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Abstract 

The methods prescribed by the ASTM for Research and Motor octane number ratings are 

generally accepted as indicative of the anti-knock properties of gasoline when applied in spark 

ignition engines. However, it has been shown by the author that the manifestation of 

autoignition in the CFR engine that is used for octane rating differs significantly from that which 

is typically experienced in a modern production engine under knocking conditions (SAE paper 

2005-01-2081). 

The present research examines the knock measurement system prescribed by the ASTM 

method and demonstrates how knock intensity is defined by the pressure rise associated with 

bulk autoignition heat release and that it is insensitive to the high frequency pressure 

fluctuations. Significantly, the extent of pressure fluctuations present during octane rating at 

"standard knock intensity" was shown to vary considerably between fuels of different 

composition. 

In a production engine, potentially damaging knock arises from a localised and near­

instantaneous autoignition phenomenon involving a relatively small fraction of the trapped mass 

(less than 10%) and is characterised by significant pressure fluctuations. In the CFR engine 

however, it was found that the autoignition that occurs during octane rating could involve 

anything from 30% to 80% of the trapped gas, depending on the octane value of the fuel being 

tested. This manifestation of autoignition is characterised by a rate of heat release exceeding 

the rate associated with normal flame propagation, but which is insufficient to produce a 

substantial localised pressure discontinuity and the associated characteristic pressure 

fluctuations. It is therefore believed to be an example of cascading autoignition similar to the 

phenomenon associated with Homogeneous Charge Compression Ignition (HCCI) type 

combustion. A pre-requisite for such a cascading autoignition is a non-uniform end-gas 

temperature profile that was found to be a unique function of the engine geometry and 

independent of the fuel tested. The profile of the inferred thermal gradient was quantified by 

theoretical calculation and the hypothesis was validated for the primary reference fuels and the 

toluene standard fuels, as well as for gasoline surrogate blends. 

The research findings have important implications for octane modelling and prediction, HCCI 

combustion research and engine performance simulations. 
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In a production engine, potentially damaging knock arises from a localised and near­

instantaneous autoignition phenomenon involving a relatively small fraction of the trapped mass 

(less than 10%) and is characterised by significant pressure fluctuations. In the CFR engine 

however, it was found that the autoignition that occurs during octane rating could involve 

anything from 30% to 80% of the trapped gas, depending on the octane value of the fuel being 

tested. This manifestation of autoignition is characterised by a rate of heat release exceeding 

the rate associated with normal flame propagation, but which is insufficient to produce a 

substantial localised pressure discontinuity and the associated characteristic pressure 

fluctuations. It is therefore believed to be an example of cascading autoignition similar to the 

phenomenon associated with Homogeneous Charge Compression Ignition (Heel) type 

combustion. A pre-requisite for such a cascading autoignition is a non-uniform end-gas 

temperature profile that was found to be a unique function of the engine geometry and 

independent of the fuel tested. The profile of the inferred thermal gradient was quantified by 

theoretical calculation and the hypothesis was validated for the primary reference fuels and the 

toluene standard fuels, as well as for gasoline surrogate blends. 
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Appendix B 

If the surface is viewed in plan, contours of constant ignition delay can be seen in Figure B-9: 
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Figure B-9: Plan view of the ignition delay surface, showing contours of constant ignition delay. 
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CFD ITKldel results 

c. CFD model results 

Multi-dimens;cmal fluid dynamic analysis of the inlet process in the CFR engine was performed 

using Fluent CFD software Details of the model are contained In the MSc thesIs by HSiao due 

for publication in 2006 (Hsiao, 2006) 

C. 1 T emperatuf8 results 

Figure C-l shows the temperature values at .., Iet valve closure (146 ·BTDC) for a compressIOn 

ratio of 7.5. I. The colour plate on the left shows a horizontal section at the level of the spark 

plug about 15 mm from the top of the cylinder The plan pos~iQn of the inlet valve, shroud and 

spark plug IS Indicated for reference. The nght hand colour plate shows a vertical section 

through thenle! valve. The variation in temperatures at this time ranges between 335 K and 

355 K for both the horizontal and vertical VieWing planes. 

Figu", C-l: P",dictlid t .. mp ..... tur .. v~lu .. s at IVC during gas .. xch~ng .. in CFR .. ngin .. 

