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Abstract
The COVID-19 pandemic has had devastating consequences across the globe, and
has led many governments into completely new decision making territory. Devel-
oping models which are capable of producing realistic projections of disease spread
under extreme uncertainty has been paramount for supporting decision making by
many levels of government. In South Africa, this role has been fulfilled by the
South African COVID-19 Modelling Consortium’s generalised Susceptible-Exposed-
Infectious-Removed compartmental model, known as the National COVID-19 Epi
Model. This thesis adapted and contributed to the Model; its primary contribution
has been to incorporate the feature that resources available to the health system are
limited. Building capacity constraints into the Model allowed it to be used in the
resource-scarce context of a pandemic. This thesis further designed and implemented
a goal programming framework to shift ICU beds between districts intra-provincially
in a way that aimed to minimise deaths caused by the non-availability of ICU beds.
The results showed a 15% to 99% decrease in lives lost when ICU beds were shifted,
depending on the scenario considered. Although there are limitations to the scope and
assumptions of this thesis, it demonstrates that it is possible to combine mathematical
modelling with optimisation in a way that may save lives through optimal resource
allocation.
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1
Introduction

This chapter will provide brief context on the effects of COVID-19 and the role of
infectious disease modelling in guiding governmental decision making. It will further
outline the research objectives and scope of this thesis.

1.1 Background

The COVID-19 pandemic has burdened health systems to the point of collapse glob-
ally, and health resource scarcity has undoubtedly resulted in higher mortality than
it would have if nations were operating under unlimited health system capacity. This
holds especially true in regions like Africa which face, for example, dire Intensive
Care Unit (ICU) bed shortages under normal circumstances (Dzinamarira, Dzobo,
and Chitungo, 2020). At the time of writing, there have been over 46 million reported
cases globally, and 725 452 in South Africa (SA) in particular (Mkhize, 2020; Johns
Hopkins University and Medicine, 2021).

Both the developed and developing worlds have struggled under the strain of COVID-
19. Some examples include when Italy’s world-class healthcare system buckled under
the stress of the pandemic, with hospitals running out of beds and staff (Chow and
Saliba, 2020), while in Houston, Texas, ICU beds ran out to the point that COVID-
19 patients had to be treated in sub-optimal emergency rooms. The pandemic also
saw London’s Northwick Park hospital running short of ICU beds, resulting in treat-
ment of COVID-19 patients in operating theatres (Campbell, Marsh, and Bannock,
2020). In South Africa, many health facilities have suffered shortages brought on or
exacerbated by the pandemic. Not only have hospitals faced staff shortages due to
coronavirus infections, but the staff of many facilities have gone on strike due to under-
staffing and a lack of personal protective equipment (PPE), especially in the Eastern
Cape (Lepule, 2020; SA Provincial Health, 2020; Harding, 2020). Major Western
Cape hospital Tygerberg ran out of ICU beds, while Gauteng faced oxygen shortages
(Haffajee, 2020; Petersen, 2020). These widespread health system failings indicate
a need for better planning, and for better sharing of resources between resource-rich
and resource-scarce regions.

In the face of such scarcity, governments around the world have found themselves in
largely uncharted decision making territory, and as a result, the importance of reli-
able decision support under uncertainty has never been more apparent. Mathematical
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modelling of the spread of COVID-19 has both led public thinking around intervention
measures, and come under intense scrutiny, the most obvious example being Imperial
College London’s simulation models from March of 2020 (Adam, 2020). The results
of these compartmental models were shared both with the United Kingdom (UK)
government, and the White House in the United States of America (USA), and are
said to have influenced action in both countries (Adam, 2020).

In South Africa, a multidisciplinary group known as the South African COVID-19
Modelling Consortium (SACMC) was formed to help guide decision makers on var-
ious levels of government throughout the course of the COVID-19 pandemic. The
group, of which the candidate is a member, developed and implemented a population-
level compartmental model known as the National COVID-19 Epi Model (NCEM) to
project disease spread on a district level in South Africa. However, the resource-scarce
context of a pandemic specifically calls for models which incorporate shortages and
can thereby examine their effects on mortality. Moreover, there is a need for mitiga-
tion of these effects through intelligent allocation of resources, which can be achieved
through an optimisation framework.

1.2 Research Objectives

In the development of the NCEM at the start of the epidemic in South Africa, this re-
search contributed the inclusion of general and ICU bed capacity constraints (COVID-
19 Modelling Consortium, 2020). Furthermore, this thesis built the epidemiological
model into a wider optimisation framework, which uses a goal programming approach
to shift resources amongst districts in a way that is optimal for reducing shortages,
and in turn minimising loss of life. The research objectives can be summarised as
follows:

1. Provide a descriptive analysis of the data for this thesis.

2. Adapt the SACMC’s model to be able to measure excess mortality due to the
non-availability of ICU and general hospital beds in each district.

(a) Implement and examine the results of these capacity constraints.

(b) Examine excess mortality in each of the districts.

(c) Explore the relationship between the availability of resources and excess
mortality.

3. Develop a goal programming framework which aims to minimise excess mortality
by optimally shifting resources amongst districts over the course of a year.

(a) Design a number of scenarios under which to implement the goal program-
ming and simulation framework.

(b) Explore under which circumstances (if any) the reduction in excess mor-
tality is greatest.

1.3 Scope

Global scientific knowledge of COVID-19 is growing on a daily basis and, with the
advent of second waves, the global context of the pandemic continues to develop

https://sacovid19mc.github.io


Chapter 1. Introduction 3

rapidly. The research for this thesis began in March 2020, and the literature upon
which the analysis is based was published primarily by the first half of 2020. Where
possible, as new information became available, it was included in this thesis; however,
it is likely that some of the literature is outdated by the time this thesis is submitted
for examination. While the candidate’s research with the SACMC continues at a fast
pace, the scientific knowledge of COVID-19 included in this thesis has been limited
to what was published by October 2020. Similarly, the research for this thesis was in
its final stages when the lineage B.1.351 emerged and brought about a second wave
of COVID-19 in South Africa. Hence, this thesis focused on the first wave.
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2
Literature Review

This chapter will lay down the context of COVID-19 and the South African health
system. It will then explore the literature on the modelling of COVID-19 primarily
in Africa and South Africa, with specific attention given to previous works which
address the idea of limited capacity. It will further investigate the application of
goal programming in healthcare resource allocation, and finally the combination of
simulation and goal programming in healthcare, in order to paint a holistic picture of
the literary foundation on which this thesis is built.

2.1 The COVID-19 context

Understanding how to tackle the issue of limited and spatially-variable capacity to
fight COVID-19 requires first establishing an understanding of the disease itself, and
the way in which it has affected, and been handled by, South Africa. COVID-19
is a respiratory disease caused by the coronavirus SARS-CoV-2, which originated in
the Hubei province of China in December 2019 (The Novel Coronavirus Pneumo-
nia Emergency Response Epidemiology Team, 2020). Respiratory droplets are the
main mode of transmission of the disease, primarily via person-to-person contact, but
secondarily through the contamination of surfaces (Wiersinga et al., 2020). One of
the greatest challenges in containing the disease lies in the fact that presymptomatic
carriers are infectious; in fact, it is estimated that around half of all transmission
occurs in this way (Wiersinga et al., 2020). This is no surprise; as shown by He et al.
(2020), infectiousness is highest in individuals before or at the time of symptom onset.

As demonstrated in a study in China, COVID-19 causes only mild symptoms in ap-
proximately 80% of cases (The Novel Coronavirus Pneumonia Emergency Response
Epidemiology Team, 2020). Children tend to present with especially mild symptoms
that are concentrated in the upper respiratory tract (Wiersinga et al., 2020). However,
elderly people and individuals with co-morbidities are at higher risk of severe or crit-
ical infection (Sanyaolu et al., 2020). The disease has consequently resulted in more
than a million fatalities worldwide at the time of writing (Johns Hopkins University
and Medicine, 2021).

While as of November 2020 there is no cure for COVID-19, various pharmaceutical and
non-pharmaceutical interventions have been successfully used to combat the disease.
Chu et al. (2020) showed that maintaining a distance of at least one metre between
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people and wearing face masks both significantly reduce the chances of transmission.
Additionally, hand washing, contact tracing and limiting the size of gatherings all
help to contain the spread of the disease (Wiersinga et al., 2020). There are two drugs
which have largely helped curb the damage caused by COVID-19. The antiviral drug
Remdesivir helps speed up the time to recovery (Beigel et al., 2020), while the anti-
inflammatory Dexamethasone has been shown to reduce mortality amongst patients
on oxygen or mechanical ventilation (Horby et al., 2020). Most hospitalised patients
require oxygenation; when conventional oxygenation fails, high-flow nasal canula oxy-
gen is administered (Wiersinga et al., 2020; Alhazzani et al., 2020). While mechanical
ventilation can be necessary, unwarranted intubation can cause further complications
(Wiersinga et al., 2020).

There are as yet many unknowns, not least of which is the strength and duration of im-
munity to the disease after infection. In October 2020, Ripperger et al. (2020) found in
a study that antibodies were detectable for five to seven months after infection. How-
ever, whether this guarantees immunity to reinfection is unknown. Moreover, there
has been evidence of reinfection around the world, albeit on a small scale (Tillett
et al., 2020; Iwasaki, 2020). There has been no evidence of reinfection in South Africa
(Ismail, 2020). At the time of writing, there are 36 vaccines in Phase 1 trials, 16 in
Phase 2, 11 in Phase 3, and none approved for use (Kommenda and Hulley-Jones,
2020).

2.2 The South African context

Most of South Africa’s over 59 million-strong population is served by the country’s
public health system (Statistics South Africa, 2020). According to the 2018 General
Household Survey (GHS), 71.5% of households cited public health institutions, such
as hospitals and clinics, as their first port of call when seeking healthcare (Statis-
tics South Africa, 2018). Only 27.1% of households reported seeking care via private
avenues, be it doctors’ surgeries or private hospitals (Statistics South Africa, 2018).
Health insurance or medical aid schemes exist purely for those who can afford them,
and as of 2018, only 16.4% of the population were estimated to be protected by such
schemes (Statistics South Africa, 2018). This means that the COVID-19 pandemic
promised to place a large amount of pressure on an already strained public health
system.

The provincial governments run primary, secondary, and tertiary public health insti-
tutions, while public policy formation falls in the hands of the National Ministry of
Health (Mahlathi and Dlamini, 2015). As a result, the quality of and resources avail-
able to public healthcare tends to vary by province; for example, accessible health-
care is better in the Western Cape and Gauteng than it is in the Eastern Cape and
Limpopo (Delobelle, 2013). This highlights the regional variation in ability to tackle
a pandemic, which in turn supports the need for a spatial system of resource sharing.
The choice of districts for the level on which resources should be shifted is further
substantiated by the fact that most individuals access healthcare through the District
Health System (Mahlathi and Dlamini, 2015).
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South Africa’s response to COVID-19 has been relatively stringent. Social distancing,
school closure, and limitations to gatherings were enforced from the 18th of March
2020 (RSA Government, 2020a), only six days after the first confirmed case of local
transmission (Carlitz and Makhura, 2021). As of the 27th of March, South Africa was
subject to a "hard lockdown", in which people were required to remain at home unless
essential workers, or unless travelling to and from supermarkets and pharmacies (RSA
Government, 2020b). The lockdown was subsequently extended to the end of April
(RSA Government, 2020c), after which the country was moved to Alert Level 4 (RSA
Government, 2020e). The five Alert Levels were announced to be a reflection of both
the level of disease spread, and health system readiness, with Level 5 representing
"hard lockdown" and Level 1 indicating almost completely normal functioning of the
country. South Africa moved to Alert Levels 3, 2, and 1 on the 1st of June, 18th of
August, and the 21st of September 2020 respectively (RSA Government, 2020f; RSA
Government, 2020g; RSA Government, 2020h).

2.3 SEIR modelling of COVID-19

With context established around both the disease and the country at hand, the next
step is to explore the historical use of Susceptible-Exposed-Infectious-Removed (SEIR)
models in modelling COVID-19. There is extensive evidence of this in the literature
(Kucharski et al., 2020; Davies et al., 2020; Pei and Shaman, 2020; Leung et al.,
2020; Peng et al., 2020; Brand et al., 2020). This review will focus primarily on such
modelling as applied to the African and South African contexts.

The spatial granularity of the generalised SEIR models applied to Africa tends to
be very coarse. Davies et al. (2020) modelled Niger, Nigeria, and Mauritius on a
national level, and acknowledged that models should separate rural and urban areas
in order to account for slower and faster peaking respectively. Diop et al. (2020)
similarly modelled Ghana, Kenya, and Senegal on a national level, and also men-
tioned a non-ideal aggregation of rural and urban areas. All South African examples
found modelled the country on a national level (Mukandavire et al., 2020; Zhao et
al., 2020; Mushayabasa, Ngarakana-Gwasira, and Mushanyu, 2020; Nyabadza et al.,
2020). Brand et al. (2020) modelled Kenya in twenty distinct regions, determined by
population density, and then extrapolated results to the level of Kenya’s 47 counties.
The literature clearly indicates a need for a finer spatial granularity in the modelling
of COVID-19 in Africa and South Africa.

