The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.

Michael Jack Gardner

Submitted in partial fulfilment of the academic requirements for a M.Sc. degree in the Department of Molecular and Cell Biology, University of Cape Town.

Cape Town
2002
PREFACE

The experimental work described in this report was carried out in the Department of Molecular and Cell Biology, University of Cape Town, from February 2001 to September 2002, under the supervision of Professors N. Illing and J. Farrant.

These studies represent the original work of the author and have not otherwise been submitted in any form for any degree or diploma to any other University. Where use has been made of the work of others, it is duly acknowledged in the text.

Michael Jack Gardner
September 2002
ACKNOWLEDGEMENTS

My sincere thanks are due to the individuals who have contributed towards this work and who have assisted me during the course of its preparation.

My supervisors, Professors Nicci Illing and Jill Farrant, for their insight, encouragement and guidance.

Helen Collett, for her assistance with the technical aspects of this thesis - for her quiet cynicism, sense of humour, supply of cappuccinos and her endless bravery in proofreading this document.

'Professor' Mohammed Jaffer for expert assistance with the microscopy work.

Keren Cooper, for her wizardry with graphics, and her willingness to assist in times of technical distress and/or sense of humour failure.

My friends both inside and outside the labs – for tips, solutions, laughs, headaches and copious amounts of illicit chocolate. Also Duncan, who knows why – and Hannah and Kelvin who probably wish they did too.

Mrs. B. Thomas of Concord-Harmony Trust and the National Research Foundation, (Pretoria) for their generous financial assistance.

My parents Betty and Rob, for their love, support and understanding over difficult years.
Abstract

Although roots play an integral role in the sensing and amelioration of environmental stresses, there are no reports that specifically detail their involvement in the desiccation tolerance mechanisms of resurrection plants. Very little is known about even the general anatomy and physiology of the roots of plants such as *X. humilis*, and almost nothing about the molecular responses that confer their ability to survive desiccation. This report details foundational studies of the functional anatomy and large-scale molecular responses of the roots during dehydration and rehydration.

Anatomical studies revealed that the roots undergo transitions similar to those observed and characterized in the leaves - namely division of vacuoles, glass formation and loss of internal detail. Electrolytic leakage data confirmed that little membrane damage was incurred during desiccation, but analysis of proline and sucrose levels suggested that these osmocompatible solutes are only minor contributors to the preservation of structural integrity. Roots rehydrated several times faster than the aerial portions of the plant. The idea that the conspicuous exoderms and the unusual *velamen radicum* are involved in this rapid absorption of water is discussed.

The documented involvement of two-component systems in osmosensing led to an attempt to clone homologues present in *X. humilis* roots. Primers were designed to conserved regions of plant histidine kinase and response regulator genes and utilized in degenerate RT-PCR reactions. The root-specific *Arabidopsis thaliana* histidine kinase 1 (ATHK1) clone was employed concurrently to study the copy number and regulation of related histidine kinases in *X. humilis*.
To address the lack of molecular resources available for resurrection plant research, high-quality root- and stress-specific cDNA libraries were constructed from plants at various stages of desiccation and rehydration. These will be used to complement leaf libraries constructed from the same plants. The libraries were evaluated and screened to assess their quality. The usefulness of β-tubulin and other housekeeping genes as probes in this screening is discussed with reference to northern blot analyses. An attempt was made to reduce the redundancy levels of individual sequences in these libraries through the use of a normalization procedure adapted from that employed by the IMAGE consortium. Normalized libraries were screened to determine the extent of the reduction in tubulin frequencies. The success of this method relative to other subtractive hybridizations is discussed, alongside the prospects for large-scale sequencing and microarray analysis of the transcriptome of the roots of *X. humilis*.

This study describes novel findings relating to the physiological, anatomical and molecular features of the roots of *X. humilis*. In addition, it has generated several resources that may form the basis of the extensive characterization of the genetic elements utilized by these plants in stress amelioration.
Table of Contents

Preface .. i
Acknowledgements .. iii
Abstract ... iv
Figures ... ix
Tables .. xiv
Abbreviations .. xv

1 Introduction: Mechanisms of desiccation tolerance 1

1.1 Resurrection Plants ... 1
 1.1.1 Xerophyta humilis and the genus Xerophyta 3

1.2 Mechanisms of Desiccation Tolerance ... 4
 1.2.1 The sensing of environmental stresses 6
 1.2.2 Gene regulation in water stress responses 8
 1.2.3 Gene expression and cellular responses to desiccation and rehydration 10

1.3 Targeted Approaches to Dissection of Stress-Response Pathways 16

1.4 Summary and Aims .. 19

2 Anatomy And Physiology: Root responses to water flux 20

2.1 Introduction .. 20
 2.1.1 Metabolic adjustment and the preservation of structural integrity 21

2.2 Materials and Methods .. 24
 2.2.1 Plant material .. 24
 2.2.2 Water content and water potential determinations 24
 2.2.3 Microscopy ... 25
 2.2.4 Electrolytic leakage .. 26
 2.2.5 Sugar analysis ... 27
 2.2.6 Proline analysis ... 27

<table>
<thead>
<tr>
<th>2.3</th>
<th>Results</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.1</td>
<td>Gross morphology</td>
<td>27</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Anatomy</td>
<td>28</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Water contents and water potentials</td>
<td>35</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Electrolytic leakage</td>
<td>35</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Proline and sugars</td>
<td>37</td>
</tr>
</tbody>
</table>

| 2.4 | Discussion | 39 |

<table>
<thead>
<tr>
<th>3</th>
<th>Targeting Candidate Genes: Stress sensing and signalling systems</th>
<th>44</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.2</th>
<th>Materials and methods</th>
<th>47</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1</td>
<td>Probe preparation</td>
<td>47</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Southern and northern blot analysis</td>
<td>47</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Primer design</td>
<td>48</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Degenerate primer PCR</td>
<td>48</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Cloning</td>
<td>50</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Screening and sequencing</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.3</th>
<th>Results</th>
<th>51</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.1</td>
<td>Northern and southern analysis using AThK1</td>
<td>51</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Primer design</td>
<td>52</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Optimization of degenerate RT-PCR and cloning</td>
<td>54</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Sequence analysis</td>
<td>56</td>
</tr>
</tbody>
</table>

| 3.4 | Discussion | 57 |

<table>
<thead>
<tr>
<th>4</th>
<th>cDNA Library Construction: A molecular entry into desiccation tolerance</th>
<th>61</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>61</td>
</tr>
<tr>
<td>4.1.1</td>
<td>The production of high quality libraries</td>
<td>62</td>
</tr>
<tr>
<td>4.1.2</td>
<td>cDNA libraries in water stress research</td>
<td>65</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.2</th>
<th>Materials and methods</th>
<th>66</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1</td>
<td>Plant material</td>
<td>66</td>
</tr>
<tr>
<td>4.2.2</td>
<td>RNA extraction and analysis</td>
<td>67</td>
</tr>
<tr>
<td>4.2.3</td>
<td>mRNA isolation</td>
<td>68</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Library construction</td>
<td>68</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Evaluation of libraries</td>
<td>71</td>
</tr>
<tr>
<td>4.2.6</td>
<td>Screening with β-tubulin</td>
<td>72</td>
</tr>
<tr>
<td>4.2.7</td>
<td>Northern blot analysis</td>
<td>73</td>
</tr>
<tr>
<td>4.2.8</td>
<td>Data analysis and management</td>
<td>74</td>
</tr>
</tbody>
</table>
4.3 Results
4.3.1 RNA and mRNA isolation and evaluation 74
4.3.2 cDNA synthesis and cloning 76
4.3.3 Library evaluation 77
4.3.4 β-tubulin screens 80

4.4 Discussion 83

5 Normalization of cDNA Libraries: A rational approach to gene discovery 89

5.1 Introduction 89
5.1.1 Re-association kinetics in normalization 90
5.1.2 Kinetic methods of normalization 92
5.1.3 The Soares method 93
5.1.4 HAP column chromatography 95
5.1.5 The effectiveness of normalization 96
5.1.6 normalization and plant desiccation tolerance 97

5.2 Methods 99
5.2.1 Mass excision of pBluescript phagemid 99
5.2.2 Isolation of single stranded library DNA 100
5.2.3 Purification of single stranded tracer 101
5.2.4 Generation of the driver DNA 102
5.2.5 Hybridization 102
5.2.6 Purification of the normalized DNA population 103
5.2.7 Electroporation 104
5.2.8 Preparation of libraries for storage and arraying 104
5.2.9 Evaluation of the normalized libraries 104

5.3 Results 105
5.3.1 Preparation of Tracer and driver DNA 105
5.3.2 Hybridization and purification 109
5.3.3 Electroporation 110
5.3.4 Screening 111

5.4 Discussion 113

6 Conclusions 117

7 References 119
Figures

Chapter 1

Figure 1.1: Phylogenies representing the evolution of land plants. Asterisks indicate taxa that display vegetative desiccation tolerance (Figure from Oliver et al., 2000).

Figure 1.2: Photographs of (A) hydrated and (B) dehydrated X. humilis plants.

Figure 1.3: A basic model depicting the possible processes involved in the onset, detection and amelioration of desiccation stress.

Figure 1.4: An overview of phases of gene expression in response to desiccation.

Figure 1.5: An example of a microarray slide. Spots indicate the position of independent cDNAs that have been competitively targeted by populations of Cy3/ Cy5 labeled mRNA. The relative intensity of the red: green channels for an individual spot is indicative of the different levels of a particular mRNA in the sample (Image obtained from the Arabidopsis Functional Genomics Consortium).

Chapter 2

Figure 2.1: Photographs showing the gross morphology of X. humilis. (A) The intact plant, and (B) separation of the living and older (dead) roots.

Figure 2.2: Scanning electron micrographs of freeze fractured X. humilis roots showing (A) the outer root (B) the schlerenchymatous exodermis (C-D) parenchyma cells forming the living root cortex. cw =cell wall, cx = cortex, en = endodermis, ex = endodermis, sc = schlerenchyma, v = velamen radicum. Magnifications and scale bars are indicated on the images.
Figure 2.3: Transmission electron micrographs showing cross sections through cells of the cortex of a hydrated *X. humilis* root. (A-C) Cortical parenchyma cells [7 000 x] and (D) the cortical cells bordering the lignified stele [B 000 x]. cw = cell wall, ls = lignified stelar cell, n = nucleus, v = vacuole.

Figure 2.4: Scanning electron micrographs of freeze-fractured (A-B) older (dead) and (C-D) desiccated *X. humilis* roots. Shattering of the dry roots is evident from the presence of the glass-like shards (s). cx = cortex, ex = exodermis, x = xylem. Magnifications and scale bars are indicated on the images.

Figure 2.5: Transmission electron micrographs of cross sections through dehydrated *X. humilis* roots. (A) The intact stele [1 000 x] (B) metaxylem vessels [2 000 x] (C) cortical cells filled with vesicles [10 000 x] (D) young vacuolated cortical cells (*image inverted for clarity*) [60 000 x]. cw = cell wall, dcv = damaged cell wall, s = stele, v = vessel, vs = vesicle containing electron dense substance.

Figure 2.6: Changes in the water status of the roots and leaves of *X. humilis*. Relative water contents during (A) dehydration and (B) rehydration. (C) Water potentials during rehydration. Vertical bars represent standard deviations of the means.

Figure 2.7: Electrolytic leakage of the roots and leaves of *X. humilis*. Values are expressed as percentages of the hydrated controls. Standard deviations of the means were set at 5%.

Figure 2.8: Glucose, fructose and sucrose levels in roots of *X. humilis*. Changes in glucose levels are non-significant (*P* = 0.95). Standard deviations are represented by vertical bars. The leaf data is presented as an internal control.

Figure 2.9: Proline levels in the leaves of *X. humilis* as determined by reference to a standard proline curve constructed under the same experimental conditions. Dehydrated inner leaves of *E. nindensis* were used as a control.

Chapter 3

Figure 3.1: The functioning of two component systems (A) A simple two-component system in which a phosphate group is transferred directly from the histidine kinase to the response regulator. (B) A multiple phosphorylation system involving a hybrid type histidine kinase (*images from Schaller et al., 2001*).
Figure 3.2: Southern blot analysis showing the representation of ATth1-related sequences in genomic DNA of X. humilis.

Figure 3.3: Multiple sequence alignments of selected histidine kinases
*AHK1-3: Arabidopsis histidine kinase; ATHK1: Arabidopsis thaliana histidine kinase 1; PEHK: Populus ATHK1 homologue; CKR1: Cytokinin receptor 1.

Figure 3.4: Multiple sequence alignments of response regulators.
*PARR = Arabidopsis response regulators 1-5; PZMRR = Zea maizes response regulators 1-6, PDCRR = Daucus carota response regulator.

Figure 3.5: Effect of annealing temperatures and DMSO on product yield from RT-PCR. (A) 45°C, (B) 50°C and (C) 55°C. 1 = histidine kinase primers, no DMSO, 2 = histidine kinase primers, 5% DMSO, 3 = response regulator primers, no DMSO, 4 = response regulator primers, 5% DMSO. Optimized PCR conditions were used.

Figure 3.6: Amplification of cloned inserts by colony PCR. Lanes 1-9 = products from selected colonies, lane 10 = negative control, M = marker (PstI digested lambda DNA).

Figure 3.7: Characterization of the RstA homologue. (A) Conserved domain detection. (B) Partial Amino acid sequence alignment of RstA homologue and AthK1.

Figure 3.8: PCR from cDNA prepared by RT from poly(A) RNA. Lane 1 = histidine kinase primers + DMSO, 2 = response regulator primers + DMSO, M= marker.

Chapter 4

Figure 4.1: The Lambda-Zap vector (Image from the Uni-Zap Manual Stratagene).

Figure 4.2: RNA isolated at varying water contents from roots of (A) dehydrating and (B) rehydrating X. humilis plants. 1-2 µg of RNA was loaded per lane. The sizes and positions of the 18S and 26S ribosomal subunits are indicated. RWC = relative water content, HAW = hours after watering.
Figure 4.3: (A) Poly(A)^+ RNA derived from pooled dehydration (lanes 1-2) and rehydration samples (lanes 3-5). Approximately 0.5 μg RNA from several separate isolations was loaded per lane. (2) Autoradiograms of [32P] dATP labelled cDNA derived from root RNA at different water contents. PD = partially dehydrated, D = dehydrated, PR = partially rehydrated, un = unincorporated nucleotides.

Figure 4.4: Photographs of (A) first-strand and (B) second-strand synthesis reactions. 1-2 μl of DNA was loaded per lane and electrophoresed on alkaline agarose gels in the presence of ethidium bromide. D = pooled dehydration samples, R = pooled rehydration samples.

Figure 4.5: Evaluation of library inserts. Agarose gels of colony PCR reactions indicating the presence of inserts in 12 randomly selected clones from the (A) dehydration and (B) rehydration libraries.

Figure 4.6: Pie charts indicating the shift in the percentage of blue and white clones in (A) dehydration and (B) rehydration libraries during the excision procedure.

Figure 4.7: Graphs indicating (A) the percentage of colonies containing inserts and (B) the average sizes of inserts in colour selected colonies.

Figure 4.8: Representative autoradiographs indicating the representation of β-tubulin isoforms in the (A) dehydration and (B) rehydration libraries. Approximately 30 000 pfu were screened per membrane.

Figure 4.9: Northern blot analysis of (A) β-tubulin II (B) β-actin and (C) 18S RNA expression in the leaves and roots of X. humillis. 10 μg of total RNA was loaded per lane. Controls indicated sensitivity to the pg level. * Actin blot carried out once only.

Chapter 5

Figure 5.1: A typical C_50 curve of a complex DNA solution.

Figure 5.2: An outline of the available methods of normalization. The driver DNA is denatured and annealed to the tracer in the presence of blocking oligonucleotides to achieve the required C_50 time (adapted from Bonaldo et al., 1996).
Figure 5.3: Effect of the helper phage multiplicity of infection (MOI) level on the recovery of single stranded DNA from the dehydration and rehydration cDNA libraries. Lane numbers 1-4 indicate a MOI of 1×10^3, M = marker (PstI digested lambda DNA).

Figure 5.4: Single stranded DNA recovered from the dehydration and rehydration cDNA libraries. Lane numbers indicate the amount (in μl) of DNA loaded. M = marker (PstI digested lambda DNA).

Figure 5.5: S1 nuclease digests of the single stranded dehydration and rehydration library DNA. Lanes: 1 = S1 nuclease digested sample, 2 = original sample, M = marker (PstI digested lambda DNA).

Figure 5.6: Recovery of purified single stranded DNA from HAP columns. Input = 10 % of original amount of DNA loaded. Lane numbers indicate fraction numbers. M = marker (PstI digested lambda DNA).

Figure 5.7: Representative images of the desalting and gel purification of HAP purified single stranded DNA. (A) Sigma spin column desalting of dehydration library DNA (B) gel and Qiagen column purification of rehydration library DNA. Lanes: 1 = DNA before purification, 2 = tracer DNA after purification, M = marker (PstI digested lambda DNA).

Figure 5.8: Driver DNA produced by PCR from the dehydration and rehydration tracer DNA. Lanes: 1 = dehydration driver DNA, 2 and 3 = rehydration driver DNA, 4 = negative (no primer) control, 5 = template DNA, M = marker.

Figure 5.9: PCR of inserts from normalized single stranded DNA samples. Lanes: 1 = negative (no primer) control, 2 = 10 % of PCR reaction using R16A library DNA as a template, M = marker (Promega 100 bp ladder).

Figure 5.10: Amplification of cloned inserts by colony PCR. Lanes 1-11 represent inserts from selected colonies. Marker and controls not shown.

Figure 5.11: Autoradiograph of a cloneset of the R_2 library probed with β-tubulin I-III by colony hybridization.
Tables

Chapter 1

Table 1.1: Some important genes differentially expressed during water stress in resurrection plants. 15

Chapter 3

Table 3.1: Degenerate primers for two component system genes. 49
Table 3.2: Parameters tested for degenerate PCR optimisation. 54

Chapter 4

Table 4.1: Summary of key library data. 77
Table 4.2: Average insert sizes and insert size ranges for dehydration and rehydration libraries. 78
Table 4.3: Summary of the statistics relating to the percentage of positive plaques detected in the β-tubulin screen. 81

Chapter 5

Table 5.1: Summary of the normalized libraries generated by electroporation into DH10B™ cells. 111
Table 5.2: Factors affecting the reaction rate (data from Soares and Bonaldo, 1998). 115
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>adenosine</td>
</tr>
<tr>
<td>ABA</td>
<td>abscisic acid</td>
</tr>
<tr>
<td>ABRE</td>
<td>ABA responsive element</td>
</tr>
<tr>
<td>ABREB</td>
<td>ABRE binding protein</td>
</tr>
<tr>
<td>AMP</td>
<td>ampicillin</td>
</tr>
<tr>
<td>ATHk1</td>
<td>Arabidopsis thaliana histidine kinase 1</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>AWC</td>
<td>absolute water content</td>
</tr>
<tr>
<td>bp</td>
<td>base pairs</td>
</tr>
<tr>
<td>BLAST</td>
<td>basic local alignment search tool</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>cfu</td>
<td>colony forming units</td>
</tr>
<tr>
<td>CRE</td>
<td>C repeat element</td>
</tr>
<tr>
<td>DAG</td>
<td>diacylglycerol</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DRE</td>
<td>drought response element</td>
</tr>
<tr>
<td>DREB</td>
<td>DRE binding protein</td>
</tr>
<tr>
<td>dT</td>
<td>deoxythymidine</td>
</tr>
<tr>
<td>dNTP</td>
<td>deoxynucleotide triphosphate</td>
</tr>
<tr>
<td>E1OH</td>
<td>ethanol</td>
</tr>
<tr>
<td>EST</td>
<td>expressed sequence tag</td>
</tr>
<tr>
<td>fdt</td>
<td>fully desiccation tolerant</td>
</tr>
<tr>
<td>HAP</td>
<td>hydroxyapatite</td>
</tr>
<tr>
<td>HOG</td>
<td>high osmolarity growth</td>
</tr>
<tr>
<td>Kb</td>
<td>kilobase</td>
</tr>
<tr>
<td>LB</td>
<td>luria broth</td>
</tr>
<tr>
<td>LEA</td>
<td>late embryogenesis abundant</td>
</tr>
<tr>
<td>mdt</td>
<td>modified desiccation tolerant</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>Pfu</td>
<td>plaque forming units</td>
</tr>
<tr>
<td>RWC</td>
<td>relative water content</td>
</tr>
<tr>
<td>SEM</td>
<td>scanning electron microscopy</td>
</tr>
<tr>
<td>TEM</td>
<td>transmission electron microscopy</td>
</tr>
<tr>
<td>Tm</td>
<td>melting temperature units</td>
</tr>
<tr>
<td>U</td>
<td>units</td>
</tr>
<tr>
<td>UTR</td>
<td>untranslated region</td>
</tr>
</tbody>
</table>
Introduction

The importance and mechanisms of desiccation tolerance

1.1 Resurrection Plants

Water, as the ubiquitous biological solvent, has largely governed the pattern of the evolution of biochemical systems. Very few organisms are capable of enduring the absence of water for prolonged periods of time while retaining structural, organizational and functional integrity (Somero, 1992; Bewley and Oliver, 1992; Vertucci and Farrant, 1995; Gaff, 1997). Consequently, it is difficult to understand the ability of certain vegetative plant tissues to survive the loss of the bulk of their cellular water.

Desiccation tolerance (or poikilohydry) in vegetative tissues is defined as the ability of an organism to equilibrate its internal water potential with that of moderately dry air and then resume normal functioning after rehydration (Alpert, 2000). It is one of the three classical strategies of dealing with osmotic stress (the other two being avoidance and escape; Ludlow, 1984) and is predominantly a rare peculiarity of lower order plants, and plants that inhabit environments that are subject to rapid, unpredictable changes in the availability of water (Gaff, 1977). The frequency of the occurrence of such hyper-variable habitats in South Africa, Australia and South America means that desiccation tolerant, or 'resurrection plants' are well represented in the floras of these regions (Gaff, 1989; Alpert, 2000).

Although the distinction is by no means clear-cut, desiccation tolerant plants fall into two broad categories, namely fully desiccation tolerant plants (fdt) and modified desiccation tolerant (mdt) plants (Oliver et al., 1998; Farrant et al., 1999). All fdt plants studied to date are from the lower order groups such as the Bryophyta (true mosses). They can
Introduction

withstanding (and indeed have no means of preventing) the extremely rapid loss of protoplasmic water, but are dependent on large-scale structural and functional repair after rehydration (Oliver et al., 1998). Of more immediate importance to any research with the ultimate goal of crop improvement are the fdt plants. These plants are largely representatives of the pteridophyte and angiosperm families. They are equipped with a protective approach to desiccation tolerance - having morphological and biochemical mechanisms that retard initial water loss, and institute protective features during dehydration and rehydration (Dace et al., 1998; Oliver et al., 1998; Farrant et al., 1999). This category is further represented by both homoichlorophyllous and poikilochlorophyllous plants based on the fact that the former retain their chlorophyll during desiccation while the latter actively break it down (Gaff, 1977; Bewley, 1979; Tubia et al., 1998). Poikilochlorophyllity is the most derived desiccation tolerance mechanisms and is a peculiarity of certain monocotyledon families (Oliver et al., 2000).

Based on the existence of these distinct forms of desiccation tolerance and on a phylogeny from the consensus of several synthetic studies (Figure 1.1), Oliver et al. (2000) proposed that vegetative desiccation tolerance evolved on a number of occasions.

The prevalence of the fdt phenotype amongst the bryophytes and cryptograms suggests that the initial evolution of desiccation tolerance was a critical factor governing the colonization of land by early fresh water flora (Oliver et al., 2000). This primitive phenotype was lost from vegetative tissue because of the slow growth rates associated with the energy deficits attached to constitutive protection. It is likely that many of the molecular features of this phenotype were recruited for water stress responses and for the production of desiccation tolerant propagules (Oliver et al., 2000). The evolutionary advantages of the increased dispersal and survival of such tolerant seeds led to the retention of this feature in angiosperms. This presumably allowed the re-acquisition of vegetative tolerance as angiosperms migrated into marginal and variable habitats. Oliver et al. (2000) identified at least 8 independent cases of the re-evolution of
desiccation tolerance, with the last being the introduction of poikilochlorophyll within certain monocotyledon families.

Figure 1.1: Phylogenies representing the evolution of land plants. Asterisks indicate taxa that display vegetative desiccation tolerance (figure from Oliver et al., 2000).

