$ and 0% EGR

Figure 4-18: Effect of compression ratio on HCCI combustion at 1 bar inlet pressure, 300 K inlet temperature, 0% EGR, 0.25 equivalence ratio and 3000 rpm engine speed

Figure 4-19: Effect of equivalence ratio on IMEP and indicated thermal efficiency at 1 bar inlet pressure, 340 K inlet temperature, 11:1 compression ratio, 0% EGR and 1000 rpm engine speed

Figure 4-20: Effect of equivalence ratio (Φ) on HCCI combustion at 1 bar inlet pressure, 340 K inlet temperature, 11:1 compression ratio, 0% EGR and 1000 rpm engine speed

Figure 4-21: Effect of equivalence ratio on total heat release at 1 bar inlet pressure, 340 K inlet temperature, 11:1 compression ratio, 0% EGR and 1000 rpm engine speed

Figure 4-22: Effect of EGR rate on IMEP and indicated thermal efficiency at 1 bar inlet pressure, 340 K inlet temperature, 15:1 compression ratio, 0.3 equivalence ratio and 1000 rpm engine speed

Figure 4-23: Effect of EGR on HCCI combustion at 1 bar inlet pressure, 340 K inlet temperature, 15:1 compression ratio, 0.3 equivalence ratio and 1000 rpm engine speed

Figure 4-24: Effect of boost pressure on total heat release at 320 K inlet temperature, 11:1 CR, 0.25 equivalence ratio and 1000 rpm with 0% EGR

Figure 4-25: Effect of boost pressure on HCCI combustion at 320 K inlet temperature, 11:1 compression ratio, 0.25 equivalence ratio and 1000 rpm engine speed with 0% EGR

Figure 4-26: Comparison of model cylinder pressures fuels at $\lambda = 4$, 390 K and CR 18:1

Figure 4-27: Comparative pressure profiles at $\lambda = 2$, 390 K and 15:1 compression ratio

Figure 4-28: Comparative pressure traces at $\lambda = 2$, 410 K and 15:1

Figure 4-29: Effect of EGR and equivalence ratio on IMEP at 1000 rpm

Figure 4-30: Ideal HCCI load map for n-heptane without considering engine knock

Figure 4-31: Effect of compression ratio on ignition delay characteristics at 40 bar for the fuel design

Figure 4-32: Comparison of the design fuel with toluene and n-heptane at 12 bar
List of Figures

Figure 4-33: Comparison of the design fuel with toluene and n-heptane at 40 bar 4-27

Figure A-1: Flow diagram for the combustion model by incorporation of the ignition delay model with the engine model A-2

Figure A-2: Flow diagram for the operation of the engine cycle model A-3

Figure B-1: Effect of equivalence ratio on ignition delay of PRF at 40 bar, 1000 K initial temperature B-1

Figure B-2: Effect of the octane number of PRF on ignition delay at 40 bar, 1000 K initial temperature B-2

Figure B-3: Comparison of the Chemkin and model ignition delay for PRF 90 at 40 bar, 1000 K initial temperature B-2

Figure B-4: Effect of EGR on ignition delay for a given equivalence ratio at 40 bar, 1000 K initial temperature for PRF 90 B-3

Figure B-5: Effect of EGR on ignition delay for a given equivalence ratio at 40 bar, 1000 K initial temperature for PRF 0 B-3

Figure B-6: Effect of inlet equivalence ratio on the EGR index, m B-4

Figure C-1: Autoignition behaviour of model fuels at 26 bar C-1
List of Tables

Table 3-1: Engine Specifications 3-2
Table 3-2: Classification of known fuel components and their octane numbers (ON) 3-5
Table 3-3: Engine Test condition for model validation 3-8
Table 3-4: Engine model conditions for the test on different known fuels 3-9
Table 3-5: Inlet conditions for generating load map for n-heptane 3-9
Table 4-1: Engine conditions for inlet temperature sensitivity test 4-11
Table 4-2: Effect of boost pressure on IMEP and Indicated thermal efficiency at 320 K inlet temperature, 11:1 CR, 0.25 equivalence ratio and 1000 rpm with 0% EGR 4-17
Table 4-3: Model engine performance results for the different test fuels at \(\lambda = 4 \), 390 K and 18:1 compression ratio 4-19
Table 4-4: Model comparative performance results at \(\lambda = 2 \), 390 K and 15:1 compression ratio 4-20
Table 4-5: Model performance results at \(\lambda = 2 \), 410 K and 15:1 4-20
Table 4-6: Possible combinations of EGR and equivalence ratio (\(\Phi \)) and the resulting corresponding mechanical efficiencies (\(\eta_{\text{mech}} \)) at each speed and 25 % load 4-23
Table 4-7: Most efficient operating conditions at each load point and speed 4-24
Table C-1: Ignition delay parameters for the different model fuels including the design fuel C-1
Nomenclature

Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABDC</td>
<td>After bottom dead centre</td>
</tr>
<tr>
<td>ATDC</td>
<td>After top dead centre</td>
</tr>
<tr>
<td>BBDC</td>
<td>Before bottom dead centre</td>
</tr>
<tr>
<td>bMEP</td>
<td>Break mean effective pressure</td>
</tr>
<tr>
<td>BTDC</td>
<td>Before top dead centre</td>
</tr>
<tr>
<td>CA10</td>
<td>Crank angle of 10% heat release</td>
</tr>
<tr>
<td>CA90</td>
<td>Crank angle of 90% heat release</td>
</tr>
<tr>
<td>CAD</td>
<td>Crank angle degrees</td>
</tr>
<tr>
<td>CI</td>
<td>Compression ignition</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon monoxide</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>CR</td>
<td>Compression ratio</td>
</tr>
<tr>
<td>DI</td>
<td>Direct injection</td>
</tr>
<tr>
<td>DME</td>
<td>Dimethyl ether</td>
</tr>
<tr>
<td>EGR</td>
<td>Exhaust gas recirculation</td>
</tr>
<tr>
<td>EVC</td>
<td>Exhaust valve closure</td>
</tr>
<tr>
<td>EVO</td>
<td>Exhaust valve opening</td>
</tr>
<tr>
<td>FBR</td>
<td>Full boiling range</td>
</tr>
<tr>
<td>fMEP</td>
<td>Friction mean effective pressure</td>
</tr>
<tr>
<td>H₂</td>
<td>Hydrogen</td>
</tr>
<tr>
<td>H₂O</td>
<td>Water</td>
</tr>
<tr>
<td>HC</td>
<td>Hydrocarbon</td>
</tr>
<tr>
<td>HCCI</td>
<td>Homogeneous charge compression ignition</td>
</tr>
<tr>
<td>IC</td>
<td>Internal combustion</td>
</tr>
<tr>
<td>IMEP</td>
<td>Indicated mean effective pressure</td>
</tr>
<tr>
<td>ISFC</td>
<td>Indicated specific fuel consumption</td>
</tr>
<tr>
<td>IVC</td>
<td>Inlet valve closure</td>
</tr>
<tr>
<td>IVO</td>
<td>Inlet valve opening</td>
</tr>
<tr>
<td>MBT</td>
<td>Maximum brake torque</td>
</tr>
<tr>
<td>MON</td>
<td>Motor octane number</td>
</tr>
<tr>
<td>NOₓ</td>
<td>Nitrous oxides</td>
</tr>
<tr>
<td>NTC</td>
<td>Negative temperature coefficient</td>
</tr>
</tbody>
</table>
Nomenclature

ON Octane number
PM Particulate matter
PRF Primary reference fuels
RCM Rapid compression machine
RON Research octane number
RPM Revolutions per minute
SAFL Sasol advanced fuels laboratory
SI Spark ignition
SOC Start of combustion
TDC Top dead centre
VCR Variable compression ratio
VVA Variable valve actuation
VVT Variable valve timing

List of Symbols

A Pre-exponential constant of proportionality
B Cylinder bore
 Temperature coefficient
a Wiebe function multiplier
b Wiebe function exponent
Ea Activation energy
F Mole fraction of fuel
hc_conv Convection heat transfer coefficient
k Rate constant
 Exponent of air-fuel ratio
m Exponent of the exhaust gas recirculation
Md Molecular density of the mixture
mf Mass of fuel
n Pressure coefficient
O Mole fraction of oxygen
p Pressure
Q_int Heat transfer through the intercooler
QLHV Low heat value of fuel
R Universal gas constant
Sp Average mean piston speed
Nomenclature

T Temperature
\(t \) Time
\(V_d \) Displacement volume
\(W_c \) Work done per cycle
\(W_{\text{comp}} \) Compressor work
\(x_o \) Mass fraction burnt
\(\Delta \theta \) Combustion duration in crank angle degrees
\(\eta \) Efficiency
\(\theta \) Crank angle
\(\lambda \) Air-fuel ratio
\(\Phi \) Fuel-air equivalence ratio
\(\tau \) Ignition delay
\(\tau_{\text{cd}} \) Combustion duration in milliseconds

Subscripts

b Burnt gas
c Cycle
cd Combustion duration
comb Combustion
comp Compressor
conv Convection
corr Corrected
d Displaced
f Fuel
i Dummy index for 1, 2, 3
int Intercooler
max Maximum
mech Mechanical
o Overall
th Thermal
u Unburnt gas
m Motored
1 Introduction

1.1 Project Background

The increasing demand for more power and efficiency by the consumers leads the engine manufacturers to improve engine designs. Moreover, the increasingly stringent legislative requirement on tail-pipe emissions by the government leads the fuel manufacturers to search for cleaner fuels. Further improvements of SI engines to meet the demands are limited by engine knock, an abnormal combustion phenomenon which depends on engine design and operating conditions, as well as the fuel. Knock is the ultimate constraint on spark ignition (SI) engine efficiency since it limits the compression ratio (Heywood, 1988). On the other hand, high levels of nitrous oxides (NO\textsubscript{x}) and particulate matter (PM) emissions are the drawback in compression ignition (CI) technology.

Homogeneous Charge Compression Ignition (HCCI) technology has emerged over the past decade as an alternative internal combustion (IC) engine that has the potential to meet the abovementioned demands. This engine technology promises to dramatically reduce NO\textsubscript{x} and PM emissions, whilst providing efficiency levels comparable to those of diesel engines. HCCI combustion involves an autoignition process that combines the best features of the SI and CI processes.

In a HCCI engine, the air and fuel are premixed homogeneously prior to ignition and then ignited by the compression from the piston motion. The ignition is ideally simultaneous and therefore the charge gives an instantaneous energy release (approaching Otto air standard cycle). This uniform and simultaneous autoignition occurs throughout the whole charge without flame propagation. There is no direct control of the start of combustion and the rate of heat release. As such, the combustion process is primarily controlled by chemical kinetics, which makes it very sensitive to the thermodynamic state of the mixture charge (Aroonsrisopon et al., 2002).

Like any other engine technology, HCCI engine posses its own set of unique challenges that include lack of control over combustion phasing and a limited load and speed operating range. There has been an increasing worldwide research and development of this engine
technology and attempts to overcome the challenges before the engine can be brought to the market.

1.2 Project Objectives

Faced with the challenges of HCCI combustion and the demand for cleaner fuels, Sasol identified an opportunity for a future business and funded this research project to:

- Develop a simple mathematical model that could be used as a tool to simulate HCCI combustion. However, it must demonstrate the potential to produce usable results.

- Validate the model using published experimental data. Study the fuel behaviour and the effect of fuel composition on HCCI combustion.

- Explore a designer fuel (refers to developing autoignition behaviour of a design fuel) that will work in the model engine over the full range of operation. If possible, relate the designer fuel to conventional fuel characteristics.

1.3 Plan of Development

This document is structured to enable the reader to follow the method of investigation. The following chapter gives the review of the relevant literature, particularly the development of HCCI engine technology and effect of fuels. Literature on modelling of fuel autoignition is also briefly discussed.

Chapter 3 describes the mathematical model of HCCI combustion and highlights the procedure followed in producing the results.

