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Abstract
As an extension of the finite element method, the virtual element method (VEM) can
handle very general polygonal meshes, making it very suitable for non-matching
meshes. In (Wriggers et al. in Comput. Mech. 58:1039–1050, 2016), the lowest-order
virtual element method was applied to solve the contact problem of two elastic
bodies on non-matching meshes. The numerical experiments showed the robustness
and accuracy of the virtual element scheme. In this paper, we establish a priori error
estimate of the virtual element method for the contact problem and prove that the
lowest-order VEM achieves linear convergence order, which is optimal.

MSC: 65N30; 49J40

Keywords: Virtual element method; Variational inequality; A priori error estimate;
Optimal convergence order

1 Introduction
Contact phenomena among deformable bodies are abundant in structural and mechan-
ical systems, so a considerable effort has been made in modeling and numerical analysis
of the contact processes. For the formulation of contact problems, variational inequality
is a powerful mathematical tool. The well-known Signorini problem, one variational in-
equality of the first kind, is an elastostatic problem describing the contact of a deformable
body with a rigid frictionless foundation [19]. When friction effects are considered, we
need other formulations to describe the frictional contact problems, which are variational
inequalities of the second kind, featured by the presence of non-differentiable terms in
the formulation [15]. No penetration into the foundation is allowed for a rigid foundation,
so a normal compliance contact condition was proposed for studying the interpenetra-
tion of the body’s surface into the foundation [1, 17, 20, 22, 24, 28]. This contact problem
can be described by a quasi-variational inequality, and its well-posedness is proved by the
fixed-point argument [18, 30]. Actually, the fixed-point argument can be applied to study
the existence and uniqueness of many contact problems, see, e.g., [6, 21, 25, 29] and the
references therein.

Because the finite element method (FEM) is based on variational formulation, it is a nat-
ural numerical discretization method for variational inequalities [10, 15]. However, the
classical FEM works on the elements with simple geometries, like triangles and rectan-
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gles, so it is very hard to handle non-matching meshes to discretize contact problems.
Hence, some techniques have been developed to discretize contact constraints, for exam-
ple, mortar methods [13, 27, 39, 40] impose the contact constraints in a weak sense. Due
to the flexibility in constructing the local function space, the discontinuous Galerkin (DG)
method [9, 16, 31–34] can handle very general meshes with hanging nodes, which make
them very suitable for hp adaptivity and non-matching grids. However, the DG method
needs a large number of degrees of freedom.

Recently, borrowing the ideas from the mimetic finite difference method, the virtual el-
ement method (VEM), which can be regarded as a generalization of the classic FEM to
general polygonal meshes, has been developed for solving a variety of partial differential
equations, cf., e.g., [2, 3, 5, 7, 14, 26, 43]. The virtual element method can handle very
general polygonal elements with an arbitrary number of edges. In addition, it allows geo-
metrical hanging nodes in the meshes. Actually, they are treated as vertices of the polyg-
onal elements in practice, so it is easy to implement the h adaptive strategy for the VEM.
In [42], the lowest-order virtual element scheme was applied to solve the contact prob-
lem of two elastic bodies on initially non-matching meshes, but the error analysis was
not given. Even the initial meshes for the two subdomains are non-matching, due to the
feature of VEM, new nodes can be inserted into the contact interface without difficulty,
then the non-matching meshes are transformed into matching meshes. Recently, VEMs
were studied to solve various variational inequalities [8, 11, 35, 36, 38] and hemivariational
inequalities [12, 23, 37].

In this paper, following the setup in [42], we give a priori error estimate of the virtual
element method for the contact problem. Furthermore, we also consider the contact prob-
lem with the Tresca friction law. The rest of the paper is organized as follows: In Sect. 2,
we describe the contact problems in variational inequality formulations. In Sect. 3, we
introduce the abstract framework of the virtual element method. Section 4 establishes a
priori error analysis, which shows that the lowest-order virtual element achieves optimal
convergence order.