Incorporating the effects of population density on the spread of COVID-19 is an in-
tuitive aspect of COVID-19 modelling that is scarcely implemented in the literature.
While Pei and Shaman (2020) scaled the force of infection - or rate at which sus-
ceptible individuals become exposed to COVID-19 - by population density, few other
papers reviewed did more than comment on density as an aspect that should ideally
be included. Brand et al. (2020) modelled on the level of patches divided according
to density. In a study investigating the effects of social distancing on the spread of
COVID-19, Nyabadza et al. (2020) commented on the potential for population density
to affect ability to social distance, but did not account for it. The literature indicates
both a precedent and a need for incorporating the effects of population density.
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The purpose of modelling the spread of COVID-19 in Africa seems to exclude the issue
of hospital resource demand and supply. Most studies are geared towards predicting
general disease burden (Brand et al., 2020; Mukandavire et al., 2020) or assessing
the impact of non-pharmaceutical interventions (NPIs) (Zhao et al., 2020; Taboe et
al., 2020; Mushayabasa, Ngarakana-Gwasira, and Mushanyu, 2020; Nyabadza et al.,
2020). Davies et al. (2020) modelled with the aim of quantifying the effect of NPIs,
but specifically measured bed demand under each scenario given. Diop et al. (2020),
meanwhile, refrained from estimating mortality due to an acknowledgement that ca-
pacity data is crucial for this, but was unavailable.

The only study reviewed which directly attempted to explore the event of capacity’s
running out in an African context was that of Barasa, Ouma, and Okiro (2020),
which used the modelling estimates from another separate study (Brand et al., 2020).
Barasa, Ouma, and Okiro (2020) estimated surge capacity and the point at which
each of Kenya’s counties would run out of hospital and ICU beds, but this estimation
sequentially followed the modelling step rather than being integrated into it. Their
approach also omitted the dynamics of hospital resources, such as the availability of
trained healthcare workers (Barasa, Ouma, and Okiro, 2020). This demonstrates that
the modelling literature scarcely examines hospital demand and supply in the African
context.

Outside of Africa, the use of modelling to address the issue of limited hospital ca-
pacity also seems to be rare. Branas et al. (2020) directly sought to estimate excess
mortality due to the non-availability of critical care beds. They based their analysis
on the results of a generalised SEIR model created by Pei and Shaman (2020), which
modelled disease spread in the USA on the level of the 3108 counties. They used a
standard four compartment model. Branas et al. (2020) used the typical length of
stay (LOS) of COVID-19 patients to calculate discharge rates, and retrospectively to
calculate the number of patients who would have been turned away each day. These
patients were assumed to have a mortality rate of 95%. They found that the highest
such mortality was in urban counties. However, no account was given to the avail-
ability of healthcare workers and other hospital resources, such as ventilators. There
is thus universal room for improvement in the analysis of excess mortality.

In South Africa, the multidisciplinary SACMC, of which the candidate is a mem-
ber, was formed in late March 2020. The group developed the NCEM, a generalised
SEIR stochastic transmission model, which was created and continually updated with
the purpose of supporting decision making. Model results were presented to various
stakeholders on an ongoing basis throughout the first wave of the COVID-19 epidemic
in SA, such as the National Department of Health (NDOH), National Treasury, and
provincial departments of health. The district-level model includes compartments for
levels of disease severity - asymptomatic, pre-symptomatic, mild, severe, and critical -
as well as for treatment pathways including general hospital admission, ICU care, and
ventilation. This thesis is thus part of a wider project, and contributed the notion of
limited general and ICU bed capacity to the NCEM (SA COVID-19 Modelling Con-
sortium, 2020b). Note that the NCEM was not the only model reported in the media
during the early stages of the COVID-19 pandemic in South Africa. Several others,
including those by the Actuarial Society of South Africa, the firm Deloitte, and the
Pandemic Data Analysis group (Low and Geffen, 2020) were producing results. The
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candidate elected to work with the NCEM as its results were updated throughout the
first wave of COVID-19.

2.4 Goal programming applied to healthcare

The most widespread application of goal programming in healthcare appears to be
nurse scheduling (Azaiez and Sharif, 2005; Jenal et al., 2011; Agyei, Obeng-Denteh,
and Andaam, 2015; Ferland, Ahiod, and Michelon, 2001; Gür and Eren, 2018; Huarng,
1999). Consistent with the findings of Moon et al. (1989), health resource allocation
goal programming problems in the literature are more often applied within a par-
ticular institution than they are on a large scale (Arenas et al., 2002; Ataollahi et
al., 2013; Kwak and Lee, 1997; Blake and Carter, 2001). Furthermore, only one of
the papers reviewed applied goal programming to healthcare in the African context
(Agyei, Obeng-Denteh, and Andaam, 2015), and none to the South African context
in particular.

There was only one paper reviewed which dealt with health resource allocation on a
large scale the way this thesis aimed to do. Moon et al. (1989) successfully used a goal
programming approach to allocate financial resources amongst Papua New Guinea’s
19 provinces, and then went on to allocate the resources amongst seven health activ-
ities in each province. The idea was to develop a tool which could be used by policy
makers to make allocation decisions more objectively and in line with equal access.
This is a canonical example of the use of goal programming for equity in healthcare,
which mirrors the motivation behind this thesis. However, there thus appears to
be little literature pertaining to the allocating or shifting of tangible health resources
rather than budgetary allocations on a country-wide scale. It is worth noting that this
is not the case when one considers optimisation methods beyond goal programming.
For example, Rauner and Bajmoczy (2003) developed a decision support system based
on integer programming to allocate medical devices across different regions of Aus-
tria. Additionally, the field of humanitarian logistics presents numerous examples of
optimisation used to allocate tangible health resources. For instance, Serrato-Garcia,
Mora-Vargas, and Murillo (2016) developed a multi-objective optimisation model for
resource allocation during disaster relief.

2.5 Simulation and optimisation in healthcare

As this thesis aims to combine disease modelling and goal programming to address
an issue in public health, an examination of the historical use of simulation and op-
timisation together in the healthcare space is warranted. The vast majority of such
applications entail discrete event simulation (DES) (Oddoye et al., 2009; Oliveira et
al., 2020; Jerbi and Kamoun, 2009; Lal, Roh, and Huschka, 2016; Feng, Wu, and Chen,
2017; Lucidi et al., 2016; Chen et al., 2015; Ozcan, Tànfani, and Testi, 2017), and
an iterative simulation-optimisation routine (Oliveira et al., 2020; Lucidi et al., 2016;
Chen et al., 2015; Ozcan, Tànfani, and Testi, 2017). On the other hand, this thesis
aimed to use simulation to generate key parameters for the optimisation problem,
and to evaluate optimal solutions once they had been generated. Additionally, almost
all sources reviewed looked at scheduling or resource allocation within a particular
healthcare institute rather than on a multi-institute or national scale. Oliveira et al.
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(2020) was the only exception: the study looked at outsourcing hospital beds from the
private sector and reallocating public sector beds amongst Brazilian cities. However,
their simulation assumption when demand exceeded capacity was that capacity would
be temporarily stretched to cover the shortfall rather than dealing directly with the
consequences of scarcity.

There were three papers found which combined simulation with goal programming
in particular. Oddoye et al. (2009) used DES results to minimise metrics such as
patient queue lengths in the medical assessment unit of a UK hospital. Jerbi and
Kamoun (2009) also utilised DES in conjunction with goal programming to select op-
timal schedules in terms of, amongst other goals, minimising patients’ waiting times
in a Tunisian hospital. Meanwhile, Ahmed and Alkhamis (2009) combined Monte
Carlo simulation with goal programming to reduce patients’ overall time spent in an
emergency department unit of a government hospital in Kuwait.

There is much precedent for the use of simulation and optimisation in the context
of epidemic control. Malik and Sharomi (2017) conducted a review of such methods,
noting goal programming as one of the key optimisation strategies. Long, Nohdurft,
and Spinler (2018), using the 2014 Ebola outbreak as a case study, developed a multi-
patch Susceptible-Infectious-Removed model with connectivity amongst regions which
incorporated behavioural changes. The optimisation component compared four meth-
ods: a heuristic based on detected cases, a greedy R0-based policy, a myopic linear
programme which worked in an iterative loop with the model, and a dynamic pro-
gramming approach. The myopic linear programme performed the best across many
scenarios and was very fast computationally. A key limitation of the study was that
more complex models were not explored. Mbah and Gilligan (2011) similarly looked
at emerging infectious disease outbreaks in multiple interconnected regions, this time
using an Susceptible-Infectious-Removed-Susceptible model with two coupled sub-
populations. They used the Pontryagin maximum principle to establish that the most
efficient strategy was first to allocate resources to the more infected sub-population,
and later to switch to allocating resources to the less infected subpopulation.

2.6 Conclusion

At the time of writing, COVID-19 has no cure and no vaccine approved for use. South
Africa’s population, largely reliant as it is on public health care, is subject to geo-
graphic variations in the quality of health care. This shows a clear need for resource
sharing amongst South Africa’s districts in the time of COVID-19. While many have
used SEIR models to project the spread of COVID-19 in the African and South African
contexts, few have addressed the idea of limited capacity, which is where this thesis
contributed to the NCEM.
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3
Data

There are crucial sets of data which support various aspects of this thesis. It is
additionally worth examining the daily confirmed COVID-19 case data for South
Africa, in order to understand the context more completely. This chapter will chronicle
the collection and analysis of these data.

3.1 Collection

The four main datasets are outlined below:

1. The numbers of ICU and general hospital beds available in each district of
SA were estimated and provided by the Health Economics and Epidemiology
Research Office (HE2RO) (Van Den Heever, 2020).

2. The number of operational ambulances in each province was obtained in consul-
tation with Nikhil Khanna and Tucker Bbosa from the Clinton Health Access
Initiative (CHAI) (National Department of Health, 2020). The figure was miss-
ing for Gauteng, and was estimated by inflating the Western Cape’s number
according to the ratio of the two populations.

3. The cost of transporting patients via ambulance between districts was based on
the National Reference Price List for Ambulance Services (RSA Government,
2008). The latest figures are from 2009; they were inflated by 40% in order to
account for increases in the price of fuel. They were then decreased by 20% to
reflect prices in the public sector, as advised by the experts at CHAI. The base
fee for the first sixty minutes was assumed to apply to the first 100km of distance
between two districts; thereafter, the per kilometre fee for long-distance travel
was used.

4. The confirmed daily cases for SA were obtained from the GitHub repository
maintained by the Data Science for Social Impact Research Group at the Uni-
versity of Pretoria (Data Science for Social Impact Research Group @ University
of Pretoria, 2020).

3.2 Analysis

The numbers of ICU and general hospital beds are shown per 1000 of the population
in Figure 3.1. It is immediately evident that the two were on very different scales;
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the most resource-rich district in terms of ICU beds (Cape Town Metropolitan Mu-
nicipality) had 0.15 beds per 1000 people, while in terms of general hospital beds,
Johannesburg Metropolitan Municipality had 2.4 beds per 1000 people. Furthermore,
there were twelve districts which did not have any ICU beds at all, while there were
no districts which had no general hospital beds. This is intuitive, as ICU beds tend
to be in short supply across Africa, and clearly highlights the need for mobility of
either resources or patients amongst the districts in the context of a pandemic. It is
also evident that resources tended to be concentrated in the densely populated urban
hubs; that is, Johannesburg, Cape Town, and Durban, even when considering num-
bers adjusted for population. This further highlights the need to share resources with
resource-poor districts.

Figure 3.1: Numbers of ICU (left) and general hospital (right) beds

in each district per 1000 people. The thick lines

represent provincial borders, while thin lines separate

districts.

Each province’s number of operational ambulances is shown in Figure 3.2. Gauteng
had the highest number of ambulances, followed by the Eastern Cape, KwaZulu-Natal,
the Western Cape, and then the rest. This shows the same trend that provinces with
large cities are the most resource-rich. However, in this case, the numbers of ambu-
lances are absolute rather than per 1000 of the population. This is because it is not
necessarily only population size which affects the need for ambulances, but also the
geographical distances which the ambulances need to travel. It is worth noting, for
example, that the largest province in terms of area - the Northern Cape - had one of
the smallest counts of operational ambulances.

The estimated cost, in Rands, of transporting patients via ambulance between the
districts intra-provincially is shown in Figure 3.4. This plot highlights the variation
both in the number of districts per province and in the geographical distances in-
volved in traversing each province. The Eastern Cape and Northern Cape stood out
as having incredibly large distances amongst districts, causing the cost of a single trip
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Figure 3.2: Number of operational ambulances in each province.

to exceed R12,500 in some cases. KwaZulu-Natal, on the other hand, has a great
number of districts, but costs remained relatively low for the most part. Gauteng is
the only province in which all distances fall within 100km, and thus only the initial
fixed cost applies. This is likely a function of the fact that the distances are between
centroids; in reality, there would be distances which would exceed 100km when road
networks and extreme points are considered. The function used to calculate these
costs is shown in Figure 3.3.