1.1.1 Xerophyt a humilis and the genus Xerophyta

Xerophyt a humilis (Bak.) Dur. and Schinz (Figure 1.2) is a member of the Velloziaceae, a family which contains more desiccation tolerant members than any other plant taxon, having no less than 200 desiccation tolerant species in 8 genera (Gaff, 1977; Kubitzki, 1998; Porembski and Barthlott, 2000).

The genus Xerophyta is characterized by leaves which fold inward to assume a tight v-shape during desiccation (Gaff, 1989). The stomata are confined to longitudinal furrows that permit inrolling or outrolling of the leaves, depending on the water status (Porembski and Barthlott, 2000). Unlike those of related plants, the leaves of X. humilis do not fold over the apical bud during drying (Gaff, 1989; Dace et al., 1998; Farrant et al., 1999; Farrant, 2000). As a poikilochlorophyllous representative, X. humilis actively
breaks down its thylakoids and chlorophyll (Dace et al., 1999; Farrant, 2000; Figure 1.2). This is thought to be a mechanism of limiting photo-oxidative damage (Smirnoff, 1993) and may enable poikilochlorophyllous plants to survive lower relative humidity than homochlorophyllous relatives (Gaff, 1989).

![Photograph of hydrated and dehydrated X. humilis plants](image)

Figure 1.2: Photographs of (A) hydrated and (B) dehydrated X. humilis plants.

Although several important processes occur at the anatomical level during desiccation and rehydration, there are no known studies of the changes undergone by the roots of X. humilis during the same progression. In Chapter 2 of this dissertation, some of the anatomical responses of the roots to desiccation and rehydration have been explored.

1.2 Mechanisms of Desiccation Tolerance

An overview of the processes that may be involved in the sensing and response to water loss in the roots and leaves of a desiccation tolerant plant are illustrated in Figure 1.3.
Figure 1.3: A basic model depicting the possible processes involved in the onset, detection and amelioration of desiccation stress.

It is evident that in order for the aerial parts of the plant to survive desiccation, the roots must themselves be desiccation tolerant. However, it cannot be assumed that roots and shoots respond in the same manner during osmotic stress (Scott, 2000). There is reasonable evidence to suggest a convergence on some common features (Somero, 1992; Alpert, 2000; Lopez-Bucio et al., 2000), but it is likely that the roots exhibit alternate means of responding to, and surviving, water flux. The most critical of these differences – in terms of the plant's survival – is the facility with which roots detect subtle shifts in their osmotic environment.
1.2.1 The sensing of environmental stresses

An intrinsic part of the ability of all plants to survive osmotic stress is the rapidity with which they are able to detect the onset of dry periods. This predictive, or early warning feature is necessary in *X. humilis*, which if dried down rapidly, is incapable of implementing the features required to recover from the desiccated state (Farrant *et al.*, 1999). The importance of the roots in inducing desiccation tolerance was recognized by Gaff, who noted that leaves, when detached from most hydrated mid plants, display tolerance levels equivalent to normal crop plants, while leaves removed from slightly stressed plants survive complete drying (Gaff, 1997).

Features of the cellular environment that may serve as triggers for stress recognition include decreases in turgor, changes in cell volume, membrane area (Bray, 1997), changes in the membrane fluidity (Bowse and Xin, 2001), cell wall-plasma membrane connections and changes in the solute concentrations (Felix *et al.*, 2000). In yeast both the *Sho1p* trans-membrane protein and the *Sln1* (Synthetic lethal N-end of rule 1) protein, a member of the yeast two-component system, respond to high osmolarity and both regulate the high osmolarity growth (HOG) phosphorylation cascade that is involved in the osmotic response (Bray, 1997). The *Sho1p* receptor is thought to respond to alteration in the tension between the cell wall and the cell membrane while the mechanisms of *Sln1* stress perception is unclear (Bray, 1997; Urao *et al.*, 1999). It has been reported that plants also make use of two-component systems, though these are less abundant in plants than in yeast (Urao *et al.*, 1999; Urao *et al.*, 2000). In *Arabidopsis*, a root-specific trans-membrane hybrid-type histidine kinase, with structural similarity to *Sln1* functions as an osmosensor and presumably initiates downstream phosphorylation cascades (Urao *et al.*, 1999). Similar or divergent histidine kinases may be involved in desiccation tolerance mechanisms in *X. humilis*. This possibility and alternate mechanisms of stress sensing and signaling are explored in greater detail in Chapter 3.
Introduction

Non-hydraulic root-derived signals such as abscisic acid (ABA) and calcium are also central to conferring stress responsiveness to the aerial portions (Davies and Zhang, 1991; Griffiths and Bray, 1996; Bray, 1997; Croker et al., 1998; Starck et al., 1998).

Calcium fluxes bring about diverse downstream effects by altering the activity of calmodulin and other calcium-binding proteins, and by affecting membrane permeability and gene expression (Bowler and Fluhr, 2000; Reddy, 2001). It is thought that calcium fluxes may arise in response to the ionic changes during water loss that precede the direct perception of water deficit (Rengel, 1992; Reddy, 2001), but the rapidity and organelle specificity of such fluxes make this a problematic area of research in non-model plants. Consequently, the role of calcium has not been studied in detail in resurrection plants.

ABA accumulates in the leaves of desiccation tolerant plants such as Myrothamnus flabelifolius, Craterostigma plantagineum and Sporobolus stapfianus early on in the desiccation cycle (Ingram and Bartels, 1996; Sherwin and Farrant, 1998) and exogenous ABA induces tolerance in a number of these plants (Ingram and Bartels, 1996; Gaff, 1997). This ABA may be sourced from the roots, which produce increased amounts of ABA when under water stress and which store conjugated ABA for more rapid responses (Gowing et al., 1993; Jackson, 1997; Sauter and Hartung, 2000). Sauter et al. (2001) have shown that small perturbations in the conditions around the roots cause rapid modification of ABA fluxes in the plant. This ABA induces responsiveness in the shoots through a complex system of gene regulation and secondary signaling (Ingram and Bartels, 1996; Seki et al., 2001). The downstream effects of this include stomatal closure in order to conserve water loss through transpiration (Bartels et al., 1990; Platkowski et al., 1990; Ingram and Bartels, 1996; Jackson, 1997; Mariaux et al., 1998b), ABA synthesis in the leaves (Sauter et al., 2001).

ABA provokes several changes in the root systems themselves. These include (1) rapid release of solutes into the xylem, (2) an increase in the volume of water flowing through the roots, (3) increased ion transport and (4) a decrease in root hydraulic conductivity.
(Hose et al., 2000). ABA increases the rate of cell-to-cell transport across the root cylinder, presumably by altering the functioning of plasma-membrane water channels (Hose et al., 2000). Effects are likely to include the regulation of genes vital in the control of desiccation tolerance mechanisms in the root (Ingram and Bartels, 1996). However, since few studies have examined the nature of ABA accumulation in the roots and the dependence of shoot survival on root-derived ABA in desiccation tolerant systems, many details of this signalling system remain unclear.

In general, few details of the perceptual mechanisms of desiccation tolerant plants are understood. Where they are understood in non-tolerant systems, it is uncertain whether they can be applied to tolerant systems.

1.2.2 Gene regulation in water stress responses

One of the primary molecular effects of stress signaling is the activation of transcription factors that bind to cis-acting elements in the promoter regions of required genes. In water stress responses, there are two classical, inter-dependant systems – the drought response element (DRE) and the ABA responsive element (ABRE; Smirnoff and Bryant, 1999).

The DRE, also known as the C repeat element (CRE) has a 5 bp core CCGAC and is present in multiple copies in the promoters of many stress-responsive genes (Yamaguchi-Shinozaki and Shinozaki, 1994; Stockinger et al., 1997). It is bound by the DRE binding proteins (DREBs) which drive the expression of target genes involved in the dehydration, cold and salinity responses of Arabidopsis (Bray, 1997; Stockinger et al., 1997; Smirnoff and Bryant, 1999; Kizis et al., 2001). Overexpression of DREB1 proteins in Arabidopsis generates a drought and cold resistant phenotype, although this also associated with severe reductions in growth rate (Gilmour et al., 2000; Kizis et al., 2001).
Introduction

ABA-dependent expression is largely governed by the ABRE that is bound by the bZIP ABRE binding proteins (ABREBs; Ingram and Bartels, 1996; Bray, 1997). The consensus sequence of the element is RYACGTGGYR*, with the ACGT forming the core. The ABRE does not act autonomously and is usually associated with coupling elements that regulate the ABA-dependent gene expression. Trans-acting factors such as the seed-associated viviparous (VP1) protein may also be required in conjunction with ABREBs, as indicated by studies that have shown that expression in Arabidopsis of a gene from Craterostigma plantagineum requires the presence of the VP1 homologue (Furini et al., 1996; Bray, 1997; Chandler and Bartels, 1997).

Seki et al. (2001; 2002) have speculated on the relationship between ABA-dependent and independent gene expression, but their distinction between the two should not be taken as absolute. Recent work on the DREB genes has shown that the expression of some of these transcription factors is dependent on the accumulation of ABA (Kizis et al., 2001) in contrast to the classical contention that they drive ABA-independent responses (Shinozaki and Yamaguchi-Shinozaki, 1997; Stockinger et al., 1997). It is likely that the utilization of genes in stress responses is more complex than a linear model will convey. This is borne out by the fact that several other co-operative and independent promoter elements have been identified (Bray, 1997; Smimoff and Bryant, 1999; Bartels and Salamini, 2001; Fowler and Thomashow, 2002). In desiccation tolerant plants there is likely to be an additional interaction with the classical light responsive promoters in leaf tissues that accumulate anthocyanins (eg: Craterostigma and Myrothamnus) and in tissues that break down chlorophyll (eg: Xerophyta).

The identification of cis-acting elements in promoters constitutes a vital component of research into the molecular mechanisms of desiccation tolerance. Yet, this characterization rests on a prior knowledge of the genes that are co-ordinately regulated under stress conditions. The limited information available for such genes in desiccation tolerant systems is outlined below.

* Y = pyrimidine base, R = purine base

9
1.2.3 Gene expression and cellular responses to desiccation and rehydration

The onset of desiccating conditions results in the rapid implementation of features that 'chaperone' the plant into the appropriate physiological condition. In Xerophyta species, there are discernable changes in protein composition and synthesis rates (Tymms et al., 1982; Tymms and Gaff, 1984) and in the activity of pre-existing enzyme systems upon drying and rehydration (Dace et al., 1998; Farrant, 2000). Oztur et al. (2002) have estimated that 15% of the transcriptome may be involved in responses to osmotic stress. For an average plant this means that between 3000 and 5000 genes must be targeted for up- or down regulation during periods of substantial water flux.

Molecular studies have identified three main areas of gene control during desiccation and rehydration, namely (1) reduction of water loss, (2) implementation of protection, stabilization and quiescence mechanisms during dehydration and (3) repair, recovery and prevention of damage during rehydration (Bewley, 1979; Ingram and Bartels, 1996; Oliver et al., 2000).

Figure 1.4: An overview of phases of gene expression in response to desiccation.
I) Regulation of water loss

Apart from transcription factors and proteins that govern the regulation of gene expression (e.g., histones and related proteins), there are a number of products that are required to stabilize the plant system during the early phases of water deficit. Amongst these, aquaporin and H+-ATPase genes are some of the most rapidly expressed and activated (Mariaux et al., 1998; Mundree and Farrant, 2000; Seki et al., 2001). They help to increase the flow rate of water through stressed roots and to correctly partition the remaining water in order to avoid irreparable damage (Kirch et al., 2000). They may also assist in the deliberate release of water from the plant below critical water contents. Aquaporin homologues in microbes have a well-established role in the transport of osmocompatible solutes such as glycerol (Maurel and Chrispeels, 2001) and may also contribute to the gradual replacement of water during later phases of desiccation.

Such changes are not restricted to the accumulation of proteins alone. Alterations in the nature of structural membrane proteins and membrane lipids may contribute to the modulation of water loss and of the damage incurred by such loss (Vertucci and Farrant, 1995; Mariaux et al., 1998). These changes often include the switch from hydrophobic to hydrophilic proteins — an alteration that may be important in the binding of remaining water. The role of lipid composition and membrane structure is receiving renewed attention in plant and seed biology because the loss of membrane integrity is a classical feature of desiccation sensitivity (Smith and Berjak, 1995; Vertucci and Farrant, 1995; Hilhorst, 1998).

II). Protection, stabilization and quiescence during dehydration

The accumulation of several types of compounds occurs during the intermediate phase of drying. These compounds assist in the reduction of metabolic activity and contribute to the protection and stabilization of the cellular constituents prior to onset of completely anhydrous conditions, often through the formation of cytoplasmic glasses. Compounds accumulated in both drought resistant and desiccation tolerant plants include non-
reducing sugars (Vertucci and Farrant, 1995; Ghasempour et al., 1998), complex carbohydrates (Ingram et al., 1997), osmocompatible solutes (Franco and Melo, 2000) and proline (Iyer and Caplan, 1998; Gibon et al., 2000). Aspects of proline and carbohydrate metabolism will be addressed in greater detail in Chapter 2.

During desiccation free radicals accumulate due to the higher failure rate of chemical reactions in an increasingly water-poor matrix (Vertucci and Farrant, 1995; Suna and Leopold, 1997). However, this damage is limited in part by the down-regulation of chloroplast and photosystem II genes, and the dismantling of the chloroplast constituents (Tuba et al., 1996; Dace et al., 1998; Farrant, 2000; Oztur et al., 2002). This characteristic feature of poliklochlorophyllous plants serves to reduce light-chlorophyll interactions, and thus, photo-oxidation in conditions in which photosynthesis is not possible or conducive to survival (Sherwin and Farrant, 1998). There is also an extensive reliance on the upregulation of anti-oxidant mechanisms to overcome free-radical induced damage. Such systems include gamma-glutamylcysteine synthetase (ECS) responsible for the synthesis of glutathione (May et al., 1998), glutathione reductase, catalase, superoxide dismutase and ascorbate peroxidase (Sherwin and Farrant, 1998; Farrant, 2000). Lee et al. (2000) have also demonstrated that the cysteine peroxiredoxin family of enzymes act as anti-oxidants when coupled to sulphydryl reducing systems in dehydrated seeds. Consequently, it is expected that the genes related to anti-oxidant systems will form a large component of any stress-related responses.

Additional factors that constitute a large component of the molecular responses to desiccation are the late-embryogenesis accumulated (LEA) and dehydrin (or LEA-D11) proteins (Vertucci and Farrant, 1995; Ingram and Bartels, 1996; Egerton-Warburton et al., 1997; Bartels and Salamini, 2001). Although these proteins have no known catalytic activity, they are highly conserved, suggesting that they are important in protecting the integrity of cellular constituents, perhaps by water binding or replacement during the dry state (Dure, 1993; Vertucci and Farrant, 1995; Colmenero-Flores et al., 1999). This role is facilitated by their extensive hydrophilicity, due mainly to the glycine-rich motifs that
retain water (Franco and Melo, 2000; and references therein). Other demonstrated roles for LEA proteins include the sequestration of ions (Dure, 1993), molecular chaperone activity and the transport of nuclear-targeted proteins during stress (Goday et al., 1994; Close, 1996; Colmenares-Flores et al., 1999).

Heat-shock proteins, which are thought to protect enzyme (and notably photosystem II) functioning in stressed plants (Schroda et al., 1999), appear to be acquired in response to stress in a non-organ-specific manner and may also be a feature of root responses to desiccation in X. humilis.

III) Repair, recovery and prevention of damage during rehydration

Comparatively little work has been completed on the molecular processes which prevent cell death upon rehydration. There must be extensive mechanisms in place to limit and repair the damage done to cellular machinery incurred during the initial phases of the process. In T. ruralis the synthesis of at least 25 proteins is terminated, and that of 74 initiated during rehydration (Velten and Oliver, 2001). The latter proteins – termed rehydrins - may play an important role in attenuation of cellular damage and in stabilizing membranes which are extremely susceptible to shearing (Vertucci and Farrant, 1995; Hilhorst, 1998; Hoekstra et al., 2001; Velten and Oliver, 2001). In Xerophyta species metabolic recovery is comparatively slow due to the requirement for repair of the photosynthetic apparatus (Tuba et al., 1998; Oliver and Bewley, 2000). The initial independence of recovery from nuclear control may also allow time for the genomic irregularities resulting from desiccation to be identified and repaired (Dace et al., 1998). Such genome repair is said to occur in seeds (Smith and Berjak, 1995), and thus will presumably occur in roots. The use of replacement histones may also be a critical feature of the stabilization and regulation of nuclear activities during this period (Velten and Oliver, 2002).

Protection mechanisms must also include the enzymes responsible for mitochondrial recovery and carbohydrate metabolism that allow resumption of respiration and rapid
removal of accumulated osmoprotectants and toxins (Ingram and Bartels, 1996). In the roots, a large role may be played by water and ion channels, which remove embolisms that are a consequence of xylem emptying (Netting, 2000). Rehydration thus poses a unique challenge to the plant, and calls for the expression or activation of a number of specific genes. The vast majority of these have not been identified.

There are two important features of the above discussion. The first is that the majority of the genes considered crucial are active in leaf tissues, largely because there are no published reports of gene expression studies in the roots of desiccation tolerant plants. The second is that very few of these 'stress genes' are actually directly associated with desiccation tolerant plants. Despite the vast literature on the molecular responses to desiccation, relatively few genes have been cloned from resurrection plants. A number of these are listed in the table below (Table 1.1).

Nevertheless, what emerges most clearly from the literature on the molecular mechanisms of desiccation tolerance and stress resistance is that these are complex phenomena, and that elucidation of the key features will rely initially on broad-scale analyses. The value of high quality cDNA libraries as the basic currency in the cataloging of the vast array of molecular responses will be outlined in chapter 4.
<table>
<thead>
<tr>
<th>Plant</th>
<th>Gene(s)</th>
<th>Identity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. plantagineum</td>
<td>pcC -</td>
<td>Dehydrin</td>
<td>Piatkowski et al. (1990)</td>
</tr>
<tr>
<td></td>
<td>pcC -</td>
<td>LEA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pcC 37-31</td>
<td>Early-light-inducible protein</td>
<td>Bartels et al. (1992)</td>
</tr>
<tr>
<td></td>
<td>GapC, Crat</td>
<td>Cytosolic GPD</td>
<td>Velasco et al. (1994)</td>
</tr>
<tr>
<td></td>
<td>Thk3, 7, 10</td>
<td>Transketolase</td>
<td>Bernatchia et al. (1995)</td>
</tr>
<tr>
<td></td>
<td>pSPS1</td>
<td>Sucrose-phosphate synthase</td>
<td>Ingram & Bartels (1996)</td>
</tr>
<tr>
<td></td>
<td>pSS1, pSS2</td>
<td>Sucrose synthases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cpm5, 16</td>
<td>Myb transcription factor</td>
<td>Iturriaga et al. (1996)</td>
</tr>
<tr>
<td></td>
<td>CpaAB1-3</td>
<td>ABI-3 homologue</td>
<td>Chancellor and Bartels (1997)</td>
</tr>
<tr>
<td></td>
<td>CpaSPS1, 2</td>
<td>Sucrose phosphate synthase</td>
<td>Ingram et al. (1997)</td>
</tr>
<tr>
<td></td>
<td>CpaPlPa, b, c</td>
<td>Plasmamembrane intrinsic proteins</td>
<td>Martaux et al. (1998)</td>
</tr>
<tr>
<td></td>
<td>CpaTIP</td>
<td>Tonoplast intrinsic protein</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CpaPLD1, 2</td>
<td>Phosphatidase D</td>
<td>Frank et al. (2000)</td>
</tr>
<tr>
<td></td>
<td>CpaALDH3, 4</td>
<td>Aldehyde dehydrogenase</td>
<td>Kirch et al. (2001)</td>
</tr>
<tr>
<td></td>
<td>CpaHBI3-7</td>
<td>Homodomain leucine zipper genes</td>
<td>Deng et al. (2002)</td>
</tr>
<tr>
<td></td>
<td>CpaR18</td>
<td>SAP transcription factor</td>
<td>Hilbricht et al. (2002)</td>
</tr>
<tr>
<td></td>
<td>CpaPPX</td>
<td>Plastid targeted protein family</td>
<td>Philips et al. (2002)</td>
</tr>
<tr>
<td>T. ruticola</td>
<td>Trx</td>
<td>Rehydrin (18 genes)</td>
<td>Scott and Oliver (1994)</td>
</tr>
<tr>
<td></td>
<td>Tr288, 135</td>
<td>Rehydrin</td>
<td>Oliver et al. (1995)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ubiquitin</td>
<td>O'Mahony and Oliver (1999)</td>
</tr>
<tr>
<td></td>
<td>Rus 14, 16</td>
<td>Ribosomal protein</td>
<td>Wood et al. (2000)</td>
</tr>
<tr>
<td></td>
<td>S3a</td>
<td>Ribosomal protein</td>
<td>Duff et al. (1999)</td>
</tr>
<tr>
<td></td>
<td>rh153</td>
<td>Replacement histone</td>
<td>Velten and Oliver (2002)</td>
</tr>
<tr>
<td>S. succulentus</td>
<td>Rnb2</td>
<td>GTP-binding protein</td>
<td>O'Mahony and Oliver (1999)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polyubiquitin</td>
<td>O'Mahony and Oliver (1999b)</td>
</tr>
<tr>
<td></td>
<td>SDG137c</td>
<td>Small glycine rich protein</td>
<td>Neale et al. (2000)</td>
</tr>
<tr>
<td></td>
<td>SDG43c</td>
<td>Glycine and proline rich protein</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SDG134c</td>
<td>Protein initiation factor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SDG69c</td>
<td>Early light-inducible protein</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SDG37c</td>
<td>Serine/threonine phosphatase</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SDG50c</td>
<td>Gamma tonoplast intrinsic protein</td>
<td></td>
</tr>
<tr>
<td>X. viscosa</td>
<td>AldXV4</td>
<td>Aldose reductase</td>
<td>Mundree et al. (2000)</td>
</tr>
<tr>
<td></td>
<td>XPT6</td>
<td>Dehydrin</td>
<td>Mundree and Farrant (2000)</td>
</tr>
<tr>
<td></td>
<td>XPT8</td>
<td>LEA</td>
<td>Ndima et al. (2001)</td>
</tr>
<tr>
<td></td>
<td>XPT15</td>
<td>Lectin</td>
<td>Mundree and Farrant (2000)</td>
</tr>
<tr>
<td></td>
<td>PAPXV</td>
<td>Acid Phosphatase</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RHXV</td>
<td>Rehydrin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CBPXV</td>
<td>Calcium binding protein</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GSXV</td>
<td>Galactin synthase</td>
<td></td>
</tr>
</tbody>
</table>
1.3 Targeted Approaches to Dissection of Stress-Response Pathways

In a complex background of gene flux such as that described above, it is extremely difficult to target vital components of the desiccation tolerance mechanisms using traditional molecular techniques. In addition, reverse genetic approaches are limited by the lack of tissue-cultured material and by the slow germination and growth rates of desiccation tolerant species (Oliver and Bewley, 2001). The recent development of microarrays (Schena et al., 1995) has, however, made the comprehensive analysis of the molecular responses to desiccation possible.

Microarrays are basically extensions of the Southern and reverse northern blot procedures (Eisen and Brown, 1999; Landor, 1999). In their most common form, they involve the immobilization of defined cDNAs (the 'probes'; Phimister, 1999) on glass or perspex slides (Eisen and Brown, 1999). Slides consisting of up to 1000 genes per cm2 and 30 000 independent probes in total are now commonly available (Landor, 1999). For transcript profiling, two populations of RNA or mRNA (the 'targets'; Phimister, 1999) are labeled with different fluorochromes and hybridized to the chip. Comparison of the signal intensities for the two dyes allows differential levels of target to be identified (Figure 1. 5; Epstein and Butow, 2000). The range of applications for microarrays is expanding extremely rapidly to include the use of oligonucleotide probes and genomic DNA in the identification of drug targets, evolutionary relationships, disease causing mutations and organ or tissue specific expression patterns (Epstein and Butow, 2000). Essentially the technique may be modified and adjusted to suit the research in question.

