The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
The Khoekhoen of the Breede River Swellendam: an archaeological and historical landscape study

Charles Ian Arthur

Thesis presented for the degree of Master of Science
Department of Archaeology University of Cape Town

March 2008
The Khoekhoen of the Breede River Swellendam
an archaeological and historical landscape study

Abstract

This thesis investigates the archaeological visibility of indigenous herders in the Swellendam area of the Western Cape. The primary aim is to develop a methodology that combines the analysis of historical documents with archaeological survey. The literature review finds that the dominant model of 'hunter' 'herder' identity has favoured deep stratified midden sites at the expense of low density sites and the open landscape. The model is also linked to the persistence of outdated typological analysis and the lack of research into post-contact indigenous archaeology. Historical sources are reviewed in terms of their potential for developing archaeological questions as well as for designing a survey. A small section of the Breede River is identified that includes a number of locations with specific reference to Khoekhoen settlement in the 17th and 18th Centuries. Thirty seven open air sites are reported from survey in this area. Three large surface concentrations of indigenous pottery and a stone and aloe enclosure are chosen for a further phase of investigation consisting of surface collection and test excavation. The spatial plotting of two surface sites demonstrates that individual and datable hearths can be recognised in the plough zone. The discussion focuses on methodological issues and the potential of the archaeological data to contribute to questions concerning pastoralist visibility, mobility, social organisation and interaction between Khoekhoen and colonists in the 18th and 19th Centuries.
Declaration

This work has not been previously submitted in whole, or in part, for the award of any degree. It is my own work. Each significant contribution to, and quotation in, this dissertation from the work, or works, of other people has been attributed, and has been cited and referenced.

Acknowledgements

This thesis would not have been possible without the help of numerous friends. Philip Hine, Alex Mackay, Ara Wells, Will Archer and Brian Stewart, accompanied me on more than one survey outing. Thank you. Thanks also to Tim Hart and Dave Halket for suggesting the Breede River as a study area. Translations were expertly done by Fionna Clayton and Philip Hine. Specialist knowledge was generously given by Alex Mackay on flaked stone technology; Karim Sadr on indigenous pottery and Jane Klose on European manufactured ceramics. In terms of thesis content, I would like to thank Andy Smith for expert supervision. Also, Peter Mitchell and Antonia Malan for reading and commenting on earlier versions. In Swellendam there were many who were on hand to offer advice and friendship, especially Tizzie Mangiagalli and Peter Gratton and all the staff at the Drostdy Museum and Bontebok National Park. Thank you too to all the landowners and farm workers in the Swellendam region, especially Winjard Viljoen and James O’Kennedy who granted permission to collect artefacts. Special thanks goes to Mum, Alan, Dad, Tom and Jan for providing love and support.
Contents

1. The problem of the ‘invisible herder’ ... 1
 1.1. Introduction .. 1
 1.2. Absence of evidence or evidence of absence? .. 4
 1.3. Chapter outline .. 9
2. Literature Review ... 13
 2.1. Labels in archaeology ... 13
 2.2. Theory and method in pastoralist archaeology ... 15
 2.3. The quest for a herder ‘type’ .. 17
 2.4. Hunters or herders? ... 19
 2.5. The revisionist argument .. 23
 2.6. The herder package .. 24
 2.7. Twenty years on ... 28
 2.8.1. Testing the dichotomy model: Variation in time and place 29
 2.8.2. Functional considerations .. 31
 2.9.1. Future directions 1: Beyond the formal/ informal dichotomy 32
 2.9.3. Future directions 3: The importance of low density and ploughzone archaeology ... 41
 2.10. New perspectives on the development of pastoralism 44
 2.11. Concluding remarks ... 46
3. The Khoekhoen of Swellendam 1660-1734 ... 49
 3.1. Introduction ... 49
 3.2. Methodology .. 50
 3.3. The expeditions ... 51
 3.3.1. Jeronimus Cruse 1668 and 1669 ... 52
 3.3.2. Laurens Visser 1677 .. 53
 3.3.3. Bakkeleys Plaats ... 53
 3.3.4. Issac Shrijver 1689 .. 54
 3.3.5. The 1690s ... 55
 3.3.6. The Opening up of the Stock Trade .. 56
 3.3.7. Jan Hartogh 1707 .. 56
 3.3.8. The colony advances 1707-1734 ... 56
 3.4. Potential for reconstructing Khoekhoen settlement patterns 58
 3.5. Implications for current survey design ... 64
 3.6. Environmental limitations for pastoralism on the south coastal plain 64
4. The Khoekhoen of Swellendam 1734-1800 ... 67
 4.1. Introduction .. 67
 4.2. The Dispossession of the Hessequa ... 68
 4.3.1. A Landscape Perspective: Toponymy and oral histories 74
 4.3.2. Dating and sources of oral history ... 80
 4.3.3. Captains, Colonists, and Company in the 18th Century 84
 4.4. The role of archaeology ... 90
 4.4.1. Excavations of 18th Century Khoekhoen burial sites by the South African Museum 1980-1986 ... 91
 4.4.3. Potential research avenues for post-contact archaeology in Swellendam 94
 4.5. Conclusions ... 100
Illustrations

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mean annual rainfall in the south west of South Africa</td>
</tr>
<tr>
<td>2</td>
<td>Soil fertility in the south west of South Africa</td>
</tr>
<tr>
<td>3</td>
<td>Rainfall seasonality in the south west of South Africa</td>
</tr>
<tr>
<td>4</td>
<td>An extract from Diary of the Voerman</td>
</tr>
<tr>
<td>5</td>
<td>Soil fertility in the south west of South Africa</td>
</tr>
<tr>
<td>6</td>
<td>Topography and perennial rivers on the south coastal plain</td>
</tr>
<tr>
<td>7</td>
<td>The area east of Slang River</td>
</tr>
<tr>
<td>8</td>
<td>Mid to late 18th century Khoekhoen kraals</td>
</tr>
<tr>
<td>9</td>
<td>Loan farms grants in the Swellendam area 1717-1793</td>
</tr>
<tr>
<td>10</td>
<td>Location of farms Kluitjies Kraal, Weegschaal and Bakkeleys Drift</td>
</tr>
<tr>
<td>11</td>
<td>M.J Lourens at the burial site of Khoekhoen ‘Captain’ Kluitjie</td>
</tr>
<tr>
<td>12</td>
<td>Romanticised painting of an 18th century Khoekhoen settlement Lang Elsieskraal</td>
</tr>
<tr>
<td>13</td>
<td>1845 quit rent diagram for the farm Weegschaal</td>
</tr>
<tr>
<td>14</td>
<td>The exhumation of Markus Sababa’s grave on 17th April 1986</td>
</tr>
<tr>
<td>15</td>
<td>Topography, perennial rivers and Khoekhoen historical sites in the Swellendam area</td>
</tr>
<tr>
<td>16</td>
<td>Geology of the study area</td>
</tr>
<tr>
<td>17</td>
<td>The five terraces in the study area</td>
</tr>
<tr>
<td>18</td>
<td>Bontebok National Park following a veld fire in March 2007</td>
</tr>
<tr>
<td>19</td>
<td>The survey areas</td>
</tr>
<tr>
<td>20</td>
<td>The survey team walking 15m transects at Lang Elsieskraal in Bontebok National Park</td>
</tr>
<tr>
<td>21</td>
<td>The Holocene archaeology of the survey area</td>
</tr>
<tr>
<td>22</td>
<td>Broken bored stone from BNP14</td>
</tr>
<tr>
<td>23</td>
<td>Looking south across BNP14 and Terrace 5 from the top of Terrace 2</td>
</tr>
<tr>
<td>24</td>
<td>Burnt stone concentration at BR1</td>
</tr>
<tr>
<td>25</td>
<td>Satellite image of Bakleisdrif farm showing location and extent of BD3</td>
</tr>
<tr>
<td>26</td>
<td>Looking south over Ou Tuin and the Breede River meander</td>
</tr>
<tr>
<td>27</td>
<td>Satellite image showing location of the sample area and test excavations at BNP4a</td>
</tr>
<tr>
<td>28</td>
<td>The Historical archaeology of the survey area</td>
</tr>
<tr>
<td>29</td>
<td>An idealised painting of a Khoekhoen settlement at Lang Elsieskraal</td>
</tr>
<tr>
<td>30</td>
<td>The grazing-lawn, BNP9, at Lang Elsieskraal</td>
</tr>
</tbody>
</table>
A Cynodon dactylon lawn in Bontebok National .. 137

Lang Elsieskraal in 1954.. 138

Lang Elsieskraal in 2006.. 138

Square enclosure BNP1 at Lang Elsieskraal.. 140

Stone hut BNP10 at Lang Elsieskraal... 140

Ceramics from BNP9... 140

Planning of BNP1 in progress.. 141

Plan of BNP1... 142

A sketch by Timothy Hart (1989) of a piled stone kraal in the Seacow River Valley.............. 143

Cluster of grazing lawns BNP22.. 146

BNP22 (feature 3) in 2006.. 146

BNP22 (feature 3) in 1954.. 146

A track-way, BNP23 entering feature 3 (BNP22) from the south west corner....................... 147

A base of a 19th-20th century beer bottle found on the track-way.. 147

BNP18 following a veld fire in March 2007... 148

Satellite photograph of Lang Elsieskraal, showing location of excavations at BNP1 and BNP9... 151

The excavated areas at BNP1... 152

Area 1 at BNP1.. 153

Area 2 at BNP1... 153

The location of BNP4a... 155

The location of the two test pits at BNP4a.. 156

Work in progress on Test Pit 1, BNP4a.. 157

Test Pit 1, BNP4a completed... 157

Distribution of surface artefacts that make up BR1.. 163

A multi-use cobble core from BR3... 166

Edge damaged cobble core from BR1 and an ochre stained grindstone from BR3.................. 166

Cobble cores with stepped edge damage BR3... 167

Two bored stones from BR1 and a faceted upper grindstone.. 167

Pecked stones from BR1 and BR3... 167

Diagnostic pottery sherds from BR1-BR3... 170

Plan of BR1 showing distribution of burnt stone, flaked stone and earthenware pottery............ 174

BR1: the distribution of each artefact type... 175

BR3: the distribution of each artefact type... 177
Tables

1 Recorded Hessequa locations during the late 17th and early 18th Century ... 59
2 BNP4a. 20 minute collection ... 119
3 BNP14. 40 minute collection .. 119
4 MK1. 40 minute collection .. 119
5 BNP24. 30 minute collection .. 119
6 BR1. 40 minute collection ... 120
7 Test pit 1, BNP4a: artefact class .. 156
8 Test pit 1, BNP4a: raw material ... 156
9 Test pit 1, BNP4a: cortex ... 156
10 Test pit 2, BNP4a: artefact class .. 156
11 Test pit 2, BNP4a: raw material .. 156
12 Test pit 2, BNP4a: cortex ... 156
13 Test pit 1, BNP4a: cores ... 157
14 Test pit 1, BNP4a: core types .. 157
15 Test pit 1, BNP4a: retouch ... 157
16 Test pit 2, BNP4a: cores ... 157
17 Test pit 2, BNP4a: core types .. 157
18 Test pit 2, BNP4a: retouch ... 157
19 BR1/BR2: artefact class ... 162
20 BR1/BR2: raw material ... 162
21 BR1/BR2: cortex ... 162
22 BR1/BR2: cores ... 162
23 European manufactured and modern artefacts from BR3 .. 169

Appendix

1 List of sites .. 187
2 Map showing Pleistocene archaeology ... 189
1. The problem of the ‘invisible herder’

The presumed absence of evidence for ancient nomadic pastoralists has effectively removed the burden of proof and left a vacuum into which has rushed a great deal of hot air.

(Roger Cribb 1991: 66)

1.1. Introduction

Historical records from the Western Cape abound with reference to Khoekhoen ‘kraals’, describing large open air encampments and groups of sheep and cattle herders (e.g. Thom 1952, 1954, 1958; Moodie 1838; Raven-Hart 1967). Cave excavations have also convincingly shown that the practice of sheep herding was introduced to the Cape between 1600 BP and 1900 BP (Sealy and Yates 1994). Yet at the time this thesis began, only Kasteelberg on the Vredenberg Peninsula contained significant concentrations of sheep bones comparable to historically attested herds (Smith 1986: 38). To explain the general absence of physical remains from the open landscape, representing at least one and a half thousand years of indigenous herding, archaeologists give prominence to the high mobility of pastoralists and a transportable and organic material culture (Robertshaw 1978: 29; H. Deacon et al. 1978: 57; Smith 2005: 44-50). Groups are said to have moved quickly across the landscape in their search for new pastures and to have left little behind that can be studied by archaeologists.

In his review of the archaeology of nomadic groups in the Near East, Roger Cribb (1991: 66) notes that archaeologists in various parts of the world have often favoured explanations of highly mobile, ‘archaeologically invisible’ pastoral nomads, when settlement evidence has not been as forthcoming as other material remains. Indeed some of the great mythical population movements from biblical sources have been justified through the ‘invisibility’ of nomadic groups. Cribb highlights the dangers of accepting this explanation without extensive survey and due consideration of all

1 Sealy and Yates (1994) directly dated sheep bones from a number of LSA sites using AMS techniques. Early dates were obtained from two cave sites, Blombos (1960+ 50BP and 1880+ 55 BP) on the south coastal plain (Henshilwood 1996), and Spoegrivier (2105+ 65 BP) in Namaqualand (Webley 2002). All other AMS dated sheep bones were found to be younger than these two sites (Sealy and Yates 1994).
factors affecting the formation of the archaeological record. Further warning against premature statements of archaeological visibility is provided by the results of recent fieldwork in other parts of the world where the high-mobility = invisibility explanation has dominated discussions on pastoralism (e.g. Rosen 1992). Many such claims of invisibility have been shown to be at best overestimated (Cribb 1991; Banning 1993), and, at worst, completely false (Rowley-Conwy 2004).

A recent summary of settlement evidence from the British and Irish Neolithic provides an example of the latter scenario. Here, high mobility pastoralism was also the most common explanation given for the dearth of settlement sites known prior to the mid-1980s. An intensification of contract archaeology and importantly its expansion into lowland areas in the last 25 years has, however, led to the discovery of over 200 settlement sites from the early Neolithic alone. A complete paradigm shift occurred, and now the monument builders are thought to represent sedentary farming communities (Rowley-Conwy 2004). The formerly accepted high-mobility = low-visibility model is no longer applicable in this case. The main causal factor behind the previous lack of evidence was a simple academic bias. Archaeologists favoured the most visible material remains: ritual and funerary monuments located on hilltops.

Although nomadic pastoralism is not in question as a subsistence practice in southern Africa, the above example shows the problem with statements based on the absence of evidence when research has focused on certain types of site and certain types of landscapes. Parallels can be drawn with Stone Age archaeological research in the Cape where the focus has been on the most visible and best preserved archaeology such as caves and shell middens. Although deep deposits and organic preservation found at these sites have provided the much needed chronological sequence essential for understanding change over time and subsistence activities, the upshot has been a neglect of the open landscape, where pastoralists, from at least the beginnings of the colonial period, are known to have camped with their herds.

Surprisingly in the Western Cape, where there are numerous references to Khoekhoen 'kraals', both from official (e.g. Thom 1952, 1954, 1958; Moodie 1838) and ethnographic sources (e.g. Kolb 1968), there has been little attempt to combine detailed analysis of textual sources with targeted archaeological survey. Nearly every
writer specialising in this topic has bemoaned the fact that the historical records for pastoralist settlements in the 17th and 18th are so rich and plentiful, yet they appear to have failed to develop a methodology or theoretical framework for dealing with Khoekhoen archaeology of the colonial period. The suitability of this approach seems so startlingly obvious to other archaeologists studying indigenous herders outside the Western Cape, exemplified by Jill Kinahan's suggestion that:

An examination of historical maps and charts, together with descriptions of relations between Dutch settlers and the Khoekhoen might suggest possible locations. (J.H.A Kinahan 2000: 96).

One reason for the lack of survey to date is that initial attempts to investigate Khoekhoen landscapes by students at the University of Cape Town, Peter Robertshaw and Timothy Hart, in 1979 and 1984 respectively, produced no cattle bones or positive settlement evidence and were seen to substantiate the hypothesis that herders could not be found (see Chapter 2 for a discussion of the results). Unfortunately the lack of survey conducted in the last two decades has meant that the negative findings of these early projects still gain currency amongst major reviewers of pastoralist archaeology (P. Mitchell 2002a: 237; Smith in press).

A corollary to the 'invisible herder' assumption is that historical sources are rarely questioned directly by archaeological research (see Schrire 1988 and J. Kinahan 1996 for notable exceptions). Colonial sources have been thus afforded an elevated position in attempts to reconstruct precolonial pastoralism and the role of archaeology, in terms of its potential for contributing to historical knowledge, has even been questioned by some of its leading researchers (e.g. Smith and Jacobson 1995: 12; Robertshaw 1979: 190, 244). Early written sources termed 'contact' or 'early contact' period documents have been used by archaeologists as if they offered a direct window into pre-colonial life-ways. Boonzaier and colleagues edited volume the Cape Herders, clarifies this standpoint where the "...early period of contact with Europeans, [is seen as a time] before the lifestyle of the Khoikhoi was irreparably changed by European settlement at the Cape." (Boonzaier et al.1996: 4). Such an approach has been heavily criticised generally in African archaeology (Reid and Lane 2004: 13), and more specifically in Cape Khoekhoen archaeology (Kinahan 1996, 2001).
1.2. Absence of evidence or evidence of absence?

Despite this pessimism, the initial breakthrough for archaeology did eventually come in the decade following the early surveys of Robertshaw and Hart and the first unequivocal herder settlements were recorded in the mid 1980s; not only at Kasteelberg (Smith 1983a; 1986) but further afield at Doornfontein and Blinklipskop in the Northern Cape (Beaumont and Vogel 1984), the Seacow Valley (Sampson 1984), and also, in the Hungorob Valley, northern Namibia (J. Kinahan 1986). These discoveries demonstrated for the first time that herders can be recognised in the archaeological record, and importantly prescribed that the visibility of herders became a topic of debate on a case by case basis rather than an accepted fact across the whole of southern Africa (e.g. Beaumont and Vogel 1984; J. Kinahan 2001). What was becoming even more apparent at this time was that interpretations emerging from archaeological data did not fit neatly into the Khoekhoen story of highly mobile and specialised cattle pastoralists known from colonial histories (Beaumont and Vogel 1984; J. Kinahan 2001).

Sadr (1998; 2003) has expanded this debate on the relationship between history and archaeology and suggested we look beyond the Khoekhoen analogy derived from colonial sources to explain the occurrence of sheep bones in the 1st millennium. Sadr was not convinced that high-mobility and poor preservation explains the low number of herding sites. Sadr (2003), pointed out that many open air hunter-gatherer sites were known from the Cape, and asked why should these groups be visible and herders not? If hunters were surely just as mobile and using similar if not even more transportable material culture, then they too should be ‘invisible’ to the archaeologist. Sadr rejected the invisible’ herder assumption and interpreted the lack of evidence to be a true reflection of the “intensity” of pastoralism. Ultimately, Sadr suggests, like Rosen (1992) and Cribb (1991) in the Near East, that pastoralist visibility should be testable through archaeological means.

In his survey of all designated ‘herder’ sites from the first millennium in southern Africa, Sadr (1998) pointed out that virtually none of the excavated deposits assigned

2 See Cribb (1991) and Banning (1993) for similar views on the visibility of hunter-gatherers in the Near East and Israel
to this subsistence category except Jackalsberg yielded a faunal assemblage with sheep bones making up more than 30% of the total fauna. Sadr suggested that low intensity animal husbandry practiced by hunter-gatherers is a more reasonable interpretation for this pattern. Sadr also found fault with the basic tenets of the early migration theory that was based on the appearance of sheep bones and pottery between 1800 BP and 1600BP in Later Stone Age sequences. According to Sadr, if an incoming population was the process by which these new commodities arrived in the Cape, both ceramics and sheep should have arrived together as a package and this could not be proved at most sites. Furthermore, the pottery from the Cape should be stylistically similar to that found along the proposed route of migration from northern Botswana (Sadr 1998). Sadr has, however, showed this not to be the case and has argued, like earlier authors (H. Deacon et al. 1978; J. Deacon 1984; Klein 1986), for the diffusion of these exotic items amongst hunter-gatherers themselves. Instead, Sadr proposed an alternative later migration, evidenced by the introduction of a number of material culture changes in the sequence at Kasteelberg either late in the first millennium or early in the second millennium (Sadr 2003: 204). The changes at this point in the Kasteelberg sequence include the appearance of lugged, pointed base pottery (replacing earlier spouted ware), grooved stones and a change in settlement patterns and dietary remains.

Although the analogy between the early 1st millennium AD herders and the historically observed Khoekhoen was deservedly brought into question (Sadr 1998; 2003; Fauvelle-Aymar 2004; Fauvelle-Aymar et al. 2006), the later migration hypothesis is limited by a lack of definitive sites and the inescapable fact that no Western Cape sites from the second millennium AD have yielded over 30% sheep bones from their faunal assemblages.

Since the writing of this thesis commenced, the debate on the visibility of pastoralists has come to the fore once again in southern Africa as two independent research teams have made discoveries of the type of open air pastoralist sites previously thought to be

3 Sadr's (2003) choice of 30% was based on "The animal bone counts from excavated sites in the Cape provinces...[which] suggest a break in the continuum between sites with over 30 per cent bones of domestic stock in their mammalian faunal samples and those with less than about 10 per cent." (Sadr 2003: 198). In fact, only three locations are noted by Sadr as containing faunal assemblages with over 30% domesticated stock (Sadr 2003: 198-199).
'archaeologically invisible' in the Western Cape. A complex of stone walls upon a hilltop at Simon Se Klip on the west coast has been convincingly argued to represent a pastoralist encampment (Jerardino and Maggs 2007) and a little over 50 kilometres to the south, on the Vredenberg Peninsula, the spatial plotting of stone artefacts, pottery and shell, and the occurrence of vitrified dung, have permitted a large and low density surface scatter, KFS5, to be assigned to pastoral authorship (Fauvelle-Aymar et al. 2006). Importantly, domestic stock bones were not identified on either site, and both investigations reported a low density of surface artefacts. This is positive news for archaeologists interested in asking questions of a social order, as John Kinahan has often pointed out that the complete lack of intra-site spatial data from the Cape has prevented such an approach from developing thus far at the Cape (J. Kinahan 2001: 129, 1996: 226). Herders are certainly difficult to recognise but they are no longer thought to be ‘archaeologically invisible.’

Researchers are now starting to look again at the previously held conviction that the large herds of cattle thought to have been introduced in the second millennium would have put more pressure on available pastures than the sheep herds which appear to have dominated in the first millennium. The assumption here is that mobility would necessarily have increased during this later period and this would in turn lead to a decrease in archaeological visibility, thus explaining the mismatch between rich historical sources and meagre non-existent historical Khoekhoe sites in the Western Cape (Smith 1986: 38; 2005: 184). Recent writing (Sadr 2003) has brought this assumption into question, proposing that the story is in fact quite the reverse and that it is the lower population density and smaller herds in the early periods of the first millennium that would result in a decrease of archaeological visibility.

It will, however, be argued here that even though the study of herders in the Western Cape and more generally in southern Africa has moved on significantly in recent years, our understanding is still very much based on a few discoveries. In the Western Cape, evidence is scarce for both the early and late visibility hypotheses. Both models are based mainly on findings from surveys conducted in a limited area of the west coast. It is therefore, a little premature perhaps, to write either of ‘evidence of absence’ (Sadr 2003; Fauvelle-Aymar 2004; Fauvelle-Aymar et al. 2006) or ‘absence of evidence’ (Smith in press). Underlying the motivation for this thesis, then, is the
belief that statements about pastoralist visibility are not valid until further basic archaeological survey in new geographical areas is conducted.

The study area chosen to test the archaeological visibility of pastoralism is a small stretch of the Breede River, immediately south of the town of Swellendam, 220km east of Cape Town. This landscape was decided upon primarily because of the unusual number and diversity of the historical sources which refer to Khoekhoen settlement. In addition, and probably the reason for the abundant historical accounts of large, rich, herding groups, is the fact that when compared to other areas that have been the main focus of research to date, the study region offers favourable conditions for pastoralism.

Swellendam is located inland, on the largest river in the Western Cape and lies on the edge of the winter/non-seasonal rainfall border in an area of high soil fertility, in one of the three areas of the western and southern Cape which have a mean annual rainfall of over 595mm. The ‘invisible herder’ assumption demands reconsideration within this environmental context, as the areas where Robertshaw’s model originated, namely the west coast of the Western Cape and Namaqualand (Robertshaw 1978, 1979), are both areas of extremely low soil fertility, low annual rainfall and highly seasonal rainfall (Figures 1-3).

The Hessequa, a Khoekhoen patri-clan recorded in colonial documents, were said to have occupied the area between Riviersonderend and Mossel Bay and were most frequently encountered in the Swellendam area (Elphick 1985). Repeated reference is made during the late 17th Century and early 18th centuries that the Hessequa were richer in cattle than other Khoekhoen groups living closer to the Dutch fort at Cape Town (e.g. Kolb 1968: 73; Thom 1958: 264; Elphick 1985: 138-139).

Whilst the present study can be taken as a direct test of Sadr’s hypothesis that later period herders are more visible archaeologically than those from the first millennium, the Breede River is an unknown archaeological entity and many of the historical sources have never been tackled from an archaeological point of view before. The primary objective of this thesis is, therefore, the development of a methodology
Figure 2: Soil fertility in the south west of South Africa. Redrawn after Schulze (1997)
suitable to this area. It is hoped that this research will provide a platform for future, longer-term archaeological research in the region.

1.3. Chapter Outline

Chapter 2 completes the literature review with a more in depth critique of previous research, outlining in more detail the motivation for embarking on an investigation of an archaeologically unknown landscape. I argue that neither depositional or post-depositional factors fully explain the failure of archaeology to provide evidence of pastoralist encampments in the Western Cape, but that it is the disciplinary nature of archaeology itself which has stifled research to date. I introduce the review with a discussion of subsistence labels in archaeology, and ask what exactly writers mean when they refer to ‘hunters’ or ‘herders.’ At one end of the scale of meaning, ‘herder’ and ‘hunter’ simply refer to two different food-aquisition strategies which an individual or group can use depending on their economic fortune at that particular time (Marks 1972; Elphick 1985; Schrire 1984). At the other end, the keeping of
domestic stock or the reliance on wild foodstuffs are seen as synonymous with rigid
and impermeable ethnic distinctions (e.g. Smith et al. 1991; Yates and Smith 1993a;

Those researchers in favour of the latter or the 'dichotomy model', as I shall call it,
have employed comparative frequency analysis of certain types of artefacts in order to
label an assemblage as either 'hunter' or 'herder'. Among these criteria are the
percentages of domestic versus wild fauna, frequency and typology of pot sherds
(Beaumont and Vogel 1984; Sampson 1984), the size of ostrich eggshell beads, and
the percentage of formal versus informal flaked stone artefacts. I critique previous
applications of this model for the persistence of out-dated typological techniques and
argue that such rigid and non-explanatory frameworks may be instrumental in the low
archaeological representation of herding groups in Southern Africa. I find that a sound
theoretical framework is missing from previous publications. When differences and
similarities are merely described and not explained, the models remain untestable.

The discussion also highlights the significance of bias in research design. The
persistent focus on models of cultural identity has favoured sites with deep
stratigraphic sequences and high densities of artefacts and a large portion of landscape
types have been left unsampled as a result. There has also been a preference for
precolonial indigenous sites which were thought by proponents of the dichotomy
model to reflect a time before hunter and herder identities were “disrupted” by
colonial influence (Smith 1993: 439). The effect of this has been an almost complete
lack of archaeological research into the 18th and 19th Century Khoekhoen. The
development of pastoralist archaeology in southern Africa is summarised from the
study of pastoralists indirectly through their effect on hunter deposits in caves to a
sub-discipline concentrating on detailed intra-site analysis of large open-air artefact
scatters. Particular detail is paid to spatial analysis of surface sites and technological
analysis of lithics to provide a background to the survey reported and discussed in
Chapters 6 and 7.

A chronological review of historical sources is presented in Chapters 3 and 4. Besides
providing a background and historical narrative to the current project, these two
chapters have two principal aims. The first of them is to highlight potentially fruitful
ways in which archaeology can ask questions of written histories in the Swellendam region. Secondly, the different sources will be reviewed for their potential to identify a landscape with specific references to Khoekhoen settlement that can be investigated archeologically. Although I have argued above that the treatment of the early contact period as a direct historical analogy for the pre-colonial period is problematic, I do see it as advantageous to make a distinction between the different phases of interaction spanning some 270 years, such as the initial trading expeditions into Hessequa territory (Chapter 3) and the eventual settlement of the indigenous landscape by colonial farmers (Chapter 4).

In Chapter 3 I take a critical look at the archival sources used by Richard Elphick (1985). His review of the 17th and early 18th Century cattle trading expeditions is potentially useful for designing archeological survey as he identified particular places in the landscape where Hessequa kraals were said to have aggregated. The scale of analysis narrows at this point and I introduce the particular environmental characteristics of the Swellendam area which led to it being a favoured area for pastoral exploitation. Prevalent historical models of Khoekhoen annual migrations (Smith 1983a) are also revisited using this 17th and early 18th Century data. Little evidence is found to support the type of large scale migrations proposed by Smith for the west coast of the Cape. An alternative aggregation and dispersal model of pastoralist settlement is proposed for the south coast region. Issues of colonial bias are also addressed in this chapter.

Chapter 4 covers the expansion of farms and the changing nature of colonist-Khoekhoen relationships in the 18th Century. The advance of colonial settlement into the Swellendam area resulted in a wide range of documentary sources compared to the 17th Century, including paperwork generated by the new magisterial centre established in Swellendam, oral histories, land grants and farm names. A complex history of interaction and shared histories emerges. In particular the review focuses on oral histories of a number of Khoekhoen ‘Captains’ who, it seems, were in particular relationships with free-burghers and government officials. A critical discussion of a South African Museum project investigating grave sites known from oral history forms a point of reference for a broader discussion of the role of archaeology. Neither the sub-disciplines of historical archaeology nor Stone Age/pastoralist archaeology
seem to be broad enough in scope to cover the material remains of the 18th and 19th Century Khoekhoen. Potential research avenues are suggested for attempting to address this academic bias in the Swellendam area.

The aim of Chapter 5 is to make the survey design process explicit. I begin with an explanation of the choice of study area. Geology, topography, vegetation cover and land-use are considered as potential factors affecting the recovery of archaeological material. The location of historical and previously known archaeological sites is also considered. A description of the survey methods is then presented, including the choice and size of area, sampling strategy and the recording and collection methods employed.

The survey results are described in Chapter 6, beginning with a brief description of the Pleistocene archaeology. More detailed descriptions of Later Stone Age and historical period occurrences are then given, including the results of on-site quantification at a number of sites. The criteria used to select four locations for further analysis are explained in relation to the research objectives developed in preceding chapters. Chapter 7 presents the results from the excavation of a possible stone kraal and grazing-lawn4; test excavation of a large flaked stone and pottery scatter; and the collection of two ploughzone sites.

The thesis concludes in Chapter 8 with a three part discussion. First, I assess the archaeological visibility of pastoralists in the Breede River Swellendam area. I then evaluate the potential of the archaeological data to tackle the more specific questions developed in Chapter 3 and 4, including the seasonal transhumance model and ambiguities concerning the relationship between 18th Century Khoekhoen and colonists. Finally, I discuss the survey methodology, consider alternatives and suggest potential avenues for future research.

4 \textit{Lawn} is used in this thesis in reference to an area of non-planted short grass maintained by herbivores.
2. Literature Review

Until we expect that things were different, we will always discover that they were the same.

Parkington 1984:172

2.1. Labels in archaeology

Since the early 1980s anthropologists and archaeologists have been questioning the use of subsistence labels, including ‘hunter-gatherer’, ‘herder’ and ‘farmer’ (e.g. M. Hall 1987; Ingold 1980; Barnard 1983; Kusimba 2005). Subsistence categories have been criticised for masking behavioural variation and emphasising economy over other aspects of society in much the same way as the terms ‘Iron Age’ and ‘Stone Age’ (M. Hall 1987, Ingold 1988, Grinker 1990). Ethnographic, historical and anthropological observations have also tended to associate subsistence labels to particular ethnic or linguistic identities. Southern Africa provides a classic example, where hunter-gathering is associated with the San, herding with the Khoekhoen, and farming with Bantu speaking groups. In such a context the eternal problem of archaeological labelling becomes even more complex. In the study of pastoralism in the Cape, for example, the discovery of sheep bones or stone walls associated with pottery has been considered enough for archaeologists to invoke the ethnic label ‘Khoi’ (e.g. Sampson 1984; Beaumont and Vogel 1984). Of course, subsistence plays a large part in identity construction and vice versa but both ethnicity and subsistence strategies are not static phenomena. Khoekhoen identity is not fixed to the herding of animals only. It is generally agreed now that the first Khoekhoen herders would have once been hunter-gatherers (Smith 2005; P. Mitchell 2002a), and it has long been known that there are Khoe speaking hunters (Inskeep 1978) and farmers in Botswana (Barnard forthcoming).

The permeability of both subsistence categories and ethnic identities was at the forefront of anthropological debate in the 1980s and 1990s when the ahistorical nature of hunter-gatherer studies in the Kalahari was brought to light (Schrire 1980, 1984; Denbow 1984). The implication was that due to greater time depth, more diversity is likely to have existed in the past. As Kusimba (2005: 349-350) has noted in a recent overview of hunter-gatherer archaeology, some researchers have even suggested that in certain areas specialised subsistence categories may well be a product of colonial
contact itself. In the Western Cape pastoralist context, for example, Sadr (1998: 123) has suggested that the specialised intensive pastoralism attested in the historical records could be the result of the sustained demand for meat initiated by the permanent settlement of Dutch merchants at the Cape. More recently, Sadr has expanded this critique into the realm of identity and suggested that the idea of being Khoekhoen could also have been linked to this intensive pastoralism in the colonial period (Sadr forthcoming).

In an attempt to account for variation, scholars added further categories of hunter-gatherers and pastoralists to their typologies (e.g. Woodburn 1982; Testart 1982; Cribb 1982; Khazonov 1984). More recently, some have gone even further and suggested that we abandon the categories altogether and opt for more objective classifications of assemblage variation such as a “subsistence spreadsheet” (Terrell et al. 2003). Generally these further attempts to break down typologies have emphasised a continuum from simple to complex subsistence regimes and some, such as Woodburn’s (1982) oft cited ‘immediate and delayed return’ categories have been criticised for being just as ahistorical as the broader terms (Schrire 1984). Nevertheless, subsistence categories (and their associated ethnic baggage if working in southern Africa) remain the second, if not the first, thought (after dating) to enter the mind of an archaeologist when she or he first encounters an item or assemblage of material culture.

Definitions and typologies of herding societies in the Near-East and Western Asia, where pastoralism has been most intensely studied, differ considerably from those generally given for Africa (Holl 1998; MacDonald 1998). In the former, where nomadism developed later after cultivation and the first urban centres, full time pastoralists are modelled as dependent on the state or neighbouring cultivators for survival. In most of Africa on the other hand, pastoralism developed at least three thousand years before the advent of cultivation (Marshall and Hildebrand 2002). The spread of pastoralism throughout Africa was slow and patchy, consisted of varying degrees of intensity and existed alongside hunter-gathering in many different regions.

5 For an exception in Africa, see Sadr (1991) for an argument in favour of the Western Asian Symbiosis model for the development of nomadism in Northeast Africa. Sadr suggests full scale nomadism developed as a result of the growth of the Pharaonic states.
(Marshall and Hildebrand 2002). A new label "Multi resource based pastoralism" was coined for the East African Neolithic which is a broad subsistence pattern, "with the products of flocks and herds supplemented, depending on local resources, by hunting, fishing, collecting wild plants, some cultivation, and/or exchange with local foragers or cultivators." (MacDonald 1998: 125).

The Khoekhoen have been compared to many of the anthropologically studied African herders (Smith 2005) and classified as ‘true’, ‘fully developed’ and ‘specialised’ pastoralists (e.g. Fauvelle-Aymar 2004), but the detailed classification of the Cape Khoekhoen on the basis of political and social organisation has been made difficult because no anthropological studies were carried out in the region before independent indigenous pastoralism disappeared (Smith and Webley 2000). Furthermore, as described in Chapter 1, the archaeological record for herding in this region is very slim compared to the regional studies conducted elsewhere in Africa. The early contact sources have thus gained primacy in reconstructions of precolonial herding (Smith and Jacobson 1995: 12; Hart 1984; Smith 1983a; H. Deacon 1983; Robertshaw 1979: 190, 244), almost to the extent that they have been treated as the 'ethnographic present' (J. Kinahan 2001). The herding way of life recorded during the first few decades of colonial settlement of the Cape has been projected back to explain archaeological deposits with sheep bones, some of which are separated in time by over one and half thousand years from the historical analogy.

2.2. Theory and method in pastoralist archaeology

The scientific and theoretical developments of the 1960s saw the focus of archaeology switch from the aim of, defining 'cultures' to broader questions of ecological adaptation. Archaeological enquiry focused almost exclusively on establishing dated sequences from cave and midden excavations from this point onwards. As a result, open sites received little attention and until the mid-1980s it was deemed almost impossible to distinguish herder from hunter assemblages using traditional typological techniques in caves and middens. Many considered them to be identical in terms of technology (Avery 1974: 105; Robertshaw 1979: 233; J. Deacon 1984: 275; Schrire and Deacon 1989). In line with the broader theoretical shifts taking place in

6 Archaeologists label this phase of scientific awakening as the 'New Archaeology' (Trigger 2007).
than subsistence labels, archaeologists could employ the term 'Neolithic' to refer to those sites with pottery and evidence for low intensity stock herding. Smith (2005b) has, however, highlighted the negative aspects of introducing European terminology to the African past. In addition, Smith (2005b: 3-5) has refuted Sadr's definition of 'Neolithisation' (meaning indigenous take up of domesticates) by reiterating his earlier stance that herding could not have been introduced by a process of diffusion. The crux of Smith's argument is that the knowledge of herding cannot be quickly and easily exchanged amongst hunters (e.g. Smith 1986).

Epistemological barriers such as the pessimism of Later Stone Age researchers in the 1970s and early 1980s and the rigidity of the herder and hunter definitions in the years that followed, both encouraged, and were influenced by, methodological conservatism. The most important of which was the focus on dense deposits from caves and coastal areas and the persistence of outdated typological analysis. These arguments are developed in the review below which highlights the need for more extensive recording of all types of open sites, including low density surface sites without diagnostic 'herder' artefacts, and the expansion of indigenous archaeology into the post-contact period. The main theme I aim to draw out from the following literature review is the relationship between theoretical and methodological approaches. Research needs to expand into new areas, tackle new types of site and develop methodologies for dealing with a wider range of historical sources.

2.3. The quest for a herder ‘type’

When Goodwin and Riet Van Lowe published *The Stone Age Cultures of Southern Africa* (1929) they avoided the ethnic labels of ‘Bushman’ and ‘Hottentot’ in their description of Later Stone Age cultures because of possible racial overtones (Bollong et al. 1997: 287). Most writers however, were not so cautious in their ethnic associations and many attempts were made to match the ‘Bushman’ and ‘Hottentots’ dichotomy presented in historical sources with archaeological ‘types’ such as the stone tool industries of the ‘Smithfield’ and ‘Wilton’; coarse and fine pottery

7 There are many 18th and 19th Century ethnographic descriptions of stone implement manufacture and use. These are mainly observations or stories of ‘Bushmen’ using scrapers, adze-like implements, flakes used as knives, and quartz and glass arrowheads, and there are also a few describing ‘Hottentots’ using stone tools (see Rudner 1979 for a comprehensive survey of sources). Specific links were made
(Rudner 1968, 1979; Rudner and Rudner 1970; Sampson 1974)\(^8\) and rock paintings and engravings (e.g. Cooke 1965)\(^9\) but there was never a consensus (Humphreys 1979: 7; J. Deacon 1984: 274).

Sites such as Skipskop, near Bredasdorp on the south coastal plain (Grobbelaar and Goodwin 1952), were tentatively assigned to a Khoe speaking group, but this often depended on the rather dubious typology of human remains, which were fitted into a ‘tall or robust = Khoekhoen herders’ or ‘small = Bushman’ type (see also Beaumont and Boshier 1974). Throughout the first half of the early 20\(^{th}\) Century, the Khoekhoen were thought to have migrated from distant parts of North and East Africa but it was unclear when this occurred. Stow (1905) was in favour of the Great Lakes region of East Africa, while Meinhof (1912) proposed that the Khoe languages were linked to the Hamitic languages of Northeast Africa (Smith 2005). The migrationist theory demanded that there had to be a racial and cultural distinction that could be recognised both in skeletal type and through material culture (J. Kinahan 2001: 9). The physical distinction between the two indigenous groups was, however, never convincingly demonstrated and the linguistic connection with Northeast Africa was shown to be false by Maingard (1934). The racial paradigm persisted into the 1960s (Ollemans 1960; De Villiers 1968) but research into southern African blood groups demonstrated that Bushmen and Hottentots and Bantu speaking peoples shared the same genetic characteristics (Singer and Weiner 1963). Further linguistic evidence also indicated that the Khoe and Central Bush languages shared a common linguistic root (Westphal 1963). The general consensus by the mid 1960s was that the Khoekhoen were not racially distinct from Bushmen.