Figure 3.3: Cost function for transport of patients via ambulance.

Cost data were not available for the transportation of ICU beds from district to
district; as such, an arbitrary scaled measure of distance (0.0001 of the kilometre
distance) was used as a proxy for cost. Although this does not strictly qualify as a
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dataset, the scaled distances between districts are shown in Appendix A. As expected,
the scaled distances had the same visual trends as the costs of ambulance transport
did. The most notable difference is that since there is no initial fixed distance, there
was more variation in the proxy values for cost than there was in actual ambulance
cost. This is immediately evident for provinces such as Gauteng and Mpumalanga.
Note that while these proxy values are not actual costs, they are referred to as cost
in this thesis for simplicity.

Figure 3.4: Cost (R) of transport via ambulance between districts

within provinces.

Figure 3.5: Number of daily confirmed cases in SA.

Finally, in setting the stage to proceed with this thesis, it is necessary to examine
the COVID-19 pandemic as it was reported in South Africa, as of November 2020.
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The daily confirmed cases are shown in Figure 3.5. At the peak of the first wave of
COVID-19, the country reported approximately 12,000 new cases per day. The entire
first wave began and ended between March and October. Although in reality, cases
were beginning to increase again at the end of November, hinting towards a second
wave, this thesis exclusively considered the first wave, and did not allow for the be-
ginning of a second wave by the end of December.
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4
Methodology

This chapter will expand on the topics of disease modelling and goal programming
as they were applied to this thesis. Additionally, the framework interfacing disease
modelling and goal programming will be introduced and motivated.

4.1 Disease modelling

This section will build the concept of an SEIR model and its components in a step-
by-step fashion, at each point discussing this thesis’s deviations from the NCEM, if
any.

The SEIR model, first introduced by Kermack and McKendrick (1927), is a population-
level compartmental model in which individuals transition amongst different compart-
ments according to population-averaged rates and probabilities. Generalised SEIR
models allow for any number of compartments and pathways, in addition to the
proportions of susceptible (S), exposed (E), infectious (I), and removed (R). The
transitions can be written as, and are solved as, a system of first order differential
equations. The equations for a simple SEIR model are shown below, while the cor-
responding model diagram is depicted in Figure 4.1. The force of infection, or rate
at which susceptible people become exposed to the virus, is represented by � = �I,
where � is known as the effective contact rate. The inverse of the incubation period
is denoted by �, while � denotes the inverse of the recovery period.

dS

dt
= ��IS

dE

dt
= �IS � �E

dI

dt
= �E � �I

dR

dt
= �I

Figure 4.1: Simple SEIR model structure.
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The force of infection is one of the most important and complex disease parameters
in an SEIR model (Hens et al., 2010). It can be modified in order to take into
account different factors affecting disease spread; this thesis deviated from the NCEM
primarily via two adjustments to the force of infection. In simple terms, and without
any adaptations, the force of infection can be calculated as the ratio of the number of
infectious individuals in a particular district to the total number of (living) individuals
in that district, multiplied by �, the effective contact rate. The effective contact rate
is simply the number of contacts between people per unit time, which in this case is
days, multiplied by the probability of transmission. These two components are not,
however, identifiable. As such, the formula for the force of infection can be summarised
as follows for the ith district:

FOIi = �iIi.

The NCEM is implemented over South Africa’s 52 districts, and, in this thesis, move-
ment amongst districts was incorporated via a simple gravity model, which scales
the force of infection according to the inverse distance between the centroids of the
districts (Barthelemy, 2010). This is a simplification of the NCEM, and implies that
districts contribute to each other’s levels of infection in a way that is inversely propor-
tional to distance. The NCEM calculated movement according to a Vodacom dataset,
to which the candidate was not able to gain access. Suppose D represents the 52 by
52 matrix of distances amongst the districts. Then the elements cij of a connectivity
matrix C are calculated as follows:

cij =

1
1+hDijP
j

1
1+hDij

.

Thereafter, C is normalised so that the rows sum to one. The tuning parameter h
controls the level of connectivity amongst the districts; the larger the distance between
two districts, the less connected they are, and a larger h amplifies this effect, in turn
slowing down spatial spread. The cij can be interpreted as probabilities: cij is the
probability of moving from from district i to district j, of all possible destinations.
The gravity model thus implicitly captures the effect of mobility without actually
allowing populations to flow from one district to another. The benefit of this is that
it avoids mixing populations into homogeneous compartments. Agent based models
(ABMs) are better suited if one wishes to allow for explicit population movement.

In order to achieve comparable output to that of the NCEM, h was set to 0.01. Note
that it was desirable to set tuning parameters such that results were comparable to
the NCEM’s, as this ensured that the model was producing realistic results. The
formula for the force of infection is adjusted as follows:

FOIi =
X

j

cij�jIj .

Thus, the rate at which susceptible people acquire the disease in district i is the sum
of the forces of infection in all districts, weighted by the probability of moving to each
district. Note that the diagonals of C are typically very close to one, indicating a high
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probability that individuals would be found in their home district.

The second deviation from the NCEM was implemented by way of density-dependent
scaling of the force of infection, which improves the way disease is assumed to spread
by allowing it to spread faster in districts with higher population density (Hu, Nig-
matulina, and Eckhoff, 2013). The formula for the force of infection worked with thus
far is in fact based on a frequency-dependent interpretation of transmission, in which
transmission is determined by the effective contact rate and the varying number of
individuals in the population at any given time. Under a density-dependent inter-
pretation, the denominator of the formula is instead set to the fixed population size,
implying that transmission depends rather on the general density of a population. For
example, a densely populated urban area would stay densely populated even while the
current population fluctuates, as would a rural area remain sparsely populated. It is
intuitive that disease would spread faster in the former context. However, as shown
by Hu, Nigmatulina, and Eckhoff (2013), this effect is more pronounced when popu-
lation sizes are small than it is when they are large. That is to say, the smaller the
population in a particular district, the more likely it is that transmission will depend
on density. Hu, Nigmatulina, and Eckhoff (2013) subsequently developed a hybrid
approach which allows the effect of population density on transmission to saturate at
a certain level. The force of infection for each district is thus multiplied by a density
factor, as follows:

FOIi =
X

j

cij

✓
1� exp

✓
�PDj

⇢

◆◆
�jIj .

Population density in the jth district is represented by PDj , while ⇢ is a tuning
parameter which controls the point at which the density-dependent part of transmis-
sion saturates and allows for frequency-dependent transmission to dominate. For the
purposes of closely mirroring the output produced by the NCEM, but to produce a
slightly lower attack rate (the proportion of the population which has been infected
over the entire period of the model) which reflects the reduced effect of density for
districts with larger populations, ⇢ was chosen to be twenty.

The structure of the generalised SEIR model, as designed by the SACMC, is shown
in Figure 4.3. Individuals move from being susceptible to exposed, and are then ei-
ther asymptomatic or are pre-symptomatic and develop symptoms. The majority of
infections are mild and require no hospital treatment. For the purposes of this thesis,
it was assumed that all of those who subsequently need treatment do seek treatment,
which renders the I

ST̄
compartment obsolete. This is because governments should

plan around the potential need for services rather than the anticipated use thereof.
Additionally, in the unprecedented situation of a global pandemic, it is impossible to
predict what the use of services would be.

In the absence of capacity constraints, COVID-19 patients progress either to a gen-
eral hospital ward or to ICU, where ICU is split according to ventilation needs and
whether patients are destined to die or to be discharged. The primary contribution
of this thesis is expressed in the addition of waiting chambers and accompanying
capacity constraints. As seen in Figure 4.3, there is a chamber WH for patients wait-
ing for a general hospital bed, and WV and W

V̄
for patients waiting for ICU beds.
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Figure 4.2: National COVID Epi Model structure (SA COVID-19

Modelling Consortium, 2020b). Note that the

candidate’s structural adjustments to the NCEM are

included in this diagram as they were adopted and used

by the SACMC.

When general hospital or ICU capacity is reached, patients are redirected to these
waiting chambers. Patients either die, recover, or re-enter the treatment pathways
after spending time in any one of the waiting chambers. In real terms, WH represents
patients who are not in the hospital system at all - they may be in a physical waiting
room - while patients in WV and W

V̄
are assumed to be occupying general hospital

beds while they wait. Finally, all individuals either die or join the removed state, in
which they are no longer hospitalised nor infectious.

The flows to and from the waiting chambers for ICU are governed by the rates and
probabilities shown in Table 4.2. The mechanism works in the same way for hospital
admissions. The parameters are specified in Table 4.1. The probability of requiring
ventilation is denoted by pV , while ⌧ICU is the inverse of the duration of progress
to ICU, pd2V and pd2V̄ are the probabilities of dying in ICU on and off ventilation
respectively, and r9 and r10 are the inverse of the times to recovery for those in
ICU, on and off ventilation respectively. The scale factors sc2 and sc3 are used to
inflate the probability of mortality - and in turn deflate the probability of recovery
- to account for patients who are in need of treatment but cannot proceed owing to
the non-availability of ICU beds. The avail2 variable controls the mechanism of the
capacity constraint in the way described by the Algorithm 1. The parameters µV and
µ
V̄

represent the inverse of the times to death on and off ventilation respectively. The
corresponding differential equations, for each district, are as follows:

dWV

dt
= (1�avail2)pV ⌧ICUH2� (1�min(sc2pd2V , 1))r9WV �min(sc2pd2V , 1)r9WV .
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Figure 4.3: National COVID Epi Model legend of compartments

and flows (SA COVID-19 Modelling Consortium,

2020b).

dWV̄

dt
= (1�avail2)(1�pV )⌧ICUH2�(1�min(sc3pd2V̄ , 1))r10WV̄

�min(sc3pd2V̄ , 1)r10WV̄
.

Algorithm 1: Capacity constraint algorithm
1 for each district do
2 Compute current occupied ICU,

ICUoccupied = ICUV̄ ,D + ICUV̄ ,R + ICUV,D + ICUV,R;

3 Compute patients proposed to enter ICU, proposed_enter = ⌧ICU ⇤H2;

4 Compute patients proposed to exit ICU, proposed_exit

= µV ⇤ ICUV,D + r9 ⇤ ICUV R + µV̄ ⇤ ICUV̄ ,D + r10 ⇤ ICUV̄ ,R;

5 Set boolean violation = ICU_occupied - proposed_exit + proposed_enter >

icu_capacity;

6 if violation is TRUE then
7 avail = (icu_capacity - ICU_occupied + proposed_exit) / proposed_enter;

8 else
9 avail = 1;

10 end
11 end

One of the most important measures in the realm of infectious diseases is the basic
reproductive number, known as R0. This quantity represents the average number
of secondary cases produced by one infected individual introduced into a population
of susceptible individuals (Driessche, 2017). It can be calculated as the product of
the probability of transmission given a contact between an infectious individual and
a susceptible individual, the average number of contacts between susceptible and
infectious individuals, and the duration of infectiousness. Intuitively, when R0 > 1,
infection is increasing. It can be shown that the below equation holds for the basic
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Parameter Default Value Lower Parameter Upper Parameter

pV ⇤0.402 0.8 1.2
⌧ICU 365 183 730

pd2V ⇤0.548 0.8 1.2
pd2V̄ ⇤0.303 0.8 1.2
r9 19 15 46

r10 73 41 183

sc2 2
sc3 1
µV 26 20 52

muV̄ 33 30 73

Table 4.1: Specification of the parameters involved in the ICU capac-

ity constraint flows. All parameters were sampled using a triangular

distribution for the purpose of stochasticity (see the next sub-section),

except for sc2 and sc3, which remained fixed. *These parameters dif-

fered by province, and the Default Value listed is the mean. For these

parameters, each default value was multiplied by a draw of the trian-

gular distribution shown, and forced to be no greater than one.

Flow Transition Value Flow Transition Value

H2 ! WV (1� avail2) ⇤ pV ⇤ ⌧icu H2 ! WV̄ (1� avail2) ⇤ (1� pV ) ⇤ ⌧ICU

WV ! D min(sc2 ⇤ pd2V , 1) ⇤ r9 WV̄ ! D min(sc3 ⇤ pd2V̄ , 1) ⇤ r10
WV ! R (1�min(sc2 ⇤ pd2V , 1)) ⇤ r9 WV̄ ! R (1�min(sc3 ⇤ pd2V̄ , 1)) ⇤ r10

Table 4.2: Flows and transition values pertaining to the ICU capacity

constraint.

SEIR model indicated in Figure 4.1. This is in line with the definition of R0, as
the effective contact rate is the number of contacts between people per unit time,
multiplied by the probability of transmission, and 1

�
represents the duration of the

recovery period, or the time it takes to leave the infectious compartment.