2 Contact problem
The contact problem of two elastic bodies without friction is an elastostatics problem
describing the contact between two deformable bodies. Let �i ⊂ R

d (i = 1, 2 and d = 2, 3)
be an open bounded connected domain with a Lipschitz boundary �i that is divided into
three parts �iD, �iN and �iC with �iD, �iN and �iC relatively open and mutually disjoint
such that meas(�iD) > 0. Note that �1C coincides with �2C , so we use �C to represent
them. The displacement ui : �i ⊂ R

d → R
d is a vector-valued function. The linearized

strain tensor

ε(ui) =
1
2
(∇ui + (∇ui)t)

and stress tensors are second-order symmetric tensors, which take values in S
d , the space

of second-order symmetric tensors on R
d with the inner product σ : τ = σijτij. Let ν i be

the unit outward normal to �i.
For a vector v, denote its normal component and tangential component by vν = v · ν

and vτ = v – vνν on the boundary. Similarly, for a tensor-valued function σ : � → S
d , we
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define its normal component σν = (σν) · ν and tangential component σ τ = σν – σνν . We
have the decomposition formula

(σν) · v = (σνν + σ τ ) · (vνν + vτ ) = σνvν + σ τ · vτ .

For a tensor valued function σ , define its divergence by

divσ = (∂jσij)1≤i≤d.

Then, for any symmetric tensor σ and any vector field v, both being continuously differ-
entiable over D, we have the following integration by parts formula:

∫

D
divσ · v dx =

∫

∂D
σν · v ds –

∫

D
σ : ε(v) dx. (2.1)

For i = 1, 2, given f i ∈ [L2(�i)]d , gi ∈ [L2(�iN )]d , the frictionless contact problem of two
elastic bodies is to find displacement fields ui : �i →R

d and stress fields σ i : �i → S
d such

that [41]

σ i = Cε(ui) in �i, (2.2)

– divσ i = f i in �i, (2.3)

ui = 0 on �iD, (2.4)

σ iνi = gi on �iN , (2.5)

σ iτ = 0 on �C , (2.6)

σν ≤ 0, [u]ν ≤ h0, σν

(
[u]ν – h0

)
= 0 on �C . (2.7)

In the above problem, (2.2) follows from the constitutive relation of the elastic material,
(2.3) is the equilibrium equation, in which volume forces of density f i acts in �i. Bound-
ary condition (2.4) means that the body is clamped on �iD, and so the displacement field
vanishes there. Surface tractions of density gi act on �iN in (2.5). In the contact boundary
condition (2.6), σ iτ = 0 implies that it is a frictionless contact. Here, [u]ν = u1 · ν1 + u2 · ν2,
and h0 ∈ H1(�C) is the initial gap. The condition (2.7) means no interpenetration between
two bodies. Note that σ1ν1 = σ2ν2 on �C , so we use σν instead.

The fourth-order elasticity tensor C : �i ×S
d → S

d is assumed to be bounded, symmet-
ric and positive definite in �i, i.e.,

⎧
⎪⎪⎨

⎪⎪⎩

(a) Cijkl ∈ L∞(�i), 1 ≤ i, j, k, l ≤ d;

(b) Cσ : τ = σ : Cτ ∀σ ,τ ∈ S
d, a.e. in �i;

(c) ∃m > 0 s.t. Cτ : τ ≥ m|τ |2, ∀τ ∈ S
d, a.e. in �i.

(2.8)

If the elastic behavior of the material is homogeneous and isotropic, then the elasticity
tensor is given by

Cε = λ(trε)I + 2με, (2.9)

where λ > 0 and μ > 0 are the Lamé coefficients.
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To give the weak formulation of the contact problem, we define

Vi =
{

v ∈ [
H1(�i)

]d : v = 0 on �iD
}

, (2.10)

K =
{

(v1, v2) ∈ V1 × V2 : [v]ν – h0 ≤ 0 a.e. on �C
}

. (2.11)

The admissible set K is non-empty, closed, and convex.
Following a standard argument [4, 41], the variational formulation of the frictionless

contact problem of two elastic bodies (2.2)–(2.7) is:
Problem (P1). Find displacement fields (u1, u2) ∈ K such that

∑

i=1,2

ai(ui, vi – ui) ≥
∑

i=1,2

	i(vi – ui) ∀(v1, v2) ∈ K . (2.12)

Here, for all ui, vi ∈ Vi, the bilinear form ai(·, ·) and the linear form 	i ∈ V ′
i are

ai(ui, vi) =
∫

�i

σ i(ui) : ε(vi) dx, (2.13)

	i(vi) =
∫

�i

f i · vi dx +
∫

�iN

gi · vi ds. (2.14)