The power of the microarray analysis is considerable and is being demonstrated in plant research on an increasing number of occasions. The regulation of the Arabidopsis transcriptome has been studied during the cell cycle (Vandepoele et al., 2002), seed development (Girke et al., 2000), circadian rhythms (Harmer et al., 2000), plant development (Zhu et al., 2000) and in response to oxidative stress (Desikan et al., 2001), nitrate flux (Wang et al., 2001) and a variety of abiotic stresses (Seki et al., 2001; Cheong et al., 2002; Fowler and Thomashow, 2002; Seki et al., 2002).
In studying plant responses to water deficit, Seki et al. (2001) arrayed 1300 Arabidopsis cDNAs and identified 44 drought- and 19 cold-inducible genes, of which 30 and 10 respectively were novel. They have recently expanded the analysis to include 7000 full length cDNAs, and have consequently identified an additional 53, 277 and 194 genes that are dramatically up-regulated in response to drought, cold and salinity stress, respectively (Seki et al., 2002). Based on the results, the authors have proposed that there is a large overlap in the utilization of genes for the amelioration of divergent stresses - a contention that has been supported by the analysis of the differential expression of 200 Arabidopsis genes in response to pathogen attack, hormone treatment, heat shock and osmotic stress (Cheong et al., 2002). However, because the
conditions for water deficit used by Seki et al. (2001; 2002) involved direct air-drying of plants removed from agar plates, generalized stress responses would be expected, suggesting that these results may be misleading. Nevertheless, Bray has recently compiled a list of 130 genes that are upregulated in response to water deficit in Arabidopsis (Bray 2002). The bulk of these appear to be related to signaling and removal of toxins. A similar pattern of expression has been shown for drought and salt stressed barley (Oztur et al., 2002).

The use of microarrays has undoubtedly enhanced the ability of researchers to target important genes more effectively than previously possible. But, while such microarrays are useful in the categorization of molecular features that govern the responses of plants to stress, they only provide limited insight into the features that might be involved in desiccation tolerance. The lack of low-redundancy genesets or large-scale sequence information prohibits the production of cDNA or oligonucleotide arrays for the analysis of the responses of non-model organisms such as X. humilis. Consequently the initial step in any systematic approach to transcriptome analysis is the production of the molecular resources that underlie such research (Clark et al., 1999). The generation of normalized (or low-redundancy) EST libraries as a means of addressing this is outlined in chapter 5.

It is important to bear in mind that RNA expression profiles do not always correlate with protein expression or activation patterns (Kuhlemeier, 1992; Wood and Oliver, 1999; Bray, 2002) and that verification functionality of identified genes is imperative. Nevertheless, it is envisioned that molecular resources for the analysis of the transcriptomes of desiccation tolerant plants will become increasingly available in the near future, and facilitate the genome-wide comparison of different strategies to the survival of water deficit stress.
1.4 Summary and Aims

It is clear that there is a critical lack of information about the role of the roots in desiccation tolerance. Studies of the changes that occur in non-tolerant plants, and in the leaves of desiccation tolerant plants have provided a basic framework of information which may pinpoint features that are relevant to desiccation tolerance in X. humilis. Based on such information, this study aims to examine the role of the roots in the tolerance of desiccation and rehydration in X. humilis by:

1. determining the changes in the water contents and water potentials of roots in relation to those of the leaves;
2. observing anatomical changes in the roots and comparing these to known changes in the leaves;
3. creating cDNA libraries of transcripts involved in desiccation and rehydration in the roots;
4. normalizing the cDNA libraries in order to allow for efficient sequencing and arraying of a low-redundancy gene-set;
5. analyzing the representation and expression of selected genes during desiccation and rehydration; and
6. cloning and characterizing two component systems in X. humilis roots.
Physiology and Anatomy

Root responses to water flux

2.1 Introduction

Plants experience both chemical and physical stresses during desiccation and rehydration (Vertucci and Farrant, 1995). If unchecked, these stresses result in loss of the structural and functional integrity of the cellular environment. The preservation of anatomical order thus requires significant adjustments at the metabolic, ultrastructural and whole plant levels. The ability to mobilize the vast array of resources required is often a distinguishing factor between tolerant and non-tolerant plants.

Several important processes occur at the anatomical level in the leaves of Xerophyta during desiccation and rehydration. As water is lost, the large vacuoles subdivide and are filled with stable metabolites as a means of retaining outward pressure on the cell membrane (Farrant, 2000). The chloroplasts are dismantled and the mitochondria lose their cristae (Hallam and Luff, 1980; Sherwin and Farrant, 1998; Farrant, 2000). The leaves become increasingly rich in anthocyanins as the chlorophyll is removed and eventually fold along the midrib as complete desiccation is approached. Unlike in other desiccation tolerant plants, the folding of the leaves of X. humilis is not related to folding of cell walls (Tuba et al., 1993; Sherwin and Farrant, 1998; Farrant, 2000). The process of rehydration appears to involve the direct reversal of these changes (Dace et al., 1998).

Unfortunately, there are no known studies of the changes undergone by the roots of X. humilis during this progression. Indeed details of the root anatomy of the genus Xerophyta are generally lacking. The members of this genus, like several other arborescent monocotyledons, have persistent psuedostems, consisting of fibrous leaf bases surrounded by adventitious roots. Root production shows an annual pattern,
and the roots are unusual in that they possess a *velamen radicum* (an outer sheath of dead cells) of one to several cell layers thick; Porembski and Barthlott, 2000). The *velamen* is a common trait of the Orchidaceae where it assists in rapid water uptake, and hence it may be an important part of the functional morphology of desiccation tolerant members of the genus *Xerophyta* (Porembski and Barthlott, 2000). It is possible that the changes during drying in these organs mirror those observed in the leaves, but this is not certain.

2.1.1 Metabolic adjustment and the preservation of structural integrity

Cell membranes are regarded as the primary site of desiccation injury in plants largely because elevated electrolyte leakage during rehydration is one of the most diagnostic features of damage (Senaratna and McKersie, 1983; McKersie, 1996) Numerous ultrastructural studies have confirmed that membrane disorganization and rupture is a common phenomenon in sensitive plants. However, cell wall shearing, large-scale agglutination of cellular components and metabolic disintegration due to free radical damage are also common consequences of desiccation-induced damage (Vertucci and Farrant, 1995; Walters et al., 2002).

Several altered metabolic processes make the anatomical adjustment to desiccation possible. Of these, carbohydrate metabolism is thought to have a particularly important role. Oligosaccharide accumulation has been convincingly shown to protect the integrity of membranes and membrane functioning in anhydrous conditions, possibly by preventing Maillard-type reactions (Ingram and Bartels, 1996; Hoekstra et al., 1997; Suna and Leopold, 1997). Sucrose in particular is thought to interact with membrane lipids at low water content. Through the formation of hydrogen bonds between the hydroxyl groups of the sugar and the phosphate group of the phospholipid, sucrose acts as a replacement for water and maintains the hydrophobic-hydrophilic orientation of the membrane phospholipids (Ingram et al., 1997; Oliver et al., 2001). Sucrose deposition may also maintain cytoplasmic pressure against the cell wall, thereby preventing cell collapse in the desiccated state (Ingram and Bartels, 1996; Ghasempour et al., 1998; Farrant, 2000).
Carbohydrates play an integral role in the formation of cytoplasmic glasses that stabilize the cellular environment. Oligosaccharides, especially raffinose and stachyose prevent crystallization of sucrose, phase separation and membrane deterioration (Suna and Leopold, 1997). Vitrification also helps reduce the metabolic rate and thus, the damage incurred by free radicals. This is aided by the upregulation of enzymes involved in the synthesis of non-reducing sugars and disaccharides, which removes monosaccharides that act as the substrates for energy conversion and free-radical production (Vertucci and Farrant, 1995; Ingram et al., 1997; Ghasempour et al., 1998). Increased quantities of malate and citrate are excreted into the soil from the roots of several crop plants. Their removal serves to reduce the availability of glycolytic precursors and intermediates, thereby reducing respiratory rates (Serraj et al., 1999; Lopez-Bucio et al., 2000). In general, the resultant reduction in metabolic activity may well be a vital component of desiccation tolerance as studies have shown that metabolic dysfunction and unabated respiration are a feature of desiccation sensitive radicles (Farrant et al., 1997; Leprince et al., 2000).

Proline accretion is a well-documented plant response to stress that may well have a role in physical preservation of the cellular environment. Because of its zwitterionic, highly hydrophilic characteristics, it is able to accumulate to high levels in the cells without interfering with metabolic processes (Verslues and Sharp, 1999). It is correlated to chlorophyll loss and decreases in mitochondrial activity in canola (Gibon et al., 2000), and the products of its metabolism affect gene expression and selectively inhibit the translation of certain mRNAs (Iyer and Caplan, 1998). Yet, the primary roles of proline appear to be as a protectant, pH regulator and energy source (Aziz et al., 1999; Franco and Melo, 2000). It has been shown to reduce enzyme denaturation and membrane damage by shielding these against free radicals and physical stresses and is osmoprotective and cryoprotective to higher plant cells when applied exogenously (Iyer and Caplan, 1998). Unlike perturbing solutes which readily enter the hydration sphere of proteins and cause unfolding, compatible osmolytes tend to be excluded from the hydration sphere of proteins and stabilize folded protein structures. On the other hand, proline catabolism may maintain NADP⁺/NADPH ratios at values compatible with metabolism and may provide reducing equivalents that support
mitochondrial oxidative phosphorylation and the generation of ATP for recovery from stress and repair of stress-induced damage (Hare and Cress, 1997). Despite this, however, the relationship between proline and stress tolerance remains uncertain. Some authors maintain that it is merely a response to stress, rather than a means of ameliorating it (Hare and Cress, 1997).

A number of protein products actively maintain the structural and functional integrity of plant cells during water stress and desiccation. Among these osmotic responsive genes are LEA proteins, dehydrins, heat shock proteins, oleosine, lypoxygenases, osmotin, and ion and water channels (Franco and Melo, 2000). These are often glycine-rich, hydrophilic proteins that retain water, exclude ions, chaperone molecules, assist in the formation of glasses and generally stabilize the structure of the hypo-osmotic cell (Franco and Melo, 2000).

Obviously, alterations in protein composition and carbohydrate and proline levels are not the only shifts involved in the preservation of metabolic and anatomical order. Polyphenols, quaternary ammonium compounds (such as betaines), polyamines and alcohols all have similar functions (Franco and Melo, 2000). However, their roles are less well understood and it is not clear to what extent the function is unique to each. What is clear is that failure to accumulate a certain set of such metabolites leads to rupture of membranes and cell walls, which in turn results in measurable electrolyte leakage and observable cellular damage.

Since little is known about the roots of *X. humilis* in relation to the features discussed above, this chapter outlines an investigation of the functional anatomy of these organs. The study aimed to determine what changes occur in these organs during desiccation and rehydration, whether cellular integrity is maintained, and whether proline and simple carbohydrates are involved in the preservation of the cellular environment.
2.2 Materials and Methods

2.2.1 Plant material

Xerophyta humilis (Bak.) Dur and Schinz specimens were collected in the Buffelskloof Nature Reserve, potted in a mixture of peat, river sand and potting soil and maintained in a greenhouse as described by Sherwin and Farrant (1996) and Farrant *et al.* (1999). For the experiments described below, plants were transferred to a Phytotron® unit set to 16 h light and 8 h dark cycles for dehydration cycles. Light intensity during the day was 1500 umol.m$^{-2}$.s$^{-1}$ as measured by a Li-Cor light meter (Li-Cor, USA), while the temperature and humidity were maintained at 25 ± 2°C and 50-65 % respectively. During the dark phases the temperature was kept at 18 ± 2°C. Dehydration of the plants was commenced by withholding water, and rehydration by extensive re-watering of the soil.

Leaves removed from the plants were briefly wiped with dry paper towel, flash frozen in liquid nitrogen. The roots were excised and the soil and debris removed by vigorous rubbing (in the case of the fully dehydrated roots) or by brief washing (in the case of hydrated or partially hydrated samples). These bulk samples were then carefully separated into living and dead roots by visual inspection based on colour, size and fragility. Except for microscopical studies, in which the living and dead roots were examined, only the living roots were used. These were flash frozen in liquid nitrogen and stored with the leaves at -70°C until required. In all cases unfrozen samples were set aside for water content and water potential determination as described below.

2.2.2 Water content and water potential determinations

Water contents were measured gravimetrically as described by Tymms *et al.* (1982) and Sherwin and Farrant (1998). Three samples consisting of a minimum of 5 leaves or roots each were weighed on a Metler (Metler, USA) five-place balance and desiccated for 24 h at 105°C. Dry samples were transferred to a desiccator containing silica gel and left to cool to room temperature. The dry masses were determined and
the absolute water content (AWC) and relative water content (RWC) calculated. Water content at full turgor was predetermined by hydrating several plants for 24 h in a closed environment. The average water contents were determined as described above, but 7 replicates of four leaves or roots each were used.

Water potentials were obtained indirectly through the measurement of water activity by a series 100 Aqualab (Aqualab, U.S.A). Samples were cut into 1 cm long sections prior to positioning in the receiver vessel of the Aqualab. Determinations were carried out for a minimum of 30 min or until at least 5 consecutive identical readings were obtained. Water potentials were calculated according to the equation:

\[
W_p = \frac{RT \times \ln (A_w)}{MW}
\]

- \(R \) = Universal Gas constant \((8.314 \text{ J. mol}^{-1} \text{.K}^{-1})\)
- \(T \) = Absolute Temperature (K)
- \(A_w \) = Measured Water Activity
- \(MW \) = Molecular weight of \(\text{H}_2\text{O} \) \((18.0 \text{ g.mol}^{-1})\)

For both water contents and water potentials, the means were represented graphically as functions of dehydration or rehydration time.

2.2.3 Microscopy

i. Scanning electron microscopy (SEM):

Hydrated and desiccated roots were removed from the plants, flash frozen in liquid nitrogen slush and transferred to a Fissons LT 5400 cryo-stage. The roots were fractured with a cold blade and the ice sublimated from the surfaces. Samples were viewed in a Leica SS440 scanning electron microscope (Leica, U.K.).
ii. Transmission electron microscopy (TEM):

Hydrated samples were excised from the parent plants and small (~ 0.5 mm) pieces fixed in 2.5 % glutaraldehyde in 0.1 M phosphate buffer containing 0.5% caffeine. Post fixation was in phosphate buffer containing 1% osmium tetroxide. These samples were taken through an ethanol dehydration series and embedded in Spurr’s epoxy resin (Spurr, 1969). Sections were cut at 95 nm on a Reichert Ultracut-S microtome and stained with uranyl acetate and lead citrate (Reynolds, 1963). Sections were visualized on a Zeiss EM109 transmission electron microscope (Zeiss, U.S.A). At least 3 sections from 5 different specimens were observed.

Dry specimens were fixed non-aqueously to prevent artifactual rehydration in the chemical fixatives (described above). Dehydrated roots were cut at an acute angle with a scalpel blade into 0.5 mm sections. These sections were plunged frozen into liquid propane and freeze substituted (Parthasarathy, 1995; Thomson and Pratt; 1997) as described by van der Willigen (2002). Frozen sections were maintained at −80°C and transferred sequentially into dry acetone for 6 h, 0.1 % tannic acid in dry acetone for 24 h, and 2 % uranyl acetate and 2 % anhydrous glutaraldehyde in dry acetone for 48 h. Samples were warmed to 0°C at 1°C/ h, and placed in 2 % osmium tetroxide, 2 % glutaraldehyde and 2 % uranyl acetate in dry acetone for 24 h at 0°C. After rinsing for 12 h at 0°C in fresh dry acetone, 2 % uranyl acetate and 2 % glutaraldehyde, samples were warmed to 20°C at 1°C/ h and embedded in Spurr’s epoxy resin (Spurr, 1969). Sections were cut with a diamond knife at 95 nm, and visualized using a Joel 200 CX TEM without post-staining. At least 10 sections from 5 roots and 2 independent freeze substitutions were analyzed.

2.2.4 Electrolytic leakage

Electrolytic leakage of dehydrated and partially rehydrated roots and leaves were determined by placing tissue segments directly into 3 ml of Mili-Q (Millipore, U.S.A) water in a CM100 conductivity meter. A minimum of 5 leaf samples and 10 root replicates were used. 100 measurements were taken, one every 90 s during the first
determination and one every 20 s during the second determination. The rate of electrolytic leakage for each sample was calculated and expressed relative to the dry mass of tissue used. The electrolytic leakage of hydrated leaf and root tissue that had not been desiccated was used a control.

2.2.5 Sugar analysis

Sucrose, glucose and fructose levels in hydrated, desiccated and rehydrated roots and leaves were determined using the Boehringer Manneheim sugar food kit according to the manufacturer's instructions. Triplicate root samples were used and leaf samples were determined simultaneously as controls.

2.2.6 Proline analysis

Proline levels in hydrated, desiccated and rehydrated root and leaf samples were determined by colourimetry according to a modified method based on that of Magne and Larher (1992). This protocol eliminates the interference of high sample sugar levels on the determination. Approximately 0.2 g of tissue was ground under liquid nitrogen and placed in 2 ml sterile water. Samples were boiled for 30 min to extract the free proline. 250 µl of the cooled sample was removed and combined with 1 ml Ninhydrin reagent (1 % Ninhydrin in 60 % glacial acetic acid). These were boiled for 30 min prior to extraction against 2.5 ml toluene. The absorbance of the resulting organic phase was determined at 520 nm and the proline content calculated via reference to a standard regression curve generated via the same method. Identical determinations for the desiccated inner leaves of Eragrostis nindensis – for which the proline levels are known – were used as a control.

2.3 Results

2.3.1 Gross morphology

X. humilis specimens were found to grow in large mats or clumps, and individuals exhibited a creeping habit. The roots originated from the psuedostem, which was
covered with fibrous leaf scales. The roots of *X. humilis* were observed to be adventitious, though not extensively ramified (Figure 2.1). The annual pattern of growth was apparent from the two types of roots present in the clumps. Older roots had a distinct darker colour and were fragile compared to the younger white roots, which were extremely resilient. The temporal and spatial separation of the two seasons' growth is illustrated in Figure 2.1. Main roots were up to 20 cm in length and 0.1-1 mm thick. No significant differences were observed at the morphological level between hydrated and dry roots, except for a slight crumpling of the root tips in dry specimens.

2.3.2 Anatomy

SEM confirmed the presence of the *velamen radicum* in *X. humilis*, though this was composed of only approximately 1-3 layers of dead cells (Figure 2.2 A). The *velamen* was bordered internally by a single cell layered epidermis and a large exodermis consisting of 10-15 layers of tightly packed schlerenchyma cells (Figure 2.2 B). These exhibited a spiral pattern of thickening and formed a significant portion of the total root volume. The root cortex consisted of large, undifferentiated parenchyma cells surrounding the vascular sheath (Figures 2.2 C-D) that contained a radial array of pronounced metaxylem cells. Large metaxylem vessels (10–20 μm in diameter), protoxylem and phloem elements formed the bulk of the stelar region.

TEM of the hydrated roots indicated that the cortical cells contained one or two large vacuoles that surrounded the remaining organelles (Figure 2.3 A). The nuclei were large, but otherwise unremarkable (Figure 2.3 B). Few mitochondria were observed, and these were generally appressed to the plasmalemma. Cell walls were observed to be regular and intact (Figure 2.3). Apart from the possession of a *velamen* and the extent of cell wall thickening throughout, the root anatomy was found to be consistent with typical monocotyledon anatomy.
Figure 2.1: Photographs showing the gross morphology of X. humilis. (A) The intact plant, and (B) separation of the living and older (dead) roots.
Figure 2.3: Transmission electron micrographs showing cross sections through cells of the cortex of a hydrated *X. humilis* root. (A-C) Cortical parenchyma cells
(7 000 x) and (D) the cortical cells bordering the lignified stele (8 000 x).

SEM of the older, darker roots revealed that these had undergone extensive collapse, with the cortical region shearing away from the exodermis (Figure 2.4 A). Except for the larger xylem vessels and the lignified stele, the cells of the cortical region were flattened and folded. This indicated that the cortical parenchyma was the only part of the root vulnerable to structural alteration.

Obtaining SEM images of dry roots was problematic due to large-scale shattering that was not observed in either hydrated or dead roots (Figures 2.4 C-D). This precluded identification or observation of any changes undergone during desiccation and was ascribed to the vitrification of the cytoplasm of the root cells during this process. The glass-like nature of the root shards was clearly visible (Figures 2.4 C-D).

Similar problems with root shattering were experienced in the cutting of dry roots prior to sectioning, though this could be avoided by slicing the roots at an angle to the surface. Non-aqueous fixation and TEM of these sections revealed that the cortical parenchyma cells had undergone extensive subdivision of vacuoles (Figure 2.5 C). The vacuoles were extremely small and appeared to contain an electron dense substance (Figure 2.5 D). In this regard the roots appeared to undergo similar ultrastructural changes described for the leaves (Sharvin and Farrant, 1998). Other organelles were not distinguishable from the vacuoles (Figures 2.5 C-D). Some apparent cell wall folding occurred in the cortical region, but this was variable and may have arisen during the sectioning of the roots for fixation. However, collapse of the root tips was visible prior to fixation, indicating that cell wall adjustment may occur in certain regions. As would be expected for dead tissue, the lignified stele region was not visibly affected by desiccation, although occasional metaxylem vessel lumen blockage was observed (Figure 2.5 B). In general, analysis of root sections was extremely difficult due to the density of the cytoplasmic contents and the complexity of the arrangement of cellular components.
Figure 2.4: Scanning electron micrographs of freeze-fractured (A-B) older (dead) and (C-D) desiccated *X. humilis* roots. Shattering of the dry roots is evident from the presence of the glass-like shards (s). cx = cortex, ex = exodermis, x = xylem. Magnifications and scale bars are indicated on the images.
Figure 2.5: Transmission electron micrographs of cross sections through dehydrated *X. humifusa* roots. (A) The intact stele [1 000 x] (B) metaxylem vessels [2 000 x] (C) cortical cells filled with vesicles [10 000 x] (D) young vacuolated cortical cells (*image inverted for clarity*) [60 000 x]. cw = cell wall, dcw = damaged cell wall, s = stele, v = vessel, vs = vesicle containing electron dense substance.
2.3.3 Water contents and water potentials

Figure 2.6 A indicates that despite a small delay in the drop in RWC (between 0-7 days), roots of *X. humilis* were found to lose water at very similar rates to the leaves. The roots typically attained slightly lower RWCs than the leaves (approximately 3%). In all cases, the AWC of roots was significantly lower than that of the leaves (data not shown).

Roots were found to rehydrate extremely rapidly, attaining RWCs of 60-80% within 3 h, and full hydration within 6-12 h after the application of water. This was several fold faster than the leaves, which only rehydrated within 24-48 h (Figure 2.6 B). This rapid rehydration was confirmed by the corresponding shifts in the water potentials of the roots and leaves (Figure 2.6 C). The discrepant rehydration of the roots was attributed to the absorption of the water by the velamen and exodermis. The leaves underwent re-greening during rehydration while no visible metabolic processes were evident for the roots. Attempts to monitor translation initiation with \(^{35}\)S labeled methionine and leucine were unsuccessful due to low protein levels (data not shown), and as a result, the relative time frame for metabolic recovery could not be determined. Whether or not the rapid absorption of water by the roots corresponded to a 'sponge effect' rather than cellular re-activation was unclear.

2.3.4 Electrolytic leakage

Electrolytic leakage rates for leaves and roots did not differ significantly between hydrated controls and dehydrated or partially rehydrated samples (Figure 2.7) suggesting that structural integrity was maintained. Although rehydrated roots had 20% higher leakage rates compared to controls, this was not considered to be indicative of extensive damage. For roots, the absolute values of the electrolytic leakage were observed to be very high during the first 30 min of analysis. This was conserved between controls and test samples, suggesting that it corresponds to release of ions from the surface of the roots rather than from membrane leakage.
Figure 2.6: Changes in the water status of the roots and leaves of X. humilis. Relative water contents during (A) dehydration and (B) rehydration. (C) Water potentials during rehydration. Vertical bars represent standard deviations of the means.

Figure 2.7: Electrolytic leakage of the roots and leaves of X. humilis. Values are expressed as percentages of the hydrated controls. Standard deviations of the means were set at 5%.
2.3.5 Proline and sugars

In order to establish the nature of the substances accumulated in the vesicles and those responsible for the brittleness of the dehydrated roots, sugar and proline levels were investigated.

Dehydrated roots had approximately 3-fold higher levels of sucrose than hydrated samples (Figure 2.8). This accumulation of sucrose was considered significant enough to imply that sucrose could play a role in stabilization of the dehydrated cells. Glucose and fructose levels decreased, but this decrease combined with their levels in the hydrated tissue did not suggest that they were the primary carbohydrate source for sucrose synthesis. Sucrose levels decreased during rehydration, and this occurred in line with a slight increase in glucose or fructose levels (Figure 2.8). The absence of a large increase in monosaccharide levels suggested that sucrose is utilized immediately as an energy source during recovery. The ratio of fructose to glucose in the root samples (approximately 6:1) was distinct from that that observed in leaf samples (approximately 2:1; Figure 2.8). Sucrose levels for the hydrated leaf controls were similar to those reported by Cooper (2001) indicating that the method used was sufficiently accurate.