In Chapter 4, the results are presented and discussed. Finally, conclusions are drawn on the results and recommendations for future work are made on the basis of the conclusions.
2 Literature Review

2.1 HCCI Description

Homogeneous Charge Compression Ignition (HCCI) is an alternative internal combustion (IC) engine that can provide high efficiencies while, producing ultra-low nitrous oxides (NO\textsubscript{x}) and particulate matter (PM) emissions compared to existing compression ignition (CI) and spark ignition (SI) engines. HCCI engines operate on the principle of having a dilute, premixed charge that reacts and burns volumetrically throughout the cylinder as it is compressed by the piston (U.S. Dep. of Energy, 2001). In theory, HCCI combustion can be achieved with any fuel that evaporates readily and autoignite under the condition typically found in an internal combustion engine.

In some regards, HCCI incorporates the best features of both SI and CI engine. As in a SI engine, the charge is well mixed, which minimises particulate emissions and as in a CI engine, the charge is compression ignited and has no throttling losses, which leads to high thermal efficiencies (Epping et al., 2002). However, unlike either of these conventional engines, the combustion occurs simultaneously throughout the combustion chamber without flame front, eliminating the flammability limits associated with SI combustion. HCCI engine can provide efficiencies as high as compression ignition engines while generating extremely low NO\textsubscript{x} emissions, as low as 1-5% tailpipe NO\textsubscript{x} of a conventional SI engine (Xu et al., 2002).

In general, HCCI engines operate very lean due to high levels of dilution, which control the energy release rates to within acceptable levels. The large amounts of charge dilution also dramatically reduce the peak burned gas temperatures resulting in much low NO\textsubscript{x} emissions. Since there is no fuel-rich diffusion burning taking place, the PM emissions are at zero levels (Zhao et al., 2003).
2.2 Advantages of HCCI

The advantages of HCCI engine depend on the combustion system to which it is compared. Relative to SI engine, HCCI engines are more efficient, approaching CI efficiencies. This improvement is as a result of elimination of throttling losses; the use of high compression ratios similar to CI, and shorter burn duration since it is not necessary for flame propagation across the cylinder (Epping et al., 2002). HCCI engines produce lower NOx emissions than SI engines without any exhaust after-treatment.

Relative to CI engines, HCCI engines have substantially lower emissions of PM and NOx. Particulate matter and nitrous oxides emissions are major impediments to CI engines meeting future emissions standards and are the focus of extensive current research (U.S. Dep. of Energy, 2001). The low emissions of PM and NOx in HCCI engines are as a result of the dilute homogeneous air and fuel mixture in addition to low combustion temperatures. So HCCI engines beat the PM-NOx trade-off in CI engines (see figure 2-1).

Figure 2-1: Comparison between HCCI and CI engine emissions. Adopted from Velji et al. (2005)

HCCI is potentially applicable to both automobile and heavy truck engines. It could be scaled to virtually every size class of transportation engines from small motor cycles to large ship engines (U.S. Dep. of Energy, 2001).
2.3 Disadvantages of HCCI

HCCI does pose its own set of unique problems, just like any other IC engine. Some of the disadvantages of HCCI are relatively high hydrocarbon (HC) and carbon monoxide (CO) emissions at low loads, high peak pressures and rates of heat release at high loads, reduced engine speed range and lower maximum power, as well as difficulty in starting the engine and in control of combustion phasing (Milovanovic et al., 2004).

The high levels of HC and CO emissions result from incomplete combustion and quenching effects in crevices in the combustion chamber and near the cylinder wall. The burned gas temperatures are too low to consume the unburned gases during expansion stroke, due to lean burning. Furthermore, the burned gas temperatures are too low to favour the CO to CO2 equilibrium oxidation reaction. All these results in high HC and CO emissions than in SI, where burned gas temperatures are high enough to combust the unburned gases (Stanglmaier et al., 1999, Zhao et al., 2003).

HCCI engine is limited by high rates of heat release at high loads and for this reason, the engine operates lean with high levels of charge dilution being used. This results in lower maximum power output, due to the limited relative air-fuel ratio range. Furthermore, the engine speed range is limited by misfire at high speeds, because there is not enough time for the fuel mixture to autoignite. Figure 2-2 shows the limited HCCI operating range compared to SI engines.

![Figure 2-2: Comparison of HCCI (Controlled Autoignition, CAI) and SI load speed operating range. Adopted from Zhao H. (2005)](image-url)
The greatest challenge facing HCCI engine is the control of combustion phasing over the load and speed range. Since HCCI combustion depends on the ability of the fuel to autoignite by compression, there is no direct control over the start of combustion. The start of combustion is determined by the autoignition chemistry of the fuel mixture, the temperature history and to a lesser extent the pressure history, to mention a few. Therefore, the inlet valve closure (IVC) mixture conditions needs to be precisely controlled in order to obtain optimum autoignition timing (Zhao et al., 2003). However, it is difficult to achieve this level of control during transient engine operation.

2.4 Control Strategies and Operating Range Extension

The major challenge facing HCCI technology lies in maintaining thermal conditions to assure HCCI operation during rapid transient operation. Incorrect thermal conditions and charge composition at the time of autoignition could lead to inevitable misfire or engine knock. Thus, accurate control of thermal boundary conditions is a prerequisite for robust HCCI combustion control over a wide range of engine operating conditions (Zhao et al., 2003).

It is well understood that autoignition of lean fuel-air mixture is dominated by the mixture properties and time-temperature history to which the mixture is exposed. Several approaches have been attempted to control and extend the load and speed operating range of the engine. The approaches are distinguished between those methods attempting to control the time-temperature history to which the mixture is exposed and the methods aimed at altering the propensity for autoignition of the mixture (Stanglmaier et al., 1999). Some of the methods that have been investigated in literature were reviewed to explore their advantages and disadvantages. This review provided understanding of what needed to be done to overcome the present challenges. The methods that have been reviewed are summarised below.

2.4.1 Intake temperature

HCCI autoignition timing is very sensitive to temperature changes. A higher intake temperature advances HCCI combustion but the controllable range is relatively limited and a large penalty in volumetric efficiency accompanies high inlet temperatures. Furthermore,
ignition timing changes with changes in engine speed and load, unless the inlet charge temperature is varied to compensate. However the compensation is generally a slow process, more especially during transient condition due to limited capability of intake heating (Zhao et al., 2003).

2.4.2 Compression Ratio

An increase in compression ratio increases the in-cylinder pressure and temperature under compression and expansion, thus advancing combustion phasing. For this reason, a variable compression ratio (VCR) engine has the potential to achieve satisfactory operation in HCCI mode over a wide range of conditions. This is true because the compression ratio can be adjusted as the operation condition changes (Epping et al., 2002). However, a fast control system that modifies the compression ratio in fractions of a second is required for the fast changing conditions in vehicular application. This approach would add some cost and complexity to the engine. Furthermore, the increased CO emissions due to faster expansion leading to a reduced reaction time limit the application of this technique (Haraldsson et al., 2002).

2.4.3 Exhaust Gas Recirculation (EGR) and Residual Gas

Exhaust gas recirculation is probably the most practical way of controlling charge temperature in HCCI engine. Hot residuals proved to enhance HCCI combustion mainly due to the high temperature of the resulting mixture. Residuals are also used to control the heat release rate due to their impact on chemical reaction rates, which can delay autoignition time. Therefore, reducing the heat release rate results in lower peak cylinder pressures. External EGR works well due to its simplicity, but its thermal effect is limited as a result of heat loss. In addition, external EGR systems have slow response during transient operation.

An alternative approach is to trap exhaust gas residual in the cylinder via variable valve actuation (VVA) or variable valve timing (VVT). According to Haraldsson et al. (2002), internal EGR through VVT eliminates many of the system issues encountered with the external EGR approach. Zhao et al. (2003) found that even with internal EGR the main effect on HCCI combustion is thermal, and that the primary influence of the charge dilution is on the
main combustion. Although, a VVT system adds cost to engine, several manufactures already have VVT systems in production.

Hiraya et al. (2001) found that small amounts of residuals and lower intake temperature reduce the air–fuel ratio operation range of a naturally-aspirated gasoline HCCI engine. In comparison, a large amount of residual and higher intake temperature expand the relative air-fuel ratio range for stable combustion, but with a dramatic reduction in indicated mean effective pressure (IMEP). Furthermore the maximum load and volumetric efficiency were found to decrease with an increase in EGR rate due to combustion deterioration. It was concluded that the load range cannot be extended through residuals for a naturally-aspirated gasoline HCCI engine.

2.4.4 Water Injection

Water injection has been attempted as a control method for delaying the start of combustion and slowing the heat release rate in HCCI engines. Christensen et al. (1999) confirmed the possibility to control ignition timing in a range of operating conditions with the use of water injection, but with the penalty of an increase in HC and CO emissions.

Kaneko and co-workers (2002) found that water injection can reduce heat release rate and possibly extend the operating range of diesel HCCI engine. However, the amount of water injected is limited to the minimum required for sufficient suppression of overly-advanced combustion due to the increase in HC emissions and indicated specific fuel consumption (ISFC).

2.4.5 Forced Induction

Boosting is regarded as an effective way to increase indicated mean effective pressure (IMEP) and extend the operating range of the relative air-fuel ratio for HCCI combustion mode (Zhao et al., 2003). Christensen et al. (1998) has achieved HCCI operation up to 14 bar IMEP, using an externally boosted engine fuelled with methane. However, the resulting high in-cylinder pressures and heat release rates limit the potential of this technique.
2.4.6 Fuel Injection

Direct injection (DI) provides the potential to control HCCI combustion by altering the local fuel concentration via varying the injection timing. It also alters the gas temperature through charge cooling from fuel evaporation. Although DI promises control of HCCI combustion, Takeda et al. (1996) and Nakagome et al. (1997) proved it to be an ineffective method for controlling the combustion phasing of diesel HCCI due to poor vaporisation of diesel fuel. This poor vaporisation of diesel fuel resulted from the charge cooling provided by direct fuel injection.

In gasoline HCCI, controlled fuel stratification through DI can be a potential control parameter for combustion phasing (Marriott et al., 2002a). Injection timing for single and split-injection have been used to provide a homogeneous or stratified fuel charge, but smoke limited the level of fuel stratification. Fuel stratification improved combustion efficiency due to reduced HC emissions, at a price of increased NO\textsubscript{x} emissions (Marriott et al., 2002b). Split-injections were reported to be more effective for reducing heat release rate and increasing the overall load and speed range of acceptable stratified combustion (Marriott et al., 2002a).

2.4.7 Dual-Mode Operation

Currently, HCCI operation is limited to part-load operating conditions, because of high heat release rates and pressure rise rates that reduce the benefit of this technology at higher loads. For this reason, it is generally accepted that HCCI will be operated as a dual-mode engine. The engine is operated in HCCI mode at light loads and switched to either SI or CI at high load operating conditions where HCCI benefits are minor and HCCI control is more difficult. Due to cold start difficulties that results from very low temperature and high heat loss from the compressed charge, the engine is stated on conventional SI or CI mode and then switched to HCCI mode a short after warm-up period (Thring, 1989, Ishibashi et al., 1996).
2.4.8 Glow Plugs

Amongst other strategies, glow plugs have been considered as the practical way to obtain effective HCCI control, particularly during cold start. However, their development for practical application is limited especially during rapid transient by their heating capacity, response time and complicated system control.

2.5 Fuel Perspective on HCCI

Although HCCI combustion has been achieved with multi-fuels, fuel selection for HCCI is still an important aspect for this engine development. The main fuels that have been used include gasoline, diesel fuel, propane, natural gas, ethanol, methanol and single and dual component mixtures of gasoline primary reference fuels; PRF (blends of n-heptane and iso-octane). Volatility and autoignition characteristic are identified as the most important parameters of a fuel for HCCI technology.

In dual-mode operation, the fuel must meet both the low load HCCI requirements and the high loads performance criteria. In the case of gasoline HCCI combustion, the fuel must have low octane rating (the ability of the fuel to resist autoignition) to readily autoignite, whereas the fuel has to have high octane rating to sustain the conventional SI engine knock at high loads. For diesel fuel the opposite is true, low cetane fuel is desirable for HCCI combustion, whereas high cetane fuel is desirable at high loads (Zhao et al., 2003).