Although Khoe linguistic group migrations into southern Africa were no longer tenable, the appearance of pottery and sheep in LSA deposits in the Cape in the early between Smithfield B and ethnographically scrapers and arrowheads (Goodwin and Riet van Lowe 1929; Rudner 1979).

\(^8\) There are even more accounts of pottery use. Observations of Hottentots with finer, lugged and pointed based pottery, and Bushmen with cruder, bag and bowl shaped fibre-tempered ware were used in early attempts to distinguish between the two historically described groups in the archaeological record (Bollong \textit{et al.} 1997: 284-292).

\(^9\) More recently, rock art specialists have attempted to link a particular style of geometric rock art, found from central to southern Africa directly to the Khoekhoen (Eastwood & Smith 2005; Smith & Ouzman 2004).
1970s was still explained by the movement of immigrant Khoekhoen southwards (e.g. H. Deacon et al. 1978). The question of cultural or ethnic distinctiveness of the two groups, and whether this could be found archaeologically now became the more pertinent question. Indeed, specific attempts to associate the Later Stone Age (LSA) with ethnic groups continued into the 1970s (Sampson 1974; Rudner 1979). Sampson (1974: 403-438) linked a series of ‘non-Wilton’ stone artefact assemblages found on the coast together with descriptions of an indigenous group from the diaries of Jan Van Riebeek (Thom 1952, 1954, 1958). However, his association was based purely on the coincidence of artefacts and historical description. None of the stone artefacts in his ‘Strandloper’ assemblages could be directly associated to the group of the same name known from historical sources, and the idea found little favour in subsequent research. In his exhaustive summary of the ethnographic evidence, Rudner (1979) identified both ‘Bushmen’ and ‘Hottentot’ pottery types. In addition, he matched the stone tool types ‘Smithfield B’ to Bushmen and ‘Wilton’ to both the Hottentots and Strandlopers.

So even at the height of the ‘New Archaeology’ when discussions of ethnicity became increasingly unfashionable in archaeology in other parts of the world (Jones 1997), in southern Africa, the ethnographic link with pottery types, stone tools and possibly rock art, together with the availability of historical records, encouraged archaeologists to continue their attempts to match material culture to ethnic group (see Inskeep 1969: 21 for a contemporary critique).

2.4. Hunters or herders?

Radiocarbon dates on charcoal thought to be associated with sheep bones from Die Kelders in the early 1970s (Schweitzer and Scott 1973), which pushed the perceived migration of pastoralists back to 2000 BP (although more recent AMS dates on the sheep bones themselves have since been obtained by Sealy and Yates 1994), and spurred this resurgence of interest in ‘finding’ the historically attested Khoekhoen (Smith 1983a). An intensive phase of discovery and publication followed in which

10 Sampson (1974: 437) grouped all post 8000BP non-Wilton assemblages found in coastal areas from Namibia to Natal together as ‘Strandloper assemblages’ and noted the similarities with preceding Oakhurst assemblages found in the same areas. In classic culture-history fashion Sampson described the similarities (mainly few formal tools) as indicating an “extremely ancient and isolated Stone Age group.”
sheep bones were recorded in a number of Later Stone Age cave excavations across the Western Cape, including Boomplaas (H. Deacon et al. 1978), Nelson Bay Cave (Inskeep 1987) and Byneskranskop (Schweitzer and M.L. Wilson 1982) among others. Even the excavators understood that the focus on caves was less than satisfactory for the task of identifying herder encampments in the archaeological record. It was thought virtually impossible to distinguish groups of herders from hunters through archaeology in general. The preference for cave and midden sites remained however, as there was an even greater sense of pessimism towards open site survey at this time. H. Deacon et al. (1978: 57) cited the low archaeological visibility of mobile pastoralists and the destruction by subsequent settlement as their motivation for focusing on caves in the hope of finding sheep bones. A negative opinion of open and surface archaeology can, however, be traced back as far as the early 1960s (White and White 1964), when the need for dated sequences was repeatedly emphasised in the literature (Inskeep 1967; Parkington and Pogenpoel 1971: 3). Surface sites were less satisfactory for archaeological analysis, as they were deemed to be from a secondary context (Sampson 1985: 106). With data from deep cave excavations, models of ecological adaptation and change over time from deep cave excavations dominated LSA research from the 1960s until the mid-1980s. This was particularly the case in the southwestern and southern Cape where the abundance of caves in the Cape Fold Mountains drew academic attention. The first research project to take open surface sites seriously in the Western Cape was that co-ordinated by John Parkington in the Clanwilliam District of the southwestern Cape. Although sites were recorded systematically (Parkington 1980: 74), the publications focussed on regional (inter-site) distributions of tool type frequencies (Parkington 1980; Mazel and Parkington 1978, 1981).

In addition to caves and rock shelters, coastal areas have long received a disproportionate amount of attention from archaeologists in southern Africa. The

11 See Klein (1986) and Bousman (1998) for summaries of the introduction of sheep herding in southern Africa.
12 The only systematic surface survey work that was carried out in South Africa in the 1970s was in advance of large dam building projects, such as Garth Sampson’s Orange River Scheme (Sampson 1972) and Mary Leslie-Brooker’s survey in advance of dam construction in the Caledon valley (Brooker 1980).
13 Of course, deep cave sequences were and continue to be invaluable for providing an accurate chronology in southern African archaeology.
sheer density of sites, visibility of shell middens, organic preservation and abundant
dating material all contribute to the attractiveness of coastal areas for research. More
specifically, archaeological work has concentrated on the immediate shoreline, where
larger and more obvious middens are located, and surveys often fail to sample areas
further inland. This bias is particularly significant for herder archaeology as recent
survey results and historical observations in Namibia and the Western Cape suggest
that Khoekhoen kraals tended not to be located along the immediate shoreline but
rather several kilometres inland (J.H.A. Kinahan 2000: 96; Fauvelle-Aymar et al.
2006: 255). This is a theme to which I return in subsequent chapters, where I review
the historical and environmental records for the south coast. These records tend to
suggest that pastoralists would only have visited this coastal zone for short periods
due to a lack of grazing opportunities compared to the more fertile, better watered
inland areas.

There was one attempt to find pastoralist sites outside cave and coastal environments
during this formative period of herder archaeology. Peter Robertshaw (1979) analysed
aerial photographs to identify circular crop marks which he thought may correspond
to hut circles; a technique that had proved successful in identifying prehistoric
features in Britain. Ultimately, a lack of surface artefacts in the areas where crop
marks had been identified led to the conclusion that this technique was unsuitable for
the Western Cape. Instead, Robertshaw concentrated his efforts on building an
ethnographically derived model to explain the perceived low archaeological visibility.
Robertshaw recorded an abandoned Nama pastoralist campsite at Sendelingsdrif in
the Richtersveld area of Namaqualand and found little was left behind that could be
studied by archaeologists. This observation from only one campsite was combined
with selective historical evidence describing the movement of Khoekhoen groups to
construct a theory of herder invisibility. Robertshaw surmised that “...there is little
likelihood that pastoralist sites will be found in the Cape...” (Robertshaw 1979: 245).
This early false start did little to encourage further survey and Robertshaw’s (1979:
190) conclusion echoed the pessimism of earlier authors:

...the best method for studying the prehistory of the Khoi in the Cape is through
the effects they had on the archaeology of the local hunter-gatherer populations.
Thus the archaeology of pastoralism was once more restricted to cave sites and the 'invisible herder' assumption prevailed. According to Robertshaw and others, the only material culture that would survive on most open air pastoralist encampments would be pottery and flaked stone, and at this point in the history of herder archaeology, the two groups were perceived to be, at least in terms of stone technology, very similar (Inskeep 1967; Avery 1974; Robertshaw 1978: 29-30; J. Deacon 1984: 275). The irony in this wisdom was that it was precisely the focus on caves and middens that prevented researchers from studying other site types that might have led to herder occupations being identified. Here we see the relationship between methodology and epistemology. On the one hand, herders were thought to have left so paltry a material trace in an open site context that researchers focused their attention on caves and coastal middens instead. The thinking was that at least sheep bones can be recovered and dated from sealed contexts (H. Deacon et al. 1978). Yet in such locations herders were likely to be doing exactly what hunters do, i.e. preparing for, or eating the spoils of, a hunt; or collecting and consuming shellfish. Pastoralist groups would, of course, also have used caves, either as shelter from time to time or occasionally to pen sheep. But how could archaeologists distinguish the activities of these groups from those of hunters who were also known to herd sheep on a part time basis and for whom stock theft was a common form of subsistence at least in the colonial period? These problems were persistent in LSA studies for decades as archaeologists stuck rigidly to the idea that sheep and pottery must have been brought to the Cape by an immigrant group of Khoekhoen stock herders.

Rather than accept the difficulties of distinguishing hunters from herders, some authors began to develop theories to explain the evidence as it was. Jeanette Deacon (1984) was the first author to challenge these assumptions. She highlighted the insignificant change in lithic assemblages from pre-pottery and sheep 'hunter' levels to overlying 'herder' levels. To explain this non-phenomenon, Deacon (1984: 269-275) suggested that perhaps it was hunting populations who took herding but kept their traditional stone technologies. In this line of thinking, which has now gained currency in recent writing, albeit in a modified form, the boundaries between hunters and herders are not fixed and acculturation is viewed as the most important process in the initial spread of pastoralism (Sadr 1998, 2003).
2.5. The revisionist argument

Jeanette Deacon’s acculturation theory was similar to a school of thought emerging amongst historians in the 1970s,\(^{14}\) who also advocated a blurring of the distinction between hunters and herders. Khoekhoen herders and San hunters were thought to be part of the same economic and cultural system and the distinction between stock owners and those with no stock, as seen in the colonial records, was said to be purely the result of economic fortune (Marks 1972; Elphick 1985). Carmel Schrire (1980) took this debate into the archaeological arena, questioning associations between assemblages found in the southwestern Cape caves and the historically observed hunter way of life typified by those termed ‘Soqua’ (Parkington 1977, 1984). Schrire suggested that there is no reason these caves could not have been occupied by the Khoekhoen who were just as likely to hunt and occupy caves as other groups identified in the historical period (Schrire 1980: 17).

Schrire and Deacon (1989) furthered their arguments that hunters and herders were one and the same cultural group through the excavation of Oudepost I, the Dutch East India Company (VOC) station at Saldanha Bay. Excavations in and around the stone walled buildings revealed indigenous and colonial artefacts and a detailed sequence of clay pipes provided a relative chronology for the deposits (Schrire 1988). Historical documents referred to trade between the local Khoekhoen and Dutch soldiers, which allowed Schrire and Deacon (1989) to identify the indigenous artefacts as representing the Khoekhoen from the textual sources. This was in direct conflict with conventional Later Stone Age archaeology as the tool types, which Schrire and Deacon linked to the Khoekhoen, were the same as those commonly found in assemblages pre-dating the arrival of pastoralism to the Cape and are thought to be associated to hunter-gatherers (Wilson. M.L. et al. 1990: 123).

A critique and an alternative explanation for the occurrence of the Khoekhoen artefacts was put forward which questioned the stratigraphic integrity of the Oudepost

\(^{14}\) This viewpoint was a part of what became known as the revisionist critique and one side of the ‘Kalahari Debate’, which emerged in reaction to anthropological work on the Kalahari in the 1960s and 1970s. The critique emphasised cultural interaction and the blurring of boundaries between hunters, neighbouring farmers and herders (Wilmsen 1989; Solway and Lee 1990; Wilmsen and Denbow 1990). See Sadr (1997) for a summary of the debate in relation to the hunter-herder identity problem at the Cape.
excavations and suggested that the indigenous assemblage was deposited after the Outpost was temporarily abandoned by the Dutch (Yates and Smith 1993a, 1993b). Schrire and Deacon's argument has been criticised for being extremely relativist and based purely on the coincidence of historical mention of herders and the discovery of indigenous artefacts in same location (Wilson. M.L. et al. 1990: 123). Nevertheless, it offered the first real archaeological critique of the dichotomy model and demanded a more thorough definition from archaeologists who supported the cultural distinction. Why for instance do archaeologists assume that herders make different stone implements to hunters when occupying the same landscape?

2.6. The herder package

Unsurprisingly, when the eventual identification of herder encampments at Kasteelberg came about in the mid-1980s, the evidence was not from caves and shoreline middens but from open site contexts. Significantly, considering the persistent focus on coastal middens, it was from a location a few kilometres inland from a stretch of the west coast that had been the subject of intense archaeological study for many years but without yielding evidence of pastoralism. The story that emerged proved once and for all that herder sites were visible and furthermore, contra Deacon (1984), researchers believed they had identified a particular material culture signature which could be distinguished from that associated with 'hunters' (Smith 1983a, 1986; Beaumont and Vogel 1984; Beaumont et al. 1995; Sampson 1984, 1986).

In the Western Cape, two sites with faunal assemblages dominated by sheep bones known as KBA and KBB were identified at Kasteelberg, on the Vredenberg Peninsula (Smith 1986: 38). Based on these new discoveries, Smith (1983a, 1986) presented a detailed definition of precolonial pastoralism in the Western Cape and outlined a theoretical framework for populations of hunters and herders. Drawing on the ethnographic literature of cattle herding in Africa, pastoralism was described as a particular way of life adapted to marginal grasslands (Smith 1983a: 83-84). Developing Monica Wilson's (1969: 72) and John Parkington's (1984) ideas, relations between hunters and herders were seen as competitive and the two groups were modelled not only as different subsistence strategies but as separate cultural
entities (Smith 1986: 38-40). Smith reaffirmed that hunters would find the transformation to herding very difficult as two key ideological aspects, accruing surplus for future consumption and the owning of property, were in conflict with their egalitarian principles (Smith 1986: 39). Clientship, trade, conflict and robbery were described as common modes of interaction, but in general, the dominance of pastoralist groups in the landscape was stressed. Herding was defined as an economically advantageous and dominant subsistence strategy (Smith 1983a, 1986).

The response to the revisionist claims that hunters and herders represented two ends of an economic cycle was twofold. First, Smith (1990) expanded the earlier model of separate cultural groups with anthropological arguments and further developed the thesis of ideological barriers that would have prevented hunters from becoming herders (Smith 1986: 39). Second, the initial identification of a pastoralist signature was backed up with a wider range of material culture associations in order to further demonstrate that they were distinct from contemporary hunter sites (Smith et al. 1991). The result was a ‘herder package.’ A number of sites were investigated on the Vredenberg Peninsula and the mountains overlooking the Swartland, and two significant groups of material associations were delineated. One group was said to be a ‘herder’ type of site, and the other, a ‘hunter’. According to Smith et al. (1991), in order for a site to be designated as a herder site it needs to be dominated by domestic stock, large amounts of pottery (>700/m3), informal stone artefacts, large ostrich eggshell beads and frequent grindstones. Hunter sites, should, in contrast, be characterised by a dominance of wild fauna, less pottery (<10/m3), formally retouched lithics (often in silcrete), Donax shell scrapers and small beads and few grindstones (Smith et al. 1991: 86-87). Yates and Smith (1993a) later refined the model. They proposed that herder sites would have a higher proportion of ceramic sherds relative to flaked stone artefacts than would be found at hunter sites.

Similar observations were made in the Bushmanland region of the Northern Cape, where ‘Cape Coastal Pottery’ was found to occur most frequently with an informal flaked-stone assemblage (Beaumont and Vogel 1984). Based on the assumption that Cape Costal Ware had been used by some Khoekhoen herders in the historic period and that some sheep bones had been found at two sites named Doornfontein and Blinklipskop, Beaumont and Vogel (1984: 81-82) had no doubts that this ‘type’ of site
was related to "Khoisan tenders of sheep and cattle." A second type of site was found with a different grass tempered pottery and a Wilton lithic assemblage, similar to that found in pre-pottery assemblages. This continuity in earlier stone technology, the differences to the herder sites, and the historical observations of pottery use, encouraged the authors to associate this second type of site specifically with /Xam hunter-gatherers (Beaumont and Vogel 1984).

Beaumont and colleagues named their herder package the 'Doornfontein industry' and their hunter package the 'Swartkop industry.' (Beaumont et al. 1995) The Doornfontein 'industry' was seen as a geographically separate from the Swartkop industry and defined by "...a quite different Ceramic LSA industry [to the hunters] in which the lithics are more amorphous, while all the pottery is thin-walled, grit-tempered, well-fired, and of amphora shape, that can be associated with the Khoi by way of historic record..." (Beaumont et al. 1995: 255). Links were also made to the theoretical model of herder dominance that was proposed for the Western Cape. The Doornfontein or Khoi people were said to have occupied the areas close to the river and the Swartkop people, believed to be the direct ancestors of the historically observed /Xam hunter-gatherers, were marginalised and forced to occupy the open plains (Beaumont et al. 1995).

The most conclusive evidence for pastoralism on a landscape scale came from the Seacow Valley on the eastern flanks of the Karoo where some 299 stone stock enclosures were recorded (Sampson 1984; 1986; Hart 1989). Here, the herder and hunter packages were defined on the basis of artefacts associated with the stone structures. The dichotomy was based on the observation that Cape Coastal Ware and a non-Smithfield lithic type (although the lithic differences were never described) dominated sites close to clusters of stone kraals, and 'Bushman' pottery was found together with Smithfield stone artefacts and dominated on non-kraal sites (Sampson 1984). Artefactual analysis of the dichotomy focused on the pottery, and nearly 1000 surface sites were classified (Bollong et al. 1997: 295). The initial classification was based on the early twentieth Century dichotomy, also by the Bushmanland research group (Beaumont et al.1995), which defined herders on the ethnographically observed distinction that Bushman pottery was grass tempered and Khoi was not. Subsequent analysis confirmed the distinction on technological grounds. There were definite
differences in types of clays, manufacture, temper, form and finish (Bollong et al. 1997: 294). Sampson was a little more cautious than Beaumont and colleagues when assigning pottery to a Khoekhoen ethnic group but nevertheless decided to keep the cultural label, renaming it ‘Khoi’ pottery, although warning that this might not equate directly with the linguistic group (Sampson 1984: 102). The equation of Bushman with their archaeological ‘culture’ was not so reserved:

The Zeekoe valley Bushmen belonged to a ceramic tradition found in many parts of the central plateau of South Africa. It is invariably associated with the Smithfield Industry (Sampson 1974). (Sampson 1984: 10).

Early papers published on this project were without the benefit of ceramic seriation and focused on the general spatial divide between the pottery types and the stone features (Sampson 1984, 1985). A frontier was hypothesised between the herder zone in the south of the study area and the much larger hunter zone to the north. The subsequent seriation of ceramics, combined with spatial plotting of densities in relation to stone structures, enabled Sampson and colleagues to reconstruct the shifting distributions of pottery in relation to stone kraals over time and to test the robustness of the hypothesised frontier (Sampson 1996; Bollong et al. 1997). Clusters of kraals were grouped together by the authors to make seven units centred around waterholes. In the earliest phase (pre AD 1200), there was found to be a correlation between the dominance of Khoi type pottery at kraal clusters and Bushman pottery on non-kraal sites (Bollong et al. 1997: 295-296). But the results show significant variation from this pattern, and the authors admit that rock shelter excavations in the upper valley do not support this distinction. Indeed by the second phase of kraal building, which occurred between 1200 AD and 1500 AD, Bushman pottery dominated at one of the kraal’ groups and also at isolated kraal sites between the main clusters. Khoi ware also dominated at many non-kraal sites (Sampson 1985: 103-105).

One of the key features of the distribution that required explanation was that there were many lithic and pottery scatters without kraals between the groups. Did these sites represent hunters living amongst the groups of herders, or were they merely non-kraal herder locations? In the early phase Bushman pottery dominated at these sites, but later the situation was more complex. This aspect was never really resolved and chemical analysis showed that pots likely to be from the same production batches
were circulating between kraal sites and non-kraal sites. In the first summary of the ceramic data, Sampson (1996: 323) suggests that this could represent either herders extending their settlement out beyond the normal grazing areas, or trade with hunters. Clientship is also offered as a potential explanation for lithic scatters dominated by Khoi pottery (Sampson 1985: 105). One aspect which Sampson (1985: 105) admits may help resolve these questions of identity is lithic analysis, but even in the latest summary (Bollong et al. 1997: 295-296) the lithic data are not included; the sites are described in terms of pottery types and whether they are with or without stone enclosures.

In general the spatial data was found to "...support the idea of an ethnic division expressed in the ceramics,..." (Bollong et al. 1997: 295). Whilst the authors admitted that the "...so-called Bushman pottery is not in itself an ethnic marker for hunter-gatherers of the South African interior." (Bollong et al. 1997: 296), the general interpretation reflected the dominant, historically derived, narrative of a sustained ethnic divide as was supported both in the Western Cape and Bushmanland.

2.7. Twenty years on

Herder archaeology has certainly moved on from the pessimism of the 1970s. Scholars have now developed models to distinguish between hunters and herders based on the association of certain types and numbers of artefacts (Smith et al. 1991). Furthermore, three particularly abundant find spots, at Kasteelberg, Bushmanland and the Seacow Valley, demonstrate that herding communities were fixing themselves to specific points in the landscape (Smith 1983a, 1986; Beaumont and Vogel 1984; Sampson 1984). These locales were occupied long enough, or, at least visited frequently enough, for groups to invest time in the construction of stone structures or to accumulate dense middens. This was in sharp contrast to the original historical model derived from Van Riebeeck's journal, which suggested that herders could not be found archaeologically because they were constantly on the move in their search for new pastures and would rarely occupy the same location twice (Robertshaw 1978). So, if herders are definitely not 'invisible' and indeed we have a good method for distinguishing them from hunters, why have so few herder sites been located since the 1980s?
The attractions of working with stratified cave deposits remain strong and certainly coastal areas are receiving as much, if not more, archaeological attention at present. An additional factor that encourages the coastal focus today is that mining, residential and hotel development, and thus commercially driven archaeology, in the name of cultural resource management (CRM), all happens more intensely on the coast.

Can the paucity of known sites really be explained as a research bias only? I shall argue that certainly part of the problem has to do with the dichotomy model or the herder package itself. Below, I review the major critiques of the model, first within the regions where they originate and second, when researchers have attempted to test the idea in new areas. What emerges is that the same problems of definition highlighted at the beginning of this chapter and encountered by Janette Deacon and others in the 1970s, are still with us today. Can all herders really be defined on the basis of cultural or ethnic difference? Were these differences in identity and behaviour so distinct and uniform in the past that the same types of site and the same package can be found from contexts spanning nearly two millennia and across thousands of kilometres?

2.8.1. Testing the dichotomy model: Variation in time and place

Published critiques of the hunter-herder dichotomy have focused on Smith et al.'s (1991) paper but the main points are equally relevant for the Bushmanland (Beaumont and Vogel 1984; Beaumont et al. 1995) and Seacow Valley (Sampson 1984, 1986; Bollong et al. 1997) examples described above. In general, critics have highlighted variation in the two groups of artefacts which are thought to represent hunters and herders and demanded that functional and temporal differences are considered before accepting ethnic or cultural interpretations (Schrire 1992; Wilson. M.L. 1996; Sadr et al. 2003). Schrire (1992), for example, was not convinced by the formal/informal flaked stone dichotomy, the density of ceramics, or the bead size differences between the two types of sites presented in Smith et al.'s (1991) paper. Wilson (1996) also found "...no great consistency in the components of the three sites they [Smith et al. 1991] identified as 'hunter-gatherer' sites." In his re-analysis of the sheep-bearing levels at Die Kelders, Wilson found that the material culture could not be fitted neatly
into either 'hunter' or 'herder' categories based on the model proposed by Smith et al. (1991). Some aspects, such as a low incidence of formal tools fitted the herder package, but others, such as a low density of pottery, ostrich-eggshell bead size and the dominance of wild over domestic bovid bones, were found to match the hunter package (M.L. Wilson 1996). Webley (1997) observed similar inconsistencies when attempting to apply the model to an open site named Jakkalsberg (see discussion below); a dominance of sheep bones and an informal lithic assemblage was in accordance with the herder category but ostrich eggshell size and ceramic density was not. The model of herder dominance infers that hunter material culture would be more easily subjected to change as they came increasingly into contact with herders (Webley 1997). In the Seacow Valley project Khoi pottery dominated at some clusters of non-kraal sites and in the Bushmanland surveys, Khoi pottery dominated at 'Wilton' (and therefore hunter-gatherer) sites. These anomalies were explained away as evidence of cultural contact in the form of hunter-herder clientship (Beaumont et al. 1995; Sampson 1984: 105). This is a classic ‘normative’ culture-history approach to archaeology whereby differences between two groups are thought to reflect distance between two populations and similarities represent closeness (Jones 1997). There is little consideration of diversification or variation within the cultural groups of ‘hunters’ and ‘herders’ themselves (although see Bollong et al. (1997) who accept hunter–herder integration in the Seacow Valley post AD 1500). Similarly, one hunter site, Voëlvlei, from the southwestern Cape, showed variation in the bead sizes which appeared to become larger through time and thus more like ‘herder’ beads. This is explained as closer cultural contact with the dominant herders in the later periods (Smith et al. 1991: 89).

There is certainly some patterning in the ostrich eggshell bead sizes between the sites Smith et al. (1991) ascribe to herding and hunting groups (Yates and Smith 1993a). Yates and Smith (1993a) reaffirmed their distinction and sought tighter chronological control on bead sizes. They concluded that bead sizes did indeed become larger after 2000BP. Bead sizes at least have some ethnographic parallel as a marker of identity (Wiessner cited in Jacobson 1987: 56). Furthermore, as a non-utilitarian item, there is some justification in using them as stylistic markers (Sadr et al. 2003: 27) but whether this signifies two separate cultural groups has certainly not been proven beyond doubt (Schrire 1992; M.L. Wilson 1996; J. Kinahan 1995: 176).
The case for informal lithic assemblages and a particularly broad pottery type as markers of either pastoralism or an ethnic group is however, in need of serious refinement (M.L. Wilson 1996: 82; Sadr 2003: 206). Informal assemblages, after all, begin to dominate in some parts of the Western and Eastern Cape well before the introduction of sheep and pottery (Orton 2006) and there is a wealth of literature on functional variation in lithic assemblages.\(^{15}\)

2.8.2. Functional considerations

Schrire (1992) picked up on the possibility that the two groups of sites identified as being the result of hunter and herder occupations by Smith \textit{et al.} (1991) could also be the result of different activities of the same population or two different time periods. A crucial component of Yates and Smith’s (1993a) response to Schrire’s criticism was that similar activities were carried out at hunter and herder sites, i.e. they both worked skins and wood, but hunters used retouched ‘formal tools’ and herders did not. This difference in behaviour, evidenced by the lack of formal tools on ‘herder sites’, was explained as a nonfunctional phenomenon similar to the bead size differences, that is, as ‘…\textit{a matter of cultural practice.}’ (Yates and Smith 1993a: 99).

Sadr and colleagues suggested the testing of the dichotomy model in the 1991 paper was unsatisfactory in terms of spatial and temporal distance between sites (Sadr \textit{et al.} 2003: 28-29). In order to obtain better control, six adjacent sites on Kasteelberg, dated to the first millennium AD were chosen for excavation. On the basis of a previous survey of the Vredenberg Peninsular (Sadr \textit{et al.} 1992), three dated to the early first millennium AD had been assigned hunter status, and three were dated to the late first millennium AD and assigned herder status. But the results from the excavations did not support the initial interpretations and the validity of the hunter-herder dichotomy was brought into question. The distinction of formal versus informal lithics was only consistent with the model in the early part of the first millennium. Later in the first millennium, the distinction was blurred, with some herder sites containing more formal tools than hunter sites. The samples were small, yet the results suggested that

\(^{15}\) For the debate on behaviour versus style, see the Binford versus Bordes debate (Binford 1973; Binford and Binford 1966, Bordes 1973; Bordes and de Sonneville-Bordes 1970).
functional differences were the most plausible explanation. Even the proportions of
domestic versus wild fauna did not match the model (but see Smith’s (forthcoming)
criticism outlined below). The main difference was found to be that the earlier sites
(originally called hunter sites) contained notably more steenbok bones, while
significantly more seal bone was recovered from the later sites (originally called
herder sites). The earlier sites also had fewer artefacts than the later sites, which led
Sadr et al. (2003: 29) to explain the observed differences in terms of a settlement shift
from more mobile herder-foragers concentrating on inland resources to less mobile
coastal herder-foragers concentrating on marine resources. Smith (forthcoming) has
recently pointed out some serious shortcomings of Sadr et al.’s (2003) paper, which
include inadequate sample size and the counting of all faunal remains classified as
Bovid size class II remains as sheep when some could easily be a similar sized species
of antelope, such as the common duiker (Sylvicapra grimmia). Smith (2005: 173) also
suggested that the change in density between the early and late first millennium sites,
observed by Sadr, could also be explained in terms of a change in group size.

2.9.1. Future directions 1: Beyond the formal/ informal dichotomy

Both Schrire (1992) and Sadr et al. (2003) found the formal/informal lithics
distinction to be better explained as a functional rather than a cultural difference. Here
I note two additional but related limitations with this aspect of the model. First, there
is no attempt to explain why the assemblages may vary in the way that they do. What
are the behavioural implications of this observation? Why would herders employ a
more expedient technology and hunters leave behind smaller retouched artefacts, and
why would there be differential use of raw materials between hunters and herders in
the same environment? Such, a line of enquiry does not necessarily refute the
dichotomy of hunters and herders. If there were indeed two separate groups one
would expect mobility, forward planning, group organisation and activities to vary
considerably between the two different subsistence regimes.

The second major limitation is that the so-called informal assemblages are never
analysed in detail. Instead, they are simply classified as non-formal, and using the
traditional typological terminology, labelled as ‘debitage.’ If archaeologists are
attempting to group artefacts together as a ‘cultural’ entity or even as an economic
group, a more detailed consideration of the flaked stone is necessary. The typological analysis of retouched forms is only a small part of the sub-field of modern lithic analysis. Technological analysis, either using metrical techniques, more qualitative reduction sequence studies, or preferably a combination of both, together with refitting, microwear and residue studies would allow archaeologists to tackle the kind of behavioural questions just mentioned. Up until very recently there has, in fact, been no technological analysis of any lithic assemblages that had been assigned to a pastoral economic group.

Isabelle Parsons' (2003) re-evaluation of the Swartkop/Doornfontein dichotomy attempted to employ a technological approach. Unfortunately, rather than using the opportunity to pose questions of technological organisation and subsistence strategies, Parsons focused on simply trying to see if two adjacent surface sites had two different sizes of artefacts. She also analysed two sites that were already assigned to either the 'Doornfontein' or the 'Swartkop' groups. Not surprisingly the four sites divided into two groups.

Parsons discounted a functional explanation for the observed differences because no organics were present. (Parsons 2003: 37). It would, however, be useful to hypothesise why the two different size ranges in stone tools might be the residues of hunting or herding subsistence practices. For example, why would two groups occupying the same space (only 150m apart) be using different raw materials, producing flakes of different sizes, one retouching a certain type of flake and the other not retouching any? Raw material size and availability is an obvious concern that needs to be taken into account when explaining the size and shape of debitage. In this respect, size difference comparisons are only really relevant when differential usage of the same raw material can be demonstrated. Following such a raw material study, perhaps inferences of function or style could then be logically deduced. Without due consideration of this factor, the differences observed could simply be seen as the result of the different raw materials (e.g. one camp was the result of hornfels reduction and the other chert). The choice of two different raw materials

16 This is not a new argument in southern African archaeology. For example, as early as 1974 Garth Sampson considered a similar explanation for the so-called 'Smithfield industry' (Sampson 1974).
when occupying the same area could indeed be relevant to identifying different behavioural patterns.

Although Parsons attempted to develop a methodology for tackling low density surface scatters, the analysis is typical of the approaches already described in that the aim of the analysis is to fit a number of sites (in this case four) into one of two groups. Parsons found that the patterning of her size classes separated out along the lines of the two 'type sites' and therefore “...lends support to the proposition that there existed two different lithic traditions that may be associated with two distinct yet contemporaneous socio-economies.” (Parsons 2003: 37). Although Parsons does not mention the ethnic groups of Khoi and San associated to this dichotomy by Beaumont et al. (1995), she does not attempt to explain what 'socio-economy' means in her theoretical framework. Ultimately, Parson’s case study suffers from a small sample size. If two different socio-economic groups are really readable from lithic evidence in this manner, she would have to demonstrate this same pattern over a wider area and compare a large number of sites in different landscape settings.

The identification of contemporary sites where informal and formal assemblages (Smith et al. 1991), different raw materials (Smith et al. 1991; Yates and Smith 1993a) and different reduction strategies (Parsons 2003) dominate is an interesting phenomenon, but there are many alternatives to 'cultural practice' as to why the two types of assemblages could be different in these respects. It seems that no one is prepared to ask the question as to why herders are thought not to retouch their flaked stone and there has been little consideration of the properties and availability of different raw materials. In order to demonstrate purposeful procurement of one set of raw materials over another, the same raw material availability would have to be demonstrated for the two groups. A recent analysis of a small sample of the KBB and Witklip assemblages by Rivat (2006) has attempted to address this issue. The results suggest that the occupants of the latter site had a preference for finer grained raw materials than the former even though fine-grained material was readily available for both.
But such an observation does not automatically allow us to jump to conclusions of cultural practice. Different raw materials fracture differently and have different potential for utilisation and functionality is likely to have varied accordingly. Raw materials could, therefore, have been chosen for their particular properties. Furthermore, functional difference, in terms of use of the raw material and the finished stone artefact product, is but one behavioural consideration that needs to be taken into account.

To think outside the culture versus function debate for a moment allows a whole range of behavioural implications to be considered. For example, if raw material procurement and potential uses of an artefact are thought of in their wider behavioural context, it may be possible to imagine how such activities are intertwined with the settlement patterns and the degree of mobility and flexibility of movement. I would suggest that if we look past the goal of trying to assign each assemblage to a hunter or herder affinity, and the normative process of trying to group sites together, we may get closer to the real variation that existed in the past.

2.9.2. Future directions 2: Towards spatial organisation

Some researchers have suggested that the intrasite spatial analysis of LSA sites might be a better way to recognise pastoralists in the archaeological record (Avery 1974; J. J. Kinahan 2001). Sealy et al. (2004) attempted to combine spatial analysis with the dichotomy model in their analysis of shell middens and stone features at Melkbosstrand, 22 km north of Cape Town. Building on Avery’s work from the 1970s, they note that clusters of shell middens found with stone hearths (Avery 1974; see also Binneman 2001) may be representative of a “…larger scale of social organisation than normally expected amongst hunter-gatherers.” (Sealy et al. 2004: 26). Interestingly, while some of the artefactual assemblages did match the Smith et al. (1991) package, such as the informal flaked stone assemblage, other aspects such

17 In the classic Binford versus Gould debate of the 1970s and 1980s, Binford and Stone (1985) voiced similar concerns about simplistic ethnoarchaeological interpretations of Aboriginal lithic raw material selection. He pointed out the danger of leaping to ideological explanations when a particular raw material had been chosen even though it is not necessarily the best quality available. Binford suggests that “the quality of the lithic raw material chosen varies relative to the production of tools designed to perform different roles in the technology.” Interestingly, Gould (1985) conceded that more detailed experimental work had in fact proven that Binford’s behavioural model actually fits the data.
as the ceramic index (ratio of ceramics to stone) did not. Sheep bones dominated the fauna from a single layer on one of the sites, but were present only in small quantities in other layers.

In recent years, a number of pastoralist sites have been exposed along the banks of the Orange River in the Richtersveld area, due to the effects of upstream damming which causes a decrease in sediment deposition and an increase in the effects of erosion (Smith et al. 2001). Webley (1997: 3) investigated two large open sites that had been exposed in this way, Jakkalsberg A and B. Like Sealy et al. (2004), the aim was to combine spatial analysis with a test of Smith et al.’s (1991) model. Here, at Jakkalsberg, observations of contemporary pastoralist campsites and historical descriptions from the same area meant that the archaeological data had a direct comparison. The sites consisted of both dense scatters of lithics containing large amounts of pottery and fauna, and well defined ashy hearths. Site A offered the best opportunity to examine spatial organisation. The cluster of four hearths contrasted with observations of contemporary Nama settlement layout, where the hearths were normally situated 10 m apart from each other (Webley 1997: 15). The spatial arrangement also suggested that the occupants did not stay in majtieshuisies’, as known from contemporary settlements. Lithics and faunal remains were found to be concentrated in the east of the site with an inverse spatial relationship to the pottery which was found in greater quantities in the western parts, although an earlier collection by a local herdsman made the pottery distribution questionable. The pottery included both lugged ware, thought to date from AD 1000 and later, and a type of decorated ware, thought to be associated to an earlier phase, based on seriation from Kasteelberg (Webley 1997). Therefore, Jakkalsberg may have at least two herder phases (Smith et al. 2001: 32). Unfortunately the lithic analysis was again limited to a statement that there were few formal tools (Webley 1997: 5-7).

Only 30 km downstream, Smith et al. (2001) investigated another recently exposed open air site at Bloeddrift 23. The aim was to determine site integrity using the dichotomy model combined with detailed intrasite spatial mapping. The site was a surface scatter of around 13 ashy hearths, consisting of flaked and ground stone, manuports, pottery, bone, ostrich eggshell fragments and beads. The hearths were on the same horizon indicating that there was little in the way of palimpsest occupation.
and the authors expected a degree of lateral movement, so less precise horizontal recording was required. A representative sample of the artefact distributions were plotted using 10 m by 10 m collection squares, and the artefacts left in situ. Concentrations of burnt calcrete cobbles, thought to be hearths, were plotted by GPS (Fauvelle-Aymar et al. 2006: 259). Perhaps the most important discovery at KFS 5 was the occurrence of vitrified dung, which represents a new diagnostic tool for recognising kraals in the archaeological record of southern Africa (Fauvelle-Aymar et al. 2006: 265-267). Importantly, for the prospect of future open-site survey, vitrified dung does not require good organic preservation. Lithic analysis consisted of the basic classification of debitage, and qualitative technological observations, but more detailed analysis is underway. The majority of the flaked stone was non-retouched quartz, shale, quartzite and sandstone artefacts (Fauvelle-Aymar et al. 2006: 261). The similarity of the reduction process with the technology from the early and mid-second millennium layers from Kasteelberg B led the authors to infer that the two occurrences may be broadly coeval. Spatial patterning was observed, with the stone artefacts and shells both having slightly offset distributions in relation to one another and the hearths (Fauvelle-Aymar et al. 2006: 259-260), while the pottery was found to have a spatial relationship with the distribution of vitrified dung (Fauvelle-Aymar et al. 2006: 267). Other stone technologies, such as Levallois debitage and bladelet debitage on silcrete, indicated older phases of occupation, but no spatial patterning was evident for these artefacts so they were not considered to be related to the main occupation of the site (Fauvelle-Aymar et al. 2006: 261).

At Jakkalsberg, Bloeddrift and KFS 5 there were non-random distributions of stone, pottery and food debris with hearths. Little can be said on the meaning of the spatial distributions recorded at present, because there are so few sites of this type known in southern Africa, but subtle patterns should emerge as more and more sites of this type are recorded. Indeed there is a current movement within LSA studies to record intrasite spatial distributions from open sites, encouraged by the 'paradigm shift' towards social explanations of material culture patterning (P. Mitchell 2005; P. Mitchell et al. 2006). Through the analysis of the larger horizontal areas offered by open sites, archaeologists can study questions that are not always possible from the excavation of box trenches in caves and shell middens. The investigations and ongoing analysis of Dunefield Midden, a large open air campsite dated to c650 BP
near Elands Bay in the southwestern Cape provides the best example of this type of site where the excavation extended over 700m² (Parkington et al. 1992). Most importantly, the excavators have been able to identify a single episode of activity lasting only a few months at most, thus enabling extremely detailed questions about site spatial structure to be posed, such as the sharing of individual portions of meat (P. Mitchell 2002a: 251).