For the space Vi, since meas(�iD) > 0, we know that the norm ‖v‖a,�i =
√

ai(v, v) is equiv-
alent to the standard [H1(�i)]d norm ‖v‖1,�i on Vi by Korn’s inequality. Hence, the bilinear
form is coercive and bounded

ai(v, v) ≥ Cs‖v‖2
1,�i

, (2.15)

ai(u, v) ≤ Cb‖u‖1,�i‖v‖1,�i , (2.16)

for any u, v ∈ Vi.
For considering the effect of friction, we can replace the frictionless condition (2.6) by

the Tresca friction law

⎧
⎪⎪⎨

⎪⎪⎩

‖σ iτ‖ ≤ η,

‖σ iτ‖ < η ⇒ [u]iτ = 0 on �C .

‖σ iτ‖ = η ⇒ ∃β ≥ 0 : σ iτ = –β[u]iτ ,

(2.17)

Here, [u]1τ = u1 – u2 – [u]νν1 = –[u]2τ , and note that σ 1τ = –σ 2τ . Then the variational
formulation of the frictional contact problem of two elastic bodies is:

Problem (P2). Find displacement fields (u1, u2) ∈ K such that

∑

i=1,2

ai(ui, vi – ui) + j(v) – j(u) ≥
∑

i=1,2

	i(vi – ui) ∀(v1, v2) ∈ K , (2.18)

where

j(v) =
∫

�C

η
∥∥[v]1τ

∥∥ds.
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Note that the contact problem with Coulomb’s law can be approximated by a succession
of states of the Tresca friction in which the friction threshold is fixed at each fixed-point
iteration.

3 Abstract framework of VEM
In this section, following the ideas in [5, 14, 42], we present an abstract framework on
the virtual element methods for solving the variational inequality problems (2.12) and
(2.18).

With i = 1, 2, for a polygonal domain �i, let T h
i be a subdivision of �i into elements

denoted by T , set hT = diam(T), hi = max{hT : T ∈ T h
i }, and h = max{h1, h2}. All the subdi-

visions are compatible with the boundary splitting: �i = �iD ∪ �iN ∪ �C . Note that the
two meshes T h

1 and T h
2 may not be matching on the contact boundary �C . However,

in the light of VEM’s capability of adding arbitrarily new nodes to existing discretiza-
tion, some new nodes on the contact interface can be inserted into elements without
difficulty so that the non-matching meshes are transformed into matching meshes, see
details in [42]. Without ambiguity, we still use T h

i , i = 1, 2 to denote the new matching
meshes.

Following [5], we make an assumption on the decompositions {T h
i }h as follows:

A1. For each T h
i , and every T ∈ T h

i , there exists a positive constant γ such that
• the length of the shortest edge is greater or equal to γ hT ,
• T is star-shaped with respect to a ball of radius ≥ γ hT .
Note that the bilinear form can be split as

ai(u, v) =
∑

T∈T h
i

∫

T
Cε(u) : ε(v) dx =

∑

T∈T h
i

aiT (u, v).

Following [5, 14], we assume that there exists a finite-dimensional space V h
i ⊂ Vi and

bilinear form ah
i : V h

i × V h
i → R satisfying the following assumption:

A2. For each T h
i , we assume that there exists a symmetric bilinear form ah

i (·, ·) : V h
i ×

V h
i →R, which can be split as

ah
i
(

uh, vh) =
∑

T∈T h
i

ah
iT

(
uh, vh),

where ah
iT (·, ·) is a bilinear form on V h

iT × V h
iT with V h

iT is the restriction of V h
i on T . Fur-

thermore, for each T , we have P1(T) ⊂ V h
iT , and the bilinear form ah

iT satisfies
• Polynomial consistency: for all vh ∈ V h

iT ,

ah
iT

(
vh, p

)
= aiT

(
vh, p

) ∀p ∈ Pk(T). (3.1)

• Stability: there exist two positive constants α∗ and α∗, independent of hi and T , such
that

α∗aiT
(

vh, vh) ≤ ah
iT

(
vh, vh) ≤ α∗aiT

(
vh, vh) ∀vh ∈ V h

iT . (3.2)

The symmetry of ah(·, ·), stability (3.2), and the continuity (2.16) of a(·, ·) easily imply

α∗ai
(

vh, vh) ≤ ah
i
(

vh, vh) ≤ α∗ai
(

vh, vh) ∀vh ∈ V h
i , (3.3)