R0 =
�

�

R0 can be calculated for the NCEM, for a particular district. The derivation begins
with stating the equations relating to exposure and infection as follows, where I⇤

represents the infectious reservoir; that is, I⇤ = (⇣A+ ⇣IP + IM + IST +WH + I
ST̄

)
(note that the simplifying assumption is made that once hospitalised, a person is no
longer infectious):
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dE

dt
= �I⇤S � �1E

dA

dt
= pA�1E � r1A

dIP
dt

= (1� pA)�1E � �2IP

dIM
dt

= pM�2IP � r2IM

dIST
dt

= (1� pM )pTS�2IP � avail1⌧SIST

dWH

dt
= (1� avail1)⌧SIST � r8WH

dI
ST̄

dt
= (1� pM )(1� pTS)�2IP � r8IST̄

Note that the force of infection is written as �I⇤ for simplicity, and that ⇣ is used to
scale asymptomatic or pre-symptomatic compartments to be less infectious than fully
symptomatic compartments. These equations are set to zero to represent equilibrium
- in which no compartment is growing or shrinking - and then solved such that each
compartment can be written in terms of IP :

E =
�2

(1� pA)�1
IP

A =
pA�1
r1

E =
pA�1
r1

�2
(1� pA)�1

IP

IST =
(1� pM )pTS�2

avail1⌧S
IP

WH =
(1� avail1)⌧S

r8
IST =

(1� avail1)⌧S
r8

(1� pM )pTS�2
avail1⌧S

IP

I
ST̄

=
(1� pM )(1� pTS)�2

r8
IP

In order for infection to be increasing, it is required that dE

dt
> 0 () I⇤ > �1

�
E.

Then:
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(⇣A+ ⇣IP + IM + IST +WH + I
ST̄

) >
�1
�
E

(⇣A+ ⇣IP + IM + IST +WH + I
ST̄

) >
�1
�

�2
(1� pA)�1

IP

(⇣A+ ⇣IP + IM + IST +WH + I
ST̄

) >
�2

�(1� pA)
IP

�

✓
pA�1
r1

IP + IP +
pM�2
r2

IP +
(1� pM )pTS�2

avail1⌧S
IP+

(1� avail1)⌧S
r8

(1� pM )pTS�2
avail1⌧S

IP +
(1� pM )(1� pTS)�2

r8
IP

◆
>

�2
(1� pA)

IP

�

✓
⇣pA
r1

+
⇣(1� pA)

�2
+

(1� pA)pM
r2

+
(1� pA)(1� pM )pTS

⌧S
+

(1� pA)(1� pM )(1� pTS)

r8

◆
> 1

The last step holds because in a population that is fully susceptible save for one
infection, capacity has not been breached and thus avail1 = 1. Hence, for infection to
be increasing, the left hand side quantity needs to be greater than one, which implies
that this quantity is in fact R0. Therefore:

R0 = �

✓
⇣pA
r1

+
⇣(1� pA)

�2
+

(1� pA)pM
r2

+
(1� pA)(1� pM )pTS

⌧S
+

(1� pA)(1� pM )(1� pTS)

r8

◆
.

This result can be understood in the context of the definition of R0, as was done for
the simple SEIR model. The effective contact rate represents, once more, the prod-
uct of the number of contacts between people per unit time and the probability of
transmission. Ignoring numerators, each fraction in the parentheses equates to the
duration of infectiousness for the respective compartments A, IP , IM , IST , (WH),
and I

ST̄
. The numerators dictate the path which must be followed, in terms of prob-

abilities, to reach each of those compartments. For example, for an individual to be
an asymptomatic person in A, the probability of being asymptomatic, pA, must be
applied. An individual who is pre-symptomatic in IP requires the converse i.e. the
probability of not being asymptomatic, (1 � pA). An individual who has a mild in-
fection in IM needs to be not asymptomatic and mild, hence the application of both
(1� pA) and pM . The rest of the compartments can be rationalised in the same way.
Note that the fraction pertaining to WH disappeared when the substitution avail1 = 1
was made. This makes sense, because in a completely susceptible population, there is
no notion of capacity’s being reached and thus even the single infected person could
not be in a waiting chamber. Finally, the inclusion of ⇣ has the function of reducing
transmission probability for the asymptomatic and pre-symptomatic compartments.
For all districts, it can be shown that R0 ⇡ 2.5.

In this thesis, the model was implemented in R, and the differential equation solver
deSolve was employed, using the Euler method (Soetaert, Petzoldt, and Setzer, 2010).
All parameters were set as per the SACMC’s code (SA COVID-19 Modelling Consor-
tium, 2020a).
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4.2 Goal programming

In the realm of multi-objective decision making, goal programming is an approach
in which the decision maker specifies the desired level of performance on each objec-
tive, known as the goal. The aim is to get each objective as close as possible to its
respective goal value, and the difference between the two is known as the deviation,
say di for the deviation from the goal on objective i. The deviations are weighted
according to weights wi, which reflect the relative importance of a one-unit deviation
from the stated goal on each objective. These weights therefore capture both scaling
differences and differences in the importance of good performance on each objective.
Some combination of the weighted deviations is then minimised.

Chebyshev goal programming involves minimising the largest weighted deviation, de-
noted by �. An improved approach is one in which � + ✏

P
Q

i=1widi is minimised,
where ✏ is some small number and Q is the number of goals (Stewart, 2007). The
improved approach helps to differentiate between two solutions in which the maxi-
mum deviations are the same. Suppose, for example, there are two solutions with a
maximum deviation of 100. Further suppose that in the first solution, the deviation
from the rest of the objectives is zero, but in the second solution, this deviation is
90. Clearly, the first solution is better; however, the original Chebyshev formulation
would not differentiate between the two solutions. The improved Chebyshev approach
additionally minimises the weighted sum of all deviations, which allows it to choose
the better solution in this case.

This thesis used the improved Chebyshev approach to minimise the largest shortfall
in beds across districts, by deciding on a monthly schedule of shifts of ICU beds
from April to December. Each month, the disease model was used to look forward
and assess ICU bed needs for the next month, which were then fed into the goal
programming problem as goals. The goal programming problem then produced an
optimal solution of shifting ICU beds between districts. While the disease modelling
only allows for the assessment of ICU beds, from a goal programming perspective it
is easy to translate this to shifting patients or healthcare workers, because both are
in some fixed ratio to beds. Define the following, for P = 52 districts:

• ai := the available units of the resource in the ith district, 8 i = 1, ..., P

• gi := the goal units of the resource in the ith district, 8 i = 1, ..., P

• cij := the unit cost of shifting the resource between districts i and j, 8 i = 1, ..., P
and j = 1, ..., P

• nij = 1 if districts i and j are in the same province and nij = 0 otherwise 8 i, j

• m := the minimum shift allowed (here m = 5, which was an arbitrary choice for
the running of this problem, but allows for alteration in future works)

• M := the maximum shift allowed (here M = 1000)

• I1, ..., I9 := the provincial sets of districts, in alphabetical order of provinces

• A1, ..., A9 := the number of operational ambulances in each province

• �ij := binary indicators denoting whether resources are to be shifted from district
i to district j, 8 i = 1, ..., P and j = 1, ..., P
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• xij as the units of the resource to be shifted from district i to district j, 8 i =
1, ..., P and j = 1, ..., P

Then the goal programming problem is to minimise the following:

� + ✏

⇢ PX

i=1

widi + wC�

�

The deviations from the beds-related goals are the di, while � represents the deviation
from the cost minimisation goal. Assuming equal weightings for all beds-related goals,
this can be simplified to:

� + ✏

⇢
wB

PX

i=1

di + wC�

�

This assumption ensures that all districts are treated the same, in that the loss of
a life in one district is no worse than it is in another. Note that there is no index
for time in the formulation of the problem, because each month’s goal programming
problem is solved independently.

The problem is subject to the constraints summarised in Table 4.3. While the optimi-
sation framework is based on the numbers of ICU beds available and shifted, this can
be translated to patients considering that there is a one-to-one ratio between patients
and ICU beds. The only difference in the framework is the inclusion or exclusion of
constraint (8) in 4.3. These constraints can be understood as follows:

1. In order for � to represent the maximum weighted deviation, it must be greater
than or equal to all weighted shortage-related deviations.

2. In order for � to represent the maximum weighted deviation, it must also be
greater than or equal to the cost deviation.

3. The deviations di can be understood as the shortfall once the available units of
the resource in district i are updated according to shifts into and out of that
district. This shortfall is bad if it is positive and good if it is negative, hence it
should be minimised.

4. The deviation � represents the surplus in total cost above zero. This surplus is
good if it is negative and bad if it is positive, hence it should be minimised.

5. All shifts should be between the minimum and maximum allowable numbers.

6. The resources shifted from district i should be less than or equal to the available
resources in that district.

7. The binary indicator decision variables allow for resources to be shifted only
between different districts.

8. The resources shifted from all districts in the kth province should be less than
or equal to the number of operational ambulances in the kth province. This
constraint is only applied when the intention is to shift patients as opposed to
ICU beds.
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9. Resources should only be shifted between districts in the same province. This
constraint can easily be excluded to facilitate a scenario in which resources can
be shifted nationally.

Constraints

1. � � widi 8 i
2. � � wC�
3. ai �

P
j xij +

P
j xji + di � gi 8 i

4.
P

i

P
j cijxij � � = 0

5. m�ij  xij  M�ij 8 i, j
6.

P
j xij  ai 8 i

7. �ij = {0, 1} 8 i 6= j and �ij = 0 8 i = j
8.

P
i2Ik

P
j xij  Ak 8 k = 1, ..., 9

9. �ij  nij 8 i, j

Table 4.3: Constraints of goal programming problem.

The weights wB and wC are pieces of preference information which would usually be
provided by the decision maker. In this case, the weights define the units of (some-
what arbitrary) cost the decision maker is willing to give up for a bed in the case of
shifting beds, and the amount of money (in Rands) that the decision maker is willing
to give up for a bed in the case of shifting patients. In the absence of access to de-
cision makers, three trade-offs were chosen via a trial-and-error process of exploring
different wC , the results of which are shown in Figure 4.4. Note that the stochastic
nature of these plots is explained in the next sub-section. The idea was to choose
three weighting configurations for shifting beds, and three for shifting patients. One
out of the three configurations should be biased towards minimising cost, and another
should be biased towards minimising bed shortages. The third weighting configuration
should be somewhere in between, and is referred to as the ’intermediate’ configuration.

The case of shifting beds was tested with weights at regular intervals from zero to
one, which is equivalent to starting with zero weight placed on cost, and ending with
zero weight placed on bed shortages. When cost was weighted between zero and 0.4,
the results were virtually the same in that deaths were very low. As this weight was
increased, focus was shifted enough to the cost goals such that shifts were reduced
and deaths thereby increased. Intuitively, when cost was given full weight, the results
directly mirrored those of the baseline scenario before any optimisation. Finally, this
progression from minimal deaths to the baseline scenario is visible on quite a coarse
weighting scale. In contrast, when patients were shifted, the scale that was necessary
to produce a similar progression was relatively fine. Similarly to the case of beds, the
first four cost weightings produced comparable results, and only at the fifth weighting
did deaths begin to increase. The weightings 1 ⇥ 10�5, 1 ⇥ 10�4, and 1 ⇥ 10�3 were
chosen for shifting patients, while for shifting beds the final choices were 0.4, 0.6, and
0.8.

As mentioned before, the significance of the weights lies in the trade-offs that they
imply. Suppose that, in the case of shifting patients, wC = 1 ⇥ 10�5 = 1

100000 and
wB = 99999

100000 . Then � = max{ 99999
100000

P
i
di,

1
100000�}. If

P
i
di = 1 and � = 0, or ifP

i
di = 0 and � = 99999, � = 99999

100000 . Hence a R99,999 deviation in cost is equivalent
to a one unit deviation in beds, or the decision maker would be willing to give up
R99,999 for a bed. It can similarly be shown that wC = 1⇥ 10�4 implies that a bed
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Figure 4.4: Experimentation with goal programming weights for

shifting beds (left) and patients (right).

is worth R9,999, and that wC = 1 ⇥ 10�3 implies that a bed is worth R999. These
trade-offs are less intuitive in the case of shifting beds, where the cost is in arbitrary
units. However, it can be shown that wC = 0.4 implies that a three unit deviation in
cost is equivalent to a two unit deviation in beds, or that the decision maker would be
willing to give up 1.5 units of cost for a bed. It can similarly be shown that wC = 0.6
and wC = 0.8 imply that a two unit deviation in cost is equivalent to a three unit de-
viation in beds, and a one unit deviation in cost is equivalent to a four unit deviation
in beds, respectively.

In this thesis, goal programming was implemented using the Rglpk package (Theussl
and Hornik, 2019). The R implementation of this package does not allow for adjust-
ment of tolerance or of stopping conditions; as such, a time limit on solving was set
to five minutes. This means that if an optimal solution was not found within five
minutes, the search would be halted and the best solution at that time would be used.
This was a practical decision in the interests of the time constraints imposed on this
thesis.