John Kinahan’s work in Namibia is a good example of this spatial approach to studying social organisation amongst pastoralist communities. Kinahan has criticised the lack of spatial data presented by researchers in the Western Cape, and suggested that this reflects the ecological and technological focus of scholars in the region (J. Kinahan 2001: 9, 131). In the Hungorob Ravine, part of the Dâures Masif in the Brandberg Mountains, very visible clusters of stone walls were interpreted as representing distinct household units. Kinahan used this evidence to develop a critique of the seasonal movement model in the Western Cape (Smith 1983a). Smith’s (1983a) model proposed that whole clans of Khoekhoen would move together annually between different pastures. Kinahan suggested that an aggregation and dispersal pattern of settlement is more likely and that ethnographically the individual household unit is the fundamental unit of social organisation amongst pastoralists (J. Kinahan 2001: 127-134). Kinahan (1994-95: 219-224, 2001: 127-134) criticised the suitability of applying the Western and southern Cape models of pastoralism to the whole of southern Africa. The lack of a homogenous pottery style across the wider region of the Cape is thought by Kinahan to indicate that his model of shifting social alliances amongst autonomous household units may be a more suitable settlement model for the wider region (Kinahan 1994-95: 219-224, 2001: 127-134). In my opinion this latter extension of his argument is problematic as one all encompassing model is simply replaced with another. Even within Namibia there has been some severe criticism of Kinahan’s tendency to generalise about pastoralists’ social organisation (Jacobson 1997: 73).

Another study by Kinahan, this time in the south of Namibia, consisted of a similar type of analysis of arrangements of stone walls, but importantly the question was directed at //Khauxa!nas, a historically known 18th Century encampment (J. Kinahan 1996). Here, the recognition of similar aspects of social organisation in the layout of
the camp to that observed in the Hungorob allowed Kinahan to develop a critique of
the conventional historical wisdom that the Oorlam groups who occupied the site
were a product of colonial forces (J. Kinahan 1996).

Recent mapping and test excavations at Simon Se Klip (SSK) by Jerardino and Maggs
(2007) have built on this spatial research movement in herder archaeology and,
importantly, for the first time stone walled encampments comparable to those studied
by Kinahan were recorded in the Western Cape. Through extensive recording of stone
walls on the slopes and summit of a large rock outcrop, Jerardino and Maggs have
provided a direct opportunity to observe the spatial layout of a pastoralist campsite.
The centrality of the main domestic stock enclosure within the settlement and the
juxtaposition of domestic space and animal pens indicate an intensity of herd
management not seen in other sites in the Western Cape. The authors claimed that for
the first time a pastoral encampment indicative of the way of life akin to that known
from the historical documents has been identified. This new discovery has also helped
reaffirm the role of archaeology in questioning the conventional models of
Khoekhoen history (Jerardino and Maggs 2007). There is, after all, no mention of the
Khoekhoen building stone kraals in the written record.

The recent publication of KFS 5 and SSK represent the first successful attempts in the
Western Cape to identify herder sites without resorting to a typological model and are
particularly significant for the present study as they highlight the potential for further
research in plough-soils and on hilltops, two previously neglected landscape zones.
Perhaps even more relevant in terms of similarity to the current thesis is the ‘Archives
Khoisan’ survey of the Berg River undertaken in 2006 (François Bon, pers. comm.).
Interestingly, the survey has revisited some of the same sites which Hart (1984)
identified in his Honours project at the University of Cape Town and will provide an
example of how archaeological approaches to ‘herders’ have developed in the last
twenty years. Hart (1984: 68) was understandably reserved in attributing any of these
sites, which consisted of lithics and pottery alone, to herder occupation at the time of
the initial survey but concluded that “there is no real reason why these occurrences
should or should not be those of the herdere.” There was no ‘herder package’ known
at the time, and the full details of the Kasteelberg excavations had not yet been
published. As Hart (1984: 68) noted:
The biggest challenge that faces archaeologists studying pastoralism in the Cape is to determine what constitutes a herder site.

Hart was, however, quite astute in not dismissing these sites altogether, as the French team, equipped with a larger body of comparative material, are now confident that through technological analysis of the lithics and other material culture, some of these sites may be assigned to herder occupation (François Bon, pers. comm.). Significantly, these sites are located in ploughed fields similar to KFS 5 and also consist of a low density spread of stone and occasional pottery fragments (François Bon, pers. comm.; personal observation of one of the sites).

2.9.3. Future directions 3: The importance of low density and ploughzone archaeology

At KFS 5, the density of the flaked stone artefacts was as low as one every six m2 (Fauvelle-Aymar et al. 2006: 261) and only 33 flakes of stone were recorded from the excavations at SSK. If the models of pastoralist settlement which have come to dominate discussions in the Cape (Robertshaw 1979; Smith 1983a; H. Deacon 1983) are accepted, then one would expect such large and low density sites to be the key identifying feature. Yet surprisingly such dispersed distributions of artefacts are a new research topic for pastoralist studies in southern Africa. Elsewhere in the world, the importance of low density sites for the study of pastoralism has long been appreciated. Steven Rosen's extensive survey of the Central Negev region of Israel is a good example where sites may "cover only 10-20 m square, and show only a few (sometimes only one or two) sherds or lithic artefacts and perhaps a hearth" (Rosen 1992: 75). Notably, 25% of Rosen's sites were such ephemeral sites (Rosen 1992: 80).

Roger Cribb's (1991) pastoralist research project in the Near East also stressed the importance of recording low, as well as high, density surface sites in order to identify the variety of pastoralist adaptation. The scatters ranged from dense concentrations of sherds from large vessels to dispersed scatters from smaller vessels. The interpretation in this context focused on a scale of mobility, from more sedentary groups who were thought to have used non-transportable larger pottery, to fully nomadic groups who left behind only a few sherds of smaller, more easily transportable vessels.
Behavioural models such as this could be useful for southern Africa in that they would encourage the recording of all types of site and allow for variation in our constructs of ‘herder’ and ‘hunter’. This kind of interpretation could also provide a useful contrast to the interpretations of the Seacow Valley and Bushmanland surveys where similar concentrations of large and small pots of varying densities were interpreted as being the result of ethnic or cultural differences (Sampson 1984, 1986; Bollong et al 1997; Beaumont and Vogel 1984; Beaumont et al. 1995).

Low density sites have also been overlooked in CRM archaeology. Impact assessments require that practitioners make a decision on the significance of a site. Traditionally, this evaluation is based on density, which could be problematic for the recognition of the full range of herder and hunter sites. This issue recently came to the surface in the southwestern Cape when SAHRA (South African Heritage Resource Agency) was dissatisfied with the level of recording implemented by a commercial archaeology unit. Significantly for pastoralist archaeology, the area was the Vredenberg Peninsula, and at the time (late 2006), KFS 5 had not been published (Fauvelle-Aymar et al. 2006). A similar large but low density (compared to surrounding shell middens) surface site was deemed not significant enough for quantitative analysis by the hired archaeologist. Not satisfied with the qualification of ‘significant sites’ in the report, an archaeologist working for South African Heritage Resource Agency (SAHRA) organised a reassessment of the site by academics and consequently the site was reclassified as a pastoralist encampment of high significance (Andrew Smith, pers. comm.).

All sites should be recorded from open contexts regardless of the density and types of artefacts that are present if we are eventually to understand the true extent of subsistence and identity variation indicated by recent fieldwork. As the Near Eastern, Central Negev, and indeed recent Western Cape studies have shown, there is much that can be gained from sites with a very low artefact count. The size of the samples from low density open air sites can certainly be problematic (P. Mitchell 2002a: 131), yet this drawback is more than balanced by the potential that low density sites offer for the recognition of shorter occupation periods.
The literature on survey techniques is sparse in southern Africa. Only three research projects have published survey methodologies in the Western Cape (Sadr et al. 1992; Conard et al. 1999; Manhire 1984) two of which are quite specific to deflated dunes in the sandveld area of the Western Cape (Manhire 1984; Conard et al. 1999), and there have been no specific academic papers on the subject. This is in stark contrast to elsewhere in the world, where the problems of bias in regional surveys and the benefits of intensive and low-density archaeology have long been voiced. Beginning in the 1960s there has been an awareness of the need to record not just ‘sites’ but also the more dispersed artefactual record across the landscape (e.g. Thomas 1975). Proponents of the ‘off-site,’ or ‘non-site’ survey as they are often termed, propose that the individual artefact itself becomes the basic unit of archaeological recording (Wandsnider and Camilli 1992; Ebert 1988). Although some of these ideas were actually developed with the African landscape in mind (Isaac 1975; Foley 1981), off-site archaeology has never taken off in southern Africa (but see Conard et al. 1999; Conard and Kandel 2006; Shackley 1984 for exceptions) as survey has largely been conducted by CRM practitioners for whom time-resource pressures prevent the application of such intensive methods of survey.

One sub-field of survey archaeology which has been particularly overlooked in southern Africa is the archaeology of the plough-zone. As we have already seen, archaeologists have long been aware of the correlation between the best agricultural land and the areas most favoured by the Khoekhoen. Until recently, this relationship has been mentioned only in reference to the much vaunted ‘invisibility’ of mobile herders (e.g. P. Mitchell 2002a). The publication of the ploughzone site KFS 5, on the Vredenberg Peninsula, has, however, convincingly demonstrated that agricultural practices do not destroy all evidence of pastoralist occupation (Fauvelle-Aymar et al. 2006). The fact that colonial settlement and intensive agriculture of the 20th Century favoured the same locations as pre-colonial herders should not be a discouragement from working with ploughed fields. Indeed, elsewhere in the world, plough-zone archaeology is given prominence for the very reason that it is under threat (e.g. Dickson et al. 2005). Ploughed fields are generally thought of as a mixed blessing for archaeologists, artefacts are displaced both vertically and horizontally, but the silver lining is that visibility can be increased and buried materials can be brought to the surface. While no experimental studies, such as the ones undertaken in North America
(Ammerman 1985), England (Reynolds 1982) and Australia (Gaynor 2001), have been undertaken in southern Africa, the results of this research can still be used to assess the likely integrity of archaeological deposits. There is a general consensus from many separate studies, some using 'seeding' (planting of dummy artefacts in the plough-soil), and others using repeated observation of actual archaeological deposits, that some spatial integrity remains in the ploughzone (Lewarch and O'Brien 1981; Odell and Cowen 1987; Roper 1976).

2.10. New perspectives on the development of pastoralism

The dichotomy model is not designed to account for variation in herder and hunter life-ways; in contrast it places emphasis on long term cultural continuity. Hunters and herders remain separate cultural entities but hunters come increasingly under the influence of the dominant herding society (Smith et al. 1991). It has, however, long been realised that there may have been at least two major phases in the pastoralist sequence in southern Africa, with an earlier phase of sheep-herding followed by a later cattle-herding phase (Wilson. M. 1969; see also Sadr 1998; Henshilwood 1996).

Smith (1983a) proposed a linear development of herding from a relatively small population of early sheep herders into a more densely populated later cattle-herding period (Smith 1983a). Later, Smith (1986: 38) elaborated on the possible differences between these two phases, and suggested that mobility may have increased in the later period due to the larger nutritional demands of cattle compared to sheep. He also suggested that cattle herding may have required much larger encampments.

Sadr’s (2003) recent writing has suggested that the development of pastoralism may not have been such a smooth linear progression as modelled by Smith and colleagues (Smith 1983a; Smith 1986; Smith et al. 1991). He envisages localised intensifications of pastoralism amongst hunters in the first millennium AD which may not have been very long lived. The new model allows for a multi staged migration into the Cape beginning at the end of the first millennium AD, which would also have led to abrupt and localised intensifications of the pastoral way of life. Only later in the second millennium AD was a ‘true cattle pastoralist’ society now thought to have developed across the region (Sadr 2003; Fauvelle-Aymar 2004).
But what happened in the colonial period? Another problematic legacy of the cultural dichotomy model, in addition to the just discussed bias towards caves, coastlines and high-density sites, has been that archaeologists have tended to avoid the period after initial European contact. Those who support the model have suggested that disruption of indigenous communities in the 17th and 18th centuries meant that the cultural boundaries (hunter-herder) became less distinct (Smith 1993: 439). Although not explicitly stated, it can be presumed, that researchers working within this framework have focused on precolonial indigenous sites for this very reason, i.e. so that the theory of two separate cultural groups could be tested, at the expense of colonial period indigenous archaeology.

As Gavin Lucas (2006: 69) recently put it, it is as if “...they themselves [the Khoekhoen] no longer existed after 1652.” Some writers have recognised the crucial need to develop an ‘archaeology of impact’ or an ‘archaeology of contact’ for the colonial period (M. Hall 1993: 184-186; Sadr 2003: 205), but surprisingly there have only been two attempts to target a known point of Colonist-Khoekhoen interaction in the Western Cape (Schrire 1988; Clift 2001). Two other theses mentioned previously have targeted broad areas of a landscape where historical records attest to Khoekhoen settlement (Robertshaw 1979; Hart 1984), but the fieldwork was limited and the historical records used were non-specific.

Although historical archaeology research groups were established in South Africa in the 1980s, there has been a tendency for indigenous archaeology from the colonial period to be ignored (M. Hall 1993: 4; Perry 1996: 48-49; J.H.A Kinahan 2000: 9-10; Lucas 2006: 69). Archaeologists in Southern Africa have in the past typically designated the upper levels and surface artefacts of cave and rock shelter excavations as disturbed (but see work coordinated by Garth Sampson for a notable exception. e.g. Voigt et al. 1995). Until recently open air surveys conducted by the University of Cape Town Spatial Archaeology Research Unit did not record historical surface finds (L. Mitchell 2001: 55). There has also, in general been a similar lack of enthusiasm for colonial period rock art (M. Hall 1993: 4). Thus the amount of data that has been recorded at indigenous sites after first contact with Europeans is minimal. A similar

18 In the last 15 or so years there have been a handful of papers on colonial period rock art. See for example Yates et al. (1993) and more recently S. Hall and Mazel (2005).
lack of research in the post-contact period has been commented upon in other regions of the colonised world where writers have also linked the archaeological invisibility of indigenous people to the disciplinary focus on earlier periods, most notably in relation to Australian Aboriginal communities (Byrne 2003: 171; Harrison 2003; Patterson 2006) and Native Americans (Handsman and Lamb Richmond 1995).

2.11. Concluding remarks

Have field methods and interpretative frameworks developed accordingly to be able to recognise and explain such temporal variation in pre and post-contact lifeways? Theories on the chronological development of herding have mainly been used to explain the lack of sites at certain periods, or conversely to support ideas about early or late migrations, but there has been very little hypothesising on how herder sites may vary in the archaeological record as a result of these postulated phases (Sadr 2003; Smith 2005). Sadr’s recent excavations at Kasteelberg suggested that in the early period herding sites may have looked much like hunter sites, and that later sites may show an increase in density. In my opinion, further modelling has been limited by the importance Sadr (2003) attaches to domestic stock as the pastoralist signifier.

Byrne (2003) has argued that part of the reason for the low number of post-contact sites in New South Wales, Australia, also “...reflects real difficulties in detecting the archaeological traces of Aboriginal post-contact presence in the landscape.” The removal and destruction of Aboriginal settlements during the colonial period means that the already slim traces of ephemeral buildings and mobile material cultures could have been easily erased from the landscape as colonisers moved in to former indigenous land and built heavyweight structures, parcelling up, ploughing and irrigating the landscape as they went.

Byrne also suggests the increased use of a material culture borrowed, and traded from Europeans makes the job of reading Aboriginal signatures from the landscape even more difficult. Byrne does, however, suggest that the particular way in which material culture is used, in other words its context, can reveal indigenous authorship (Byrne 2003: 171-172). Hall (1993) also makes similar observations in the Cape; in regards
to what he terms “the archaeology of the underclass,” which arguably overlaps with historical indigenous archaeology:

Overwhelmingly, the material culture used by the underclass was the material culture of their masters… (M. Hall 1993: 5).

Post-contact Khoekhoen archaeology may be more difficult to locate, due to an increase in mobility (Smith 1986: 39) and potentially an increased use of metal, as opposed to stone, implements. But one can also argue the opposite, namely the availability of historical documents for targeting survey, the tendency of groups to aggregate for trade, and in the 18th Century the fact that the Khoekhoen were forced to inhabit smaller areas, become sedentary and occupy stone buildings, which all suggest that archaeological visibility could be increased. To this one could also add the use of new visible material culture such as glass beads, metal objects, smoking pipes and European introduced pottery. There is also the very real possibility that many aspects of material culture will not change immediately following contact as was demonstrated in the Seacow River valley rock shelter excavations in which European items did not appear in any of the excavated sequences much before 1830 (Voigt et al. 1995). A further incentive to undertake post-contact archaeology is the reduction in problematic time distance between analogous written sources and the archaeological material.

The truth is that we have very little to go on at this stage and each new site that emerges suggests a quite different scenario to the last. For now, maximum variation in indigenous lifeways has to be assumed. This review has shown that the methodological emphasis is now shifting towards the analysis of spatial organisation and lithic technology through which it is possible to study variety in aspects such as group size, mobility, settlement patterns and social structure. Work such as J. Kinahan’s (1996) investigation of the 18th Century herder camp at //Khauxa!nas and Carmel Schrire’s focus on Oudepost (Schrire and Deacon 1989) have also tested the disciplinary boundaries of Khoekhoen archaeology, by focusing on historically known sites and asking questions of specific historical narratives (Reid and Lane 2004: 12). The range of sites is also expanding to include not only the dense accumulations or those with diagnostic artefacts, but also dispersed sites in ploughsoils and ephemeral stone walling on hilltops. At present, however, the real meaning of many of the
artefact distributions and the technologies employed at these sites is difficult to interpret because there is so little comparative data (Fauvelle-Aymar 2006: 265; Jerardino and Maggs 2007). Nevertheless, the body of knowledge growing and through the spatial maps recorded at sites such as Bloeddrift 23, the Jakkalsberg sites, KKFS 5 and SSK, together with detailed artefactual analysis like that employed on the Archives Khoisan project, we may soon get a little closer to understanding the variety of herder lifeways.

Perhaps now the biggest challenge is to adjust our definition of pastoralist archaeology in the Western Cape. It is significant in this regard that the three most recent identifications of possible pastoralist encampments were not new discoveries. KFS 5, SSK and the Berg River sites have all been known to archaeologists for over 10 years and it is simply by changing the way we look at these sites that the new perspective is being formed. As more researchers free themselves from the confines of cultural models it is quite likely that a greater variety of 'herder' sites will emerge in the next few years. It may yet turn out to be that pastoralists were not invisible after all; it was just that we didn’t know how to see them.
3. The Khoekhoen of Swellendam 1660-1734

A review of historical sources and research

3.1. Introduction

This chapter reviews the historical evidence for a group of Khoekhoen, collectively known as the Hessequa, whom Richard Elphick described as the richest and largest indigenous group in the Western Cape (Elphick 1985: 138-139). Elphick also noted that the 17th Century records concerning the Hessequa and their neighbours the Chamoqua identified particular settlement foci along the southern flank of the Langeberge and Riviersonderend Mountains (Elphick 1985: 139). These assumptions are central to the initiation of the current project. Elphick’s archival work and additional sources relating to the 17th and early 18th Century stock trade were revisited at an early stage in the research design, and the results of this are presented here.

Figure 4: An extract from Diary of the Voerman entitled ‘1668 In the Land of the Hessequas’

First, the archival sources are introduced, and summarised, followed by a critical review in which I assess the potential of these documents for reconstructing Khoekhoen settlement patterns and discuss how archaeology may provide an alternative source of evidence through surface survey and spatial analysis of indigenous campsites.

18 September-November 1668. VOC 4003, Reel 17. (Archive references prefixed with VOC refer to copy of Brieven en Papieren van de Caab Overgekomen kept on microfilm at the Institute of Historical Research, University of the Western Cape).
3.2. Methodology

For this review I used three published versions of the Dagregister (Daily journal) of the Cape Governor and the correspondence between the Dutch East India Company in Holland and the Cape. Thom's (1958) *Journal of Van Riebeek*, Volume III for the period 1660 to 1673, Moodie's (1838) *The Record*, Volume 1, up to 1689, and, for the later years, Leibbrandt's (1896a; 1896b) *Precis of the Archives of the Cape of Good Hope, Journal 1699-1731* and *Precis of the Archives of the Cape of Good Hope, letters dispatched 1696-1708*. Both Moodie's and Leibbrandt's publications are summaries of original archival material. In this respect, the review cannot be said to be a comprehensive account of the original archival material, although both are thought to be accurate translations.

Richard Elphick's *Kraal and Castle*, first published in 1977, and then re-issued in 1985 under the title *Khoikhoi and the founding of White South Africa* included the first synthesis of the trade between the Company and the Chainoqua and Hessequa using published and original archival sources. Henry Bredekamp (1981) also produced a summary of these early expeditions.

The reports written by cattle traders for the benefit of VOC officials consist of more detailed accounts of bartering expeditions, three of which made it to publication. These include Shrijver's well known journey of 1689 (Mossop 1931), Cruse's venture in 1669 (Godeé Molsbergen 1976) and Hartogh in 1707 (Stock 1916). Two unpublished accounts of trading expeditions to the Hessequa were transcribed and translated, including the *Diary of the Voerman* by Jeronimus Cruse, describing a journey undertaken in 1668 and the *Journal of Laurens Visser*, written almost 10 years later in 1676. They are both part of the VOC archive *Brieven en Papieren van de Caab Overgekomen* housed in the Algemeen Rijkarschief, The Hague, of which the period from 1652-1757 is available on microfilm in the Institute for Historical Research at the University of the Western Cape (VOC 3988-4209). Other references

20 According to Shula Marks (1972) Donald Moodie's *The Record* is a "meticulous compilation and translation of the documents he found in the Cape Archives on the treatment of indigenous people by the Dutch covered by the three sections published..." Marks checked his work against that of Thom and Leibbrandt and against the Verbatim Copies series in the Cape Archives and there was a remarkable synchronicity between all four copies of the archival material.

21 All transcriptions and translations were by Fiona Clayton.

from Elphick (1985) relating to the Hessequa were checked in the Verbatim Copies (VC) series at the Cape Archives, but all of the major details pertaining to cattle trade were found to match those covered in the published accounts.

In general, the journal entries were kept brief and rarely is there any extra detail on the people with whom the barter was being conducted. VOC officials were concerned little with the lives of indigenous peoples and as a consequence the number of stock traded and the amount paid is often all that is recorded. The latest two journals, those of Shrijver and Hartogh are exceptions to this rule, and provide a wealth of information on place names and Khoekhoen groups encountered. This was, at least in part, because by this stage the Governor was attempting to exercise more control over trade or at least demonstrate to his superiors in Holland that trade was being conducted to their satisfaction and the creation of detailed journals was the perfect way to do this. Such a motive does of course bring the question of colonial bias into perspective. If these journals were produced principally to keep face with the notorious ‘Council of Seventeen’ who governed the VOC from the Netherlands, then one can assume that unsavoury aspects may sometimes have been omitted, and editing must have been a priority. This is a topic I explore in more detail at the end of this chapter when I assess the potential of using these documents for archaeological enquiry.

3.3. The expeditions

In 1663, Hendrick Lacus led the first VOC trading party over the Hottentots Holland Mountains where he encountered a Chainoqua kraal consisting of 21 huts with 400 to 500 cattle. Two more were sent out in 1664, and two again in 1666. The first trading expedition to the Hessequa, however, was not until 1667, when Sergeant Pieter Cruythoff, the overseer of the newly established outpost at Hottentots Holland, returned on the 6th May with 59 cattle and 350 sheep. Unfortunately no record of the people or places he visited survived in the Company archives (Moodie 1838: 267-268).
3.3.1. Jeronimus Cruse 1668 and 1669

Jeronimus Cruse led further trading expeditions in 1667, August 1668, January and October 1669 (Moodie 1838: 301-304). On two occasions he was dispatched with a team of men on the eastward bound ship, the Voerman, which would drop them at Mossel Bay to return overland, trading with Hessequa groups along the way. Trading journeys were temporarily halted in 1670 to encourage the Khoekhoen groups to come to the VOC fort at Cape Town, but the reluctance of the Khoekhoen to comply with Company wishes prompted the Governor to recommence the cattle buying missions, beginning under Sergeant Cruythoff and Jeronimus Cruse in 1672 (Moodie 1838: 320-321).

The Diary of the Voerman,24 describes a journey undertaken between August and December of 1668 and provides details of the location and number of kraals. In one instance, a few days after the Voerman had dropped the party in Mossel Bay, Cruse describes a visit to an Attaqua kraal north of Mossel Bay and his diary even includes rare details of trading customs. Two and a half days after the party had left Mossel Bay on the journey west, they crossed a river which, according to Cruse, "...separates the land of the Gouris (Gouriqua) from the Hessequa", and is most probably the Gouritz River. From this point onwards kraals were encountered, including a major aggregation of the "Captains" kraal camped together with 16 or 17 other kraals. Although difficult to pinpoint, these would have been somewhere in the region south of the modern town of Riversdale. This meeting of such a large number of kraals in one location is thought by Elphick (1985: 141) to be evidence that the Hessequa had strong leadership. Landscape details are rarely mentioned in Cruse's journals, and usually only to describe mountains and rivers that are difficult to traverse. Close to Mossel Bay the travellers heard that Attaqua Khoekhoen had ambushed Gouriqua Khoekhoen and slit their throats. A few days later, Cruse admits that he feared meeting the same fate during a night attack on their camp which was only foiled by the watchman's gunshot. Cruse's second journal, included in the 1673 Daghregister and also published in Dutch in Godeé Molsbergen's (1976) edited volume of traveller accounts, provides further insight into one of these violent encounters. Here Cruse recounts an ambush by Obiquas, describing his retaliation.

3.3.1. Jeronimus Cruse 1668 and 1669

Jeronimus Cruse led further trading expeditions in 1667, August 1668, January and October 1669 (Moodie 1838: 301-304). On two occasions he was dispatched with a team of men on the eastward bound ship, the Voerman, which would drop them at Mossel Bay to return overland, trading with Hessequa groups along the way. Trading journeys were temporarily halted in 1670 to encourage the Khoekhoen groups to come to the VOC fort at Cape Town, but the reluctance of the Khoekhoen to comply with Company wishes prompted the Governor to recommence the cattle buying missions, beginning under Sergeant Cruythoff and Jeronimus Cruse in 1672 (Moodie 1838: 320-321).

The Diary of the Voerman,24 describes a journey undertaken between August and December of 1668 and provides details of the location and number of kraals. In one instance, a few days after the Voerman had dropped the party in Mossel Bay, Cruse describes a visit to an Attaqua kraal north of Mossel Bay and his diary even includes rare details of trading customs. Two and a half days after the party had left Mossel Bay on the journey west, they crossed a river which, according to Cruse, "...separates the land of the Gouris (Gouriqua) from the Hessequa", and is most probably the Gouritz River. From this point onwards kraals were encountered, including a major aggregation of the “Captains” kraal camped together with 16 or 17 other kraals. Although difficult to pinpoint, these would have been somewhere in the region south of the modern town of Riversdale. This meeting of such a large number of kraals in one location is thought by Elphick (1985: 141) to be evidence that the Hessequa had strong leadership. Landscape details are rarely mentioned in Cruse’s journals, and usually only to describe mountains and rivers that are difficult to traverse. Close to Mossel Bay the travellers heard that Attaqua Khoekhoen had ambushed Gouriqua Khoekhoen and slit their throats. A few days later, Cruse admits that he feared meeting the same fate during a night attack on their camp which was only foiled by the watchman’s gunshot. Cruse’s second journal, included in the 1673 Daghregister and also published in Dutch in Godeé Molsbergen’s (1976) edited volume of traveller accounts, provides further insight into one of these violent encounters. Here Cruse recounts an ambush by Obiquas, describing his retaliation

during which they attacked the Obiqua kraal. On this ill-fated trip, Cruse and party
failed to reach the Hessequa but returned to the Dutch fort in Cape Town with a booty
of 175 cattle and 53 sheep, taken from the Obiquas (Godeé Molsbergen 1976: 122-
128).

3.3.2. Laurens Visser 1677

Jeronimus Cruse continued to be sent to the Hessequa and other tribes to the north of
the colony until 1677, at which time Sergeant Laurens Visser took command of
expeditions. However, Visser had not inherited an easy task as the brutality of these
early exchanges had, not surprisingly, made the Khoekhoen wary of the colonists and
increasingly reluctant to do business. In his 1676 journal, Visser reports that the
Hessequa on the Breede River feared for their lives and were about to move their
kraals inland when they heard a trading party had arrived. Only after some persuasion
and gifts did they agree to assemble near modern day Swellendam in order to barter.25

3.3.3. Bakkeleys Plaats

The daily journal and correspondence of the Cape Governor published in Moodie
(1838) provides details on trade and conflict with indigenous groups for the remainder
of the 1670s. In October 1677 Visser was sent out to trade with the “...Hessequa tribe
who were now lying at Buffeljacht and Backeley Plaats...” and whom the governor
presumed would remain in the same location for at least a month (Moodie 1838: 357).
Visser eventually caught up with them on the Breede River, successfully trading for
113 cattle and 411 sheep. Over the next year Sergeant Visser was sent out five more
times to the Hessequa, three of which were specifically to Bakkeleys Plaats. 26
Jeronimus Cruse was also sent out to Bakkeleys Plaats in 1679 to barter cattle
“...from a rich tribe named Hessequas” (Moodie 1838: 372).

Travelling just over a Century later in 1777, Robert Gordon noted the local
Khoekhoen name for Bakkeleys Plaats (meaning ‘fighting place’ in Dutch). He was
told that it was called Aangoe Koe, which meant place of fighting, and that it was an

26 There are various spellings of this place name. For consistency I use Bakkeleys Plaats, unless cited
as a quotation, as this is the modern version of the name that is still in use.
old Khoekhoen battleground where men had been buried in stone cairns. The name, at least at that point in time, referred to an area to the east of a river crossing at the farm Appelsbos (Cullinan and Smith 2006).

Bakkeleys Plaats survives today as a farm name on the Buffeljagts River and represents one of the earliest loan farm grants in Swellendam in 1731. Both Visser's journal and the Dagregister in 1676 and 1677 are somewhat confusing in that they describe Buffeljags and *Bakkeleys Plaats* as separate locations (Moodie 1838: 356). It is most likely that *Bakkeleys Plaats* actually referred to a landscape rather than a specific location. The Koornlands Rivier 8 km to the west of the Buffeljags was named the Bakeleij River by Issac Shrijver in 1689 and, as suggested by Mossop (1931: 249), it is more likely that Bakkeleys Plaats originally refers to the stretch of land between these two rivers, on the north bank of the Breede.

Trading carried on in this fashion, and almost exclusively with the Hessequa, until 1684 when a Chainoqua man named Dorha, or 'Klaas' as the Dutch knew him, began leading expeditions himself. For the next six years Klaas conducted at least one expedition per year with the Chainoqua and Hessequa. The Company also developed a close relationship with another Chainoqua 'Captain' named 'Koopman,' but conflict between the two captains and other indigenous groups meant that this period of Khoekhnoen-led trade was shortlived (Moodie 1838: 390-446).

3.3.4. Issac Shrijver 1689

Trading expeditions were few and far between in the late 1680s but they did not stop altogether. Issac Shrijver's well known journey to the Inqua groups east of the Hessequa set off in 1689 (Mossop 1931: 193-250) and provides probably the best evidence for the location of kraals for the 17th Century. Importantly, Shrijver locates

27 An alternative meaning is suggested by a quote from Kolb. Writing in 1731 he commented that the Hessequas' called their carriage oxen "Backeleys," and that these "exceed all others in wealth and beauty" (Kolb 1968). The close correspondence with the Dutch word to fight cannot however be a coincidence and the oxen which were also used in raiding missions (Kolb 1968; Fauvelle-Aymar 2004) had most likely received the name of 'fighters' by the time of Kolb's journal. Considering the first mention of the place is in relation to large aggregations of Hessequa for trading stock, and we know that the Khoekhnoen often preferred to trade their oxen rather than breeding cows (Elphick 1985) then the name of 'oxen place' seems plausible.

28 (RLR 9/2:459). See Chapter 4 for a more detailed discussion of place names in the Swellendam area.
the position of kraals east of the Breede and Buffeljachts River, demonstrating that the Riversdale area was still a particularly favoured place for Hessequa settlement, as it had appeared to be from the journal of Jeronimus Cruse in 1668. Shrijver's journal also provides a great deal more commentary on the quality and nature of the landscape than the Cruse (1668) or Visser (1676) journals.

On the outward journey, Shrijver encountered Hessequa near the Duivenhoks River and was told that the kraals of the "Swarte Captain" were in the area. Moving eastwards, the party met "...many Hessequa kraals" along the Vetrivier, a tributary of the Goukou River (formerly Kafferkuils River) only a few kilometres north of the modern town of Riversdale. Along the Goukou River itself, Shrijver observed "...Hessequa kraals everywhere", including the kraal of "De Oude Heer" or "Goukou", the "chief" of the Hessequas, from whom the river gets its name. Two months later, the party returned to camp once again among the Hessequa along the Vetrivier. Significantly, the party was told that Goukou was also thought to still be in the area, suggesting that Hessequa kraals were, contrary to the high mobility model (Robertshaw 1979), remaining in the Riversdale region for extended periods (Mossop 1931: 193-250).

3.3.5. The 1690s

Official trade with the Chainoqua and Hessequa almost ceased in the 1690s, but towards the end of the Century the lack of trade appears to have taken its toll as a shortage of cows and oxen prompted the Company to look eastwards once again. In a letter to VOC officials in Holland dated 1st August 1696, the Company Commander described his intention of continuing trade with "...more distant Hottentots..., especially with the Hessequas, as the most powerful of that class of natives..." (Leibbrandt 1896b:19).

On January 14th 1699, 275 cattle and 274 sheep were brought back from the Hessequa, and between November and early December of the same year the Journal records an expedition led by Olaf Berg and Jan Hartogh, the Company gardener, to the Hessequa. In a letter to the Commander, Bergh reports that he encountered ten
Hessequa kraals together at Tiger Hoek at the eastern end of the Riviersonderend Mountains, from whom he bartered 175 cattle and 226 sheep (Mossop 1931: 65-69).

3.3.6. The Opening up of the Stock Trade

The appointment of Willem Adriaan van der Stel as Governor of the Cape in 1699 heralded a new era of colonial expansion and the cattle trade was opened up to all free burghers in 1700 (Penn 2005). Less than three years into the free barter period, a dramatic increase in both the number of complaints from Khoekhoen groups and individuals and the level of violence persuaded Van der Stel to have the ban on free trade partially reinstated (Leibbrandt 1896a 56-57). Expeditions to the more distant groups, including the Hessequa was largely avoided in the first few years of the 18th Century, due to the hostilities created during the short period of open barter; trade was however continued with neighbouring Khoekhoen groups (Leibbrandt 1896a).

3.3.7. Jan Hartogh 1707

In October 1707, the Company cattle supply had become “...much diminished by death and age...” and so it was deemed necessary to restart up the expeditions to the Hessequa (Leibbrandt 1896a: 139). The gardener Jan Hartogh led an expedition along the same tried and tested trade route as those before him, finding kraals once again along the Riviersonderend Mountains, Hessequas Kloof, and near the Breede River (Stock 1916). Hartogh followed specific orders from the Governor of the colony and recorded his trip in much more detail than earlier traders, including names of each of the Khoekhoen individuals with whom he did business. Hartogh’s journal is also a valuable source of Khoekhoen place names. It is here, for example, that the Khoekhoen name for the Breede River, Sijnaa, is recorded (Stock 1916: 620).

3.3.8. The colony advances 1707-1734

Official trading expeditions were few and far between over the next twenty years, and there is little mention of the groups or areas visited in the Dagregister summary provided by Leibbrandt. Uncontrolled free-burgher trade, coupled with the disasters of the 1713 smallpox epidemic and stock disease (Smith 1989), meant that many Khoekhoen groups were left without stock to barter. Nevertheless, inland expeditions
were mounted between 1716 and 1718, including a rare journey to the Gouritz on 5th September, 1718, “...in order to obtain draught and slaughter oxen.” (Leibbrandt 1896a: 275-276). The nature of trading expeditions at this time was often less than amicable. A group of “Bushmen” were interrogated after a raid on a cattle station in 1719, during which they explained that they had been robbed by an eastward bound VOC trading expedition the previous year (Leibbrandt 1896a: 276).

The Company regularly fell short of cattle throughout the 1720s. A few expeditions were mounted, but apart from one journey to the north, most only extended as far as the Hottentots Holland Mountains, and no specific journeys to the Hessequa were recorded in Leibbrandt’s (1896a) summary of the archives. More reports of cattle shortages amongst the Cochoqua and Chainoqua groups living close to the furthest flung outposts at the Land van Waveren (Tulbagh) and Hottentots Holland forced the company to once again ban the free burghers from trading with the Khoekhoen in 1727 (Leibbrandt 1896a: 309). The Company failed, however, to see that even the supposed ‘legal’ trade of the Company could be catastrophic for pastoralists who depended on cattle for social, as well as nutritional, wellbeing (Penn 2005: 54-55). Thus, the Company continued its relentless pursuit of Khoekhoen-owned cattle and, according to Dan Sleigh (1993: 576), one of the most probable reasons that the permanent outpost called *Riet Valleij on the Buffeljagtsrivier*,29 was situated deep in Hessequa territory in 1734 is that indigenous communities in this area were still, in the large part, autonomous entities, and therefore had more cattle to trade compared to those closer to the colony.

The situation on this eastern frontier was changing rapidly, and it was more than just valuable stock that was now being taken from the Hessequa. Their once extensive pastures and watering holes of the Hessequa were being incorporated into the farms and outspans (areas of common grazing) of free-burghers who had settled on the Breede as early as the 1720s and as far as Mossel Bay by 1734 (Sleigh 1993: 576).

29 The outpost was called this to distinguish it from another Company Outpost, Riet Valleij on the Diepe River. *Riet Valleij on the Buffeljagtsrivier* was, in fact on the Compagnies River, a tributary of the Buffeljagts River (Sleigh 1993).
3.4. Potential for reconstructing Khoekhoen settlement patterns

The most detailed research into Khoekhoen transhumance has been carried out by Andrew Smith (1983a), who used the sightings and non-sightings of Cochoqua between Saldanha and St Helena Bay to suggest that this part of the Western Cape landscape was only suitable for pastoralism in the winter months, when rains allowed for sufficient grass growth. An annual migration southwards was proposed along the Berg River Valley, and sometimes to Table Bay, during the summer months to take advantage of the more fertile ground and occasional rains at this time of year. Smith’s work has succeeded in highlighting the environmental limitations that restrict pastoralism in one part of the Western Cape, and it has become a widely cited model for Khoekhoen transhumance (e.g. Hart 1984; Penn 2005: 31-32). Hilary Deacon (1983) also suggested similar settlement pattern for the south coast based solely on two historical observations, although he does note a variety of different sized groupings.

![Map of South Africa showing Khoekhoen settlement patterns](image)

Figure 5: Topography and perennial rivers on the south coastal plain 1: Hessequaskloof, 2: Bakkeleys Plaat, 3: Buffeljachts River, B: Breede River SL: Slang River D: Daivenhoks River GK: Goukou River R: Riviersonderend T: Tradouw K: Kinga G: Gounitz S: Sout River

58
Table 1: Recorded Hessequa locations during the late 17th and early 18th Century

Smith’s model has, however, faced some criticism as a generalised settlement pattern for indigenous herders in all regions and all times in southern Africa, and even in the region where the model originates there is convincing evidence from strontium isotopes analysis on sheep bones that herders remained in one area all year round (e.g. Balasse et al. 2002). As mentioned in Chapter 2, John Kinahan (1994-1995; 2001: 131), in particular, has also found fault with the underlying assumption that pastoralist groups would move seasonally as an entire group. The present review of cattle trading documents provides new evidence to revisit this debate.

One entry in the dagregister, details a major movement of Hessequa between Mossel Bay in the winter and Swellendam in the summer of 1679 (Moodie 1838: 368). Another describes what appears to be the whole Chainoqua tribe moving westwards together over the Hottentots Holland Mountains in October (Moodie 1838: 335). Summer aggregations in certain areas, or even an east-west movement, are not, however, the only pattern of settlement observable from the colonial records. As
demonstrated in Table 1, there appears to be little correlation between season and movement of Hessequa kraals.

A general pattern which does emerge from the study is that very few encounters with Hessequa or even the Chainoqua occurred in the winter. In fact, out of 52 records of either Chainoqua or Hessequa encampments, only four were in winter. The expedition that set off in May and returned in July 1672 probably explains why this was so, as the traders found it difficult to bring the bartered stock back to the colony because the rivers were too high (Moodie 1838: 320-321). One of Visser’s expeditions specifically set off on the 1st March 1679 so that they could return before the rains began (Bredekamp 1981: 38) and a group of Hessequa who came to the Cape Town fort in November of 1662 explained to the Company, the rivers had been extremely difficult to cross for some time (Moodie 1838: 261). The problems of moving east-west were still hampering Company trade some hundred years later. VOC wagons bringing goods to Rietvlei, near Swellendam, a journey which, from the Cape in summer would only have taken about four days, in the winter took between two and four weeks (Sleigh 1993: 576).

Latitudinal movements to the coast to make use of abundant marine resources, and over the mountains where at certain times rain would provide good pastures, would also probably have been part of the Hessequa’s seasonal movements. One particular entry into the daily journal, dated 1st March 1678, provides an insight into the nature of this combination of dispersed and aggregated settlement. The journal describes a letter reporting news from two Hessequa informants that “...their kraals were still separate, one portion inland towards the mountains and the other towards the coast, but they were about to collect together.”