Figure C-2 shows the predICted temperatures at TDC during the compressions stroke and 

reveals that the temperature range has diminished to about 10 K n the hOrizontal plane and 

slightly more in the vertical plane, with thermal stratifICation clearly visible. Note that the model 

conSldered only gas exchange and that the effect of combuslion and f lame propagation was not 

taken into account 

• 

CFD model results 

C. CFD model results 

Muill.d.rnensional fluid dynamic analysis of the inlet process in the CFR engine was performed 

USing Fluent CFD software Details of the m<Jdel are contained In the MSc thesIs by HSiao due 

for public:atioo in 2006 (Hsiao, 2(06) 

C. 1 T emperatuf9 results 

Figure C-l shows the temperature values at h ie! valve closure (146 ' BTDC) for a compresSIon 

rabo of 7.5 I . The COKlur plate on the left shows a horizontal SectlOO at the level of the spark 

plug about 15 mm trom the top of the cylmder The plan position of the inlet valve, shroud and 

spErk plug IS Irldlcated for refe~nce, The nght hand colour plate shows a veri,cal sedan 

through the IIllet valve. The variation in temperatures at thiS time ranges between 335 K and 

355 K for both the horizontal and vertical viewing planes. 

Figu .... C-1: P",dictod t .. mp ..... tur .. v~tu .... at tVC during gas .. xch~ng .. in CFR .. ngin .. 

Figure C-2 shows the predICted temperatures at TDC durmg the compressions stroke and 

reveals that the tomperature range has dlmlnl~ed to about 10 K fJ the hOrizontal plar>e and 

slightly more In the vertICal plane, with thermal stratifICation clearly visible Note that the model 

cOrlSldered only gas exchange ar>d that the effect of combus\1on ar>d flame propagabon was rJOt 

taken into account 
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Figu '" C-2: Pred icted temperature values at TOC during the compression stroke in CFR engine 

C.2. Velocity results 

The same model was used to predict the magnitude of the velocity at TOC in order to assess 

the effect of the shrouded inlet valve on the llow pattern inside the cylinder. The results 

presented in Feure C-3, show strongly swirl n g flow on a horizontal plane at the level of the 

spark plug for a compression ratio of 5.25'1 Two conditions are show IVC on the left and TOC 

on the right 
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Figure C_3: Velocity contours at IYC (left) and TDC (right) for a compression ratio of 5.25:1. 

Figure C--4 show Similar results as previously, but lor a compression ratio of 7.5:t As with the 

low compression ratio example. the velocity magnitude at TOC varies wilh rad ius from close to 

zero at the centre to -6.5 mis at the cylinder wall 
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Figu '" C-2: Pred icted temperoture values at TOC during the compression stroke in CFR engine 

C.2 Velocity results 

The same model was used to predict the magnitude of the velocity at TOC in order to assess 

the effect 01 the shrouded inlet valve on the llow pattern inside the cyl inder. The results 

presented in F~ure C-3, show strongly swirl n g flow on a horizontal plane at t~ level of t~ 

spark plug for a compression ratio 015 25' 1 Two conditklns are show IVC on the left and TOC 

Ofi the right 
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Figure Col: Velocity contours at IVC (left) and TDC (right) for a compression ratio of 5.25:1. 

Figure C--4 show Similar results <is previously, but lor <i compression ratio of 7.5:1 As With the 

low compresSion ratio example the velocity magnitude at TOC varies with radIUS lrom close to 

zero at the centre to -6.5 mis at the cylinder wall 
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Figure C-4: Velocity contours at IVC Ileft) and TDC (right) lor a compression ratio of 7.5:1. 

C3. Transported flame model 

The knowledge of th€ velocity magnitude at TOC allows for the calculation of the flame front 

positIOn in two dimertsiorts using a transported fiame assumption. Th€ model considers a 

number of "pac~ets" On an initial semi-Circular flame kemel with velocity vectors directed radial~ 

otltvvard from the spark plug This IS ,l lustralveiy represented In Figure C-5 where the 

circumferentiaillow vek:lcity is shown as dotted arrows' WIth the radiaillame yelocltles for three 

packets are shown as solid arrows 
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Figure CoS: Graphical representation of transported flame concept 
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Figure C-4: Velocity contours at IVC Ileft) and TDC (right) lor a compression ratio of 7.S:1. 

C3. Transported flame model 
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positIOn in two dimertsJortS using a transported fiame assumption, The model considers B 

number of pac~et~·· On an InltJa.1 semi-Circular fiame kemel with \lelocity vectors directed (ad l al~ 

olltllvard from the spark plug ThiS Is 11 1~stratve~ represented In Fl\lure C-5 where tJ1e 
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Figure CoS: Graphical represenlatlon of transported flame concept 
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Appendix C 

A linear radial variation of the circumferential flow velocity was imposed, as suggested by the 

CFD results, whilst the magnitude of the flame velocity was chosen to ensure the complete 

consumption of the end-gas in correspondence with to the observed normal combustion 

duration. The flame velocity was assumed constant throughout the calculation and the 

calculation was initiated at the instant of spark discharge. 