4.3 Combining disease modelling and goal programming

The framework to interface the disease modelling and optimisation components works
as shown in Figure 4.5. There are two main custom aspects to the method. Firstly,
the percentile of maximum ICU beds used for goals can be adjusted depending on how
conservative one wishes to be. Note that the goals are intended to reflect demand for
ICU beds; however, this demand is uncertain and risk attitudes must be taken into
account. This method allows the decision maker to choose percentiles of the demand
distribution from the simulation model. Secondly, weights can be adjusted to change



Chapter 4. Methodology 27

Figure 4.5: Disease modelling and goal programming framework.

the relative importance of the cost and beds goals.

Note that the goals are derived from running the disease model for the entire period
(March to December 2020), at the beginning of the period. Although one might pre-
sume that in reality, the model would only be used to project a month at a time,
and real-world data would be incorporated as the epidemic unfolds, this was in fact
an infeasible notion in the South African context. Updated hospital admissions data
were not available in real time or even with a small enough lag to be useful; it is only
at the time of writing, after the first wave of the epidemic has completely passed, that
such data are fully available.

4.4 Scenarios and sensitivity

A total of twelve scenarios were designed for this thesis. Six of them pertain to the
monthly shifting of ICU beds intra-provincially under various weighting and goal sce-
narios, as shown in Table 4.4. Identical scenarios for the case of shifting patients via
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ambulances are shown in Table 4.5. Monthly schedules of shifts in both cases work as
shown in Figure 4.5.

When the diagram in Figure 4.5 indicates that the disease model should be run 5000
times, this means that the model should be run stochastically. That is, for each
run, the disease parameters are sampled from appropriate distributions, as per the
SACMC’s code (SA COVID-19 Modelling Consortium, 2020a). Although the runs are
stochastic, the same set of 5000 random seeds were used for each scenario, to ensure
each set of 5000 runs corresponded to the same sampled parameters for each run.

Table 4.4: Scenario codes for monthly provincial shifting of beds.

Weightings

Goals Percentile Intermediate Cost-Focused Beds-Focused

95th 95-I-B 95-C-B 95-B-B
50th 50-I-B 50-C-B 50-B-B

Table 4.5: Scenario codes for monthly provincial shifting of patients.

Weightings

Goals Percentile Intermediate Cost-Focused Beds-Focused

95th 95-I-P 95-C-P 95-B-P
50th 50-I-P 50-C-P 50-B-P

The design of this framework and its components lends itself to sensitivity analysis in
two ways. Firstly, the running of the simulation model stochastically allows for uncer-
tainty to be captured. Secondly, sensitivity analysis was implicitly conducted through
the different scenarios, in that the sensitivity to the goals percentile and the relative
weightings are built into the scenarios. A final note related to sensitivity analysis is
the issue of validation, and it is worth mentioning that the output of the simulation
model was continually checked against that of the NCEM, as a way of validating the
results.
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5
Results

With the methodology established, the next step is to examine the results of both the
disease modelling and the optimisation components thereof. This chapter will first
explore various outcomes related to the disease model, and then the results of the
disease modelling and goal programming framework.

5.1 Disease modelling

In this section, the following key findings will be shown:

• The NCEM projected the first wave to be finished by December 2020.

• General hospital and ICU bed capacities were projected not to be breached, and
to be breached in two provinces, respectively.

• KwaZulu-Natal exemplified the need for intra-provincial resource sharing.

• Deaths due to the non-availability of ICU beds constituted as much as 60% of
total mortality.

• Deaths due to the non-availability of ICU beds decreased monotonically with
increasing number of ICU beds.

5.1.1 The NCEM projected the first wave to be finished by Decem-
ber 2020

At the time that the analysis for this thesis was being conducted, the projections of
the NCEM were as shown in Figure 5.1. It is clear that the first wave was projected
to be finished by December 2020. Although in reality, the second wave would have
peaked within the window of these plots, this was due to the emergence of the lineage
B.1.351, which was as yet unknown and thus not modelled by the NCEM at this point.

5.1.2 General hospital and ICU bed capacities were projected not to
be breached, and to be breached in two provinces, respectively

The first portion of results to examine is that of the capacity mechanism in the NCEM.
Figures 5.2 and 5.3 demonstrate, aggregated at a provincial level, the general and ICU
beds in use with and without limited capacity. Limited capacity is when patients are
refused a bed once capacity is reached, depicting actual use of beds, while unlimited
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Figure 5.1: National projections of the NCEM (SA COVID-19

Modelling Consortium, 2020b). The top-left plot shows

projected cumulative detected cases under the testing

policy at the time (blue), and a policy of only detecting

hospitalised cases as of mid-June (orange). The

top-right and bottom-left plots show the projected need

and use of ICU and general hospital beds respectively.

Need refers to the full demand for beds, while use refers

to the actual number used given limited capacity. The

bottom-right plot shows projected cumulative deaths

against available data. More information regarding

these plots is available in the SACMC’s September

report (SA COVID-19 Modelling Consortium, 2020b).

capacity depicts the need for beds assuming no limit. The beds in use measures are
expressed as percentages of total capacity in each province. Clearly, the non-ICU
beds in use measure did not exceed capacity in any of the provinces; hence, the curves
for limited and unlimited capacity overlapped completely. Additionally, non-ICU bed
usage did not exceed fifty percent in any instance. This does not imply that there
were no individual districts which ran out of capacity, but if so, there were unlikely to
be drastic overflows. Bed utilisation in percentage terms was highest in Mpumalanga
and lowest in the Northern Cape. The case of ICU beds in use was different. The
Free State and KwaZulu-Natal both exceeded capacity substantially, while the East-
ern Cape and Mpumalanga were close to doing so, with capacity utilisation at more
than ninety percent. It can also be observed that in several provinces, even though
capacity was not exceeded, the beds in use in the limited and unlimited cases did not
overlap entirely. This suggests that there were districts for which capacity was reached.
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Figure 5.2: Non-ICU beds in use over time per province. The red

dashed lines represent capacity. The bands represent

approximate 95% confidence intervals.

5.1.3 KwaZulu-Natal exemplified the need for intra-provincial re-
source sharing

Developing a more nuanced understanding of the district-level dynamics at play ne-
cessitates a closer look at one of the provinces. Figure 5.4 demonstrates the ICU beds
in use in KwaZulu-Natal, by district, excluding the districts in which there is zero
capacity. This is because, again, the beds in use measure is expressed as a percentage
of total capacity in each district. Five of these districts ran out of ICU beds, while
the other two exhibited utilisation levels in excess of eighty percent. While several
districts ran out of capacity, it is further worth noting that the extent to which dis-
tricts exceeded capacity varied significantly. In DC25 and DC28 - as defined in List
1 - the bed utilisation was well below two hundred percent. In DC29, however, the
utilisation reached a staggering six hundred percent. This disparity highlights the
need for intra-provincial resource sharing. Note that this plot is available for the rest
of the provinces in Appendix B. These plots indicate that ICU capacity was breached
in at least one district in the Eastern Cape, Limpopo, and Mpumalanga, while in the
Northern Cape and the Western Cape, at least one district did not have any ICU beds.
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Figure 5.3: ICU beds in use over time per province. The red

dashed lines represent capacity. The bands represent

approximate 95% confidence intervals.

5.1.4 Deaths due to the non-availability of ICU beds constituted as
much as 60% of total mortality

With the effect of capacity limitations on beds in use established, the next key question
which needs to be addressed is the extent to which mortality due to the non-availability
of ICU beds contributed to mortality in general. Deaths due to the non-availability
of ICU beds are calculated as the total deaths occurring in waiting chambers. Figure
5.5 depicts mortality due to the non-availability of ICU beds as a proportion of total
mortality. A reasonably large number of districts had non-zero proportions of mortal-
ity attributable to ICU overflow. The Eastern Cape and KwaZulu-Natal appeared to
be most drastically affected by a lack of ICU beds, with proportions approaching sixty
percent in the latter case. However, districts with high proportions of such mortality
in these two provinces were often adjacent to districts with negligible mortality. This
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Figure 5.4: ICU beds in use over time per district within

KwaZulu-Natal. The red dashed lines represent

capacity. The bands represent approximate 95%

confidence intervals.

disparity seems to be the largest in the worst case scenario; that is, the scenario rep-
resenting the upper bound of an approximate 95% confidence interval. This further
highlights the importance of intra-provincial resource sharing.

5.1.5 Deaths due to the non-availability of ICU beds decreased mono-
tonically with increasing number of ICU beds

The extent to which mortality due to the non-availability of ICU beds contributed to
overall mortality has been determined to be large, and the next step involves linking
this to the goal programming approach. The goal programming framework works by
shifting ICU beds around; hence, the relationship between the number of ICU beds in
each district and the total number of deaths due to the non-availability of ICU beds
must be explored. Figure 5.6 shows this relationship. Clearly, deaths monotonically
decreased as the number of ICU beds increased. For all provinces, there appears to
be a point at which deaths reached zero and further increases in the number of ICU
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Figure 5.5: Mortality due to the non-availability of ICU beds

shown as a percentage of total mortality, in the

minimum, median and maximum cases. Minimum and

maximum refer to the boundaries of an approximate

95% confidence interval.

beds has no effect. Gauteng and KwaZulu-Natal took the longest to reach this point.
The Eastern and Western Cape provinces also took longer to reach zero than the
rest of the provinces did. These disparities likely mirror what would be seen on a
district level. Additionally, there appear to be the widest uncertainty bands around
the curves of the provinces which reached zero at the highest numbers of ICU beds.
The provinces for which the deaths reached zero at low numbers of ICU beds had very
narrow uncertainty bands.
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Figure 5.6: Relationship between number of ICU beds and number

of deaths due to the non-availability of ICU beds. The

bands indicate approximate 95% confidence intervals,

which are simply the observed percentiles of the

outputs. Deaths are expressed as the percentage of

maximum deaths for each province, for better visibility

of the complete curves.
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5.2 Optimisation framework

The following key insights will be demonstrated in this section:

• Goal numbers of ICU beds varied across districts, but peaked at the peak of the
epidemic.

• The largest shifts occurred around the peak of the epidemic, and some key
districts were prominent in these shifts.

• Total cost was the highest for the beds-focused scenarios and lowest for the
cost-focused scenarios.

• Total numbers of shifts were the highest for the beds-focused scenarios and
lowest for the cost-focused scenarios.

• Total bed shortages were the highest for the cost-focused scenarios and lowest
for the beds-focused scenarios.

• The goal programming framework reduced deaths due to the non-availability of
ICU beds by 15% to 99%, depending on the scenario.

• Deaths were averted in all of the stochastic runs of the model under all scenarios.

5.2.1 Goal numbers of ICU beds varied across districts, but peaked
at the peak of the epidemic

The first step in the goal programming and disease modelling framework is the gen-
eration of goals using the disease model. The results of this process are shown in
Figure 5.7. In both the 95th and 50th percentile cases, the earliest and latest months’
distributions peaked most sharply and were most right skewed. This indicates that in
these months, especially in November and December, regardless of how conservative
one chose to be, the goals for the majority of the districts were relatively low. This is
because cases were projected to be at close to zero by December, as shown in Figure
5.1. The overall trend is that the distributions in both cases began right skewed with
a very flat right tail, and steadily exhibited more blips towards the higher end of the
goal spectrum as the midyear approached, after which the tails flattened again. Thus,
as the months progressed from April to the middle of the year, there were more and
more districts with goals closer to 300 ICU beds. This is intuitive, because the peak
of the epidemic was experienced around July and August, which suggests that the
need for ICU beds would have been the highest in those months. Aside from the
behaviour of their right tails, the distributions for July and August also appeared
to be bimodal and thus less peaked than the distributions for the earliest and latest
months were. This indicates that the most variation in goals amongst the districts oc-
curred in the middle of the year, which reflects variability in the predicted use of beds.

5.2.2 The largest shifts occurred around the peak of the epidemic,
and some key districts were prominent in these shifts

With the goals generated by the disease model, the next step is to solve the goal
programming problems and examine the corresponding solutions. The first aspect of
this understanding involves looking at the pairs of districts between which resources
were shifted, and the quantities of resources which were shifted. These relationships
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Figure 5.7: Monthly ICU bed goal distributions. These

distributions are over the districts and are based on the

50th (left) and 95th (right) percentiles of maximum

ICU beds needed in each district.

are depicted in Figure 5.8. There are several overall trends which are evident, as
follows:

• With limited exceptions, the vast majority of shifts occurred from May to
September. The latest that any shift occurred was in October, while in three
cases, shifts occurred in April.

• The shifts that were largest in magnitude tended to occur in June, July, or
August, which coincides with the peak of the epidemic and thus the time at
which the goals would be most difficult to satisfy.

• In absolute terms, some of the largest shifts occurred between ETH and DC21,
and ETH and DC29. Referring back to Figure 5.4 places this finding in context:
DC29 was drastically exceeding capacity, while ETH did not exceed capacity,
hence often shifting resources from ETH to DC29 makes sense. It similarly
makes sense that ETH donated resources to DC21. Other pairings with large
shifts between them were DC25 and DC26, DC28 and DC26, BUF and DC15,
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Figure 5.8: Numbers of resources shifted between each pair of

districts for each goal programming scenario.

and BUF and DC12. DC25 and DC28 can also be seen in Figure 5.4, while
DC26 was omitted due to its having zero capacity. It thus makes sense that
resources would be shifted into DC26 from neighbouring districts such as DC25
and DC28.

