FACTORS WHICH AFFECT THE APPLICATION AND IMPLEMENTATION OF A SPINAL MOTION RESTRICTION PROTOCOL BY PREHOSPITAL PROVIDERS IN LOW RESOURCE SETTINGS: A SCOPING REVIEW

By
Charlene Geduld
GDLCHA002

This study is in partial fulfilment of the requirements for the degree
Master of Philosophy (MPhil) in Emergency Medicine in the Faculty of Health Sciences at the University of Cape Town

Supervisor(s): Dr Colleen Saunders
Division of Emergency Medicine, Department of Surgery, Faculty of Health Sciences, University of Cape Town

Mrs Henra Muller, Department of Clinical Science, Faculty of Health and Environmental Sciences, Central University of Technology

October 2021
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
PLAGIARISM DECLARATION

I, Charlene Ursula Geduld, hereby declare that the work on which this thesis is based is my original work (except where acknowledgements indicate otherwise) and that neither the whole work nor any part of it has been, is being, or is to be submitted for another degree in this or any other university. I empower the university to reproduce for the purpose of research either the whole or any portion of the contents in any manner whatsoever.

I further declare the following:

1. I know that plagiarism is a serious form of academic dishonesty.

2. I have read the document about avoiding plagiarism, am familiar with its contents and have avoided all forms of plagiarism mentioned there.

3. Where I have used the words of others, I have indicated this using quotation marks.

4. I have referenced all quotations and properly acknowledged other ideas borrowed from others.

5. I have not and shall not allow others to plagiarise my work.

6. I declare that this is my own work.

7. I am attaching the summary of the Turnitin match overview.

Signature: [Signed by candidate]
Date: 15 October 2021
ACKNOWLEDGEMENTS

I would like to thank my heavenly father for the guidance and motivation that he gave me to continue and complete this dissertation.

I am also grateful for, and acknowledge the contributions of the following:

- The Department of Clinical Science at the CUT for their permission and motivation to enrol for this programme and complete it.
- To my Research Supervisors Dr Colleen Saunders and Mrs Henra Muller for their continuous support and belief in my abilities, continuous motivation and encouragement, and their exceptional research abilities and contributions as knowledgeable experts in their fields of practice.
- To my family, thank you for the love and support in allowing me to pursue my goals, it will be eternally appreciated.
TABLE OF CONTENTS

LIST OF FIGURES ... 5
ABBREVIATIONS .. 6
Part A: Background and Literature Review ... 7
 Background .. 8
 Introduction ... 11
 Pathology of traumatic spinal cord injury .. 13
 International best practice recommendations for prehospital management of traumatic spinal cord injury 15
 Clinical spine clearance decision tools .. 17
 Summary .. 24
 References .. 26
Part B: Manuscript in Article Format .. 35
 Title Page .. 36
 Abstract ... 37
 Figures ... 70
Part C: Appendices .. 101
 Appendix A: Prehospital Emergency Care Journal: Instructions for Authors .. 102
 Appendix B: Research Protocol .. 103
 Appendix C: HREC Approval Letter ... 113
LIST OF FIGURES

Part A: Literature Review:
Figure 1: Prisma diagram detailing the literature review process………………………… 10

Part B: Manuscript:
Figure 1: Prisma diagram describing selection of articles for review…………………….67
Table 1: PRISMA-ScR Checklist………………………………………………………………71
Table 2: List of articles identified and included in the scoping review (n=42)………………68
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-COLLAR</td>
<td>Cervical Collar</td>
</tr>
<tr>
<td>CCSR</td>
<td>Canadian C-Spine Rule</td>
</tr>
<tr>
<td>CPG</td>
<td>Clinical Practice Guideline</td>
</tr>
<tr>
<td>CSI</td>
<td>Cervical Spinal Injury</td>
</tr>
<tr>
<td>C-spine</td>
<td>Cervical Spine</td>
</tr>
<tr>
<td>CT scan</td>
<td>Computed Tomography Scan</td>
</tr>
<tr>
<td>ED</td>
<td>Emergency Department</td>
</tr>
<tr>
<td>EMS</td>
<td>Emergency Medical Service</td>
</tr>
<tr>
<td>GCS</td>
<td>Glasgow Coma Scale</td>
</tr>
<tr>
<td>HEMS</td>
<td>Helicopter Emergency Medical Service</td>
</tr>
<tr>
<td>HIC</td>
<td>High Income Country</td>
</tr>
<tr>
<td>HPCSA</td>
<td>Health Professions Council of South Africa</td>
</tr>
<tr>
<td>LSB</td>
<td>Long Spine Board</td>
</tr>
<tr>
<td>MOI</td>
<td>Mechanism of Injury</td>
</tr>
<tr>
<td>MVC</td>
<td>Motor Vehicle Collision</td>
</tr>
<tr>
<td>NEXUS</td>
<td>National Emergency X-Radiography Utilization Study</td>
</tr>
<tr>
<td>PBEC</td>
<td>Professional Board for Emergency Care</td>
</tr>
<tr>
<td>SATS</td>
<td>South African Triage Scale</td>
</tr>
<tr>
<td>SCI</td>
<td>Spinal Cord Injury</td>
</tr>
<tr>
<td>SMR</td>
<td>Spinal Motion Restriction</td>
</tr>
<tr>
<td>TSCI</td>
<td>Traumatic Spinal Cord Injury</td>
</tr>
</tbody>
</table>
Part A: Background and Literature Review
Background

Over the last three decades, the South African Emergency Medical Service (EMS) landscape has undergone significant changes in prehospital emergency care training and education. These changes surfaced from the need for improved training of those dealing with emergency situations (1). It was viewed that most EMS short course qualifications' scope of practice and skills were found to be outdated and non-compliant with international best practice recommendations (1). Historically, this had resulted in a diverse number of short course and higher education qualifications in the South African EMS setting, with a follow-on effect of five different registration categories and scope in the practice of pre-hospital emergency care (2). To a large extent, these changes affect the provision of optimal patient care in the prehospital environment of South Africa. Moreover, South Africa, considered an upper-middle-income country, has several resource-constrained provincial EMS settings, which may also affect patient care.

The 2018 South African EMS Clinical Practice Guideline (CPG), much like any other CPG, was developed to improve and provide standardisation of quality in health care, avoid incidences of ineffective interventions, and maximise the best possible patient outcomes (3) within each respective EMS registration category. Most importantly, it aimed to provide emergency care suggestions in line with international best practice recommendations. One of the CPG recommendations made for the provision of optimal patient care involved that of the adoption and use of spinal clearance decision tools, namely the National Emergency X Radiography Utilization Study (NEXUS) and, or the Canadian C-Spine Rule (CCSR), for use by EMS personnel (4). These were based on the premise that the prevalence of spinal cord injury after blunt trauma is low (5-7) and, as a result, argues that the practice of spinal motion restriction (SMR) is unnecessarily performed by EMS personnel. Moreover, a growing body of evidence advises that SMR is not without its harmful effects (8), thereby indicating that the risks and adverse effects of the practice of SMR may far outweigh its presumed benefits. Whilst it is commendable that South Africa aims to integrate evidence-based practices within its setting, it is important to note that both the NEXUS and CCSR decision support tools were initially validated in the hospital setting of high-income countries (HICs), that being the United...
States of America and Canada respectively (9-11) Furthermore, the extended practice recommendation of these decision support tools for prehospital use was mostly for those EMS having well-resourced services and a somewhat less complex EMS landscape in relation to education, training, skill and scope of practice than that of South Africa. With this in consideration, it is important to remember that the effectiveness of any CPG is reliant on how consistently they are used in clinical practice and decision-making (3). As a result, the safety and efficacy findings of practice adoption may not necessarily be generalisable to different practice environments, especially that of resource-constrained and differently structured EMS settings.