Some additives have been used to promote or inhibit the heat release rate of autoignition so as to obtain good performance across the speed and load range of the engine. These additives were added to the fuel to make it more chemically reactive or inhibitive, in attempting to control HCCI autoignition. Some additives that advanced combustion by almost 11 crank angle degrees when added to the intake mixture were identified (Aceves et al., 2003, Ogawa et al., 2003). However, the use of some additives is limited by emission legislations and cost of production.

Furutani et al. (1998) proposed an approach that uses dual fuel to enable autoignition timing control. The technique combines the main fuel with high octane number (ON) and a secondary fuel with low octane number. The potential of this procedure has been studied for
a combination of methane and dimethyl ether (DME) (Flowers et al., 2000) and a combination of iso-octane and n-heptane (Olsson et al., 2001). The dual fuel method proved to be effective in combustion phasing control. However, this method would require carrying and refilling two fuel tanks.

An alternative approach is to use one fuel tank with on-board fuel reforming, which is the dissociation of the hydrocarbon fuel into gas components (i.e. CO and H₂). A portion of the fuel would be reformed and used as a secondary fuel. This technique was demonstrated with ethanol fuel and it was found that hydrogen in the reforming products significantly increased chain branching of the system, which improved ignition (Ng and Thomson, 2004). However, NOₓ emissions were increased because of the increased peak temperatures due to the energy that was put into the system to reform the fuel.

Given the unique characteristics of gasoline and diesel fuel, a blend of the two fuels could probably the desirable HCCI operation over a wide range of operating condition (Zhao et al., 2003). Nevertheless, further research on how to avoid the dual fuel system is continuing.

2.6 Autoignition of Hydrocarbon Fuels

Tanaka and co workers (2003) conducted a study on the effect of the fuel structure, mixture composition and additives on HCCI combustion. The investigation indicated two-stage ignition for all the saturated compounds and olefins. On the other hand, cyclic unsaturated compounds and some aromatics showed a single-stage ignition. Two-stage ignition is characterised by partial oxidation at low temperatures (referred to as cool flame) followed by a distinct time delay before complete oxidation (referred to as hot flame). In comparison, single-stage ignition is characterised by the induction interval, which is followed by a very rapid reaction rate (hot flame).

In simple terms, single-stage ignition does not exhibit the low temperature reactions (cool flame and NTC), but only high temperature reactions. Figure 2-3 shows the distinct temperature regimes observed in two-stage ignition and figure 2-4 shows the difference between fuels with single-stage ignition and two-stage ignition at 40 bar. These figures show ignition delays obtained from Chemkin modelling of n-heptane and toluene. The pressure
effect of reducing ignition delay as it is increased is more pronounced in the intermediate and high temperature regime.

Edward et al. (1992) identified the temperature range below 700 K as "low", from 700 – 1100 K as being "intermediate", and > 1100 K as "high" temperature regime. More recently however, most workers in the field of detailed kinetics of hydrocarbon oxidation, prefer not to distinguish a separate low temperature regime, but rather to identify the range from 600 – 900 K as the low-intermediate regime (Tao et al., 2002).

Figure 2-3: Different temperature regimes observed in two-stage ignition of hydrocarbon fuel
This behaviour of hydrocarbon fuels have been obtained by different researchers and it well understood that some hydrocarbon fuels exhibit two-stage ignition, whereas some single-stage ignition (Cox et al. 1985, Rifkin and Walcott, 1957). Leppard (1990) concluded that the negative temperature coefficient (NTC) behaviour of a fuel tends to retard autoignition of a fuel relative to one that does not exhibit such behaviour.

2.7 Autoignition Models

Different types of models for autoignition have been developed, ranging from a complete global, single step description (Warnatz, 2000), to a reduced kinetic treatment (Halsestead et al., 1977, Cox et al., 1986, Griffiths et al., 1994), or a comprehensive, detailed chemical kinetic simulation (Westbrook et al., 1988). The models are classified into two categories: 1) Chemical kinetic mechanisms, and 2) Empirical ignition delay correlations.

2.7.1 Chemical Kinetic Mechanisms

Detailed chemical kinetic mechanisms have been developed to predict autoignition and bulk burn rates across all operating conditions and to determine the critical reaction pathways. The mechanisms for fuels incorporate hundreds of species and thousands of reactions, for
example the mechanism for n-heptane consists of 2750 elementary reactions and 550 species (Curran et al., 1998). These mechanisms model the two-stage cool flame ignition and the subsequent hot ignition very well. Although detailed mechanisms for different fuel components are developed, no detailed mechanisms are yet available for use with real blended fuels in engine. Moreover, detailed kinetic mechanisms are complex and require longer computational time.

Although detailed mechanisms provide the opportunity to model combustion systems over a wide range, the problem is that they are too computationally intensive for most applications. Therefore, reduced mechanisms were derived from the detailed mechanisms to offer the possibility of the pragmatic deduction of blending rules amongst different classes of compounds. Reduced mechanisms fail to describe in satisfactory manner the transition to high temperature reactions, above approximately 1200 K (Griffiths, 1995). Moreover, the parameters of the reduced model cannot be predicted from first principles and the model itself is inevitably dependent on empirical data for calibration (Viljoen et al., 2005).

2.7.2 Empirical Ignition Delay Correlations

Single-step mechanisms include no elementary chemical kinetic information, but attempts to represent the sum of all the hydrocarbon oxidation reactions with a single, global reaction approach. A single Arrhenius equation was used, with a rate constant k of:

\[k = A e^{-\frac{E_a}{RT}} \]

(2-1)

Where A is the pre-exponential constant of proportionality
E_a is the activation energy
R is the universal gas constant

Livengood and Wu (1955) developed a simple conservation-of-ignition delay concept to correlate autoignition times (ignition delay) from a rapid compression machine (RCM) to those measured in SI engines. Ignition delay (\(\tau \)) correlation included possible pressure dependence, in the form:
Where A, n, and B are empirical constants that are calibrated from experimental data. A is the proportionality constant, n is the pressure coefficient and B is the temperature coefficient.

In simple terms, ignition delay is the time delay from injection of fuel to the onset of autoignition. Since RCM operation assumes constant pressure, an integral of the inverse of the ignition delay was used to allow for the time-variant pressure and temperature in a running engine. It was assumed that autoignition occurs when the integral attains a value of one.

$$\int_{t_0}^{t_e} \frac{dt}{\tau} = 1$$

Where t_0 is the starting time, and t_e is the time at ignition.

The same approach was used by Douaud and Eyzat (1978) to correlate autoignition in SI engines over a range of operating conditions using different fuels with different octane ratings. An ignition delay correlation for primary reference fuels (PRF) was proposed, in the form:

$$\tau = 0.01869 \left(\frac{ON}{100}\right)^{3.4017} p^{-1.7} e^{\left(\frac{3800}{\tau}\right)}$$

Where ON is the octane number of the fuel.

The scope of the model was limited to the range covered by the calibration $80 \leq ON \leq 100$. Since the model is a single-step correlation that attempts to represent the ignition delay of three distinct regimes, the NTC behaviour of some hydrocarbon fuels could not be observed. Figure 2-5 and 2-6 show that it is more likely to describe the average of the three ignition delays.
Most recently, Yates and co-workers (2004) proposed a 3-part Exponential model so as to account for the NTC behaviour of some fuels. The model involved two distinct regimes, a two-stage low temperature regime and a single-stage high temperature regime. The ignition delay for each regime was described by equation 2-2. The stages of the low temperature regime were sequential and were expressed as an arithmetic sum of the individual ignition delays, $\tau_1 + \tau_2$. The high temperature regime represented an alternative competing pathway with an ignition delay of τ_3. The total ignition delay for the full temperature and pressure range was described by the inverse sum of the two options:

$$\tau_{\text{exptal}} = \left(\tau_1 + \tau_2\right)^{-1} - \left(\tau_3\right)^{-1}$$

(2-5)

This model provides enormous improvement over the Douaud and Eyzat model, since it accounts for the NTC behaviour of some fuels. Figures 2-5 and 2-6 show the differences between the 3-part Exponential model and Douaud and Eyzat model at 12 and 40 bar, respectively. However, the application of the model is limited to the available fuel data for the calibration of the nine coefficients.

Figure 2-5: Comparison between the 3-part Exponential model and Douaud and Eyzat model at 12 bar for iso-octane
Figure 2-6: Comparison between the 3-part Arrhenius model and Douaud and Eyzat model at 40 bar for iso-octane

All these models were originally developed to predict autoignition of the end gas in conventional SI engines under stoichiometric conditions. This means that the available calibrated values for the empirical constants for different fuels were obtained at a relative air-fuel ratio of one.

2.8 Heat Release Rate and Combustion Duration

The Wiebe function is probably the most commonly used functional representation of the mass fraction burnt in the flame propagation of SI engine. It describes the shape of the mass fraction burnt by the appropriate choice of parameters:

\[x_p = 1 - \exp\left[-a\left(\frac{\theta - \theta_0}{\Delta\theta}\right)^{\frac{1}{n}}\right] \] \hspace{1cm} (2-6)

Where \(\theta \) is an instantaneous crank angle
\(\theta_0 \) is the start of main heat release (SOC)
\(\Delta\theta \) is the combustion duration
Chapter 2: Literature Review

The parameters, a, and b, are used as descriptors for the burn rate of the fuel. A smaller multiplier, a, for example, is indicative of a later pressure rise, whilst a smaller exponent, b, shows an earlier pressure rise (Swarts et al., 2004).

A number of researchers used the Wiebe function to describe the shape of heat release in HCCI combustion modelling (Erlandsson et al., 2002 and Roelle et al., 2004).

In most cases, the burn duration is obtained from chemical kinetics and is taken from the crank angle of 10% heat release (CA10) to the crank angle of 90% heat release (CA90). The duration for HCCI combustion was found to be dependent on inlet mixture composition, amount exhaust gas recirculation, temperature of unburned mixture and cylinder pressure as well as engine speed (Noel et al., 2004, Kontarakis et al., 2000, Peng et al., 2003, Babajimopoulos et al., 2002). Moreover, it was found to be significantly shorter than in SI engines, and varies between 3 to 20 crank angle degrees, depending on the operating conditions.

Very little work has been done in developing HCCI combustion duration correlations over a wide range of operating conditions. Some researchers assumed constant burn duration in their studies (Roelle et al., 2004). Kawanabe et al., (2004) developed an empirical correlation to predict HCCI combustion duration based on the conditions at the start of main combustion event. The combustion duration was defined as the period from 5% to 95% temperature increase, and is of the form:

\[
\frac{1}{T_{cd}} = 6.1 \times 10^{31} \left(Md\right)^{0.52} \left(F\right)^{3.2} \left(O\right)^{26.5} \exp\left(-\frac{12500}{T_u}\right)
\]

Where \(T_{cd}\) is the combustion duration (ms)
- \(Md\) is the molecular density of the mixture
- \(F\), \(O\) are the fuel and oxygen mole fractions, respectively
- \(T_u\) is the temperature of the unburned gases

This combustion duration correlation does not give any information on the development, but only gives the total combustion duration.
3 Combustion Modelling

This chapter discusses combustion and ignition delay modelling as well as the theoretical setup and how all these were integrated to obtain the desired ideal fuel.