Large aggregations were certainly a feature of the Hessequa settlement pattern during the cattle bartering period although both the Hessequa and Chainoqua were known to come together specifically to trade. Smaller groups of four or less kraals, perhaps evidence of the dispersed settlement pattern, were also frequently documented in the cattle trading journals and VOC records. Out of 26 encounters between colonists and Chainoqua and Hessequa which detail the number of kraals between 1663 and 1707,
eleven were large aggregations of five or more kraals and 15 were smaller groupings of four or less.

Smith (1983b: 260) put forward two arguments in support of using historical evidence from the early and mid 17th Century to model the annual migrations of Khoekhoen southwards. First, he cited the reluctance of the Cochoqua to trade during the early years of the colony, thereby making it unlikely that the movements of Khoekhoen pastoralists were initiated by capital forces. Second, Smith pointed out that trade would not have had a major effect on pastoral movements because this would have been carried out by small bartering groups “out of season”.

The survey of historical interaction between the VOC and the Hessequa presented here suggests quite a different picture for the later 17th and early 18th Century on the south coastal plain. We know that at least some of the large aggregations were instigated by the Company and the Hessequa. There is certainly enough evidence in the cattle trading journals and Company diaries to suggest that the Hessequa were sometimes avoiding the Dutch colonists and were, on occasion, hiding cattle and concealing the true location of their kraals. At other times it appears that the travellers may have genuinely stumbled upon a group of Khoekhoen unexpectedly, although it would seem that this was the exception rather than the norm. It is more difficult to ascertain whether the Hessequa were ever surprised by the colonists. Indeed, the Khoekhoen seemed to know when a trading party was in their vicinity as they often sent one or two people to check out the Company merchants, who they would then lead to a kraal once gifts had been received. As seen in the review above, sometimes Khoekhoen groups would agree to assemble in a particular spot, or, as happened from the 1670s onwards, send word to the Company that they were about to come together.

It is important to be aware of what is not recorded when attempting to discuss indigenous settlement patterns, as we have little idea of how large or frequent aggregations were in winter. Furthermore, without question the large aggregations of Khoekhoen groups would also be overrepresented in the written documents as these were, after all, what the expeditions set out to find. Another fairly obvious bias is the political and personal motives of the writer. Journal authors wanted to please officials and even their peers, who may read their diaries. One wonders, for example, whether
eleven were large aggregations of five or more kraals and 15 were smaller groupings of four or less.

Smith (1983b: 260) put forward two arguments in support of using historical evidence from the early and mid 17th Century to model the annual migrations of Khoekhoen southwards. First, he cited the reluctance of the Cochoqua to trade during the early years of the colony, thereby making it unlikely that the movements of Khoekhoen pastoralists were initiated by capital forces. Second, Smith pointed out that trade would not have had a major effect on pastoral movements because this would have been carried out by small bartering groups “out of season”.

The survey of historical interaction between the VOC and the Hessequa presented here suggests quite a different picture for the later 17th and early 18th Century on the south coastal plain. We know that at least some of the large aggregations were instigated by the Company and the Hessequa. There is certainly enough evidence in the cattle trading journals and Company diaries to suggest that the Hessequa were sometimes avoiding the Dutch colonists and were, on occasion, hiding cattle and concealing the true location of their kraals. At other times it appears that the travellers may have genuinely stumbled upon a group of Khoekhoen unexpectedly, although it would seem that this was the exception rather than the norm. It is more difficult to ascertain whether the Hessequa were ever surprised by the colonists. Indeed, the Khoekhoen seemed to know when a trading party was in their vicinity as they often sent one or two people to check out the Company merchants, who they would then lead to a kraal once gifts had been received. As seen in the review above, sometimes Khoekhoen groups would agree to assemble in a particular spot, or, as happened from the 1670s onwards, send word to the Company that they were about to come together.

It is important to be aware of what is not recorded when attempting to discuss indigenous settlement patterns, as we have little idea of how large or frequent aggregations were in winter. Furthermore, without question the large aggregations of Khoekhoen groups would also be overrepresented in the written documents as these were, after all, what the expeditions set out to find. Another fairly obvious bias is the political and personal motives of the writer. Journal authors wanted to please officials and even their peers, who may read their diaries. One wonders, for example, whether
the more coercive bartering techniques were simply not mentioned, and how much unofficial trade and associated violence went unreported in general.

An important question to ask is whether the pattern of aggregation and dispersal evident in these documents is the result of the interaction with colonists, or whether similar patterns of movement were in operation before the trading started. Although I have expressed caution in the use of this type of data for reconstructing pre-colonial lifeways, it is not necessary to abandon all questions concerning the pre-colonial period. After all, by understanding pre-colonial social organisation we can confront the impact of colonialism and potentially recognise continuities as well as change in the post-contact period, as Kinahan’s interpretation of //Khuxa!nas has demonstrated.

We can say for sure that the Khoekhoen groups of the south coast were very adept at this flexible pattern of seasonal aggregation early in the cattle trading period, that they had a social structure in place to assemble in large groups, and that they knew the locations for such meeting. One thing that we can presume without question is that pre-colonial Khoekhoen pastoralists needed to aggregate at certain times of year for trade and social interaction. There are certainly suitable environmental conditions, such as aseasonal rainfall and good grazing, in Hessequa territory, to suggest that mass seasonal migrations were not necessary in order to secure good pasture. Having said this, the environmental data can be read in completely the opposite order. Hilary Deacon (1983) suggested that it was, in fact, the higher carrying capacity of the southwestern Cape which meant that Khoekhoen groups could move in large groups. He proposed that the extremely low soil fertility and rainfall in Namaqualand (Chapter 1: Figures 1-3) forced pastoralists today to follow an aggregation and dispersal settlement pattern.

In the near future it should be possible to test competing models of settlement using archaeological data, as more pastoralist sites are identified by open site survey. Kinahan’s critical thesis (2001: 131) has shown such questions are not limited to environmental paradigms; indeed, fundamental questions of social organisation in pastoral societies are directly related to this debate (Smith 1986; J. Kinahan 2001). Balasse et al.’s (2002) example of the use of strontium isotopes in sheep fauna from Kasteelberg has provided one method of testing the conventional model of highly
mobile large groups. It is, however, unlikely that this technique will become widely used to identify seasonality in pastoralist archaeology as fauna rarely survives on (non-shell midden) open sites, except under very unusual preservation conditions as found at Bloeddrift 23 (Smith et al. 2001) and Jakkalsberg (Webley 1997).

Regional systematic surveys that record all site types, including low density ephemeral scatters, as discussed in Chapter 2, are undoubtedly the best method for attempting to reconstruct settlement patterns of mobile pastoral groups. Intra-site data, site locations and the distribution of artefacts between such concentrations (off-site data) can then be compared on a large enough scale against topographical and environmental data to construct regional settlement patterns. The current survey is undoubtedly too small to identify all the variations of site types that are likely to be present, but nevertheless it should be possible to test the potential for such studies on a larger scale. In southern Africa, the size of such sites will be crucial for testing the conventional theory of mass clan movements across the landscape (Robertshaw 1979; Smith 1983a; H. Deacon 1983). If such large encampments, which are said to have only stayed in one place for a month at most, were indeed the general settlement pattern then one would expect very large but low density distributions of artefacts to dominate. This is why, as discussed in Chapter 2, the methodologies of off-site survey practitioners, or at least the critique of the high density focus of conventional survey, should be considered of crucial relevance to the archaeology of the Khoekhoen.

On an intra-site level, spatial data holds the most potential for recognising aggregated and dispersed settlement patterns. If a site displays intra-site patterning, it may be possible to recognise distinct occupations and potentially the duration of settlement. Sadr’s (1991) study of herders in northeast Africa for example, identified a sufficient number of surface sites to develop a model based on spatial distribution of artefacts to explain the duration of pastoral settlement. Technological studies of ceramics and lithics, as described in chapter 2, provide additional techniques for studying variation in indigenous settlement patterns. Questions of raw material choice and access, curated versus expedient technologies and the transportability of technologies, can (when analysed on a landscape scale) also be used to test models of pastoralist mobility.
3.5. Implications for current survey design

If we leave aside the seasonal movement debate for the moment and return to the primary aim of attempting to identify pastoral sites using historical sources, it is possible to draw out more general patterns of settlement from these documents. Out of the 23 recorded locations of Hessequa kraals shown in Table 1 above, twelve were in the western third of the Hessequas territory, that is, between Hessequas Kloof in the west and the Duivenhoks River in the east, seven were in the middle third between the Duivenhoks and Goukou Rivers, and two were in the eastern third, that is between the Goukou and Gouritz Rivers. This is perhaps not surprising, as one would expect the western parts of the Hessequa territory to feature more frequently in the VOC documents simply because it was closer to the colony itself. Perhaps more significant for the design of archaeological surveys, is the fact that within all three longitudinal zones, nearly all the known locations are found within a narrow strip along the southern flank of the Langeberge, an area which was, unlike the mountainous area to the north and flat sandy plains to the south (Figure 5), suited to more intensive pastoralism.

3.6. Environmental limitations for pastoralism on the south coastal plain

The landscape between the mountains and the flat plains that flank the shoreline of the south coast is characterised by the weathering of the underlying Bokkeveld Shale, a geological type that produces more fertile soil than other rock types in the Western Cape and is particularly conducive to the formation of undulating hills and deeply incised river valleys. The natural vegetation in this area is coastal renosterveld, which would have supported a number of grass species (Acocks 1953; Joubert and Stindt 1979). In contrast, the low lying coastal plain is covered with nutrient poor, free-draining aeolian sands and contains few perennial rivers compared to the hilly areas to the north.

The coastal plain is dominated by Coastal Macchia vegetation, which would have provided much lower grazing potential than the hilly areas to the north (Acocks 1953; Joubert and Stindt 1979), although there would have been short periods of seasonal pasture growth which pastoralists would undoubtedly be aware of. Although springs
in this coastal strip could certainly have sustained small groups of pastoralists during summer, the river valleys could have been over-grazed at a much faster rate. Even on the edges of the coastal flats, place names suggest that many of the water resources would not have been very attractive for pastoralists. Along the perennial tributary of the Breede, the Slange Rivier, for example, the place names “Brak Kuil,” “Zout Kloof” “Zout Vlaakte,” “Zoute Fontein” indicate how important fresh water was for the early settlers, and no doubt for indigenous herders before them. Early land grants in the Swellendam area also indicate the first wave of freeburghers took few farms in the coastal plain (see Chapter 4; Figure 8).30 By the end of the 19th Century, the General Surveyors Map shows that the coastal plain had been subdivided into farms, but there is notably fewer dwellings depicted on the area compared to the better watered and more fertile zone to the north. The lack of stone-built fish traps, (linked by some to the Khoekhoen (Avery 1975), but see Hine (2008) for an argument to the contrary), in the c 100 km stretch of coastline on either side of

30 RLR Vol 1-37.
the Breede River mouth, may also be related to the unsuitable conditions for pastoralism in this area (Kemp 2006: 14).

The mountains themselves would have provided adequate fresh water for large herds when passing through, but the limited grazing in this area would have made it less attractive for larger social aggregations or extended periods of settlement. The wide intermountain valleys, such as those cut by the Tradouw, Groot, Kinga and Duivenhoks Rivers would have undoubtedly been favoured grazing areas for the Hessequa, but beyond these into the Klein Karoo there are very few perennial rivers and a decrease in soil fertility. However, such areas provide good grazing for sheep farmers today and, as Mentzel observed at the end of the 18th Century, even in the less fertile ‘Karoo Veld’ regions of the south coast there is ‘unusually fine pasture’ following winter thunder storms (Marais & Hoge 1944: 88).

In general, there is ample environmental data to suggest why a fairly narrow strip along the northern edge of the coastal plain would have provided optimal grazing for pastoralists, allowed for more frequent visits, longer stays and larger groupings of both people and livestock. Furthermore, there was easy access to the more seasonal grazing opportunities at the coast and into the Karoo. Certainly, it does not appear to be merely the result of historical fortune that the Khoekhoen were encountered in these areas. The most likely meaning of the name Hessequa as “men of the woods” (Maingard 1931) also suggests a close affiliation with the densely wooded kloofs on the south flank of the Langerberge. Even without the historical evidence, the inescapable advantages that this zone offers for pastoralism, in terms of water resources and grazing, makes the long-standing focus of archaeological research projects in coastal and mountain regions harder to justify and perhaps goes some way to explaining the low number of pastoralist sites known to date.
4: The Khoekhoen of Swellendam 1734-1800

A review of historical sources and research

4.1. Introduction

Unhappy with the uncontrolled spread of farmers to the east of the Cape, the VOC officially declared the region of Swellendam a separate magisterial district in 1745 and a drostdy (local seat of government) was built on the Koornlands River in 1747. The principal concern of the local official, known as the Landdrost, was to regulate colonists who were frequently exploiting lands and people beyond the VOC approved areas at this time (Marks 1972: 72). It was no coincidence that the drostdy was situated in the heart of Hessequa grazing territory, on the edge of the area known as *Bakkeleys Plaats* by the Dutch, or *Aangoe Koe* by the Khoekhoen themselves (Cullinan and Smith 2006: 4).

It is the paperwork created from this new bureaucratic centre, in the form of letters and legal proceedings, which has provided such a rich body of evidence for social historians since the mid-1980s. Before this date, detailed archival work focused on the economic struggles and achievements of white settlers in Swellendam (Van Rensburg 1975; Prins 1979, 1983). The level to which the history of the 1700s has been overlooked is nowhere better demonstrated than in the research of the founder of the Drostdy Museum, Lance Tomlinson, who published a general history of Swellendam in 1943, but managed to neglect the wealth of documentary evidence concerning the Khoekhoen, even though it was produced by the very establishment that he then managed.

Importantly, however, there is a major contradiction running through Tomlinson’s work both in terms of his methodology and his writing which provides the current study with possible research avenues. Much of Tomlinson’s history was based on his visits to fellow landowners in the first decade of the 20th Century, during which he collected artefacts and stories that led to the recording of many names of Khoekhoen individuals from the second half of the 18th Century, including the supposed location of their kraals, grazing areas and burial sites.
The reaction of a new generation of historians, keen to prove that indigenous history did not simply end with colonisation, has resulted in a number of academic papers which prove that Khoekhoen history in Swellendam was far from over in the early 18th Century. These studies have shown that the transformation of indigenous herders and hunters from independent social and economic entities into farm labourers and servants was a more varied and gradual process than previously believed, and, importantly, that the Khoekhoen themselves were active participants in this history.

In the remainder of this chapter, and before I delve deeper into the oral histories recorded by Tomlinson, I draw on the detailed archival work of Viljoen (1997; 2001) and Sleigh (1993), and the more general but, nonetheless groundbreaking, work of Marks (1972), Elphick and Malherbe (1989); Elphick and Shell (1989) and Guelke and Shell (1992) to sketch a background history of the colonisation of Swellendam. I do not intend to repeat this work here but rather to highlight the major themes and theories which may be relevant to archaeological enquiry. A second aim of this review is to assess the potential of the historical sources to design archaeological surveys.

4.2. The Dispossession of the Hessequa

VOC records indicate that the Hessequa managed to retain much of their wealth in cattle into the early 18th Century unlike the other so-called ‘Western Cape Khoekhoen’, a fact that attests not only to their relatively large herds and potentially denser population (Elphick 1985), but also to the later expansion of settlement and the nature of interaction in this region (Marks 1972: 68). The previous two chapters demonstrated how the Khoekhoen of the Swellendam region were in frequent trading negotiations with the Company from 1663, at least 60 years before white farmers established a permanent foothold in the area (J.E. Wilson 1990). Loan farms and permanent cattle stations were established in neighbouring Chainoqua lands in the first decade of the 18th Century and there is little doubt that the Hessequa pastoralists would have been well aware of what was happening when the first trekboer began pegging out his 6000 morgen of riverside pastures. Such a long period of interaction may not have prepared the inhabitants of the Swellendam area for the trauma of having their best grazing lands suddenly annexed, but certainly a heightened
awareness of both the dangers of interaction and conversely the possible forms of symbiosis, must have developed within Khoekhoen and settler communities during this period leading up to colonial settlement.

The smallpox epidemic of 1713, traditionally thought to have been the main causal factor in the demise of the ‘Western Cape Khoekhoen’ (Theal 1909; Marais 1939; M. Wilson 1969) has been downplayed in more recent analyses (Ross 1977; Smith 1989), and more than one author has commented that the Hessequa in particular appeared to have survived largely intact (Elphick 1985: 234). The reason for this is not exactly clear, although Marks (1972: 68) suggests they may have managed to re-build their stocks through successful clientship relations with the incoming settlers. Perhaps the relatively late expansion of farmers into the region aided the Hessequa in lessening the impact of the disease. There would have been sufficient water sources and pastures to withstand the onslaught of the disease in Swellendam in contrast to the other side of the Hottentots Holland Mountains, where crucial pastoral resources had already been taken by white farmers as early as 1685 (Guelke and Shell 1992: 811).

Viljoen’s (2001) study of labour relations succeeds in not being tied to the popular narrative of conflict and manages to read past the incidents themselves, asking the reader to consider the movements of individuals, their settlement arrangements and living conditions. In this respect, Viljoen takes the lead from writers such as Malherbe (1978), who studied the 18th Century Khoekhoen from the eastern districts of the Cape Colony. A number of scenarios are presented for the Khoekhoen in the second half of the 18th Century in Swellendam, including an early form of migrant labour and semi-independent arrangements where Khoekhoen worked part time on farms while still being based at their own kraals. Others worked seasonally and travelled from farm to farm during harvest or ploughing seasons. According to Viljoen, by the mid 18th Century, “…blatant dispossession and displacement, with subjugation to follow,” meant that the majority of Khoekhoen had no choice but to take up shepherd and servant jobs on settler farms either on a seasonal or permanent basis (Viljoen 2001: 30).

Some of the earliest records from the Drostdy, dating to 1745, include requests by colonists to hire local Khoekhoen labour for their large farms (Viljoen 2001: 30),
although there is little doubt that Khoekhoen labour was already in use for at least twenty years before this date. Raiding of kraals by armed colonists was common by the 1750s, evidenced by Khoekhoen complaints made to the Drostdy in Swellendam (Marks 1972: 72; Viljoen 1997: 4).

The Khoekhoen were well aware of the threat to their existence posed by the loss of land which reached a critical point in the 1780s (Viljoen 1997). In 1785, a Khoekhoe captain complained that the loss of cattle threatened the existence of his people and in 1787 another Khoekhoe man complained that the land that had just been granted to a J.N. Swart near Rivieronderend was ancestral and sacred (Viljoen 1997: 3; Viljoen 2006: 23-28). The loss of their own language was perhaps a final blow for an independent Khoekhoen culture as they mixed with slaves on farms where settlers preferred Dutch to be spoken (Elphick and Shell 1989: 229-30). Documentary evidence from the mid-18th Century suggests that only the older generation could still speak Khoe fluently in Swellendam at that time (Viljoen 1997: 4-5).

Not all Khoekhoen were dependent on colonists’ farms, but these oft-called ‘independent’ Khoekhoen are underrepresented in the VOC records. Certainly, some groups and individuals maintained their cattle herds in enough quantities to trade. Dan Sleigh’s (1993: 571-584) analysis of correspondence between the Landdrost of Swellendam and the overseer of Rietvlei between 1734 and 1800 provides an alternative perspective to the legal proceedings which focus on those Khoekhoen who worked for farmers. Sleigh writes, for example, of trading days during which Khoekhoen captains still aggregated in Swellendam to sell cattle. On other occasions, Sleigh notes, the overseer would travel around to local kraals to barter cattle.

Even some of those involved in seasonal agricultural work could maintain their pastoral way of life, albeit in a modified form, as evidenced by the Khoekhoen clans who still owned enough cattle in the 1770s to use 26 of their own oxen for the ploughing season (Viljoen 2001: 41). Robert Ross (1986: 78) has argued that the

31 The term ‘Independent Khoekhoen kraals’ is used here to refer to those groups who were not living with and were not entirely dependent on the colonists’ for their subsistence. There was, of course, no absolute distinction between Khoekhoen who were living on farms and those who were residing on kraals. Indeed, many of these ‘independent kraals’ would probably have been on land which the farmer considered to be his and many of the occupants would have been in frequent interaction with colonists.
VOC may well have allowed specific Khoekhoen kraals to co-exist in the new colonial landscape to act as “reservoirs of seasonal labour.” As early as 1749, a letter from the Landdrost to the Governor writes of a Khoekhoen settlement “onder bescherming van de VOC” (under the protection of the VOC) in the Swellendam area (Sleigh 1993: 578). According to Hendrick Swellengrebel, the landscape around Rietvlei was well populated with Khoekhoen kraals in 1777, which typically consisted of six to seven huts (Burrows 1994).

Continued land seizure by farmers during the subsequent decades dramatically reduced the number of Khoekhoen who could manage to pasture their animals in between farms and on the margins of the settled areas. As if it was not tough enough for those Khoekhoen who were trying to live independently, the colonists were also intent on shooting out all the game and tended to pasture their animals over far larger areas than their grazing and loan farm licenses permitted. By the 1750s there is abundant evidence that the veld was seriously overgrazed in the Swellendam area (Guelke 1989: 92). A further devastating blow to the Khoekhoen population was further outbreaks of small-pox, first in 1755, and then again, particularly in the Swellendam area, in 1767 (Viljoen 2006: 17).

A letter from the Landdrost to the Governor in 1769 relays a warning from the Overseer at Rietvlei that because the majority of Khoekhoen in Swellendam were now residing on farms they were prevented by the burghers from selling their cattle to the Company (Moodie 1838. Volume III: 18). There were, however, a few who managed to eke out a living through herding and poaching in the spaces between farms. Indeed, it is perhaps symbolic and a testament to Khoisan resistance, that in the same dispatch the Overseer also remarked that one of the original loan farms granted on the Breede, Bakkelijplaats Drift, had been taken over by free-roaming “Hottentots” (Moodie 1838. Volume III: 18).

Things were certainly becoming more difficult for the Khoekhoen of the Swellendam area in the 1770s. The trade figures compiled by Sleigh (1993: 576-577) show a dramatic decline in the numbers of stock bought from Khoekhoen groups between 1773 and 1784. The Company policy of co-existence, which it had at least maintained in official documents if not in practice on the ground, appears to have been replaced.
by a strategy focused on controlling the labour supply. The year 1775 heralded the legitimisation of indentured farm-born labour (Penn 2005: 139), a practice which had undoubtedly been going on since the beginning of burgher expansion from the Cape, but which now received VOC approval. Originally, the resolution was directed at children of mixed slave-Khoekhoen decent, in order to prevent free burghers from having to provide for them without any benefit of labour, but before long Khoekhoen children were also being indentured until they were 25 years old (Malherbe 1978: 6). The rounding up of dispossessed Khoisan was another brutal aspect of VOC policy well underway in the Swellendam region by the 1770s. Specific instructions were sent to the Landdrost to capture “wandering Hottentots” and send them to Stellenbosch (Moodie 1838. Volume III: 18). Further restrictions on movement were imposed in 1787, when the first pass laws were introduced for the area around Cape Town. The resolution was then extended to Swellendam in 1797 (Elphick and Malherbe 1989: 32; Penn 2005: 140).

A strong sense of Khoekhoen identity prevailed among farm labourers as evidenced by the uprisings in Swellendam in 1788, 1793 and 1795 (Penn 2005: 150-151). In 1788, a young farm worker by the name of Jan Paerl began a rebellion against the white settlers based on a religious revelation (Viljoen 1997). Prophesying the end of the world and a return to the old order where the Khoekhoen would be free again, he organised hundreds of Khoekhoen to prepare to attack the Drostdy, slaughter cattle, burn their European clothes and build traditional mat houses (Viljoen 1997: 3-4). Although the rebellion never actually took place, the level of support gained by Jan Paerl suggests that the Khoekhoen were fighting for their independence and that a strong sense of common identity still existed at this time. Rebel gatherings, such as the 170 Khoekhoen who came together on the hill above the Drostdy and 120 who camped near the Breede River (Viljoen 1997: 18) demonstrate the level of social cohesion still present amongst people identifying themselves as Khoekhoen in the 1780s. In this regard it is significant to note the determination of the Khoekhoen to preserve their family structure and traditional leadership even when taking up permanent residence with farmers (Malherbe 1981: 68). In 1804, the Landdrost of Graaff-Reinet bemoaned the unwillingness of the Khoekhoen to be separated from their families as he saw this as a key factor for the uneven distribution of labour (Malherbe 1981: 68).
Commando units successfully quashed the 1788 uprising, but as soon as 1793, and again in 1795, there were further rebellions plotted in Swellendam under a prominent figure named Captain Kees. The 1793 uprising was reported to have been coordinated with Khoekhoen groups as far away as Namaqualand and included the support of Jan Paerl who had recently been released from prison. Despite the brutal response that followed, Khoekhoen farm workers from Swellendam remained active in the fight against the oppression of farmers, and only eight years later many such labourers are recorded to have deserted their farms and became instrumental in the Khoekhoen rebellion in the Eastern Cape (Newton King 1981: 40; Malherbe 1981: 70).

The establishment of the Cape as a British colony, first in 1795-1801 and then again permanently in 1806, brought about some significant changes for the indigenous population. The regulation of the relationships between Khoekhoen and colonists was a priority of the new government. A new piece of legislation known as the Caledon Code or the Hottentot Proclamation was brought in to serve this purpose, which on the one hand entrenched the rights of the Khoekhoen for the first time, yet on the other signalled the end of their freedom. The registration and pass laws, applied piecemeal under VOC rule before this date, were institutionalised in 1809. They demanded that all Khoekhoen be registered with a fixed place of residence and furthermore that they must carry a pass when travelling from place to place (Penn 2005: 268-270). Independent kraals were made illegal, and the new legislation, although designed partly to protect the indigenous people from exploitation, essentially criminalised free movement. Most of the semi-independent Khoekhoen who were still in existence were forced to take up residence on farms.

Independent Khoekhoen were few and far between in Swellendam by this date, and many groups and individuals from the Swellendam region sought the refuge provided by the re-establishment of mission settlements at Genadendal and the foundation of a new centre at Zuurbraak in the early 1800s. There were, however, some indigenous

32 Nigel Penn (1995: 70-71) points out that the Landdrost of Stellenbosch had written to the Council to report gross mistreatment of a group of Khoekhoen captured by burghers as part of the efforts to quash the 1793 rebellion. In this letter he also indicated that he thought the Khoekhoen uprising had been exaggerated in order to justify aggression against Khoekhoen and others who were in competition with the colonists.
groups, and individuals, together with slaves and Baastards, who existed on the margins of the loan farm society during the 19th Century. As late as 1803, the German traveller, Henry Lichtenstein reported that the Cape Government (under temporary Dutch rule) were trading cattle from the Hessequa and Outeniquas in the Riversdale area (Plumptre 1928).

Two communities recognised by the British government as ‘Hottentot reserves’ were located close to Swellendam, at Slangrivier and Hottentots Kraal. The former existed as a location at least as early as 1812 and was granted as quitrent in 1838 although there is mention of kraals in the area as early as 1803 (Godeé Molsbergen 1932). The latter was portion of marginal land in the Tradouw area north of Swellendam. It was originally granted to a Captain Kees for military services in the early 19th Century, although known to have been in existence before this time. Kees’ descendents were forcibly removed from here sometime after September 1875. After years of being moved into more mountainous land, and suffering frequent heavy handed violence at the hands of local farmers, according to oral histories published by Tomlinson (1943) the settlement was eventually stormed by a commando of 70-80 armed farmers. Women and children were captured and all the huts were burnt. Fortunately, Slang Rivier ran a happier course of history and still remains as an intact settlement occupied by the descendents of the original residents (Meffert and van Hemert 1991: 20).

4.3.1. A Landscape Perspective: Toponymy and oral histories

The modern 1:50,000 map of the Swellendam shows an unusually high number of Khoisan-named landscape features. Khoisan words such as Hessqua, Tradouw, Kadie, Kinko, Koesanie, Koenoba, Koerranie, Crodinie, Kwassadie Dipka, Napky, 33 For a full explanation of the term ‘Baastard’ see (Penn 2005: 20-22) and (Elphick and Shell 1989: 202). The term was applied to a wide range of people born out of miscegenous relationships, including slaves and Khoekhoen, slaves and Europeans, and Europeans and Khoekhoen. The nuances of its meaning changed with changing attitudes but as Penn puts it, the word clearly “implied stigma.” Those born of Khoekhoen and slaves were usually known as ‘Baastard-Hottentots.’

34 Unpublished government papers housed in the UNISA library: Correspondence on the Hottentot Kraal Location in the Division of Swellendam. Published by order of the House of Assembly 1876.

35 Unpublished government papers housed in the UNISA library: Correspondence on the Hottentot Kraal Location in the Division of Swellendam. Published by order of the House of Assembly 1876. The exact date of the ‘promise of land’ is not clear, although it is said to have predated the quit-rent grant of the adjacent farm Zandfontein in 1818.

74
Konka, and Dwariga remain as farm and landscape feature names today. There are also at least two interesting combinations of Dutch and Khoisan words Ganna Leegte, Ganna Laagte and Jan Kamma. Even more common are the names of individuals used as a prefix to the word kraal, such as Kees Kraal, Poitjeskraal, Kluijtieskraal, Lang Elsieskraal, Solderskraal, Michelskraal, Andrieskraal, Koenskraal, Cloetseskraal and Stuurmanskraal which according to local historians (Tomlinson 1943: 30; Rothman and Rothman 1974: 2-3; Burrows 1952: 146-7; Van Rensburg 1975), are the names of Khoekhoen ‘Captains’.

Although there may not be geographical accuracy in place name evidence, and certainly alone they cannot be used as evidence to reconstruct a Khoekhoen landscape or indeed plan an archaeological survey, the sheer frequency with which they feature in the Swellendam landscape (17 within a 40 km radius36), and their association with oral history, including dates and the location of burial sites, encouraged further examination. Following this introduction to the landscape evidence, I review previous archaeological investigations into two burial sites associated with oral traditions. The role of archaeology is then questioned and I argue that the discipline has much to offer when combined with a detailed historical approach and landscape specific evidence (cartography, early grazing and farm licenses, oral history and toponymy).

The origin of the Swellendam oral history is the fieldwork of the aforementioned Lance Tomlinson, who in 1943 founded the Drostdy Museum. Tomlinson was a wealthy landowner whose passion was to visit local farmers and collect stories and artefacts. In addition to many tales about the ‘pioneers’ and founders of the modern town, he recorded the names, dates and locations of indigenous settlements, including four burial sites. Importantly for archaeological research, Tomlinson published photos of three of the burial sites, and a fourth was located at the Drostdy Museum.

Some of Tomlinson’s oral history relates to Khoekhoen ‘Captains’ after whom loan farms and quit rent farms were named. Other ‘kraals’ featured in Tomlinson’s unpublished research do not correlate with farm names: Markuskraal, Satabaskraal,

36 Ten appear on modern maps, two of which have documentary evidence associated with them and three are roughly dated by oral history. Seven more are known from oral history alone, three of which are associated with specific dates and burial sites.
Eerstekraaltjie, Graskoffiekraal, Melkboskraal and Bakoondkraal. Lang Elieskraal and the burial site known as Hottentot Grafte are also not farm names and only feature cartographically for the first time on the 1:50,000 of 1968. Their inclusion on the modern maps is likely to be the result of Tomlinson’s (1943) publication.

Place names are not fixed over time and this is particularly true of loan farm landscapes as there was little control over the extent and exact boundaries of the earliest land grants before the second period of British rule (Penn 2005: 42). The earliest VOC records of settlement in Swellendam are found in the grazing licenses issued between 1712 and 1730, and loan farm licenses issued from 1730 to 1793.37 Recently, Khoisan historians working in other parts of the Western Cape have been making use of this evidence to plot the spread of the frontier; and to examine the impact it may have had on indigenous people (Guelke and Shell 1992; Penn 2005). Guelke and Shell (1992), for example, in their study of freehold farm expansion into Stellenbosch, plotted the early land grants to demonstrate how colonists managed to take control of the crucial water resources from the Khoekhoen. The early loan farm records were not entirely accurate and in a frontier situation, which Swellendam arguably was for the fifteen to twenty years after the first grazing license was issued in 1731, many colonists did not register all the land they used for grazing (Penn 2005: 298). Indeed, the land actually used by colonists was often twice or four times that which was officially sanctioned (Guelke 1989: 78).

The first survey diagrams do not appear until almost a century later but studied together with early grazing and loan farm licenses (Figures 7 and 8) one can still get an idea of the distribution of early colonial settlement of the Swellendam area and, importantly, the history and sequence of Khoisan dispossession. Interestingly, the place name most frequently mentioned as a Hessequa aggregation centre in the 17th Century documents, Bakkelys Plaats, was the name of the first loan farm granted in the Swellendam area in 1731.38 One must be extremely wary of matching farm names to earlier historical sightings of Khoekhoen kraals. Bakkeleys Plaats is a good

37 Cape Archives: Receiver of Land Revenue Volume 9-37: Licenses: Loan Farms 1730-1793 (hereafter RLR)
38 RLR 9/2: 459
example of this as two separate farms were allocated the name, one on the Klip Rivier and the other on the Buffeljags Rivier, while a third farm was named Bakkeleys Plaatsdrift.

The village of Swellendam itself remained very small into the late 18th Century, with only four houses belonging to VOC officials, including the Drostdy (Figure 7) (Cullinan and Smith 2006: 4), and initially loan farms were spread out widely across the south coast in general (Guelke 1989: 85-86). They did, however, cluster along the Breede and along the southern flank of the Langerberge (Figure 8) as one would expect, thereby annexing the best freshwater resources and the choicest grazing, as had also been the case in the Stellenbosch area some years before (Guelke and Shell 1992: 811).

It was also possible to study the dates at which farms with Khoisan names and names of Khoekhoen ‘Captains’ were registered (Figures 7 and 8). As described above, this does not necessarily coincide with when a particular area was first grazed by a colonist, or when the interaction between colonist and Khoekhoen which resulted in a farm name actually took place. The landscape could have taken its names from much earlier events, as the example of Bakkelys Plaats aptly demonstrates. Nevertheless, it provides a date before which the significant interaction, leading to the official naming of that piece of land, must have taken place. Only two of the farms named after ‘Captains,’ Poitjeskraal and Kluitjeskraal, granted in 1731 and 1742 respectively39, date to the first period of loan farm expansion. The latter is of particular interest, for a Khoekhoen burial site is known to exist there. Others were granted later in the 18th Century, such as Michelskraal in 1782.40

39 RLR 10/2: 401
40 RLR 29: 39
Figure 7: Extract from *Map of the Southern Districts*. 1890-1900 Sheet 4 Swellendam. Compiled by the Surveyor General, Cape Town. 800:1 inch. Showing a sample of the farm names which according to a number of historians refer to mid to late 18th Century Khoekhoen kraals. 1 Kluitjies Kraal, 2 Andrieskraal, 3 Michelskraal, 4 Solderskraal, 5 Cloetes Kraal. Others not labelled on the map but locations referred to in the oral histories: N Noahs Sarel, L Lang Elsie, S Sabreskraal and M Markuskraal, Dutch East India Company locations: D Drostdy and R Rievoel.
Figure 8: Loan farms grants in the Swellendam area 1717-1793. Extract from Map of the Southern Districts. 1890-1900 Sheet 4 Swellendam. Compiled by the Surveyor General, Cape Town, 800:1 inch. Dates of grazing licenses and loan farms from RLR Vol 1-37.
The second informant of Tomlinson was a Mr P. A. Uiys of Bontebokskloof who was born c. 1881. Mr Uiys obtained his information from elders in the community, named David Oktober, alias “Grootbroek”, and Old Koos Daniels, when he himself was a young child. A copy of a letter from Mr Uiys to Tomlinson in 1939 describes how the former showed Tomlinson the graves of two burial sites at Sababaskraal and

Figure 9: Extract of 1890-1900 General Surveyors Map of the Southern Districts. Showing the Breede River and the location of farms Kluitjies Kraal (top left), Weegshaal (centre left) and Bakkeleys Drift (centre right) where the Eksteen family farmed since the mid 18th Century. The locations of Nougha Saree’s kraal at Ou Tuin and Lang Elsiestraal according to Hendrick Eksteen (c 1914), are also shown. Note also the proximity of these 18th Century kraal locations to the farm Bakkeleys Plaats, discussed in chapter 3.

Markuskraal, both of which made it into the 1943 publication along with photographs of the locations (Tomlinson 1943). One of these graves was that of the ‘Hottentot Captain’ Markus Sababa and the other of his son, Klass Sababa, and the latter’s wife, of whose name we remain ignorant (Tomlinson 1943). It is not clear whether Mr Uiys also provided the dates associated with those burials.

The letter from Mr Uiys also records four more names of old ‘Hottentot’ kraals which did not make it to publication, including: Eersiekraaljie, Graskoffiekraal, Melkboskraal and Bakoondkraal. Unfortunately, there were no locations provided for these names. They are, however, mentioned in conjunction with Markuskraal and Sababaskraal, which were described as being located in Bontebokskloof, where Mr Uiys lived and farmed, so it is likely that they were also situated in the same area.

While the fact that these names did not survive into the cartographic record may simply be the result of renaming or shifting property boundaries, it may not be

45 Drostdy Archives: Tomlinson 1939 handwritten notes
46 Drostdy Archives: Tomlinson 1939 handwritten notes
insignificant that these last four kraals are not pre-fixed with a first name, unlike those said to be the kraals and burial sites of 'Captains'. Although it is impossible to prove, one wonders whether it was only those Khoekhoen who were 'Captains' in the eyes of the Company or farmers, who warranted having a farm named after them. Unfortunately, there are no dates for the oral history associated with these four kraals.

The only other informant whom Tomlinson recorded in his notes was a Mr P.P. Siebert born in 1864, who, along with Eksteen told the story of Kaff Solder. According to Tomlinson, the farm Soldierskraal is said to have taken its name from this 'Hottentot' leader. The story described how he was driven from his kraal by a commando, first to Tradouw and then on to Zuurbraak. The notes do not record the date associated with this narrative, but in the 1943 publication the inference is that Solder and his followers were taken in by the London Missionary Society at Zuurbraak, which was founded in 1809 (Tomlinson 1943: 22-23). It may therefore be presumed that the story of Solder is related to some time after this date.

The 1943 publication gives the dates for all four burials as 1730-1740. In the unpublished notes, Kluitjie, Nougha Saree and Markus Sababa are said to have lived circa 1734 and Klaas Sababa around 1740, although elsewhere Tomlinson and also Van Rensburg (1975) refer to Lang Elsie and Nougha Saree as having lived between 1734 and 1800. Here, the evidence from the Receiver of Land Revenue (RLR) archive is of some use, as we know that the name Kluitjieskraal dates back to at least as early as 1742.

The only farm named after a Khoekhoen 'Captain' that is associated with detailed documentary evidence is the aforementioned kraal of Captain Klaas Kees, who was granted land at the beginning of the 19th Century. During the 19th Century, portions of this land were surveyed, leased and sold off, including one quit-rent plot which

47 Drostdy Archives: Tomlinson 1939 handwritten notes
48 Drostdy Archives: Museum correspondence 6/12/1976
49 RLR 10/2:401
50 Unpublished government papers housed in the UNISA library: Correspondence on the Hottentot...
51 According to Thomas Tinely, the Civil Commissioner of Swellendam, the British administration lost the old Dutch government papers referring to the grant of land to Captain Kees in the "great fire" at the public offices in 1865 (Unpublished government papers housed in the UNISA library: Correspondence on the Hottentot... page 22); During the forced eviction of Kees' great grandson, officials referred to an undefined 'land 'promise' and continually denied the legal right of the Kees family to occupy the land (Unpublished government papers housed in the UNISA library: Correspondence on the Hottentot...).
kept the name *Kees Kraal*. Although the story of *Kees Kraal* originates from the latter half of the 19th Century, it illustrates the complex and changing nature of relations between farmers, the authorities and the Khoekhoen. Certainly, when land was initially set aside for Klaas Kees he was obviously in favour with the Dutch government for a specific service rendered. As described previously, two generations later, at the time of the forced eviction in the 1870s, the kraal was in a particularly unfavourable situation with the local farmers and the government. Yet even in this troubled period, a survey of the kraal conducted in 1874 indicates that Kees’ descendants were still used as farm labour and that at least one of the women residing at the kraal had borne a child of one of the local farmers.52

Although many historians have commented on the proliferation of farms named after Khoekhoen ‘Captains’ in Swellendam (Tomlinson 1943: 30; Rothman and Rothman 1974: 2-3; Burrows 1952: 146-7; Van Rensburg 1975; Meffert and van Hemert 1991) there has been little consideration of the processes that led to this toponomic phenomenon. This is not surprising when one considers the popular narrative of immediate Khoekhoen collapse at the arrival of white farmers. Indeed, those who have commented on this feature of the Swellendam landscape have inferred that these names refer to a distant and precolonial past, alluding to the ‘charm’ and ‘antiquity’ of the ‘chiefs’ who once lay with their kraals along the river before the Dutch arrived (Tomlinson 1943: 30; Rothman and Rothman 1974: 2-3; Burrows 1952: 146-7; Van Rensburg 1975; Meffert and van Hemert 1991).