The following literature review was undertaken in order to provide foundational knowledge on the specific topic of SMR in the prehospital setting, most specifically to:

A. Describe the pathology and prevalence of traumatic spinal cord injury (TSCI)
B. Identify and describe the best practice recommendations for prehospital management of TSCI
C. Review the current local and international information to identify SMR decision support tools used by EMS personnel across various settings.
D. Identify the drivers of any gaps between SMR evidence and SMR practice

A limited literature search of the Medline database using the Pubmed search function was undertaken. The following advanced search string with medical subject headings (MeSH) relevant to SCI and Spinal immobilisation was used in the first instance:

("Emergency Medical Services"[Mesh] OR “Emergency Medical Service**”[tw] OR Paramedic[tw] OR Prehospital[tw]) AND ("Spinal Injuries"[Mesh] OR “Spinal cord injury**”[tw]) AND ("Immobilization"[Mesh] OR “Spinal Clearance”[tw] OR “spinal immobilization”[tw] OR “spinal motion restriction”[tw])(Figure 1). Following review, a total of 67 articles were included in this literature review. The inclusion and exclusion criteria utilised were articles involving spinal motion restriction or clinical spine clearance decision tools, articles in English and published between 2000 and 2020 and the study population were Emergency Medical Services and Emergency Department (ED) personnel.
This search string produced 289 potential hits, where 47 articles known to the author was also included. Article titles and abstracts were then screened for potential relevance and duplicate articles were removed. The full text of articles identified was then reviewed, where any articles which did not hold any relevance to the topic were excluded. Figure 1 below depicts the literature review process.

Figure 1: Prisma diagram detailing the literature review process
Introduction

Instability of the spine occurs when the integrity of the spinal column has been compromised. This instability can be the result of fractures and/or joint dislocations, which cause it to lose its ability to maintain its protective configuration under normal physiological loading. This places the spinal column at an increased risk of injury (12). Injuries to the spinal cord can occur at different levels, including cervical, thoracolumbar, and lumbosacral, where its severity may be classified as complete or incomplete (13). These may present differently, from that of pain to complete paralysis.

International published literature suggests that the prevalence of traumatic spinal cord injury (TSCI) after blunt trauma is low (3-25%) (7). Where a review indicates that epidemiologically, 55% of all spinal lesions are cervical, 15% thoracic, 15% thoracolumbar and 15% lumbosacral, the most common being C4-C5-C6, T4- T5 and T12-L1 (14). Researchers such as Chiu et al. highlight differences in the respective reporting of the incidence rates of TSCI between that of developing and those of developed countries (15). These variations might be influenced by underreporting and/or underdiagnosing cases with TSCI, which may also include increased numbers of patients who may have died on scene due to potential inappropriate handling, triage and transportation (15). No matter the setting and the prevalence of TSCI, unrecognised injury to the cervical spine can cause catastrophic neurological disability (16).

Prehospital EMS plays an integral role in providing care to enhance recovery and quality of life in patients who sustain TSCI. As a result, the routine practice by EMS has historically been to assume the presence of an unstable spinal injury when the patient presents with a relevant mechanism of injury (MOI) or clinical findings. Thereafter, EMS practitioners were to proceed and stabilise the patient using a combination of appropriate immobilisation devices, which included cervical collars (c-collars), head blocks, long spine boards (LSB), and straps, followed by transporting them to the closest hospital facility for the continuation of care. This practice was commonly referred to as traditional spinal immobilisation (17). However, over the last few decades, the potential dangers and sequelae of traditional spinal immobilisation have been extensively reported. Broadly these fall within four categories: increased pain, tissue breakdown, respiratory
compromise, and ineffective motion restriction (8). As a result, it is believed that these risks may far outweigh the presumed benefits that immobilisation provides trauma patients (5-7,9,10,18). There has also been a growing body of evidence that has highlighted concerns over the management approach of EMS personnel to potential TSCI patients (7). Amongst others, a low probability of spinal cord injury (SCI) post-trauma exists, which is specifically linked to the force of impact needed to cause injury (5-7). This low prevalence is suggestive that immobilisation is being unnecessarily applied and that it leads to over-immobilisation of patients (12,19,20). Moreover, the term immobilisation has also been described as misleading since total non-movement is near impossible in achieving (5). It has since been replaced with the term spinal motion restriction (SMR), which is more descriptive of the desired outcome (5,8).

The above-cited concerns have prompted that the prehospital approach to TSCI is more refined (5,7,12). Specifically, that SMR decision-making should consider given indications and/or criteria that either warrant for or against its practice (21). It was generally believed that developing a selective SMR decision support tool would help reduce the number of SMR patients and, consequently, reduce the number of complications associated with this practice (22). Several organisations and publications have since recommended using a decision support tool in the prehospital setting which will facilitate a rapid and valid on-scene decision (5,7). These recommendations have gained support from research demonstrating that the adoption of such tools can be safely and effectively applied by EMS personnel within the prehospital setting (5,7,10,12,20). As such, the 2018 issue of the South African EMS CPG has supported this notion as a means to avoid unnecessary SMR and its associated risks (5-7,9,10,18). These CPGs have specifically suggested the NEXUS decision tool and, or the use of the Canadian C-Spine Rule (CCSR) in its setting. These are both considered clinical spinal clearance decision tools, initially designed and validated for use in the hospital setting (10,11,23-28), a healthcare setting that is uniquely different from the prehospital environment (6,29,30).

The applicability of many decision support tools is subject to many limitations. For example, the CCSR and NEXUS were developed for use in conscious and orientated patients (10,11,23-28). In addition, although several SMR decision tools have specifically
been developed and recommended for use by EMS personnel in prehospital settings around the globe (21,31-35). Often some do not consider the current status of the patient (stable or unstable) (9, 31,36), or they are only applicable when the patient’s circulation has been stabilised (10). To our knowledge, there exists no universally applicable prehospital SMR supporting tool that incorporates the unique EMS setting and patients that they encounter, which, as mentioned, is somewhat different from that of the hospital setting.

Moreover, currently available research concerning SMR decision tools is mostly based on research conducted in well-resourced settings (12,37-42). These results cannot necessarily be generalisable to poorly resourced settings, or those with very different EMS systems in place from those of the original studies investigated. Additional variables may exist that may facilitate or constrain the adoption and application of such decision tools in these prehospital settings. Therefore, it is important to investigate what they are to allow EMS to plan accordingly to effectively roll out a selective SMR decision instrument fit for its specific prehospital setting and population.

Pathology of traumatic spinal cord injury

Physical trauma is an injury to the body produced from impact, violence, or accident and is an omnipresent emergency commonly encountered within healthcare settings across the globe (43). Physical trauma is categorised as either penetrating injury or blunt trauma injury. This can be further classified by injury severity based on the cause of injury, the age of the patient and the area of the body affected. Injury severity can thus be categorised as minor, moderate, serious, severe, critical or non-survivable (44). Traumatic spinal injury is a broadly defined term that considers injury to bony, ligamentous, and or neurologic structures of the spinal column (45). Thus, spinal cord injury or nerve root injury is a recognised complication of spinal trauma (46), commonly defined as TSCI. Traumatic spinal cord injury is considered a severe injury, leading to significant mortality and morbidity (45).

Unrecognised injury to the cervical spine can cause catastrophic neurological disability, and therefore forms part of the initial prehospital management workup of the trauma patient (18,47). Identifying severe and critical injuries early on affects decision-making
regarding management interventions and that of transfer to definitive care (48). Unfortunately, patient deterioration may be directly associated with combined factors such as; the limited availability of appropriately trained staff, prolonged distance travelled by road from the scene to an appropriate treatment facility, poorly resourced ambulances or response vehicles (49), as well as the personnel’s motivation for staying up to date with skills and best treatment recommendations (50). Moreover, limited EMS quality assurance systems may further predispose the patient to increased risk of mortality and morbidity post-trauma (51).

For years, the standard approach by EMS to the management of blunt trauma patients was to assume the presence of a potential TSCI and motion restrict all patients based on the MOI. This practice has come into question as recent evidence suggests that the estimated minimum force needed to cause injury to the spine is 1000N (52) and 3000N to injure the lumbar spine (53), thereby asserting that the probability of TSCI is relatively low (5, 52,53). Contrary to this, other published data found that C-spine fractures' incidence was less common than that of thoracolumbar fractures, specifically fractures between T11 and L4 (54). It is assumed that contradictions in the reporting on the incidence of SCI in general may be associated with several factors. Amongst others, this includes the differences in populations from those of well-resourced versus those from less-resourced countries with respect to the MOI involved and its associated patterns of injury to the spine, the underreporting and/or underdiagnosis of TSCI, and a potential increase in number of patients who died prior to arrival at hospital which may have resulted from a delay in, or lack of EMS response, and inappropriate handling or transportation of patients (15). There may be further variations in the prevalence of TSCI found attributed to human and equipment resources at hand, i.e. the method of spinal injury detection used within the various studies such as plain radiographic imaging versus computed tomography (CT) scan, with consideration that the CT scan is the most appropriate diagnostic tool for the detection of SCI (15).