![Graph showing glucose, fructose, and sucrose levels in roots of X. humilis.](image)

Figure 2.8: Glucose, fructose, and sucrose levels in roots of *X. humilis.* Changes in glucose levels are non-significant (P = 0.95). Standard deviations are represented by vertical bars. The leaf data is presented as an internal control.
The levels of proline in the *E. nindensis* controls (Figure 2.9) corresponded exactly with those reported in the literature (Tymms and Gaff, 1979) indicating that the method employed was both accurate and free from interference by high sugar levels. Proline levels in the dry leaves of *X. humilis* were approximately double those in the hydrated samples and 3 times those in the rehydrated samples (Figure 2.9). This suggested that proline accumulated during desiccation and was actively removed during rehydration, possibly through its use as an energy source. Proline levels in the roots could not be determined by this method since a substance present in the samples caused the organic solvent fraction to mix with the aqueous fraction. Nevertheless, no colour development was observed in these samples, which could indicate that proline levels in these organs remain low.

![Proline levels in the leaves of X. humilis as determined by reference to a standard proline curve constructed under the same experimental conditions. Dehydrated inner leaves of E. nindensis were used as a control.](image)

Figure 2.9: Proline levels in the leaves of *X. humilis* as determined by reference to a standard proline curve constructed under the same experimental conditions. Dehydrated inner leaves of *E. nindensis* were used as a control.
2.4 Discussion

The results provide interesting insights into the morphological and physiological mechanisms of desiccation tolerance in the roots of *X. humilis*. Morphologically, *X. humilis* is typical of plants adapted to inselbergs and hyper-variable habitats. The formation of clumps, which brings the fibrous leaf bases into close proximity, may assist in retaining water and may protect the meristems from fire damage (Porembski and Barthlott, 2000). They may also reduce the rate of water loss to enable protection mechanisms to be implemented (Farrant *et al.*, 1999). The creeping habit is not unusual within the family Velloziaceae which encompasses unusually extensive morphological variation (Kubitzki, 1998; Porembski and Barthlott, 2000). The pseudostems of *X. humilis* have not been studied in detail, but it has been suggested that they remain living at the apical portions only, an observation that is supported by the findings in this study (Figure 2.1). This pattern of growth is mirrored by the roots—a fact that suggests that the older tissues, like the older leaves of *C. plantagineum*, can only survive a limited number of desiccation and rehydration events (Norwood *et al.*, 1999).

From SEM of hydrated roots it was clear that although the *velamen radicum* is present in *X. humilis*, it is not as prominent as in other species in this family (eg: *Vellozia variegata*; Porembski and Barthlott, 1995). In the Orchidaceae the *velamen* has a recognized role in water absorption, and the ability of members of the Velloziaceae and Cyperaceae to absorb water extremely rapidly has been attributed to its presence in their roots (Porembski and Barthlott, 1995; Porembski and Barthlott, 2000). However, from the size of the *velamen* in *X. humilis* (1-3 cell layers; Figure 2.2) it seems unlikely that this structure contributes significantly to the water absorbing capabilities of the roots. It is possible that the extensive exodermis (Figure 2.2 A-B) may assist in the process. From the SEM images of the older, presumably dead roots (Figure 2.4 A-B), it is clear that the exodermis plays a central role in maintaining the structural order of the roots.
In the hydrated state, the cortical cells form the largest living component of the roots. These cells appeared relatively unremarkable, with a large central vacuole occluding most of the cytoplasm (Figure 2.3). The transition to the desiccated state appears to involve extensive subdivision of the vacuoles (Figure 2.5), as has been reported for leaf cells of this and other desiccation tolerant systems (Vertucci and Farrant, 1995; Farrant and Sherwin, 1998; Farrant et al., 1999). These vacuoles were similar in appearance to those observed in the leaf cells by Farrant and Sherwin (1998) and Farrant et al., 1999). The nature of the electron dense substance is uncertain. Inorganic ions reportedly localize to the vacuoles during osmotic stress in some species (Rathinasabapathi, 2000) and this is a likely possibility in the roots. The subdivision of large vacuoles during desiccation is thought to be a mechanism of minimizing membrane damage and of minimizing mechanical stress by maintaining pressure against the cell wall (Farrant et al., 1999). Limitation of physical strain is accomplished by cell wall folding in C. wilmsii (Farrant and Sherwin, 1998), but in X. humilis roots only limited (and possibly artificial) wall folding was observed. In the root tips wall folding may occur due to the lack of extensive secondary thickening. Difficulties with TEM analysis of root sections is a common problem and is often related to the presence of high levels of carbohydrates (Buschman et al., 2002).

The dense, lignified state of X. humilis is typical of slow growing species, which invest in robust tissues with long life spans. It is associated with high tensile strength and ability to survive mechanical stresses (Wahl and Ryser, 2000). The metaxylem vessels in this region were extremely large (10-20 μm) relative to overall size of the roots (100-1000 μm). This may be a functional requirement for achieving high root pressures that assist in the refilling of embolised vessels - a mechanism that is though to operate in Myrothamnus flabellifolius (Sherwin et al., 1998; Tyree, 2001).

The rate of water loss from the roots and leaves were extremely similar (Figure 2.6 A) suggesting that both sets of organs lose their cellular water in-line with the removal of the water from the soil, as has been reported for M. flabellifolius by Sherwin et al. (1998). The rapid rehydration of the Velloziaceae is well documented (Porembski and Barthlott, 1995). However, the extent to which the roots supercede the aerial portions
Chapter 2

In their rehydration (Figure 2.6 B) has not been described. This may be a 'sponge effect' facilitated by the anatomical structures described above, and metabolic recover may not occur in conjunction with water absorption. The water may be withheld at the exodermis or endodermis in order to facilitate slower (and presumably less damaging) cellular rehydration. Similar phases of rehydration have been observed by electrolytic leakage analysis of soybean axes (Senaratna and McKersie, 1986).

Investigation of electrolytic leakage rates confirmed that the desiccated and rehydrated roots experienced little membrane damage (Figure 2.7). The slight increase in the rate of leakage associated with root rehydration is not likely to be significant. It is probably associated with the release of endogenous amphiphiles from the plasma membrane (Hoekstra et al., 2001) and can be readily distinguished from large-scale damage, which is often reflected by electrolytic leakage rates of 400-500 times higher than controls (Senaratna and McKersie, 1986; Sherwin and Farrant, 1998). The preservation of membrane integrity has been reported for the leaves of *X. humilis* and for other desiccation tolerant plants (Sherwin and Farrant 1998; Farrant et al., 1999).

The shattering of the dry roots during preparation for SEM (Figures 2.4 C-D) suggested that glass formation is involved in the stabilization of the cellular environment in the roots. The levels of sucrose the roots were slightly lower than those reported for the hydrated leaves of *X. humilis* (Figure 2.8, Cooper, 2001). This may indicate that other carbohydrates play a more significant role than sucrose in the roots. Indeed, raffinose-series oligosaccharides have been correlated with seed longevity and in *X. villosa* make up roughly 10% of the total sugar content of the dry plant (Ghasempour et al., 1998). The roots of *C. plantagineum*, which do not accumulate sucrose during desiccation, contain high levels of stachyose (Bartels and Salamini, 2001). However, the lower sucrose levels may merely be a reflection of the fact that the volume of living cells in the roots is much lower than in the leaves. The effective concentration of sucrose per cell could be much higher than in the leaves if it were calculated on a living cell-for-cell basis. In this case, the resultant sucrose levels would be approximately 4-5 fold higher and would indicate that this compound does
form a key component of cytoplasmic vitrification. This speculation is consistent with the hypothesis that the roots act as a substantial source of carbohydrates for the aerial portions of resurrection plants (Norwood et al., 2001).

It has been proposed that the use of 2-octulose a carbon source for sucrose synthesis by *C. plantagineum* allows it to accumulate sucrose during dehydration independently of photosynthesis (Ingram and Bartels, 1996; Scott, 1990). Whether *X. humilis* also makes use of related carbohydrates has not been determined. However, it seems unlikely that tolerance would rest entirely on de novo carbon fixation during the onset of desiccation – especially given that high levels of alternative carbohydrates (stachyose or trehalose) are probably required simultaneously for the prevention of sucrose crystallization (Ghasempour et al., 1998; Norwood et al., 2001; Oliver et al., 2001). Nevertheless, this could be a factor underlying the inability of *X. humilis* to survive rapid dehydration (Farrant et al., 1999).

The literature surrounding the relevance of proline to the study of plant stress is varied and often contradictory. Despite better performance under stress, transgenic Tobacco plants over-producing proline do not exhibit the ability to survive dehydration (Bajaj et al., 1999) – a fact that contributes to the hypothesis of Gibon et al. (2000) that proline itself has no protective effect against the consequences of dehydration. While proline may be an important component of stress resistance in some plants, it certainly does not appear to be a ubiquitous response. Several desiccation tolerant plants accumulate proline during the onset of drying, but others, such as *C. plantagineum*, do not (Tymms and Gaff, 1979). It is suggested that the variation may be explained by a link between poliklochlorophyll and proline accumulation. However, although it is true that proline accumulated in the dry leaves of *X. humilis*, the levels attained were not as high as in other species (such as *E. nindensis*, Figure 2.9). This is consistent with the findings of Tymms and Gaff (1979) for *X. villosa* and implies that proline may have a limited role in desiccation responses of this genus. Despite the failure of the analysis of proline levels in the roots, the substance involved in the mixing of the hydrophobic and hydrophilic phases may be interesting. Among the proteins related to desiccation tolerance, dehydrins (LEA, D-11 family) have been reported to have detergent-like properties (Close, 1996) and it is possible that one of these proteins may be involved.
From the data presented above, it is evident that the roots undergo some changes similar to those recorded for the leaves, and are able to maintain structural and functional integrity through anatomical and metabolic compensation. The exact importance and nature of the compounds accumulated in the cytoplasm and in the vacuoles during desiccation remain to be investigated, but the findings provide the first insights into the functional anatomy of the roots of *X. humilis* during desiccation and rehydration. The data also provide some physiological context for the molecular techniques described in later chapters.
Targeting Candidate Genes

3.1 Introduction

One benefit of research into the responses of non-tolerant model organisms to water deficit is that it provides potential candidate genes that can be investigated in desiccation tolerant organisms. One such candidate gene is Arabidopsis thaliana histidine kinase 1 (AtHK1), which was isolated by degenerate PCR and library screening by Urao and co-workers (Urao et al., 1999). When introduced into yeast mutants lacking the sin1 and sho1p osmosensors, AtHK1 suppressed lethality in highly saline media. It is abundantly expressed in the roots of A. thaliana where it is thought to function as an osmosensor. Both AtHK1 and Sin1 belong to the histidine kinase superfamily, of which 350 members have been described. These histidine kinases form an integral part of two-component signaling systems that are involved in the sensing of environmental stimuli.

In eukaryotes, protein kinases that target specific threonine, serine or tyrosine residues usually predominate. In prokaryotes, however, two-component systems are the primary signaling systems. They constitute up to 1% of the encoded proteins and regulate a vast range of responses (West and Stock, 2001). Yet, it was only recently that two component systems were identified in plants and in yeast (Chang et al., 1993; Maeda et al., 1994). However, they are significantly less well represented in the genomes of eukaryotes (Urao et al., 2000).
Two component systems are typically composed of a histidine kinase receptor and its cognate response regulator. The histidine kinases are membrane-bound, homodimeric proteins that contain a periplasmic N-terminal input domain and a cytoplasmic C-terminal kinase (output) domain with an invariant histidine residue. The structure of the kinases varies in relation to the conditions to which they respond, but they possess several conserved domains - designated the H, N, G1, F and G2 boxes (Urao et al., 2000; West and Stock, 2001). The response regulators are generally found toward the end of the phosphorelay system where they act as phosphorylation-dependent transcription factors. They consist of a C-terminal effector (or output) domain and a conserved N-terminal regulatory (or input) domain with an invariant aspartate residue. The regulatory domains may be located within the histidine kinases or may be separate phosphorelay proteins (Lorhmann and Harter, 2002).

The signaling via two-component systems operates when detection of an altered state results in an ATP-dependent trans-phosphorylation of the conserved histidine residue in one subunit of the core kinase by the other subunit. The phosphoimidazole formed reacts with and transfers the phosphate group to the aspartate residue of the regulatory domain of the cognate response regulator. This activates the effector domain that regulates the specific response (often DNA binding leading to altered gene expression; Figure 3.1 A). The response regulators have autophosphatase activity that limits the duration of the phosphorylated state - giving rise to systems that have half-lives of several seconds to several hours (Urao et al., 2000b; West and Stock, 2001; Lorhmann and Harter, 2002).

More complex versions of the simple two-component system exist, since some make use of phosphorelay intermediates that may or may not be located within the histidine kinase protein (Figure 3.1 B). These hybrid type histidine kinases contain additional phosphotransfer (HPT) or internal response regulator domains. Although it is estimated that up to 20 % of histidine kinases are of the hybrid type, signaling via these proteins is thought to be predominantly a eukaryotic feature (West and Stock, 2001). The signaling is further complicated by interaction with downstream mitogen activated
protein kinase (MAPK) cascades or with other two component systems (West and Stock, 2001; Lorhmann and Harter, 2002).

Figure 3.1: The functioning of two component systems (A) A simple two-component system in which a phosphate group is transferred directly from the histidine kinase to the response regulator. (B) A multiple phosphorelay system involving a hybrid type histidine kinase (images from Schaller et al., 2001).

The *Arabidopsis* genome encodes for 17 histidine or hybrid histidine kinases and 23 response regulators (Schaller et al., 2001; Lorhman and Harter, 2002). The response regulators have been classified as either types A or B depending on their domain structure and responsiveness to cytokinins (Imamura et al., 1999; Lorhmann and Harter, 2002). To date, ethylene and cytokinin perception and signaling are the most common functions ascribed to the *Arabidopsis* two-component systems (D’Agostino et al., 2000; Sakakibara et al., 2000; West and Stock, 2001; Lorhmann and Harter, 2002).

A number of the *Arabidopsis* genes are expressed primarily in the roots, namely AHK4 (Ueguchi et al., 2001), ATk1 (Urao et al., 1999) and ARR5 (D’Agostino et al., 2000). Although other mechanisms of signaling in response to water deficit have been
identified - notably via phospholipase D and diacylglycerol (Frank et al., 2000; Munnik et al., 2000; Munnik and Meijer, 2001) and serine-theronine kinase activation (Hwang and Goodman, 1995), the two component systems have more clearly defined roles in sensing altered environmental conditions. Thus, AThK1 homologues, and potentially novel two component system elements, are considered to be promising candidate genes for the characterization of root responses to desiccation and rehydration. This chapter describes an attempt to clone such target genes as a preliminary step in investigating their role(s) in the desiccation tolerance mechanisms of X. humilis.

3.2 Materials and Methods

3.2.1 Probe preparation

The AThK1 clone was obtained from Kazuo Shinozaki (R.I.K.E.N, Japan). The insert was amplified by PCR by combining 1 μl of the DNA with 2 μl dNTPs (10 mM), 5 μl PCR buffer (10 x), 4 μl MgCl₂ (25 mM), 0.5 μl SuperTherm Taq (Southern Cross Biotech, SA) and 2 μl each of the T7 and T3 primers (10 μM). PCR conditions were 94 °C (2 min), [94 °C (30 s), 55 °C (1 min), 72 °C (3 min)] x 35, 72 °C (5 min). The product was purified directly from the reaction using a Qiagen Quick PCR Purification Column (Qiagen, U.S.A) according to the manufacturer's specifications. Purified product was checked by agarose gel electrophoresis (Chapter 4) and quantified using the GeneQuant DNA calculator. 40 μg of the DNA was labeled with [³²P]-dCTP (Amersham, U.S.A) using the Megaprime DNA labeling Kit (USB, U.S.A) as per product instructions. 1 μl aliquots were set aside before and after Sigma spin column (Sigma, U.S.A) purification for scintillation counting and probe quantification.

3.2.2 Southern and northern blot analysis

Genomic DNA was extracted from the roots of X. humilis using the Qiagen Plant DNA Extraction Kit (Qiagen, U.S.A) as per manufacturer's instructions. The DNA was eluted in 50 μl molecular grade water (Sigma, U.S.A), quantified by spectrophotometry and
checked by agarose gel electrophoresis. 10 µg samples were digested overnight at 37 ºC with EcoR1 or BamHI (Amersham, U.S.A) and electrophoresed on a 0.7 % agarose gel. RNA from dehydrating and rehydrating roots and leaves was prepared as described (Chapter 4) and electrophoresed on a formaldehyde agarose gel (Ausubel et al., 1988). Southern and northern transfer onto Hybond N+ membrane (Amersham, U.S.A) was performed according to standard methodology (Ausubel et al., 1988). 1 x 10^8 dpm of labeled ATHK1 DNA was added per ml of hybridization buffer, and hybridizations performed overnight at 42 ºC. Signals were detected by autoradiography (Ausubel et al., 1988).

3.2.3 Primer design

The internet-based Blast facility (http://www.ncbi.nlm.nih.gov) was used to search for plant histidine kinases and response regulators. Identified sequences were translated in the DNAman programme, and aligned by sequence similarity using DNAssist. The maximum number of sequences available from monocotyledonous plants was used. Degenerate nucleotide sequences of conserved regions were obtained by reverse translation in DNAman. The melting temperatures (Tm) of the primers were determined using DNAman. Primers were also aligned to check internal and mutual complementarity. The primers were checked for specificity by running blast searches on the sequences and by comparing them to published primers and conserved regions (Urao et al., 1999). Once the primer designs had been verified, the nucleotides were synthesized in the Department of Molecular and Cell Biology Oligonucleotide Synthesis Unit.

3.2.4 Degenerate primer PCR

Total RNA and poly(A)^+ were prepared as described (Chapter 4). Reverse translation was performed by heating of 2.5 µg of RNA to 65ºC for 10 min in the presence of 0.5 µl random hexamer primer and 0.5 µl RNase Inhibitor (Promega, U.S.A). The reaction was equilibrated to 37ºC for 10 min prior to the addition of 2.0 µl dNTPs; 4 µl RT buffer
and 1 μl MMLV-RT (Promega, U.S.A). Reactions were incubated at 40°C for one hour. The cDNA was checked by electrophoresis on denaturing agarose gels and used as the template for PCR.

All PCR reactions were made up in molecular grade water (Sigma, U.S.A) in 100 μl volumes containing 2-3 μl dNTPs (10 mM), 10 μl PCR buffer (10X) and 0.5 μl enzyme. DNA, primer and MgCl₂ concentrations were varied as follows:

- DNA (1 ng/μl; 2 ng/μl or 5 ng/μl)
- Primers (0.5 μM, 1.0 μM or 1.5 μM each)
- MgCl₂ (2 mM, 2.5 mM or 3 mM)

The following PCR conditions were tested:

Table 3.1: Parameters tested for degenerate PCR optimization

<table>
<thead>
<tr>
<th>Polymerase</th>
<th>Annealing Temperature (°C)</th>
<th>DMSO (%)</th>
<th>Additives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tth</td>
<td>40</td>
<td>42</td>
<td>45</td>
</tr>
<tr>
<td>Promega Taq</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>SuperTherm</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

BSA = Bovine Serum Albumin (5mg/ml), TX= Triton X-100 (0.1 %)
and DOC = deoxycholate (0.1 %).

The PCR cycles were: 94°C (2 min), [94°C (30 s), annealing temp (1 min), 72°C (90 s)] x 35, 72°C (5 min). Controls with no primer, no template or no enzyme were used. 10 μl of the reactions were electrophoresed on agarose gels alongside appropriate markers to determine the success of the reactions.
3.2.5 Cloning

Where highly specific banding patterns were observed, 50 µl of the reaction was electrophoresed on a 1% low melting point agarose gel alongside a 100 bp ladder (Promega, U.S.A). Selected bands were cut from the gels under long wavelength UV light with a sterile scalpel. The agarose was melted at 70°C for 10 min and equilibrated to 37°C for a further 10 min. 3 µl of the sample was used for cloning of the fragment into the pGEM-T Easy vector (Promega, U.S.A) essentially as described by the manufacturer. The ligation reactions were used to transform competent XL1-Blue cells according to the method of Chung and Miller (1988). Transformants were plated onto LB agar plates containing 100 µg/ml ampicillin, 10 µg/ml IPTG and 5 µg/ml X-Gal and incubated at 37°C overnight.

3.2.6 Screening and sequencing

Colony PCR was performed according to the method of Roschier et al. (2000) as described (Chapter 4). 10 µl of each PCR reaction was electrophoresed on an agarose gel to check for inserts. Colonies containing inserts were miniprepped as described (Chapter 4; Isch-Horowitz and Burke, 1981). Inserts were sequenced on a MegaBACE 500 sequencer (Molecular Dynamics, U.S.A) using the M13 forward primer.

Flanking vector regions were trimmed from the insert sequences using DNAMan. Database searches were carried out using the BLASTn and BLASTtx algorithms (Altschul et al., 1997). Multiple sequence alignments were performed using DNAAssist.
3.3 Results

3.3.1 Northern and Southern Analysis using AThK1

To investigate whether histidine kinase homologues are present in *X. humilis* and whether they are differentially regulated in response to desiccation and rehydration, Southern (Southern, 1975) and northern Blots were carried out. The AThK1 insert was amplified by PCR and used to probe genomic DNA blots. This analysis revealed that sequences with a high level of similarity to the full-length AThK1 probe were present in the genomic DNA of *X. humilis* (Figure 3.2). Single bands were obtained for both the *BamH1* and *EcoR1* digests, but low signal intensity prevented the identification of other potential bands.

![Figure 3.2: Southern blot analysis showing the representation of AThK1-related sequences in genomic DNA of *X. humilis.*](image)

Although bands were detected on the northern blots, the signal intensity was too low (even after 2 week exposures) for accurate conclusions about the expression of potential homologues to be drawn. This was thought to be a consequence of the low levels of expression of the endogenous transcript and the use of a heterologous probe.
3.3.2 Primer design

Plant-specific histidine kinases and response regulator sequences were obtained from the GeneBank database and aligned in order to identify conserved domains. The alignments are shown in Figures 3.3 and 3.4.

![Multiple sequence alignments of selected histidine kinases](image)

AHK1, AHK3, AtHK1: *Arabidopsis* histidine kinase; ATHK1: *Arabidopsis thaliana* histidine kinase 1; PEHK: *Populus* AtHK1 homologue; CKR1: Cytokinin receptor 1.
Chapter 3

Table 3.2

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5'→3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARR1</td>
<td>KT-E3-H3-V1-D1-V2-D2-V3-E4</td>
</tr>
<tr>
<td>PARR2</td>
<td>KT-E3-H3-V1-D1-V2-D2-V3-E4</td>
</tr>
<tr>
<td>PARR3</td>
<td>KT-E3-H3-V1-D1-V2-D2-V3-E4</td>
</tr>
<tr>
<td>PARR4</td>
<td>KT-E3-H3-V1-D1-V2-D2-V3-E4</td>
</tr>
<tr>
<td>PARR5</td>
<td>KT-E3-H3-V1-D1-V2-D2-V3-E4</td>
</tr>
<tr>
<td>PARR6</td>
<td>KT-E3-H3-V1-D1-V2-D2-V3-E4</td>
</tr>
<tr>
<td>PZMRR1</td>
<td>KT-E3-H3-V1-D1-V2-D2-V3-E4</td>
</tr>
<tr>
<td>PZMRR2</td>
<td>KT-E3-H3-V1-D1-V2-D2-V3-E4</td>
</tr>
<tr>
<td>PZMRR3</td>
<td>KT-E3-H3-V1-D1-V2-D2-V3-E4</td>
</tr>
<tr>
<td>PZMRR4</td>
<td>KT-E3-H3-V1-D1-V2-D2-V3-E4</td>
</tr>
<tr>
<td>PZMRR5</td>
<td>KT-E3-H3-V1-D1-V2-D2-V3-E4</td>
</tr>
<tr>
<td>PZMRR6</td>
<td>KT-E3-H3-V1-D1-V2-D2-V3-E4</td>
</tr>
<tr>
<td>DCCR1</td>
<td>KT-E3-H3-V1-D1-V2-D2-V3-E4</td>
</tr>
<tr>
<td>DCCR2</td>
<td>KT-E3-H3-V1-D1-V2-D2-V3-E4</td>
</tr>
<tr>
<td>DCCR3</td>
<td>KT-E3-H3-V1-D1-V2-D2-V3-E4</td>
</tr>
<tr>
<td>DCCR4</td>
<td>KT-E3-H3-V1-D1-V2-D2-V3-E4</td>
</tr>
<tr>
<td>DCCR5</td>
<td>KT-E3-H3-V1-D1-V2-D2-V3-E4</td>
</tr>
<tr>
<td>DCCR6</td>
<td>KT-E3-H3-V1-D1-V2-D2-V3-E4</td>
</tr>
</tbody>
</table>

Figure 3.4: Multiple sequence alignments of response regulators.