The model methodology considers the vector addition of the two velocity components and 

tracks the progress of each of the packets. An example is shown in Figure C-6 for a 

compression ratio of 7.5:1. The increment between successive symbols corresponded to an 

angular increment of 1 'CA at 600 rpm. 
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Figure C-6: Packet trajectories of transported flame at a 7.5:1 compression ratio. 

The position of the flame front with respect to time can also be tracked to visualise the location 

of the end-gas at any instant. This is shown in Figure C-7 for the case above and indicates a 

crescent shaped end-gas only slightly non-diagonally across from the spark plug. The 

observation is in line with observations made by Groff and Matekunas (1980) for a shrouded 

C-4 
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CFD model results 

inlet valve cylinder operated at 2000 rpm as well as with results from a high swirl spark ignition 

engine studied by Kumar et al. (1988) 

/ 
15.··CAO ....•....• . •.....•. 
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Figure C-7: Position of the transported flame front at different crank angle increments for a 7.5:1 

compression ratio. 
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Engine model details 

D. Engine model details 

D. 1. Interpretative model 

To enable the interpretation of recorded pressure data, the ignition delay model was applied 

according to the flow-charts given in Figure 0-1 and Figure 0-2 for the estimation of initial 

temperature inhomogeneity and heat loss gradient, respectively. The different polytropic 

coefficients in the latter give rise to the proposed heat loss gradient. 

No 

./ Cylinder pressure data ./ 
~ 

Estimate temperature at spark 

discharge using ideal gas law 

l 
Calculate specific heat ratio at 

spark discharge 

~ 
Apply ignition delay model to estimate initial 

temperature for autoignition at the knock-point 

~ 
Estimate initial temperature in the next 

autoignition element to ensure autoignition 

~ Yes 

( END) 

Figure 0-1: Flow diagram for the estimation of the initial 

temperature inhomogeneities. 
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Appendix 0 

0-2 

No 

./ Cylinder pressure data ./ 
~ 

Estimate temperature at spark 

discharge using ideal gas law 

~ 
Calculate specific heat ratio at 

spark discharge 

~ 
Apply ignition delay model to estimate initial 

temperature for autoignition at knock-point 

~ 
Estimate polytropic coefficient in the next 

autoignition element to ensure autoignition, 

assuming uniform initial temperature 

Figure 0-2: Flow diagram for the estimation of the polytropic 

coefficient, giving rise to the heat loss gradient. 
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Figure D-2: Flow diagram for the estimation of the polytropic 

coefficient, giving rise to the heat loss gradient. 
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Engine model details 

D.2. Predictive model 

General description 

A two-zone thermodynamic engine model was used for the predictive part of thesis. The model 

solves the overall energy balance in accordance with standard textbooks on the subject. 

(Heywood,1988) 

Assumptions 

The following assumptions were made: 

• The two zones are each homogeneous and well mixed 

• The two zones are separated by a flame front of negligible thickness 

• Blow-by and crevice volume effects were ignored 

• The cylinder pressure was uniform at all times 

• The fuel was fully evaporated and well mixed. 

Mass fraction burnt (normal combustion) 

The mass fraction bumt, attributable to normal flame propagation, was calculated according to 

the fuel-life function (Oppenheim, 1998) 

_ exp[-a(1-0)p]-exp(-a) 
Xu -

l-exp(-a) 
(0-1) 

where 

(0-2) 

with e the position in °CA, ~e the burn duration, 80 the instance of spark discharge. The 

balance of the symbols are empirical constants. 

Thermodynamic properties 

All thermodynamic properties were calculated using data from the JANAF thermodynamic tables 

(National Bureau of Standards, 1971) 
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Appendix 0 

Burnt gas composition 

The effect of dissociation reactions in the burnt gas was included by allowing for the equilibrium 

of the water-gas-shift and C02 dissociation reactions: 

(0-3) 

(0-4) 

The equilibrium composition was assumed "frozen" at temperatures below 1750 K. 

Ignition delay model incorporation 

The ignition delay model was incorporated according to the flow diagram given in Figure D-3: 
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No 

Start at inlet valve closure 

Estimate life function parameters to match 

normal combustion pressure traces 

Divide end-gas into equal elements at 

the instant of knock-point 

Calculate ignition delay integral value 

for unreacted elements 

Assign mass of autoignited 

element to "burnt-gas" 

Perfonn energy balance and eqUilibrium 

burnt-gas composition to predict pressures 

( END) 

Figure 0-3: Flow diagram for the incorporation of the ignition 

delay model with the predictive engine model. 
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