Moreover, the increased emphasis on a blanket approach to traditional spinal immobilisation of all trauma patients, which EMS personnel have grown accustomed to, has to some extent shifted the best practice approach of TSCI that EMS personnel ought
to have. This being that TSCI is a two-step process that involves primary and secondary mechanisms (55). Primary mechanisms refer to the initial MOI (force on the body) that cause local deformation to the spine and its structures, and secondary injury subsequent to the primary injury encompasses a cascade of biochemical and cellular processes (55). Both primary and secondary injuries may be a neglected aspect of TSCI prevention. This may be due to the lack of awareness and consideration of the characteristics of traumatic spinal injury after trauma. Additionally, sustaining multiple injuries in the face of acute TSCI adds further concern of secondary injury to the spinal cord as these may precipitate hypotension and hypoxia, which exacerbate TSCI (55). It is thus important to acknowledge that as much as EMS should have concerns related to minimal patient handling of patients with possible TSCI in the prehospital setting (5), there should be equal concern shown toward the importance of management interventions that may mitigate against the consequences of secondary injuries.

International best practice recommendations for prehospital management of traumatic spinal cord injury

Often EMS are the first point of contact for patients and thus play a key role in improving the neurological outcome of patients in the prehospital setting (48). This is achieved by emergency response teams that have complex, decisive leadership ability and technical skills in their management of such patients (48). Moreover, the management approach to potential TSCI patients should be focused on SMR practices and appropriate transportation decision making, effective resuscitation efforts, prevention of hypoxia, and the management of hypotension to avoid secondary TSCI progression (48).

The historical approach to blunt trauma patients with potential TSCI in the prehospital setting mostly involved using a cervical collar, head blocks, and an LSB for full-body immobilisation. This was referred to as the traditional spinal immobilisation method (17), which was primarily performed to minimise or prevent further damage to the spinal cord, resulting in further instability of the spinal column (7,21,56). Two forms of traditional spinal immobilisation exist: C-spine immobilisation includes the usage of neck collars and head blocks, intended to protect the potential C-spine injury and prevent injury progression (37) whereas full spinal immobilisation provides for the use of spider harnesses, LSB or scoop
stretchers and/or vacuum mattresses to avoid movement in lower areas of the spine (17). Of late, EMS protocols have evolved to such a degree that spinal immobilisation, especially full immobilisation, which makes use of LSB, is no longer recommended for routine prehospital use (57,58). Instead, it has been advocated that patients be managed by a technique referred to as SMR, which excludes the routine use of the LSB and scoop stretcher devices, as these should preferably be used for the purposes of extrication and movement on the scene only (5,17). The rationale for this protocol change derives from documented complications to patient and operational considerations which are associated with its packaging and transportation use.

Furthermore, there are several risks and complications associated with SMR practices in general. These can be broadly described within four categories (8): increased pain, tissue breakdown, respiratory compromise, and ineffective motion restriction. For example, in C-spine immobilisation, there have been reports on the increased movement of unstable fractures, increased intracranial pressure, and causing tissue necrosis and general discomfort for the patient (5,18). One article in particular by Benger and Blackman (59), explored the reasoning behind the use of cervical collars in conscious trauma patients and have suggested that its comfortability makes the task of effectively examining the patient more difficult. Other documented SMR concerns also include that prolonged motion restriction is linked to the development of pressure ulcers and general patient discomfort and pain (57,59). Also, SMR is time-consuming and may delay transportation and, therefore, definitive treatment of patients (30,60). Additionally, some patients may experience motion sickness at the back of an ambulance, in this way, increasing the risk of aspiration (59,61). Moreover, the prolonged use of SMR devices has resulted in the increased rate of iatrogenically induced pain, further complicating patient assessment on arrival at the ED as it leads to false-positive findings (57,62). All of these factors further contribute to poor patient satisfaction in that it results in significant unnecessary health care costs (62), and also increases the utilisation of C-spine imaging, thereby increasing patient exposure to radiation (10,11,25).

Due to the growing number of concerns raised about SMR, it was suggested that developing a more selective SMR protocol could reduce the number of patients' motion
restricted in the prehospital setting. Thereby decreasing the number of potential risks and complications associated with it (22). Currently, several selective SMR protocols (also referred to spinal clearance protocols) exist, many of which were initially designed for indications requiring radiological imaging in the ED and later validated for prehospital use (22,32,61,63,64). The aim of a prehospital selective motion restriction protocol is to identify either those patients who are at low risk of sustaining SCI and can thereby be transported without SMR and to identify those patients at increased risk who ought to be motion restricted (38,63). The South African CPGs have proposed using the NEXUS and/or the CCSR tools for use by EMS personnel.

Clinical spine clearance decision tools

The NEXUS rule and the CCSR are clinical spine clearance decision tools initially designed and validated for use in the hospital settings of the United States and Canada, respectively (9-11). These clinical decision tools have afforded healthcare providers the opportunity to make evidence-based, objective decisions about whether or not imaging is required, these result in cost-saving practices as well as reduced radiation exposure to patients (65).

National Emergency X Radiography Utilization Study (NEXUS) criteria

In a large multicentre trial, Hoffman et al. (9) validated five criteria indicating a low probability of C-spine injury. Thereby in the hospital setting, the absence of all five criteria determined and helped the healthcare practitioner identify those patients who did not require imaging (9,65). These criteria are known as the NEXUS criteria and include:

- Altered level of consciousness/ alertness. Altered level of consciousness/ alertness being defined as patients who present with:
 - Glasgow Coma Scale (GCS) of less than 15
 - Disorientation to person, place, time or events
 - Inappropriate response to external stimuli
 - Inability to remember three objects in five mins
- Any indication of intoxication
- Posterior midline cervical tenderness
• Focal neurological deficit
• Presence of any clinically apparent, painful distracting injury
 o Examples of distracting injuries may include: visceral injury requiring surgical consultation, long bone fractures, extensive burns or crush injuries.

It is postulated that should EMS use this decision tool within the prehospital setting; it will indicate those patients who do not need C-spine immobilisation.

The Canadian C-Spine Rule (CCSR) criteria:
The CCSR is another clinical spine clearance tool that was initially developed for use in alert, stable patients who presented to the Canadian ED settings. This decision tool validated several high-risk criteria (the high likelihood of C-spine injury to the spine), which can be used to identify which patients are at increased risk of having sustained a traumatic spinal injury, thereby requiring further radiology examination (38), or in the prehospital setting, those requiring C-spine immobilisation. This tool does this by placing emphasis on high-risk MOI and physical examination (66). These criteria include (10):

Any high-risk factor that mandates radiography which includes:

• Age 65 years or older
• Dangerous mechanism:
 o Fall from 1m (or five stairs)
 o Axial load to the head (e.g., diving accidents)
 o Motor vehicle collisions (MVC) at high speed (>100 km/h)
 o Motorised recreational vehicle accident
 o Ejection from a vehicle
 o Bicycle collision with an immovable object
• Paraesthesia in extremities
• Any low-risk factor that allows safe assessment of the range of motion. Range of motion testing entails the examination of whether the patient can actively rotate the neck 45 inches to the left and right (regardless of pain). Should the patient be able to rotate his or her neck, imaging (or SMR) is not indicated
Patients who do not have any of the following low-risk factors should be radiographed/motion restricted and are not suitable for the range of motion testing):

- Simple rear-end motor vehicle collision
- Sitting position on-scene/in the ED
- Ambulatory at any time since injury
- Delayed onset of neck pain
- Absence of midline C-spine tenderness

Overall, the CCSR was found as the most specific clinical criteria for C-spine injury, where the NEXUS rule is found to be less sensitive (90.7% vs 99.1%) and less specific (36.8% vs 45.1%); thus the recommendation for the use of CCSR over NEXUS (10). Furthermore, a prospective study by Vaillancourt et al. (38) aimed to validate the safety of application of the CCSR tool when used by paramedics in the prehospital setting. This study included the following three criteria (38):

- **Criterion 1: Any high-risk patient**

These include:

- Age >65
- Any dangerous MOI, or
- Numbness or tingling in the extremities

Positive findings of criterion 1 mandate that C-spine immobilisation be applied, whereas the absence of which leads to further assessment in criterion 2

- **Criterion 2: Low risk**

Includes:

- Simple rear-end MVC
- Ambulatory at any time whilst on scene
- The absence of neck pain at the scene when asked, or
- No pain during midline palpation.