Wang and Reddy Fixed Point Theory Algorithms Sci Eng         (2022) 2022:10 Page 6 of 12

ah
i
(

uh, vh) ≤ α∗Cb
∥∥uh∥∥

1,�

∥∥vh∥∥
1,� ∀uh, vh ∈ V h

i . (3.4)

A3. For each h, we assume that there exists an element f h
i ∈ (V h

i )′ such that

(
f i, vh)

�
–

〈
f h

i , vh〉 ≤ Chi‖f i‖0,�i

∣∣vh∣∣
1,�i

∀vh ∈ V h
i . (3.5)

Remark 3.1
1. Under the assumption (A1), we have the following approximation properties. For

any v ∈ H2(T), there exist vI ∈ V h
T and vπ ∈ P1(T) such that

‖v – vI‖0,T + hT |v – vI |1,T ≤ Ch2
T |v|2,T , (3.6)

‖v – vπ‖0,T + hT |v – vπ |1,T ≤ Ch2
T |v|2,T . (3.7)

2. For the specific constructions of the bilinear form ah
i (·, ·), and f h

i ∈ (V h
i )′ such that

the assumptions (A2)–(A3) are satisfied, we refer the reader to [5, 37, 42].

The VE scheme for solving Problem (P1) is:
Problem (Ph

1). Find (uh
1, uh

2) ∈ Kh such that

∑

i=1,2

ah
i
(

uh
i , vh

i – uh
i
) ≥

∑

i=1,2

	h
i
(

vh
i – uh

i
) ∀(

vh
1, vh

2
) ∈ Kh, (3.8)

where

	h
i (vi) =

〈
f h

i , vh
i
〉
+

∫

�iN

gi · vh
i ds, (3.9)

and

Kh =
{(

vh
1, vh

2
) ∈ V h

1 × V h
2 :

[
vh(x)

]
ν

– h0(x) ≤ 0 for any node x ∈ �C
}

.

Remark 3.2 Note that the functions of the lowest-order VEM are linear on the element
boundary, so the inequality condition in Kh implies that [vh]ν – hI

0 ≤ 0 on �C . This contact
constraint can be imposed by the Lagrangian multiplier approach or penalty formulation
[41, 42].

The VE scheme for solving Problem (P2) is:
Problem (Ph

2). Find (uh
1, uh

2) ∈ Kh such that

∑

i=1,2

ah
i
(

uh
i , vh

i – uh
i
)

+ j
(

vh) – j
(

uh) ≥
∑

i=1,2

	h
i
(

vh
i – uh

i
) ∀(

vh
1, vh

2
) ∈ Kh. (3.10)

4 Error estimates
In this section, we establish a priori error analysis of the virtual element method for solving
the two contact problems (2.12) and (2.18).
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Theorem 4.1 Let ui ∈ H2(�i) and uh
i be the solutions of (2.12) and (3.8), respectively.

Furthermore, assume that ui|�C ∈ H2(�C) and h0 ∈ H2(�C), then

∑

i=1,2

∥∥ui – uh
i
∥∥

1,�i
≤ C(h1 + h2), (4.1)

where the constant C depends on Cs, Cb, |ui|2,�i , |ui|2,�C , |h0|2,�C , and ‖f i‖0,�i .

Proof First, we split the error as two parts

ei = ui – uh
i = ui – uI

i + uI
i – uh

i := eI
i + eh

i .

From (2.15), the properties (3.1)–(3.2) of the bilinear form ah, and the discrete scheme
(3.8), we have

α∗Cs
∑

i=1,2

∥∥eh
i
∥∥2

1,�i
≤ α∗

∑

i=1,2

ai
(

eh
i , eh

i
)

≤
∑

i=1,2

ah
i
(

eh
i , eh

i
)

=
∑

i=1,2

(
ah

i
(

uI
i , eh

i
)

– ah
i
(

uh
i , eh

i
))

≤
∑

i=1,2

(
ah

i
(

uI
i , eh

i
)

– 	h
i
(

eh
i
))

=
∑

i=1,2

∑

T∈T h
i

(
ah

iT
(

uI
i – uπ

i , eh
i
)

+ ah
iT

(
uπ

i , eh
i
))

–
∑

i=1,2

	h
i
(

eh
i
)

=
∑

i=1,2

∑

T∈T h
i

(
ah

iT
(

uI
i – uπ

i , eh
i
)