PARR = Arabidopsis response regulators 1-5; PZMRR = Zea mays response regulators 1-6; DCCR = Daucus carota response regulator.

Primers to the nucleotide sequences of the conserved regions of both the histidine kinases and the response regulators were synthesized. A number of the primers were excessively degenerate, so extensive use was made of inosine bases to reduce this to acceptable levels. Poly(G) tracts were also added to the 5' ends to increase the Tms where necessary. The primers exhibited no significant self-complementarity. When the primers were used to search the GeneBank database, the first 100 matches for each were either the targeted histidine kinases or response regulators. Conserved domain detection (CDD) facility recognized both the HTPase and response regulator subunit domains targeted by the primers. The details of the primers designed are summarized in Table 3.2.
Table 3.2: Degenerate primers for two component system genes.

<table>
<thead>
<tr>
<th>Primer Target</th>
<th>Sequence (5'→3')</th>
<th>Length Tm*</th>
<th>Degen**</th>
<th>Expected Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>HK F</td>
<td>H-box: CGGCA(TCA)GA(gAA(gCT)ATIGC(gAT)GACCC</td>
<td>20</td>
<td>66</td>
<td>600-800 bp</td>
</tr>
<tr>
<td></td>
<td>R-box: CCA(gAC(gAT)GAT)GACCC</td>
<td>22</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>RR F</td>
<td>Box 1: GGGGCCA(CGA)TNT(NCT)TICGCTIGA</td>
<td>21</td>
<td>60</td>
<td>500 bp</td>
</tr>
<tr>
<td></td>
<td>F 2: Box 2: GGGATGCGNGGIAITGACIGG</td>
<td>20</td>
<td>65</td>
<td>F2/R3 = 100 bp</td>
</tr>
<tr>
<td></td>
<td>R 2: Box 2: GGGCGCGNGTCAITGACIGG</td>
<td>20</td>
<td>65</td>
<td>F2/R3 = 200-300 bp</td>
</tr>
<tr>
<td></td>
<td>R 3: Box 3: CCGGGCAT</td>
<td>gTA</td>
<td>ATNAC(IACIGG</td>
<td>20</td>
</tr>
</tbody>
</table>

*Tm = thermodynamic melting temperature (°C). **Degen = degeneracy estimate.

3.3.3 Optimization of degenerate RT-PCR and cloning

A large range of PCR conditions were tested, starting with the use of Tth DNA polymerase according to the protocol used by Urao et al. (1999) in the cloning of *ATHK1*. This method did not yield defined bands, and variation of the types of PCR stabilizers (BSA, Triton, deoxycholate), DNA concentrations and primer concentrations had no effect on the result. The use of Promega Taq DNA polymerase without the BSA, Triton and deoxycholate did result in the detection of two bands in the histidine kinase reactions and three bands in the response regulator reactions, but these were faint and variable.

SuperTherm Taq yielded the most clearly defined banding patterns. Both histidine kinase and response regulator reactions were optimal with 1 ng/µl DNA template, 1 µM of each primer, 3 mM MgCl₂ and 5 % DMSO. No BSA, triton or deoxycholate was necessary. The best primer combination for the response regulator reactions was found to be F1/R3 (refer to Table 3.2) and these were routinely used. Alterations in the annealing temperatures resulted in increased specificity for the 500 bp and 600 bp products in the histidine kinase PCR reactions, and for the 400 and 450 bp products in the response regulator reactions (Figure 3.5 A-C). Optimal annealing temperatures were found to be 55 °C for the histidine kinases (Figure 3.5 C) and 50 °C for the response
regulators (Figure 3.6 B). The bands obtained at these temperatures were considered to be within the acceptable range for the expected products (~700 bp and ~300 bp respectively).

The 500 bp and the 600 bp bands from the histidine kinase PCR at 55°C were cloned into the pGEM-T Easy vector, the inserts confirmed by colony PCR (Figure 3.6) and sequenced.

The 500 bp and the 600 bp bands from the histidine kinase PCR at 55°C were cloned into the pGEM-T Easy vector, the inserts confirmed by colony PCR (Figure 3.6) and sequenced.

The 500 bp band and the 600 bp band from the histidine kinase PCR at 55°C were cloned into the pGEM-T Easy vector, the inserts confirmed by colony PCR (Figure 3.6) and sequenced.

Figure 3.5: Effect of annealing temperatures and DMSO on product yield from RT-PCR. (A) 45°C, (B) 50°C and (C) 55°C. 1 = histidine kinase primers, no DMSO, 2 = histidine kinase primers, 5 % DMSO, 3 = response regulator primers, no DMSO, 4 = response regulator primers, 5% DMSO. Optimized PCR conditions were used.

Figure 3.6: Amplification of cloned inserts by colony PCR. Lanes 1-9 = products from selected colonies, lane 10 = negative control, M = marker (PstI digested lambda DNA).
3.3.4 Sequence analysis

BLAST results and multiple sequence alignments revealed the presence of the conserved histidine kinase domains in both sequences. However, both the sequences displayed high similarity to bacterial genes, with the 500 bp product being putatively identified as a RstA homologue and the 600 bp product as a PhoR homologue (data not shown). Overall, the products displayed > 80% sequence identity to the corresponding *Pseudomonas aeruginosa* and *E. coli* genes. It was concluded that both products were of bacterial origin. Nevertheless, the RstA sequence displayed 18% sequence similarity to *ATHK1* at the amino acid level and contained the distinctive H-box at the 5' end (Figure 3.7) indicating that the primers were specific for histidine kinases.

![H-box](image)

Figure 3.7: Characterization of the RstA homologue. (A) Conserved domain detection. (B) Partial amino acid sequence alignment of RstA homologue and *ATHK1*.

In an attempt to remove the interference of the bacterial cDNAs, leaf and root poly(A) RNA was purified, converted to cDNA using poly(dT) priming and used in the optimized PCR reactions described above. Annealing temperatures were lowered to 45°C. This
approach yielded a variety of different bands in the two reactions (Figure 3.8). The 700 bp and 800 bp products detected in the histidine kinases reactions were closer to the expected size of ~ 700 bp. The 400 bp and 450 bp products were brighter and sharper for the response regulators (Figure 3.8). Due to time constraints for the project, these bands were not cloned and sequenced but were excised and stored at 4°C for later cloning.

Figure 3.8: PCR from cDNA prepared by RT from poly(A) RNA. Lane 1 = histidine kinase primers + DMSO. 2 = response regulator primers + DMSO. M= marker.

3.4 Discussion

Although incomplete, the data presented above suggest that there are two-component system homologues present in X. humilis. The Southern blot analysis (Figure 3.2) indicates that there are sequences related to ATThk1 present in the genomic DNA of X. humilis. As was the case for Urao et al. (1999) a single band was detected in the BamHI and EcoR1 lanes, suggesting that only one copy of a potential homologue is present in the genome. However, it should be borne in mind that these bands may merely represent hybridization of the heterologous probe to incompletely digested (ie: large) DNA fragments.
Transcripts encoding kinases are generally expressed at very low levels in the cell. This combined with the lower levels of hybridization achieved with sequences that are not identical, means that the weak signal intensities for the northern blots are to be expected. Urao et al. (1999) experienced similar problems with northern blot analysis, despite using a fully homologous AThK1 sequence.

The primers were specific for histidine kinases and response regulators (Figures 3.3 and 3.4). The histidine kinase primers were similar to those designed by Urao et al. (1999) except that the reverse primer differed at two nucleotides. These were resolved through the use of degenerate bases. The differences may have arisen as a consequence of the heavy reliance on bacterial sequences by Urao et al. (1999) in contrast to the use of plant sequences in this study (Figure 3.3). The response regulator primers were significantly more degenerate than the histidine kinase primers—hence the need for several different combinations (Table 3.2). Nevertheless, the primers were shown to be effective in targeting histidine kinases (Figure 3.7).

The process of optimizing the PCR conditions was extensive and time-consuming. 7th DNA polymerase is considered to be a better choice of polymerase than Taq DNA polymerase which lacks 3'-5' proof reading capabilities (Eckert and Kunkel, 1990). However, it is more sensitive to temperature fluctuations than the Taq polymerases (7th polymerase specification sheet, Promega, U.S.A) and this may account for the failure of the reactions in which it was used. Urao et al. (1999) employed BSA, triton and deoxycholate in conjunction with low annealing temperatures (42°C) in order to obtain specific products with this enzyme, but the approach was not successful with X. humilis cDNA. The SuperTherm Taq resulted in significantly higher yields of product than the Promega Taq—a result that could be due to either higher activity or to lower template specificity of the SuperTherm Taq. Since the sequenced bands were, however, all histidine kinases template specificity may not account for the increased product yield.
RT-PCR using degenerate primers is acknowledged to be problematic, particularly when primers have high degeneracy levels and different Tms \(\text{(Loffert et al., 1998; Linhart and Shamir, 2002)}\), as was the case in this study (Table 3.1). Ideally primers should have a maximum degeneracy of 16 \(\text{(Loffert et al., 1998)}\), although 128-fold degeneracy in each primer has been successfully employed for the amplification of single copy gene from the human genome \(\text{(Girgis et al., 1988)}\). Degeneracy at the 3' end of a primer is generally more problematic as it may inhibit efficient extension, but degenerate bases decrease the efficiency of a PCR reaction regardless of their position \(\text{(Loffert et al., 1998; Linhart and Shamir, 2002)}\). This can be counteracted to some extent by increasing the concentration of the primers at the expense of template specificity. In this study relatively high primer concentrations \(\text{(1 \(\mu\text{M})\)}\) were used, but did not appear to affect the primer specificity for histidine kinases \(\text{(Figure 3.7)}\).

The use of random hexamers for first strand synthesis was unfortunate, as it appears to have lead to the reverse transcription of bacterial sequences, possibly derived from soil/bacteria. This may prove to be a limitation to the approach used. Poly(dT) priming from purified poly(A) RNA may be a means of reducing or overcoming this problem, although bacterial RNAs may still have short poly(A) tracts at their 3' ends \(\text{(Ausubel et al., 1988)}\). The fact that higher bands were obtained for the RT-PCR from poly(A) RNA \(\text{(Figure 3.8)}\) may be due to this alteration, but may also be a result of the increase in the concentration of the template. Leaf RNA was not routinely used because potential osmosensing kinases are unlikely to be expressed at high levels in these tissues – a contention that is supported by the northern blot results of Urao \textit{et al.} (1999).

Both sets of primers designed in this study will be useful resources for the cloning and characterization of signaling factors that may have roles in the responses of \textit{X. humilis} to desiccation and rehydration. Apart from osmosensors, the cytokinin receptors \(\text{(CK11 and CRE1)}\) and their cognate response regulators \(\text{(eg: ARR1 and ARR5; D'Agostino et al., 2000; Sakai et al., 2001)}\) are particularly interesting two component system elements that may be involved in the regreening of plants during rehydration. The
involvement of alternate two component systems in rehydration of resurrection plants remains to be explored.

In this study, Southern blot analysis indicated the presence of a putative homologue of ATthK1 in the genome of \textit{X. humilis}. Degenerate primers designed to the histidine kinase and response regulators were shown to be highly specific under optimized PCR conditions. Attempts to clone the correct sequences are underway and will be used in conjunction with screening of the normalized libraries described in Chapter 5 to characterize these signaling systems in \textit{X. humilis}.
cDNA Library Construction

A molecular entry into desiccation tolerance

4.1 Introduction

cDNA libraries remain the basic currency in genome and transcriptome analysis. In many cases they are the primary means of gaining significant sequence and expression data, and underlie more advanced techniques such as functional characterization, microarray analysis and promoter studies (Clark et al., 1999; Das et al., 2001; Seki et al., 2001).

Even in instances where the entire genome of an organism has been sequenced, there is still a heavy reliance on the characterization of ESTs present in cDNA libraries (Clark et al., 1999; Nam et al., 2002). One of the main reasons for this is that current algorithms cannot correctly predict all ORFs in a genome because of difficulties in defining functional codons from identical, but non-functional ones (Das et al., 2001; Haas et al., 2002). A clear example was provided by Reymond et al. (2001) who characterized human chromosome 21 genes predicted by exon mapping programmes. Only 20% of these predicted genes (PREDs) were found to encode real transcripts, in contrast to the highly accurate predictions based on the existence of ESTs. Gene prediction is largely limited by the lack of understanding of the importance of the context of sequences, and of the lack of understanding of the impact of secondary structure in defining biologically relevant ORFs (Hannenhalli and Levy, 2001). Some progress has been made in this area through the use of CpG islands, transcription factor binding sites and first splice-donor sites to increase the stringency of the algorithms (Davuluri et al., 2001).
In addition cDNA libraries are critical in the further study of the regulation of temporal and spatial gene expression. To date in silico studies can only identify promoters for about 50% of genes with roughly 80-90% accuracy (Fujibuchi and Kanehishi, 1997; Pederson et al., 1999; Lul and States, 2002) and mapping of co-regulated genes on the basis of these promoters is restricted (Terai et al., 2001). The heavy reliance of promoter prediction algorithms on the presence of CpG islands also means that the regulation of tissue-specific expression is likely to remain dependent on biological studies (Hannehalli and Levy, 2001).

For non-model organisms such as X. humilis, in silico studies are not possible. Large-scale insight into molecular features that characterize its growth and development will initially depend heavily on the use of cDNA libraries in traditional ‘forward’ genetic studies. Consequently, the value of the information that will be gained about desiccation tolerance and the relationship between tolerant and non-tolerant plants will be directly related to the quality of the sequences contained in such libraries.

4.1.1 The production of high quality libraries

In order to maximize the amount of information generated by the production of a cDNA library, the sequence length and representation should be as great as possible. Ideally, a library should contain full-length sequences representing all the genes expressed in the organism or tissue from which they are derived (Draper et al., 2002). In practice, extremely high cloning efficiencies are required to clone all the represented sequences. The probability that a given mRNA will be represented in a cDNA library is calculated as:

\[p(x) = (1 - [1 - f_n]) \]

Where 'n' is the number of recombinants and 'f' is the frequency of a particular mRNA. Thus, assuming that the average size a transcript is 2 kb and that a typical cell contains 0.6 pg of mRNA (or 500 000 transcripts), there is a probability of 99.9% that a library of 5 x 10^6 recombinants will contain the rarest transcript (1 copy per cell).
However, it is expected that libraries containing above 1×10^5 recombinants will contain the majority of transcripts (Soares and Bonaldo, 1998).

To achieve the cloning efficiencies described above, the choice of vector is critical. Although plasmid vectors are significantly easier to manipulate, and can be electroporated with efficiencies up to 1×10^{13} transformants per μg of DNA (Dower et al., 1988; Soares and Bonaldo, 1998), bacteriophage vectors have two important advantages over the plasmid vectors. Firstly, the number of recombinants generated in a typical ligation is about 3-fold higher, and secondly, a higher number of phages can be screened, usually with much lower background levels (Soares and Bonaldo, 1998). Derived vectors such as Lambda ZAP (Stratagene, U.S.A) are particularly popular since they combine the advantages of both. This is due to the fact that Lambda ZAP contains a plasmid (pBluescript) component which has an f1 origin of replication, allowing for excision of a plasmid vector without sub-cloning. One additional advantage of the ZAP system is the inclusion of the LacZ' gene which allows for colour selection recombinants (Soares and Bonaldo, 1998; Lambda ZAP Manual, Stratagene, 2001). The general features of this system are illustrated below (Figure 4.1).

Figure 4.1: The Lambda-Zap vector (Image from the Uni-Zap Manual, Stratagene).
Yet, even in instances where the highest cloning efficiencies are achieved, not all transcripts may be usefully represented in a library. This is due to the fact that cDNA libraries routinely contain high levels of inserts that are (1) chimaeric, (2) truncated, (3) comprised of poly(A) tails alone, (4) comprised of the 3' UTRs and (v) contaminants (Adams et al., 1991; Adams et al., 1992; Soares and Bonaldo, 1998).

The most serious of these problems is the occurrence of chimaeric inserts, since these cannot be easily identified and may generate misleading information (Soares and Bonaldo, 1998). It has been estimated that at least 30-35% of EST sequences deposited in the public domain contain errors (Haas et al., 2002). The majority of these are due to sequencing errors and the inclusion of vector sequences in the EST data, but some arise through the deposition of chimaeric sequences. Chimaeric inserts arise primarily during the ligation of the adapter ends, to the cDNA and during the ligation of the cDNA into the cloning vector. Their occurrence can be limited by the inclusion of a large excess of adapters relative to cDNA, by the elimination of small inserts and by the directional cloning of the inserts through the use of linker-primers.

Failure of the reverse transcriptase enzyme, the existence of extensive secondary structure in the template and frequent internal priming result in the inclusion of small inserts and inserts consisting of the 3' UTRs or of poly(A) tracts (Soares and Bonaldo, 1998; Seki et al., 2001; Nam et al., 2002). Nam et al. (2002) have shown how the general use of poly(A) primers during the first strand synthesis reaction can lead to the cloning of truncated transcripts through priming from internal poly(A) tracts in gene sequences. This has a serious impact on the quality of sequences available in the public domain. In fact these authors estimate that up to 12% of the sequences available in the dbEST database are the result of this phenomenon (Nam et al., 2002).

Even without such internal priming, most reverse transcriptases fail to generate full-length sequences. The use of trehalose, RNA chaperones and compounds that eliminate secondary structure have not compensated for this failure (Das et al., 2002). Several researchers have attempted to overcome this problem through the use of 5'
biotin cap trapper or 7-methyl guanosine (m7G) antibody selection methods, which retain only full-length sequences (Das et al., 2001; Seki et al., 2001). However, the problem with these methods is that they result in very low cloning efficiencies (libraries tend to consist of < 10 000 clones) due to the low trapping efficiency and the continued problems with the RT step (Das et al.; 2001). Consequently, high levels of starting mRNA are required, and up to 20 libraries need to be generated from a single source in order to gain representation of the full transcriptome. Size fractionation of the cDNA or mRNA is a more inexpensive and technically simpler process that may yield high frequencies of full-length or almost full-length sequences (Draper et al., 2002). However, this tends to eliminate short full-length sequences and therefore biases the data against small genes. Consequently, small ORFs are excluded from annotation routines (Rabinowicz and Byrne, 2001).

Clearly, although cDNA library construction is one of the most frequently employed methods in molecular biology, there is as yet no unequivocal physical approach to ensure that libraries of sufficiently high quality are obtained. This has led to the use of large-scale sequencing of multiple libraries coupled to powerful bio-Informatic analyses to produce high quality, non-redundant genesets. This approach uses the sheer quantity of sequence data to increase the probability of all transcripts being usefully represented, but is both expensive and labour-intensive.

4.1.2 cDNA libraries in water stress research

One of the largest contributions to the understanding of the types of genes employed during water stress responses stems from the work carried out on *Arabidopsis* at the RIKEN institute by Shinozaki and colleagues (Seki et al., 2001; Seki et al., 2001b; Seki et al., 2002). They have constructed and screened several full-length cDNA libraries, assembled non-redundant databases of *Arabidopsis* genes, and screened these libraries for water, cold and heat responsive expression. From their results it is clear that there is some overlap in the utilization of genes in the amelioration of the effects of different stresses, but that the bulk of the genes are transcribed in relation to specific stresses (Seki et al., 2001; Seki et al., 2001b; Seki et al., 2002). This suggests that
condition-specific libraries should be constructed in order to maximize the characterization of elements involved in the response in question.

Libraries of several desiccation tolerant plants, including *X. viscosa* (Mundree and Farrant, 2000), *C. plantagineum* (Bartels et al., 1990), *T. ruralis* (Scott and Oliver, 1994) and *S. stapfianus* (Neale et al., 2000) have been constructed. These have been successfully used to isolated a range of genes from desiccation tolerant plants and have provided an invaluable insights into the mechanisms of desiccation tolerance. Interestingly, problems with reverse transcription, ligation efficiency, insert size and sequence recovery have been reported (Koonjul et al., 1999) – indicating the need for quality control steps to be implemented prior to utilization of the libraries. This is especially true for libraries derived from recalcitrant plant material. None of the libraries constructed to date have been use to map the levels of commonality or divergence between the transcriptomes of tolerant and non-tolerant species – potentially one of the more interesting spin-offs of an in depth characterization of a library.

This chapter describes the production and evaluation of root- and stress-specific cDNA libraries from *X. humiliis*. It is envisioned that these will complement related leaf libraries and constitute a basic resource for addressing questions about the molecular foundations of desiccation tolerance in this species.

4.2 Materials and methods

4.2.1 Plant material

Plants were maintained and harvested as described in Chapter 2. For desiccation library construction, roots were harvested at RWCs of 95%, 60%, 50%, 30% and 5%. For the rehydration libraries roots were harvested at 0, 6, 12, 24, 48 and 72 h after rewetting of the soil (ie: RWCs of 5 %, 60 % and 100 %).
4.2.2 RNA extraction and analysis

RNA isolation was based on the modified method of Chomczynsky and Sacchi (1987) as outlined in the Tri-reagent specification sheet (Molecular Research, UK). Roots were ground under liquid nitrogen in a mortar and pestle and transferred while frozen to a Falcon tube containing 10 times the volume of Tri-Reagent (ie: 10 ml per 1 g of root material). Samples were vortexed for 30 s and aliquotted into 2 ml micro-centrifuge tubes. These were left at room temperature for 10 min to allow cell lysis to occur. All centrifugation steps employed a Savant Super-Speed desktop refrigerated centrifuge (Savant, U.S.A) and were performed at 12 000 RCF and 4°C for 15 min. The basic protocol was modified to allow removal of polysaccharides and phenolics common in plant tissues (Chomczynski and Mackey, 1995). RNA was precipitated overnight at -70°C by the addition of 0.1 volume of high salt solution (0.8 M sodium citrate, 1.2 M sodium chloride, 0.1 % DEPC) and 1 volume of isopropanol (Sigma, U.S.A). After recovery and drying of the pellets, RNA was resuspended in 20 μl nuclease-free water (Sigma, U.S.A) and incubated at 65°C for 10 min. Identical samples were pooled and then transferred to -70°C until analysis and further use.

The concentration, yield and purity of the RNA were determined from the absorbance at 260 nm and 280 nm. Pure RNA when re-suspended in water or TE buffer (10 mM Tris-Cl pH 7.5, 1 mM EDTA) typically has a ratio of between 1.8 and 2.1 (Chomczynski and Sacchi, 1987). RNA samples were run on agarose gels in the presence of formamide (Sigma, U.S.A) as described elsewhere (Chomczynski and Mackey, 1995). Images were used to visually confirm the relative concentrations, as well as the overall quality, of the RNA. RNA was taken to be intact if the 28S RNA band (~3.9 kb) was approximately twice the intensity of the 18S RNA band (~1.8 Kb).

The quality of the RNA and its suitability for cDNA synthesis was confirmed by RT. 2.5 μg of RNA was heated to 65°C for 10 min in the presence of 0.5 μl oligo(dT)16 primer and 0.5 μl RNase Inhibitor (Promega, U.S.A). The reaction was equilibrated to 37°C for 10 min prior to the addition of 1.0 μl [32P] dATP (Amersham, U.S.A), 1.6 μl of each of dCTP, dGTP and dTTP (Megaprime Kit, USB, U.S.A), 4 μl RT buffer and 1 μl
MMLV-RT (Promega, U.S.A). Reactions were incubated at 40°C for one hour and electrophoresed on denaturing agarose gels. Gels were sealed in plastic and placed in a autoradiographic cassette containing a phosphor screen (Kodak, U.S.A). Images were processed on a Bio-Rad Molecular Imager (Bio-Rad, U.S.A).

4.2.3 mRNA isolation

Equal masses of RNA from each of the dehydration and rehydration samples were pooled to yield 800 μg of total 'dehydration RNA' and 700 μg of 'rehydration RNA. PolyATtract mRNA isolation kits (Promega, U.S.A) were used to extract the poly(A)+ RNA (Promega PolyATtract Manual, 2002). The final mRNA samples were resuspended in ~10 μl nuclease-free water. 1 μl of each sample was electrophoresed on a 1.5 % agarose gel for analysis. The remainder was stored at -80°C until use in the cDNA synthesis reaction.

4.2.4 Library construction

cDNA synthesis was performed using the ZAP-cDNA® synthesis kit (catalogue number 200400; Stratagene, U.S.A). For the first-strand synthesis, a minimum of 5 μg of purified poly(A) RNA was resuspended in 37.5 μl nuclease-free water and heated to 65°C for 10 min to eliminate interfering secondary structures. This was carried out in preference over treatment with the methyl-mercury hydroxide suggested by the Stratagene protocol.