The presence of any of these conditions leads to further assessment of criterion 3
Criterion 3: Neck mobility

- Patients ability to voluntarily rotate the neck 45 degrees left and right upon request.

The inability to rotate the neck mandates that the patient be motion restricted.

This study revealed that approximately 40% of patients having sustained blunt trauma injury could be safely transported without C-spine immobilisation (38).

Possible concerns/ challenges with NEXUS and CCSR use within the prehospital setting

Within the literature, several possible concerns are highlighted regarding the NEXUS and CCSR tools which can create specific challenges when used by EMS personnel. Amongst others, these include the following:

I. As the initial tools were developed for the ED setting, a large subgroup of patients was omitted in the derivation set of the CCSR (10), hence questioning the generalisability of usage (67) in other settings such as that of South Africa.

In particular, the excluded groups include those with a decreased GCS and those with abnormal vital signs (respiratory rate 10 – 24 breaths per minute and/ or systolic blood pressure less than 90 mmHg) (6). It is anticipated that resourced constrained EMS’ such as those found within South Africa may encounter these excluded subgroups of patients more often due to the severity of MOI and delays in arriving at the scene (49).

II. The unreliability of the decision tool in identifying lower spinal injuries

Hospital use of both CCSR and NEXUS has been deemed unreliable in identifying lower spinal injuries (5,66). In one study, more than half (52%) of patients with known thoracolumbar fractures had a negative clinical examination (68). For the prehospital setting, where there is a need to make appropriate transportation packaging decisions, they may benefit more from an SMR protocol that considers injury to the entire spine and not only (purely) that of the C-spine. This may be more relevant since most literature points out that there are harms and adverse
events associated with SMR packing devices in general, not only those used for C-spine immobilisation.

III. Prevalence of TSCI and other high-risk factors

The CCSR, which considers high-risk MOI for C-spine injury factors such as advanced age (>65 years old), may not be equally representative of those patients at high risk within the South African population group. A prospective study by Joseph et al. (69) evaluating the incidence and aetiology of TSCI in Cape Town, South Africa, found that younger men were at greater risk of injury. It found that 85.5% of TSCI patients were males, where the male to female ratio was 5.9:1 (69). Of these male patients with TSCI, 54% were 18 – 30 years old, and 6% of men were in the age category of >65 years in age (67). Additionally, this study found that the annual crude incidence of TSCI was amongst the highest globally, with a reported 75.6 per million for the population under study (69). This was a higher rate than neighbouring countries such as Botswana, with an incidence rate of 13 per million population (69,70). These findings from one population-based study in an urban area in South Africa suggest that there may be a higher probability of sustaining TSCI in the South African setting compared to international settings. Therefore, there may be differences in those patients at higher risk of TSCI within the South African context that the internationally adopted CCSR does not consider.

IV. False-negative criterion result

Although there is some evidence supporting the adoption of an SMR protocol, other evidence identified by a systematic review of prehospital SMR protocols suggests that more research is needed to determine the safety of prehospital SMR in general (71). Interestingly, this review was based on SMR evidence within HICs EMS. This review found that many elderly patients who sustained thoracic spinal or lumbar spinal injury were omitted from the SMR as they were viewed as false negatives by the motion restriction protocol. These resulted from sustaining injury
due to a low-risk MOI with minimal force, such as falling from standing (71). Moreover, the review highlighted three areas where motion restriction was regularly omitted - the elderly, those injuries with a minimal force of impact and patients with thoracic and lumbar injuries (71). This evidence highlights the view that it could be very dangerous to assume the benefits of conferred treatment being made by SMR protocols and pre-hospital practitioner use thereof without considering the population affected by such protocols, i.e. patient, practitioner, EMS system, and demographic trends in addition to the characteristics of the TSCIs.

V. Appropriate experience and education of the practitioner

Brown et al. (72) suggested that appropriate implementation of SMR by EMS practitioners requires intensive education and vigilant, quality-assurance examination. Within the South African EMS, quality assurance systems are scarce. Moreover, its EMS have five professional registration categories, which range from supervised to independent categories, where those who have received extensive training are limited in number operationally. National health data from November 2018 indicates that 94% of prehospital operational staff within the Free State provincial setting are short course holders (2 – 4-month training courses). It is thus important that EMS policy-makers consider certain strategies before encouraging the adoption of internationally validated clinical spinal clearance decision tools. These include the evaluation of appropriate methods to train staff and the implementation of quality assurance systems.

With consideration to these concerns cited above, it is believed that the South African EMS may have benefited more from the development or adoption of modified selective SMR criteria to help increase the specificity and sensitivity of selective criteria when used within its setting. Other EMS settings have incorporated this aspect by developing a modified SMR protocol for use (48). Thus, several other modified SMR protocols exist across the globe that are based on the NEXUS and, or CCSR decision tools. Amongst others, these EMSs included that of England (36), South-eastern Michigan (33), and
Ambulance Victoria in Australia (16). Whilst other EMS settings, such as that of New Jersey (35) have first researched comparing different selective SMR protocols, based on these results, identify an appropriate decision instrument that its services can best utilise.

Potential Drivers of Gaps Between SMR Evidence and SMR Practice

Globally several EMS have, to some extent, incorporated a selective SMR decision tool for use within its services, where its safety in the application has been demonstrated. Studies by Stroh et al. (30) and Armstrong et al. (36) are two examples of studies that have demonstrated such positive findings. However, there is other literature that questions the safety and accuracy of EMS’ use of an SMR decision tool. Brinke et al. (22) acknowledged that whilst the EMS practitioner can indeed predict the presence of spinal fractures using such tools; it points out that this is done with a low degree of accuracy (41%). Thus, the implementation of a protocol based on the predictions of paramedics will not necessarily reduce the overuse of SMR (22). What is interesting in this study is noted within the limitations pointed out, being that the low accuracy of prediction may be associated with the level of experience of the paramedic. Overall, these differences in reporting may be indicative that there may exist different factors which may either delay or inappropriately translate evidence into practice within various EMS settings.

In South Africa, we currently observe the continuation of traditional spinal immobilisation practices amongst EMS personnel, despite the new CPG recommendations and the wealth of literature currently available suggesting that traditional spinal immobilisation practices may cause more harm than good. There is a possibility that this may be attributed to the evidence to practice gap. An “evidence to practice gap”, also referred to as a “second translation gap” (73,74), is described as a delay in the translation of evidence-based interventions into everyday clinical practice. This may often result in unwarranted clinical practice variations (75), and in turn, may lead to different health outcomes for patients with the same aetiologies (3). Several factors may contribute to the complexities between evidence and practice, such as differences in staff capabilities and local protocols of care (3). In South Africa, a vast difference between the EMS capabilities and the scope of practice of staff already exists; moreover, having a local protocol that
prescribes the EMS personnel with a choice between two different clinical spine clearance decision support tools. These factors may negatively affect the safety and accuracy of implementation. Aiming to identify possible contributors to this knowledge translation gap in resource-constrained settings may help quality improvement projects as we strive to adopt evidence-based practice to improve patient care in similar settings.

Summary

This literature review identified several possible factors which may pose challenges to the appropriate adoption of a clinical spine clearance decision tool by EMS personnel. Whilst it is important to acknowledge that these challenges may exist, it is equally important to identify appropriate measures or interventions which may facilitate optimal patient care being delivered when implementing evidence-based practice. The evidence to practice gap is a reality and may be applicable to resourced constrained settings and any healthcare setting. As a starting point, we found it fit to conduct research that can identify both facilitators and barriers to appropriate SMR practice by EMS personnel and promote future research initiatives.

The researchers' view was that answers to some of the identified challenges in this literature review could not be addressed by a very specific systematic review of the literature. In this instance, the use of a scoping review was more beneficial than that of a systematic review, as selective SMR decision support tool adoption by EMS personnel is still a new concept, more so in resource-limited settings. Scoping reviews are useful when it is still unclear what other, specific questions can be posed and valuably addressed by a more precise systematic review as suggested by Munn et al. (76). Munn et al. (76) further suggest several other purposes for conducting scoping reviews, to which our scoping review will draw on four of the listed purposes, including:

- Identifying types of available evidence on selective SMR decision support tools by EMS personnel
- Clarifying key concepts and definitions in the literature on selective SMR decision support tools, and that of clinical spinal clearance decision tools
- Examining how such research was conducted
• Identifying key characteristics or factors related to selective SMR decision support tools, and
• Identifying and analysing the knowledge gaps around the topic.