As the example of *Keeskraal* showed, indigenous people forged many different types of relations with nearby colonists, even amongst the occupants of just one kraal, and the exact reason behind the naming of a farm may not accurately describe the full narrative of this interaction. Whatever the reason for the naming of a farm after Captain Kees, we can say for sure that the name itself was a product of a very real presence on the landscape at that time, and a result of significant interaction rather than a romantic gesture towards an indigenous past or a “sighting” of a kraal as the inhabitants packed their bags and moved along to make way for the incoming farmers.

52 Unpublished government papers housed in the UNISA library: *Correspondence on the Hottentot...*
4.3.3. Captains, Colonists, and Company in the 18th Century

Company documents record the gradual replacement of collective terms for Khoekhoen groups, such as Hessequa and Chainqua, with the names of individual 'Captains'. 'Captains' are thought traditionally to have been the heads of 'kraals', or small kin-based groups (Schapera 1931; Elphick 1985). In the late 17th Century, the Company refined its strategy of control over certain Khoekhoen groups through particular individuals. Khoekhoen 'Captains,' were encouraged to come to the Cape to receive their copper-headed staff of office, a process which began at the end of the 17th Century. Richard Elphick (1985) has suggested that this change in the records relates to an actual change in political structure, whereby the former large political groupings, called 'tribes' by the colonial observers, became more fragmented and weakened during the process of colonisation.

![Image of a burial site with a man standing near the ruins.](image)

Figure 10: M.J Lourens at the burial site of Khoekhoen 'Captain' Khunjie c1734. Taken in 1940 (Tomlinson 1943)

In some cases 'Captains' were probably traditional leaders, in others simply individuals who were friendly or co-operating with the Dutch authorities (Malherbe 1981: 68). While to some Khoekhoen leaders this offering proved to be a symbol of status, others were undermined in the eyes of their followers and even attacked.
because of the staff (Elphick and Malberbe 1989: 55 footnote 23). There is no shortage of examples from around the colonised world of the colonial power granting status and symbols of office to community leaders through whom indigenous people could be controlled (Smith 2005: 18). The late 19th and early 20th Century, British occupation of Sudan is a classic example where government ‘Chiefs’, with no relation to traditional leaders were appointed amongst the Nuer pastoralists in Sudan (Evans-Pritchard 1940).

It seems likely then that some of these Khoekhoen kraals where ‘Captains’ are thought to have resided were likely to be entangled in close relationships with the VOC. One could imagine that new grants of land were identified by the name of an individual if there was a particular ‘Captain’ known to the VOC in the area and perhaps little else was known about the region at the time the grant was issued. On other occasions, the name of a loan farm is likely to have been given by the farmer himself (Malherbe 1978: 126). Although there is not as much written on the relationships of colonist farmers to the independent Khoekhoen kraals in the 18th Century, as there is between masters and servants, there is no doubt that keeping the peace with local Khoekhoen would have been one of the main priorities for a colonist family moving into a newly colonised area. There is also little doubt that colonists moving into the lower Breede River valley were well aware that this was a location rich in grazing and water resources and relatively densely populated with Khoekhoen herders. In the early 19th Century, the German traveller O.F. Mentzel reported that trekboers would purposely settle down next to a Khoekhoen kraal (Marais and Hoge 1944), thus guaranteeing that no other colonists had settled there, that there would be good pastures, access to a potential labour source, plus if they were lucky, the chance of acquiring livestock at a cheap price. For the Khoekhoen, there was often no choice but to become a client in the early stages of colonisation in order to guarantee continued access to water (Guelke and Shell 1992). Perhaps the arrangement was in fact advantageous in the beginning before there were farms on all sides, as is suggested by Marks (1972) for the Hessequa in the first decade of the 18th Century.

The idea of Khoekhoen captaincy evolved with the ever increasing demands on limited resources. By the later decades of the 18th Century, there is evidence that many ‘captains’ were being ordained without the respect of their people, and that
some were in effect Company spies or soldiers in colonist commandoes fighting other Khoisan groups (Boonzaier et al. 1996). According to Elphick and Malherbe (1989: 42), government officials had a "...preoccupation with the military function of captains, who above all were called upon to recruit Khoisan for the regiment." By 1795, there is evidence to suggest that many of the so-called 'Captains' were nominated by adjacent farmers before being ordained by the Company, and in a letter to the Governor in 1799 the then Landdrost of Swellendam, Faure, complained that a farmer had ordained a local 'Captain' by the name of Cloete without VOC approval (Malherbe 1978: 126, 1981: 68). It is very likely that the farm Cloeteskraal on Naptky’s River, 18 km south of Swellendam (Figure 7; no. 6), was named after this individual.

Perhaps the naming of farms was one method of legitimising a newly ordained (official or not) ‘Captain.’ It could be seen as another form of the staff of office, a means of denoting power to local ‘Captains,’ a very useful technique of getting potentially hostile Khoekhoen on the side of the farmer and a good way of securing labour. Whatever the exact relationship between the colonist who named the farm and the Khoekhoen individual or group from whom the name originates, it is likely that farms which were named after certain ‘Captains’ indicate that there was a particular Khoekhoen group associated with the loan farm or government centre in one way or another. 53

Two major contradictions run throughout Tomlinson’s history of the Khoekhoen of Swellendam. Firstly, he describes a rapid social and economic decline through smallpox and alcohol addiction at the beginning of the 18th Century, and yet his history depicts a landscape where Khoekhoen ‘captains’ had access to some of the best grazing lands in colonial Swellendam.

The second major contradiction is Tomlinson’s interest in the Khoekhoen of the area. In general his narrative of the history of Swellendam leaves us in no doubt of his

53 Importantly, the role of the Khoekhoen must not be forgotten in these relationships. The willingness of the Khoekhoen to adapt instead of fighting or migrating, was not only a case of safeguarding access to water and grazing, but there was an attachment to the land of their ancestors, as evidenced in many of the pleas to authorities made by Khoekhoen during colonisation (Marks 1972: 55-80; Viljoen 1997: 3).
political convictions yet his research cannot be disregarded on these grounds as, in both his unpublished work and in a letter to the Worcester Standard in 1939 he portrays a particular interest in the indigenous history of the area and suggests that the National Monuments Council should recognise the Khoekhoen burial grounds of Swellendam.

Figure 11: A romanticised painting of an 18th Century Khoekhoen settlement Lang Elsieskraal on the Breede River commissioned by Tomlinson in 1944 (Reproduced with permission from Bontebok National Park). Note the depiction of a circular arrangement of huts, the popular image of a Khoekhoen settlement known from ethnographic drawings (e.g. Kolb 1731; Burchell 1822-1824).

Nowhere are the contradictions in Tomlinson's version of Khoisan history better illustrated than in the painting he commissioned in 1944, depicting an idyllic scene of a Khoekhoen settlement at Lang Elsieskraal on the Breede River. Here, only a few kilometres south of the Drostdy, two Khoekhoen captains are said to have grazed their herds in the mid-or even late 1700s. What is instantly noticeable about the picture is that it is the classic ethnographic representation of the Khoekhoen, with the circular arrangement of huts and kaross-clad male with hunting spear at the ready. In fact, what the painting does not show is perhaps just as interesting as what it does. Had the painting been of the view in the other direction, would we be looking at Cape Dutch

54 Tomlinson (1943: 31) explicitly states that he does not advocate voting rights for "coloureds".
55 Drostdy Archives: Museum correspondence 18/03/39
gabled houses in the distance? This line of questioning can be extended to the oral accounts that Tomlinson recorded almost one hundred years ago. Who were the Khoekhoen groups and individuals who managed to live along the major water courses at a time when most were forced off their land? Perhaps it is no coincidence that the particular leaders whose grave locations survived in the memories of farmers were located so close to the VOC centres.

Another reason why these particular settlements survived in oral histories and farm names may be their association with major routes. In his unpublished notes, Tomlinson mentions the old 18th Century wagon crossing Noughas Drift over the Breede named after the Khoekhoen ‘Captain’ Nougha Saree. A copy of an 1848 survey diagram made in 1965, an extract of which is shown below, includes two roads crossing the Breede, one at Noughas Drift and the other at Lang Elsieskraal, both of which lead to the Old Cape Road as it is shown on the map, a route which developed to become the national road, the N2. Situated on the main wagon tracks to Swellendam and the Buffeljachts River and travelled frequently by traders and colonists since the 1660s, these kraals were anything but isolated.

![Figure 12: Extract of 1965 copy of an 1845 quit rent diagram for the farm Weegscaal (Cape Town Deeds Office: Deed No. Sw.Q.16-35. Dgm. No. 512/1848)](image)

The map extract also shows the designation of village pasture in the area where the two kraals were located, the earliest record of which is from a copy of a survey
diagram in 1818 that labels the same piece of land as *Grazing ground attached to the Drostdy.*\(^{57}\) It is very likely that the ground shown as commonage was annexed by the VOC when the Drostdy was founded.

Could Markus and Klaas Sababa, Kluitjie, Nougha Saree and Lang Elsie represent those Khoekhoen who were under the protection of the Company, as suggested in the research of Robert Ross (1986) and Dan Sleigh (1993)? Could that be why they were allowed to remain on some of the choicest pastures and common grazing in the Swellendam area? Tomlinson’s oral history begins at 1734, which is the exact year that the VOC established the Company Outpost Rietvlei. Perhaps this explains why stories of their success and prowess survived to be passed on by local farmers at the beginning of the 20\(^{th}\) Century. If Tomlinson’s more widely quoted dates of 1734-1800 are to be believed for the occupation of kraals at Lang Elsieskraal and Ou Tuin (Nougha Saree’s kraal), then there would need to be some explanation as to why such a large section of the Breede River was given over to the Khoekhoen for a period of 66 years, if they were not under the protection of the Company or local farmers.

The idyllic scene on the painting, which invokes untouched and ‘authentic’ Khoekhoen, is likely to be very far from the reality of 18\(^{th}\) Century Swellendam. What is becoming clear, however, is that there was not what may be termed a *typical* way of life for a Khoekhoe individual in 18\(^{th}\) Century Swellendam. Broad predictions of general changes in settlement pattern and material culture may be commented on, but a number of interrelated but quite separate trajectories were possible for individuals, or indeed whole groups of Khoekhoen.

By the 1770s some families would have included three generations of Khoekhoen farm labourers and the youngest children may have been held as virtual slaves on white owned farms. Others served in commandos against Bushman, Xhosa and other Khoekhoen groups, learning about guns and horses along the way. We know that at the other end of the scale there were also kraals that managed to remain at least partially independent, living off the products of pastoralism, trade and raiding. There were those, too, who were somewhere between these two poles, such as the families

who set up shop on the edges of colonist farms and earned their living by ploughing and harvesting during agricultural seasons before returning to their kraals.

While there were thus many different trajectories for Khoekhoen individuals in the 18th Century, these would not have been mutually exclusive and there would have been some individuals who switched from rebel to servant and vice versa perhaps more than once in a lifetime. Individual families would have included some members who were working on farms, and some who were not. It must also be remembered that the distinction between resistance and conflict is not always clear cut. The decision to live and work alongside the colonists was often the only choice remaining. In these cases, merely surviving was an act of resistance (Abrahams 1995: 31-32). Indeed, those who led the first Khoekhoen uprising in Swellendam were individuals born into farm worker families and even at the end of the 18th Century Khoekhoen farm workers from the Swellendam district were instrumental in the most successful of all Khoekhoen revolts, the Graff-Reinet uprising (Newton-King 1981: 40; Malherbe 1981: 70)

4.4. The role of archaeology

So how may archaeology contribute to this history derived from colonial texts? Can these various lifeways for the 18th Century Khoekhoen be picked up in the material record? The obvious advantage that the discipline has over other sources of indigenous history is the potential it holds to address some of the bias inherent in a version of the past based solely on a history derived from the “colonial library” (Schmidt and Patterson 1995). The success of archaeology as an alternative source of history depends, however, on a detailed and critical approach to the historical sources in question (Penn 1991), both of which have, unfortunately, been seriously lacking in previous archaeological investigations of the 18th Century in Swellendam by the South African Museum (now named IZIKO) archaeology department.58

4.4.1. Excavations of 18th Century Khoekhoen burial sites by the South African Museum 1980-1986

From the late 1970s to mid 1980s the South African Museum’s Archaeology Department focused its attention on the prehistory of the south coast of the Western Cape. One of its research objectives was to obtain indigenous skeletons to enable their study through physical anthropology (Schweitzer 1979; Schweitzer and M.L. Wilson 1982; De Villiers and M.L. Wilson 1982). In the early 1980s attention was turned to the 18th Century Khoekhoen burial sites of Swellendam. Although the reports and correspondence relating to Swellendam were not intended for publication, a lack of subsequent publication renders it necessary to discuss the contents here. According to Mike Wilson, these sites would make a valuable contribution to physical anthropology because 18th Century Swellendam was “…a time and a place in which there is little likelihood of miscegeny having taken place.” The retrieval of “undoubted ‘Hottentot’ remains” would therefore be “extremely valuable.”

At least two of the sites published by Tomlinson (1943) were investigated and in 1986 human remains were retrieved from a burial, which, according to local tradition was that of a Khoekhoen Captain, Markus Sababa. Six years earlier there was an attempt to locate the grave of Nougha Saree, who was said to have been buried, along with an undisclosed amount of his “followers,” on the edge of his kraal at Ou Tuin, which is now situated in Bontebok National Park. Following a brief visit to the site, during which the museum team were shown stone cairns thought to be burials, a return trip was made and one of the features excavated. Despite encountering flaked stone artefacts between the stones, they were interpreted as natural features. The search for the grave of Markus Sababa began in 1986. The initial visit to De Heuvel farm, about 16 km east of Swellendam, comprised a quick stop off on the way to Mossel Bay. The landowner Mr As showed the museum team various piles of stones on the farm into which he had dug but without encountering any human remains. Surprisingly, the random diggings of Mr As did not seem to be discouraged by the South African Museum staff. Indeed it was one of Mr As’ investigations which led to

60 South African Museum unpublished report. Mike Wilson. 8th June 1981
61 South African Museum unpublished...April 1986
62 South African Museum unpublished...April 1986; South African Museum unpublished...January 1982
the eventual discovery of human remains on the farm, after which the Museum were called upon to finish off the job.

The only record of what happened to the remains is from a letter written by Mike Wilson to the Curator of the Drostdy Museum. The excavated skeleton was sent to Hertha de Villiers of the Department of Anatomy at the University of Witswatersrand who, through a series of skull measurements, suggested that its closest affinities were with the Natal Nguni, followed by the Sotho and then the Griqua. Without any discussion of the burial context, this evidence, which depends on the measurement of

![Figure 13: The exhummation of Markus Sababa's grave on 17th April 1986. The museum report simply states that the excavation was carried out. There was no record of the grave shaft, the body position or any other details.](image)

22 points on the skull, “astounded” Wilson and led to the conclusion that the skeleton which had been disinterred could not be verified as “chief” Markus Sababa. Aside from the fact that morphological variation between individuals frequently exceeds population averages and the analysis of a single cranium, the most worrying aspect of this conclusion is that if the skeleton, when measured, was that of a ‘Khoisan type’, the result would have undoubtedly proven, for Wilson, that this was the grave of a Khoekhoen “Chief”. There was some appreciation in the letter that Markus Sababa could be of mixed decent and that there had, in fact, been interaction between Hessequa and Xhosa at least since the 1660s (Harinck 1972). Wilson also briefly entertains the idea that there could have been interaction between slaves and Khoekhoen, but concludes that this would have been unlikely before the 1730s when the oral history was said to have originated. Both these possible conclusions point towards potentially interesting avenues for questioning the popular colonial narratives: first, that only the Gonaqua Khoekhoen were inter-marrying with Xhosa

61 South African Museum unpublished...April 1986
62 Drostdy Museum Archives: EMA.4 Unpublished letter from Mike Wilson to Colin Cuchran 21st April 1987
groups, and second, that slaves and Khoekhoen were not mixing before the first farms arrived in Swellendam.

Perhaps even more surprising is the fact that the oral history itself was not questioned. As was pointed out above, even a cursory glance through the Drostdy archives would have indicated the discrepancies in the dates that Tomlinson provides for these oral histories. Could it be that Markus Sababa was in fact buried later than Tomlinson originally reported? Such a proposition is made all the more likely by the fact that in Tomlinson’s original notes there is no mention of dates for Markus or Klaas. If Markus was alive at the same time as Lang Elsie and Nougha Saree, who Tomlinson describes as occupying their kraals up to 1800, then close interaction between Khoekhoen and slaves would have been a likely scenario.

Unfortunately, such interesting avenues of thinking appeared to be of little interest to Wilson and his colleagues at the time, for whom the role of archaeology, in terms of burials at least, was more about confirming historically known cultural and ethnic groupings. The Museum had already obtained ‘San’ burials from Oakhurst and Matjes River, from a “...time before there could have been any possibility of hybridization with the Cape Nguni or any other Negro population,...” (M.L. Wilson 1986) and therefore it would have been valuable to obtain a comparative sample of ‘Khoi’ specimens. Although continued investigation in order to “verify” that the grave was that of a “chief” was apparently planned, there does not appear to have been any further correspondence or research on the matter.

This was the end of the road for Markus because this individual did not suit the requirements of pastoralist archaeology of the time, which as discussed in Chapter 2, was to distinguish between ‘Khoi’ and ‘San’ or ‘herder’ or ‘hunter’ (e.g. Beaumont et al. 1984; Sampson 1984; M.L. Wilson 1986). The ethics of expeditions such as this one, which appeared to completely disregard the complexities of indigenous history in the quest for ‘pure’ anthropological samples, is a subject well beyond the scope of this thesis. Nevertheless, the fact that the remains were never accessioned, and reburial was considered pointless because the skeleton was not of a Khoisan type and could
therefore not have been Markus Sababa, is testament to the crudeness with which human remains have been dealt with by archaeologists as recently as the 1980s. A box containing the skeleton of an adult male, without an accession number and accompanied only by a small white Swellendam label, is stored in the pre-colonial archaeology department at IZIKO Museum (formerly South African Museum) among other anonymous human remains.

4.4.3. Potential research avenues for post-contact archaeology in Swellendam

The South African Museum reports just discussed include some archaeological observations which, although virtually ignored at the time, are of interest to the current theoretical framework of post-contact research and help illustrate the extent that we may need to expand our concept of what constitutes Khoekhoen archaeology. All three ‘Hottentot kraal’ sites investigated by the museum team yielded potentially significant archaeological material. At Ou Tuin and Bonteboks Kloof, said to have been the locations of Nougha Saree’s and Markus Sababa’s kraals, dense scatters of surface artefacts were reported and at Lang Elsieskraal Wilson noted the presence of a stone building and a conspicuous grass lawn (thought by local tradition to be the kraal site). The unspecific nature of oral history made things difficult for Wilson and colleagues in their search for graves, yet somehow their focus remained doggedly on obtaining “undoubted Hottentot remains.”

There is perhaps little to be surprised about here. As discussed in Chapter 2, Later Stone Age research was held back by a rigid methodological conservatism for many years. Surface scatters were considered of little value by most archaeologists until recently (but see Parkington 1980; Mazel and Parkington 1978, 1981; Sampson 1985) and the idea of researching indigenous peoples in transition through colonial settlements is a relatively untried methodology in the Western Cape, although Carmel Schrire’s excavations at Oudepost (Schrire and Deacon 1989) and Harriet Clift’s

65 Drostdy Mueum Archives: EMA.4 Unpublished letter from Mike Wilson to Colin Cochran 21st April 1987
66 There is no documentation relating to this skeleton in the Archaeology department at IZIKO. The only record found relating to the post excavation treatment of the remains was in the Drostdy Museum Archives: EMA.4 Unpublished letter from Mike Wilson to Colin Cochran 21st April 1987
therefore not have been Markus Sababa65, is testament to the crudeness with which human remains have been dealt with by archaeologists as recently as the 1980s. A box containing the skeleton of an adult male, without an accession number and accompanied only by a small white Swellendam label, is stored in the pre-colonial archaeology department at IZIKO Museum (formerly South African Museum) among other anonymous human remains.66

4.4.3. Potential research avenues for post-contact archaeology in Swellendam

The South African Museum reports just discussed include some archaeological observations which, although virtually ignored at the time, are of interest to the current theoretical framework of post-contact research and help illustrate the extent that we may need to expand our concept of what constitutes Khoekhoen archaeology. All three ‘Hottentot kraal’ sites investigated by the museum team yielded potentially significant archaeological material. At Ou Tuin and Bonteboks Kloof, said to have been the locations of Nougha Saree’s and Markus Sababa’s kraals, dense scatters of surface artefacts were reported and at Lang Elskieskraal Wilson noted the presence of a stone building and a conspicuous grass lawn (thought by local tradition to be the kraal site).67 The unspecific nature of oral history made things difficult for Wilson and colleagues in their search for graves, yet somehow their focus remained doggedly on obtaining “undoubted Hottentot remains.”

There is perhaps little to be surprised about here. As discussed in Chapter 2, Later Stone Age research was held back by a rigid methodological conservatism for many years. Surface scatters were considered of little value by most archaeologists until recently (but see Parkington 1980; Mazel and Parkington 1978, 1981; Sampson 1985) and the idea of researching indigenous peoples in transition through colonial settlements is a relatively untried methodology in the Western Cape, although Carmel Schrire’s excavations at Oudepost (Schrire and Deacon 1989) and Harriet Clift’s

65 Drostdy Museum Archives: EMA.4 Unpublished letter from Mike Wilson to Colin Cochran 21st April 1987

66 There is no documentation relating to this skeleton in the Archaeology department at IZIKO. The only record found relating to the post excavation treatment of the remains was in the Drostdy Museum Archives: EMA.4 Unpublished letter from Mike Wilson to Colin Cochran 21st April 1987

94
(2001) investigation into Genadendal mission station are notable exceptions. Stone buildings and grazing-lawns are not traditionally thought of as Khoekhoen archaeology and this may be the reason why they have been ignored by previous researchers. Tomlinson (1943) and Van Rensburg (1975) did not even mention the stone building at Lang Elieskraal, or the one shown in the photograph of Kluitjieskraal (Figure 10), most probably because it did not fit their preconceived image of ‘Hottentots,’ evidence of which is illustrated in the 1944 painting (Figure 11).

When viewed within the historical context of 18th Century Swellendam there is no reason to believe that stone buildings and grass lawns could not be the types of material culture associated with the Khoekhoen. There is a definite broadening of horizons required here. Turning back to Tomlinson’s unpublished notes, there are a few other enticing clues. As a child in the 1880s Mr Uiyis, owner of Bontboksloof farm, was shown the position of many kraals and in a letter to Tomlinson in 1939 he writes that: “...you will find all the kraals along the river...” Whether he is referring to physical remains or simply the areas where people lived is unclear, but at one of the named places, Bakoondkraal, he remembers specifically that there was a threshing floor. Again, a widening of the spectrum of material culture potentially associated with the Khoekhoen is required.

Although burial sites, have at least, compared to other aspects of the indigenous landscape, received a good deal of attention from archaeologists in the Swellendam area, the more subtle details of burial context were still overlooked in favour of descriptions of physical type. There could be crucial information to gain from a more detailed study of burial types even without conducting an excavation. Tomlinson himself records a difference in grave sizes between some of the burial sites, with the stones slabs of the earlier sites being only 1.20m apart and the later burials being of greater length (Tomlinson 1943: 30). Such distinctions could be important when viewed together with other supporting archaeological evidence.

68 Drostdy Archives: Tomlinson 1939 handwritten notes
The potential of studying old wagon routes and river crossings has also been overlooked by archaeologists in terms of their significance for investigating post-contact landscapes. Neville et al. (1994) successfully managed to reconstruct an extensive network of 19th Century wagon tracks using quit-rent survey diagrams for the Seacow Valley, and importantly considered the impact on the Bushmen population, but there has been no attempt to pursue this methodology outside of the Karoo. The earliest wagon tracks would normally have followed indigenous route-ways especially where a river or mountain needed traversing (Mossop 1928). A focus on such points in the landscape may well help archaeologists in locating both pre and post-contact pastoralist sites. Certainly, the historical evidence presented in Chapter 3, highlighted how formidable a barrier the large rivers of the south coast were for cattle traders in the late 17th and early 18th Century, and there is no doubt that movements across the landscape were in a large part guided by river crossings. The location of Lang Elsieskraal and Nougha Saree’s kraal on two of the main drifts across the Breede serves to illustrate this point further.

There are, however, real practical limitations for archaeologists dealing with this period, some of which were briefly mentioned in Chapter 3. One of the most obvious drawbacks is the problem of how to recognise indigenous assemblages in a colonial landscape where diagnostic artefacts may have been superseded by colonist-introduced material culture, such as metal implements, imported ceramics and stone built houses? Indigenous access and use of a material culture type could potentially be distinguished from colonist use of the same items in terms of quantity, use and perhaps most importantly, disposal. Vernacular crafts such as stone knapping may also be found alongside the remains of metal knives for instance, and the combination of such technologies may be a key to identifying indigenous sites from this period. Access to such resources and knowledge of technologies would have depended on the situation of the individual, family or group in question. Some Khoekhoen had closer ties with loan farms and the VOC than others and a wide variety of Khoekhoen settlement forms, mobility patterns and technologies would have existed in the 18th Century.

Although I emphasised the idealised aspects of the painting commissioned by local historian Lance Tomlinson, which shows a circle of matjieshuises (Figure 11), it is
likely that such mobile shelters continued to be used well into the late 18th Century, for at least as long as indigenous groups survived by moving their stock between pastures, hunting and raiding, or indeed working seasonally on farms. Stone and mud huts which existed at the two so-called ‘reserves’ at Hottentots kraal and Slangrivier69 in the 19th Century were likely to have been more common if individuals, families or groups knew that they would be residing in one place for some time. For those Khoekhoen who had attached themselves to farms in a more permanent capacity, which appears to have been the case for the majority of Hessequa in Swellendam by the mid 1700s (Viljoen 2001), there may have been a more regular pattern of settlement.

Our knowledge of the relationships between settlers and Khoekhoen comes mainly from legal proceedings (Viljoen 2001) and a limited number of traveller accounts (Malherbe 1978). Little is known of the living arrangements on these farms, and this is particularly the case for the large number of Khoekhoen shepherds who were employed on farms but resided in their own kraals in the 18th Century (Viljoen 2001). Detailed estate maps are lacking for most farms in the Western Cape and quit rent diagrams rarely show positions of labourer cottages or shepherds huts.

The 1890-1900 General Surveyors map70 is the earliest detailed cartographic record of the Swellendam farm landscape. On this map most farms still retain the circular shape of the original loan farm grant. Usually there is a house marked in the centre, and sometimes there are other dwellings (huts, cottages and occasionally other houses) located around the farm. There is often a notable spatial division between the central dwelling and the huts and cottages, and some are even situated on the opposite side of the farm to the main house. Rarely are the huts and houses located together. Documentary sources indicate that the construction of specific lodgings for workers became more popular in the Cape in the 19th Century, a time when attitudes toward slaves and servants in general were beginning to change (Markell 1993). Markell (1993: 81) proposed further survey on the estate at Vergelegen, in the Western Cape,

69 Mud and stone huts at Hottentots Kraal are mentioned in *Correspondence on the Hottentot Kraal Location in the Division of Swellendam*. Published by order of the House of Assembly 1876. UNISA library. Meffert and van Hemert (1991: 20) describe "semi-permanent dwellings" at Slangrivier.

70 *Map of the Southern Districts. 1890-1900 Sheet 4 Swellendam*. Compiled by the Surveyor General, Cape Town. 800-1 inch.
where research had previously focused on the slave lodge adjacent to the main house. Initial results indicated that the workers’ cottages were situated 1 km to the east of the main house, “...providing tangible distance between masters and servants”. The cartographic evidence from Swellendam matches this spatial separation of master and servant, but here the spatial arrangements are likely to have originated in earlier Khoekhoen-colonist relations rather than 19th Century ideological change.

Historians have commented that the Khoekhoen who worked as client herders and labourers during the 18th Century, did their very best to preserve their familial structure and were often quite independent from the farms they were working for (Malherbe 1981; Viljoen 2001). Stock herding suited both colonists’ and Khoekhoen in this respect, as the lack of fences and fixed boundaries meant that animals needed kraaling and watching over night. Both parties were, however, crucial to one another’s survival, especially in the early years of colonisation. The colonists’ were dependant on local Khoekhoen, not only for labour, but also for their pastoral skills and knowledge of the landscape (Viljoen 2001). For the Khoekhoen, such a relationship was the only way they could gain access to vital resources and maintain some aspects of their independence.

The childhood reminiscences of Francis William Reitz (born 1845) of the Breede River sheep farm, Rhenoster Fontein, include descriptions of similar semi-independent herding communities attached to farms some 100 years after the first wave of colonial settlement (Burrows 1952: 156). According to Reitz, the workers were made up of two types, one of which were shepherds who lived permanently in “neat” box-shaped cottages on the edge of the farm and who subsisted, at least in part, from wild resources, including shell-fish from the coast. Reitz also mentions the location of a “wolfhuis” 71 (stone built hyena trap) next to the cottage (Burrows 1952: 161). Other workers returned to the Zuurbraak missionary settlement on a seasonal basis (Burrows 1952: 156). Such formalised semi-independent Khoekhoen shepherd settlements may well have existed on large farms throughout the Overberg in the 18th and 19th centuries and there is a good chance that they would leave a recognisable archaeological signature that could be distinguished from the homesteads of the

71 There is, as yet, no evidence that stone-built traps were used by indigenous peoples for trapping animals for food.
colonists themselves. Indeed, until the fencing laws were implemented in 1905 there was sufficient labour requirement for such herder communities to be present on all stock farms across the colony as pastoral production was a labour intensive practice, requiring the movement of stock to water sources and in and out of kraals on a daily basis (Stittert 2002). At Rhenoster Fontein for example, a farm covering 6000 morgen, there were as many as 8000 sheep herded in outstations (Burrows 1952: 156).

Studies of pastoral stations in Australia provide a possible comparison for *post-contact* archaeological research in the Cape. There, researchers have emphasised the suitability of such stock-posts for studying interaction between settlers and Aboriginal communities, a history which is largely ‘hidden’, but one which writers emphasise is integral to the formation modern Australia (Harrison 2003). Patterson (2006: 104), for example, reports the deliberate separation between the placement of the headstation and pastoral workers buildings at the Old Sherlock Station in north-west Western Australia which may “...replicate the attitudes of this station's owners.” At other stations in the area, spatial studies suggest closer relations between settlers and indigenous workers (Patterson 2006: 104). Questions of degrees of separation or integration between servants and their masters are also crucial to our understanding of the formation of modern South Africa. Indeed, the majority of farm workers still reside on the farms of their employers and the spatial and social division between landowners’ homestead and the labourer cottages is still the norm in the Western Cape.

Aside from Markell's (1993) speculations concerning the cottages at Vergelegen, there has been little consideration of the archaeology of rural servants, shepherds and slaves. One explanation for the lack of archaeological research conducted into post-contact indigenous landscapes in general is the problematic division between Stone Age and historical archaeology.72 As we have seen in the South African Museum case study just discussed, potentially significant evidence was overlooked because it did not meet the research objectives of the Later Stone Age research paradigm of the time.

72 This problematic dichotomy between prehistoric (Stone Age) and historical sub-fields for post-contact archaeology has been highlighted by Lightfoot (1995) discussing North American archaeology during the 1990s and more recently Harrison (2003) has described a similar scenario for Australia. See also Schmidt and Patterson (1995) for similar views.
Likewise, historical archaeology also has primary research domains, which have not yet been extended to include the post-contact Khoekhoen. In general historical archaeology at the Cape is well developed compared to elsewhere in Africa (Reid and Lane 2004) and has been specifically aimed at uncovering the histories and lifeways of those not represented in the written texts, including slaves, servants, lower class town dwellers and soldiers (M. Hall 1993). Most of this research has, however, been carried out in an urban context. There have been some attempts to study vernacular architecture from an archaeological perspective (Gribble 1989), but there have been few surveys of rural buildings and structures that are not associated with homesteads, or indeed the landscapes that exist on the margins of these estates. What is needed it seems is an integrated research methodology which tackles all aspects of the post-contact landscape, from the homestead to the margins of the farm and to include all types of site from lithic scatters to threshing floors and wagon tracks.

4.5. Conclusions

There were two primary aims of this review. The first was to develop a framework for archaeological questioning of the post-contact period in Swellendam, and the second was to assess the potential of historical sources for designing an archaeological survey. In terms of the first aim, a general theme encompassing interaction and the shared landscapes of colonists, Khoekhoen and slaves can be highlighted as the underlying framework. Questions have emerged concerning the locations and types of site, types of material culture present, technologies, architecture, and spatial arrangements and whether these indicate continuity or transformation of the pre-colonial lifeways. How are the indigenous and colonist settlements organised in relation to one another, and what variation exists in this regard? Analyses and questions such as these, could, in theory be employed to tackle some of the more specific questions posed by the textual sources, including the ambiguity surrounding the ‘kraals’ of 18th Century Khoekhoen ‘Captains’. Who were these so called ‘Captains’ who occupied some of the best grazing and water sources in the area? Do these ‘Captains’ only represent a collapse of the old order of Khoekhoen social structure as Elphick (1985) understands it, or are there other layers to this history? Could they have been the kraals under the protection of the VOC (Ross 1986; Sleigh
5. Survey design and methodology

5.1. Introduction

In this chapter, I define an area on the Breede River small enough to be covered by a foot survey. The decision making process is explained in relation to the particular characteristics of the region, including: topography, geology, land-use and vegetation; as well as the location of historical and previously documented archaeological evidence. The remainder of the chapter explains in detail the rationale behind the survey methodology, based on local conditions and research questions developed previously.

5.2. Geology and topography

Alternating bands of tilted shale and sandstone form the valleys and hilltops of the ‘Rûens’ or ‘Ruggens’ (meaning ‘ridges’ in Afrikaans) area of the south coast. The weathering of these sedimentary shale deposits in the valley bottoms produces some of the most fertile soil in the Western Cape. The are dissected by number of major rivers leaving both substantial gravel terraces high above the current flood plain and flat alluvial plains. The Breede River is the largest of these rivers, flowing in a south-easterly direction from Worcester to Swellendam, at which point it takes a dramatic turn to the south. It is this bend of the Breede that forms the centre point of the present study area. The geomorphology of this particular area is, in fact, anything but monotonous, with a relic ox-bow lake basin, large alluvial plains, steep gravel ridges and river cliffs dominating the landscape. The size of the alluvial plains in this area, south and east of Swellendam (Figure 14), undoubtedly encouraged indigenous herder settlement as they could provide easy access to water as well as extensive grazing. Compared to the hilly landscape with deep inaccessible kloofs that characterises the wider Rûens area, one can see how Bakkeleys Plaats, and more generally the Breede and Buffeljags River valleys, became known to colonists as Khoekhoen aggregation centres.
Figure 15, below, illustrates the unusual geology of this area. The high quartzite content of the Witteberg series makes it more resistant than the Bokkeveld shales. Thus, it is the Witteberg deposits which form the cliffs on the south side of the Breede near Swellendam and also the steep ridges, both on the east side of the Buffeljags, and on the southern side of the Compagnies River.

Topographically, however, it is the river terrace escarpments and thick gravel beds that characterise the local landscape. Geologists recognise at least four main levels of fluvial gravel terraces in the Swellendam area. Steep scarp-like banks up to 80m high separate these terraces in some places, leading early commentators to suggest that they were wave-cut features (Macfarlane 1949: 95), although geologists today are in no doubt that these are old river terraces (Macfarlane 1949; Theron 1967; Malan and Viljoen 1994). The gravel deposits vary in composition but all made up of a similar mix of boulders, cobbles and pebbles, consisting of quartzitic-sandstone, quartzite, shale and quartz, in a matrix of coarse sand.

In the broader study area (i.e. not the actual survey area) there are five recognisable terraces alongside the Breede, and Buffeljags Rivers. Here, the gravel terraces are numbered 1-3 following Theron (1967), but I also include the more recent and lower lying sandy terraces as Terrace 4 and Terrace 5. The upper terrace extends from 120 m asl to 180 m asl. Jurassic/Cretaceous deposits can also be found on Terrace 1 including reddish brown conglomerates and silcretes found in the north-west corner of
Figure 15: Simplified schematic geology map, redrawn from 1:250000 Geological Survey map 3420 Riversdale (Siegfried et al. 1994) and Theron (1967). The red dashed line shows boundary of Bontebok National Park. N Nougma Saree’s kraal. L Lang Elieskraal.
Bontebok National Park and to the east of Bontebokskloof (Theron 1967; Malan and Viljoen 1994). The younger gravel bed, Terrace 2, is found between 80 to 120 m asl. It is a large and flat landscape feature and makes up most of the higher-lying ground in the north of Bontebok National Park. Although lacking the extensive sand cover of the lower gravel beds, localised sandy areas and springs can be found in Terrace 2. Terrace 3 is a smaller gravel bed recognised by Theron (1967) in his detailed study of the geology of Bontebok National Park. It is found between 70 and 60 m asl and includes some extensive surficial sand deposits.

The lower gravel terrace, Terrace 4, is overlain by alluvial and aeolian sands. It is much less substantial in height compared to the older terraces and is found between 65 m asl to 60 m asl (Figures 15 and 16). This lower terrace is not be as prominent as the older two gravel terraces, rising only 5-10 m above the active flood plain (Terrace 5) and in places only dropping 5 m in height from Terrace 3. Not all five terraces are present across the landscape however, and often very steep scarp-like slopes can be found where, for example, Terrace 2 drops straight down to meet Terrace 4, as in the south-west of Bontebok National Park. Here, the steep terraces follow the course of an old meander and form a large amphitheatre-shaped basin. It is on the alluvial flats inside this basin that local tradition locates the two kraals of 18th Century ‘Captains’ Nougha Saree and Lang Elsie (Figure 12). Similar gravel- and sand-covered terraces can be found elsewhere along the Breede River and along the other south coast rivers, such as the Riviersonderend, Duivenhoks, Goukou and Gouritz Rivers. Archaeological survey methods developed here could potentially be applicable to these other river valleys.

5.3. Soils, rainfall, natural vegetation and modern land-use

Weathering of the Bokkeveld shales creates more productive lithosols than elsewhere in the Western Cape, characterised by their higher clay and silt content and lower acidity in lowland areas. Thus more than 90% of land in the Overberg and Ruens regions of the south coastal plain is today under cultivation (Department of Environmental Affairs and Tourism 2001). The areas of unploughed natural vegetation that survives generally consist of renosterveld, a small leafed shrubland
dominated by renosterbos (*Elytropappus rhinoceratis*). According to ecologists, less than 10% of its natural distribution remains and there is no consensus about its original composition (Rebelo 1995). Some have argued that renosterveld is transformed grassland and the product of overgrazing following European settlement, but others insist that it has always been a shrubland as it survives today (Cowling and Richardson 1995; Rebelo 1995). Historical evidence provides the most persuasive argument that the region covered by renosterveld today was in fact a grassland ecosystem prior to the 18th Century. Large herds of game and domestic animals were known to favour the renosterveld region and there are historical accounts of the transformation of some grassland areas into renosterveld which domestic stock found unpalatable; complaints about overgrazing in Swellendam date to only thirty years after the first colonial stock keepers moved into the area (Guelke 1989: 92) and Rebelo (1995) suggests that by 1800 the decline of the grasslands of the Western Cape was largely complete.

The thin soils of the gravel terraces support fynbos vegetation, which is naturally less rich in grass species due to high soil acidity and less suited to cultivation than those derived from the weathering of shale or alluvial soils. Nevertheless, the introduction of intensive mechanised farming methods since the First World War has meant that even these parts of the Swellendam landscape are now generally under cultivation (Rothman and Rothman 1974: 48-49; Kemper *et al.* 2000).
Unfortunately, but not surprisingly, most of the fertile alluvial plains are under permanent irrigation, including the alluvial soils along the Buffeljags River between its confluence with the Breede and the southern flank of the Langeberge Mountains and the area identified as ‘Bakkeleys Plaats’ by Gordon’s Khoekhoen informants (Cullinan and Smith 2006: 4). Under such land management schemes there is considerable sub-surface disturbance through the digging of drainage and irrigation channels. The archaeology that does survive is also obscured beneath permanent pastures and fruit plantations such as those along the Buffeljags River.