+ aiT
(

uπ
i , eh

i
))

–
∑

i=1,2

	h
i
(

eh
i
)

=
∑

i=1,2

∑

T∈T h
i

(
ah

iT
(

uI
i – uπ

i , eh
i
)

+ aiT
(

uπ
i – ui, eh

i
))

+
∑

i=1,2

ai
(

ui, eh
i
)

–
∑

i=1,2

	h
i
(

eh
i
)

= R1 + R2 + R3, (4.2)

where

R1 =
∑

i=1,2

∑

T∈T h
i

(
ah

iT
(

uI
i – uπ

i , eh
i
)

+ aiT
(

uπ
i – ui, eh

i
))

, (4.3)

R2 =
∑

i=1,2

(
	i

(
eh

i
)

– 	h
i
(

eh
i
))

, (4.4)

R3 =
∑

i=1,2

(
ai

(
ui, eh

i
)

– 	i
(

eh
i
))

. (4.5)
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Next, we estimate the above inequality term by term. By the boundedness (2.16), (3.4)
of the bilinear forms, and the approximation properties (3.6), (3.7), we get

R1 ≤
∑

i=1,2

(
α∗Cb

∥
∥uI

i – uπ
i
∥
∥

1,hi

∥
∥eh

i
∥
∥

1,�i
+ Cb

∥
∥uπ

i – ui
∥
∥

1,hi

∥
∥eh

i
∥
∥

1,�i

)

≤ C
∑

i=1,2

hi|ui|2,�i

∥∥eh
i
∥∥

1,�i
. (4.6)

Here, ‖ · ‖1,hi = (
∑

T∈T h
i

‖ · ‖2
1,T )1/2. The approximation property (3.5) gives

R2 =
∑

i=1,2

(
f i, eh

i
)

–
〈
f h

i , eh
i
〉 ≤ C

∑

i=1,2

hi‖f‖0,�i

∥∥eh
i
∥∥

1,�i
. (4.7)

Recalling the integration by part formula (2.1) and the relations (2.2)–(2.7), we have

R3 =
∑

i=1,2

(
–

∫

�i

divσ i · eh
i dx +

∫

�i

σ iνi · eh
i ds – 	i

(
eh

i
))

=
∑

i=1,2

∫

�C

σ iνi · eh
i ds (4.8)

=
∑

i=1,2

(∫

�C

σiνi e
h
iνi

ds +
∫

�C

σ iτ · eh
iτ ds

)

=
∫

�C

σν

(
eh

1ν1 + eh
2ν2

)
ds

=
∫

�C

σν

([
uI]

ν
–

[
uh]

ν

)
ds.

For any node x ∈ �C , if σν(x) �= 0, then [u(x)]ν – h0(x) = 0, so

σν(x)
([

uI(x)
]
ν

–
[

uh(x)
]
ν

)

= σν(x)
([

uI(x)
]
ν

–
[

u(x)
]
ν

+ h0(x) – hI
0(x) + hI

0(x) –
[

uh(x)
]
ν

)

≤ σν(x)
([

uI(x)
]
ν

–
[

u(x)
]
ν

+ h0(x) – hI
0(x)

)
.

Therefore,

R3 ≤
∫

�C

σν

([
uI]

ν
– [u]ν + h0 – hI

0
)

ds

≤ ‖σν‖0,�C

(∥∥[
uI – u

]
ν

∥
∥

0,�C
+

∥
∥h0 – hI

0
∥
∥

0,�C

)

≤ C‖σν‖0,�C

(
h2

1|u1|2,�C + h2
2|u2|2,�C + h2|h0|2,�C

)
. (4.9)

Combining (4.6)–(4.9), we obtain ‖eh
1‖1,�1 + ‖eh

2‖1,�2 ≤ C(h1 + h2). Finally, the proof is
completed by the triangle inequality. �
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Theorem 4.2 Let ui ∈ H2(�i) and uh
i be the solutions of (2.12) and (3.8), respectively.

Furthermore, assume that ui|�C ∈ H2(�C) and h0 ∈ H2(�C), then

∑

i=1,2

∥∥ui – uh
i
∥∥

1,�i
≤ C(h1 + h2), (4.10)

where the constant C depends on Cs, Cb, |ui|2,�i , |ui|2,�C , |h0|2,�C , and ‖f i‖0,�i .