The researchers believe that identifying barriers and facilitators of SMR decision tool adoption by EMS practitioners are essential components to successful knowledge translation. The scoping review will also pay specific attention to the supporting theories and principles for the development and decision making of the selective SMR practice recommendations for EMS personnel. With a set focus on how these recommendations were implemented, how they guide the SCI management approach, and ultimately affect patient care and outcome. The findings will be contextualised to the South African pre-hospital environment to identify gaps in the literature and the need for further research in this domain.
References

https://doi.org/10.1177/2F000313481307901128

https://doi.org/10.5811/westjem.2014.2.19244

DOI: 10.1136/emj.2006.041897

https://doi.org/10.1186/1471-227X-11-1

https://doi.org/10.1007/s00068-016-0682-5

https://doi.org/10.1007/s00068-007-6197-3

https://doi.org/10.1016/j.jen.2017.07.018

42. Paykin G, Reilly GO, Ackland HM, Mitra B. The NEXUS criteria are insufficient to exclude cervical spine fractures in older blunt trauma patients. *Injury.*

51. El Sayed MJ. Measuring Quality in Emergency Medical Services: A Review of

Available from: http://dx.doi.org/10.1016/j.annemergmed.2009.03.008

https://doi.org/10.1016/j.annemergmed.2003.12.005

https://doi.org/10.1097/ta.0b013e3181d3cc6e

http://dx.doi.org/10.1038/sc.2015.51

https://doi.org/10.1136/emermed-2015-204693

https://doi.org/10.1080/10903129808958837

http://dx.doi.org/10.1186/s13012-016-0396-4

Part B: Manuscript in Article Format
Title Page

Factors which affect the application and implementation of a spinal motion restriction protocol by prehospital providers in low resource settings: a scoping review

Authors

Charlene Gedulda,b, Henra Mullerc, Colleen J. Saundersa
a Division of Emergency Medicine, University of Cape Town, Cape Town, South Africa
b Emergency Medical Care, Department of Clinical Science, Central University of Technology, Bloemfontein, South Africa
c Radiography, Department of Clinical Sciences, Central University of Technology, Bloemfontein, South Africa

Corresponding author

Charlene Geduld
Division of Emergency Medicine
University of Cape Town
Cape Town 7701
South Africa

Telephone: +27 21 650 1828
Email address: GDLCHA002@myuct.ac.za
Abstract

The South African Professional Board for Emergency Care prehospital Clinical Practice Guideline (CPG) recommends that emergency medical services (EMS) make use of the National Emergency X Radiography Utilization Study (NEXUS) rule and Canadian C-spine Rule (CCSR) when managing traumatic spinal injury. However, the safety and effectiveness of prehospital clinical spinal clearance or spinal motion restriction (SMR) decision support tools within poorly resourced settings are unclear. We conducted a scoping review on clinical spinal clearance and selective SMR decision support tools which aimed at identifying possible barriers to their implementation, safety, and effectiveness when used by EMS personnel. Studies were included if they described the use of clinical spinal clearance or SMR decision tools in first line management of blunt trauma patients by medical practitioners in the Emergency Department (ED) or by EMS personnel working in a prehospital setting. After screening, 42 documents fulfilled the inclusion criteria. Several selective SMR decision support tools have been implemented in the prehospital setting, the most common of which were those based on the NEXUS and the CCSR tools. Only one study evaluated the safety and efficacy of the NEXUS rule when used by EMS personnel. The limited prehospital literature available investigating either the NEXUS rule or CCSR therefore makes it difficult to determine its appropriateness for adoption and implementation by EMS personnel in other prehospital settings such as that of South Africa. Furthermore, commonly found prehospital NEXUS-based decision tools presented with unique challenges related to the subjective nature of some of the individual components of the decision tool. This leaves the decision tool open to interpretation by examiners and is especially relevant in settings, such as South Africa, where there are many different levels in scope of practices. This increases the risk of the patient being either under-triaged or over-triaged. More studies are therefore needed to definitively assess for the safety, efficacy and effectiveness of clinical spine clearance within the prehospital setting. It is believed that a selective SMR decision tool which has more specific instructions for the prehospital practitioner may be able to accommodate such challenges and is an area which needs further investigation.

Keywords: spinal immobilization; spinal motion restriction; spinal cord injuries; cervical spine
INTRODUCTION

Physical trauma is an injury to the body produced from impact, violence, or accident and is an omnipresent emergency commonly encountered within healthcare settings across the globe (1). Traumatic spinal injury (TSI) is a broadly defined term that considers injury to bony, ligamentous, and or neurologic structures of the spinal column (2). Thus, spinal cord injury or nerve root injury is a recognized complication of spinal trauma (3), commonly defined as traumatic spinal cord injury (TSCI).

International published literature suggests that the prevalence of TSCI after blunt trauma is low (3-25%) (4). Where a review indicates that epidemiologically, 55% of all spinal lesions are cervical, 15% thoracic, 15% thoracolumbar and 15% lumbosacral, the most common being C4-C5-C6, T4-T5 and T12-L1 (5). Furthermore, researchers such as Chiu et al. highlight differences in the respective reporting of the incidence rates of TSCI between that of developing and those of developed countries (6). These variations might be influenced by underreporting and or underdiagnosis of cases with TSCI, which may also include increased numbers of patients who may have died on scene due to potential inappropriate handling, triage and transportation (6). No matter the setting and the respective prevalence of TSCI, unrecognized injury to the cervical spine can cause catastrophic neurological disability, and therefore forms part of the initial prehospital management work up of the trauma patient (7). Therefore, the patient outcome may be directly influenced by Emergency Medical Service (EMS) personnel’s ability to accurately diagnose a potential TSCI during such workup (7).

Historically it was thought that differentiating between patients with cervical spine injury and those without could not be reliably carried out by prehospital EMS personnel (8). This conventional thinking resulted in field protocols incorporating a conservative, non-selective approach to spinal immobilization in trauma patients. Recently, concern has been raised regarding the scientific merit of traditional EMS spinal immobilization practices, using cervical collars, headblocks, long spine board and spider harness (9). Amongst others, it has been suggested that spinal immobilization is
unnecessarily performed due to inappropriate patient selection and the low risk of spinal cord injury post-trauma, leading to the over-immobilization of patients (9–13). Several potential dangers and sequelae of spinal immobilization have also been reported and fall into four categories: increased pain, tissue breakdown, respiratory compromise, and ineffective motion restriction (14). It is believed that these adverse events may far outweigh the presumed benefits. Moreover, recent literature has suggested the abandonment of the term ‘spinal immobilization’ since complete non-movement of the spine is near impossible to achieve, thereby supporting the use of the term spinal motion restriction (SMR), as it is more descriptive of the desired objective (10,15).

Recent literature has purported that EMS personnel’s diagnostic ability can be improved through adopting a more selective approach to prehospital SMR (7). This notion receives support in light of recent studies that have demonstrated the safety and effectiveness of using a selective SMR decision support tool (4). Several benefits are proposed for the adoption of such tools by EMS personnel, including decreased costs to the patient and the health care system (16), minimizing patient discomfort and associated complications arising from the cervical spine (C-spine) motion restriction (16), decreased prehospital time (17), decreased rates of over-immobilization, and finally, the means to facilitate a more streamlined approach to the use of valuable resources in resource-constrained settings (10). As a result, there may be even more reason to include such decision tools for EMS operating in resource-constrained settings.

It should be noted that most of the benefits described above were based on research conducted in emergency departments (ED) in well-resourced settings (18-24). As a result, the safety and efficacy findings may not be generalizable to more resource-constrained settings. Furthermore, the prehospital environment presents unique challenges compared to secondary care environments (9). As an example, South Africa is an upper-middle-income country with several resource-constrained provincial EMS systems, each having a diverse landscape in terms of EMS staffing, knowledge and scope of practice. The Health Professions Council of South Africa (HPCSA) Professional Board for Emergency Care (PBEC) suggested in the 2018 Clinical Practice Guidelines (CPG) (25) that EMS make use of either the Canadian C-spine Rule (CCSR) (26) or National Emergency X Radiography Utilization Study (NEXUS) criteria (27) as selective SMR decision support tools.
These decision tools are clinical spinal clearance tools that originated from high-income countries (HICs) and have been validated in the in-hospital setting by specialist trauma physicians (26, 27).