Aliquots (typically 1-2 μl) of the first- and second-strand reactions were analyzed by alkaline-agarose gel electrophoresis in order to establish the success of the reactions, to check for the presence of hairpinning, and to determine the size range of the newly synthesized cDNA (ZAP cDNA Synthesis Kit, Stratagene). cDNA modification was only continued if adequate amounts of cDNA, as given by comparison with Lambda phage DNA markers, were detected.
i. **Size fractionation and cloning**

Two methods of size fractionation were employed during the course of this study. The first was the Sepharose® CL-2B gel-filtration method recommended for the ZAP-cDNA® synthesis, while the second was the more unorthodox agarose gel fractionation method (Pennica \textit{et al.}, 1983).

For column fractionation, 3.5 \(\mu \text{l} \) of column loading dye was added to the sample which was loaded directly onto the Sepharose® medium packed into a 1 ml nuclease-free pipette. Fractions of 100 \(\mu \text{l} \) were collected from the base of the column starting from the moment the dye front reached the - 0.2 ml mark and ending when the dye front reached the base of the column. On average 10-12 fractions were collected. These were processed by phenol-chloroform [1:1 (v/v)] and chloroform extraction before being precipitated overnight at -20\(^\circ\text{C}\) by the addition of 2 volumes of 100 \(\% \) (v/v) ethanol.

For the gel-based fractionation, the sample was loaded onto a 1 \(\% \) low melting point agarose (FMC Bioproducts, U.S.A) gel containing 1 \(\mu \text{g/ml} \) ethidium bromide. A 100 bp DNA marker (Promega, U.S.A) was loaded alongside the sample, which was electrophoresed for 1 hr at 100 V. The gel was visualized under long-wavelength (365 nm) UV light and all cDNA running at positions higher than 500 bp was excised. The excised gel band was transferred to a sterile micro-centrifuge tube and stored at 4\(^\circ\text{C}\) until further use. DNA was recovered by \(\beta \)-agarase (New England Bio-labs, U.S.A) digestion – as outlined in the manufacturer’s protocol. cDNA was precipitated overnight at -20\(^\circ\text{C}\) by the addition of 0.1 volume sodium acetate (3M) and 2.5 volumes 100 \(\% \) (v/v) ethanol, and resuspended in 3 \(\mu \text{l} \) molecular grade water.

Where the concentration of the DNA was sufficient to allow efficient cloning, 2.5 \(\mu \text{l} \) of the cDNA (typically ~ 50–100 ng) was ligated into the Uni-ZAP® vector as per manufacturer’s specifications. Ligation reactions were incubated at 4\(^\circ\text{C}\) for 48 hrs.
ii. Packaging, titering and amplification

4 μl of the ligation reaction was added directly to an unthawed Gigapack® Gold packaging extract (Catalogue number 200450; Stratagene, U.S.A) and packaging carried out as per the manufacturer's specifications. 1 μl of the phage suspension was immediately used for tittering, while the remainder was stored at 4°C until used for amplification.

For the tittering, 1 μl of the primary library phage library was added to 200 μl XL1-Blue MRF’ cells (OD 0.5 in 10 mM MgCl₂) and incubated in a water bath for 15 min at 37°C without shaking. The mixture was plated in NZY top agar onto cooled (30 mm) NZY agar plates containing 100 μg/ml ampicillin. This process was repeated with the control vector provided by the manufacturer. Plates were incubated upside down at 37°C overnight.

The number of plaque forming units (pfu) and the ratio of blue (non-recombinant plaques) to white (recombinant) plaques were determined. The total number of plaques was used to estimate the titre of the primary library and the efficiency of the packaging. In all cases, the 'ideal' number of plaques was considered to be 1 x 10⁶ pfu in order to ensure that as many of the expressed genes were cloned. In cases where this was not achieved, an additional synthesis was attempted.

Since primary phage libraries tend to be susceptible to loss of titre over long periods of time, the libraries were amplified within two days of the initial titering. The host preparation was essentially the same as described for the titering. However, for the plating, 600 μl of XL1-Blue cells were combined with ~ 50 000 pfu of the primary library and the transfected cells plated in 18 ml NZY top agar onto 280 mm x 280 mm NZY agar plates supplemented with 100 μg/ml ampicillin. These plates were incubated at 37°C until the plaques were just touching (typically approximately 8 hrs).
The plaques were overlaid with 10 -15 ml SM buffer and maintained with gentle rocking at 4°C overnight. The SM buffer phage suspensions were recovered from the plates and pooled in sterile 50 ml Sterilin® tubes. The plates were rinsed with an additional 5 ml SM buffer. Chloroform (5 % (v/v)) was added to the suspensions which were left to incubate for 15 min. Cell debris was removed by centrifugation at 1 000 RCF for 10 min.

The titre of these amplified libraries was determined as described (section 2.7.8). However, $1 \times 10^{-4}, 1 \times 10^{-5}, 1 \times 10^{-6}$ and 1×10^{-7} dilutions of the phage in SM buffer were used. Amplification was considered successful if the titre of the amplified library was greater than 1×10^{6} pfu/ml. Aliquots of the libraries were stored in 7 % (v/v) DMSO at -70°C for future use.

4.2.5 Evaluation of libraries

Excision was carried out using 10^7 pfu of the amplified library, 10^6 XL1-Blue MRF' cells and 10^9 pfu ExAssist helper phage as described by the manufacturer. Colonies were plated out onto LB agar plates containing 100 µg/ml ampicillin, 75 µl of IPTG (0.1 M; USB, U.S.A) and 250 µl X-gal (25 mg/ml; USB, U.S.A). Although not specified in the Stratagene manual, colour selection was used to evaluate the success of the excision and to assist in the selection of recombinants.

Individual colonies were inoculated into 5 ml LB containing 100 µg/ml ampicillin and cultured overnight at 37°C. Cultures were centrifuged for 5 min in 2 ml micro-centrifuge tubes to pellet the cells. The supernatant was removed and the plasmid DNA prepared as described by Isch-Horowitz and Burke (1981). The DNA was lyophilized after the isopropanol precipitation and resuspended in 20-50 µl TE buffer containing 20 µg/ml RNase A.

For restriction enzyme digestions, 8 µl of plasmid DNA was combined with 1 µl buffer H (10 x, Amersham), 0.5 µl EcoRI (10 U/µl, Amersham) and 0.5 µl Xhol (10 U/µl,
Amersham). The reactions were digested for a minimum of 2 hrs at 37°C and electrophoresed on a 1% agarose gel.

Additional screening was accomplished by colony PCR performed according to the protocol of Roschier et al. (2000). Colonies were picked using a micropipette tip and placed directly into the 50 μl reactions. PCR conditions were: 94°C (2 min), [94°C (30 s); 56°C (30 s); 72°C (1 min)] x 10, [94°C (30 s); 51°C (30 s); 72°C (1 min)] x 20, 72°C (5 min). Appropriate controls were employed. Aliquots (10 μl) of the PCR reactions were loaded onto a 1% agarose gel and electrophoresed under standard conditions. Products were visualized and photographed for future reference.

For both restriction enzyme and colony PCR analyses the percentages of colonies containing inserts were recorded. Insert sizes, taking into account the 180 bp of flanking vector sequence, were calculated from comparison to a DNA marker.

4.2.6 Screening with β-tubulin

30 000 pfu from each of the amplified libraries were plated onto NZY plates as described above. Plaques were lifted in duplicate onto Hybond-N membranes (Amersham Pharmacia Biotech, U.S.A) and prepared as outlined in the Uni-ZAP manual (Stratagene, U.S.A). DNA was fixed to the nylon membranes by UV cross-linking at 70 000 μJ.cm⁻² in an UV cross-linker (Amersham, U.S.A). The membranes were dried and wrapped in cling-film until use.

Bacterial clones carrying the Arabidopsis thaliana β-tubulin isoforms I, II and III were obtained from Mark Knight (Oxford, UK). Clones were cultured overnight at 37°C in 5 ml LB supplemented with 100 μg/ml ampicillin. Plasmid DNA was prepared as described above and digested with NotI and SalI (Amersham). Inserts were excised from the gel under long wavelength UV light using sterile scalpel blades. DNA was recovered from the gel using the Gene Clean® II kit (Bio101, U.S.A) as per the manufacturer's specifications.
5 μl (25 ng) of the purified product was used in a Megaprime (USB, U.S.A) labeling reaction as described by the manufacturer. Labeling reactions were carried out for a maximum of 30 min. The unincorporated nucleotides and primers were removed by purification on Sigma post-reaction spin columns (Sigma, U.S.A) according to the product specifications. Scintillation counting in a Beckman LS 5 000 TD liquid scintillation system (Beckman, U.S.A) was employed to determine the percentage incorporation and the total disintegrations per minute (dpm) present in the reaction volume.

Hybridizations were performed as outlined in the Lambda Library User's Manual (Clonetech, U.S.A). At least 2 x 10^8 dpm per ml of buffer was used. Positive plaques were detected by autoradiography at -70°C for 24 hrs followed by developing of the film on an Okamoto x-ray film developer (Okamoto, JP). The number of positive signals was determined and the expected numbers of rare transcripts calculated by dividing the total number of tubulin isoforms by 1000. This was compared to the theoretical probability of finding the rarest transcript (1 in 500 000), calculated according to the following equation derived from that presented in section 2.1.1:

\[
n = \frac{\ln (1 - P)}{\ln (1 - F)}
\]

Where \(n \) = the number of recombinants, \(P \) = the probability of finding an Insert, \(F \) = the frequency of the sequence in the population (0.000002).

4.2.7 Northern blot analysis

To investigate the regulation of β-tubulin II in the roots and leaves to further assess the suitability of this gene for library evaluation, radio-labeled β-tubulin II probes were prepared as described above (section 4.2.6). These were used to probe duplicate northern blots of leaf and root RNA obtained from plants at various water contents. Blots were prepared according to standard methodology (Ausubel et al., 1989). The Arabidopsis thaliana actin (Mendel Biotech Clone set, Mendel Biotech, U.S.A) and X. humilis 18S RNA genes were employed as loading controls.
4.2.8 Data analysis and management

All images were digitized using an HP ScanPro 5200C scanner and imported into Adobe Photoshop® where they were collated and modified for presentation.

4.3 Results

4.3.1 RNA and mRNA isolation and evaluation

Figure 4.2: RNA isolated at varying water contents from roots of (A) dehydrating and (B) rehydrating X. humiis plants. 1-2 µg of RNA was loaded per lane. The sizes and positions of the 18S and 28S ribosomal subunits are indicated. RWC = relative water content, HAW = hours after watering.

Figure 4.2 indicates that high quality RNA was isolated from the roots of X. humiis at specified water contents or hours after watering. The yield of RNA per dry mass of root tissue ranged from 0.005 % to 0.05 %, making the routine isolation of mg quantities of RNA possible. RNA pellets were dark brown in colour, implying contamination by phenolic compounds. Nevertheless, the 18S and 28S RNA bands were clear and intact. The 28S band was approximately double the intensity of the lower 18S band, indicating that degradation of RNA had not occurred during the harvesting and
extraction. Bands corresponding to chloroplast RNA were not observed, suggesting that the root samples were relatively free of leaf contamination. The lack of small and degraded RNA also implied that debris and bacterial contamination was limited.

This RNA was used in the isolation of poly(A)$^+$ RNA. In an initial test of dT-cellulose chromatography and the Promega PolyATtract system, it was found that the Promega system gave higher yields of poly(A)$^+$ RNA (data not shown). These yields ranged from between 1% and 3% of total RNA (i.e., 5-10 µg of poly(A)$^+$ RNA) as determined by ethidium bromide fluorescence assays. This contained little observable ribosomal RNA contamination. The average size of the transcripts was ~2kb with the maximum and minimum sizes being ~6kb and ~0.2 kb respectively (Figure 4.3). The quality of the RNA was confirmed by the successful incorporation of $[^{32}P]$dATP into cDNA via RT (Figure 4.3). Poly(A)$^+$ RNA from both hydrated and dehydrated root and leaf samples was reverse transcribed, although high levels of variation in the success of incorporation were observed in samples from intermediate water contents (data not shown).

![Figure 4.3](image-url)

Figure 4.3: (A) Poly(A)$^+$ RNA derived from pooled dehydration (lanes 1-2) and rehydration samples (lanes 3-5). Approximately 0.5 µg RNA from several separate isolations was loaded per lane. (B) Autoradiograms of $[^{32}P]$dATP labeled cDNA derived from root RNA at different water contents. PD = partially dehydrated, D = dehydrated, PR = partially rehydrated, un = unincorporated nucleotides.
4.3.2 cDNA synthesis and cloning

In line with the observations about the availability of the poly(A)$^+$ RNA for RT, both first- and second-strand reactions generated cDNA of the expected size range (Figure 4.5). Since these reactions contained pooled 'dehydration' or 'rehydration' samples, differential conversion of poly(A)$^+$ RNA from separate time points could not be assessed. Nevertheless, the yields of cDNA were within expected ranges, suggesting that efficient RT of the bulk of poly(A)$^+$ RNA occurred. The resulting cDNA ranged in size from ~300 bp to ~3 kb, with the average size being approximately 1-1.5 kb (Figure 4.4).

![Figure 4.4: Photographs of (A) first-strand and (B) second-strand synthesis reactions. 1-2 μl of DNA was loaded per lane and electrophoresed on alkaline agarose gels in the presence of ethidium bromide. D = pooled dehydration samples, R = pooled rehydration samples.](image)

This cDNA was fractionated using the Stratagene Sepharose columns provided with the ZAP-cDNA synthesis kit and using a standard low-melting point agarose gel fractionation method. The total amount of cDNA recovered in six fractions from the columns averaged 250-300 ng in four separate fractionation attempts. Because of the limited amounts of DNA and the requirement for 100 ng of DNA per ligation, no
assessment of the size range of the fractionated DNA could be gained. Moreover, fractionation of 3 sets of 'rehydration' cDNA failed due to binding of the cDNA to the columns. On the other hand, gel fractionation yielded at least 600 ng of DNA of 500 bp and above per fractionation.

Cloning of the fractionated DNA generated several libraries. In many cases the amount of cDNA proved limiting, resulting in libraries of primary titres lower than 500 000 pfu. Two successful libraries were selected for further manipulation and characterization. The details of the fractionation, ligation and primary titres of these are represented below (Table 4.1). A clear difference in the efficiency of the ligation and packaging of the two libraries is evident. The primary influence appeared to be the amount of cDNA available per ligation (Table 4.1). While the number of pfu in the primary dehydration library was not ideal, this was the highest obtainable using the column-fractionated cDNA. The titre of this primary library is also made more acceptable by the fact that the levels of non-recombinant clones were low (Table 4.1). Both libraries were successfully amplified to titres > 1x10^8 pfu/ml. Generally, 100-200 ml of library were stored at -70°C for future use. Retitering of the libraries at intervals during the course of a year indicated that the amplified libraries were not subject to significant loss of titre under these conditions.

Table 4.1: Summary of key library data.

<table>
<thead>
<tr>
<th>Library</th>
<th>Fractionation</th>
<th>cDNA ligated (ng)</th>
<th>Primary titre (pfu)</th>
<th>% non-recombinants</th>
<th>Amplified titre (pfu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dehydration</td>
<td>column</td>
<td>60 ng</td>
<td>0.4 x10^6</td>
<td>5.0</td>
<td>1 x10^8</td>
</tr>
<tr>
<td>Rehydration</td>
<td>gel</td>
<td>120 ng</td>
<td>1.5 x10^8</td>
<td>1.0</td>
<td>1 x10^10</td>
</tr>
</tbody>
</table>

4.3.3 Library evaluation

The presence and features of the inserts in the libraries were determined through excision, restriction analysis and colony PCR. Excision of the pBluescript plasmid from both libraries resulted in high numbers of colonies, the vast majority of which
contained inserts (Figure 4.5; Table 4.2). Colony PCR was found to be easier and significantly faster than restriction analysis for the routine screening colonies for inserts. The results of the colony PCRs were confirmed by digestion of the plasmid DNA from the total libraries and selected clones (Figure 4.5). The two methods generated identical information, indicating that the sizes of the inserts in both libraries ranged from approximately 0.5-3.0 kb with the average size being approximately 0.9-1.0 kb. No significant difference between statistics for the inserts from the different libraries was observed, suggesting that the two methods of size fractionation were equally efficient. These statistics are summarized in table 4.2.

![Figure 4.5](image_url)

Figure 4.5: Evaluation of library inserts. Agarose gels of colony PCR reactions indicating the presence of inserts in 12 randomly selected clones from the (A) dehydration and (B) rehydration libraries.

Table 4.2: Average insert sizes and insert size ranges for dehydration and rehydration libraries.

<table>
<thead>
<tr>
<th>Library</th>
<th>Ave. size (kb)</th>
<th>Std. dev.</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dehydration</td>
<td>1.1</td>
<td>0.51</td>
<td>0.5-3.0</td>
</tr>
<tr>
<td>Rehydration</td>
<td>1.0</td>
<td>0.25</td>
<td>0.5-3.2</td>
</tr>
</tbody>
</table>
The most alarming change in the libraries during excision was the dramatic shift in the ratio of blue to white clones. For both libraries, this ratio increased several fold from 5% and 1% to approximately 74% and 69% of the dehydration and rehydration libraries respectively (Figure 4.6).

Since the representation of genes in downstream applications could be severely compromised by such a shift, routine screening of the colour selected libraries was undertaken. Both light blue and blue colonies contained a significant percentage of inserts (80-100%; Figure 4.7 A), indicating that this was not a true increase in the number of non-recombinants in the libraries. However, the average size of the inserts was observed to be smaller in the light blue and dark blue colonies (Figure 4.7 B). Because of the correlation between the decrease in insert size and the shift in the representation of the clones was taken to be due to the failure of the lacZ colour
selection system. It was concluded that the insert representation of both libraries was of a suitable standard and was not significantly affected by the excision process.

Figure 4.7: Graphs indicating (A) the percentage of colonies containing inserts and (B) the average sizes of inserts in colour-selected colonies.

4.3.4 β-tubulin screens

Figure 4.8: Representative autoradiographs indicating the representation of β-tubulin isoforms in the (A) dehydration and (B) rehydration libraries. Approximately 30 000 pfu were screened per membrane.
Table 4.3: Summary of the statistics relating to the percentage of positive plaques detected in the β-tubulin screen.

<table>
<thead>
<tr>
<th>Library</th>
<th>% β-tubulin (total)</th>
<th>% β-tubulin (per isofom)</th>
<th>TNRT'</th>
<th>P**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dehydration</td>
<td>3.08</td>
<td>1.02</td>
<td>2</td>
<td>0.45</td>
</tr>
<tr>
<td>Rehydration</td>
<td>0.18</td>
<td>0.06</td>
<td>1.5</td>
<td>0.95</td>
</tr>
</tbody>
</table>

TNRT' = theoretical number of rare transcripts, P** = probability of finding the rarest transcript

Figure 4.8 and Table 4.3 summarize the results of the library screens. Both libraries exhibited an extremely high number of positives. The percentage of positives per β-tubulin isofom was approximately 1.0 % and 0.06 % for the dehydration and rehydration libraries respectively (Figure 4.8; Table 4.3).

The theoretical ratio (1:1000) of rare transcripts to common transcripts (such as β-tubulin) in a typical cell was used to determine the potential numbers of any rare transcript in the libraries. Although the number of pfu in the libraries differed by more than 3 fold, this value was observed to be similar for both (Table 4.3). However, when this was compared to the probability of a library containing the rarest transcript, there was a large discrepancy between the two values. The probability that the rarest sequence will be represented in the libraries was calculated to be approximately 45 % and 95 % in the dehydration and rehydration libraries, respectively. This was attributed to the fact that the theoretical values for the complexity of the transcriptome were unavailable. Overall the tubulin representation confirmed the presence of plant-derived inserts and indicated that the rehydration library was the better quality library.
Figure 4.9 illustrates the northern blot analysis of β-tubulin levels in *X. humilis* tissues at various water contents. These results indicated that the levels of β-tubulin expression during dehydration and rehydration were variable. Levels of tublin II were higher in the roots than in the leaves. In the roots the expression of tubulin II was high in the partially hydrated and rehydrated samples, but little or no expression was observed in the dehydrated samples (Figure 4.9 A). Multiple bands were detected in the leaf RNA. The uppermost band was represented consistently, but the lower two bands appeared to increase in intensity during the rehydration period (Figure 4.9 A). Whether these bands were due to alternate splicing or due to cross-hybridization to related β-tubulin isoforms was not empirically determined. The variability in the tubulin expression patterns was considered to cast some doubt on the validity of the conclusions drawn from the library screening, since it indicates that direct comparisons
between rehydration and dehydration (or root and leaf) libraries could not be drawn. Northern analysis of the expression of the 'house-keeping' gene, β-actin indicated that the levels of this gene also fluctuated extensively during desiccation and rehydration (Figure 4.9 B). In root samples, actin was expressed at low levels during dehydration, but at slightly higher levels during rehydration. In the leaves, actin expression was higher in the partially dry and rehydrated samples than in either the hydrated or dry samples (Figure 4.9 B). Although high levels of cross-hybridization were observed in the 18S RNA blots, the primary 18S RNA band intensity did not change significantly, indicating that the amounts of RNA loaded were consistent.

4.4 Discussion

The data presented above imply that libraries of a suitably high standard, in terms of the length and representation of cDNAs, were obtained. These libraries represent significant resources for the future study of mechanisms of desiccation tolerance in X. humilis.

It is likely that two separate sets of transcripts are mobilized during dehydration and rehydration in order to ameliorate the distinct stresses experienced during these periods. The limits to cloning efficiencies and the abundance of house-keeping genes mean that combining RNA samples tends to reduce the frequency of rare transcripts in mixed pools of RNA. For this reason, two separate libraries – one dehydration and one rehydration - were constructed. Although this will lead to increased redundancy of common genes between the two libraries, it may also increase the possibility of cloning transcripts involved in the stress responses.

Despite the fact that the RNA utilized for the construction of the libraries appeared to be of high quality (Figure 4.2) a number of researchers have experienced difficulties with the RT of RNA from resurrection plants (eg: Koonjul et al., 1999) and from roots in general. This is thought to be as a result of the inclusion of polyphenolics and oligosaccharides in the RNA (Chomczynski and Mackey, 1995; Koonjul et al., 1999) - a suggestion that is supported by the colouration of the RNA and the variability of the
RT observed in this study. The problems experienced with the fractionation of the cDNA produced from the pooled rehydration RNA also imply that there could be unusual structure associated with the RNA template. Both these possibilities suggest role for RNA stabilization in desiccation tolerance.

The fact that *X. humilis* relies heavily on translation rather than transcription during the initial phases of rehydration (Dace *et al.*, 1999) means that mRNAs must be stored in a stable form in the desiccated plant. The results of O'Mahony and Oliver (2001) indicated that this was true for the fdt tolerant moss *Tortula ruralis* but not for the mdt grass *Sporobolus stapfianus* which underwent ordered breakdown of the ribosomal RNA. However, these authors only studied the ribosomal RNA - the breakdown of which may be a mechanism of terminating translation during the later phases of desiccation. The remaining RNA may be stabilized or stored in some way. Wood and Oliver (1999) demonstrated that RNA is packaged into messenger ribonucleoprotein particles in response to desiccation in *T. ruralis* gametophytes. They have suggested that this is a common mechanism of protection in resurrection plants. It is likely, however, that several mechanisms, including poly(A) tail extension (Kusov *et al.*, 2001) and cap binding (Hugouvieux *et al.*, 2001) operate in conjunction to bring about this stabilization. The finding that the condensation of commonly occurring isoprenoid moieties to adenine residues results in increased thermal stability of RNA (Kierzek and Kierzek, 2001) also suggests that chemical modification may be involved. Whether all transcripts are targeted for storage, or whether key transcripts are selected is an interesting question that remains to be explored.

The difficulties related to the manipulation of angiosperm resurrection plant RNA highlight the need for the consistent quality control measures employed in the course of this study. The failure of the RT of RNA from a single time point within the pools of RNA could dramatically alter the representation of transcripts within the libraries.

Although the cloning of the cDNA generated from the poly(A)$^+$ RNA pools only yielded 0.4×10^8 pfu (Table 4.1) for the dehydration library, this was considered acceptable, largely because given the small number of living cells, and the lack of photosynthetic
functions, the population of transcripts is expected to be less complex than in other tissues. Reddy et al. (2002) demonstrated that primary libraries of water stressed rice roots consisting of only 5000 clones were sufficient to identify several novel genes. Even if roots do have more complex gene expression patterns than the anatomy suggests the high titre of the rehydration library (1.5×10^6 pfu; Table 4.1) means that the bulk of the transcripts expressed in the roots during water stress are likely to be represented in this library.