3.1 Engine Model

This study employed a two-zone, pseudo-dimensional thermodynamic engine cycle model. The model represented the chamber attributes of the Ricardo E6 engine so that it could be calibrated against the experimental results from a parallel HCCI study. The key parameters of the engine are shown in table 3-1. The model was based on the following assumptions:

- Uniform pressure
- Infinitely thin wall separating the two zones
- Zero heat transfer between the zones
- Blow-by and crevices were ignored
- Fuel was completely evaporated and well mixed
- Heat transfer by convection only and radiation neglected, and
- A compositionally frozen unburnt zone

The temperatures of the two zones were calculated from the conservation of energy, allowing for combustion reactions, piston work and heat losses. The convection coefficient \(h_{\text{conv}} \) from the Woschni correlation discussed in Stone (1999) was adopted for in-cylinder, intake and exhaust manifold heat transfer, of the form:

\[
h_{\text{conv}} = 129.8 B^{-0.2} p^{0.8} T^{-0.55} \left(C_1 S_p + C_2 \frac{V_d T_{\text{IVC}}}{p_{\text{IVC}} V_{\text{IVC}}} (p - p_m) \right)^{0.8}
\]

(3-1)

Where \(B \) is the cylinder bore, \(p \) is the instantaneous cylinder pressure, \(T \) is the instantaneous gas temperature, \(S_p \) is the mean piston speed, \(V_d \) is the displaced volume, \(p_{\text{IVC}}, V_{\text{IVC}}, T_{\text{IVC}}, \) are the working-fluid pressure, volume and temperature at inlet valve closure (IVC) and \(p_m \) is the motored cylinder pressure at the same crank angle as \(p \).
The scalar C_1 is 6.18 for gas exchange, otherwise 2.28 and the scalar C_2 is 3.24×10^{-3} for combustion and expansion, otherwise 0.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value and units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bore</td>
<td>76.2 mm</td>
</tr>
<tr>
<td>Stroke</td>
<td>111.1 mm</td>
</tr>
<tr>
<td>Conrod/Crank radius</td>
<td>4.3</td>
</tr>
<tr>
<td>Displaced volume</td>
<td>506.8 cc</td>
</tr>
<tr>
<td>Maximum Valve Lift</td>
<td>8.5 mm</td>
</tr>
<tr>
<td>IVO</td>
<td>9° BTDC</td>
</tr>
<tr>
<td>IVC</td>
<td>36° ABDC</td>
</tr>
<tr>
<td>EVO</td>
<td>42° BBDC</td>
</tr>
<tr>
<td>EVC</td>
<td>8° ATDC</td>
</tr>
</tbody>
</table>

Table 3-1: Engine Specifications

The composition of the burnt zone was calculated from the carbon, hydrogen and oxygen balances, as well as equilibrium dissociation and water gas shift reactions. Thermodynamic properties were obtained from polynomial regression curves fitted to the JANAF thermodynamic tables.

The trapped mass temperature and pressure at inlet valve closure (IVC) were calculated from the breathing model. The breathing model would start by exhausting (Exhaust Valve Opening, EVO) the waste gases from the previous cycle and drawing in fresh charge up to the inlet valve closure (IVC). Before the model could run, the user had to specify the following input parameters: engine speed (N, rpm); intake manifold pressure (P bar); intake manifold temperature (T, K); fuel in used from the fuel blending model; compression ratio (CR); fuel-air equivalence ratio (Φ) and exhaust gas recirculation (EGR, mass %). It incorporated an ideal mixing of the fresh charge and the specified external residual fraction which comprised of the products of combustion (either stoichiometric or non-stoichiometric). A flow diagram illustrating the operation of the engine cycle model is given in figure A-2 of Appendix A.

Trapped residuals were estimated to be at most 5% by mass, and their effect on the results was assumed to be negligible. The breathing model was designed to incorporate friction and entry losses in the manifold, as well as the effect of backflow and valve overlap. Furthermore, it was assumed that all the fuel in the trapped cylinder mass was evaporated at the time of IVC. This was a necessary prerequisite for the application of the ideal gas law during the engine cycle. More details on the engine model are provided in Appendix A.
3.2 Ignition Delay Model

The selection of the ignition delay model used with the engine model was based on cost and computational time. The decision was taken to use the three part Exponential model coupled with the conservation of ignition delay model of autoignition to predict combustion phasing (see equations 3-2 to 3-4). Since the nine parameters \((A_i, B_i, \text{ and } n_i)\) characterising each fuel were all developed for stoichiometric mixtures, the overall ignition delay was corrected for relative air-fuel ratio and exhaust gas recirculation. These corrections were necessary since HCCI engine operates very lean and uses large amounts of charge dilution.

\[
\tau_i = A_i p^{n_i} e^{r_i} \quad (3-2)
\]

\[
\tau_{\text{overall}} = \left\{ \left(\tau_1 + \tau_2 \right)^{-1} + \left(\tau_3 \right)^{-1} \right\}^{-1} \quad (3-3)
\]

\[
\int_0^T \frac{dt}{\tau_{\text{overall}}} = 1 \quad (3-4)
\]

Chemical reaction schemes for primary reference fuels (PRF) used to define the Octane Scale were used to cover the octane spectrum. The differential equations describing the reactions were solved using Chemkin Collection (Version 3.7) over a wide range of pressure of 12 and 40 bar. Autoignition of the fuel was signalled by an exponential increase in the temperature and the ignition delay (in milliseconds) was defined by the time that had elapsed until a temperature threshold of 1400 K was reached. The development of the correlations is summarised in the following sections and more details are listed in Appendix B.

3.2.1 Relative air-fuel ratio Correction

The relative air-fuel ratio \((\lambda)\) effect on ignition delay was studied by varying the fuel-air equivalence ratio \((\Phi)\) from 0.2 to 4. Ignition delay for a range of PRF starting from 0 to 100 research octane number (RON) were obtained from Chemkin for each fuel air equivalence ratio. An excellent correlation was obtained by fitting the Chemkin results to a simple power law, of the form:
Where τ_{sto} is ignition delay at stoichiometric conditions, given by equation 3-3 and τ_{cor} is the corrected ignition delay (in milliseconds) at a given relative air-fuel ratio. The constant k was obtained to be 0.775 for the selected pressure range and was independent of fuel octane rating. This value of k was used throughout this study. More details on the development of this correlation are given in Appendix B.

3.2.2 Exhaust Gas Recirculation Correction

Exhaust gas recirculation (EGR) was varied for 0 to 50% on mass basis and ignition delay for three PRF (0, 50 and 90) at each step were obtained using Chemkin. Unfortunately, a simple correlation could not be obtained due to the fact that EGR changed the trapped mass composition. However, it was possible to extend equation 3-5 to incorporate the effect of EGR and the resulting correlation was of the form:

$$
\tau_{o,\text{cor}} = \tau_{\text{sto}} k \left(1 - \frac{\%\text{EGR}}{100}\right)^m
$$

(3-6)

Where $\tau_{o,\text{cor}}$ is the corrected overall ignition delay, $\%\text{EGR}$ is the percentage of EGR (by mass) and the value of m was found to be dependent on the inlet fuel-air equivalence ratio. For the conditions already discussed above, the dependence was of the parabolic form (equation 3-7), with the constants adjusted to fit Chemkin results. Furthermore, these constants are independent of fuel octane number and were used throughout this study. Further details on the development of this correlation are given in Appendix B.

$$
m = -0.615\phi^2 + 0.0521\phi - 0.0323
$$

(3-7)
3.3 HCCI Engine Model

HCCI combustion was modelled using the engine model coupled with the ignition delay model. The ignition delay model was incorporated according to the flow diagram given in figure A-1 of Appendix A. Although the ignition delay model included the low temperature ignition delay, the heat release during the low temperature oxidation was excluded. Therefore, the model predicted the start of main heat release based on the compression pressures and temperatures. At this point, the combustion duration was predicted with equation 2-7 using top dead centre (TDC) conditions of the motored engine.

Ignition delay data of the fuel was required before the ignition delay model could be applied. For this reason, ignition delay characteristics of fuels were obtained from Chemkin using chemical reaction schemes for specific fuel species that were considered to represent the main broad classification of hydrocarbon species. Table 3-2 shows the different classes of the fuel components and their research and motor octane number (RON and MON, respectively). The details on how the fuels were characterised were discussed by Yates et al. (2005).

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Generic Classification</th>
<th>RON</th>
<th>MON</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-Heptane</td>
<td>Linear paraffins</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Iso-Octane</td>
<td>Iso-paraffins</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1-Hexene</td>
<td>Olefins</td>
<td>76.4</td>
<td>63.4</td>
</tr>
<tr>
<td>Toluene</td>
<td>Aromatics</td>
<td>120</td>
<td>109</td>
</tr>
<tr>
<td>Methanol</td>
<td>Oxygenates</td>
<td>106</td>
<td>92</td>
</tr>
</tbody>
</table>

Table 3-2: Classification of known fuel components and their octane numbers (ON)

3.3.1 Burn Rate and Duration

In this study, the burn rate of the fuel was assumed to conform to the Wiebe function already discussed in chapter 2. The parameters, a, and b, were assigned the values used in Heywood (1988) of 5 and 2, respectively. The start of main heat release (SOC) was predicted using the ignition delay mathematical model discussed previously.

The burn duration correlation developed by Kawanabe et al. (2004) was adopted to predict the combustion duration based on the conditions at the start of main combustion event. The
duration obtained from this correlation was expressed in crank angle degrees (\(\Delta \theta \)) using the engine speed effect and then used in the Wiebe function to model heat release rate.

3.3.2 Engine Model Performance and Efficiencies

The engine performance at each operating condition was measured by the indicated mean effective pressure (IMEP), which is the amount of work done per engine cycle. IMEP was defined as

\[
IMEP = \frac{W_c}{V_d}
\]

(3-8)

Where \(W_c \) is the engine work done per cycle, and \(V_d \) is the engine displacement volume.

A friction model was incorporated in the engine model from Stone (1999) and was extended to account for compressor and intercooler losses during forced induction. The friction model was extended to include the effect of forced induction on mechanical efficiency. Pumping losses were assumed to be negligible. Friction mean effective pressure (fMEP) was calculated as follows:

\[
fMEP = 0.061 + \frac{P_{\text{max}}}{60} + 2.29 \times 10^{-4} N + \frac{W_{\text{comp}} + Q_{\text{int}}}{V_d}
\]

(3-9)

Where \(P_{\text{max}} \) is the maximum in-cylinder pressure (bar); \(N \) is the engine speed (rpm); \(W_{\text{comp}} \) is the compressor work (J); \(Q_{\text{int}} \) heat loss in the intercooler (J) and \(V_d \) is the engine displacement volume.

The brake mean effective pressure (bMEP) and the mechanical efficiency (\(\eta_{\text{mech}} \)) were calculated as follows:

\[
bMEP = IMEP - fMEP
\]

(3-10)

\[
\eta_{\text{mech}} = \frac{bMEP}{IMEP}
\]

(3-11)
Chapter 3: Combustion Modelling

The indicated thermal efficiency (η_{in}) was calculated from the equation obtained in Heywood (1988) with the combustion efficiency (η_{comb}) assumed to be 100%.

$$\eta_{in} = \frac{W_c}{m_f Q_{LHV} \eta_{comb}} \quad (3-12)$$

Where W_c is the work done per cycle; m_f is the mass of fuel inducted per cycle and Q_{LHV} is the low heating value of fuel.

For the purpose of investigating the operating range of HCCI, the engine was assumed to be knocking if the rate of pressure rise ($dP/d\theta$) exceeded 10 bar per crank angle degree (Aroonsrisopon et al., 2002). Knock limit was set as:

$$\frac{dP}{d\theta} \leq 10 \quad (3-13)$$

3.4 Theoretical Approach

This section discusses the approach taken in producing the results and describes the setup for each test performed in this study.

3.4.1 Model Validation

The first step before proceeding to the design of fuel was to test if the model performed as expected. The engine test conditions are shown in table 3-3. The engine was operated in HCCI mode at different compression ratio ranging from 7.5:1 to 14:1 and relative air-fuel ratios (λ) ranging from 2 to 4. All the other inlet parameters were kept constant as given in the tables below and the fuel used in the test was n-heptane. All the experimental results used to validate the model were obtained from a parallel HCCI study by Rabe (2006).
Chapter 3: Combustion Modelling

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value and units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine Speed</td>
<td>1000 rpm</td>
</tr>
<tr>
<td>Intake Manifold Pressure</td>
<td>1 bar</td>
</tr>
<tr>
<td>Intake Manifold Temperature</td>
<td>340 K</td>
</tr>
<tr>
<td>Relative air-fuel ratio (λ)</td>
<td>2 – 4</td>
</tr>
<tr>
<td>Compression ratio</td>
<td>7.5:1 – 14:1</td>
</tr>
<tr>
<td>Exhaust gas recirculation (EGR)</td>
<td>0 %</td>
</tr>
<tr>
<td>Fuel</td>
<td>n-Heptane</td>
</tr>
</tbody>
</table>

Table 3-3: Engine Test condition for model validation

At each test condition the experiment was repeated 3 times for repeatability of results. These experimental results were compared with the model results at the same conditions. The pressure profiles from both the experiment and model were recorded for comparison. At this stage there were no adjustments made on all the equations used in the model. The parameters of the Wiebe function for modelling heat release were standard from Heywood (1988) as were the Woschni equation parameters for heat loss from Stone (1999).