Identifying system-specific barriers to and facilitators of selective SMR decision support tool adoption by EMS practitioners is important for developing appropriate adoption and implementation plans (28). Considering this, the authors sought to identify what these barriers and facilitators were by using a scoping review. In this instance, a scoping review was more beneficial than a systematic review, as selective SMR decision support tool adoption by EMS personnel is still a new concept, more so in resource-limited settings. Scoping reviews are useful when it is still unclear as to what other, specific questions can be posed and valuably addressed by a more precise systematic review as suggested by Munn et al. (28). Munn et al. (28) further suggest several other purposes for conducting scoping reviews, to which our scoping review draws on four of the listed purposes, including:

- Identifying types of available evidence on selective SMR decision support tools by EMS personnel
- Clarifying key concepts and definitions in the literature on selective SMR decision support tools, and that of clinical spinal clearance decision tools
- Examining how such research was conducted
- Identifying key characteristics or factors related to selective SMR decision support tools, and
- Identifying and analyzing the knowledge gaps around the topic.

Therefore, the overarching aim of this scoping review was to identify the published factors affecting the safe and effective application of selective SMR decision support tools used by EMS personnel on adult blunt trauma patients. These factors were further contextualized for the poorly resourced setting.

METHODS
This scoping review identifies and describes published literature on factors affecting the safe and effective application of selective SMR decision support tools used by EMS personnel on adult blunt trauma patients. An SMR decision support tool was defined as any protocol or algorithm consisting of predetermined clinical criteria or checklists that are used by ED staff or EMS personnel in the prehospital setting to clear the spine and inform their SMR practice clinically. This definition, therefore, excludes imaging modalities and clinical judgement.

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Review checklist (Appendix 1) and the Arksey and O’Malley methodological framework, which suggest six stages for undertaking scoping reviews, were used to structure this report (29, 30).

Identifying the research question

In this scoping review, we sought to answer the following questions:

- Which selective SMR decision support tools have been implemented and/or evaluated in the prehospital setting for use by EMS practitioners?
- What are the potential barriers and facilitators that EMS practitioners may encounter in applying selective SMR decision support tools?
- What are the potential adverse events associated with using selective SMR decision support tools by EMS personnel?

Search strategy and information sources

The Medline (via PubMed), Embase Cochrane, Cumulative Index of Nursing and Allied Health Literature (CINAHL), Web of Science, Turning Research Into Practice (TRIP) and EBSCO host online databases were searched in February 2021 using the following advanced search string in the first instance:
No search limitations were placed on the study design. Search results were limited to those published in or after 2000. During the review of full-text articles, the reference lists were examined for further articles potentially meeting the search criteria and these were screened against the established inclusion and exclusion criteria (Figure 1).

Screening and eligibility

Articles for which the full text was not available in English were excluded. Studies were eligible for inclusion if they described the use of any clinical spinal clearance decision tools in the first line management of blunt trauma patients by medical practitioners in the ED or by EMS personnel working in a prehospital setting in any country. Studies that focused only on helicopter EMS (HEMS) settings were excluded as the population served by HEMS is unique from that of other environments (31). Similarly, studies that focused only on interfacility transfer of patients were excluded. This review included only studies describing the care of adult blunt trauma patients as the pediatric age group may provide several challenges to the practice of immobilization and the assessment of injury to the neck in particular (32, 33). These are attributed to the unique anatomical, physiological and development characteristics that the pediatric patient group present (32,33). The age cut-off for management as an adult patient was determined by the clinical setting of the study under review. Studies describing patients who sustained penetrating injuries were excluded since SMR may have minimal benefits in treating these injuries which are unlikely to cause instability (34), may be associated with higher mortality (35, 36) and may increase the risk of deterioration (37).
Article titles and abstracts were screened against the eligibility criteria by one author and duplicate articles were removed. A second author confirmed the initial screening and conflicts were resolved by the third author. Following this initial screening, the full text of articles identified in the first screening step was reviewed and screened against the inclusion and exclusion criteria described above (Figure 1).

Extracting and charting the data

Data were charted according to a descriptive analytical framework, recommended by Arksey and O’Malley, modified to fit the aim of this review (30). The following data were extracted from each paper: Research Methods/study design; Intervention type and comparator (if any); Aim of the study; Study sample; Study context: prehospital / ED; Study outcomes; Country where the study was conducted.

The process of thematic data analysis as described by Levac, Colquhoun and O’Brien were then applied (38). This thematic data analysis describes general characteristics such as types of decision support tools used, study samples and contexts, as well as substantive issues directly related to the aim of this scoping review.

RESULTS

Forty-two articles were identified and included in this scoping review (Supplementary Table 1). The included articles were made up of consensus and opinion reports (n=6), case studies (n=1), retrospective chart reviews (n=8), reviews (n=10), prospective cohort studies (n=7), surveys and questionnaires (n=4), observational studies, including cross-sectional designs (n=4), retrospective descriptive study (n=1), and finally a practice improvement project (n=1). No experimental study designs were identified in the articles included in this review. Furthermore, only twenty-seven
articles (65%) included in this review gave an indication to the setting. The distribution of studies according to country were as follows: United States of America \(n=15\), Canada \(n=4\), Australia \(n=2\), Ireland \(n=1\), Europe \(n=1\), United Kingdom \(n= 1\), Netherlands \(n=1\), Germany \(n=1\), and Scotland \(n=1\). Of note, no studies were from low resourced settings.

Types of SMR decision support tools

Of the 42 articles included in this study, twenty-four articles (57%) focused on evaluating the use of specific SMR decision support tools (7,16,17,21,24, 39-57), three articles (7%) evaluated the attitude, knowledge and skill level of healthcare practitioners about SMR decision making (22, 58, 59), and the remainder of the articles make recommendations on the requirements for EMS personnel to effectively and safely clear the spine (9,10,15,18,20,34,36, 60-67).

Of the 24 articles evaluating specific SMR decision support tools, two studies (8%) evaluated the safety and effectiveness of using the National Emergency X Radiography Utilization Study (NEXUS) criteria. Both of these described its use in the hospital setting (43, 57). Three studies (13%) evaluated the Canadian C-spine Rule (CCSR); one of these was conducted in the prehospital setting (24, 50, 52). Two studies (8%) evaluated the effectiveness and safety of combining NEXUS-based criteria with some CCSR criteria elements, one of which was conducted in the prehospital setting (17, 44). Six studies (25%) evaluated the use of NEXUS-based protocols; all of these studies involved EMS personnel (16, 21, 46-48, 53). The remainder (46%) identified other SMR decision making criteria developed from consensus meetings and published systematics reviews (7, 39-42, 45, 49, 51, 54-56). Due to the limited number of studies evaluating the use of either NEXUS or CCSR decision support tools in the prehospital setting, the safety and effectiveness of implementing these specific decision tools in the prehospital setting are unclear (62).

Terminology
In conducting this scoping review, the authors identified that 12 articles (29%) used the term “clinical cervical spine clearance criteria” to define the type of spinal precaution decision support tool in use (16, 17, 24, 40, 43, 52, 57-60, 62, 66) and 20 articles (47%) used the term “selective spinal motion restriction criteria” to define the type of spinal precaution decision support tool in use (7, 9, 10, 15, 18, 21, 39, 42, 45-47, 49, 51, 53-56, 61, 63, 67). A distinction between the terms used within the remainder of the articles (24%) could not be reached as there were either interchangeable use of the terms within the same article or no specific term was made use of (20, 22, 34, 36, 41, 44, 48, 50, 64, 65). Furthermore, 18 articles (43%) used the term protocol to define the criteria-based tool (18, 21, 39, 40-42, 45-49, 51, 54-56, 58, 61, 63), four articles (10%) used the term algorithm (9, 17, 24, 36), and eight articles (19%) made interchangeable use of algorithm and protocol (16, 20-22, 41, 42, 45, 67). The remainder of the articles only referenced these criteria as clinical assessment or decision criteria.

Facilitators and barriers related to the use of SMR decision tools

A total of 25 articles (60%) described potential facilitators to the use and effectiveness of SMR decision support tools (7, 10, 15, 17, 18, 20-22, 24, 36, 40, 42, 44, 51-54, 56, 58-60, 63, 64, 66, 67) and 23 articles (55%) described potential barriers to the use and effectiveness of SMR decision support tools (16, 18, 24, 39, 40, 44-46, 48-53, 56-60, 64-67).