Proof Taking the similar arguments as in the proof of Theorem 4.1 and considering the
discrete scheme (3.10), we have

α∗Cs
∑

i=1,2

∥∥eh
i
∥∥2

1,�i

≤ α∗
∑

i=1,2

ai
(

eh
i , eh

i
) ≤

∑

i=1,2

ah
i
(

eh
i , eh

i
)

=
∑

i=1,2

(
ah

i
(

uI
i , eh

i
)

– ah
i
(

uh
i , eh

i
))

≤
∑

i=1,2

(
ah

i
(

uI
i , eh

i
)

– 	h
i
(

eh
i
))

+ j
(

uI) – j
(

uh)

=
∑

i=1,2

∑

T∈T h
i

(
ah

iT
(

uI
i – uπ

i , eh
i
)

+ ah
iT

(
uπ

i , eh
i
))

–
∑

i=1,2

	h
i
(

eh
i
)

+ j
(

uI) – j
(

uh)

=
∑

i=1,2

∑

T∈T h
i

(
ah

iT
(

uI
i – uπ

i , eh
i
)

+ aiT
(

uπ
i , eh

i
))

–
∑

i=1,2

	h
i
(

eh
i
)

+ j
(

uI) – j
(

uh)

=
∑

i=1,2

∑

T∈T h
i

(
ah

iT
(

uI
i – uπ

i , eh
i
)

+ aiT
(

uπ
i – ui, eh

i
))

+
∑

i=1,2

ai
(

ui, eh
i
)

–
∑

i=1,2

	h
i
(

eh
i
)

+ j
(

uI) – j
(

uh)

= R1 + R2 + R3, (4.11)

where

R1 =
∑

i=1,2

∑

T∈T h
i

(
ah

iT
(

uI
i – uπ

i , eh
i
)

+ aiT
(

uπ
i – ui, eh

i
))

, (4.12)

R2 =
∑

i=1,2

(
	i

(
eh

i
)

– 	h
i
(

eh
i
))

, (4.13)

R3 =
∑

i=1,2

(
ai

(
ui, eh

i
)

– 	i
(

eh
i
))

+ j
(

uI) – j
(

uh). (4.14)

The terms R1 and R2 can be estimated as shown in (4.6) and (4.7).
Recalling the integration by part formula (2.1) and the relations (2.2)–(2.5), (2.7), and

(2.17), we have

R3 =
∑

i=1,2

(
–

∫

�i

divσ i · eh
i dx +

∫

�i

σ iνi · eh
i ds – 	i

(
eh

i
))

+ j
(

uI) – j
(

uh)

=
∑

i=1,2

∫

�C

σ iνi · eh
i ds + j

(
uI) – j

(
uh)
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=
∑

i=1,2

(∫

�C

σiνi e
h
iνi

ds +
∫

�C

σ iτ · eh
iτ ds

)
+ j

(
uI) – j

(
uh)

=
∫

�C

σν

(
eh

1ν1 + eh
2ν2

)
ds +

∑

i=1,2

∫

�C

σ iτ · eh
iτ ds + j

(
uI) – j

(
uh). (4.15)

Note that
∫
�C

σν(eh
1ν1 + eh

2ν2 ) ds can be estimated as done in the proof of Theorem 4.1, so
let us consider the rest terms.

∑

i=1,2

∫

�C

σ iτ · eh
iτ ds + j

(
uI) – j

(
uh)

=
∫

�C

σ 1τ · [uI]
1τ

ds –
∫

�C

σ 1τ · [uh]
1τ

ds + j
(

uI) – j
(

uh)

≤
∫

�C

σ 1τ · [uI]
1τ

ds + j
(

uI)

=
∫

�C

σ 1τ · [uI]
1τ

ds + j
(

uI) –
∫

�C

σ 1τ · [u]1τ ds – j(u)

≤ C
∫

�C

η
∥∥[

uI – u
]

1τ

∥∥ds

≤ C‖η‖0,�C

∥
∥[

uI – u
]

1τ

∥
∥

0,�C

≤ C‖η‖0,�C

∑

i=1,2

h2
i |ui|2,�C . (4.16)

Combining (4.11)–(4.16), we obtain ‖eh
1‖1,�1 + ‖eh

2‖1,�2 ≤ C(h1 + h2). Finally, the proof
is completed by the triangle inequality. �

Acknowledgements
The authors are grateful to Professor Weimin Han and Professor Peter Wriggers for their valuable suggestions and
discussions.