The higher titre of the rehydration library is also an indication of the importance of the amount of cDNA used in the ligation reaction, and of the success of the gel fractionation method in generating sufficient cDNA to make this possible (Table 4.2). The efficiency of this method was confirmed by the fact that there were no significant differences in the average size and overall range of the inserts in the two libraries (Figure 4.5). The fact that the average insert size was approximately 1 kb suggests that the majority of the inserts are not full length. However, the wide range of insert sizes, and the exclusion of small inserts makes it likely that most inserts will be large enough to allow sufficient sequence information to be gained.

The shifts in the numbers of blue colonies during the excision procedure (Figure 4.6) was alarming as the levels of non-recombinants in a library should preferably be as low as possible (Soares and Bonaldo, 1998). Analysis of these clones revealed that this apparent shift was due to the failure of the colour selection method. This has been reported by several authors and is thought to arise when the sequences inserted into the multiple cloning sites are too small to disrupt the functioning of the $\text{lacZ}^\text{+}$ product (Promega Technical Manual 042, 1999; Ali et al., 2001). The decrease in the average size of inserts between white and blue colonies (Figure 4.7) indicates that this is likely to be the primary cause. However, it has been reported in the literature that DNA fragments up to 2 kb have been cloned and produced blue colonies. Such fragments are usually cloned in-frame do not contain stop codons (Promega Technical Manual 042, 1999).
Although screening with marker genes is a traditional means of evaluating libraries (Hagen et al., 1988; Soares et al., 1994), the results of the screening conducted in this study were difficult to interpret. The percentage of tubulin per library suggests that the chances of locating a particular rare gene are better for the dehydration library (Table 4.3). However, the probability values indicate a very low chance of finding a very rare transcript in this library. This apparent contradiction arises from the fact that that the ratio of common genes to rare genes has not been determined for plants. The figure of 1000 is a theoretical figure drawn primarily from animal studies (Soares et al., 1994). Additionally it does not take into account the total number of pfu in the primary library, and therefore does not relate the probability of finding a transcript to the complexity of the libraries. On the other hand, the probability estimate takes into account the effect of the titres on the range of genes originally cloned. But this figure does not factor in fluctuations or deviation in the expression patterns and ratios of genes in the source material and assumes that the gene of interest will be represented only once in 500 000 transcripts. Nevertheless, the bulk of the data, combined with qualitative observation, support the idea that the dehydration library contains a less complex array of rare genes. This goes against the findings of Hagen et al. (1988) that of 25 libraries examined, those containing less than 0.1% actin did not yield any clones of interest (low abundance sequences).

β-tubulin and β-actin are traditionally the house-keeping genes of choice for the evaluation of libraries (Hagen et al., 1988; Soares et al., 1994) but this is only true for systems in which their expression is stable. The northern blot analyses were conducted to explore the validity of using tubulin representation as a means of comparison between libraries. They indicated that neither actin nor tubulin II exhibited stable expression during desiccation or rehydration (Figure 4.9). The significance of this is unknown and could not be pursued due to time constraints. Although the 18S RNA expression was found to be consistent, it is not expected that this will be present in libraries constructed from purified poly(A)⁺ RNA. More effective screening procedures should rely on genes for which the expression is known to be relatively invariable. However, such a gene will have to be characterized empirically as little is known about what constitutes a housekeeping gene in a resurrection plant. Clearly,
the basic cellular machinery of *X. humilis* is also affected by the onset of water flux – at least at the transcriptional level.

This problem has received some attention from recent microarray experiments which indicate that of the 30 genes exhibiting the most stable expression patterns across a wide range of conditions, none corresponded to those traditionally assigned housekeeping functions (Wu *et al.*, 2001). These experiments also indicated that the large the use of genes from large families is also problematic because cross hybridization occurs for sequences with greater than 80 % sequence identity (Wu *et al.*, 2001). Such cross hybridization tends to mask the true expression patterns of a single representative.

Cross hybridization may explain the range of bands observed in the tubulin blot (Figure 4.9 A). In *Arabidopsis* there are 9 members of the β-tubulin family all of which share extensive sequence homology (Snustad *et al.*, 1992). Given the conservation of tubulin sequences (despite the lack of conservation of expression patterns) it is probable that a similar relationship between tubulin isoforms exists in *X. humilis* and thus results in cross hybridization. The lack of multiple bands in the root samples suggests that either β-tubulin II or III (these are different isoforms of the same gene – Snustad *et al.*, 1992) is not expressed in this tissue or that alternate splicing of introns occurs only in the leaves. The question of cross-hybridization raises additional problems for the library evaluation based on tubulin representation, as the number of isoforms effectively detected is unknown.

In this study two stress- and tissue-specific libraries were constructed from recalcitrant material. The analysis of these libraries highlighted several issues that may have relevance for ongoing resurrection plant research. The evidence supports the idea that the libraries generated in the course of this study are of a suitably high standard. However, insight into the quality and complexity of the libraries relies either on extensive screening with a variety of genes, or on large-scale sequencing. Both of these are expensive procedures. Methods of reducing the redundancy of the libraries,
and of increasing their quality and usefulness to make such procedures cost effective are addressed in the next chapter.
Normalization of cDNA Libraries

A rational approach to gene discovery

5.1 Introduction

The representation of genes in cDNA libraries presumably reflects that in the population of mRNAs from which they are derived (Soares et al., 1994; Bonaldo et al., 1996; Soares and Bonaldo, 1998). The mRNAs in a typical somatic cell tend to be distributed in three frequency classes: (I) supervalent (or abundant), (II) intermediate and (III) rare (Bishop et al., 1974; Bonaldo et al., 1996). The supervalent class consists of between 10 to 15 mRNAs that are found in frequencies of ~5000 copies per cell — therefore making up about 10–20 % of the total mRNA mass (Bonaldo et al., 1996). The intermediate class typically consists of 1000–2000 mRNAs that make up 40–45% of the mRNA mass; while the complex or rare class is made up of approximately 15 000–20 000 transcripts. This last class of transcripts only makes up 40–45 % of the total mRNA mass, yet contains 90 % of the expressed sequences (Bonaldo et al., 1996).

This implies that once the common sequences in a typical cDNA library have been identified, expected redundancy levels are at least 60% (Soares and Bonaldo, 1998) and that the rarest gene will only be represented once in 500 000 clones. In some libraries derived from complex tissues the frequency of the occurrence of rare transcripts may even be as low as 10^{-7} (Soares et al., 1994; Soares and Bonaldo, 1998). This means that large-scale sequencing of standard libraries is an extremely inefficient and expensive way of discovering novel genes. Moreover, it restricts microarray experiments to cases where either entire libraries have been sequenced and the redundant clones removed, or to where a small, highly redundant gene set is screened.
Chapter 5

To a large extent, these problems can be overcome by the use of normalized libraries in which the frequency of all clones is in a narrow range, and which therefore exhibit very low redundancy levels (Bonaldo et al., 1996). Normalization generally results in libraries in which supralent and intermediate class transcripts represent only ~ 5% of the total sequences, while the rare transcript representation is increased to 95%. This corresponds to a 13.5 fold decrease in common sequences and a 2.5 fold increase in rare transcripts (Soares and Bonaldo, 1998). The process also results in a decrease in the total number of clones to 10 000–100 000 clones. This enables the relatively easy production of complete microarrays. Normalization is thought to be a more efficient approach than subtraction (Diatchenko et al., 1996) to the characterization of genetic responses because it retains in high and intermediate abundance sequences that may be of interest in differential or functional studies. Subtraction, on the other hand, may be more effective in improving the representation of novel sequences alone. Both methods serve to address the dramatic fall-off in the rate of EST discovery (Wang et al., 2000).

Two general approaches to normalization have been described. The first utilizes the hybridization of cDNA to genomic DNA (Weissman, 1987; Soares and Bonaldo, 1998). Using this approach, the frequency of each cDNA in the normalized library should be proportional to its representation in the genome. However, the feasibility of this method, particularly in light of the difficulty in obtaining sufficient rare cDNA for the hybridization, has not been established (Soares et al. 1994; Soares and Bonaldo, 1998). More successful approaches have been based on the principles of re-association kinetics.

5.1.1 Re-association kinetics in normalization

If a population of DNA duplexes is dissociated and then re-associated, the reaction will follow second order kinetics with respect to the concentration of single stranded DNA remaining unhybridized. This can be expressed as:

\[C_0 t_{1/2} = \frac{1}{k} \]
for the limits C_0 ($t = 0$) and C ($t = t$) and where $t = t'_{1/2}$ and $C/C_0 = 1/2$. k represents the rate constant of the reaction and $C_0 t'_{1/2}$ the product of the total DNA concentration and the time (Soares and Bonaldo, 1998). Such a dynamic is represented graphically in a C_{ot} curve (Figure 5.1).

![Graph showing C_{ot} curve](image)

Figure 5.1: A typical C_{ot} curve of a complex DNA solution.

Since the re-association time is inversely proportional to the concentration of the DNA, the rarer the DNA sequence in the original reaction, the longer it will take to find its reaction partner and re-anneal (Ko, 1990; Sasaki et al., 1994; Soares et al., 1994; Bonaldo et al., 1996). Therefore, as the reaction proceeds, the bulk of the common sequences in the population will form double stranded duplexes, while the rare sequences will remain single stranded.

The elimination of the double stranded duplexes (or common sequences) generates a single stranded DNA population in which the frequencies of all remaining sequences are in a very narrow range (preferably 1-2) or 'normalized'. Note that in practice it is impossible to achieve a library of complete parity. Yet, at the same time, complete loss of any insert, regardless of its abundance, does not occur (Ko, 1990; Soares and Bonaldo, 1998). To balance redundancy against enrichment of rare sequences, a suitable C_{ot} time should be chosen. This is however dependent on the complexity of the sequence population, and on the GC content and average lengths of the
sequences represented. In general C_{ot} times of between 5 and 20 are chosen. C_{ot} times of less than 1 result in an enrichment of class I (common) sequences, while C_{ot} times greater than 50 lead to a less significant representation of this class (Bonaldo et al., 1996). In short, the annealing times have to be optimized for the material at hand, and for the specific application required.

5.1.2 Kinetic methods of normalization

At least four independent methods have been developed on the basis of reassociation. Ko's (1990) method relies on the re-association of sheared, linker-primed 200-400 bp cDNA fragments corresponding to the 3' ends of genes. His rationale for constructing libraries consisting entirely of 3' ends of genes was that, since the non-coding ends are almost always unique to a particular gene, this prevents the hybridization of related members of a gene family. In turn, this reduces the likelihood of the elimination of rare genes from the cDNA pool (Ko, 1990; Soares and Bonaldo, 1998). Patanjali and co-workers utilized a similar approach, though the hybridizing cDNA consisted of both coding and non-coding regions generated by PCR from cloned $\lambda gt10$ inserts (Patanjali et al., 1991). The drawback of this method is that cDNA inserts must be short and relatively homogenous in length in order for the PCR to work efficiently (Patanjali et al., 1991; Soares and Bonaldo, 1998).

A slightly different approach was employed by Sasaki et al. (1994). Instead of HAP chromatography, this procedure uses immobilized cDNA as the means of separating single and double stranded DNA populations. Sample mRNA is converted to cDNA and immobilized on a latex bead support. This is used in four rounds of hybridization against an identical total mRNA sample, which is gradually depleted in class I and II transcripts. The final population of mRNA is converted to cDNA and cloned into an appropriate vector (Sasaki et al., 1994). Although this is a highly effective method, it is limited by the requirement for large amounts of pure mRNA (Sasaki et al., 1994; Soares and Bonaldo, 1998).
Perhaps the most successful method of normalization to date is that developed by Soares et al. (1994) and modified by Bonaldo et al. (1996). This method utilizes single stranded DNA template generated either in vivo or in vitro from cDNA libraries. The template is hybridized to the complementary inserts generated from the same source libraries by PCR or plasmid digestion (Soares et al., 1994; Bonaldo et al., 1996). The use of almost full length cDNA overcomes many of the problems of cross-hybridization inherent in other normalization methods, while the use of library derived template means that source material is not limiting. Soares' method is also perhaps the only normalization method to have found widespread commercial application. The method was patented (Bonaldo and Soares, 1997) and has been a contributing factor in the success of the Integrated Molecular Analysis of Genomes and their Expression (I.M.A.G.E.) Consortium's gene discovery programme. It is discussed in greater detail in the sections below.

5.1.3 The Soares method

The defining characteristic of Soares' method of normalization is the use of full length, or almost full length, single stranded template DNA derived from cDNA libraries. This approach includes a number of possible methods of generating both the template (or 'tracer') and the annealing DNA (or 'driver').

1. tracer

Bonaldo et al. (1996) tested the production of single stranded tracer via the combined action of Gene II and exonuclease III (Hoheisel, 1993; Johnston et al., 1995), via in vitro transcription using T3 or T7 RNA polymerases, and via super-infection of bacterial libraries with M13K07 helper phage. The M13K07 helper phage system relies on the ability of the phage to excise a faithful single stranded copy of a bacterial plasmid containing the f1 origin or replication. This occurs without lysis of the host cells – a fact that can be exploited to produce relatively pure single stranded DNA without the need for complex extraction procedures (Viera and Messing, 1987; Short et al., 1988).
While the Gene II/ Exo III system (Life Technologies) is beneficial in that it circumvents distortions in the representation of genes arising from unequal growth of clones with different size inserts, it does not result in complete conversion of all plasmids to single stranded circles – making an additional HAP purification prior to normalization necessary (Bonardo et al., 1996). This, combined with the much higher yields of the M13K07 helper phage system, makes in vivo tracer production the method of choice (Bonardo et al., 1996; Soares and Bonardo, 1998; Ali et al., 2000; Reddy et al., 2002).

\textit{ii. driver}

The original method employed by Soares et al. (1994) relied on a controlled oligo(dT) primer extension to generate short (200-300 bp) complementary fragments of driver DNA. The rationale behind the use of fragments corresponding only to the 3' ends was to address the problem of cross-hybridization first recognized by Ko (1990). However, this method does not take into account the fact that long poly(A) sequences present in most expressed mRNAs (in Alu tails, for example) tend to hybridize to oligo(dT) tracts in the template cDNA (Bonardo et al., 1996; Wang et al., 2002). This does not influence the representation of common sequences, which hybridize regardless of the poly(A) tracts, but does have a serious effect on rare sequences. The hybridization of these regions of homology leads to the selective loss of rare genes because of the generation of short double stranded segments (Martin and Pardee, 2002; Wang et al., 2002).

Bonardo et al. (1996) produced driver DNA by restriction digestion and purification of the inserts from the plasmid library. Although this limits problems associated with the use of oligo(dT) primers, it is problematic in that it biases the reaction against inserts with internal restriction enzyme sites. As a result most workers favour the use of driver DNA derived from PCRs using the T3/ T7 primers. This necessitates the use of vector- and strand-specific blocking oligonucleotides to eliminate hybridization of inserts to the vector sequences flanking the inserts (Bonardo et al., 1996; Ali et al., 2000).
The various methods are summarized diagrammatically below.

![Diagram showing the various methods of normalization.]

Figure 5.2: An outline of the available methods of normalization. The driver DNA is denatured and annealed to the tracer in the presence of blocking oligonucleotides to achieve the required C1,t time (adapted from Bonaldo et al., 1996).

A population can only be said to be normalized if it is separated from the mass of DNA duplexes that constitute the common sequences. The most effective method of doing so is via hydroxyapatite (HAP) column chromatography.

5.1.4 HAP column chromatography

HAP consists of calcium phosphate crystals that bind nucleic acids by virtue of the interaction between the phosphate backbone of the nucleic acid and the calcium residues in the resin (Britten et al., 1974; Soares and Bonaldo, 1998). Normalization makes use of the different affinity of HAP for single and double stranded DNA. At low concentration of phosphate ions (10–30 mM) HAP binds both single and double
stranded DNA. At intermediate concentrations of phosphate ions (120–150 mM), HAP binds only double stranded DNA and allows the release of single stranded DNA, whereas at high concentrations of phosphate ions (400-500 mM) HAP binds neither double nor single stranded DNA (Britten et al., 1974; Soares and Bonaldo, 1998). In its simplest form, therefore, separation of double stranded duplexes from the single stranded normalized DNA population involves binding of the double stranded DNA to HAP in 120 mM sodium phosphate and collection of the single stranded eluate.

The definition of the binding capacity of HAP is somewhat arbitrary as the binding of DNA is higher for duplexes that have no mismatched bases. It is also higher for linear double stranded DNA than for circular plasmid DNA (for this reason, DNA is routinely linearized with PvuII prior to loading on HAP columns). However, for most applications the capacity is approximately 0.5 μg of DNA per mg of HAP (Britten et al., 1974). It is this high binding capacity, combined with the selectivity of HAP, that makes it suitable for the normalization of re-associated DNA populations.

In most methods, the single stranded DNA eluate from the HAP columns is converted to double stranded plasmid DNA and electroporated into an appropriate host in order to complete the normalization process.

5.1.5 The effectiveness of normalization

As noted earlier, normalization tends to reduce the frequency of class I (common) and class II (intermediate) sequences and increase the representation of class III (rare) sequences. Representation of class I and II transcripts is reduced from approximately 60 % to approximately 5% while the representation of rare transcripts increases from 40 % to 95 %. Ali et al. (2000), normalizing to C_\text{sat} values of 10, were able to demonstrate a 10-fold decrease in the frequency of the supervalent c-hordein transcript, and a corresponding 10-fold increase in the frequency of the rare fatty acid desaturase 3 gene. The representation of these two genes was similar in the normalized library, despite the hordein gene being represented in 50-fold higher frequency in the starting non-normalized library (Ali et al., 2002). Essentially,
therefore, the percentage of the library that the class makes up is directly proportional to the number of independent sequences in that class (Soares and Bonaldo, 1998).

It is interesting that the representation of Alu repeat-containing cDNAs tends to be preserved - suggesting that imperfectly matched hybrids do not bind to the HAP columns, or that they melt during the elution. This implies that related, cross-hybridizing sequences will not be eliminated from the normalized libraries and that gene families are preserved in the final library (Bonaldo et al., 1996). The process does not appear to discriminate against sequences on the basis of size if full length inserts are used for the driver. If however truncated driver fragments are used (e.g.; driver derived from primer extension reactions) then the normalization tends to result in a higher representation of truncated sequences and sequences lacking the 3' UTRs.

Such is the success of normalization in gene discovery that it is estimated that over 87.5% of all human ESTs have been derived from normalized libraries (Soares and Bonaldo, 1998). The procedure has also been applied to libraries from specific tissues of mouse and rat amongst others (Bonaldo et al., 1996). However, there are few normalized libraries derived from plant material. This is largely related to the extent to which plant research lags behind mammalian molecular biology, and to the lack of information about the sequence complexity of most plant genes. To date normalized libraries exist for only four plant species, namely Arabidopsis thaliana (Asamizu et al., 2000a), Lotus japonicus (Asamizu et al., 2000b), Triticum aestivum (Ali et al., 2000) and Oryza sativa (Reddy et al., 2002). In each of these libraries, the typical percentage of novel sequences was 20-30%, at least 5 to 10-fold higher than in their non-normalized counterparts. Clearly therefore, the power of this technique in gene discovery programmes is considerable.

5.1.6 Normalization and plant desiccation tolerance

In terms of the broader context of this thesis, the most interesting of the plant libraries are those derived from rice (Reddy et al., 2002). In a typical year, the yield of rice is
decreased by about 15% due to the effects of abiotic stress, a figure that is almost double that attributed to biotic stresses. Drought stress in particular is the most detrimental of these stresses, causing wide-scale yield instability across Asia (Reddy et al., 2002). Given the complexity of the plant responses to desiccation and drought outlined in chapter 1, it is clear that it would be difficult to breed for drought tolerance in this or any other species. Large-scale EST projects offer a progressive means of unraveling the complex biology underlying increased resistance to stresses, and make possible the lateral transfer of such traits in a way that the study of single genes cannot. In sequencing only 1000 of the 25 000 clones represented in a normalized leaf library from rice grown at 50% RWC, Reddy et al. (2002) demonstrated that approximately 29% corresponded to completely novel ESTs, while the redundancy amongst these clones was only 3.5% (as opposed to 10% in the non-normalized library).

The report of Reddy et al. (2002) is also the first published attempt to normalize libraries generated from water-stressed roots. However, the authors were unable to produce either standard or normalized libraries of acceptable quality (the standard root library contained only 5000 cfu; Reddy et al., 2002).

Genes related to metabolism, metallothionein-like genes, ABA- and DREB-responsive genes, transcription factors and anti-oxidant genes were found to be the most prevalent classes in the normalized library. Many of these have already been reported as abiotic stress response factors in rice and Arabidopsis microarray analyses (Kawasaki et al., 2001; Seki et al., 2001, Seki et al., 2002), thus confirming the usefulness of normalization in the understanding of complex biological responses.

It is clear that normalization of cDNA libraries enables large-scale study of complex traits, and is especially beneficial in cases where little funding or priority is attached to the sequencing of the genome of the organism in question. However, few researchers have focused on the production of plant libraries. Only one group (Reddy et al., 2002) has used the technology to study plant stress, and none have applied it to desiccation tolerant species or to the role of the roots in the process.
This chapter describes the production of normalized libraries from root libraries of desiccating and rehydrating *X. humilis*. It is anticipated that this will generate a deeper understanding of the specificity of root gene expression in desiccation tolerance through facilitation of large-scale sequencing and microarray analysis.

5.2 Methods

5.2.1 Mass excision of pBluescript phagemid

Mass excision of the dehydration and rehydration cDNA libraries described in Chapter 4 was performed with the ExAssist helper phage system employing a protocol modified form that described by Invitrogen (Invitrogen Tech-Online, 2002). XL1-Blue MRF' cells (Stratagene, U.S.A) were cultured at 37°C until OD 0.5. 50 ml of these cells were centrifuged at 2 000 g for 10 min in a Beckman JA 2-21 Refrigerated centrifuge (Beckman, U.S.A). The pellet was resuspended in 10 ml MgSO₄ (10 mM). Cells were incubated at 37°C for 15 min without shaking in order to regrow pili. Transfection with 10⁹ pfu of the amplified Lambda Zap library and 10¹ⁱ pfu of ExAssist helper phage (Stratagene, U.S.A) was carried out at 37°C for 15 min without shaking, and then for 130 min with shaking at 200 rpm. The culture was heated to 65°C for 15 min and centrifuged for 15 min at 4 000 g. The supernatant containing the excised phagemids was transferred to a sterile conical tube and stored at 4°C until further use.

For recovery of the plasmid, SOLR cells (Stratagene, U.S.A) were cultured with kanamycin (75 μg/ml) to OD 0.5, centrifuged at 2 000 g for 10 min and resuspended in 100 ml MgSO₄ (10 mM). After incubation at 37°C without shaking for 15 min, the cells were infected with the entire 37 ml pagemid supernatant. The mixture was incubated without shaking at 37°C before being inoculated into 400 ml 2 x YT medium and cultured at 30°C with shaking at 200 rpm. Ampicillin (100 μg/ml) was added after 2 h and the incubation continued for 14 h. Cells were centrifuged at 4 000 g for 10 min and the pellets resuspended in 6 ml LB medium. The entire 6 ml was plated out on 28
cm x 28 cm LB agar plates containing 100 μg/ml ampicillin. Bacteria were cultured overnight at 37°C.

5.2.2 Isolation of single stranded library DNA

Single stranded DNA was prepared in vivo using the M13K07 system supplied with the Lambda Zap® packaging kit (Stratagene, U.S.A). Although a protocol described by Invitrogen (Invitrogen Tech-Online, 2002) formed the basis of the isolation, a number of methods and factors affecting the amount of single stranded DNA recovered were tested. These included adjustments of the:

- host strain (XL1-Blue MRF', SOLR)
- type of helper phage (VCSM13, ExAssist, M13K07)
- MOI (10, 100, 1000, 10 000)
- culture age (ODs 0.1, 0.3, 0.5, 0.6)
- cell recovery (plate scrape or liquid culture)
- precipitation conditions:
 - PEG concentrations (3%, 5%, 10%, 15%)
 - duration (2 h, 24 h, 48 h 1 week)

In the optimized protocol employed in this study, SOLR cells containing the excised library DNA were scraped from the LB plates and resuspended in 30 ml LB medium. Aliquots (1/50th or ~ 600 μl) were stored in 50 % glycerol at -70°C or immediately inoculated into 1 1/2 x YT broth and cultured to OD 0.1. The culture was super-infected with M13K07 helper phage at a multiplicity of infection (MOI) of 10 and incubated for 1 h at 37°C. Kanamycin (75 μg/ml) was added and the culture incubated at 37°C with vigorous shaking for 16 h. Cells were pelleted by centrifugation at 16 000 g for 20 min and the supernatant recovered. Phages were precipitated at -20°C for 1 week by the addition of 0.1 volume of 20 % PEG 6000 (Sigma, U.S.A) and 2.5 M NaCl, and by centrifugation at 16 000 g for 1 h.
The phage pellet was resuspended in 2 ml sterile water and extracted sequentially with 1 volume phenol and 1 volume phenol: chloroform (1:1 v/v). The single stranded DNA was precipitated at -20°C for 24 hrs with 2.5 volumes ethanol (100 %), 0.1 volume sodium acetate (3M) and 0.5 μl glycogen (20 mg/ml) as described by Soares and Bonaldo (1998). The DNA was recovered by centrifugation at 16 000 g for 1 hr. The pellet was resuspended in 200 μl water. Several μl aliquots were set aside for quantification and electrophoresis (as described in Chapter 3) and the remainder stored at -20°C until further purification. S1 nuclease digestion (Ausubel et al., 1988) was performed to check that the DNA extracted was single stranded.