DISCUSSION

This scoping review aimed to identify the published literature describing the type of selective SMR decision support tools currently in use in the prehospital setting and to identify the potential barriers and facilitators influencing the safe and effective implementation of these tools in low resource prehospital settings. Limited published literature that specifically evaluates the effectiveness of prehospital personnel utilization of the CCSR and NEXUS decision tools were
found. Therefore, the authors contextualized the findings of ED-based studies to the prehospital setting to highlight and discuss the reviews objective points. Several potential facilitators of and barriers to the effectiveness of SMR decision support tools, when used by EMS personnel, were identified and categorized thematically. The most prevalent themes are outlined and briefly discussed below.

Terminology

In reviewing the included literature, two key issues related to terminology were identified as potential barriers to use in the prehospital setting. The use of terms ‘clinical spine clearance’ and ‘selective spinal motion restriction’ were often used interchangeably (34). Whilst Hauswald and Braude (61) suggest that the difference between these two terms is uncertain, Quinn et al. (68) state that ‘clearing the spine’ is more vernacular than academic, and as a result, may have different intended meanings dependent on the circumstances and training level of the provider.

In reviewing the literature for this scoping review, based on the principle that the CCSR and NEXUS decision tools were developed to facilitate selective cervical spine radiography and expedite exclusion of cervical injury in patients in the hospital setting (26, 27, 57). The authors found it appropriate to classify these decision tools as clinical cervical spine clearance tools. In comparison, a selective SMR decision tool can be defined as a selective approach to the use of various SMR methods, which among others, include that of manual in-line stabilization or that of full-motion restriction (63), in the management work up, packaging, extrication and transportation of patients (55). Importantly the authors note that selective SMR decision making is facilitated by applying specific low-risk clinical criteria, which leads to the selective exclusion of patients from full-motion restriction (56). Thereby reducing the rate of unwarranted SMR and minimizing the reported adverse effects and harms associated with SMR equipment (34, 70-73). This decision tool can be considered as one which is patient-centered in the prehospital setting.
With this distinction in mind, this scoping review found only one study that examined the implementation of a clinical c-spine clearance tool, the CCSR, in the prehospital setting (50). The remainder of the articles examined only clinical cervical spine clearance tools’ effectiveness when used by other ED staff (24, 43, 52, 57). Because of the limited availability of supporting studies examining the use of thereof in the prehospital setting and the fact that the skillset of EMS personnel varies by region (39), it is unclear whether clinical c-spine clearance tools can be effectively implemented in the poorly resourced prehospital setting.

Moreover, an important difference between the two terms and the context of use should be considered since one of the documented adverse events and barriers to using spine assessment decision tools is over-immobilization. This stems from the fear of legal litigation in the event of missing a serious injury (unstable fracture) (21, 44, 59). This distinction may be a useful mechanism to provide ethical and legal protection for the healthcare practitioner when completing patient report documentation (PRD), as clearing the spine cannot indisputably be achieved in the prehospital setting.

Lack of guideline compliance

Lack of assessment or guideline compliance was viewed as a general adverse event that often resulted in missed injury (16, 18, 24, 39, 40, 44-46, 48, 49, 51-53, 56, 58-60, 65, 66) was attributed to several different barriers, including missing or sporadic documentation and reporting on the decision for or against SMR (44, 45). EMS implementation strategies and plans might find value in incorporating ways to avoid the adverse events stemming from this barrier. Since missing information on PRD will cause further challenges in quality assurance measures such as monitoring the rate of compliance to SMR guidelines (51) and may also have legal ramifications (58).
Protocol misapplication where criteria were present, but no SMR was attempted by EMS (50, 51, 67) also contributed to the theme of noncompliance. This may be attributed to poor general applicability of the decision tool by EMS as criteria definitions were interpreted differently (39, 44, 46, 49-51, 53, 64).

Paramedics were also more conservative than their emergency physician counterparts in applying criteria, which often led to the adverse event of over-immobilization (16, 64). This practice increases the possibility of creating false-positive cases by the time the patient arrives at the hospital (56). Two main contributing factors can be attributed to this barrier; first, providers fear missing injuries and litigation (24, 44, 52, 59). Second, providers discomfort in performing a criterion such as asking the patient to rotate their neck (24, 50). The latter may be further attributed to provider doubts about the scientific merit of an SMR decision support tool and their subsequent apprehension about its application in clinical practice (24).

Patient-centered selective SMR algorithm to minimize harms associated with SMR devices

Published literature suggests the development and implementation of a selective SMR guideline that is directed at patient-centered outcomes which in so doing, may guide the tailored use of equipment (15, 17, 20, 22, 36, 44, 54, 56, 61, 67). This decision tool will not only aid in minimizing immobilization delays in the otherwise time critically ill patient and reduce the often-unnecessary exposure of patients to the risks associated with immobilization. Moreover, such an SMR tool may provide a standardized approach to providers, minimize provider variability, and facilitate guideline compliance monitoring (18, 22, 58). This was seen as an important facilitator to the effectiveness of SMR decision support tools.

Well-established and comprehensive implementation approach based on behavioral change theory.
When introducing new decision tools within the prehospital emergency care environment, the strategies used to implement them into regular practice are crucial to facilitate its effectiveness. Published literature highlights the need for purposeful directives to change institutional culture and mindset before the implementation approach. Thereby, recommending an implementation strategy based on behavioral change theory (44, 58), which can be achieved by conducting specific surveys on local attitudes and behavior (24, 40, 52, 59, 64). There is also the need for a well-established, comprehensive and multifaceted implementation strategy (24, 44, 56, 66). A well-established and comprehensive implementation approach may increase provider adherence and success of SMR decision tools and subsequently decrease the rate of over immobilization (40).

Implementation of selective motion restriction decision-making tools and clinical spine clearance protocols in the prehospital setting

Although several protocols that allow for selective SMR practice have been implemented in the prehospital environment, literature that specifically investigates the effectiveness and safety of spinal clearance in the prehospital setting is limited (62) and often inconsistent in poorly resourced settings. The safety of such protocols depends critically on the accuracy and appropriateness of their application (71).

In South Africa, the HPCSA PBEC has endorsed using the NEXUS criteria or CCSR by EMS providers (25). In the literature included in this review, these clinical spine clearance protocols have been validated in the ED setting (26, 27, 72, 73). Only Vaillancourt et al. (50) examined the adoption and use of the CCSR in the prehospital setting. In addition, the Norwegian guidelines for prehospital management of adult trauma patients with potential spinal injury only recommend the use of the NEXUS criteria (20). This recommendation was based on facility-based evidence, suggesting that the CCSR emphasizes the mechanism of injury (MOI), resulting in over-triage without increasing accuracy (74). Furthermore, it is to be noted that this guideline recommendation
was in the form of a consensus report, and no studies examining the safety, effectiveness and appropriateness of application were reported after its adoption. A blanket approach to spinal precautions within the prehospital setting may be challenging, especially in a setting such as South Africa, where the EMS qualification landscape is very diverse. The variability in skills and knowledge may be a confounding factor (71) when extrapolating results from other settings.

Considerations in the prehospital application of the NEXUS criteria and CCSR

Considering the HPCSA PBEC recommendation of the use of either NEXUS or CCSR (25), we found it relevant to investigate the skill and knowledge level needed for the appropriate, safe and effective application of the respective criteria as it may lead to missed injuries (75).

The NEXUS protocol identifies five low-risk criteria to be present for the patient to be classified as having a low risk of injury (27), and therefore indicating those patients who do not need SMR or imaging:

1. No midline cervical tenderness on direct palpation
2. No focal neurological deficit
3. Normal alertness
4. No intoxication
5. No painful distracting injuries
Similarly, the CCSR (26) seeks to identify patients at high risk of having sustained a possible TSCI and would therefore require further diagnostic imaging or SMR. These criteria incorporate the patient’s age, MOI, and clinical status upon assessment.