Funding
The work of the first author was partially supported by the National Natural Science Foundation of China (Grant
No. 12171383). The work of the second author was supported by the National Research Foundation through the South
African Chair in Computational Mechanics (SARChI Grant 47584).

Abbreviations
VEM, virtual element method; FEM, finite element method; DG, discontinuous Galerkin.

Availability of data and materials
No data.

Declarations

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
FW: Conceptualization, Methodology, Writing – Original Draft. BDR: Conceptualization, Writing – Review and Editing. All
authors read and approved the final manuscript.

Author details
1School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P.R. China. 2Centre for Research in
Computational and Applied Mechanics, University of Cape Town, Rondebosch, Cape Town 7701, South Africa.



Wang and Reddy Fixed Point Theory Algorithms Sci Eng         (2022) 2022:10 Page 11 of 12

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 4 October 2021 Accepted: 29 December 2021

References
1. Andersson, L.E.: A quasistatic frictional problem with normal compliance. Nonlinear Anal. 16, 347–369 (1991)
2. Antonietti, P.F., Beirão da Veiga, L., Mora, D., Verani, M.: A stream function formulation of the Stokes problem for the

virtual element method. SIAM J. Numer. Anal. 52, 386–404 (2014)
3. Antonietti, P.F., Beirão da Veiga, L., Scacchi, S., Verani, M.: A C1 virtual element method for the Cahn–Hilliard equation

with polygonal meshes. SIAM J. Numer. Anal. 54, 34–56 (2016)
4. Atkinson, K., Han, W.: Theoretical Numerical Analysis: A Functional Analysis Framework, 3rd edn. Springer, New York

(2009)
5. Beirão da Veiga, L., Brezzi, F., Marini, L.D.: Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51,

794–812 (2013)
6. Benkhira, E.L.-H., Fakhar, R., Mandyly, Y.: Analysis and numerical approximation of a contact problem involving

nonlinear Hencky-type materials with nonlocal Coulomb’s friction law. Numer. Funct. Anal. Optim. 40, 1291–1314
(2019)

7. Chen, L., Wei, H., Wen, M.: An interface-fitted mesh generator and virtual element methods for elliptic interface
problems. J. Comput. Phys. 334, 327–348 (2017)

8. Deng, Y., Wang, F., Wei, H.: A posteriori error estimates of virtual element method for a simplified friction problem. J.
Sci. Comput. 83, 52 (2020)

9. Djoko, J.K., Ebobisse, F., McBride, A.T., Reddy, B.D.: A discontinuous Galerkin formulation for classical and gradient
plasticity – Part 1: formulation and analysis. Comput. Methods Appl. Mech. Eng. 196, 3881–3897 (2007)

10. Falk, R.: Error estimates for the approximation of a class of variational inequalities. Math. Comput. 28, 963–971 (1974)
11. Feng, F., Han, W., Huang, J.: Virtual element methods for elliptic variational inequalities of the second kind. J. Sci.

Comput. 80, 60–80 (2019)
12. Feng, F., Han, W., Huang, J.: Virtual element method for an elliptic hemivariational inequality with applications to

contact mechanics. J. Sci. Comput. 81, 2388–2412 (2019)
13. Fischer, K.A., Wriggers, P.: Mortar based frictional contact formulation for higher order interpolations using the

moving friction cone. Comput. Methods Appl. Mech. Eng. 195, 5020–5036 (2006)
14. Gain, A.L., Talischi, C., Paulino, G.H.: On the virtual element method for three-dimensional elasticity problems on

arbitrary polyhedral meshes. Comput. Methods Appl. Mech. Eng. 282, 132–160 (2014)
15. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984)
16. Gudi, T., Porwal, K.: A posteriori error control of discontinuous Galerkin methods for elliptic obstacle problems. Math.

Compet. 83, 579–602 (2014)
17. Han, W.: On the numerical approximation of a frictional contact problem with normal compliance. Numer. Funct.

Anal. Optim. 17, 307–322 (1996)
18. Han, W., Sofonea, M.: Analysis and numerical approximation of an elastic frictional contact problem with normal

compliance. Appl. Math. 25, 415–435 (1999)
19. Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods.

SIAM, Philadelphia (1988)
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