3.4.2 Known Fuel Combustion Analysis

The next step after gaining confidence on the ability of the model to predict the start of combustion and heat release rate was to use it to study combustion of known fuels in details. The fuels used in this study are given in table 3-2 and the information of their detailed chemical kinetic reactions is given by Viljoen et al. (2005). The ideal was to cover the whole octane range and verify the octane effect on HCCI combustion as well as obtaining the idea of the fuel required for this type of engine. The test fuels autoignition characteristics and ignition delay curves are given in Appendix C.

It has been concluded that the chemistry of real fuels containing aromatics, olefins and alcohols is different from that of paraffins and that such fuels are sensitive (Kalghatgi, 2003 & Risberg et al., 2003). With regard to this conclusion, the effect of fuel sensitivity was also investigated. Fuel sensitivity was defined by the equation of the form (Kalghatgi, 2003):

\[
Fuel Sensitivity = RON - MON
\]

(3-14)

Where RON is the research octane number of the fuel component and MON is the motor octane number of the fuel component.
These different fuel components had different properties and ignition delay characteristics that posed difficulties in comparison of the results. In order to overcome the difficulties, optimum inlet conditions were selected for the test to ensure that combustion occurs within 10 CAD of TDC with each test fuel. The model was then run for each fuel at these conditions (see Table 3-4) and the required results have been obtained for comparison.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value and units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet Pressure</td>
<td>1 bar</td>
</tr>
<tr>
<td>Inlet Temperature</td>
<td>390 K, 410 K</td>
</tr>
<tr>
<td>Relative air-fuel ratio (λ)</td>
<td>4, 2</td>
</tr>
<tr>
<td>Compression ratio</td>
<td>18:1, 15:1</td>
</tr>
<tr>
<td>Exhaust gas recirculation (EGR)</td>
<td>0 %</td>
</tr>
<tr>
<td>Engine speed</td>
<td>1000 rpm</td>
</tr>
<tr>
<td>Fuel</td>
<td>Varied</td>
</tr>
</tbody>
</table>

Table 3-4: Engine model conditions for the test on different known fuels

It was not possible to autoignite all the fuels throughout the speed range due to their different requirements of inlet conditions that would enable autoignition. Therefore, n-heptane was selected for further study into the barriers that had to be overcome for operating in the full range. The selection was based on the propensity of the fuel to autoignite throughout the entire operating range. Intake manifold conditions in table 3-5 were selected to allow autoignition at all operating points. The independent variables in the test were: fuel-air equivalence ratio (φ) which was varied from 0.2 to 0.9; EGR which was varied from 0 to 50 % by mass and engine speed which was varied from 1000 to 5000 rpm. The model results including the performances parameters (i.e. IMEP, mechanical and indicated thermal efficiencies) were recorded for each change of the inlet conditions.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value and units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet Pressure</td>
<td>Dependent</td>
</tr>
<tr>
<td>Inlet Temperature</td>
<td>340 K</td>
</tr>
<tr>
<td>Fuel-Air equivalence ratio (φ)</td>
<td>Varied</td>
</tr>
<tr>
<td>Compression ratio</td>
<td>17:1</td>
</tr>
<tr>
<td>Exhaust gas recirculation (EGR)</td>
<td>Varied</td>
</tr>
<tr>
<td>Engine speed</td>
<td>Varied</td>
</tr>
<tr>
<td>Fuel</td>
<td>N-Heptane</td>
</tr>
</tbody>
</table>

Table 3-5: Inlet conditions for generating load map for n-heptane
It was difficult to achieve n-heptane combustion at high speeds, because the engine cycle time was short and the fuel ignition delay was long. It was also difficult to combust the mixture at low equivalence ratios and high EGR rates, because the resulting in-cylinder equivalence ratios were very low for autoignition to occur. These findings were in good agreement with literature (Noel et al., 2004, Yamasaki et al., 2000). For these reasons, forced induction was used to aid autoignition where the mixture could not be ignited naturally.

The intake pressure was varied via the boost pressure, as a dependent variable on engine speed and in-cylinder fuel-air equivalence ratio. The boost pressure was assumed to be provided by a supercharger with compressor efficiency of 90% and an intercooler with the efficiency (η_{int}) calculated from the equation of the form:

$$\eta_{int} = \frac{T_{in} - T_{out}}{T_{in} - T_{ambient}}$$ \hspace{1cm} (3-15)

Where T_{in} is the temperature at the inlet of the intercooler; T_{out} is the temperature at the outlet of the intercooler and $T_{ambient}$ is the ambient temperature (Forst, 2005).

The in-cylinder fuel-air equivalence ratio was determined from the inlet fuel-air equivalence ratio and the amount of exhaust gas recirculation used. Based on the amount of boost pressure required to achieve n-heptane autoignition for given inlet conditions, boost pressure (bar) was correlated to the engine speed (N, rpm) and the in-cylinder equivalence ratio (Φ_{cyl}) with the equation of the form:

$$\text{boost} = 2.75 \times 10^{-4} \, N - 1.5 \Phi_{cyl} + 0.25$$ \hspace{1cm} (3-16)

Figure 3-1 shows the required amount of boost pressure at a given speed and fuel-air equivalence ratio. This correlation was developed specifically for HCCI combustion with n-heptane fuel.
Figure 3.1: Effect of in-cylinder equivalence ratio and speed on boost pressure

The results of the n-heptane test were analysed to obtain the combination of inlet conditions that gave the best performance of the engine model, for a given engine speed. To simplify the analysis procedure, four load points (25%, 50%, 75% and 100% load) were selected based on the maximum attainable IMEP by the engine model, if it was operated as spark ignition (SI) engine\(^1\). At each load point and speed various combinations of EGR and equivalence ratio were obtained as well as the corresponding mechanical efficiencies. The load map of n-heptane fuel was then produced from the results of the load points.

3.4.3 Fuel Design Method

The challenge was to design a fuel based on the ignition delay characteristic requirements for stable HCCI combustion in the entire operating range. Each fuel can be characterised by three exponential equations, each with three parameters and nine in total. The goal would be achieved if the nine parameters (A, B, and n) that characterise the ignition behaviour of the fuel are obtained.

\(^1\) The maximum mean effective pressure for the given speed range was obtained by running the model in SI mode at maximum brake torque (MBT) timing.
In order to solve for the nine parameters, it was necessary to setup nine parametric equations. The equations were established by changing some inlet condition that would cover the desired operating range. The major parameters were identified as fuel-air equivalence ratio, speed and compression ratio. Nine points were selected to cover the whole operating range, three at each load level low, mid and high. The points were as follows: fuel-air equivalence ratio of 0.2, 0.55 and 0.9 representing the load levels, respectively and three speeds (1000, 3000 and 5000) at each equivalence ratio used. The other inlet conditions were kept constant at 1 bar inlet pressure; 0% EGR and 340 K.

The engine model was run according to the flow diagram in figure 3-2 to obtain the required pressure and temperature data. Equations 3-4 and 3-6 were used with the calculated pressure and temperature data to calculate ignition delay and SOC point, respectively. An iterative process was used to solve for the correct parameters that would ensure SOC within 10 crank angle degrees of TDC. The procedure was repeated with different starting parameters until the smallest error was obtained and the resulting parameters would represent the ignition delay characteristic behaviour of the desired fuel.
Figure 3-2: Flow diagram for the calculation of the pressure and temperature at the nine operating conditions for the design of the fuel.
4 Results and Analysis

4.1 Model validation

The most important aim in this validation was to ensure that the model predicts the combustion phasing and heat release rate (HRR) within reasonable accuracy. The experimental results used to validate the model were obtained from an experimental study on the Ricardo E6 operated in HCCI mode (Rabe, 2006). At each test condition the experiment was repeated 3 times for repeatability of results. The experimental pressure traces for each cycle (P_{cycle}) were recorded for comparison with the model pressure trace (P_{model}) at the same conditions as discussed in section 3.4.1. The comparison of the model and experimental results are shown in the following figures 4-1 to 4-5.

![Pressure Trace](https://example.com/figure41.png)

Figure 4-1: Pressure trace at $\lambda = 2$ and CR 7.65:1
Chapter 4: Results and Analysis

Figure 4-2: Pressure trace at $\lambda = 2.6$ and CR 8.14:1

Figure 4-3: Pressure trace at $\lambda = 3$ and CR 9.2:1

Figure 4-4: Pressure trace at $\lambda = 3.5$ and CR 11.8:1
The first observed difference in the pressure traces was the absence of the first stage pressure rise in the predicted pressure profile. This first stage pressure rise was attributed to the heat released during the low temperature oxidation, which was excluded in the model. Despite the exclusion of low temperature oxidation heat release, the model predicted the start of the main heat release within reasonable accuracy. The second observation was that the predicted start of combustion (SOC) became retarded as the mixture leaned out. This may be associated with the over prediction of heat loss during compression by the Woschni correlation at very lean mixtures.

It can be seen from the above figures that the model over predicts the cylinder pressures during and after combustion. This over prediction occurs during the combustion event and maybe associated with the assumption of complete homogeneity, which is not necessarily true for real engine. However, the position of the peak cylinder pressure correlates well with the experiment results. Furthermore, the actual combustion duration becomes longer than the predicted burn duration as the mixture is leaned out. This shorter burn duration results in higher peak cylinder pressures than expected for a lean mixture.

Fiveland et al. (2000) concluded that the Woschni correlation over predicts heat transfer losses and can result in combustion phasing being shifted by 10 CAD. Chang et al. (2004) suggested a new heat transfer correlation for HCCI engines, which was basically an improved Woschni correlation for HCCI engine. The major adjustments were made on the temperature exponent, changed from -0.55 to -0.73 and the unsteady gas velocity term.
Chapter 4: Results and Analysis

The coefficient was reduced to a sixth of the original value. The improvements on the heat transfer correlation improved the predictions of combustion phasing even for very lean mixtures. The improved Woschni correlation was adopted and the burn duration correlation was fine tuned to ensure better agreement with the experimental results.

Finally, it was noticed from Figures 4-4 and 4-5 that the relative air-fuel ratio effect on the burn duration correlation was dominated by the pressure and temperature effect at high compression operation. The actual burn duration is longer than the model combustion duration due to inhomogeneity in real engines. For this reason, the burn duration correlation was multiplied by a scalar that was linearly dependent to the relative air-fuel ratio. This was done to improve the relative air-fuel ratio effect in the burn duration correlation. The comparison of the improved model results and the experimental results are shown in Figures 4-6 and 4-7 below.

![Pressure trace at A = 3.5 and CR 11.8:1, with modified Woschni and burn duration correlations](image)

Figure 4-6: Pressure trace at A = 3.5 and CR 11.8:1, with modified Woschni and burn duration correlations
Figure 4-7: Pressure trace at $\lambda = 4$ and CR 14:0:1, with modified Woschni and burn duration correlations

An extra model prediction was carried out with methanol as fuel at these inlet conditions: 1 bar inlet pressure; 390 K inlet temperature; relative air-fuel ratio (λ) of 4; 19.55:1 compression ratio and 1000 rpm engine speed with 0% EGR. It included all the improvements that were made in the Woschni and burn duration correlations. Methanol has a single-stage ignition (i.e. does not exhibit NTC behaviour), whereas n-heptane has two-stage ignition. Thus, for methanol the main heat release is the same as the start of combustion. This was important in addressing the concerns about n-heptane predictions. Figure 4-8 shows the comparison of the methanol results.

Figure 4-8: Methanol fuelled HCCI pressure profile at $\lambda = 4$; CR 19.55:1; 1 bar; 390 K; 0% EGR and 1000 rpm with improved correlations
Chapter 4: Results and Analysis

The following figures 4-9 to 4-11 show the comparison of the model and experimental total heat release.