• Finally, it is worth noting that scenarios 95-C-P and 50-C-P produced only three
pairings, and these pairings included four of the same districts across the two
scenarios. Scenarios 95-C-B and 50-C-B, on the other hand, produced seven
and five pairings respectively. This may indicate that the weightings were a lot
harsher in the case of patients than they were in the case of beds, in that they



Chapter 5. Results 39

forced cost minimisation to take more of a priority in the case of patients than
they did in the case of beds.

5.2.3 Total cost was the highest for the beds-focused scenarios and
lowest for the cost-focused scenarios

Figure 5.9: Total cost associated with each goal programming

scenario, over time.

The next way in which a solution can be understood is by looking at the costs, num-
bers of shifts, and total shortages associated with each solution. Figure 5.9 indicates
the total cost accumulated each month in each of the scenarios. There are several
trends which are immediately evident. For most of the time, the beds-focused sce-
narios exhibited the highest costs, followed by the intermediate scenarios and then
the cost-focused scenarios. This is as one would expect, as the beds-focused scenar-
ios placed the highest emphasis on minimising shortages regardless of cost, while the
cost-focused scenarios did the converse. In all cases, costs began at or near zero, and
started to flatten out by October. When 50th percentile goals were used, costs tended
to peak in August, whereas they tended to peak in July when 95th percentile goals
were in use. This is because the more conservative 95th percentile goals were higher
earlier on in the epidemic. While the costs for shifting beds and patients were on
very different scales, the patterns in cost curves were very similar; in both cases, the
95th percentile curves tended to peak at higher numbers than their 50th percentile
counterparts did. Notably, the 95-B-P scenario peaked at a very high cost of just
under R1,250,000, as opposed to its 50th percentile counterpart, which peaked at less
than R500,000. This represents more than double the cost when the goals were more
conservative, which suggests that cost was highly sensitive to the level of the goals.
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Figure 5.10: Number of shifts associated with each goal

programming scenario, over time.

5.2.4 Total numbers of shifts were the highest for the beds-focused
scenarios and lowest for the cost-focused scenarios

The total numbers of shifts occurring over time in each of the scenarios are shown
in Figure 5.10. When 50th percentile goals were in use, the numbers of shifts always
peaked at just over ten, while when 95th percentile goals were used, the peak numbers
of shifts were closer to, if not in excess of, thirty. In both cases, peaks tended to occur
in July, which once again coincides with the peak of the epidemic, and curves flattened
out by September or October. The timing of these peaks coincides with the largest
shifts seen in Figure 5.8. The flattening out of both the cost and the shortage curves
mirrors the reduction in goals as the epidemic abated. For the most part, the cost
scenarios exhibited the lowest numbers of shifts over time, regardless of the percentile
of goals and of whether beds or patients were being shifted, followed by the intermedi-
ate scenarios and finally the beds-focused scenarios. This is both intuitive and in line
with the findings in Figure 5.9; the higher the number of shifts in a particular solution,
the higher the associated cost should be. While the costs were on different scales for
beds and patients, the numbers of shifts are comparable. Figure 5.10 suggests that
the solutions, at least in terms of number of shifts, were not particularly sensitive to
the choice between beds and patients.
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Figure 5.11: Total shortages associated with each goal

programming scenario, over time.

5.2.5 Total bed shortages were the highest for the cost-focused sce-
narios and lowest for the beds-focused scenarios

The total shortages of beds in each of the scenarios over time are depicted in Figure
5.11. These shortages are defined as the differences between the respective goals and
the available capacity figures in each month, where that difference is positive. Each
month’s available capacity is updated according to that month’s shifts in each sce-
nario. All of the curves followed a similar trend, in that there was an initial gradual
climb, a sharp jump in May or June, a peak in July or August, and then a decline that
ended in a flattening of the line. It makes sense that at the height of the epidemic,
it would be most difficult to satisfy the goals, and as such, bed shortages would be
highest. In general, the cost-focused scenarios exhibited the highest bed shortages,
followed by the intermediate scenarios and then the beds-focused scenarios. This is
once more intuitive, as the fewer shifts are made and the lower the associated cost,
the higher the bed shortages are expected to be. Finally, the 50th percentile scenarios
produced shortages that peaked at approximately two hundred beds, whereas the 95th

percentile scenarios produced shortages which peaked at closer to, if not in excess of,
four hundred. This is as one would expect: the higher the goals set, the higher the
bed shortages would be expected to be.
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Figure 5.12: Deaths due to the non-availability of ICU beds,

distributed over districts, before and after

optimisation.

Table 5.1: Median deaths associated with each scenario, expressed in

absolute terms and as a percentage of the scenario before optimisation

takes place, along with associated total costs.

Scenario Baseline 95-C-B 95-I-B 95-B-B 50-C-B 50-E-B 50-S-B

Median deaths 890 299 111 21 460 305 190
As % of baseline 100 34 12 2 52 34 21
Maximum 2420 1721 1524 1343 1961 1770 1658
Minimum 326 14 4 1 10 3 1
Cost 46 27 69 22 14 29

Scenario Baseline 95-C-P 95-I-P 95-B-P 50-C-P 50-E-P 50-S-P

Median deaths 890 697 197 13 757 394 97
As % of baseline 100 78 22 1 85 44 11
Maximum 2420 2208 1625 1233 2284 1892 1558
Minimum 326 187 3 1 192 4 1
Cost (R) 1,180,349 697,264 1,762,642 566,698 363,716 750,862

5.2.6 The goal programming framework reduced deaths due to the
non-availability of ICU beds by 15% to 99%, depending on the
scenario

Finally, the results of the evaluation of the various goal programming solutions via the
disease model are shown in Figure 5.12, with the accompanying median deaths and
total costs shown in Table 5.1. Before any optimisation occurred, the median deaths
was at 890, with the worst case scenario close to 2500. In all cases, the cost-focused
scenario produced the highest median number of deaths, followed by the intermedi-
ate scenario, while the beds-focused scenario produced the lowest number of deaths.
This is exactly as one would expect. When beds were shifted, the best of the cost-
focused scenarios were observed, at 299 and 460 deaths when 95th percentile and 50th

percentile goals were used, respectively. In the worst case scenario, when patients
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were shifted, median deaths was close to or approximately 750, which represents more
than a fifty percent increase when compared to shifting beds. The lowest numbers of
deaths were observed in the 95th percentile case, when beds or patients were shifted,
with 21 and 13 median deaths respectively. These corresponded to the most expen-
sive scenarios, at 69 units and R1,762,642 respectively. The 50th percentile scenarios
generally produced higher median deaths than their 95th percentile counterparts did,
suggesting a level of sensitivity of deaths to how conservative the goals were. This in
turn means that it was prudent to be more conservative in setting goals. All of the
distributions appear to be right-skewed; this skewness was most pronounced in the
two best scenarios. It is worth noting that the worst data points in all of the sce-
narios approached, if not exceeded, 1500 deaths, which represents almost double the
median deaths before any optimisation took place. It is therefore critically important
to compare data points directly before and after optimisation.

Figure 5.13: Distribution of total national deaths (due to the

non-availability of ICU beds) averted due to the

optimisation framework, over the 5000 simulation

runs.

5.2.7 Deaths were averted in all of the stochastic runs of the model
under all scenarios

This direct comparison, or rather, the deaths due to the non-availability of ICU beds
that were averted due to the optimisation framework, are shown in the histograms in
Figure 5.13. It is immediately evident from the positions of the histograms above zero
that in no case did deaths due to the non-availability of ICU beds increase as a result
of the shifts. Furthermore, all of the distributions were reasonably symmetric. When
beds were shifted, there was a lot of overlap in the different weighting scenarios, with
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the cost-focused scenario peaking at a higher value than in the case of the other two
scenarios, followed by the intermediate scenario and finally the beds-focused scenario.
In contrast, there was less overlap when patients were shifted, and particularly when
50th percentile goals were used. The cost-focused scenario’s distribution was shifted to
the left, indicating fewer deaths averted, and was significantly more peaked than any
of the other distributions were. This suggests that when high emphasis was placed
on minimising cost, fewer lives were saved, which makes sense. The overlap between
the intermediate and beds-focused distributions indicates that a reasonable amount
of weighting could be placed on cost without too large of a sacrifice in terms of deaths
averted, which bodes well for the use of this system in reality. Similarly, the large
amount of overlap amongst all three scenarios in the case of shifting beds indicates
that a poor choice of weightings could sometimes lead to a better outcome than a
well-chosen weighting configuration would.

5.3 Conclusion

The results of the disease modelling highlighted the need for intra-provincial resource
sharing, both in terms of the contribution of deaths due to the non-availability of ICU
beds to overall mortality, and in terms of the exceeding of ICU bed capacity. Across all
provinces, there was a clear relationship between the number of ICU beds and deaths
due to the non-availability of beds, which provided sound justification for the goal
programming approach of minimising bed shortages in order to minimise loss of life
indirectly. Throughout all of the optimisation results, there was a clear pattern. As
the epidemic peaked, so did the numbers of shifts and therefore the associated costs,
and additionally the shortages. The district pairings plots, together with the ICU
beds in use figures, painted an intuitive picture of intra-provincial resource sharing.
Finally, the framework produced promising results. The lowest deaths overall were
produced by the 95-B-P scenario at a cost of approximately R1,800,000, although
the deaths averted distributions overlapped to a large extent when beds were shifted.
When patients were shifted, the intermediate and beds-focused scenarios produced
similar distributions.
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6
Discussion

This chapter will review the results of this thesis in light of the context in which it
finds itself, as well as in light of its various assumptions and limitations, the literature
that came before it, and the future works which may build on it. It will further outline
the value of this work.

The modelling results showed a clear need for intra-provincial resource sharing, and
perhaps even inter-provincial sharing; however, the political backdrop against which
these shifts would occur in reality must be acknowledged. Wealthier provinces might
not be willing to pick up the slack of less well-resourced provinces, as even wealthy
provinces have an array of needs competing for shares of a single budget which - in
the developing world - is always less than ideal. This idea is exemplified in some
of the findings in this thesis. The result that eThekwini (ETH) would have to shift
large amounts of resources to neighbouring districts might be opposed, considering
that eThekwini itself was very close to full capacity. Again, although neighbouring
districts such as iLembe District Municipality (DC29) were in much more dire need of
resources, shifting beds away from eThekwini might still cause some death, and it is
difficult to maintain a utilitarian stance on the ground when this is the immediately
visible cost. The case of eThekwini is perhaps an example of where inter-provincial
shifting might stand a better chance of being realised, considering resources were
spread so thinly in KwaZulu-Natal. This also highlights the need for provincial or
national governmental control of health care resource allocation in the context of an
epidemic.

At the very least, this framework provides some guidelines as to which districts should
try to spare resources where they can, and which districts should be prioritised when
there are spare resources available. The results further demonstrate the national ad-
vantages of co-operation amongst districts, which can be a powerful incentive for that
co-operation to happen in reality. It would be very valuable to test the sensitivity
of deaths averted to adherence to the schedules of shifts, and to establish whether
using the schedules as loose guidelines rather than as a strict regimen would have any
adverse effects. This presents a fascinating angle for future work. Another aspect
of resource shifting that could be improved upon in future work is the allocation of
resources below a district level: ideally, there should be another layer to the optimi-
sation problem which looks at how to allocate resources amongst health facilities.
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Although sensitivity analysis was somewhat built into the framework itself, this was
not exhaustive and it is worth both noting this as a limitation of this thesis, and
discussing the variables for which sensitivity analysis was not conducted. Firstly, in-
creasing the minimum allowable shift makes the fifth constraint stricter, which means
beds or patients are shifted in fewer cases. This would likely decrease cost but result
in more loss of life, which presents an ethical issue. On the other hand, decreasing
the minimum allowable shift results in the converse situation in which resources are
shifted more frequently at a higher cost. The maximum allowable shift could theoret-
ically be increased infinitely, which would mean that large quantities can be shifted,
but this is bound by what is realistic in terms of both cost and logistics. This could
also cause a situation in which large amounts are shifted to certain areas, allowing
a higher proportion of deaths in others, which again is ethically questionable. That
said, in the context of this application, increasing the maximum allowable shift would
not likely have an effect because the shifts have not approached 1000. Decreasing the
maximum shift enough would indeed have an effect and may result in certain districts’
hoarding unused resources, which again is an ethical concern. Finally, increasing the
cost parameters would make it more difficult to minimise cost, meaning that fewer
shifts would be allowed and thus fewer lives will be saved.