Bontebok National Park was proclaimed in 1961 and covers an area of 3475 ha, 90% of which is fluvial terraces and alluvial plains (Theron 1967; Kraaij et al. 2003). There are three main vegetation types in this protected area: coastal renosterveld on the more fertile alluvium, which covers about a third of the park; grassy fynbos on the gravel terraces; and thirdly, riverine and Acacia karroo tree communities on the active flood plain and edge of Terrace 4, next to the river (Eustatius du Chavoux 2005). Prior to the establishment of the park, most of the central area, including the northern river bank (where 18th Century kraals are said to have been located), was common grazing land, so there has been intensive grazing, but otherwise relatively little transformation of the landscape. Bontebok National Park is extremely important in terms of preserving coastal renosterveld, as it is the largest protected area of this vegetation type (Kraaij et al. 2003). As such, the present survey represents a suitable preliminary assessment of the archaeological resources in this rapidly disappearing landscape.

5.4. Known historical and archaeological sites

The historical evidence strongly suggests that Khoekhoen kraals were never situated far from the river. Nearly every encounter between colonists and Khoekhoen in the 17th Century was on a river bank. Even in the 18th Century when most of the best land was annexed for grazing by colonists, the oral history and toponomic evidence described in Chapter 4 suggests that those Khoekhoen who managed to establish themselves in the loan farm landscape were generally tied to the river.

Aside from the South African Museum project described in the preceding chapter, little previous archaeological research has been conducted in the Swellendam area.
There are, however, a number of boxes of artefacts from the area in the IZIKO collection in Cape Town most of which are Early Stone Age artefacts collected from the gravel terraces. A published paper on the Pleistocene artefacts from the south coast gravels by Macfarlane (1949) records many “Pre-Stellenbosch” artefacts in Swellendam, Riversdale and Napier, including some from 183 m “high-level” gravel terraces on the edge of Bontebok National Park. In contrast, few Later Stone Age sites are known from the study area. There are, however, many midden sites known from the coastal zone to the south (Rudner 1968: 514-529; Henshilwood 1995), and one stone-walled fish trap known from the Breede River mouth (Kemp 2006). A collection of 18 bored stones make up the total number of Later Stone Age artefacts from the Swellendam area in the IZIKO collection. Three of these artefacts were found at Doorn River, a farm on the east side of the Buffeljags/Breede confluence. This small concentration of bored stones in one part of the landscape is likely to be related to the awareness of one particular collector rather than reflecting any Later Stone Age settlement pattern. Nevertheless, it was encouraging for the current project that LSA artefacts have been recovered in the specific part of the Swellendam landscape indicated by the history and natural resource survey as holding the most potential for archaeological survey. Although bored stones are often isolated finds, one can also say with confidence that there is likely to be a wider range of less recognisable LSA artefacts within the same landscape.

5.5. The survey area defined

Following the land-use assessment it was decided to concentrate the survey on the Breede River in Bontebok National Park and to sample the narrow cultivated terraces on the south-east edge of the park that are ploughed but unlike the intensive agriculture seen on the wide flats of the Buffeljags (Figure 18), not under permanent irrigation and unaffected by sub-soiling. Even with the intensively farmed areas excluded, the chosen survey area included three locations with specific references to Khoekhoen kraals from the 18th Century (Figure 18). According to local oral history, two Khoekhoen kraals were located on a stretch of river bank that is now situated in

64 ARDC registers were checked in the IZIKO pre-colonial archaeology department. Only one reference was found to Swellendam, which records some ESA artefacts from an irrigation project at Ou Werf, immediately south of Bakkeleys Drift.

65 IZIKO accession numbers for collections of ESA artefacts from gravels: 4774, 4775, 5059, 5060, 6796, 8201 (Swellendam), 5061, 5062, 5063 (Zuurbraak), 4970 (Buffeljags).
Bontebok National Park (Tomlinson 1943) and VOC documentary evidence also situates an 18th Century Khoekhoen settlement at the loan farm Bakkeleys Drift (Moodie 1838), now sub-divided into various farms, two of which, Bakleisdrif and Breë Rivier, fall within the less intensive farming zone and are included in the current survey area.

The ideal for all archaeological survey is blanket coverage, that is, to walk the entire area in closely aligned transects with an experienced team and to plot each archaeological occurrence. The reality is however usually quite different and decisions must be made on how to sample the landscape in question within a given time frame. Tim Hart’s (1984) aforementioned survey of the Berg River Valley, near Porterville is of particular relevance here, as not only was he concerned with Khoekhoen herders in the Western Cape, but he also settled on a river valley as his primary unit of analysis. The Berg River is, like the Breede a terraced landscape with gravel beds flanking the river. Hart found that Later Stone Age sites were concentrated along the rivers edge, on the sandy alluvial terraces, whereas Pleistocene artefacts were abundant in the gravel terraces. In his conclusion Hart suggests that if he were to design a survey again, he would employ a more intuitive type of survey, focused on the sandy riverine areas.

Even a brief walk along some of the exposed, and rocky higher terraces (Figure 17) in the current survey area would be enough to persuade the most ardent supporters of random sampling that this is not the ideal location for pastoralists to settle or to corral their animals. Conversely, the lower sandy terraces offer much softer ground, protection from the wind, and perhaps most importantly, easy access to fresh water. In contrast to the large alluvial plains and terraces of the major rivers, the landscape away from these waterways is characterised by smaller, steeply incised and heavily vegetated tributaries that do not offer easy access to water for large herds of cattle, until they meet with the lower lying flood plains of the main rivers. On the basis of these observations and the situation of two historical sites on the edge of the Breede River, I decided to concentrate the survey on the main sandy terrace of the Breede,
Terrace 4. A continuous strip of this terrace measuring 12.3 km² was chosen as the main survey area to be covered by 15 m transects. The boundary of the survey area followed the edge of the terrace itself. Initial observations of aerial photographs and satellite images identified large sandy flats and a number of trackways linking possible grazing-lawns on the gravel Terrace 3, so a small 4 km² square sample survey was conducted using 40 m transects to test these features (Figure 18).

5.6. Survey methodology

Although the advantages of an "off-site" methodology for recognising the low density signatures of mobile pastoralists have been highlighted in both Chapters 2 and 3, early on in the survey it was realised that the post-depositional factors influencing archaeological visibility are extremely varied across the survey area; some areas have experienced intense erosion and others aeolian and colluvial deposition. Few sites were identified in contexts with good visibility and usually sites were located because particular localised conditions led to their exposure. The most suitable methodology for the current study area was found to be a multi-staged investigation. The first of
Figure 18: The survey areas shown in relation to Bontebok National Park and three areas with specific reference to Khoekhoen settlement in the 18th Century: Nougna Seree's kraal, Lung Elsieskraal and Bakkeldrift. Satellite image from Google Earth.
which involved the 15 m transect survey and 'site' identification components. Wherever concentrations of five or more artefacts were observed from one position they were designated as a 'site.' A standardised survey recording sheet was used for each site that included details of the physical location, extent, sediment type and qualitative comments on artefactual material. The location of every site was recorded with at least four points using a handheld GPS. Each site was classified according to the broad temporal category/categories represented by the artefacts present and assessed in terms of its potential to answer research questions outlined in previous chapters.

![Survey team walking 15m transects at Lang Elieskraal in Bontebok National Park.](image)

Figure 19: The survey team walking 15m transects at Lang Elieskraal in Bontebok National Park.

Soon enough it was realised that the number of Holocene and historical period sites was low enough to attempt to quantify all of these occurrences wherever there was a sufficient artefact count and adequate visibility (see Chapter 6). Initially, attempts were made to stick to the 20 minute recording technique as described by Sadile et al.'s (1992) in order to allow direct density comparisons with the Vredenberg Peninsula Survey. In the present study area some sites were so overgrown that it was not possible to obtain a suitable sample (>50 artefacts) in 20 minutes. Under these conditions, the time was doubled to 40 minutes. Other sites were of such a low density that the 20 minutes was extended to 30 minutes if it meant that the entire site could be collected. This technique allows comparison between surface sites with variable densities and amounts of artefacts. Although this method of recording was originally designed for the Vredenberg Peninsula, where the level of visibility was far higher than in the current study area, it still provided a useful technique for comparing basic flaked stone data from different sites without resorting to intrusive sampling.
6. Survey Results

6.1. Introduction

The 15 m transect survey involved identifying concentrations that were deemed to be 'sites'. Each location was characterised according to its diagnostic artefacts. Twenty-four sites were recorded in Bontebok National Park and a further thirteen sites from agricultural fields. The sites are separated into broad temporal categories of Pleistocene, Holocene and Historical based on the occurrence of artefactual and documentary evidence. Tables listing all sites can be found in the appendix at the back of this thesis. There is considerable overlap between these three categories and many of the sites contain evidence for more than one of these broad periods. Fifteen stone artefact scatters were recorded with only Pleistocene diagnostic artefacts. One site yielded both Middle Stone Age (MSA) and Later Stone Age (LSA) diagnostic artefacts and four consisted of Pleistocene and historical material. Eight sites were found with only LSA material, six of which contained indigenous manufactured pottery. Three further sites included indigenous pottery together with evidence for occupation in the last three hundred years (historical period), and eight sites were classified as historical period only. Separate site numbers were not issued for the different phases represented at each location, as has been done elsewhere in open-site survey in the Western Cape (e.g. Conard et al. 1999), primarily because the degree of horizontal and vertical integrity required to identify individual occupations was not present in any of the archaeological deposits recorded. At two locations, MSA and LSA material did, however, show broad spatial patterning that allowed these sites to be subdivided. Due to time constraints, only sites with evidence for Holocene or pre-1900 historical occupation were subjected to additional detailed on-site quantification. Small sites, of less than 50 artefacts, from these two broad periods were comprehensively recorded. Those with more than 50 artefacts were recorded on-site with a timed classification method.

66 The term 'diagnostic artefacts' is used in its broadest sense here to refer to artefacts that display either typological or technological characteristic that can be associated through well established and dated sequences to a particular period. Using only diagnostic artefacts is not ideal. One of the major limitations is that some periods of history and prehistory contain more diagnostic elements than others. On multi-phased sites, occupations with few diagnostic artefacts may be wrongly assigned to a phase with more diagnostic features. Such a bias is difficult to avoid but can be balanced by detailed description of the taphonomic circumstances of each site, quantification and, where possible, technological analysis.
6.2. Holocene archaeology

The eleven sites found during the 15m transect survey with evidence for Holocene occupation were all found on Terrace 4, between 60masl and 55masl and within 500m of the Breede River (Figure 20). Even with such a consistent distribution, the particular circumstances which led to these sites being visible at the time of the survey varied considerably. Three were associated with animal burrows and one site with the excavation of a road; another was exposed alongside MSA material in a natural erosion feature. Five more Holocene sites were located in agricultural fields where varying crop planting and harvesting regimes meant that even in this land-use zone, visibility was far from consistent. Further problems were encountered due to the extremely poor visibility in heavily vegetated riverine areas. Extreme variations in the types of sites encountered made inter-site comparison between sites difficult. Five sites were encountered during the 15 m transect survey that contained convincing evidence for Holocene occupation and a sufficient number of artefacts (>50) to allow meaningful inter-site comparison through timed collections.

6.2.1. Results of on-site recording

The timed recording method was employed as a means of producing a comparable dataset from sites which may vary in density, and size. A major limitation of using this method in riverine environments is that visibility is far from consistent and therefore recording rates and sample size vary considerably. Nevertheless, it provided a method of controlled quantification and has afforded some basic comparison of the surface record between sites. A simple lithic recording system was used for the on-site analysis, which noted artefact class and raw material. All artefacts were replaced in their original positions following classification. Pottery was also measured, photographed and described. The results of each timed collection are discussed on a site by site basis in the following section.

BNP24 is a sub-surface site associated with a road in the Bontebok National Park restcamp area. The road is cut 0.30 m into the sand but it was not possible to ascertain
Figure 20: The Holocene archaeology of the survey area. Simplified map of terraces based on Theron (1967), Siegfried et al. (1994) and personal observations. The dashed line is the boundary of the 15m transect survey.
Results of on-site recording: flaked stone artefacts

Table 2. BNP4a. 20 minute collection

<table>
<thead>
<tr>
<th></th>
<th>Quartz</th>
<th>Silcrete</th>
<th>Quartzite</th>
<th>Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flakes</td>
<td>8</td>
<td>38</td>
<td>82</td>
<td>127</td>
<td>79.87</td>
</tr>
<tr>
<td>Flaked pieces</td>
<td>4</td>
<td>5</td>
<td>11</td>
<td>20</td>
<td>12.58</td>
</tr>
<tr>
<td>Retouched flakes</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>4.40</td>
</tr>
<tr>
<td>Cores</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>3.14</td>
</tr>
<tr>
<td>Flaked cobbles</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>52</td>
<td>96</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>7.55</td>
<td>32.70</td>
<td>60.38</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. BNP14. 40 minute collection

<table>
<thead>
<tr>
<th></th>
<th>Quartz</th>
<th>Silcrete</th>
<th>Quartzite</th>
<th>Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flakes</td>
<td>3</td>
<td>13</td>
<td>16</td>
<td>32</td>
<td>49.23</td>
</tr>
<tr>
<td>Flaked pieces</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3.08</td>
</tr>
<tr>
<td>Retouched flakes</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>7</td>
<td>10.77</td>
</tr>
<tr>
<td>Cores</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>10</td>
<td>15.38</td>
</tr>
<tr>
<td>Flaked cobbles</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>14</td>
<td>21.54</td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>21</td>
<td>41</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>4.62</td>
<td>32.31</td>
<td>63.08</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4. MK1. 40 minute collection

<table>
<thead>
<tr>
<th></th>
<th>Quartz</th>
<th>Silcrete</th>
<th>Quartzite</th>
<th>Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flakes</td>
<td>7</td>
<td>67</td>
<td>17</td>
<td>101</td>
<td>87.83</td>
</tr>
<tr>
<td>Flaked pieces</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>10</td>
<td>8.70</td>
</tr>
<tr>
<td>Retouched flakes</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1.74</td>
</tr>
<tr>
<td>Core</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1.74</td>
</tr>
<tr>
<td>Flaked cobbles</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>82</td>
<td>22</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>9.56</td>
<td>71.30</td>
<td>19.13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5. BNP24. 30 minute collection

<table>
<thead>
<tr>
<th></th>
<th>Quartz</th>
<th>Silcrete</th>
<th>Quartzite</th>
<th>Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flakes</td>
<td>1</td>
<td>57</td>
<td>0</td>
<td>58</td>
<td>81.69</td>
</tr>
<tr>
<td>Flaked pieces</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Retouched flakes</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>13</td>
<td>18.31</td>
</tr>
<tr>
<td>Core</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>4.23</td>
</tr>
<tr>
<td>Flaked cobbles</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>70</td>
<td>0</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>1.41</td>
<td>98.59</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
at what depth the artefacts originated from. The artefacts were distributed over a very restricted area, measuring only 3 m by 2.5 m. All 71 flaked stone artefacts were recorded in 30 minutes (Table 5). The results are particularly significant for two reasons. First, the artefacts, apart from one quartz flake, were manufactured from good quality silcrete. Such a high proportion of a single raw material was not recorded at any other Holocene site during the survey and may suggest a homogenous origin for this material. Silcrete is occasionally available in the form of river cobbles and it does occur in a primary context on the high ground in the north-west corner of the park (Malan and Viljoen 1994). Survey of the area marked as a silcrete deposit on the geological map (Figure 15; Siegfried et al. 1994), did not, however, identify any surficial source. The second point of interest is that 18.3% of the assemblage consisted of retouched flakes, an unusually high number for any Stone Age site. BNP24 is a disturbed surface site and post-depositional edge damage is likely to be common, therefore only those artefacts that showed convincing and regular edge modification were classified as ‘retouched’. The retouched forms present included seven adzes, one broken scraper, and four retouched flakes that did not fit into any categories of formal tools. The predominance of one type of retouched artefact is consistent with BNP24 being a homogenous assemblage. A further point of interest is the fact that none of the artefacts showed any trace of cortex. Admittedly BNP24 is a small sample of a disturbed site, but the results of this simple classification seem to

Table 6. BR1.40 minute collection

<table>
<thead>
<tr>
<th></th>
<th>Chert</th>
<th>Silcrete</th>
<th>Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flakes</td>
<td>2</td>
<td>29</td>
<td>40</td>
<td>71</td>
</tr>
<tr>
<td>Flaked pieces</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Retouched flakes</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cores</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Flaked cobbles</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>31</td>
<td>50</td>
<td>83</td>
</tr>
</tbody>
</table>

67 The term ‘adze’ is defined by P. Mitchell (2002b: 40) as “a flake or sometimes a pebble, with one or more concave, sometimes straight working edges shaped by one set of flake scars, as well as by secondary flaking that results from use.”
indicate the deliberate and non-expedient use of one type of raw material. Although there is no concrete relationship between form and function, the dominance of one tool type may be reflective of a particular activity/range of activities carried out at this location. Adzes are, however, poor chronological markers. Artefacts with 'adze-like retouch' appear in late Pleistocene assemblages from as early as 12000 BP (P. Mitchell 2002a: 141). Small regular adzes, like the ones recorded at BNP24, appear in the archaeological record after 8000 BP and continue to be found in late second millennium AD deposits. Particularly high proportions of adzes, as is found here are common on sites in the period immediately prior to the introduction of pottery into Later Stone Age sequences at c. 2000 BP (Mazel and Parkington 1981; P. Mitchell 2002a: 145).

The absence of pottery itself is not a very reliable indicator, and does not necessarily indicate a pre-pottery date as the small friable pieces commonly found on surface sites would likely have been destroyed by the use of this track-way over many decades. Trial excavation adjacent to the road could potentially identify a larger and more diagnostic assemblage.

The results from a 40 minute collection of a much larger and relatively undisturbed surface site, MK1, are comparable to BNP24 in terms of the preferential use of silcrete (Table 4). MK1 is situated on Meul Kop farm on the south side of the Breede River, on a small sandy terrace, which corresponds to Terrace 4 on the north side of the river. Such sandy terraces, situated on the edge of tributaries would have been important access points to the river, especially along the southern bank of the Breede River where steep shale and sandstone cliffs dominate. The small sandy terraces would also provide comfortable soft ground location for camping and a naturally enclosed area for the corralling of animals. The northern edge of the site is defined by the steeply sloping river bank down to the Breede and the southern boundary by a shale cliff. Not a great deal can be reported from the on-site artefact analysis, as few diagnostic artefacts and only one irregular core were recorded. Fine-grained silcrete

68 Microwear analyses conducted by Binneman and Deacon (1984) indicate that adzes were primarily employed in wood-working activities (P. Mitchell et al. 2002b: 40). Nineteenth Century ethnographic accounts (Dunn 1905; Stow 1905) include observations of adze-like artefacts used for woodworking (Mazel and Parkington 1978).
made up 71.3% of the lithic raw material, quartzite 19.13%, and quartz 9.56%. Only one adze was noted and one further non-diagnostic retouched flake. A single fragment of indigenous thin-walled pottery was recorded, but this low number may well reflect poor visibility due to thick grass cover. The overgrown nature of the site made quantification extremely difficult and in 40 minutes nearly all the site that was visible was recorded. Judging by the extent of the small sandy terrace on which the site is located, and the density of the visible areas, it was estimated that at least an additional 1000 artefacts were concealed under thick grass.

BNP14 is, like MK1, situated on a small patch of sandy ground on the southern boundary of Bontebok National Park. The site is bounded by steep slope down to the active sandy Terrace 5, to the south, the steep slope up to the gravel Terrace 2, to the north, and a non-perennial tributary of the Breede River to the west. A porcupine den had badly disturbed the archaeology at this location, so much so, that it was impossible to discern whether this site was originally a surface scatter or whether the material had been brought up from a sub-surface deposit. The part of the site that was visible was fully recorded in 40 minutes but visibility was poor in places and large acacia trees made access difficult.

The total number of flaked stone artefacts is small (65), but a wider range of artefacts were recorded compared to either BNP24 or MK1. These included: three sherds of pottery, nine burnt stones, one hammerstone, three heavily worn upper grindstones, two anvil stones and one broken bored stone (left: Figure 21).

The raw material that was used for flaking stone at BNP14 differs from the two silcrete dominated sites just described. Rather, it follows the pattern of what is most readily available locally. Quartzite was the most common (67.21%) raw material recorded, followed by silcrete (27.87%) and then quartz (4.92%). A high percentage of the artefacts showed evidence of adze-like retouch (10.77%). Six of the seven were
regular shaped adzes in fine grained silcrete with the retouch along one or two of the lateral margins. The other had retouch on the proximal end in a more irregular fashion.

Cores and flaked cobbles69 together made up an unusually large (36.92\%) proportion of the total flaked stone artefacts recorded. Cores of a recognisable type consisted of four platform70 cores, two rotated71 cores, one in quartzite, and one in silcrete. Interestingly, one large abraded quartzite flake had also been reused as a core. The flake had presumably been obtained from the artefact-rich gravels found to the north of the site, where abraded flakes are common. The most frequent artefact type found at BNP14 was large quartzite flaked cobbles which typically had one or two flakes removed. Conventionally, these could be classified as either choppers or cores. Flaked cobbles: Cobbles that have one flaked face, the rest having been left as cortex. Platform cores: Non-cobble cores with single or opposing striking platforms that have been utilised for flake removals. See Conard \textit{et al.} (2004) for a full description of this core category. Note that Conard \textit{et al.} (2004) classification of 'platform cores' would include most of the 'flaked cobbles' in the current system. Rotated cores: Cores that have flakes removed from more than one non-opposing platforms. This category is similar to the category 'multi-directional core' as employed by Conard \textit{et al.} (2004), although their system requires three or more striking platforms to have been utilised instead of two.

Figure 22: Looking south across BNP14 and Terrace 5 from the top of Terrace 2. The fence along the southern edge of the site is the boundary of Bontebok National Park. Insert left: rim sherd of indigenous thin-walled pottery on 1 mm square graph paper. Insert right: silcrete adze.
cobbles made up 21.54% of the overall flaked stone assemblage. This is a particularly high proportion. Other published lithic assemblages in the southwestern Cape, with similar ‘informal’ quartzite assemblages demonstrated much lower percentages of flaked pebbles/cobbles. At Glentyre this was as low as 1.6% (Fagan 1960) and at Smitswinkelbaai and Bonteberg it was even less with only one flaked pebble found at each site (Poggenpoel and Robertshaw 1981; Maggs and Speed 1967).

A similar range of artefacts to that identified at BNP14 was recorded from BR1 and BR3, on the adjacent farms Bakleisdrif and Breë Rivier. Here, the 15 m transect survey identified two small concentrations of artefacts, both consisting primarily of burnt stone, large expediently flaked cobbles and sherds of indigenous pottery. A third concentration of pottery and flaked stone, BD3, was located at Bakleisdrif. Both BR1 and BR3 were situated on a thin strip of sandy terrace planted with fodder crops, which had not been ploughed at the time of the survey and where visibility was poor due to dense weed growth. The survey had been timed to coincide with the autumn and spring wheat ploughing seasons. Rather ironically, however, the large wheat fields, surveyed in optimal conditions immediately following ploughing, produced no archaeological sites. This relationship between the distribution of archaeological sites and marginal crop growing areas may well be a product of more destructive farming techniques in the intensively farmed wheat growing fields. This was certainly the case at Breë Rivier where the farmer, Mr Winjard Viljoen, informed me that the adjacent field, to the one in which BR3 was located, had been dug up by the previous owner in order to flatten the terrace and protect to the ground from flooding. Across the Breede on the northern side, another large wheat field was included in the 15 m transect survey, and again there was a notable lack of artefacts and even natural stones, although here the farmer was not so knowledgeable about the recent land-use history.

At the time of the 15 m transect survey of Breë Rivier in November 2006, too few artefacts were visible at BR3 to warrant a timed collection, but 25 fragments of burnt stone were counted from an area that measured 40 m by 20 m. These were accompanied by ten flaked stone artefacts, including two silcrete adzes and one
thumbnail scraper. Three sherds of indigenous pottery were also recorded. Visibility was marginally better at BR1, although a 40 minute timed collection was required to obtain a large enough sample of material (Table 6). A high number of simple quartzite flaked cobbles and platform cores, also made from quartzite cobbles were recorded. The flaked stone results followed the same raw material proportions as was found at BNP14, with quartzite dominating (60.24%), followed by silcrete (37.35%) and quartz (4.82%). There was a notable lack of retouched artefacts at BR1, although one broken bored stone was recorded. The 40 minute collection also identified 13 sherds of indigenous pottery.

The discovery of BR1 and BR3 was particularly significant for three reasons, the first of which was the occurrence of two concentrations of burnt stone. At BR1 52 fragments of burnt stone were visible in an 8 m by 5 m area. The distribution at BR3 was more dispersed, but nevertheless notable compared to the almost complete lack of burnt stone found across the wider landscape. Importantly, burnt stone can be directly dated by thermoluminescence, even from a ploughzone context (Dunnell and Feathers 1995; Feathers 1997). Second, indigenous pottery was found at both locations even with such reduced visibility. Third, at BR1, there appeared to be some spatial patterning within the site. It was therefore decided to initiate a more comprehensive recording strategy at BR1 and BR3, following ploughing, with the hope of identifying spatial patterning and obtaining larger samples of artefactual material. The results of this recording exercise are presented in Chapter 7.

One other surface scatter of indigenous pottery, BD3, was identified on the farm Bakleisdrif during the 15 m transect survey. This site was situated in a small agricultural plot on a narrow sandy terrace. The ground had also been left fallow, and at the time of recording was covered with maize stumps. Three sherds of indigenous pottery were recorded in this location during the 15m transect survey, so the site was revisited for further investigation. Piles of stones on the northern and eastern edges of the field indicated that the site had been subjected to intense stone clearance. Nevertheless, 16 sherds of indigenous pottery were recorded during a 40 minute

72 A scraper is defined as a flaked artefact "characterised by a deliberately retouched convex edge." A thumbnail type scraper is "...less than 20 mm in width and length and approximately quadrilateral in shape..." (P. Mitchell (2002b: 42).
survey, including one undecorated rounded top rim sherd. This type of rim sherd is not particularly diagnostic and can be found throughout the KBA/KBB sequence at Kasteelberg (Sadr and Smith 1991: 109; fig. 3b). Due to the low number of flaked stone artefacts (n=26), presumably due to stone clearance, the site offers little scope for comparison with the other Holocene sites. One silcrete adze and one quartz single platform core were among the stone artefacts recorded.

Figure 23: Looking east over the concentration of burnt stone at BR1. Red and pink flags locate burnt stone and flaked stone respectively. The farm Bree Rivier is on the horizon. Insert: close-up of one of the burnt stones. Burnt stones were identified either by a fire-cracked surface, and/or the positive or negative evidence of a "pot-lid" fracture.

Figure 24: Satellite image of Bakleisdrif farm showing location and extent of BD3. Insert: undecorated rounded lip (cf. Sadr and Smith 1991) rim sherd of indigenous pottery from BD3. Image from Google Earth.
The present landowners had no intention of ploughing this field for the foreseeable future so there was no opportunity to revisit this site at a time of increased visibility. The extent of the site, as shown on Figure 24, was well defined to the north where the ground sloped steeply down to the active terrace, Terrace 5. The southern boundary of the field, which also marked the edge of the site, was again defined by a pronounced slope up to the gravel deposit Terrace 2. The western boundary was relatively well defined as the visibility was consistent in this area, but no artefacts were encountered outside of the site boundary shown on Figure 24. The eastern edge of the site is less convincing and defined more by visibility than archaeological observations, although the pottery scatter did not extend as far as BD1 where visibility was relatively good and a small flaked stone scatter was recorded, including an MSA radial core.

The identification of three notable concentrations of indigenous pottery and other artefacts BR1, BR3 and BD3 along the rivers edge in an area that, in the 18th Century was part of the loan farm Bakkellieplaats Drift (Chapter 4; page 71), is important as there is firm documentary evidence of Khoekhoen occupation here in 1769 (Moodie 1838. Volume III: 18). The possibility of identifying more diagnostic potsherds and potentially European manufactured ceramics was an additional motivation for a third phase of investigation at BR1 and BR3 (Chapter 7).

An equally positive result, in terms of matching historical evidence to archaeological remains, was the identification of an extensive scatter of indigenous pottery at Ou Tuin in Bontebok National Park, the area identified through oral history as the location of Nougha Saree’s kraal (Tomlinson 1943). Extremely low visibility made it difficult to see the small sized sherds (typically less than 30 mm by 30 mm). Even with this major limitation, ten sherds were found in the area numbered, BNP4a, during the 15 m transect survey.

The pottery and LSA stone artefacts had a similar distribution that also matched the densest part of the MSA artefact scatter. This dense surface site extends from the southern edge of Terrace 4, 210 m in a north-east direction and, at its widest point, 140 m in an east-west direction (Figure 25). At the time of recording, the grass cover was so thick that it was difficult to observe the spatial distribution of artefacts at Ou Tuin. In parts of the site where visibility increased there appeared to be little
distinction between the areas with pottery and those with MSA and LSA diagnostic stone artefacts. Even though it was clear that the site was a palimpsest, a timed collection made it possible to characterise the surface record.

The density of artefacts at BNP4a was much higher than found at any other site with evidence for Holocene occupation. In only 20 minutes 159 flaked stone artefacts, five sherds of indigenous thin-walled pottery and two 20th Century ceramic fragments were recorded from 11 m².

Figure 25: Photograph taken from a helicopter flight in 2005, looking south over Ou Tuin and the Breede River meander. White square shows location of satellite image below (Figure 26). Photograph courtesy of Peter Gratton.

Figure 26: Satellite image showing location of the sample area and test excavations. Raw material proportions were similar to those observed at BNPI4, BR1 and BR3 with quartzite dominating (60.38%), followed by silcrete (32.7%) and then quartz (7.55%).
Even with such a large sample the number of diagnostic retouched artefacts or cores was low. Out of the seven retouched flakes, only a single unifacial MSA point was recorded. There were no LSA typological forms in the sample area. Two silcrete bladelet cores were noted, but all other cores were classified as indeterminate. Five sherds of indigenous pottery were recorded in the 20 minute sample from only 11 m², whereas only ten sherds were recorded at BNP4a during the transect survey which covered an area measuring 55,014 m². The low number of sherds identified during the first phase of survey demonstrates just how necessary it is in riverine environments to conduct a secondary, more intensive phase of analysis in order to characterise a site.

The high density of surface pottery recorded in the 20 minute collection at BNP4a suggested that there was potential for obtaining a larger sample of Holocene material, but dense grass cover limited the potential for intensive surface recording in other parts of the site. An alternative strategy of 0.50 m by 0.50 m test pits across the high density area of BNP4a was decided upon in order to sample both the horizontal and vertical dimensions of the site. The first two test pits excavated yielded such an unexpectedly large assemblage (> 1100 flaked stone artefacts) that further test pitting in other areas of the site was not possible due to time and resource limitations. Nevertheless, the test pits provided a large enough sample of lithic artefacts for detailed technological analysis and crucially demonstrated that the upper 100 mm of sandy soil contained a notable concentration of pottery. The results are reported in more detail in Chapter 7, along with test excavations at Lang Elsieskraal and the surface collections from BR1 and BR3.

6.2.2. Low density sites

Three very low density sites with indigenous pottery, BNP16a, MP3 and BNP9, were encountered during the 15 m transect survey. Unlike the widely distributed MSA flaked stone component of BNP16a, the indigenous pottery at this location was confined to one small find spot in the site. It consisted of 16 heavily abraded pieces of undiagnostic pottery, all less than 25 mm in maximum dimension. All were of a very similar appearance and may have come from the same vessel. Many of the flaked stone artefacts at BNP16a could be related to a Holocene occupation but no diagnostic
artefacts type forms or LSA technologies were identified. BNP16a is significant as it is eroding out of a subsurface deposit at c. 150 mm below ground surface, meaning that at least some archaeological deposits postdating the introduction of pottery are buried in this part (Terrace 4) of the survey area. Two other low density occurrences may also be associated with subsurface disturbance. MP3 consisted of 15 quartzite flakes, 12 silcrete flakes and four sherds of indigenous pottery associated with disturbance from animal burrows. A second, ephemeral and large low density surface site was distributed across the northern end of the grazing-lawn, BNP9, at Lang Elsieskraal, where local tradition locates an 18th Century Khoekhoen kraal. All the artefacts were found either in spoil from animal burrows or in the bare ground next to small bushes and shrubs. The total number of artefacts recorded after an intense 40 minute search, consisted of 4 sherds, 12 quartzite flakes and 5 silcrete flakes. One endscraper and a small single platform core in silcrete were also identified in the spoil of a burrow. It was not clear, however, either at MP3 or BNP9, whether the concentrations of flaked stone and pottery were related to subsurface archaeological deposits or whether they were simply the result of increased surface visibility in these areas.

A number of archaeological occurrences have indicated that archaeological deposits containing indigenous pottery are buried under sand in Terrace 4, an observation that may account for the low number of artefacts in the wider landscape. Two single adzes and one thumbnail scraper were the only diagnostic flaked stone artefacts found outside the Holocene ‘sites’ described above. In fact, only two sites containing pottery, BNP4a and MK1, were not associated with either animal burrows, ploughing or erosion features, and even at BNP4a test pits indicate that a much higher density of pottery can be found under the surface (Chapter 7). In Chapter 4, I predicted that if the high mobility model of Khoekhoen settlement advocated by Robertshaw (1979), Smith (1983) and H. Deacon (1983) is applicable to the current study area, then large diffuse scatters of artefacts would characterise the archaeological record for this period. Unfortunately, poor visibility and possibly the burial of archaeological deposits by sand have prevented such a model from being tested in most of the survey area. The type of archaeology encountered in the agricultural land, however, where there was good and relatively consistent visibility following ploughing, provided a better opportunity to view the surface record over a larger area. This discussion is
revisited in Chapter 7, when the results of the detailed analysis of BR1 and BR3 and, importantly the space in between these two ‘sites’ is presented.

6.3. Historical archaeology of the 18th, 19th and 20th centuries

Historical artefacts were recorded at 13 of the 37 archaeological sites identified during the 15 m transect survey. Most of these occurrences were located in Bontebok National Park, including two aloe/acacia enclosures, a stone hut and stone kraal at Lang Elsieskraal, a series of grazing lawns, trackways and a Twentieth Century stone kraal in the east of the park, and a more substantial wagon track and associated small surface sites near Nougha Saree’s kraal at Ou Tuin. Historical artefacts consisting of ceramic and glass were also identified in the agricultural land on the south side of the Breede within the previously described sites at Breë Rivier and Bakleisdrif.

6.3.1. Grazing-lawns, track-ways and associated features

Lang Elsieskraal, thought to have been a Khoekhoen settlement by local historians (Tomlinson 1943: 30; Rothman and Rothman 1974: 2-3; Burrows 1952: 146-7; Van Rensburg 1975), is recognisable today as a large open area surrounded by an aloe and acacia thicket on the gentle eastern slope of Aloe Hill and is maintained as a short grazing-lawn by the bontebok herds which are attracted by the nutrient rich *Cynodon dactylon* grass (Eustatius du Chavoux 2005). As shown in Figure 29, it would have been a favourable location for pastoral settlement, lying next to a large river beach, with low lying alluvial plains stretching out to the north and west. It is the easiest crossing point over the Breede for many kilometres, and a steeply sloping shale hillside and river cliff would have provided shelter, as well as a natural boundary for the corraling of animals on its west and south-east flanks.

In a study of bontebok grazing preferences in the Bontebok National Park, Eustatius du Chavoux (2005) suggested that the *Cynodon dactylon* lawns, of which there are many smaller examples across the park (Figure 30), are likely to be the product of grazing behaviour. It can, however, be said with certainty that the much larger lawn at Lang Elsieskraal has its origins in earlier stock grazing, as it is easily recognisable on aerial photographs that pre-date the founding of the park and thus the introduction bontebok. The earliest of these photographs date from 1943 and 1954 and show a well
Figure 27: The Historical archaeology of the survey area. Simplified map of terraces based on Theron (1967), Siegfried et al. (1994) and personal observations. The dashed line is the boundary of the 15 m transect survey.
defined sub-rectangular feature (Figure 31). It is suggested by Eustatius du Chavoux (2005) that the “dung middens” formed by territorial bontebok males are the start point for a “positive feedback loop”. The dung is said to encourage nutrient loving grasses, which in turn, increase grazing. This hypothesis could easily be extended to include the grass-lawns that appear on the pre-park air photos that are likely to have been formed by the penning of domestic animals. A similar ‘feedback loop’ is suggested by Mike Causey (2005: 30) for the preservation of large ‘glades’ found in the Laikipia Plateau in Kenya, where rich grass species “...typically encourage the proliferation of grazing herbivores, which through their attraction to the glades help...
sustain these areas of grassland long after they have been abandoned by pastoralists...”

Figure 30: One of the many Cynodon dactylon lawns that can be found across the alluvial plain in Bontebok National Park. This particular one is situated just a few hundred metres east of Lang Elsieskraal. Scale is an A4 sized clipboard.

The 1954 aerial photograph extract (Figure 31) shows three features which suggest that Lang Elsieskraal was in use as a stock enclosure not too long before the photograph was taken. Most notable is the regular shape and high visibility of the grazing-lawn which appears as a clearly defined sub-rectangular feature, BNP9. A second square enclosed area with one open side, BNP11, is also visible against the north-eastern interior edge; and two track-ways can be seen leading into the larger enclosure. The inner edge of the grazing-lawn is not as well defined in the satellite image from 2006 (Figure 32), probably due to a lower intensity of grazing, and the aloes and acacias have spread considerably into the interior. The smaller, hollow square enclosure, BNP11, is also still visible on Figure 32. On the ground, the interior is partially overgrown but nevertheless easily recognisable (Figure 31). This smaller enclosure of thorn trees and a few aloes is a regular square shaped feature, measuring 27 m on its interior edges and enclosing an area of 840 m². It is orientated north-east/south-west, with an open south-west side.

A small ruined stone building, well known to staff at Bontebok National Park, and numbered BNP10 for the purposes of this survey, is situated on the north-east edge of the grazing lawn, BNP9, and adjacent to the north-western side of the hollow square enclosure, BNP11 (Figure 30). The building is orientated north-west/south-east, with
one side built shorter than the other, to form an alcove at the north-west end, presumably for an oven or a fireplace. The main space is rectangular and measures 7.46 m x 3.50 m. The walls are not formally coursed and there is no cement mortar, but they are nevertheless well-built. The walls measured between 0.45 m and 0.50 m in thickness and stand at a maximum height of 1.70 m. The site is overgrown with thorn and aloe trees which made investigation of the interior difficult. Close inspection of the walling suggested that they were left bare as there is no trace of plaster or paint on the interior. The shalestone used in its construction is found naturally in the area, but would have needed to have been quarried in order to retrieve the large and regular slabs. One base sherd from a large saltglazed stoneware storage jar, manufactured in the 19th or early 20th Centuries (Klose 2007: 37), was noted lying on the surface of the deposit overlying the hut floor. There are no datable architectural features; BNP10 is a typical vernacular style of shepherd hut found throughout the Overberg and could date from as early as the 1730s until potentially as late as the mid 1900s.

During the 40 minute collection at BNP9, in which 17 flaked stone artefacts and four sherds of indigenous pottery were recorded (page 130), a small surface scatter of 19th-early 20th Century ceramics and undiagnostic glass was also identified. The ceramic and glass component had a more restricted distribution compared to either the flaked stone or the indigenous pottery. Both artefact types were found concentrated between the southern end of the hut, BNP10, and the north-east corner of the vegetated enclosure, BNP11. Twelve artefacts were identified in-situ and left in place.

Figure 33 (left): looking towards the north-east corner of the small square enclosure, BNP11, at Lang Elsieskraal. Figure 34 (right): the north-eastern end of the stone hut, BNP10, at Lang Elsieskraal.
including four small fragments of white-bodied refined earthenware (whiteware), one of which was decorated with a blue transfer print and another with a small undiagnostic patch of blue decoration (Figure 37). Two fragments of saltglazed stoneware were among the artefacts present, consisting of two body sherds, both either from a bottle or a jar. Six undiagnostic glass fragments were also noted.

All the ceramic artefacts are from the British period, and date from the 19th to the early 20th Centuries (Klose 2007). There is a notable absence of ceramics from either the early 19th or 18th Centuries. While these earlier periods could simply be obscured by the later occupation of the area, the conspicuous lack of mid to late 20th Century ceramics is more illuminating and indicates a different and possibly less permanent use of this particular part of Lang Elsieskraal in the later 1900s. The lack of brick or concrete or other 20th Century building material in the walls of, or around the outside of the stone hut, BNP10, also fits with an earlier date for this structure.