![Graph showing total heat release comparison](image)

Figure 4-9: Comparative total heat release for n-heptane HCCI combustion at $\Lambda = 2$; CR 7.95:1; 1 bar; 340 K; 0% EGR and 1000 rpm

![Graph showing total heat release comparison](image)

Figure 4-10: Comparative total heat release for n-heptane HCCI combustion at $\Lambda = 4$; CR 14.0:1; 1 bar; 340 K; 0% EGR and 1000 rpm
The graphs above show clearly the differences between the model and experimental heat release. The first observed difference was the omitted low temperature heat release in the model predictions of n-heptane. The total heat released in the model predictions were higher that the experimental results. This can be attributed to the absence of inhomogeneity in the model, which exists in real engines and the assumption of complete evaporation of the in-cylinder mixture. It was observed that the error in the cumulative heat release of n-heptane predictions became more pronounced as the mixture leaned out. This was associated with assumption of complete combustion (i.e. 100% combustion efficiency), which is not necessarily true in real engines. Nevertheless, the predictions of the heat release rates correlated well with the experimental results.

The improvements in the Woschni and burn duration correlations improved the model predictions of the SOC and HRR (heat release rate) quite significantly. However, the model still over predicts the peak cylinder pressure, but this was not a big concern at this stage of fuel design. This was not unexpected because it is well known that zero-dimensional models over predicts peak pressure due to the strict simplifying assumption of homogeneity (Zhao et al., 2003). The model was now ready to be used as a tool for analysing HCCI combustion.
4.2 Sensitivity Study

In this section a sensitivity study on the ignition model was conducted due to uncertainties in the ignition delay parameters that characterise a fuel. The study focused on the effect of varying the nine parameters of the ignition delay model and their implications on the prediction of combustion phasing. The ignition delay parameters of n-heptane were chosen as the basis of analysis and the results are presented below.

In figure 4-12 the constant of proportionality, A, was varied by 10% from its original value for each stage. The result of this study shows that an increase (10%) in the value of A would promote a late ignition of the mixture in the cylinder that might result in misfire, due to the increased ignition delay. On the other hand, a decrease in the constant of proportionality would result in very early ignition of the in-cylinder mixture due to the significant reduction in ignition delay.

![Figure 4-12: Effect of 10% variation of the proportionality constants, A, at 40 bar and $A = 1$](image)

Figure 4-12 shows the effects of 10% variation of the pressure coefficients, n_i. The results showed that the effect of the variation was insignificant in the low temperature regime and more pronounced in the intermediate and high temperature regime. Although these results were less pronounced compared to the effect of the constant of proportionality, an increase in the pressure coefficients would retard autoignition, whereas a decrease would advance autoignition.
Figure 4-13: Effect of 10% variation of the pressure coefficients, n_p, at 40 bar and $\lambda = 1$

Figure 4-14 shows similar results to the variation of the proportionality constants however, the effect of 10% variation of the temperature coefficients was more pronounced. An increase would dramatically retard combustion phasing and could result in misfire, whilst a decrease could significantly advance start of combustion and could result in undesirable early ignition during compression stroke.

Figure 4-14: Effect of 10% variation of the temperature coefficient, B_t, at 40 bar and $\lambda = 1$

Figure 4-15 shows the effect of 10% variation of the pressure coefficient on the modelled pressure profile. It was observed from the graph that the start of main heat release was
advanced when the value of n was decreased and retarded when n was increased by 10%. For the same condition misfire was encountered when the temperature coefficient was increased by 10%.

![Figure 4-15: Effect of 10% variation of the pressure coefficient n at 1000 rpm, 1 bar, 300 K, 13:1, 0% EGR and equivalence ratio of 0.3](image)

It is very important to accurately predict the ignition delay parameters that characterise each fuel component. Any incorrect prediction of the parameters particularly the temperature coefficient would result in misfire or very early ignition during compression stroke. Despite the outcomes of this study, it was assumed that the ignition delay parameters of the fuel components used in this project were accurately predicted.

4.3 Effect of inlet parameters

Different inlet parameters were varied to check the sensitivity of the model to the change in inlet conditions. The effect of each parameter was studied and the results obtained were verified against literature. The parameters that were change and their effects are discussed in details below. For each test, different conditions were selected for the best demonstration of the goal being achieved.
4.3.1 Inlet Temperature

The intake manifold temperature was varied from 300 K to 450 K, with all the other intake manifold conditions kept constant as shown in Table 4-1. The model was used with n-heptane as fuel to predict the start of combustion (SOC) as well as to investigate the sensitivity of the model to changes in inlet temperature. Figure 4-16 shows the effect of inlet temperature on HCCI combustion fuelled with n-heptane.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value and units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine Speed</td>
<td>2500 rpm</td>
</tr>
<tr>
<td>Intake Manifold Pressure</td>
<td>1 bar</td>
</tr>
<tr>
<td>Intake Manifold Temperature</td>
<td>Varied</td>
</tr>
<tr>
<td>Air/Fuel ratio (lambda)</td>
<td>4</td>
</tr>
<tr>
<td>Compression ratio</td>
<td>15:1</td>
</tr>
<tr>
<td>Exhaust gas recirculation (EGR)</td>
<td>0 %</td>
</tr>
<tr>
<td>Fuel</td>
<td>n-Heptane</td>
</tr>
</tbody>
</table>

Table 4-1: Engine conditions for inlet temperature sensitivity test

![Pressure traces](image)

Figure 4-16: Effect of inlet temperature on HCCI combustion at 1 bar inlet pressure, 15:1 compression ratio, 0% EGR, 0.25 equivalence ratio and 2500 rpm engine speed

As the inlet temperature was increased the compression pressures were reduced. This effect was clearly observed in pressure traces in figure 4-16. This was attributed to the different inlet temperatures and the increased amount of heat loss in the cylinder due to the increased inlet temperatures. It was also observed from the graph that the SOC was retarded as the
inlet temperature increased until a certain point and then advanced again. One would expect an increase in inlet temperature to advance the combustion phasing, which is not what was observed in the results. There is a logical explanation for the cause of delay in the predicted SDC. N-heptane is one of the fuels that exhibit strong negative temperature coefficient (NTC) behaviour as shown in figure 4-17.

Increasing the intake manifold temperature at constant inlet pressure resulted in the cylinder temperatures reaching the intermediate temperature regime. As explained in chapter 2 that ignition delay tends to be longer as the temperature increases in the NTC regime. This was observed when the inlet temperature was increased from 300 K to 400 K and beyond 400 K, ignition delay decreased with increasing inlet temperature. Figure 4-17 shows the movement of the start of combustion along the ignition delay curve of n-heptane as the inlet temperature was increased.

![Figure 4-17: Ignition delay (ms) for n-Heptane at 40 bar, λ =1 and 0% EGR](image)

4.3.2 Compression Ratio

The model proved to be sensitive to compression ratio changes as expected. The results for this are shown in Figures 4-1 to 4-5 and 4-18. As expected, the burn duration became shorter and the combustion phasing was advanced as the compression ratio was increased. This can be attributed to the fact that an increase in compression ratio results in an increase
in temperature and pressure under compression and expansion. The compression ratio effect on the pressure profiles is clearly shown in figure 4-18 below.

In figures 4-1 to 4-5, the compression ratio was used as a means to control combustion phasing. A high compression ratio was used for very lean mixture and reduced as the mixture became richer to limit the heat release rate (HRR).

![Figure 4-18: Effect of compression ratio on HCCI combustion at 1 bar inlet pressure, 300 K inlet temperature, 0% EGR, 0.25 equivalence ratio and 3000 rpm engine speed](image)

4.3.3 Fuel-Air Equivalence Ratio

The fuel-air equivalence ratio (\(\Phi\)) was varied from 0.2 to 0.5 by varying the fuel quantity at the same inlet conditions (inlet pressure 1 bar, inlet temperature 340 K, compression ratio 11:1) and engine speed (1000 rpm) with 0% EGR. The indicated mean effective pressure (IMEP) was observed to increase with equivalence ratio and the indicated thermal efficiency decreased. This resulted from the increased fuel concentration in the cylinder. The results are shown in figure 4-19 and are in good agreement with the literature (Noel et al., 2004).
Chapter 4: Results and Analysis

Figure 4-19: Effect of equivalence ratio on IMEP and indicated thermal efficiency at 1 bar inlet pressure, 340 K inlet temperature, 11:1 compression ratio, 0% EGR and 1000 rpm engine speed.

In figures 4-20 and 4-21 below, the combustion duration was observed to decrease as the equivalence ratio increased. Furthermore, an increase in equivalence ratio advanced the SOC and the HRR was increased leading to high cylinder pressures. The total amount of heat release also increased with equivalence ratio. All this resulted from the increased amount of fuel inducted in the cylinder. These results show the reason why lean burn is preferred for HCCI combustion.

Figure 4-20: Effect of equivalence ratio (\(\Phi\)) on HCCI combustion at 1 bar inlet pressure, 340 K inlet temperature, 11:1 compression ratio, 0% EGR and 1000 rpm engine speed.
4.3.4 Exhaust Gas Recirculation

The effect of EGR on HCCI combustion has been verified by increasing EGR rates from 0% to 50% for the same conditions given in section 4.3.3, except that the compression ratio was changed to 15:1 and an inlet equivalence ratio of 0.3 was used. It was observed that charge dilution decreased IMEP and increased the indicated thermal efficiency (see Figure 4-22). This was attributed to the decreased amount of fuel in the cylinder as EGR rates increased. Figure 4-23 shows the effect of EGR on the in-cylinder pressure development. The SOC was delayed and the peak cylinder pressures were reduced by the charge dilution. These results on the effect of cooled EGR on HCCI combustion are in good agreement with literature (Olsson et al., 2003).
Figure 4-22: Effect of EGR rate on IMEP and indicated thermal efficiency at 1 bar inlet pressure, 340 K inlet temperature, 15:1 compression ratio, 0.3 equivalence ratio and 1000 rpm engine speed.

Figure 4-23: Effect of EGR on HCCI combustion at 1 bar inlet pressure, 340 K inlet temperature, 15:1 compression ratio, 0.3 equivalence ratio and 1000 rpm engine speed.
4.3.5 Inlet Pressure

With the same conditions (inlet temperature 320 K, compression ratio 11:1, 0.25 equivalence ratio and 1000 rpm engine speed with 0% EGR) the inlet pressure increased to 2 bar in steps of 0.5 bar via a supercharger to investigate its effect. Figure 4-24 shows that the combustion phasing was advanced and HRR was increased resulting to high peak pressures and IMEP. Table 4-2 shows the effect of forced induction on IMEP, indicated thermal efficiency and mechanical efficiency. Figure 4-25 shows the comparison of the pressure profiles as the boost pressure was increased.

<table>
<thead>
<tr>
<th>Boost Pressure (bar)</th>
<th>IMEP (bar)</th>
<th>Indicated Thermal Efficiency (%)</th>
<th>Mechanical Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.37</td>
<td>53.5</td>
<td>68.1</td>
</tr>
<tr>
<td>0.5</td>
<td>6.98</td>
<td>57.5</td>
<td>41.8</td>
</tr>
<tr>
<td>1</td>
<td>9.82</td>
<td>60.6</td>
<td>30.8</td>
</tr>
</tbody>
</table>

Table 4-2: Effect of boost pressure on IMEP and indicated thermal efficiency at 320 K inlet temperature, 11:1 CR, 0.25 equivalence ratio and 1000 rpm with 0% EGR

Figure 4-24: Effect of boost pressure on total heat release at 320 K inlet temperature, 11:1 CR, 0.25 equivalence ratio and 1000 rpm with 0% EGR
Figure 4-25: Effect of boost pressure on HCCI combustion at 320 K inlet temperature, 11:1 compression ratio, 0.25 equivalence ratio and 1000 rpm engine speed with 0% EGR

The work done per cycle increased as the inlet pressure was increased, thus resulting in the observed increase in IMEP and indicated thermal efficiency. However, the cost of boosting was observed as a drop in mechanical efficiency. The reduction in mechanical efficiency was attributed to the increased IMEP, which resulted from the required compressor work and intercooler heat transfer during forced induction (see equation 3-9). The combustion duration was observed to decrease as the boost pressure increased, due to the increased amounts of fuel-air mixture in the cylinder (Noel et al., 2004).

4.4 Known Fuels Study

The procedure followed in obtaining the results discussed in this section is given in section 3.4.2 of chapter 3.