This thesis is centred around the notion of capacity, a notion which must be revisited
with the real context of an epidemic in mind. It is worth exploring both the rigidity
of capacity constraints in reality, and the experience of South Africa particularly in
the second wave of COVID-19. The estimates of available capacity in this thesis were
meticulously calculated to reflect a realistic measure of what would be available on
the ground; however, in reality, doctors often stretch capacity by finding innovative
ways to take on more patients. In fact, the context discussed in Chapter 1 speaks di-
rectly to this, where in Houston, Texas, patients ended up being treated in emergency
rooms, and London’s Northwick Park’s patients were tended to in operating theatres.
As such, capacity constraints tend not to be hard constraints in reality, meaning that
this thesis is perhaps premised on a slightly more pessimistic view of the epidemic than
what actually happened. This means that the results of the framework could be even
better when applied to the real world, where more capacity is available. However, this
stretching of capacity is far too variable and unpredictable to be measured and taken
into account. While around the world capacity was stretched by healthcare workers
in the first wave, in many places the second wave presented a more dire situation.
In South Africa in particular, the second wave was far larger than the first, pushing
demand beyond what doctors could free up through innovation. Although this thesis
was based on the first wave of COVID-19 in South Africa, the second wave context
only increases its relevance and potential usefulness.

The question of which resources to shift was central to this thesis, and is worth dis-
cussing in some detail. The decision to look at patients and ICU beds was based
on the availability of data. However, ICU beds are only valuable insofar as they are
accompanied by mechanical ventilation and ICU nurses to administer it. So in reality,
shifting ICU beds should be limited by the available supply of these resources at the
destination. There are further oxygen-related considerations when it comes to shifting
patients via ambulance. An oxygen tank only lasts one and a half hours, while high
flow nasal oxygen in particular requires a high supply. A more detailed costing of shift-
ing patients should incorporate oxygen tanks. Furthermore, there is a higher chance
of mortality during transport; the prognosis worsens the longer the drive, suggesting
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that transporting patients might be less feasible in larger provinces. There is prece-
dent for transporting COVID-19 patients via ambulance; for example, patients were
transported from Livingstone Hospital to a field hospital in the Eastern Cape. This
was, however, a relatively short distance. This further supports the decision to limit
resource shifting to be intra-provincial, and presents an opportunity for future work in
which shifts are only allowed within a certain radius which is determined to be safe for
transport. The unfortunate consequence of this reality is that rural areas would prob-
ably be at a disadvantage, due to their reduced proximity to resource-rich urban areas.

It is worth considering the intricacies of shifting health care workers instead of patients
as a possible extension to this thesis. Health care workers do not require ambulances
or oxygen, making them an appealing alternative. If on contract, health care work-
ers are easy to shift from an administrative perspective; however, those employed
by provincial Departments of Health would be difficult to shift inter-provincially. In
general, embedded government staff would be more difficult to move. This is besides
the fact that shifting health care workers requires uprooting people with established
homes and families, and asking them to relocate for the duration of the epidemic is a
large request. Asking them to shift around on a weekly basis is even more of an impo-
sition, and would likely result in increased pressure and contribute to the exhaustion
of the epidemic context. All of this holds in an ideal world, but in South Africa’s
context, where many nurses have gone on strike due to a lack of PPE - notably in the
Eastern Cape - one would call into question the willingness of nurses to move from an
overstaffed region to an under-staffed region. Although the idea of shifting nurses is at
first glance quite attractive, these points highlight the difficulty thereof, and further
justify the decision to focus on shifting patients and ICU beds in this thesis.

The results of shifting both ICU beds and patients rest somewhat on the cost as-
sumptions of this thesis. The costs of shifting ICU beds were arbitrary proportions of
distance, which meant that they could not be understood in context, nor could they
be compared against those of shifting patients. This represents an area for improve-
ment in future work. Moreover, while the cost of shifting patients was calculated in
Rands, it did not take into account opportunity cost, which represents another in-
teresting angle for future work. It is widely known that considering the impact of
lockdowns, along with the redirection of resources towards COVID-19, saving each
life from COVID-19 came at and still comes at a significant cost in terms of other
diseases and other uses for ICU beds. Although the estimates of ICU beds available
used in this thesis were based on the numbers that were expected to be available
for COVID-19 use rather than the numbers of ICU beds available in absolute terms,
one could still argue that basing a schedule of shifts purely on anticipated COVID-19
need could come at a high cost. Perhaps an extension to this thesis could also allow
for fluctuations in other demands on ICU beds, such as trauma cases, which tend to
peak in certain areas around Christmas time and Easter, due to road accidents and
increased alcohol consumption.

The once-off nature of the framework - in that the disease model was run at the begin-
ning of the year for the whole year, rather than monthly - warrants discussion. Ideally,
one would run the model for one month ahead and determine shifts based on those
runs, and then update the trajectory of the disease based on what actually happened,
and run the model for another month ahead, and so on. This would ensure that the
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goal programming would be working with the most recent and accurate information
at each point in time. This could not, however, be implemented due to a lack of data.
District-level case data were not necessarily available from month to month, while hos-
pital admissions data were only accessible at the end of the first wave. Although this
inability to rely on real-time data poses an unavoidable limitation to the framework,
it also means that the performance of the framework was likely under-estimated, and
may well be better were it to be provided with updating information. In any case, if
one were to apply the framework as is in a real situation, its once-off forward looking
plan could still act as a baseline plan from which to work, even in the presence of
more recent information. In the absence of reliable real-time data, the computation-
ally infeasible alternative is to follow multiple potential trajectories of the epidemic,
and optimise over these trajectories. This could potentially be addressed via a dy-
namic programming approach, and presents a prospective topic for future work. It
is worth noting that at the time of submission of this thesis, district level COVID-19
data are still not publicly available, which speaks to the challenges faced by many low
and middle income countries (LMICs) in the context of a pandemic. This thesis thus
represents a good practical solution for planning in the absence of detailed data.

Reporting of data is, in fact, an issue which necessitates dedicated discussion in and
of itself. Of all provinces, only the Western Cape had one hundred percent of hospi-
tals reporting cases in the first wave, but even in that case it did not translate to a
situation in which one hundred percent of cases were reported. There are many rea-
sons as to why under-reporting occurs in the midst of an epidemic. There were many
people who were admitted and, especially at the height of the first wave, whose test
results took so long to arrive that by the time they would have been diagnosed with
COVID-19, they would have already died or been discharged, and thus escaped being
recorded. Additionally, administrative systems - which are not perfect at the best
of times - cannot be expected to function flawlessly in a crisis situation. For health
care workers on the ground, filling in forms is far lower down on the priority list than
actually tending to the surplus of patients is. Furthermore, many isolation cases in
South Africa were in places like bed-and-breakfast accommodation rather than hos-
pitals, meaning that they would not have been reported under hospital admissions.
These factors mean that any analysis reliant on COVID-19 data should be interpreted
with caution; this thesis is no exception.

It must not be forgotten that disease modelling is a simplification of the real world
that rests on many levels of assumptions. Compartmental modelling in particular
makes the assumption that the population is homogeneous except for disease and
spatial state and that mixing is also homogeneous. This can lead to an overestima-
tion of the total population infected (Bansal, Grenfell, and Meyers, 2007). In this
model, heterogeneity in population behaviour has been taken into account through
adjustments to the force of infection. The choice of which compartments to include
is itself a simplification of the progression of the disease, and carries with it a host
of assumptions. The various disease and treatment parameters are often unknown,
more so with a novel virus, but are chosen and varied according to the best infor-
mation available, often ruling out complex modelling methodology like agent-based
models, which require incredibly granular data for model calibration. Despite these
assumptions, compartmental modelling is arguably the most appropriate methodology
available to synthesise data from all relevant aspects of the disease ecosystem into a
computer-based simulation of health system dynamics. In the context of a pandemic
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of a novel virus, compartmental modelling is also arguably a better choice than sta-
tistical data-driven modelling is, because the latter largely relies on sufficiently high
quality data, whereas in a country like South Africa, data are often limited and of
poor quality, as discussed. Additionally, the mechanistic nature of compartmental
models allows for the projections of “what-if” scenarios, which are of high value to
policy makers over and above the need for short-term forecasting.

The design and findings of this thesis must be placed in the context of the relevant
literature. While many have modelled the spread of COVID-19, in the South African
setting included, few have addressed the notion of limited capacity. Barasa, Ouma,
and Okiro (2020)’s was the most comparable African study, which looked at estimating
hospital and ICU bed surge capacity in Kenya’s 47 counties. They found that there
were significant geographical disparities in ICU bed resources, with only 22 counties’
having at least one ICU unit. This is consistent with the findings of this thesis in
South Africa. However, this thesis represents a more nuanced take on geographical
disparities in resources in that it modelled infection in each of South Africa’s fifty
two districts, whereas Barasa, Ouma, and Okiro (2020) assumed a uniform propor-
tion of symptomatic infection across all counties, based on a separate modelling study.

In the global context, Branas et al. (2020) aimed to estimate the excess mortality due
to the non-availability of critical care beds in the USA. This closely matches one of the
objectives of this thesis. Given the significant differences between the US and South
African contexts, a direct comparison of findings is not possible; however, it can be
observed that both this thesis and Branas et al. (2020) found geographical disparities
in excess mortality. Branas et al. (2020) found that the highest excess mortality was
concentrated in the New York City area, while there were seven other clusters of high
mortality across the country. The greater Johannesburg region can be likened to the
New York City area, and this thesis did not find a particularly high proportion of
excess mortality in this region, likely because it is relatively well resourced compared
to other districts. Consistent with the US study, however, this thesis found that ex-
cess mortality due to the non-availability of ICU beds was the biggest contributor to
overall mortality in one particular area: that is, KwaZulu-Natal. Overall, this thesis
produced well aligned modelling results when compared to the literature, and repre-
sents a valuable contribution to South African research in particular.

In the process of any health economic analysis, the question of costing human life is
inevitable. In this thesis, the Rand value a decision maker is willing to give up in
exchange for a bed in the case of shifting patients could, to the decision maker, prac-
tically translate to how much a life is worth. While some might assert that the moral
stance is that a human life is priceless - or perhaps that human cost does not have a
financial equivalent - the reality is that governments and other decision makers have
long been valuing human life whenever scarce resources have been allocated, especially
in the medical arena. The COVID-19 pandemic has simply brought these valuations
into the realm of public discussion. While there is no easy answer, it is important
both to bear in mind the sensitivity of the topic, and to take it in context. This thesis
asks the question of a very specific budget allocation that in reality would operate
within fixed parameters. It does not ask the decision maker to value a human life
in absolute terms, but rather to place as much value as possible on human life while
remaining in the realms of what is realistic for a developing nation’s budget. Being
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cognisant of this underlying fact is necessary to grasp the gravity of the decision at
hand.

Ultimately, the contributions of this thesis both to science and to the practical world
of governmental decision making in the context of a global pandemic can be sum-
marised in two areas. Firstly, a large portion of the work’s value has been seen to
fruition through the use of results by key South African stakeholders such as the Na-
tional Department of Health, National Treasury, and various levels of government.
Secondly, the work is a practical demonstration of integrating epidemic modelling and
optimisation in the COVID-19 context. While disease modelling has been ubiquitous
in the world’s handling of COVID-19, this thesis shows the possible impact that re-
source constraints and optimisation of resources can have on an epidemic, using South
Africa as a case study. It is easy to generalise the framework to the shifting of any
resources in a health care context, such as mobile health clinics for the elimination of
malaria in South Africa.

6.1 Conclusion

Despite its limitations and assumptions, this thesis has already added value to the
South African health system in the time of COVID-19. It has further shown the
value of intra-provincial resource sharing, and the impact that nationwide co-operation
can have in the context of a pandemic. The framework that this thesis proposes
provides guidelines for health systems like South Africa’s, that are applicable both to
general health care problems in a resource-constrained setting and to future pandemic
preparedness.
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7
Conclusion

This thesis had two primary aims centred around mitigating the effects of the first
wave of the COVID-19 epidemic in SA. The first was fulfilled during the development
of the NCEM, via the inclusion of capacity constraints and waiting chambers into
the Model. The second was to develop a goal programming framework that would
minimise loss of life due to the non-availability of ICU beds. This chapter will cover
the fulfilment of these aims, as well as that of the more detailed objectives set out in
Chapter 1. It will further highlight the key findings of, and conclusions that can be
drawn from, this thesis.

A descriptive analysis of the four key data-sets used in this thesis established, amongst
others, two important points of context:

• The high level of disparity in ICU bed supply across SA’s districts made a
preliminary case for intra-provincial sharing amongst districts.

• The peak of SA’s first wave of COVID-19 - the focus of this thesis - occurred
around July and August 2020.

This thesis modelled the spread of COVID-19 across SA’s 52 districts using the NCEM,
a generalised SEIR model which captures the clinical stages of the disease, as well
as treatment pathways. The contribution to the NCEM that is attributable to this
thesis is the addition of waiting chambers which capture people who cannot be treated
once general hospital bed or ICU bed capacity has been reached. This contribution
involved the development of a capacity constraint algorithm. The main insights from
the modelling results were as follows:

• ICU bed capacity was projected to be breached in two provinces. KwaZulu-
Natal was explored as a district-level example, and showed breaches in five out
of eleven districts, highlighting the need for intra-provincial resource sharing.