The most unexpected result of the survey at Lang Elsieskraal was the discovery of a large stone feature, BNP1, in the south-western side of the aloe and acacia thicket surrounding the grazing lawn, BNP9. The walling is situated on the gentle (about 11 degrees), east facing slope, of Aloe Hill, on the 70 m m asl contour, with its open,
eastern side facing BNP9. The structure forms a curved L-shape in plan, measures 20.75 m north-south and 18.60 m east-west with open southern and eastern sides (Figure 37). Vegetation was cleared as best as possible, and a grid was laid out on site to enable the planning of the structure. Three sections of walling were recognised. Wall A stands highest, and consists of three or more levels of stone piled up to 0.80 m above ground level. Along sections that have survived relatively intact, the wall measures around 2.50 m in width, but elsewhere it has spread out to over 4.00 m. The wall is dense and packed with small (<10 cm), medium (10 cm-30 cm) and large (30 cm) stones. As in all three sections of wall, the stones are mainly rounded sandstone and quartzite and almost certainly come from the hillside around the structure.

![Figure 36: BNP1: Planning of wall A in progress. Photograph taken looking north-east.](image)

Wall C is a shorter and more ephemeral section of walling orientated north-east/south-west. Wall B is quite different in character, consisting of large rounded stones, one, two or three stones wide, with virtually none of the small or medium sized stones present in Walls A and C. Wall B is aligned east-west with a noticeable change halfway along its length. The western half is aligned to the centre of Wall A and the eastern end off-set to the south. Additional, more ephemeral lobes of walling stretch from the main structure. As indicated on Figure 37, these may represent sub-divisions of the interior.

In all likelihood, BNP1 represents the remains of a stock enclosure. There is no direct archaeological evidence for this interpretation, but there are few other explanations for such a feature and there is no doubt that the design is a practical one for this purpose. The open down-slope side of the structure would allow for stock to enter from the grazing areas below, and could easily have been closed off with thorn, aloe
Figure 37. Plan of DNPI at Lang Elsieskraal
and brushwood, all materials that are known to have been used in kraal building on the Breede in the 19th Century (Burrows 1952: 156). The open downslope side would facilitate the run-off of rainwater, urine and dung, thus preventing damage to stock hooves and reducing the risk of disease, and, importantly, avoiding the need to frequently change the location of the kraal.

Although far from certain, two aspects of the survey results indicated that this stone structure belonged to an early phase (pre-19th Century) settlement at Lang Elsieskraal and encouraged further investigation. First, there is a complete lack of 19th Century artefacts in this part of Lang Elsieskraal which contrasts with the common occurrence of ceramics and glass near to the stone hut, BNP10, and vegetated enclosure, BNP11. Second, similar structures constructed from piled stone and commonly situated on the slopes of dolerite ridges have been reported in the Seacow Valley in the Karoo, where finds of pottery made it possible to associate these kraals to indigenous herder settlement (Hart 1989). The recent discovery of a piled stone wall complex at SSK, likely to be a 1st millennium pastoralist encampment (Jerardino and Maggs 2007) suggests that such features were originally part of the precolonial landscape. On the other hand, BNP1 could also be related to the stone building at the northern end of Lang Elsieskraal. If so, one would expect the debris from domestic activity, e.g. ceramics and glass, to be distributed nearer to the hut rather than the stock enclosure. The only artefacts visible on the surface consisted of three abraded handaxes, which are commonly found on the gravels of Aloe Hill.

Figure 38: A sketch by Timothy Hart (1989) of a piled stone kraal near Volstruisfontein farm in the Seacow River Valley.
Although admittedly, a small sample, the artefacts found in the northern end of the grass-lawn, BNP9, around the stone hut, BNP10 and small aloe/acacia enclosure, BNP11, suggest that these features, and possibly the piled stone feature, BNP1, may represent a mid-19th Century stockpost. There has been little written about such features in the Swellendam area, although Mr F.W. Reitz’s reminiscences of his childhood in the late 19th Century on a Breede River farm, only 15km to the south of the current study area, describe similar planted square aloe kraals:

On 6000 morgen of Renoster Fontein alone, there were 8000 sheep herded at the outstations by coloured shepherds who seldom even appeared at the werf. They lived in small thatched cottages about the farm, tending their livestock and leading an isolated existence. Outlying kraals were made of aloes, planted in a hollow square, with brushwood and thorn bushes at their bases. (Burrows 1952: 156).

Interestingly, Reitz went on to describe the shepherd huts as “neat” and “box-shaped cottages” (Burrows 1952: 156-161), a description that could easily be applied to the stone shepherd hut, BNP10, at Lang Elsieskraal.

While the identification of a 19th Century shepherd station is a significant first in the archaeology of the Western Cape, one wonders if it is possible to relate these features to the recorded oral history at Lang Elsieskraal. Can the identification of a 19th Century outpost help with the specific research questions regarding Khoekhoen ‘Captains’ identified in Chapter 4? Earlier on in this thesis, I made the link between Khoekhoen herders of the 18th Century who attached their kraals to farms, but maintained a semi-independent lifestyle (Viljoen 2001), and these 19th Century shepherd communities, whom Reitz described, lived separately from the main farmhouse and survived by trapping wild animals and collecting shell-fish (Burrows 1952: 156-161). While the 18th Century occupation has not left a visible archaeological legacy at Lang Elsieskraal, or at least one we can date, the likely continuities in the use of space between the mid-18th Century and mid- to late 19th Century could well have obscured traces of the earlier occupations. The stone structure BNP1 offered some potential for preserving buried archaeology as during vegetation clearance at BNP1 it was noticed that some of the walling and possibly the interior remained covered by colluvial sediment. A small programme of excavation
was initiated at BNP1 to establish the full extent of the structure and to test for the burial of archaeological deposits, the results of which are presented in Chapter 7. Excavation inside the stone shepherd hut itself could potentially identify stratified deposits from the 18th Century. Unfortunately, a permit application was not granted by Heritage Western Cape for excavation inside the building BNP10. Nevertheless, even without direct artefactual evidence linking this 19th and 20th Century stockpost to the earlier 18th Century Khoekhoen histories, the similarities between 18th and 19th Century shepherd communities of the Breede suggest that this may well be the type of settlement occupied by the Khoekhoen 'Captain' Lang Elsie. In Chapter 4, I suggested that by the mid-18th Century, those Khoekhoen who occupied such prime positions on the Breede River, and whose names survived into the oral histories of white farmers must have forged strong relationships with the incoming farmers and colonial officials. Certainly, the situation remembered by Reitz is reminiscent of such a relationship. Could the complex of stone hut, stone and planted kraals at Lang Elsieskraal be the material signature of these shepherds who survived on the fringes of the loan farm landscape, living an existence, separate to, but at the same time inextricably linked with that of the settlers?

A survey of aerial photographs and satellite images also identified a series of possible grazing-lawns in the eastern side of Bontebok National Park that are connected to Lang Elsieskraal by a trackway (BNP25) that is clearly visible on the pre-park aerial photographs. The entire length of this track-way was walked but the total artefact count only amounted to three fragments of 20th Century glass. Although not as clearly defined as Lang Elsieskraal, the group of grazing features, labelled 1-3 (BNP22) on the extract from a 2006 satellite image below (Figure 40), were also visible on the pre-park air photographs, as can be seen on the extract of a photograph from 1954 (Figure 46). Two of the lawns were clearly linked by a trackway, BNP23, recognisable where stones and earth had been cleared leaving two parallel banks (Figure 47), proving that these features are at least partly anthropogenic in origin. The trackway was visible only in patches, but could be traced from a point 150 m south-east of the largest of these features (Figure 37: number 3) and followed in a north-west direction to another more ephemeral grass-lawn (Figure 37: number 1). These

73 HWC requested more extensive archival research, including local missionary records. Unfortunately, time and resource pressure did not allow resubmission of the application.
features yielded little in the way of surface artefacts. Two finds of early 20th Century glass make up the total number of artefacts, one of which was on the track-way itself, and the other inside the most convincing feature in the series of grass-lawns that make up BNP22 (Figure 39: number 3), indicating that they were in use at least as late as this.

![Figure 39: The eastern edge of Bontebok National Park showing the cluster of grazing lawns BNP22. The white square shows the area enlarged on Figures 40 and 41.](image)

At present, there is little that can be concluded archaeologically about these features in Bontebok National Park and no method of accurately dating them due to the almost complete lack of surface finds. On the other hand, when one considers that the land-use history of this landscape changed little from the mid-18th Century onwards, then one can almost be certain that this type of feature would have been part of the Khoekhoen and early settler landscape. The recognition of grazing patterns in the renosterveld and fynbos vegetation is significant for future archaeological surveys of
the wider south coastal plain. An intensive mapping project using Landsat Imagery aimed at assessing renosterveld vegetation has been initiated in the south coastal plain (Kemper et al. 2000), the results of which could potentially be integrated with aerial photograph survey to assess the likely survival of historic and potentially prehistoric grazing features. If combined with archaeological survey such a project could potentially contribute to the debate on the origins of renosterveld and the effects of grazing in fragile grasslands. A comparable inter-disciplinary study aimed at identifying pastoralist land-use patterns has been initiated in Kenya where detailed GIS databases of open grass areas surrounded by scrubland, in this case termed ‘glades’ are being mapped in relation to archaeological features (Causey 2005).

A survey of 1:50,000 maps located a number of ‘kraals’ which no longer feature on the modern day maps. One of these, marked on the 1970 edition 3420AB map of the Swellendam area, was located just outside of the survey area, 1.3 km north-east of Lang Elieskraal, on the high ground of Terrace 2. During an initial visit to this location in March 2005, nothing was visible on the surface due to thick renostervbos vegetation cover and it was only following a veld fire in March 2007 that a cleared area of stones and a concrete post was identified. In the 1970s this area was outside of the boundary of Bontebok National Park and must have been attached to a farm in that area. While late 20th Century kraals are not conventionally classified as archaeology, there is the distinct possibility that features such as this have their origins in early periods of pastoral production in the Swellendam area. The low visibility of this feature is a reminder of the limitations of field survey, and indicates
that veld fires may dramatically increase the visibility of some aspects of pastoral archaeology.

![Figure 44: looking north-east over the 20th Century kraal, BNP18, following a veld fire in March 2007.](image)

At Ou Tuin, surprisingly few historical ceramics were recorded in the survey. A very low density background scatter of glass and ceramics was recorded but again nothing diagnostic in terms of the early 19th or 18th Centuries that may directly link the site to the dates of the oral history. The indigenous pottery could, of course, have been made and used in the 18th Century but unfortunately it is not diagnostic to this degree. In total, 13 European manufactured artefacts were recorded from the surface site BNP4a during the 15m transect survey. All were examined on-site and left where they were found. Six sherds of white-bodied refined earthenware, two of which were blue transfer printed and five fragments of undiagnostic glass were identified during the first phase of survey. As was suggested for the indigenous pottery, the true density of European manufactured ceramics was difficult to quantify due to dense grass and shrub growth in this area. During the 20 minute sample collection of 11 m², two undecorated white-bodied refined earthenware sherds were recorded.

According to Tomlinson (1943), a Voortrekker wagon route from the 1730s, still referred to as ‘Noughas Drift’ in the 20th Century, crossed the Breede at Ou Tuin and passed through Nougha Saree’s kraal. Unfortunately there are no maps from the 18th Century but a 1965 copy of a survey diagram from 1848 (Figure 12; page 88) depicts a ‘bridle road’ which leads onto the ‘old cape road’ crossing the Breede at this point.

74 Drostdy Archives: Museum correspondence 18/03/39
At the time of the 15 m transect survey in March 2005, a trackway, BNP5, was recorded leaving the heavily vegetated area at Ou Tuin, traversing the steep slope of Terrace 2 and continuing over the top of the ridge towards Swellendam. It consisted of a cleared area with a line of large boulders on each flank. The trackway was walked for 700 m and a concentration of mid- to late Twentieth Century glass was identified at the foot of the steep ridge, 330 m north-west of the northern end of the large surface site BNP4a. A small concentration of undiagnostic glass, MP1, was also recorded on the south side of the river, immediately opposite Ou Tuin, in approximately the same location that the river crossing is marked on the survey diagram of 1848.

Two sites MP2 and BD3 contained both diagnostic MSA flaked stone and European manufactured ceramics. As with the MSA part of the assemblage, the historical artefacts occurred in such low numbers (less than five at both), that little can be said about their origin. At BR3, no European manufactured ceramics were identified in the 15 m transect survey but the intensive phase of recording initiated following the ploughing of this surface site, yielded a relatively high number of ceramic artefacts. These are discussed in Chapter 7 alongside the other finds from this indigenous campsite.
7: Results of test excavations and surface collections

7.1. Introduction

Four sites were chosen for a third phase of investigation based on the potential to answer the research questions developed in previous chapters. Test excavations were conducted at Lang Elsieskraal and Ou Tuin, while two concentrations of lithics and pottery were collected from the ploughed fields on the farms Breë Rivier and Bakleisdrif.

7.2. Lang Elsieskraal: BNP1 and BNP9

7.2.1. Objectives

The survey results from Lang Elsieskraal, reported in Chapter 6, did not find direct archaeological evidence to match the specific oral histories of a mid- to late 18th Century Khoekhoen kraal. The survey did, however, identify a 19th Century occupation at Lang Elsieskraal that closely matches an oral account from another Breede river farm describing shepherd encampments from this time (Burrows 1952: 156-161).

Two lines of evidence also indicate that there may have been an earlier phase of occupation. First, the spatial separation of the stone structure, BNP1, from the hut BNP10, and square enclosure BNP11, and the lack of 19th Century ceramics at the former, suggested that it may belong to an earlier (pre-19th Century phase) of pastoral occupation. Furthermore, the style of construction of BNP1 bore strong similarities to the form of indigenous piled-stone structures in the Seacow River Valley (Hart 1989). Excavations were initiated at BNP1, with the dual objective of establishing the full extent of the stone walling and sample sieving some of the surface deposits to further test for artefactual evidence. It was hoped that artefactual evidence, and a better understanding of the structure itself, could help provide a relative date and potentially offer clues as to the identity of the people who used it.

Second, a low density scatter of indigenous pottery and lithic artefacts were recorded in the central area of the grass-lawn, BNP9, in the exact location where local history
situated a Khoekhoen encampment. Some of these finds were associated with animal burrows, indicating that they may have been brought up from sub-surface levels or artefact concentrations obscured under the thick grass. Furthermore, the upper, western edge of the grazing-lawn, BNP9, coincides with a noticeable change in gradient from the steeper gravel slope above (Figure 45) that in turn, suggested that colluvium may have buried archaeological deposits in this area. Ten test pits were excavated across the grazing-lawn, BNP9, in order to test this potential burial of archaeological material.

![Figure 45: Satellite photograph of Lang Elskieskaal, showing location of excavations.](image)

7.2.2 Methodology

A total of 127 full buckets of sediment were removed from 46m² at BNP1. All sediment was sieved using a 3mm wire mesh and artefacts were sorted, bagged and labelled on site. There were three areas of excavation, shown on Figure 46. The main bulk of sediment was removed from the northern part of the structure (Area 1). In addition to revealing the extent of walling, it was hoped that there might be a better chance of stratigraphic preservation in this area due to sediment build-up against the irregular wall structures. Sediment was also removed surrounding Wall C, where colluvium had buried part of the walling. The second area of excavation was a 5 m²
sample of surface material removed from the interior of the structure (Area 2). A single 5 m x 1 m trench (Area 3) was also excavated in the north-west corner of the structure to ascertain if the walling continued under colluvium in this area. Ten 0.50 m x 0.50 m test pits were excavated in the grass-lawn, BNP9, to the east of BNP1 (Figure 45). Test pits 1-8 were aligned north-east/south-west with a gap of 15 m between each pit, starting immediately below BNP1 and continuing until the bottom of the slope. Test pits 9-10 were aligned north-west/south-east, and slightly offset to the other test pits in order to investigate a surface-visible ring of stones that was thought to be a possible hearth.

Figure 48: The excavated areas at BNP1

7.2.3. Results

No significant archaeological deposits were encountered in Area 1 or Area 2. The surface material consisted of light greyish brown fine sand, ranging in depth from 50 mm to 120 mm. Under trees and shrubs there was an additional layer of dry plant matter on top of the sand. The surface material was removed and underneath was a deposit of mixed, unsorted colluvial gravel, on top of which, the wall had been built.
This natural deposit consisted of 40% fine sediment and 60% stones (generally less than 50 mm in maximum diameter). The gravels predate the wall and were thus treated as the base of the excavations. In places, an underlying deposit consisting of larger and better sorted alluvial gravel was visible with no soil in its matrix. This gravel was noted particularly in the higher western edge of the excavation area, where the surface deposit and the colluvial layer were very thin. These larger alluvial gravels were used in the construction of the wall. The wall itself was built either directly on top of the colluvial gravels, or on top of a thin layer of surface material.

Figure 47 (left): Area 1: Looking north-east over the gap between Wall A and Wall C. The deposit was very thin and the wall was found not to continue in this area. Note the larger alluvial gravels visible in the immediate foreground. Figure 48 (right): Area 3: Looking north-west over the trench in the north-west corner of BNPI. The continuation of Wall A can be seen clearly in the centre of the trench. Scale is 2m.

Sieving of the surface material produced a low artefact count, averaging less than 10 artefacts per bucket. All were stone artefacts. The trench in the north-west corner (Area 3) located the wall underneath sediment up to 150 mm deep. Although less substantial than the walling either side, consisting of one level of stones laid directly onto the colluvial gravels, and measuring between 1.0 m and 1.30 m in width, it is nevertheless convincing as a structure. A large tree in this area may have been responsible for removing some of the stones and there is a concentration of what appears to be displaced stones directly down-slope. Four large heavily abraded quartzite flakes and one undiagnostic fragment of black glass were recovered from this trench. The area between Wall C and Wall A was excavated, but, in contrast to the area described above, the wall was not found to continue here (Figure 47). The gap was, either, intentional and part of the design, or alternatively, the stones were
removed for use elsewhere. There was no sign of stones displaced down-slope from this area.

No indigenous pottery or European manufactured ceramics were recovered from the surface material. It was not possible to link the structure through artefactual evidence to the 19th Century stock-post identified through surface deposits in the northern end of Lang Elsieskraal, nor was it possible to make any connection between this structure and the oral history which describes an 18th Century Khoekhoen kraal in this location. Aside from the one fragment of glass from on top of the wall in Area 3, all the artefacts recovered were flaked stone. In terms of diagnostic features, the assemblage of 329 artefacts was mixed, including seven radial cores consistent with an MSA date and two retouched artefacts of a type consistent with a post-12000 BP occupation. Seventy percent (n = 233) of the 329 artefacts retrieved during the excavations were heavily abraded. Heavily abraded artefacts, of a similar appearance were recorded on the surface of Aloe Hill, within the large Terrace 2 gravel deposit numbered BNP25 (Appendix 2), an observation, that suggests the abraded part of the assemblage is not related to the stone structure and is probably not associated with the Khoekhoen settlement of this landscape. It is difficult to associate even the non-abraded elements of the assemblage to the stone structure as non-abraded artefacts were also recorded in the adjacent grass-lawn, BNP9, during the survey of Lang Elsieskraal reported in Chapter 6 (page 130). Eight non-abraded artefacts showed convincing evidence of retouch. A silcrete thumbnail scraper was the only non-abraded diagnostic artefact recovered from the surface material. Thirteen of the abraded stone artefacts were retouched, six of which had retouch steep enough to be classified as ‘backed’ although no recognisable diagnostic forms were present.

Test Pit 1 (Figure 52), the first test pit excavated in BNP9, recorded the same sediment profile that was observed in BNP1, consisting of a thin layer of sand overlying colluvial gravels. Gravels were not observed in any of the other test pits. In test pits 2-10, a layer of orange clay was reached at depths of between 200mm and 280mm. The same fine grey sand was observed overlying the clay in all 10 test pits. The maximum depth of this sandy soil was reached at the foot of the gentle slope in test pit 6 (Figure 43). Only four of the 36 flaked stone artefacts recovered from the test pits showed the characteristic heavy abrasion noted on the majority of artefacts
from BNP1. All four of them were from test pit 1 and 2, the closest test pits to the gravel deposit from which they most likely originate. None of the stone artefacts from the test pits had any diagnostic characteristics. Only one quartz flake was retouched. The most interesting aspect of the test pitting exercise was the concentration of stone artefacts in the slightly higher, western side of BNP9; 45 of the 51 artefacts were found in test pits 1-4, 9 and 10. The frequent artefacts found in the gravel bearing deposits which start roughly in line with the aloe and acacia thicket on the western side of the grazing-lawn may account for some of this disparity between the lower and upper parts of BNP9. The lack of abraded flakes in the test pit assemblage does, however, suggest that there may be other reasons for this concentration. Certainly, the upper part of the slope would have been a preferable area for habitation as the ground would be drier, it is better sheltered and there would be a more advantageous view of the alluvial plain. Unfortunately, only one undiagnostic and heavily abraded sherd of indigenous pottery was identified, situated just above the clay layer at a depth of 200mm in test pit 3. The sherd measured only 12.74 mm x 11.30 mm, with a maximum thickness of 4.97 mm.

7.3. Test pit excavation at Nougha Saree’s kraal, Ou Tuin

The oral history recorded by Tomlinson in the early 20th Century describes the kraal of Nougha Saree, an 18th Century Khoekhoen ‘Captain’ located at Ou Tuin. The 15 m transect survey did not identify any evidence for an 18th Century occupation of Ou Tuin. A large mixed date surface site was however identified with a highly visible MSA and LSA stone artefact component and a less visible indigenous and European manufactured pottery component. A small area of the densest part of the site was subjected to an intense on-site quantification exercise. The results suggested that indigenous pottery was relatively common on the surface, but the poor visibility meant that it could not be easily recognised. Poor visibility in general led to the proposal of a test-pitting programme in order to identify broad spatial differences in site composition as well as to provide a test for stratigraphic preservation. As described in Chapter 6, the original intention was to excavate test pits at 5 m intervals on a grid across the part of BNP4a with the highest density of indigenous pottery and stone artefacts (Figure 25). An unusually high number of artefacts were retrieved
from the first two test pits so it was decided not to continue with the programme of excavation due to time and resource restrictions.

Nevertheless, the large sample of material retrieved from the two test pits provided a more thorough characterisation of the site and importantly the differences between surface and sub-surface records. Figure 51 shows the location of two 0.50 m x 0.50 m test pits in BNP4a. Sediment was taken out in arbitrary 100mm spits and screened using a 3mm wire mesh sieve.

7.3.2. Results

The deposits were very similar in both pits. The upper 40 mm to 100 mm consisted of a dark brown sandy humic layer, which graded into a lighter more clay rich sand layer. Underneath the sand, at a depth of between 200-300 mm a compact orange clay layer was encountered. Testing of the clay found it to be a sterile and naturally deposited layer and, as such, it formed the base of excavation. The artefacts increased in density with depth and in both pits there was a concentration of artefacts resting directly on top of the clay layer. This phenomenon, commonly known as a ‘lag’ deposit, is the result of artefacts moving vertically down through soil profile until they can go no further due to an impenetrable layer. A total of 921 stone artefacts were retrieved from test pit 2 and 167 from test pit 1.
Tables 7-18 show the results of the stone artefact analysis. The stone artefacts were concentrated at the bottom of the profile immediately above the clay layer, at 200 mm below the surface in test pit 1, and 300 mm below the surface in test pit 2. In test pit 2, the ‘lag’ layer on top of the clay (spit 3) accounted for 53% of the artefacts. The high percentage of cores and flakes with cortex (Table 9 and Table 12) reflects the closeness of the river cobble raw material source and the short distance over which the raw material is likely to have travelled. In all spits the raw material frequencies are similar and match those recorded during the 20 minute on-site quantification exercise. Quartzite dominates, but silcrete is also available in the river cobbles and potentially from local quarry sources, although as mentioned previously preliminary surveys in Bontebok National Park failed to locate a surface outcrop.

In general, there were very few chronologically diagnostic artefacts were retrieved from the two test pits. Typologically, there were two hand-axes and two choppers from test pit 2, spit 3, and one quartzite scraper from test pit 1, spit 2. The assemblages include only 13 retouched artefacts out of a total of 1088 (Table 15 and 18), most of which are miscellaneous retouched flakes. One regular shaped notched silcrete flake and a small backed bladelet were identified during analysis, both of which are commonly found in LSA assemblages post dating 8000 BP. One notable feature of the stone artefact assemblages from the two test pits was the concentration
of 12 radial cores in spit 3 of test pit 2. Such an observation could lead one to think that there may be some vertical separation between older and younger material, but radial cores and other MSA diagnostics are found on the surface as well and it is more likely that this concentration of ESA/MSA cores in the lower part of the profile simply reflects the heaviness of these artefacts.

In terms of identifying a pastoralist presence at Ou Tuin The most notable aspect of the excavation results was the retrieval of a concentration of thin-walled indigenous pottery in the upper 100 mm. In the first stage of analysis, only ten sherds were recorded across the whole site (55,014 m²), yet a closer inspection of 11 m² yielded five sherds. The test pits were much more successful in assessing the true densities of pottery on site; in test pit 2, from an area only 0.25 m², six fragments of pottery were recovered from the upper 100 mm and one from the next 100 mm. One additional sherd was recorded in the upper spit of test pit 1. Although this is a small sample from a large site, as will be discussed in Chapter 8, it has serious ramifications for survey methodologies aimed at identifying pastoralists in riverine environments.

The processes by which pottery becomes immersed in the surface material is, as yet unclear, but factors such as aeolian sand deposition, root disturbance, and animal/people trampling are all likely to play a part. Further evidence of the extent of this dense pottery scatter was brought to my attention during a site visit in April 2007 following some heavy rains. Large wheel ruts, measuring up to 300 mm deep had been created into the trackway at the southern end of the site, in the base of which were nine sherds of indigenous pottery. Unfortunately, none of the pottery from Ou Tuin displayed any diagnostic features. It was therefore not possible to attempt to link the pottery bearing archaeological deposits to any particular period, and based on these data alone it is not possible to tell whether such a density of pottery...
Test Pit 1: Artefact Class

<table>
<thead>
<tr>
<th>Type</th>
<th>Spit 1</th>
<th>Spit 2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>Flakes</td>
<td>82</td>
<td>59</td>
<td>141</td>
</tr>
<tr>
<td>Cores</td>
<td>2</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>Flaked Pieces</td>
<td>7</td>
<td>8</td>
<td>15</td>
</tr>
</tbody>
</table>

Test Pit 1: Raw Material

<table>
<thead>
<tr>
<th>Type</th>
<th>Spit 1</th>
<th>Spit 2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>Quartzite</td>
<td>60</td>
<td>47</td>
<td>61.80</td>
</tr>
<tr>
<td>Silcrete</td>
<td>28</td>
<td>23</td>
<td>30.30</td>
</tr>
<tr>
<td>Quartz</td>
<td>2</td>
<td>6</td>
<td>7.80</td>
</tr>
</tbody>
</table>

Test Pit 1: Cortex

<table>
<thead>
<tr>
<th>Type</th>
<th>Spit 1</th>
<th>Spit 2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>Quartzite</td>
<td>9</td>
<td>13.30</td>
<td>19.10</td>
</tr>
<tr>
<td>Silcrete</td>
<td>4</td>
<td>14.30</td>
<td>4.30</td>
</tr>
<tr>
<td>Quartz</td>
<td>0</td>
<td>6.00</td>
<td>6.00</td>
</tr>
</tbody>
</table>

*Percentages refer to the total number of artefacts in each raw material category.

Test Pit 2: Artefact Class

<table>
<thead>
<tr>
<th>Type</th>
<th>Spit 1</th>
<th>Spit 2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>Flakes</td>
<td>159</td>
<td>127</td>
<td>84.8</td>
</tr>
<tr>
<td>Flaked Pieces</td>
<td>13</td>
<td>46</td>
<td>26.50</td>
</tr>
<tr>
<td>Cores</td>
<td>2</td>
<td>1</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Test Pit 2: Raw Material

<table>
<thead>
<tr>
<th>Type</th>
<th>Spit 1</th>
<th>Spit 2</th>
<th>Spit 3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
<td>No.</td>
</tr>
<tr>
<td>Quartzite</td>
<td>126</td>
<td>114</td>
<td>404</td>
<td>70.3</td>
</tr>
<tr>
<td>Silcrete</td>
<td>39</td>
<td>49</td>
<td>1.10</td>
<td>22.6</td>
</tr>
<tr>
<td>Quartz</td>
<td>8</td>
<td>10</td>
<td>5.78</td>
<td>6.60</td>
</tr>
<tr>
<td>Fine grained</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.10</td>
</tr>
<tr>
<td>Unknown</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Test Pit 2: Cortex

<table>
<thead>
<tr>
<th>Type</th>
<th>Spit 1</th>
<th>Spit 2</th>
<th>Spit 3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
<td>No.</td>
</tr>
<tr>
<td>Quartzite</td>
<td>25</td>
<td>25</td>
<td>104</td>
<td>25.70</td>
</tr>
<tr>
<td>Silcrete</td>
<td>5</td>
<td>1</td>
<td>14</td>
<td>10.89</td>
</tr>
<tr>
<td>Quartz</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>7.90</td>
</tr>
</tbody>
</table>

*Percentages refer to the total number of artefacts in each raw material category.
Test pit 1: Cores

<table>
<thead>
<tr>
<th>Table 13</th>
<th>Spit 1</th>
<th>Spit 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>Quartzite</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Silexite</td>
<td>1</td>
<td>50.00</td>
</tr>
<tr>
<td>quartz</td>
<td>1</td>
<td>50.00</td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Test Pit 1: Core types

<table>
<thead>
<tr>
<th>Table 14</th>
<th>Spit 1</th>
<th>Spit 2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>No.</td>
<td>No.</td>
</tr>
<tr>
<td>Radial</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Rotated</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Single/double platform</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bipolar</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Indeterminate</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>7</td>
<td>9</td>
</tr>
</tbody>
</table>

Test Pit 1: Retouch

<table>
<thead>
<tr>
<th>Table 15</th>
<th>Spit 1</th>
<th>Spit 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>Quartzite</td>
<td>3</td>
<td>50.00</td>
</tr>
<tr>
<td>Silexite</td>
<td>3</td>
<td>50.00</td>
</tr>
</tbody>
</table>

Test pit 2: Cores

<table>
<thead>
<tr>
<th>Table 16</th>
<th>Spit 1</th>
<th>Spit 2</th>
<th>Spit 3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>Quartzite</td>
<td>2</td>
<td>100.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Silexite</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Quartz</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Test Pit 2: Core Type

<table>
<thead>
<tr>
<th>Table 17</th>
<th>Spit 1</th>
<th>Spit 2</th>
<th>Spit 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>No.</td>
<td>No.</td>
</tr>
<tr>
<td>Radial</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Rotated</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Single/double platform</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Bipolar</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Indeterminate</td>
<td>0</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>

Test Pit 2: Retouch

<table>
<thead>
<tr>
<th>Table 18</th>
<th>Spit 1</th>
<th>Spit 2</th>
<th>Spit 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>No.</td>
<td>No.</td>
</tr>
<tr>
<td>Quartzite</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Silexite</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
</tbody>
</table>
is the result of successive occupations over a long duration or the more intensive settlement during certain periods. It is also beyond the reach of our data to directly associate the archaeological remains to the oral history of Nougha Saree’s kraal.

7.4: Spatial and technological analysis at Breë Rivier

7.4.1. Methodology and objectives

The two sites described as BR1 and BR3 in Chapter 6 were revisited following ploughing. Two large concentrations were clearly visible on the surface, so it was decided to proceed with a spatial plotting and collection programme. Primary questions concerned site definition, site integrity and the homogeneity of the surface material. Following spatial and artefactual observations it may or may not be possible to proceed to a second level of questioning involving the specific phase or occupations that might have been identified. The potential of the sites to answer these more detailed questions will be the main topic of the discussion at the end of this chapter.

There are many disadvantages when working in ploughed fields, none more so than the differential crop growing regimes employed between farms and even within the same field. BR3 is located in a field planted with a lucerne fodder crop which was not ploughed but turned over during late August 2006. Unfortunately this ‘turning over’ of the soil, in which a hook is dragged through the ground, does not give as consistent visibility as conventional ploughing. BR1 is situated in a maize field that was ploughed and surveyed in early December 2006. Although BR1 is in the adjacent field to BR3, visibility was much more consistent. For this reason, the two fields are not strictly comparable in terms of densities of artefacts. Part of the lucerne field in which BR3 is located, including the area on the southern side of the site, was left fallow for the whole period of fieldwork so it was not possible to survey this area (Figure 55). Therefore the complete extent of BR3 is not yet known and awaits further survey following cultivation in this area. It must also be remembered that the artefacts collected on these single outings are mere samples of the surface ‘record’ (cf. Wandgnider and Camilli 1992; Shott 1995) and cannot be thought of as complete sites.
In order to test the idea that these two concentrations were actual ‘sites’ and not simply a result of the fortunes of visibility, the area between BR1 and BR3 was surveyed with 5 m transects and the position of all artefacts were marked with different coloured flags and plotted using GPS. The GPS was calibrated on a daily basis in the four corners of the field and farm buildings. There is an error margin of 3 m with a hand held GPS.

An undulating gravel deposit containing a high proportion of MSA/ESA artefacts is situated in the southern two thirds of the two fields that BR1 and BR3 are located in. This area was also resurveyed, but due to the sheer number of artefacts, and the complete absence of LSA material in this stony and clayey terrace, the positions of artefacts were not recorded and the transect spaces were widened to 15 m. A low density distribution of flaked stone, burnt stone and pottery, BR2, was recorded between BR1 and BR3. Upon revisiting the sites, it was clear, however, that the two sites identified in Chapter 6 as BR1 and BR3 were actual clusters of artefacts, and that there was certainly a degree of spatial patterning present as discussed later in this chapter. Only artefacts from these two areas marked BR1 and BR3, shown on Figure 53, were collected. All flaked stone, non-burnt stone, ceramic and other historical and modern artefacts from these two areas were bagged and numbered individually on-site and removed for analysis at the University of Cape Town’s Department of Archaeology. The results of this analysis are presented in the following section, alongside the on-site analysis of BR2.

Stones were classified as burnt only if convincing evidence of exposure to high temperatures could be recognised, such as fire-cracking and pot-lid fractures. A large proportion of the burnt stones also appeared to be discoloured shades of red and black, but this was difficult to judge because the natural iron content of the quartzite that gives it a similar red hue. For this reason, evidence of thermal fracture and not colour alone was used as the defining attribute for recognising burnt stone. It is likely that many more stones were, in fact burnt, but that they just did not show diagnostic features, and the numbers presented below must be taken as the most conservative estimate of burnt stone on these sites. The size and number of burnt stone artefacts precluded total collection of this artefact type. Instead, one in every 10 was collected
as a sample and a check on the identification and types of burnt stone present. The remaining burnt stone fragments were identified, plotted with a GPS and left in place.

7.4.2. Results of stone artefact analysis BR1 and BR3

The stone artefact assemblages collected from BR1 and BR3 are remarkably similar in terms of their general characteristics. Both have a high proportion of cores (32.98% at BR1 and 21.39% at BR3), a low number of retouched flakes (five from BR1 and six from BR3) and similar raw material proportions, with quartzite dominating, followed by silcrete and then quartz (Table 20). The proportion of artefacts with cortex is also virtually the same on both sites (63.87% at BR1 and 64.47% at BR2). The number of formal tools is the only area where the two sites are significantly different. The assemblage from BR3 contains four adzes and one thumbnail scraper, whereas no tool types were recognised in the slightly larger assemblage collected from BR1. Two broken bored stone fragments were, however, recovered from BR1. Both assemblages included a single example of a distinctive flat stone with central pecking on both sides (Figure 58). Two heavily faceted upper grindstones were also collected from BR3 (Figure 57).

The most prevalent core type in both assemblages is the flaked flaked cobble, which makes up 65.08% of all cores from BR1 and 45.95% of all cores from BR3. Nearly all the flaked cobbles are quartzite; in both BR1 and BR3, there is only one silcrete flaked cobble per site. The flaked cobbles can be very large, up to 1791.4 g at BR1, and 1769.8 g at BR3, with an average of 566.97 g at BR1 and 608.01 g at BR3. These cores only have one flaked face, the rest of the cobble having been left as cortex. Not all of these cobbles functioned only as cores. Indeed, a large percentage of them show either severe damage along one or more of their edges or hammer marks on the opposite cortical end. The edge damage is fairly uniform in appearance; the most common type recorded being a stepped type of edge wear, not too dissimilar to that found on the lateral edges of adzes (Figure 56). Stepped edge damage was recorded on 48.78% of the flaked cobbles at BR1 and 52.94% at BR3. Percussive marks were recorded on ten of the cobbles from BR1 on the opposite end to the flaked
Figure 53: Satellite image of the farm Breede River showing the distribution of surface artefacts that make up BR1, BR2 and BR3.
Artefact Class

<table>
<thead>
<tr>
<th>Table 19</th>
<th>BR1</th>
<th>BR2</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>%</td>
<td>No.</td>
</tr>
<tr>
<td>Flakes</td>
<td>126</td>
<td>65.97</td>
</tr>
<tr>
<td>Cores</td>
<td>53</td>
<td>32.98</td>
</tr>
<tr>
<td>Flaked Pieces</td>
<td>2</td>
<td>1.05</td>
</tr>
<tr>
<td>Total</td>
<td>191</td>
<td></td>
</tr>
</tbody>
</table>

Raw Material

<table>
<thead>
<tr>
<th>Table 20</th>
<th>BR1</th>
<th>BR2</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>%</td>
<td>No.</td>
</tr>
<tr>
<td>Quartzite</td>
<td>136</td>
<td>70.68</td>
</tr>
<tr>
<td>Silcrete</td>
<td>30</td>
<td>15.71</td>
</tr>
<tr>
<td>Quartz</td>
<td>25</td>
<td>13.90</td>
</tr>
</tbody>
</table>

Cortex

<table>
<thead>
<tr>
<th>Table 21</th>
<th>BR1</th>
<th>BR2</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>%</td>
<td>No.</td>
</tr>
<tr>
<td>Quartzite</td>
<td>117</td>
<td>56.03</td>
</tr>
<tr>
<td>Silcrete</td>
<td>10</td>
<td>33.33</td>
</tr>
<tr>
<td>Quartz</td>
<td>4</td>
<td>16.00</td>
</tr>
<tr>
<td>Total</td>
<td>122</td>
<td>63.87%</td>
</tr>
</tbody>
</table>

*Percentage refer to the total number of artefacts

Corex

<table>
<thead>
<tr>
<th>Table 22</th>
<th>BR1</th>
<th>BR2</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Qzts</td>
<td>Sil</td>
</tr>
<tr>
<td>Flaked cobble</td>
<td>39</td>
<td>1</td>
</tr>
<tr>
<td>Rotated</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Indeterminate</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Platform</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Bi Polar</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Radial</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>32</td>
<td>1</td>
</tr>
</tbody>
</table>
Figure 54: A multi-use flaked cobble from BR3. Above left: anvil surface; above right: cortical end with percussion marks; flaked face with stepped sedge damage along bottom edge.

Figure 55: Left: a flaked cobble with crushed edge damage from BR1. Right: Ochre stained upper grindstone from BR3.
Figure 56: Flaked cobbles with stepped edge damage BR3

Figure 57: Two bored stones from BR1 and a faceted upper grindstone from BR3

Figure 58: Pecked stones from BR1 (left) and BR3 (right)
face. Four of these hammerstone/split flaked cobbles have at least one ground edge and another four have stepped edges. A further two flaked cobbles have ground and crushed edges and one has one ground and one stepped edge. One example displays all three types of edge damage on three different edges and the opposite end had also been used as a hammer. Edge damage and percussive marks are less common in the assemblage from BR3; only one cobbles has a crushed edge and another single example has a ground edge. There is also only one flaked cobbles/hammerstone from BR3. There are, however, two split flaked cobbles that also functioned as upper-grindstones. Two other flat flaked cobbles from BR3 have small percussive marks on one surface that appear to be the result of having been used as an anvil. Both BR1 and BR2 included single examples of a flaked cobbles also used as a lower grindstone.

Other cores types present in the two assemblages include a large proportion of rotated cores and platform cores. Only three radial cores were identified at BR1 and only one from BR3, indicating that the degree of mixing with pre-Holocene occupations appears to be negligible. This is especially significant as Pleistocene artefact bearing gravels (Terrace 2) are situated only 25 metres south of BR1 and 110m south-west of BR3 (Figure 53). The artefacts found in the gravels are very distinctive, many of them being heavily patinated and abraded and there is a very high proportion of radial cores and faceted platforms, attributes which hardly feature in either BR1 or BR2. Two heavily patinated artefacts from BR1, of a similar appearance to those found in the gravels, had been re-flaked exposing a fresher lithic surface. The single radial core form BR3 was used as a hammerstone, suggesting that it too may have been brought in from the ESA/MSA gravels as a raw material.

The low number of silcrete and quartz artefacts prevents any detailed discussion of the reduction sequence employed for these raw materials. The quartzite part of the assemblage, on the other hand, evidences a very expedient and simple reduction sequence. Cores typically display a few flake removals from only one face, and this is matched by the fact that 55.42% of quartzite flakes from BR1, and 62.07% of quartzite flakes from BR3 had more than 25% cortex remaining on their dorsal surfaces (including platform). As the raw material source was next to the site at BR1 and only 40 m away at BR3, this type of expedient use of stone is to be expected. Most cores appear to have been struck by direct percussion using a hard hammer,
although three cores from BR1 and five from BR3 had opposing percussion features, suggestive of a bipolar technique.