5.2.3 Purification of single stranded tracer

Single stranded DNA was purified by HAP chromatography on DNA Grade Bio-Gel® HTP HAP (Bio-Rad, U.S.A) after Pvull digestion as described by Ali et al. (2000). The sole modification was that the 0.14 M sodium phosphate elution buffer of Soares and Bonaldo (1998) was used as this included SDS and EDTA. For each purification five fractions of 1 ml each were collected and extracted 6-10 times against anhydrous n-butanol to reduce the total sample volume to less than 500 μl.

The following methods of desalting the recovered DNA were tested:

- Promega DNA Clean-up columns (Promega, U.S.A)
- Sigma Post-reaction purification columns (Sigma, U.S.A)
- dialysis (Ausubel et al., 1988)
- gel purification followed by Gene Clean (BIO 101, USA) or Qiagen Quick column (Qiagen, U.S.A) extraction.

Gel purification (Chapter 3) followed by Qiagen Column gel extraction as outlined by the manufacturer was most effectively employed. DNA was eluted in 30 μl molecular grade water (Sigma, U.S.A).
Because of the small volumes and low concentrations, the DNA was quantified using an ethidium bromide plate assay (Uni-Zap® CDNA synthesis kit, Stratagene) or GeneQuant DNA calculator (Amersham Pharmacia Biotech, U.S.A). The remaining DNA was checked by agarose gel electrophoresis and stored at -20°C until use.

5.2.4 Generation of the driver DNA

Driver DNA was generated from 100 ng of the tracer by PCR (Ali et al., 2000). PCR conditions were as follows: 94°C (1 min); [94°C (30 s); 55°C (30 s); 72°C (3 min)] x 30; 72°C (5 min). After confirmation of the success of the PCR by running 1/10th of the reaction on a standard agarose gel, the driver was purified directly from the PCR reaction using Promega PCR columns (Promega, U.S.A) or Qiagen PCR Clean-up Columns (Qiagen, U.S.A). DNA was eluted in 30 µl water and quantified by ethidium bromide plate assay or spectrophotometry on a GeneQuant DNA calculator (Amersham Pharmacia Biotech, U.S.A).

5.2.5 Hybridization

Hybridizations were carried out according to the protocol of Ali et al. (2000). Hybridization reactions contained 80 µg tracer DNA, 1.68 µg driver, 50 % (v/v) formamide (Sigma), 10 µl hybridization buffer (5 M NaCl, 100 mM Tris-HCl pH 8.0, 5 mM EDTA) and 10 µg of each of the blocking oligonucleotides. These oligonucleotides were designed to complement the positive sense strands of the vector regions flanking the inserts. Their sequences are given below.

5' A: 5' CCT CGT GCC GAA TTC CTG CAG CCC GGG GGA TCC ACT AGT TCT AGA GCG GC
5' B: 5' CGC CAC CGC GGT GGA CCA GCT TTT GTT CCC TTT AGT GAG GGT TAA T 3'

3' A: 5' TAA TAC GAC TCA CTA TAG GGC GAA TTG GTT ACC GGG CCC CCC CTC GAG
TTT TTT TTT TTT TTT TTT TTT 3'
Reactions were incubated at 42°C for time periods selected to achieve C₀t values of 10 or 15 s/mol.dm³. These times were calculated according to the equation:

\[t = \frac{C_0 t}{C} \]

Where \(t \) = time in seconds and
\(C \) = total DNA concentration in mol.dm⁻³

At the end of the hybridization period, reactions were stored at -20°C until purification of the normalized population of DNA.

5.2.6 Purification of the normalized DNA population

Single stranded DNA was purified as described in section 5.2.3. However samples were directly desalted on Qiagen PCR purification columns (Qiagen, U.S.A) without gel purification. The DNA was eluted from the Qiagen column in 30 μl of water. The single stranded template was converted to double stranded plasmid through use of the Sequenase kit (USB, U.S.A) as per manufacturer’s directions, or via a single-step (ie: non-amplifying) PCR reaction. To the template was added 0.5 μl SuperTherm Taq (Southern Cross Biotech, S.A), 1 μl M13 forward primer (50 μM), 4 μl PCR buffer (10 x), 1.6 μl MgCl₂ (25 mM) and 2 μl dNTPs (10 mM). PCR conditions were: [80°C (2 min), 50°C (3 min), 72°C (30 min)] x 1. The reactions were purified by sequential phenol and phenol: chloroform (1: 1 v/v) extraction and precipitated overnight. DNA was recovered by centrifugation at 16 000 g for 30 min. The pellet was washed twice with ethanol (70 %) and resuspended in 12 μl molecular grade water.

As a control measure, selected normalization reactions were used to produce radio-labeled DNA via the single-step PCR reaction described above. 4 μl [³²P] dCTP (Amersham, USA) and 2 μl of each of dATP, dGTP and dTTP (Megaprime Labeling Kit, USB, U.S.A) were used in place of the dNTPs. 1 μl of the reaction was set aside before and after purification on a Sigma post-reaction purification column (Sigma, U.S.A). The percentage incorporation was determined from scintillation values obtained on a Beckman LS 5000 TD liquid scintillation system (Beckman, U.S.A).
5.2.7 Electroporation

For construction of the normalized libraries, plasmid DNA was electroporated into ElectroMAX™ DH10B™ Cells (Life Technologies, U.S.A). In general, the DNA was electroporated in 1.0 μl – 2.5 μl units into 25 μl aliquots of DH10B™ Cells using a Micro-pulser™ (Bio-Rad, U.S.A) and 0.1 cm electrode gap Gene Pulser® cuvettes (Bio-Rad, U.S.A). Immediately after electroporation, 1 ml SOC medium was added to the cells, which were incubated for 1 h at 37°C. Cells were centrifuged at 1 000 g for 5 min before being plated onto 28 cm x 28 cm LB agar plates containing ampicillin (100 μg/ml). The plates were incubated overnight at 37°C.

Initial optimization of the electroporation conditions was carried out using the PUC19 control DNA supplied by the manufacturer. A range of voltages (1.8 kV, 2.1 kV and 2.5 kV) were tested for maximum electroporation efficiency as determined by the numbers of colonies present on the plates after overnight incubation.

5.2.8 Preparation of libraries for storage and arraying

If a suitable number of colonies (> 1000) were obtained, these were individually picked and inoculated into 96 well microtitre plates (Nunc Products, U.S.A) containing 75 μl LB supplemented with ampicillin (100 μg/ml). Plates were incubated overnight at 37°C with shaking. To each well was added an equal volume of 50 % glycerol. The plates were labeled and stored at -70°C for future use.

5.2.9 Evaluation of the normalized libraries

Insert sizes were evaluated by amplifying inserts from 12 randomly selected colonies by colony PCR (Chapter 4, Roschier et al., 2000). For library screening, the same β-tubulin isoforms used for the evaluation of the un-normalized libraries were employed. 600 cfu were spotted using a 96 pln replicator (Nunc, U.S.A) onto LB agar plates containing 100 μg/ml ampicillin. Colonies were incubated overnight at 37°C and lifted
onto Hybond-N nitrocellulose membranes (Amersham, U.S.A). The colony hybridizations were carried out exactly as outlined by Soares and Bonaldo (1998) using the radio-labeled β-tubulin as a probe (Chapter 4). The percentage of positives was compared to those obtained in the screening of the un-normalized libraries. Verification of these results using Southern blotting of plasmid DNA from normalized and un-normalized libraries was also attempted.

5.3 Results

5.3.1 Preparation of tracer and driver DNA

Preparation of single stranded DNA from the excised libraries was extremely problematic. Of all the traditional methods tested, none yielded sufficient amounts of DNA. The results were unaffected by the adjustment of MOIs, host strains, helper phage or culture conditions. A representative result is illustrated in Figure 5.3.

Figure 5.3: Effect of the helper phage multiplicity of infection (MOI) level on the recovery of single stranded DNA from the root dehydration and rehydration cDNA libraries. Lane numbers 1-4 indicate a MOI of 1×10^5, M = marker (PstI digested lambda DNA).
This indicated that the bulk of the DNA isolated by these methods was high molecular weight double stranded DNA. Extensive testing of the factors affecting the production of single stranded DNA *in vivo* indicated that the supernatant had to be stored for at least a week at -20°C in order to precipitate the phages. This was contrary to the 1 h precipitations recommended in all protocols.

Nevertheless, large amounts (~200 µg) of single stranded DNA were isolated using the extended precipitation method (Figure 5.4). The single stranded DNA generally ran on agarose gels at the same speed as the 1.7 kb marker, but this varied according to the exact buffering conditions. This accorded with the theoretical prediction of between 0.5 kb and 2.0 kb. The dehydration library DNA was relatively free of contamination by single stranded helper phage DNA, but the rehydration library DNA contained a large amount of the helper phage DNA (Figure 5.4). The exact nature of the two bands was unclear.

Figure 5.4: Single stranded DNA recovered from the dehydration and rehydration cDNA libraries. Lane numbers indicate the amount (in ul) of DNA loaded. M = marker (PstI digested lambda DNA).

Digestion with S1 nuclease confirmed that the library DNA was single stranded and that there was little or no double stranded DNA contamination (Figure 5.5).
Single stranded DNA was not affected by the *Pvu*II digestion used to linearize contaminating double stranded DNA prior HAP column chromatography. Although the yields of single stranded DNA were low, HAP column chromatography was successful (Figure 5.6). The bulk of the DNA eluted from the column between fractions 2 and 3, and appeared to be relatively pure (Figure 5.6).
Chapter 5

Recovery of the single stranded DNA from the elution buffer was problematic as the butanol extractions resulted in salt concentrations of > 5M in the 500 µl volume. Purification on Sigma spin columns or by gel fractionation followed by DNA recovery using Qiagen gel extraction columns was found to yield suitable amounts of DNA and to ensure removal of the contaminating helper phage DNA (Figure 5.7). Approximately 10-20 µg of tracer was recovered per 100 µg of PvuII digested DNA.

![Image A](image1.png) ![Image B](image2.png)

Figure 5.7: Representative images of the desalting and gel purification of HAP purified single stranded DNA. (A) Sigma spin column desalting of dehydration library DNA (B) gel and Qiagen column purification of rehydration library DNA. Lanes: 1 = DNA before purification, 2 = tracer DNA after purification. M = marker.

PCR of the driver using the tracer as a template was extremely efficient (Figure 5.8) and yielded in excess of 2 µg DNA per 100 µl reaction. A wide size range of inserts was generated – typically 0.4 kb to 5 kb with an average of 1 kb- 1.5 kb (Figure 5.8).
Quantification of the driver and tracer DNA using the ethidium bromide assay and the GeneQuant DNA calculator was found to yield discrepant results. The difference between the two methods was 30-50% on average, with the ethidium bromide assay yielding the higher values. Where available, the GeneQuant data was used.

5.3.2 Hybridization and purification

Ten normalized DNA populations were generated using the methods described. These included 4 dehydration and 4 rehydration libraries with Cot values of 10 or 15 s/mol dm3 and one dehydration and one rehydration library of Cot 1.5 and 2.5 s/mol dm3 respectively. The lower Cot values for the latter two were a consequence of the over-estimation of DNA concentrations by the ethidium bromide plate assay. Times required to achieve Cot values of 10 and 15 for the DNA concentrations used were calculated to be 56 h and 83 h respectively.

Single stranded DNA recovery from the HAP column after the hybridizations was complicated by the fact that the starting amount of DNA used in the reactions was only 80 ng. Nevertheless, Qiagen PCR columns facilitated the recovery of the single stranded DNA. This was confirmed by PCR from a selected purified reaction. The gel
indicated that plasmid DNA containing inserts of the expected size range were recovered from the HAP columns (Figure 5.9).

Figure 5.9: PCR of inserts from normalized single stranded DNA samples.

Lanes: 1 = negative (no primer) control, 2 = 10% of PCR reaction using R\textsubscript{VSA} library DNA as a template, M = marker (Promega 100 bp ladder).

The bright band in Figure 5.9 was interpreted to be flanking vector sequence amplified preferentially from non-recombinant clones, combined with primer dimers. To test the efficiency of the conversion of recovered single strand DNA to double stranded plasmid, the percentage incorporation of \[^{32}\text{P}]\text{-dCTP} was monitored. The percentage incorporation into double stranded DNA using the Sequenase kit was found to be only 0.8%. This was taken to explain the failure of initial attempts to normalize the libraries. The single-step PCR reaction was considered to be more reliable than the Sequenase method and was routinely and effectively employed.

5.3.3 Electroporation

Although the manufacturer's instructions specified an electroporation voltage of 2.5 kV for the DH10BTM cells, optimization using the pUC19 DNA provided indicated that 5-10 fold more colonies were obtained with voltages between 1.8 kV and 2.1 kV. A voltage of 1.8 kV was therefore employed for subsequent electroporations.
Of the 10 normalized DNA populations generated, 8 were electroporated. The purity of the library DNA was found to be crucial to the success of the electroporation. Low time constants (< 1.0 ms) were obtained for libraries that had not been extracted against phenol: chloroform. Only three of the electroporated libraries yielded more than 100 colonies. The details of these normalized libraries are summarized in table 5.2. Because of the adequate number of colonies obtained for the $D_{0.5}$ and R_{100} libraries, the C_{15} libraries generated at the same time were not electroporated, but were stored at $-20^\circ C$ for possible future use.

Table 5.1: Summary of the normalized libraries generated by electroporation into DH10B™ cells

<table>
<thead>
<tr>
<th>Library</th>
<th>Name</th>
<th>C_{st} s/mol dm3</th>
<th>Ave. time constant</th>
<th>Colonies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rehydration</td>
<td>R_2</td>
<td>2.5</td>
<td>0.9 ms</td>
<td>800</td>
</tr>
<tr>
<td>Dehydration</td>
<td>D_{100}</td>
<td>15</td>
<td>3.5 ms</td>
<td>4000</td>
</tr>
<tr>
<td>Rehydration</td>
<td>R_{100}</td>
<td>15</td>
<td>2.0 ms</td>
<td>6000</td>
</tr>
</tbody>
</table>

5.3.4 Screening

Due to time constraints only R_2 was completely screened. This library consisted of approximately 90% recombinant clones with inserts ranging from 0.4 kb to 3 kb. The average insert size determined from the colony PCR was approximately 1.0 kb (Figure 5.10). This indicated that no significant selection against the larger inserts had taken place during the normalization procedure. However, analysis of the D_{100} library indicated that a reduction in the average insert size of the order of approximately 0.2-0.3 kb had occurred (results not shown). Whether this was due to the extended C_{st} time or due to preferential incorporation of smaller plasmids during electroporation was not determined.
Colony hybridization with β-tubulin revealed that the R₂ library had not undergone significant normalization as tubulin made up approximately 1.5% of the library (Figure 5.11). Preliminary analysis of the D₁₀₀ library indicated a possible maximum 3-fold reduction in tubulin levels (data not shown). However, the background levels of hybridization were high, making it difficult to distinguish between true and false positive signals. Attempts to verify the results using the Southern blot procedure employed by Bonaldo et al. (1996) were not successful.

Figure 5.10: Amplification of cloned inserts by colony PCR. Lanes 1-11 represent inserts from selected colonies. Marker and controls not shown.

Figure 5.11: Autoradiograph of a cloneset (~600 clones) of the R₂ library probed with β-tubulin I-III by colony hybridization.
5.4 Discussion

The generation of large amounts of single stranded DNA (Figure 5.4) enabled the testing of several C_w times and the production of a number of normalized libraries. The factors tested during the attempt to generate single stranded DNA in vivo (e.g.: MOI, helper phage and host) may impact on the amount of DNA recovered. However, the failure of the short precipitation step negated the direct observation of these effects (Figure 5.3). No reason for the difficulties experienced could be discerned, but this modification to the traditional protocol should be borne in mind.

Bonaldo et al. (1998) have suggested that HAP purification of single stranded DNA produced in vivo is unnecessary since only single stranded phagemids are released into the supernatant. The lack of double stranded DNA remaining after S1 nuclease digest (Figure 5.5) suggests that no double stranded DNA was present in the preparations. However, HAP column chromatography was employed as a quality control measure and resulted in the recovery of sufficient DNA for a large number of normalizations (Figure 5.6).

The desalting of the fractions after HAP chromatography may be one of the most problematic steps in the normalization procedure. It is estimated that salt concentrations in the butanol extracted fractions may be as high as 10 M, and that single stranded DNA may bind a number of surfaces irreversibly under such conditions. The columns used by Soares et al. (1994) and Soares and Bonaldo (1998) are no longer commercially available (Soares pers. comm., 2001) meaning that a suitable replacement had to be determined empirically. Figure 5.7 indicates that the Qiagen Quick columns (Qiagen, U.S.A) may be used effectively for this purpose.

Because the method of normalization employed in this study makes use of driver generated by PCR (Figure 5.8) rather than by digestion of plasmid from the un-normalized library (Soares et al., 1994) blocking oligonucleotides were designed to the flanking vector sequences. A (dT)_{20} tract was included to eliminate potential hybridization between the poly(A) tails expected to be located at the 3' ends of the
Inserts. The use of poly(dT) priming may lead to downstream difficulties with the libraries since it has been shown that internal priming may selectively eliminate rare transcripts during the hybridization (Martin and Pardee, 2002; Wang et al., 2002). Wang et al. (2002) have shown that significantly shorter poly(A) primers overcomes this flaw in current subtraction methods.

Although it was difficult to obtain conclusive results from the screening procedures, the generation of a small library normalized to a C_{ot} value of 2.5 allows for comparison of the effects of the hybridization time on the abundance of various genes. Ali et al. (2001) used a similar approach. For the cereal EST library normalized to C_{ot} 2.5 they detected no significant reduction in the frequency (or redundancy) of common genes. This is similar to the result obtained for the screening of library R_2 in this study (Figure 5.11). For the libraries normalized to C_{ot} 10 Ali et al. (2001) obtained 18 000 independent colonies which displayed a 10 fold reduction in certain common genes and a 10 fold increase in specific rare genes. Of the inserts sequenced, 24 % were novel. It is anticipated that the D_{10c} and R_{10c} libraries generated in this study will display similar levels of normalization, though — given the tissue and plant source — with a potentially higher occurrence of novel genes. Future characterization of the extent of normalization will depend on alternate methods of screening being employed, since the statistical relevance of colony hybridization using small numbers of colonies is questionable and the use of Southern blots is problematic.

However, direct comparison of the X. humilis and cereal data is not a completely valid approach since the extent of normalization of a population of sequences depends largely on the re-association rates achieved. This re-association rate varies according to a number of parameters that are summarized in Table 5.2.
Table 5.2: Factors affecting the reaction rate (data from Soares and Bonaldo, 1998).

<table>
<thead>
<tr>
<th>Factor</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Temps above or below Tm decrease k.</td>
</tr>
<tr>
<td>Salt</td>
<td>High salt increases the reaction rate.</td>
</tr>
<tr>
<td>GC content</td>
<td>High GC content increases the reaction rate.</td>
</tr>
<tr>
<td>Solvents</td>
<td>Increasing concentrations decrease the rate.</td>
</tr>
<tr>
<td>Complexity</td>
<td>The greater the complexity, the lower the reaction rate.</td>
</tr>
<tr>
<td>Length</td>
<td>K proportional to root of the concentration of shorter strand.</td>
</tr>
</tbody>
</table>

While conditions such as temperature, salt concentration and solvents can be adjusted, the DNA length, GC content and complexity are endogenous factors and cannot be controlled in individual DNA samples. Neither the complexity or average GC content of the genome of *X. humilis* is known, meaning that these cannot be compensated for in the normalization procedure. Nevertheless, these factors should not differ too considerably between cereals used by Al et al. (2001) and Reddy et al. (2002) and the monocotyledonous *X. humilis*. Consequently, by comparison to the cereal data it is expected that the libraries reported in this dissertation will contain a significant percentage of the rarer genes expressed in the roots of *X. humilis*.

A criticism that could be leveled against libraries normalized to the relatively high C_{ot} values of 10 -15 is that the genes likely to be important in desiccation may be upregulated and will therefore be comparatively abundant in the starting libraries. Yet, up-regulated genes remain relatively rare compared to the super-abundant genes such as tubulin and actin that the normalization aimed to reduce or eliminate. Secondly, the expression of a transcript during stress may not correlate with its relative importance in the response mechanisms, largely due to the existence of translational and post-translational control mechanisms.

Three methods are routinely used to answer the questions raised above about the success of normalization, namely colony hybridization (Grunstein and Hogness, 1975), Southern blot analysis (Southern, 1975) and large-scale single pass
sequencing (Bonardo et al., 1996; Ali et al., 2001). While single pass sequencing is the ideal approach, it remains expensive. The traditional screening techniques provide initial estimates of the quality of the data likely to be obtained. Preliminary screening of \(R_2 \) by colony PCR showed no significant bias against large inserts (Figure 5.10). This library contained inserts having the same average insert size (~1kb), and a similar size range (0.4 kb- 3 kb) as that determined for the non-normalized libraries (Chapter 3). The preservation of insert length accords with the findings of Bonardo et al. (1996), Ali et al. (2001) and Reddy et al. (2002) that truncated inserts are not selectively retained. This is largely due to the fact that the driver used in the hybridization was used in vast excess over the tracer, and that this DNA generally spanned the entire length of the inserts (Bonardo et al., 1996). The \(D_{10C} \) and \(R_{10C} \) libraries remain to be fully screened to assess the extent of normalization, but initial sequencing results (data not shown) suggest that the process of normalization effectively increased the proportions of class II and III transcripts.

The libraries generated in this dissertation - to our knowledge, the first from a resurrection plant - will serve to provide both functional and sequence data through their use in large-scale sequencing and microarray projects. It is anticipated that they will contribute significantly to the understanding of the molecular features that characterize the responses of the roots of \(X. \) humilis, and perhaps other desiccation tolerant plants, to severe water stress.
Conclusions

There is little doubt that the extensive molecular resources available for *Arabidopsis* research have had a considerable impact on biological studies in recent years. These resources allow, through comparison, the identification of features that are unique to the biology of other plants. This may be accomplished at the level of single target genes, or gene families, or at the whole transcriptome or genome levels. Either way, the characterization of divergent elements may be of great significance in the coming years as the rate of discovery of novel sequences continues to decline (Wang *et al.*, 2000).

The unique features that are enable resurrection plants such as *X. humilis* to survive desiccation and rehydration have particular significance to biotechnology. It is thought that whatever elements confer the ability to survive anhydrobiosis may be gainfully employed in improving the drought resistance of crops in an increasingly arid landscape. In this regard, several papers have shown that the use of *cis*-acting elements or over-expressed genes is a feasible approach to increasing survival and yields (Pilon-Smits *et al.*, 1995; Alvim *et al.*, 2001). However, such high aims rest on a sound understanding of the biology of the acquired trait.

For these reasons, this dissertation aimed to generate information and resources that would enable the elucidation of the biology of desiccation tolerance mechanisms of *X. humilis*. Particular attention was given to the roots because of their roles in the early sensing and amelioration of water deficit, and because the information about these organs currently lags far behind that for the leaves. This study revealed several features of the functional anatomy and physiology of the roots during desiccation and rehydration.
that were previously not described. Highly specific primers were developed to target two-component systems that may be involved in the regulation of the physiological responses. Lastly, un-normalized and normalized (or low redundancy) stress- and tissue-specific cDNA libraries were constructed and screened with several housekeeping genes. The normalized libraries represent the first described for a resurrection plant and will enable the large-scale sequence and microarray analysis of the transcriptome of these organs to be completed. It is hoped that they contribute in some way to the further understanding of plant responses to water deficit.
References