• An examination of mortality due to the non-availability of ICU beds revealed
that it constituted as much as 60% of total mortality in certain KwaZulu-Natal
districts. This made it clear that deaths due to the non-availability of ICU beds
was an outcome worth mitigating.

• These deaths decreased with increasing numbers of ICU beds across all provinces,
which meant that aiming to minimise ICU bed shortages in each district should
translate to minimising deaths due to the non-availability of ICU beds.
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The disease model was then used to generate the goals - taken as percentiles of the
maximum ICU bed usage over the period of a year - for a goal programming problem
which aimed to minimise ICU bed shortages in each district, while also minimising
cost. Twelve scenarios were designed and tested. The following key takeaways were
established:

• Goals, bed shortages, costs of shifting, and numbers of shifts peaked around the
peak of the first wave in SA.

• The goal programming framework reduced deaths due to non-availability of
ICU beds by at least 15%, and up to 99%, depending on the scenario. The
best scenario was 95-B-P, and the best scenario when shifting beds was 95-B-
B. The costs of these scenarios were approximately R1,800,000 and 69 units,
respectively.

Despite its limitations and assumptions, this thesis made a contribution to South
African governmental decision making via its additions to the NCEM. The framework
it proposes highlights the potential positive impact of province-wide or even country-
wide resource sharing as the world faces further waves of COVID-19, and indeed future
pandemics.
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A
Proxy for Cost of Transporting

Beds

Figure A.1: Scaled distances between districts, which represents a

proxy for the cost of transporting beds.
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B
ICU Beds in Use Per District

Figure B.1: ICU beds in use over time per district within the

Eastern Cape. The red dashed lines represent capacity.

The bands represent approximate 95% confidence

intervals.
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Figure B.2: ICU beds in use over time per district within the Free

State. The red dashed lines represent capacity. The

bands represent approximate 95% confidence intervals.
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Figure B.3: ICU beds in use over time per district within Limpopo.

The red dashed lines represent capacity. The bands

represent approximate 95% confidence intervals.

Figure B.4: ICU beds in use over time per district within

Mpumalanga. The red dashed lines represent capacity.

The bands represent approximate 95% confidence

intervals.
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Figure B.5: ICU beds in use over time per district within the North

West. The red dashed lines represent capacity. The

bands represent approximate 95% confidence intervals.

Figure B.6: ICU beds in use over time per district within the

Northern Cape. The red dashed lines represent

capacity. The bands represent approximate 95%

confidence intervals.
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Figure B.7: ICU beds in use over time per district within the

Western Cape. The red dashed lines represent

capacity. The bands represent approximate 95%

confidence intervals.



59

C
Selected Code Snippets

C.1 Capacity Constraint Algorithm

Note that the full code for the NCEM is available at https://sacovid19mc.github.io.
1 # Excess mortality
2 avail1 = rep(1, N)
3 avail2 = rep(1, N)
4

5 # Hospital beds
6 beds_occupied <- Reduce("+", lapply(c(7, 8, 11, 19, 20), function(ind){

x[varind[ind ,]]})) %>% unname
7 # Sev to H1 and H2
8 proposed_enter = unname(taus*x[varind [6,]]/365)
9 proposed_exit = unname(

10 tauicu*x[varind[8, ]]+ # H2 to ICU
11 r3*x[varind[7, ]]+ # H1 to R,D
12 r5*x[varind [11, ]]+ # H3 to R
13 r9*x[varind [19, ]]+ # Wv to R,D
14 r10*x[varind [20, ]] # WnotV to R,D
15 )/365
16 violation = which(beds_occupied - proposed_exit + proposed_enter > gen_

capacity)
17 avail1[violation] = (gen_capacity[violation] - beds_occupied[violation]

+ proposed_exit[violation ]) / proposed_enter[violation]
18

19 # ICU
20 ICU_occupied <- Reduce("+", lapply(c(9, 10, 16, 17), function(ind){x[

varind[ind ,]]})) %>% unname
21 # H2 to all ICUs
22 proposed_enter = unname(tauicu*x[varind [8,]]/365)
23 proposed_exit = unname(
24 muv*x[varind[9, ]] + # ICUVd to D
25 r9*x[varind [10, ]] + # ICUVr to H3
26 munotv*x[varind [16, ]] + # ICUnotVd to D
27 r10*x[varind [17, ]] # ICUnotVr to H3
28 )/365
29 violation = which(ICU_occupied - proposed_exit + proposed_enter > icu_

capacity)
30 avail2[violation] = (icu_capacity[violation] - ICU_occupied[violation]

+ proposed_exit[violation ]) / proposed_enter[violation]
31

32 # Correct for zero -capacity situations
33 avail1[which(gen_capacity == 0)] = 0
34 avail2[which(icu_capacity == 0)] = 0

https://sacovid19mc.github.io
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C.2 Goal Programming Solution

1 get_sol = function(scenario , # ’anywhere ’ or ’neighbours ’ or ’
provincial ’

2 add_constraint , # TRUE or FALSE (deprecated)
3 shortage_weight , # number from 0 to 1
4 cost_weight , # number from 0 to 1
5 goals , # vector of goals of length N

=52
6 minshift=5,
7 maxshift =1000,
8 available=capacity$ICU_curr ,
9 ems=FALSE) { # include EMS

constraint
10

11 library(Rglpk)
12

13 # CONSTANTS ####
14 epsilon = 0.001
15 N = 52
16 weights = c(rep(shortage_weight , N), cost_weight)
17 if(ems == FALSE) cost = as.vector(t(distance / 1000000))
18 else cost = as.vector(t(cost_ems))
19

20 if(scenario == ’neighbours ’) {
21 neighbours_vec = readRDS(’Model Inputs/neighbours.RDS’)
22 neighbours_vec = as.vector(t(neighbours_vec))
23 }
24 if(scenario == ’provincial ’) {
25 provincial_vec = readRDS(’Model Inputs/provincial.RDS’)
26 provincial_vec = as.vector(t(provincial_vec))
27 }
28

29 # OBJECTIVE ####
30 obj = c(1,
31 rep(epsilon , N + 1) * weights ,
32 rep(0, 2*N^2))
33

34 # GOALS AND CONSTRAINTS: MATRIX ####
35

36 # Tchebycheff constraints
37 ones = rep(1, N)
38 ws = -diag(weights [1:N])
39 zeros = matrix(0, nrow=N, ncol=2*(N^2) + 1)
40 mat = cbind(ones , ws, zeros)
41 mat = rbind(mat , c(1, rep(0, N), -weights[N+1], rep(0, 2*(N^2))))
42

43 # Reaching goal capacity but staying within what ’s available
44 iden = cbind(rep(0, N), diag(rep(1, N)), rep(0, N))
45 i_to_j = matrix(0, nrow=N, ncol=N^2)
46 for(i in 1:N) {
47 for(j in 1:N) {
48 i_to_j[i, i + (j - 1) * N] = 1
49 }
50 }
51 for(i in 1:N) {
52 i_to_j[i, (N*i - (N - 1)):(N *i)] = -1
53 }
54 mat = rbind(mat ,
55 cbind(iden ,
56 i_to_j,
57 matrix(0, nrow=N, ncol=(N^2))))
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58

59 # Cost goal
60 cost_vec = c(rep(0, N + 1), -1, cost , rep(0, N^2))
61 mat = rbind(mat , cost_vec)
62

63 # Minshift
64 zeros = matrix(0, nrow=N^2, ncol=N+2)
65 iden = diag(rep(-1, N^2))
66 ms = diag(rep(minshift , N^2))
67 mat = rbind(mat ,
68 cbind(zeros ,
69 iden ,
70 ms))
71

72 # Maxshift
73 zeros = matrix(0, nrow=N^2, ncol=N+2)
74 iden = diag(rep(1, N^2))
75 ms = diag(rep(-maxshift , N^2))
76 mat = rbind(mat ,
77 cbind(zeros ,
78 iden ,
79 ms))
80

81 # Shift away cannot exceed available
82 avail = matrix(0, nrow=N, ncol=N^2)
83 for(i in 1:N) {
84 avail[i, ((i - 1) * N + 1):(i * N)] = 1
85 }
86 avail = cbind(matrix(0, nrow=N, ncol=N+2),
87 avail ,
88 matrix(0, nrow=N, ncol=N^2))
89 mat = rbind(mat , avail)
90

91 # Delta ’s zero for i=j
92 iden = matrix(0, nrow=N, ncol=N^2)
93 for(i in 1:N) {
94 iden[i, (N + 1)*i - N] = 1
95 }
96 iden = cbind(matrix(0, nrow=N, ncol =2+N+N^2),
97 iden)
98 mat = rbind(mat , iden)
99

100 if(add_constraint == TRUE) {
101 # deltas zero when gi > ai
102 zeros = matrix(0, nrow=N^2, ncol =2+N+N^2)
103 shortage = goals [1:N] > available [1:N]
104 delt = matrix(0, nrow=N^2, ncol=N^2)
105 for(i in 1:N) {
106 if(shortage[i] == TRUE) {
107 diag(delt [((i - 1) * N + 1):(i * N), ((i - 1) * N + 1):(i * N)

]) = 1
108 }
109 }
110 mat = rbind(mat ,
111 cbind(zeros ,
112 delt))
113 }
114

115 if(scenario == ’neighbours ’) {
116 # Only shift to neighbours
117 iden = diag(rep(1, N^2))
118 zeros = matrix(0, nrow=N^2, ncol=N + 2 + N^2)
119 mat = rbind(mat ,
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120 cbind(zeros ,
121 iden))
122 }
123

124 if(scenario == ’provincial ’) {
125 # Only shift provincially
126 iden = diag(rep(1, N^2))
127 zeros = matrix(0, nrow=N^2, ncol=N + 2 + N^2)
128 mat = rbind(mat ,
129 cbind(zeros ,
130 iden))
131 }
132

133 if(ems == TRUE) {
134 # constrain shifts to number of ambulances
135 avail = matrix(0, nrow=9, ncol=N^2)
136 for(i in 1:N) {
137 if(i %in% P$EC) avail[1, ((i - 1) * N + 1):(i * N)] = 1
138 if(i %in% P$FS) avail[2, ((i - 1) * N + 1):(i * N)] = 1
139 if(i %in% P$GP) avail[3, ((i - 1) * N + 1):(i * N)] = 1
140 if(i %in% P$KZN) avail[4, ((i - 1) * N + 1):(i * N)] = 1
141 if(i %in% P$LP) avail[5, ((i - 1) * N + 1):(i * N)] = 1
142 if(i %in% P$MP) avail[6, ((i - 1) * N + 1):(i * N)] = 1
143 if(i %in% P$NC) avail[7, ((i - 1) * N + 1):(i * N)] = 1
144 if(i %in% P$NW) avail[8, ((i - 1) * N + 1):(i * N)] = 1
145 if(i %in% P$WC) avail[9, ((i - 1) * N + 1):(i * N)] = 1
146 }
147 avail = cbind(matrix(0, nrow=9, ncol=N+2),
148 avail ,
149 matrix(0, nrow=9, ncol=N^2))
150 mat = rbind(mat , avail)
151 }
152

153

154 # GOALS AND CONSTRAINTS: RHS ####
155 rhs = c(rep(0, N+1),
156 goals - available ,
157 rep(0, 1+2*N^2),
158 available ,
159 rep(0, N))
160

161 if(add_constraint == TRUE) rhs = c(rhs , rep(0, N^2))
162 if(scenario == ’neighbours ’) rhs = c(rhs , neighbours_vec)
163 if(scenario == ’provincial ’) rhs = c(rhs , provincial_vec)
164 if(ems == TRUE) rhs = c(rhs , c(349, 166, 513, 290, 144, 67, 77, 79,

230))
165

166 # GOALS AND CONSTRAINTS: DIRECTION ####
167 dir = c(rep(">=", 2*N+1),
168 "==",
169 rep("<=", 2*N^2 + N),
170 rep("==", N))
171

172 if(add_constraint == TRUE) dir = c(dir , rep(’==’, N^2))
173 if(scenario == ’neighbours ’) dir = c(dir , rep(’<=’, N^2))
174 if(scenario == ’provincial ’) dir = c(dir , rep(’<=’, N^2))
175 if(ems == TRUE) dir = c(dir , rep(’<=’, 9))
176

177 # VARIABLE TYPES ####
178 types = c(rep(’C’, N + 2),
179 # rep(’I’, N^2),
180 rep(’C’, N^2),
181 rep(’B’, N^2))
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182

183 # SOLUTION ####
184 sol=Rglpk_solve_LP(obj , mat , dir , rhs , types = types ,
185 verbose=T,
186 control = list(tm_limit = 300000))
187

188 # PROCESS SOLUTION ####
189 shifts = sol$solution [(2 + N + 1):length(sol$solution)][1:(N^2)]
190 shifts = matrix(shifts , nrow=N, ncol=N, byrow=T)
191 dv = sol$solution
192 delta = dv[(N + 2 + N^2 + 1):( length(dv))]
193 delta = matrix(delta , nrow=N, byrow=T)
194

195 # RETURN ####
196 return(list(shifts=shifts , delta=delta))
197 }
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