The principal question one has to ask when dealing with an assemblage from a ploughed field, before any meaningful discussion of the results can commence, is how homogenous is the lithic material. Certainly, the low number of MSA diagnostics is encouraging. The uniformity of the reduction sequences from both sites also argues against any significantly different lithic technologies having been employed at the sites, although the low number of silcrete and quartzite cores may mean that the rarer and finer grained raw materials used on the site are under-represented by what was left behind.

The 70 flaked stone artefacts recorded on-site between BR1 and BR3, and numbered BR2, were consistent with the two main concentrations in terms of raw materials and proportions of artefact classes. Flaked cobbles were even more common in BR2, accounting for 32.73% of all the artefacts. Only two of the 23 flaked cobbles showed signs of edge damage. Other cores consisted of five platform cores, three rotated cores and one bipolar core. Very few typologically distinct artefacts were recorded from BR2, although one upper grindstone and one handaxe were identified. A higher frequency of patinated and MSA diagnostic artefacts were recorded, but these were concentrated on the southern edge of the sandy terrace where the sandy terrace borders on the gravel deposit, Terrace 2.

At present, there is very little comparative material for BR1-BR3. The current survey only identified one site, BNP14, with a comparable range of material culture. BNP14 included burnt stones, indigenous pottery sherds, one broken bored stone, two faceted upper grindstones and six silcrete adzes, all of which are features present at BR1 and BR3. A similar proportion of raw materials were recorded at BNP14, as well as a large number of flaked cobbles, but none of the examples showed the type of edge damage seen at BR1 or BR3.
7.4.3. Indigenous pottery from BR1 and BR3

Thirty nine sherds of indigenous quartz or grit tempered pottery were collected from BR1 and 52 from BR3. The pottery from BR1 and BR3 has a mean sherd thickness of 5.79 mm and 6.16 mm respectively. Unfortunately, the two assemblages contained a very low number of diagnostic sherds. Only one simple rounded rim sherd and one sherd with a possible lug attachment were obtained from BR1. Five rim sherds, one outer portion of a horizontally pierced lug (Figure 59: D), and one sherd with a possible lug attachment were collected from BR3.

![Diagnostic pottery sherds](image)

Figure 59: Diagnostic pottery sherds. A-B: Internally thickened lip sherds from BR3; C: Pronounced rounded rim sherd from BR3; D lug sherd from BR3; E lug sherd from BR2; F: Sherd with incised decoration from BR2

Twenty sherds (38.46%) from BR3 and 16 sherds (41.03%) from BR3 have traces of a red ochre slip or burnish. Two sherds from BR3 showed a single incised horizontal line decoration; one was decorated on the exterior and the other on the interior. Exterior incised horizontal lines are rare in early first millennium but are found throughout the rest of the sequence at Kasteelberg. Interior decoration is unusual, and
not a typical feature of assemblages from the Western Cape (Karim Sadr, pers comm.).

The single rounded rim from BR1 is not, unfortunately, a useful temporal marker as these are also found throughout the KBA and KBB sequences at Kasteelberg (Sadr and Smith 1991: 109; fig. 3b). Four of the five rim sherds from BR3, are, however, internally thickened (Figure 59: A and B), an attribute found only in second millennium AD assemblages in the Western Cape (Sadr and Smith 1991: 109; fig. 3b). Lugged pottery, comparable to that found at BR1 and BR3, also only appears in the sequence at KBB towards the end of the first millennium (Sadr 1998; Sadr and Sampson 1999: 7). Only one sherd from BR3, with a very pronounced rounded rim (Figure 59: C), a characteristic more common in early 1st millennium AD assemblages (Karim Sadr, pers comm.), suggests an earlier date for this assemblage. A smaller concentration of pottery consisting of four sherds was recorded from BR2, including another lug fragment (Figure 59: E), a sherd decorated with incised horizontal lines (Figure 59: F) and an unusually thick and coarse sherd measuring 9.71 mm in thickness. The smallness of the sample from BR1-BR3 cautions against a confident assessment of the date of occupation based on pottery types. The weight of the evidence does, however, lean more towards a later first millennium or second millennium origin for most of the pottery. Certainly, there is little to indicate an early first millennium occupation.

7.4.4. European manufactured and modern artefacts from BR3

The collection at BR3 recovered 31 European manufactured and modern (late 20th Century) artefacts (Table 23). There were no European manufactured or modern artefacts from BR1. The ceramics were of interest as it was thought that they might provide a datable association between indigenous archaeology and the historical evidence that describes Khoekhoen groups occupying an abandoned European farm in the 1760s (Moodie 1838). However, following a detailed analysis and classification, all the ceramics were found to postdate 1800 and therefore could not be linked to this period of Khoekhoen history.
An assemblage of 23 ceramic sherds consists mainly of white-bodied refined earthenware (whiteware). Eighteen of the nineteen whiteware sherds are small fragments of plates, dishes or saucers; the odd one out being a single fragment of a cup handle. Three whiteware sherds are blue transfer printed and one is black printed; one has transfer printed willow pattern decoration; one has blue lined decoration and another single sherd is sponge decorated. One other single rim sherd of whiteware has a relief pattern, made either by moulding or embossing damp clay (Klose 2007: 158: fig. 421a). Other wares represented by one or two undecorated sherds include cream coloured ware, industrial slipware and stoneware. The cream-coloured ware sherd was part of a moulded cup. All these common industrial wares and the various white-bodied wares were manufactured throughout the 19th Century and onto the early 20th Century, although they typically increase in number on archaeological sites dating from the mid- to late 1800s (Klose 2007). Only a single sherd from a black glazed coarse earthenware bowl could potentially date from the 18th Century, although this type of pottery was also made throughout the 19th Century (Klose 2007). There is a noticeable lack of any VOC period ceramics, such as Chinese porcelain. This assemblage is a typical range of low-priced Tableware from the 19th Century that one would expect to find on a farm site like BR3 (Klose pers comm.).

<table>
<thead>
<tr>
<th>Table 23</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Late 20th Century plastic, glass and brick</td>
<td>8</td>
</tr>
<tr>
<td>Undecorated whiteware</td>
<td>9</td>
</tr>
<tr>
<td>Decorated whiteware</td>
<td>8</td>
</tr>
<tr>
<td>Undecorated creamware</td>
<td>2</td>
</tr>
<tr>
<td>Stoneware</td>
<td>1</td>
</tr>
<tr>
<td>Cream coloured ware</td>
<td>1</td>
</tr>
<tr>
<td>Coarse earthenware</td>
<td>1</td>
</tr>
</tbody>
</table>

The European manufactured artefacts are likely to be related to household disposal from the farm situated only 60 m to the south of the site. Their association with the indigenous artefacts would appear to be coincidental.
7.4.5. Spatial analysis of artefacts from Breë Rivier 1

The collection at BR1 in December 2006, recorded a L-shaped surface scatter of burnt stone, flaked stone and indigenous earthenware pottery, that measured 128 m north-west/south-east by 91 m north-east/south-west (Figure 60). The concentration of artefacts is well defined and appears in part to be the result of micro-topographical and fluvial features that surround the site on all but its eastern flank. The northern edge of the main concentration of artefacts is in line with the beginning of the slope down to the active river terrace, Terrace 5. The site is bordered on its western and partially on its southern side by a small non-perennial tributary of the Breede and an associated erosion gulley. The erosion gulley has formed at the boundary between the gravel Terrace 4 and sand Terrace 4, where the site lies. It is possible that some archaeological material related to the main concentration has been lost in this erosion feature, but a detailed search of the gulley only produced artefacts which were more akin to those deriving from the Terrace 2 gravels to the south. The slope up to Terrace 2 is quite pronounced in the area of the site and would undoubtedly have provided a natural boundary for the site, offering shelter from the wind and also marking the change from soft sandy soil to clayey soil with cobbles and gravels.

Flaked stone showed the most dispersed pattern, burnt stone less so, with two notable concentrations marked A and B on Figures 60 and 61. Earthenware pottery was even more spatially constrained, largely within a linear strip. Areas A and B are remarkably similar in size when plotted and interestingly both are devoid of either pottery or flaked stone (Figure 62). It will be argued that these represent areas of in-situ burning and possibly hearth locations.

The most concentrated of these possible hearth areas, area A, is made up of 25 fire-damaged stones in a linear area measuring 14 m north-east/south-west and 4 m north-west/south-east (Figure 60). Surrounding this area is a diffuse spread of flaked stone and a lower density scatter of burnt stone. The highest concentration of indigenous pottery at BR1 is found on the immediate flanks of area A and may indicate a concentration of domestic activity around the hearth area. Area B consisted of 19 burnt stones, concentrated in an area that measures 13 m north-east/south-west and 4 m north/west-south/east. The distribution of artefacts around Area B is particularly
Figure 60: Plan of BR1 showing distribution of burnt stone, flaked stone and earthenware pottery. The size of the square/circle reflects the number of artefacts.
Figure 61: The distributions of each artefact type at BR1. The size of the square/circle reflects the number of artefacts in that location. The smallest being one and the largest six. Arrows show the direction of ploughing.

noteworthy for two reasons. First, the nearest fire-damaged stone visible outside of this cluster is 30 m to the east. Second, both flaked stone and pottery cluster on either side in roughly equal numbers: 18 flaked stone artefacts to the north-west and 17 to the southeast and two sherds of indigenous pottery on each side. Such patterning is unlikely to be coincidental. Although little can be said concerning the actual activities that took place around area A and area B, the similarities in size and composition (burnt stone in the centre and pottery on either flank) suggests that they are the result of patterned behaviour rather than random dumping or post depositional activities. Such concentrations of burnt material should not however, automatically be associated with in-situ burning activities. Hearth stones were found to be concentrated with ashy deposits in the dump at Danefield Midden (Orton 2002: 35), and ethnoarchaeological studies have provided evidence of spatially structured hearth disposal amongst Nama speaking pastoralists in the Richtersveld (Archer 1994; Mütti 2006). It is, however, unlikely that pottery and flaked stone would have such a neat negative correlation with area B and that pottery would be so concentrated around area A, if they were the result of dumping episodes. On this basis, it is argued that this patterning reflects the actual position of hearths or other intense burning activities.
The more discrete nature of area B compared to area A, and the lack of other fire-damaged material in the surrounding area, suggest that area B is less likely to be a palimpsest of repeated burning activity and may even represent the debris from a single occupation. It is not possible to argue the same for the less well-defined concentration of burnt stone, area A. It may simply be that area A was a more substantial burnt feature to begin with, resulting in a much wider and more dispersed distribution today. To the south-east of the main concentration of artefacts at BR1, a relatively large, low density spread of burnt stone was recorded in an area almost without other artefacts, shown on Figure 60 as area C.

7.4.6. Spatial analysis of artefacts from Breë Rivier 3

The collection at BR3 in August 2006 recorded a linear-shaped surface scatter of burnt stone, flaked stone, indigenous earthenware pottery and European manufactured ceramics. This concentration of artefacts, situated 500 m to the east of BR1, was plotted in the same way as BR1 and BR2 using different coloured flags and GPS.

Figure 62: BR3: the distribution of each artefact type. Arrows shows the direction of ploughing
When plotted, the concentration of artefacts measures 123 m north-east/south west and 60 m north-west/south-east. Eight modern artefacts were also collected. The distributions of all but the modern finds are shown in the four plots below (Figure 62). As was observed for BR1, flaked stone is the most widely dispersed artefact type. Again, burnt stone shows a more restricted distribution, although here, specific concentrations are not as easy to read from the spatial plots as they are at BR1. Indigenous pottery is concentrated in the central area, with a notable outlying group of four sherds to the north of this area.

Perhaps significantly, when the plots from BR1 and BR3 are compared, the main concentrations of indigenous pottery are remarkably similar in size, measuring 72 m by 29 m at BR1 and 81 m by 32 m at BR3. In both cases pottery has a more restricted distribution than other artefact types, forming a linear strip down the centre of the overall spread of artefacts. At BR3, European manufactured ceramics are the most dispersed of the artefact types, found evenly across the area in a linear shaped spread. The linear orientation of BR3 follows the direction of ploughing, suggesting that it would have once been a much more concentrated scatter.

7.4.7. Discussion

While it is accepted that ploughing has had a major impact on the archaeological distributions described above, both locations show similar, non-random, overall spatial patterning that demonstrates that some measure of site integrity survives, at least in terms of the original distributions of each artefact type in relation to the other artefact types. Flaked stone is distributed relatively evenly over a relatively wide area, burnt stone is found in specific concentrated nodes but also quite widely, an earthenware pottery has a markedly different distribution, in that it is more regularly distributed over a limited area. The lighter and smaller sherds of pottery are likely to have had a different displacement pattern to stone but the notably different distributions of flaked and burnt stone cannot be easily explained as differential movement by the plough. Another possibility is that the flaked stone could have been deposited over a longer period than the burnt stone, thereby being subjected to a greater amount of plough action. This last explanation is not very likely, however,
when one considers the results of the stone artefact analysis presented above which indicated a strong degree of homogeneity in the assemblages from BR1 and BR3.

While there are undoubtedly major limitations preventing a detailed interpretation of such ploughzone data, including the differential dispersal factor of artefact types and differential visibility even within single agricultural fields, the weight of the evidence is strong enough to contend that the general patterns described above are most likely to be anthropogenic in origin. Burnt stone has a more limited distribution in the central areas of both sites, a pattern one would expect if these burning areas were related to domestic activities. If, on the other hand, the burning was associated with non-domestic activities such as pottery manufacture or metallurgy, one would expect a different pattern to that observed as these activities were likely to have been carried out on the edges of, or even wholly outside, domestic space. The second point that demands more thorough attention is the regularity and limited distribution of pottery, both from BR1 and BR3. The more limited general distribution of pottery could either be the result of the smaller lighter sherds not travelling as far when disturbed by the plough, or alternatively one could look towards explanations of structured disposal. Indeed, the dumping of hearth remains and flaked stone is quite likely to have been carried out at a greater distance away from the domestic space compared to the disposal of broken sherds of pottery. On the other hand, the fact that the pottery distributions have such a strong positive spatial relationship with the densest areas of burnt stone might indicate a role related to cooking or food preparation.

Area B at BR1 is particularly significant in terms of assessing plough damage. Not only has it retained an orientation perpendicular to the direction of ploughing (Figures 60-61), but 79% of the stones in area B were found within an area measuring under 9 m². One can imagine that it was originally an even more localised feature. A plausible comparison to area B comes from the recent excavation of a series of calcrete hearths at Holbaai on the Vredenberg Peninsula, dated to the mid 1st millennium AD and mid 2nd millennium AD, results of which suggest that while such features are often

76 Both pottery manufacture and metallurgy are activities known to have been carried out by Khoekhoen herders (Kolb 1731; Schapera 1931).
deflated or eroded, the original size is likely to be no more than 2m in maximum
diameter (Hine 2004: 46-52).

Conard and Kandel (2006) outlined a testable hypothesis that stone hearths are mainly
associated with coastal and near coastal environments. Only at Boomplaas Cave and
Anyskop Dune at Langebaanweg have such features been found in an inland setting.
If the interpretation as hearths is accepted at Breë Rivier, then the two features
described as area A and area B at BR1, and even the ploughed out remains at BR3, go
some way to falsifying this hypothesis. The only other hearths known from an inland
location are the six excavated in Boomplaas Cave on the south coast (H. Deacon et al.
1978). Here, Deacon et al. argued that formalised cooking features were related to the
slaughter of livestock:

There are ethnographic references (for example, Raven-Hart 1971: 130) to the use
of such formal hearths for cooking meat, and they are more elaborate than the
smaller, more commonly found circular or oval hearth depressions. The
association, where known, are in herder contexts and are linked to potter and
domestic stock. Their apparent absence from hunter-gatherer occupations is
suggestive that they were linked to the slaughter of stock. In this sense they may
serve as a further attribute for the recognition of pastoralism in the archaeological
record at the Cape (H. Deacon et al. 1978: 55).

The majority of evidence for stone hearths comes from coastal locations, and
usually these consist of concentrations of calcrete with evidence for burning,
coming from either fire damaged stones or charcoal and ash deposits, or both. Due
to their predominantly coastal location, and the fact that they are often located next
to middens (Sealy et al. 2004: 26), such features have been thought of in terms of
cooking shellfish and other marine foods. Nevertheless, even on these coastal sites,
large hearth features and cooking platforms have been proposed as an indicator of a
larger group size that is likely to be found in herding rather than hunting groups
(Sealy et al. 2004: 26).

Although the survey and collections have shown that BR1 and BR3 represent actual
concentrations, the continuous scatter of stone artefacts represented by BR2 shows
that they were not islands of human activity. The regularity of the two locations and
their closeness in space, only 510 m apart, encourage the notion that they could
represent simultaneously occupied focus points or two ends of the same encampment.
Indeed, the space between the two locations could have been just as an important part of the camp. The uniform nature of the technologies represented at BR1, BR2 and BR3 certainly suggest a high degree of homogeneity across this whole stretch of river terrace. While the overall area covered by BR1-3 is a little too big for campfire conversations, if one considers the size of some of the herds known to have been part of the 'kraals' that moved along the Buffeljags and Breede Rivers in the late 17th Century then such a large coralling area would have been needed for stationary stock. European observers mention separate kraals moving together, and we know that up to 17 Hessequa kraals were recorded together alongside one river in the Riversdale area. One could imagine that when such large numbers of people and stock were congregating they would have to line up alongside the river in order to share the access to water and that if the soft sandy area next to the river was limited as it is at Breë Rivier then these encampments would undoubtedly take a linear form with each could make perfect sense as the river provides a natural barrier and individual camps or extended families could form two other sides of the enclosure.

The fact that spatial integrity survives to the degree it does at BR3 suggests that even if it is the result of a series of successive or palimpsest occupations, the layout of each campsite was so similar to preceding and succeeding episodes of settlement that the patterning of artefacts remained the same. Elsewhere repeated occupation of campsites using similar spatial organisation has been termed a “conservative settlement strategy” (Barham 1992). Both BR1 and BR3 are remarkably similar in characteristic elements and spatial layout suggesting that they are the result of similarly structured living arrangements and are, perhaps, not widely disparate in age. The analysis of indigenous pottery and flaked stone supports, or at the very least, does not contradict, this interpretation of a restricted time scale.

The tentative interpretation that BR1 and BR3 are the result of contemporary occupation for a limited period in the late first or second millennium AD will be tested in the near future by thermoluminescence dating the burnt stone. Burnt stone from the plough zone does present limitations for thermoluminescence dating because of the uncertainty in the amount of gamma cosmic radiation that a sample may have

been exposed to since it was brought to the surface (Feathers 1997; Barnes 2005). Nevertheless, recent studies in North America and England have shown that these problems do not prevent accurate dates from being obtained (Dunnell and Feathers 1995; Feathers 1997; Barnes 2005). Moreover, as Feathers (1997) points out, these reservations do not take into account that all buried samples were once exposed on the surface.

While unequivocal evidence that these two sites were occupied by herders has not been forthcoming, the artefactual evidence supports this suggestion. There is no doubt that the material culture ‘package’ at BR1-3, consisting of lugged pottery, an expedient stone technology, bored stones, faceted grindstones and ochre stained grindstones, matches the ‘pastoralist’ levels found at KBA and KBB (Smith 2006). The identification of stone hearths and the large size of the sites are also indicative of large social groupings (cf. Sealy et al. 2004) and importantly match colonial descriptions of Khoekhoen aggregations known from this part of the Breede and Buffeljags confluence.
8. Discussion and conclusion

8.1. Introduction

I began with a simple aim: to tackle the question of herder visibility in a new area with different environmental conditions to the west coast where previous archaeological work on pastoralism in South Africa had thus far been concentrated. The starting premise was also straightforward: take a small section of a landscape with specific historical references to Khoekhoen settlement and conduct an intensive survey. Even before I could begin planning a survey, however, it became apparent that the various histories relating to Khoekhoen 'kraals' in the Swellendam area were laden with colonial bias, and, furthermore, that previous archaeological research had not dealt with these histories in a critical manner. Following this realisation, there was a concerted effort to construct a critical approach to the historical documents and to try to focus my archaeological survey on specific questions that arose from this review. Due to the lack of previous survey work in the Swellendam area, the design and testing of field methods and an assessment of the potential of archival sources for planning surveys became a third and fundamental objective of this thesis. In the following section, I discuss these three research objectives as they appeared in the course of this thesis, starting with the question of archaeological visibility, followed by the development and testing of specific historical questions, and ending with a discussion of survey methodologies.

8.2. The archaeological visibility of herders in the Breede River/Swellendam area

Did the rich natural resources and frequent historical references of the study area correlate with a densely distributed archaeological record? In terms of the historical sources, the results were positive, and the three historical locations surveyed all produced evidence in accordance with pastoralist occupation. On the other hand, in terms of a general comparison to the west coast, and in particular, the most extensive survey conducted in this region, the Vredenberg Peninsula Survey (Sadr et al. 1992), the overall distribution of sites is quite low, and the individual sites much less substantial in terms of artefact densities. The lack of shellfish remains in the current study area also dramatically reduces archaeological visibility compared to coastal and near coastal areas such as the Vredenberg Peninsula, where highly visible white shell
layers were used as the primary site indicator. As far as contributing to the debate on the visibility of first and second millennium pastoralists, as outlined in Chapter 1, the survey results offer limited scope due to relatively small samples of diagnostic pottery and a lack of other datable material. The largest sample of diagnostic pottery retrieved from BR1-3, was more in accordance with a late first or second millennium occupation, thus supporting, albeit rather tentatively, Sadr’s contention that intensive pastoralism known from the historical records only arrived in the Cape in this later period (Sadr 1998, Sadr 2003).

8.3. Developing a critical Khoekhoen archaeology

In Chapter 3, I used VOC documentary evidence to build a critique of the conventional high mobility model of Khoekhoen settlement and suggested an alternative more varied aggregation and dispersal type of settlement for the south coast. The large surface scatters found in the ploughed fields at Breë Rivier indicate that through further investigation in this land-use zone such generalising models could be tested against archaeological data. Importantly, a degree of spatial integrity was identified in two large concentrations of pottery, burnt and flaked stone. The resolution was, I have argued, good enough at one location even to discern individual hearth areas, and possibly single occupations. Such sites can, in theory (when enough of them are identified), be studied to investigate the social organisation of space and thus the social structure of indigenous groups.

The second specific historical question developed in Chapter 4, concerned the place name and oral history evidence of 18th Century Khoekhoen ‘Captains’. Contrary to the popular narrative of Khoekhoen collapse following the arrival of European settlers into Swellendam (e.g. Tomlinson 1943; Van Rensburg 1975), a re-evaluation of the evidence indicated that Khoekhoen communities had fostered significant relationships with settler communities in order to remain in their ancestral lands. At Lang Elsieskraal, one of the specific locations where a Khoekhoen ‘captain’ was said to have lived, the survey identified a complex of features that may well be a recognisable material signature of indigenous shepherds who had to adapt to semi-sedentary lifestyles on settler farms. Although the dataset is limited at present, the
survey has succeeded in recognising the type of material culture that may survive and, importantly, the land-use zone in which it can be found.

8.4. Survey design

In the following section, I evaluate the main factors affecting survey design in the Swellendam area. These are, broadly speaking: the choice of the survey area, land-use assessments and the use of documentary sources. These aspects are assessed in relation to alternative approaches with a view to expanding the current survey. I also look at how the range of material culture encountered during the survey calls for an expansion of what may normally be considered 'Khoekhoen archaeology' and a consequent adjustment of survey techniques.

8.4.1. Survey area

One of the main limitations with inland open site survey and possibly the reason why areas such as the southern flank of the Langerberg are left understudied is the paucity of datable material that survives. Indeed, this was one of the major concerns in the early stages of survey design. If the present survey had been conducted along the coast, or in the near coastal zone, as was chosen for the Vredenberg Peninsula Survey, for example, then it might have been possible to date all the surface sites encountered by association with shell deposits (cf. Sadr et al. 1992; Fauvelle Aymar et al. 2006). The discovery of a large amount of burnt rock at BR1-BR3 has, however, offered an additional material that can be dated by thermoluminescence, and as such it is a notable breakthrough for this region, and other inland areas.

Another survey strategy that could potentially have been employed would include rock shelters and cave excavations in order to obtain a dated sequence against which the surface record could be compared. Such a methodology was used to great effect in the Seacow River Valley Project (Sampson et al. 1989; Sampson and Vogel 1995). Some headway was also made in the Seacow Valley Project with the direct dating of surface sites through thermoluminescence analysis of quartz grains in pottery, but this relied heavily on the detailed seriation of ceramics from excavated sequences (Sampson et al. 1997). Nevertheless, it is likely that scientific dating techniques will
be refined in the coming years to allow for more secure dating of surface sherds, thus reducing our dependence on excavated sequences.

Both the Seacow Valley and Vredenberg surveys were conducted over a number of years with relatively extensive resources and there is no reason why the present study could not be similarly expanded in the near future. Rock shelters with surface pottery are known to exist less than 10 km to the north-east of the current study area (personal observation) and coastal middens and caves are known 35-40 km to the south of the survey area (Rudner 1968; Henshilwood 1995). One particular strategy for targeting indigenous peoples in the post-contact period could be to focus on rock shelters that are within a short distance of documented early farmhouses or VOC outposts. Extension of the current study area could also include kopjes in the Swellendam/Breede River region. Such a methodology would be aimed at identifying similar accumulations to those found associated with kopjes on the Vredenberg Peninsula, such as Kasteelberg itself. It is then accepted that an inland riverine survey could be made more effective, at least in terms of chronological resolution, if combined with cave and midden excavations or surveys of near coastal or coastal environments. It is my thesis, however, that until archaeologists move beyond their comfort zone of caves and middens, and put similar time and resources into the survey of open landscapes, we will continue to investigate only a very specific part of the lifeways of indigenous peoples in the Western Cape. I would argue that the present study has proved enough of a success to warrant further research of riverine environments. The most notable results of this survey have been the identification of indigenous campsites-with-hearths in an inland open landscape setting (BR1-3), and a complex of features that appears almost certainly to be a 19th Century indigenous shepherd’s outpost (BNP9, BNP10, BNP11 and possibly BNP1), both of which are firsts in the archaeology of the Western Cape.

8.4.2. Land-use

Early in the survey design phase it was realised that land-use would be the major factor influencing surface visibility. In order to test the archaeological potential of these two broad land-use zones, the survey was designed to incorporate both areas under permanent grazing and ploughed fields. Such an approach, although limiting
the compatibility of some of the datasets obtained, has proved successful in identifying the most suitable techniques for archaeological survey in relation to land-use. Bontebok National Park and adjacent pasturelands provided an ideal test case for surface visibility in non-cultivated riverine environments. Here, archaeological occurrences appeared to be dependent on specific post-depositional circumstances and sites were generally obscured by vegetation or thin sand cover. Thus, the potential for studying spatial organisation of indigenous campsites was restricted in the permanent grazing part of the study area. The lack of a background scatter of Later Stone Age material also confirmed this observation. Test pit excavations proved to be a useful technique for assessing densely vegetated areas such as Ou Tuin where the upper 100 mm of deposit was found to contain a high density of pottery that could not be seen on the surface. On-site quantification was also hampered by poor visibility and the 20 minute recording technique employed on the Vredenberg Peninsula (Sadr et al. 1992) had to be adjusted to allow for these specific conditions. Nevertheless, comparative datasets were obtained from a number of sites with indigenous pottery.

While the permanent grazing part of the survey area may not have been as informative as the ploughed fields in terms of spatial analysis of artefact distributions, other significant features, such as grazing-lawns, stone huts and enclosures, were recognised that would not survive in agricultural fields. Aerial photographs and satellite images proved to be very effective for identifying grazing-lawns and trackways in Bontebok National Park, and there is certainly potential for large scale mapping of such features in other areas where renosterveld vegetation survives.

Ploughed fields offered a better opportunity to observe the surface record over a wider horizontal area. Unfortunately, although not coincidentally, the best preservation in the plough-zone appears to be related to the marginal sections of the main crop growing areas, where visibility was not as consistent as it was in the areas without archaeology, but where the destructive forces of irrigation and sub-soiling have had less of an impact. The impact of agriculture on archaeological visibility was, in general, much more intensive than was predicted prior to the commencement of the survey. It is, then, even more significant that in the Breede/Buffeljags confluence area, known from historical sources as a Khoekhoen aggregation centre, the only strip of agricultural land that was not subjected to either intense irrigation or sub-soiling,
was found to contain two large and archaeologically significant surface sites. One can only imagine the extent of the archaeology that would have originally have existed in the wide and very fertile parts of the Buffeljags River valley before the land-use changed to intensive fruit plantations and permanently irrigated pasturelands. Landowner knowledge was found to be a vital source of land-use data and future surveys of agricultural land in this area would be wise to begin with detailed interviews with farmers concerning recent and past land-management practices. Such knowledge was essential for explaining the negative results from some areas and also for timing the archaeological survey so that it could follow immediately after ploughing or the turning over of fallow fields. As the results from BR1-3 demonstrated, visibility is dramatically increased following cultivation of the soil.

8.4.3. Documentary sources

The specific survey area was chosen largely on the basis of two types of documentary evidence: late 17th Century VOC records and 18th Century oral histories derived from settler families recorded early in the 20th Century. While the use of these sources did prove to be a successful methodology, the historical reviews in Chapters 3 and 4 identified two other types of textual sources that refer to Khoekhoen kraals in the Swellendam area. Unfortunately due to time and resource restrictions, it was not possible to test these two types of historical evidence. The documentary evidence that exists for the two early 19th Century 'Hottentot reserves' at Hottentots kraal and Slang Rivier could provide suitable topics for research in the Swellendam area.

78 Unpublished government papers housed in the UNISA Library: Correspondence on the Hottentot Kraal Location in the Division of Swellendam. Published by order of the House of Assembly 1876.
Both provide more detail than the historical texts used for the current survey, and in the case of Hottentots kraal, the documents even include descriptions of individuals and their dwellings. The existence of a Khoekhoen descendant community at Slang Rivier (Meffert and van Hemert 1991: 20) also opens up the possibility of combining archaeology with new oral history research, a type of approach that has been carried out with great success by Lita Webley in the Northern Cape (Webley 1986; 1992). The former missionary settlement Zuurbraak just to the north of Slang Rivier, also offers some potential in this regard. Another easily accessible type of written document referring to Khoekhoen kraals in the Swellendam area that was not utilised in the current survey are the VOC legal proceedings from the 18th Century. The detailed archival work of the historian Russell Viljoen could provide a starting point for identifying kraal locations using these documents (Viljoen 1997, 2001, 2006).

Cartographic evidence was utilised in the present study to identify old wagon routes and river crossings that could be matched to the distribution of archaeological material and also more generally to plot the spread of colonial settlement into the Swellendam area. A detailed methodology that could provide a blueprint for an expansion of this study in Swellendam has been pioneered in the Seacow River Valley Project (Neville et al. 1994).

Alternative approaches to survey design could also make further use of this resource. I have previously mentioned the notable spatial separation between central homesteads and the huts and houses on the periphery of loan farms observable on the cadastral map from the late 19th/early 20th Centuries. Further analysis of this map and the less detailed survey diagrams from earlier in the 19th Century, could potentially take a more central role in survey design. A similar methodology has been employed in New South Wales, Australia, by Dennis Byrne (2003), who plotted the cadastral grid in an attempt to focus archaeological attention on the ‘between spaces’ occupied by indigenous peoples following colonial settlement.

8.4.4. Post-contact Khoekhoen archaeology

Writers in North America and Australia have commented that ‘post-contact’ indigenous archaeology requires a broad approach and expertise in both historical and
pre-colonial methodologies (e.g. Handsman and Lamb Richmond 1995; Harrison 2003). The current survey has suggested that this is also the case for the post-contact archaeology of the Khoekhoen in the Western Cape. A wide range of material culture not normally associated with indigenous peoples was identified, as well as more conventional datasets such as stone artefact scatters. Some of these new types of Khoekhoen archaeology were identified through archival research alone, including threshing floors and possible stone animal traps. Others were encountered during the survey such as stone huts, planted enclosures, grazing-lawns, irregular stone walled enclosures and surface scatters of ceramics and glass.

8.5. Concluding remarks

Although the scope of this thesis has been quite broad, a central theme can be highlighted as a conclusion: the need to expand our concept of what constitutes ‘pastoralist’, ‘Khoekhoen’ or ‘indigenous’ archaeology, both on a geographical and temporal scale. It is hoped that the results of the survey have pushed this agenda forward. Geographically, the results have highlighted, along with other recent finds in the Western Cape (Fauvelle-Aymar et al. 2006; Jerardino and Maggs 2007), the need to continue and increase the current focus of pastoralist archaeology in the open landscape. Specifically, I have demonstrated the survival of spatial integrity in ploughed fields and the potential for recognising pastoral features in renosterveld vegetation. Temporally, I have demonstrated the benefits of an approach that includes the 18th and 19th Century historical and archaeological evidence in addition to the ‘early contact’ period histories and precolonial archaeologies normally favoured by scholars in the Western Cape.
Appendix 1: List of sites

Sites with diagnostic Pleistocene artefacts

<table>
<thead>
<tr>
<th>Site</th>
<th>Type</th>
<th>Date/s</th>
<th>Dating evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNP6</td>
<td>Flaked stone</td>
<td>ESA</td>
<td>Handaxe</td>
</tr>
<tr>
<td>BNP7</td>
<td>Flaked stone</td>
<td>ESA</td>
<td>Handaxes, cleavers</td>
</tr>
<tr>
<td>BNP21</td>
<td>Flaked stone</td>
<td>ESA</td>
<td>Likely to be mixed date</td>
</tr>
<tr>
<td>BNP19</td>
<td>Flaked stone</td>
<td>ESA</td>
<td>Acheulean handaxes and cleavers</td>
</tr>
<tr>
<td>BNP8</td>
<td>Flaked stone</td>
<td>ESA-MSA</td>
<td>Handaxes, cleavers</td>
</tr>
<tr>
<td>BNP15</td>
<td>Flaked stone</td>
<td>ESA-MSA</td>
<td>Handaxes, Faceted platforms</td>
</tr>
<tr>
<td>BNP4b</td>
<td>Flaked stone</td>
<td>MSA</td>
<td>Faceted platforms, radial cores</td>
</tr>
<tr>
<td>BNP3</td>
<td>Flaked stone</td>
<td>MSA</td>
<td>Faceted platforms, radial cores</td>
</tr>
<tr>
<td>BNP12</td>
<td>Flaked stone</td>
<td>MSA</td>
<td>Faceted platforms, radial cores</td>
</tr>
<tr>
<td>BNP13</td>
<td>Flaked stone</td>
<td>MSA</td>
<td>Faceted platform, radial core</td>
</tr>
<tr>
<td>BNP15b</td>
<td>Flaked stone</td>
<td>MSA</td>
<td>Faceted platforms, radial cores, MSA flakes/blades</td>
</tr>
<tr>
<td>BNP17</td>
<td>Flaked stone</td>
<td>MSA</td>
<td>Radial cores</td>
</tr>
<tr>
<td>BD4</td>
<td>Flaked stone</td>
<td>MSA</td>
<td>Faceted platforms, radial cores, MSA flakes/blades</td>
</tr>
<tr>
<td>BD1</td>
<td>Flaked stone</td>
<td>MSA</td>
<td>1 radial core</td>
</tr>
<tr>
<td>MP2</td>
<td>Flaked stone</td>
<td>MSA</td>
<td>MSA flakes</td>
</tr>
</tbody>
</table>

Sites with diagnostic Holocene artefacts

<table>
<thead>
<tr>
<th>Site</th>
<th>Type</th>
<th>Date/s</th>
<th>Dating evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNP6a</td>
<td>Flaked stone/pottery</td>
<td>MSA-Pottery LSA</td>
<td>MSA—Faceted platforms, MSA flakes/blades, LSA—indigenous pottery, retouched bladelet</td>
</tr>
<tr>
<td>BNP24</td>
<td>Flaked stone</td>
<td>LSA</td>
<td>Adzes, bladelet core, other retouched pieces</td>
</tr>
<tr>
<td>BR2</td>
<td>Flaked stone</td>
<td>LSA?</td>
<td>None, but technology similar to adjacent LSA sites and dissimilar to adjacent MSA sites</td>
</tr>
<tr>
<td>BNP14</td>
<td>Flaked stone/pottery</td>
<td>Pottery LSA</td>
<td>Indigenous pottery, bored stone, 2 upper, grindstone, adzes, platform core</td>
</tr>
<tr>
<td>MP3</td>
<td>Flaked stone/pottery</td>
<td>Pottery LSA</td>
<td>Indigenous pottery</td>
</tr>
<tr>
<td>MK1</td>
<td>Flaked stone/pottery</td>
<td>Pottery LSA</td>
<td>Indigenous pottery</td>
</tr>
<tr>
<td>BD3</td>
<td>Flaked stone/pottery</td>
<td>Pottery LSA</td>
<td>Indigenous pottery</td>
</tr>
<tr>
<td>BR3</td>
<td>Flaked stone/pottery</td>
<td>Pottery LSA</td>
<td>Indigenous pottery, bored stones</td>
</tr>
<tr>
<td>BR4</td>
<td>Flaked stone/pottery</td>
<td>Pottery LSA</td>
<td>Indigenous pottery</td>
</tr>
</tbody>
</table>
Sites with evidence (diagnostic artefacts and documentary sources) for historical (1700s-1900s) occupation

<table>
<thead>
<tr>
<th>Site</th>
<th>Type</th>
<th>Dates</th>
<th>Dating evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR3</td>
<td>Flaked stone/pottery</td>
<td>Pottery LSA-1900s?</td>
<td>Indigenous pottery, bored stones, adzes, ceramics and glass</td>
</tr>
<tr>
<td>BNP9</td>
<td>Grazing-lawn</td>
<td>Pottery LSA-1900s?</td>
<td>Oral history, Indigenous pottery, 19th and 20th century ceramics, 1940s aerial photographs</td>
</tr>
<tr>
<td>BNP1</td>
<td>Piled stone wall</td>
<td>LSA-1900s?</td>
<td>LSA=Morphologically similar to indigenous kraals in Steenw River Valley (Hart 1987).</td>
</tr>
<tr>
<td>BNP4a</td>
<td>Flaked stone/pottery</td>
<td>MSA-Pottery LSA-1800s</td>
<td>MSA=Faceted platforms, radial cores. LSA=indigenous pottery, adzes, bladelet cores. 19th and 20th century ceramics</td>
</tr>
<tr>
<td>BNP5</td>
<td>Wagon track</td>
<td>1740s-1800s</td>
<td>Oral history, 1943 stamped bottle, other 20th century glass</td>
</tr>
<tr>
<td>BNP10</td>
<td>Building</td>
<td>1700s-1900s</td>
<td>Architecture style common from 18th-19th century, 19th and 20th century ceramics</td>
</tr>
<tr>
<td>BNP11</td>
<td>Planted enclosure</td>
<td>1700s-1900s</td>
<td>1940s aerial photos</td>
</tr>
<tr>
<td>BNP20</td>
<td>Building</td>
<td>1900s</td>
<td>Concrete/brick</td>
</tr>
<tr>
<td>BNP18</td>
<td>Piled stone wall</td>
<td>1900s</td>
<td>Concrete post base found in one corner. On old 1:50000 as kraal</td>
</tr>
<tr>
<td>BNP22</td>
<td>Grazing-lawn</td>
<td><1940s</td>
<td>1940s aerial photographs</td>
</tr>
<tr>
<td>BNP23</td>
<td>Track-way</td>
<td><1940s</td>
<td>1940s aerial photographs</td>
</tr>
<tr>
<td>BNP25</td>
<td>Track-way</td>
<td><1940s</td>
<td>1940s aerial photographs</td>
</tr>
<tr>
<td>MP1</td>
<td>Glass</td>
<td>1800-1950</td>
<td>20th century glass</td>
</tr>
<tr>
<td>BD2</td>
<td>Flaked stone/pottery</td>
<td>ESA-1900s</td>
<td>Handaxes, Refined Earthenware ceramic sherds, 20th century glass</td>
</tr>
</tbody>
</table>
Appendix 2: Map showing Pleistocene Archaeology
References

Kemp, L.V. 2006. Ancient stonewall fish traps on the south coast of South Africa: documentation, current use, ecological effects and management implications.

Klose, J. 2007. *Identifying ceramics: an introduction to the analysis and interpretation of ceramics excavated from 17th to 18th Century archaeological sites and shipwrecks in the south-western Cape*. Cape Town: Historical Archaeology Research Group.

Patterson, A. 2006: Towards a historical archaeology of Western Australia’s northwest. *Australian Historical Archaeology* 24: 99-111.

Smith, A.B. 2006. *Excavations at Kasteelberg, and the origins of the Khoekhoen in the Western Cape, South Africa*. Oxford: British Archaeological Reports.