4.4.1 Effect of Fuel Properties and Octane Rating

Although methanol could not be ignited at 390 K inlet temperature, compression ratio 15:1 and relative air-fuel ratio of 2, when ignition occurred yielded the best performance results compared to other fuels tested. These results were in agreement with the findings of
Arconsrisopon et al. (2002), Ogawa et al. (2003) and Oakley et al. (2001) who reported that methanol exhibited good HCCI combustion characteristics and widened HCCI engine operating range.

Toluene was also used as fuel in the model, but no combustion occurred for the test conditions given in table 3-4. This was attributed to the high activation energy required to abstract hydrogen (H) from primary carbon sites and absence of low temperature reactions, which reduce the overall ignition delay. For combustion to occur within 10 crank angle degrees (CAD) of top dead centre (TDC) with toluene as fuel, the compression ratio had to be increased to at least 21.3:1. The comparisons of the fuels that ignited in the conditions given in table 3-4 are shown below in tables 4-3 to 4-5 and figures 4-26 to 4-28.

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Indicated Mean Effective Pressure (bar)</th>
<th>Mechanical Efficiency (%)</th>
<th>Indicated Thermal Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Hexene</td>
<td>4.11</td>
<td>24.40</td>
<td>66.78</td>
</tr>
<tr>
<td>Methanol</td>
<td>4.80</td>
<td>37.60</td>
<td></td>
</tr>
<tr>
<td>Iso-Octane</td>
<td>3.57</td>
<td>12.97</td>
<td>53.60</td>
</tr>
<tr>
<td>N-Heptane</td>
<td>3.24</td>
<td>3.79</td>
<td>46.32</td>
</tr>
</tbody>
</table>

Table 4-3: Model engine performance results for the different test fuels at $\lambda = 4$, 390 K and 18:1 compression ratio

![Image of figure 4-26: Comparison of model cylinder pressures fuels at $\lambda = 4$, 390 K and CR 18:1](image-url)
Table 4-4: Model comparative performance results at $\lambda = 2, 390$ K and 15:1 compression ratio

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Indicated Mean Effective Pressure (bar)</th>
<th>Mechanical Efficiency (%)</th>
<th>Indicated Thermal Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-Heptane</td>
<td>6.91</td>
<td>54.3</td>
<td>52.2</td>
</tr>
<tr>
<td>Iso-Octane</td>
<td>6.92</td>
<td>62.5</td>
<td>52.3</td>
</tr>
<tr>
<td>1-Hexene</td>
<td>7.23</td>
<td>61.9</td>
<td>53.5</td>
</tr>
<tr>
<td>Methanol</td>
<td>No combustion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4-27: Comparative pressure profiles at $\lambda = 2, 390$ K and 15:1 compression ratio

Table 4-5: Model performance results at $\lambda = 2, 410$ K and 15:1

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Indicated Mean Effective Pressure (bar)</th>
<th>Mechanical Efficiency (%)</th>
<th>Indicated Thermal Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-Heptane</td>
<td>6.50</td>
<td>49.9</td>
<td>55.1</td>
</tr>
<tr>
<td>Iso-Octane</td>
<td>6.90</td>
<td>55.8</td>
<td>54.5</td>
</tr>
<tr>
<td>1-Hexene</td>
<td>7.05</td>
<td>56.3</td>
<td>54.4</td>
</tr>
<tr>
<td>Methanol</td>
<td>7.24</td>
<td>62.2</td>
<td>55.1</td>
</tr>
</tbody>
</table>
It was observed in figures 4-26 to 4-28 and tables 4-3 to 4-5 that HCCI combustion was affected by fuel properties and autoignition properties. In general, the IMEP and efficiencies were observed to increase in the order: n-heptane < iso-octane < 1-hexene < methanol. The octane rating of the fuel components increased in the order: n-heptane < 1-hexene < iso-octane < methanol. There was no consistent correlation found between the ON of the different classes of fuels and the engine performance. However, in the case of primary reference fuels (PRF) ignition delay increases with decreasing RON (research octane number).

For a given set of operating conditions, a high octane fuel can realise higher IMEP and efficiencies than a low octane PRF provided that it autoignites. This finding was in agreement with the conclusion of Yao et al. (2004). Furthermore, Aceves et al. (2003) concluded that fuels with relatively low octane number cannot operate at high compression ratio unless the intake mixture is cooled below ambient temperature. This was observed for n-heptane in figure 4-26 to 4-28, early SOC during compression stroke resulting in high peak pressures and low mechanical efficiency.

The sensitivity of the fuels increased in the order: n-heptane = iso-octane < 1-hexene < methanol, as calculated from equation 3-14. This order correlates well with the order in which the IMEP and efficiencies increase. Therefore, a more sensitive fuel results in high efficiencies. This effect of fuel sensitivity on HCCI combustion can be associated to the
thermodynamic and autoignition properties of the fuel. For example, methanol has the lowest heating value and the highest specific density compared to other fuel components. Therefore, methanol can yield higher efficiencies compared to other fuels and this was observed in this study.

The mechanical efficiencies in table 4-4 seem to contradict with the order presented above. This can be explained by comparing the pressure traces of iso-octane and 1-hexene. In figure 4-26 1-hexene ignited late compared iso-octane, whereas in figure 4-27 the opposite was observed. Basically, the ignition delay of 1-hexene is shorter than the ignition delay of iso-octane in the low-intermediate temperature regime and longer in the high temperature regime (see figure C-2 in Appendix C). This could attribute to the observed differences in the start of combustion of iso-octane and 1-hexene as the inlet conditions were varied. Any fuel that ignites early compared to the other results in higher peak pressures, as observed in the graphs. Therefore, the discrepancies in the efficiencies can be attributed to the increased IMEP due to the increased peak pressure (see equation 3-9).

4.4.2 N-Heptane Load Map

The surface below, figure 4-29, shows the effect of EGR and fuel-air equivalence ratio on IMEP and was very useful in determining the combinations of EGR and equivalence ratio at a given speed for different loads. Similar surfaces were obtained for 3000 rpm and 5000 rpm.
Table 4-6 shows the possible EGR and equivalence ratio combinations as well as corresponding efficiencies at the given speed range (1000 to 5000 rpm) and 25% load. It was clear from the table that efficiency remains relative constant at given speed, for any suitable combination of equivalence ratio and EGR. It was observed in table 4-6 that the mechanical efficiency dropped with increasing engine speed. This was attributed to friction since the friction mean effective pressure (fIMEP) increased with engine speed. Moreover, reduction in mechanical efficiency represented the penalty of boost pressure, which increased with engine speed (see equation 3-16).

<table>
<thead>
<tr>
<th>BMEP = 2.05 bar (25% load) and N = 1000 rpm</th>
<th>BMEP = 2.17 bar (25% load) and N = 3000 rpm</th>
<th>BMEP = 2.06 bar (25% load) and N = 5000 rpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi)</td>
<td>EGR (%)</td>
<td>(\eta_{\text{mech}}) (%)</td>
</tr>
<tr>
<td>0.50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.51</td>
<td>0.0</td>
<td>44.0</td>
</tr>
<tr>
<td>0.56</td>
<td>10.0</td>
<td>43.9</td>
</tr>
<tr>
<td>0.60</td>
<td>18.0</td>
<td>44.1</td>
</tr>
<tr>
<td>0.61</td>
<td>20.0</td>
<td>44.1</td>
</tr>
<tr>
<td>0.67</td>
<td>30.0</td>
<td>44.0</td>
</tr>
<tr>
<td>0.70</td>
<td>33.7</td>
<td>44.1</td>
</tr>
<tr>
<td>0.74</td>
<td>40.0</td>
<td>43.9</td>
</tr>
<tr>
<td>0.80</td>
<td>46.7</td>
<td>44.0</td>
</tr>
<tr>
<td>0.84</td>
<td>50.0</td>
<td>44.0</td>
</tr>
</tbody>
</table>

Table 4-6: Possible combinations of EGR and equivalence ratio (\(\phi \)) and the resulting corresponding mechanical efficiencies (\(\eta_{\text{mech}} \)) at each speed and 25% load.

These results were obtained for each load up to 100% load and for each speed the combination that gave the best efficiency was selected. The results of the best efficiencies at each load are shown in table 4-7 below.

High loads could not be achieved at low speeds because combustion occurred very early with short combustion duration. This can be attributed to the simplifying assumptions of complete evaporation of fuel and homogeneity. The maximum load that could be attained at 1000 rpm was 57% (i.e. 4.67 bar IMEP) and the maximum load obtained at 3000 rpm was 77% (i.e. 6.68 bar IMEP). It was possible operate at 100% load at 5000 rpm with 0.25 bar boost pressure as seen in table 4-7. This was possible because of the late start of ignition and slightly longer burn duration at high speeds.

The heat release rates were observed to be very high at high load. The rates of pressure rise per crank angle degree (dP/d\(\theta \)) were more than 10 bar/CAD, which was defined as the knock.
limit (see table 4-7). Therefore, high loads were achieved with the engine severely knocking, because the pressure rise rates were almost double the knock limit. The ideal load map is shown in figure 4-30 with n-heptane fuel and without considering engine knock. Engine knock results from the high pressure rise rates due to short combustion duration. If taking engine knock into consideration, the maximum attainable load was reduced to at most 45% (i.e. 3.9 bar bMEP). Therefore, to overcome this problem, some form of non-chemical duration elongation is required.

<table>
<thead>
<tr>
<th>N (rpm)</th>
<th>Load (%)</th>
<th>φ</th>
<th>EGR (%)</th>
<th>boost (bar)</th>
<th>n_mech (%)</th>
<th>dp/dt (bar/CAD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>25</td>
<td>0.6</td>
<td>17.9</td>
<td>0</td>
<td>44.1</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.9</td>
<td>12.9</td>
<td>0</td>
<td>51.2</td>
<td>18.3</td>
</tr>
<tr>
<td></td>
<td>57</td>
<td>0.9</td>
<td>0.7</td>
<td>0</td>
<td>54.3</td>
<td>23.3</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3000</td>
<td>25</td>
<td>0.8</td>
<td>45.1</td>
<td>0.55</td>
<td>33.3</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.8</td>
<td>18.0</td>
<td>0.18</td>
<td>43.9</td>
<td>12.2</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>0.9</td>
<td>2.2</td>
<td>0</td>
<td>59.0</td>
<td>21.6</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5000</td>
<td>25</td>
<td>0.8</td>
<td>50.0</td>
<td>1.14</td>
<td>20.8</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.8</td>
<td>32.3</td>
<td>0.56</td>
<td>35.8</td>
<td>10.7</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>0.9</td>
<td>20.4</td>
<td>0.74</td>
<td>49.6</td>
<td>16.7</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 4-7: Most efficient operating conditions at each load point and speed

Figure 4-30: Ideal HCCI load map for n-heptane without considering engine knock
Chapter 4: Results and Analysis

The model could not be operated in the shaded region between the MTB of SI full-load line and the burn duration limit line. Early combustion phasing during compression stroke and short combustion duration limited operation in shaded region. This resulted in combustion completing before TDC, thus reducing the output of the engine model. It would be possible to operate the engine model in the shaded region, if the combustion phasing is retarded and the combustion duration is lengthened without compromising the IMEP. The possible technique that could retard timing and prolong burn duration was EGR, but its penalty was a reduction in IMEP. However, a combination of other approaches discussed in chapter 2 could solve the problem.

4.5 Fuel design

The barriers for operating in the full load range were established to be the following:

- Knocking at high loads
- Misfire at low loads
- Fast combustion at low speeds
- Slow combustion or none at high speeds

These were the barriers that had to be overcome to ensure stable HCCI operation in the entire load-speed range. These barriers lead to the following requirements for the fuel:

- Fuel must readily autoignite at all speeds
- Mitigate the high rates of heat release at high loads

The methodology followed in the design of the ignition delay characteristics of the designer fuel is given in section 3.4.3.

4.5.1 Compression Ratio Study

The first step prior to design of the fuel was to investigate the effect of compression ratio on the final fuel characteristics. This was done by obtaining pressure and temperature data at the conditions discussed in section 3.4.3 for three compression ratios; 10:1, 17:1 and 24:1. Figure 4-31 below shows the comparative results of this compression ratio study.
characteristics of the design fuel with tolerance and temperature level at 1.2 bar and 4 bar.

The following Figures 4.22 and 4.33 show the comparison of the ignition delay temperature of 200 K. We selected the design of the fuel characteristics of the diesel parameters such as temperature, EGR and pressure. The compression ratio of 15:1 and inlet pressure of low compression ratio and high compression ratios by changing other intake parameters.

Based on the outcome of the compression ratio study, it was decided to control combustion

4.5.2. The Designer Fuel

and engine method. Compression ratio was obtained to 15:1 using the fuel.

intermediate compression ratio that would enable HCCI operation at low and high

intermediate compression ratio and would enable the low compression option was to find an

result in knock at high compression ratio. The remaining option was to find an

application at low compression ratio. However, design for low compression ratios would

characteristics. The design for high compression ratios would result in difficulties to obtain

characteristics. It was clear from the graph that compression ratio had a huge impact on the final fuel

Figure 4.31: Effect of compression ratio on ignition delay characteristics at 4 bar for the fuel

Chapter 4: Results and Analysis
It was clear from the graphs that a fuel with single-stage ignition was required in order to extend the load and speed range of an HCCI combustion engine. The fuel offered dramatically reduced ignition delay compared to toluene throughout the temperature and pressure range. Compared to n-heptane, it provided longer ignition delays for temperatures approximately less than 800 K and significantly shorter ignition delays for temperatures above 800 K. This could be attributed to the requirement for the fuel to autoignite throughout the speed range without forced induction.
These results were not unexpected, because Zhao et al. (2003) stated that fuels with single-stage ignition are less sensitive to load and speed changes, and that can ease the requirements on the control systems over a wide range of engine parameters.

The thermodynamic and physical properties of the designer fuel were not evaluated, but only the autoignition characteristics were known. For the purpose of testing the fuel, the thermodynamic properties were assumed to be similar to those of conventional hydrocarbon fuels.
Chapter 5: Conclusion

The conclusions that were reached based on the foregoing information can be summarized as follows:

- A simple mathematical model that could be used as a tool to simulate HCCI combustion was developed and validated against experimental data. Although some autoignition features of hydrocarbon fuels were approximated due to the simplicity of the model, it proved possible to predict the start of main heat release within reasonable accuracy. Moreover, the model produced results that were in good agreement with literature and experiment.

- There was insufficient data in the literature to develop and calibrate a suitable combustion duration correlation. The combustion duration was therefore inferred from the experimental Ricardo E6 data.

- Inaccurate calibration of the ignition delay characteristic parameter would result in a significant retard, which would lead to misfire or advance of the predicted combustion phasing, which would lead to engine knock.

- The compression ratio was identified as one of the most important parameters when designing a fuel for HCCI combustion. For example, if the fuel was designed for low compression ratios and used at high compression ratios engine knock would occur and surely misfire would occur for the opposite condition.

- With a suitable compression ratio, it was possible to conceive a designer fuel with single-stage ignition characteristics, which could be operated throughout the load and speed range. Only the autoignition characteristics of the fuel were identified at this stage; the required thermodynamic and other properties were not evaluated. Such a fuel would allow HCCI combustion throughout the speed range (1000 – 5000 rpm) and load range (0.2 ≤ φ ≤ 1) without forced induction. However, high peak pressures and heat release rates would be inevitable at high loads (φ > 0.5).
6 Recommendations

On the basis of the abovementioned conclusions, the following recommendations are made:

- Currently the combustion model does not include the heat release during low temperature oxidation, even though the ignition delay model does include the delay associated with cool flames. It is recommended to conduct an investigation on how much heat is released during cool flames and to confirm the association of the start of cool flames with the low temperature ignition delay, \(\tau_l \). The findings need to be implemented in the model to improve predictions of combustion phasing of fuels with two-stage ignition.

- Due to the lack of experimental data in the literature to develop a more accurate combustion duration correlation, it is recommended to conduct experiments using different engines and 3-D modelling with different fuels and operating conditions to establish this data and then refine the combustion duration correlation.

- Even small variations (10%) in the calibration of the ignition delay parameters, more especially the temperature coefficient \(B_i \), would promote very early or late autoignition of the in-cylinder mixture. Related to these results, it is strongly recommended to verify the parameters characterising the ignition delay of the designer fuel after the above mentioned recommendations are implemented. This means that more experiments and models are required to verify these characteristic parameters.

- Since only the autoignition characteristics of the fuel were designed, it is recommended to try to match these characteristics with different fuel blends of known fuel components to ascertain its possible thermodynamic and physical properties. An experimental study need to be conducted to investigate the predictions of this modelling study.
7 References

Douaud, A.M. and Eyzat, P. 1978. Four-Octane-Number Method for Predicting the Anti-Knock Behaviour of Fuels and Engines, SAE 780080 2-13

Chapter 7: References

Ishibashi, Y. and Asai, M. 1996. Improving the Exhaust Emissions of Two-Stroke Engines by Applying the Activated Radical Combustion

Marriott et al., 2002b. Investigation of Hydrocarbon Emissions from a Direct Injection Gasoline Premixed Charge Compression Ignited Engine. SAE 2002-01-0419 2-7

7-3
Chapter 7: References

Thring, R.H. 1989. Homogeneous Charge Compression Ignition (HCCI) Engines. SAE 892068

APPENDICES
A. Engine Model Details

A.1 Combustion Thermodynamics

The idealised combustion of the fuel-air mixture under non-stoichiometric conditions can be described by the following general reaction:

\[
C_xH_yO_z + fO_2 + gN_2 \rightarrow aCO_2 + bH_2O + cCO + dH_2 + eO_2 + gN_2
\] (A-1)

Reactants \hspace{2cm} Products

Where, the parameters, a to g, are used to balance the equation. The reaction is classified into reactants and combustion products.

In all the reactions N\textsubscript{2} was assumed to be inert, which means that it does not participate in any reaction. In addition, all the reactant and product molecules were assumed to be ideal gases so that the ideal gas law could be applied. Since the temperature of combustion products are normally high, some equilibrium reactions such as the dissociation of CO\textsubscript{2} and the water-gas shift reaction were included, giving rise to the formation of CO and H\textsubscript{2}:

\[
CO + \frac{1}{2} O_2 \Leftrightarrow CO_2 \hspace{2cm} (A-2)
\]
\[
CO_2 + H_2 \Leftrightarrow CO + H_2O \hspace{2cm} (A-3)
\]

The thermodynamic equilibrium and Dalton's law of additive pressures4 governed the rates of the two equilibrium reactions. The equations for calculating the rate constants and all the other thermodynamic properties required are discussed in details by Heywood (1988).

2 Reactants are on the left of the combustion reaction equation.

3 Products are on the right side of the combustion reaction equation.

4 The pressure of a gas mixture is equal to the sum of the pressures each gas would exert if it existed alone at the mixture temperature and volume (Çengel and Boles, 2002).
A.2 Model Operation

The ignition delay model was applied in the combustion model according to the flow-chart given in Figure A-1 for the prediction of the start of main heat release. The engine model was operated according to the flow-chart given in Figure A-2 for the prediction of the engine performance.

Figure A-1: Flow diagram for the combustion model by incorporation of the ignition delay model with the engine model
Appendix A: Engine Model Details

Figure A-2: Flow diagram for the operation of the engine cycle model

References A

B. Chemkin Results

Ignition delay values were calculated for a range of primary reference fuels (PRF) over a wide range of pressure, fuel-air equivalence ratio (\(\Phi\)) and exhaust gas recirculation using a detailed chemical kinetic model. The chemical reaction scheme developed by Westbrook and co-workers for PRF was used (Westbrook et al., 1988). Two separate studies were conducted on the effect of equivalence ratio on ignition delay and the effect of exhaust gases on ignition delay. These studies were conducted so that the overall ignition delay obtained from the 3-part Exponential model for stoichiometric mixture, can be corrected accordingly. The results obtained are shown in the following figures.

![Graph showing the effect of equivalence ratio on ignition delay of PRF at 40 bar, 1000 K initial temperature](image)

Figure B-1: Effect of equivalence ratio on ignition delay of PRF at 40 bar, 1000 K initial temperature
From these results, an excellent correlation was obtained by fitting a simple power law of the form:

\[\tau_c = \tau_{id} \phi^{-1} \]

(B-1)

Typical ignition delay results obtained from this equation are shown in figures B-3 at 40 bar.

Figure B-3: Comparison of the Chemkin and model ignition delay for PRF 90 at 40 bar, 1000 K initial temperature
Appendix B: Chemkin Results

The effect of EGR could not be investigated separately from equivalence ratio, since dilution affects the mixture equivalence ratio. Therefore, a distinction was made between the inlet mixture equivalence ratio and the in-cylinder equivalence ratio. The cylinder equivalence ratio was determined from the inlet equivalence ratio and the amount of EGR used. The following figures show the results of the effects of EGR on ignition delay.

Figure B-4: Effect of EGR on ignition delay for a given equivalence ratio at 40 bar, 1000 K initial temperature for PRF 90

Figure B-5: Effect of EGR on ignition delay for a given equivalence ratio at 40 bar, 1000 K initial temperature for PRF 0
Similar graphs were obtained for all PRF used; least-squares regression analysis was used to map this data onto the ignition delay correlation similar to the one suggested by Gray III and Ryan III (1997), of the form:

\[\tau_i = \tau_{x-1} \left(f^n \right) \left(O^n \right) \]

(B-2)

Where \(F \) and \(O \) are the fuel and oxygen concentrations, respectively. However, the resulting correlation was very poor and an alternative correlation was attempted, of the form:

\[\tau_i = \tau_{x-1} \left(1 - \frac{\% \text{EGR}}{100} \right)^n \]

(B-3)

Where, \(\% \text{EGR} \) is the percentage of exhaust gas recirculation on mass basis. This correlation includes the effect of equivalence ratio that was discussed above.

The results from this correlation were comparable with the Chemkin data, however, different values of the parameter, \(m \), were obtained at each equivalence ratio. Figure B-6 shows how the inlet equivalence ratio affects the EGR index, \(m \).

![Figure B-6: Effect of inlet equivalence ratio on the EGR index, m](image-url)
References B

C. Fuel Characterisation

Ignition delay parameters for the 3-part Exponential model were obtained from a study by Yates et al. (2005) for the various model fuel components. These parameters describe the autoignition characteristics of the fuels over a wide range of pressure and temperature for a stoichiometric mixture. Table C-1 show the ignition delay parameters of the model fuels, including the parameters of the design fuel.

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Ln(A1)</th>
<th>n1</th>
<th>B1</th>
<th>Ln(A2)</th>
<th>n2</th>
<th>B2</th>
<th>Ln(A3)</th>
<th>n3</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Heptane</td>
<td>-18.69</td>
<td>-0.078</td>
<td>14721</td>
<td>18.52</td>
<td>-2.082</td>
<td>-10263</td>
<td>-12.48</td>
<td>-0.927</td>
<td>16441</td>
</tr>
<tr>
<td>iso-Octane</td>
<td>-18.86</td>
<td>-0.073</td>
<td>15678</td>
<td>25.92</td>
<td>-2.969</td>
<td>-10595</td>
<td>-10.23</td>
<td>-1.017</td>
<td>13956</td>
</tr>
<tr>
<td>1-Hexene</td>
<td>-21.69</td>
<td>-0.081</td>
<td>16719</td>
<td>8.87</td>
<td>-1.436</td>
<td>-2513</td>
<td>-12.85</td>
<td>-0.824</td>
<td>17148</td>
</tr>
<tr>
<td>Toluene</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>-11.52</td>
<td>-0.967</td>
<td>17333</td>
</tr>
<tr>
<td>Methanol</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>-16.01</td>
<td>-0.736</td>
<td>19701</td>
</tr>
</tbody>
</table>

Table C-1: Ignition delay parameters for the different model fuels including the design fuel

Figure C-1 show the autoignition characteristics of the model fuels, including the model blend. Toluene and methanol have single-stage ignition, whereas n-heptane, iso-octane, 1-hexene and the model blend have two-stage ignition.
Appendix C: Fuel Characterisation

References C