Literature highlights that the effectiveness of these prediction tools is reliant on the operator's understanding of the anatomy and physiology of the cervical spine, their ability to take an adequate history, recognize the importance of the MOI, and perform an adequate evaluation of the patient to ensure that nothing is missed (76). The respective education and experience of the practitioner are therefore important. The effectiveness and safety of applying the NEXUS rule have been examined across several disciplinary levels, where some concerns were documented (60). The greatest concern is that the individual components introduce substantial subjectivity to the rule (60, 77). As a result, the interpretation is subject to variability (73). Interestingly, literature states that ED personnel often resist prehospital clearance by EMS practitioners because of several unresolved issues (62), one of which is the subjective interpretation, and therefore lack of standardization in criteria evaluation. This resistance remains even though the spine's clinical clearance criteria are continually being refined (62).

Since no studies investigating the use of NEXUS criteria by EMS were found, we refer to a few instances where the subjective nature of the NEXUS criteria was found challenging in informing appropriate evaluation and care in the ED. Firstly, it needs to be noted that the NEXUS criteria and CCSR were developed for the management and clearance of fully conscious trauma patients, not the confused or comatose patients (78). It is therefore important that the EMS practitioner appropriately distinguishes between the alert and altered alert state. In the original NEXUS criteria, altered alertness was defined as patients having a Glasgow Coma Scale (GCS) of 14 or less (79). However, in some studies, altered alertness was replaced with “evaluable patients”, and patients with a GCS as low as 13 were cleared NEXUS negative (77). Examiners of different expertise, backgrounds and levels of experience may interpret these criteria differently (60). Therefore, suggestions are made to clarify the definition of mental status to positively impact the reliability of the tool when used (60). This is especially relevant when managing the geriatric patient.
population. Using specific GCS criteria to determine the altered alert state in this patient group may have direct implications for their management, as many of these patients may have some baseline level of cognitive impairment (77). Therefore, these patients may present with a GCS <15 but will be in their baseline mental status (77). As a result, there is a reluctance to accept the reliability of the NEXUS criteria when used in this group of patients.

One observational study conducted in a military ED compared the interrater agreement of NEXUS criteria between a faculty physician and a resident (75). Low and fair levels of agreement were found for the focal neurological deficit and altered mental status components, respectively. It was suggested that this could be attributed to the experience levels of the examiner. Additionally, the criteria for the presence of a distracting injury showed poor agreement; although the NEXUS provides examples of what may constitute a distracting injury, there is no precise definition for this (75). Because of the differences in scope, years of experience and training the examiner received, it was suggested that more explicit training, which included more simulated training and direct observations of examinations of patients, may narrow this disagreement (75). This is supported by a systematic review suggesting that the examiner’s level of training and experience contributes to the reproducibility of the clinical prediction rules (60).

Similarly, the CCSR has specific challenges with the subjective nature of some of the criteria, such as the presence of distracting injuries, which is deemed unreliable (80). Another documented challenge in using CCSR concerns the difficulty of remembering the protocol and the complexity of its criteria when used in daily practice (81). As a result, most practitioners who are provided with an alternate decision tool such as the NEXUS may opt to use these criteria instead (81,82). With this in mind, a further challenge that may be encountered in prescribing two clinical spine clearance protocols for use in one setting is the non-adherence to the guideline as there may be an uncertainty of which guideline to follow, and it may create confusion between the two. This may also lead to a lack of standardization of reporting on examiner assessment and findings. Coggins et al. (44) performed a mixed-method study to investigate the current practices and rate of
concordance with established international guidelines by its ED personnel. According to the NEXUS Rule, this ED had two guideline recommendations in place, namely the CCSR and an in-patient trauma guideline. The findings of this study revealed a low level of guideline utilization and significant discrepancies in all cases present. One suggested explanation for the non-adherence to guidelines may be a lack of awareness of which guidelines to use (44). Therefore, it is important for the South African PBEC to consider that implementing a single guideline could serve as a facilitator in improving the care provided to TSCI patients by EMS personnel.

Finally, in the prehospital setting, assessing the criterion ‘presence of intoxication’ may be challenging. Different reviews (36, 39, 45, 56) highlight possible concerns, which raises whether this specific criterion should indeed form part of an SMR decision instrument. First, because alcohol or drug testing kits are not usually available (or may not be allowed), assessing this criterion is subjective, i.e., based on the practitioner’s judgement of signs of intoxication. This subjectivity may create barriers to the effective utilization of the decision instrument. In one retrospective chart review (45) that aimed to determine the characteristics of patients under-immobilized by prehospital providers, the researchers found that 5% of the patients who met the criteria for SMR were not immobilized by prehospital personnel. When the hospital reports were examined, most of the under immobilized group of patients had drug or alcohol intoxication. The authors of this study believed that a possible reason why EMS may have missed this criterion was that the patient appeared to have been sober upon initial assessment by EMS. However, it is to be noted that intoxication may also contribute to a patient being non-compliant or non-cooperative, thereby refusing SMR. Second, because clinical signs such as abnormal coordination and slurred speech are unreliable indicators of intoxication (83), it may be clinically difficult for EMS to differentiate between an intoxicated patient and one who has sustained other more critical injuries such as intracranial hemorrhage (36). For this reason, Maschaman et al. (36), in their development on guidelines for immobilization of adult patients by EMS in Denmark, recommended that patients affected by alcohol and drug intoxication should be treated like all other non-intoxicated patients; that is, intoxication should not be seen as a criterion to SMR. With these somewhat different notions in mind, we believe it is important that professional governing bodies should take cognizance of these factors when determining which criteria may work best for a particular setting.
Alternative prehospital SMR decision tools

Upon further examination of the literature, we observed that SMR decision tools that incorporate and modify the NEXUS criteria and CCSR are commonly found (7, 39). This modification may have been done to address the documented challenges when using the NEXUS and CCSR criteria and increase its sensitivity in the prehospital setting (7, 39). Many EMS settings make use of this process to develop their selective SMR decision tools and usually use a combination of extrapolating ED protocols designed to identify those patients who need imaging to clear or diagnose an injured spine, expert opinion, Advanced Trauma Life Support guidelines, and other smaller EMS related studies (51). Several studies have demonstrated that EMS practitioners can use simple guidelines to inform them of which patients can forgo motion restriction, i.e., those patients at low risk of clinically significant spinal injury (47, 51, 55, 61, 84).

It should be noted that modified criteria used to increase sensitivity in the prehospital setting present documented challenges. In a 1998 observational study, Meldon et al. (71) aimed to evaluate the level of agreement for cervical spinal injury between the Emergency Medical Technician (EMT) and Emergency Physician (EP) when using an existing clinical spinal clearance protocol for the prehospital blunt trauma patient (71). This study used the NEXUS-based criteria of MOI consistent with a cervical spine injury, reliable mental status, distracting injury, neck pain or tenderness, neurological deficit, and neck pain with motion. The overall findings of interrater agreement between the two practitioners were poor. Moreover, the levels of agreement between the individual clearance criteria were also poor except for the assessment of mental status, which demonstrated fair to good agreement (71).

Several other studies have also questioned the reliability of cervical spine injury detection in the elderly population group (≥ 65 years) when using the NEXUS-based protocols, which incorporate a clinical assessment component with consideration for the MOI (54, 77). Because of the skeletal fragility of the older population (85), they are more often subject to cervical spine injury from
lower force MOI, such as ground-level falls, which would be considered NEXUS negative (77). Thus, older age should be considered an independent risk factor for cervical spine injury in blunt trauma (77) and is therefore considered a deficiency in the protocol. In many studies researching the EMS practitioners use of NEXUS-based protocols in the prehospital setting, such as a retrospective chart review by Stroh and Braud (51), this protocol deficiency has resulted in the under immobilization of geriatric patients with serious spinal injury, which should have been motion restricted (77, 86).

Considering the documented challenges and errors encountered with the clinical spine clearance protocols developed by modifying the NEXUS and CCSR criteria, the main question that arises is whether these protocols are appropriate for effectively guiding spinal practice in the EMS arena. More studies are needed to definitively assess the safety, efficacy and effectiveness of clinical spine clearance within the prehospital setting (69). It is believed that a selective SMR decision tool with more specific instructions for the prehospital practitioner to make use of may accommodate such challenges and is an area that needs further investigation.

Recommendations for future research

Prehospital SMR decision tools have the stated aim of reducing unnecessary motion restriction and its associated adverse effects while protecting patients with injuries from further harm (67). It is important to consider not only who requires treatment, but also which treatments are appropriate. Therefore, we considered how clinical decision tools could be improved for the prehospital setting (67).

Although the rate of spinal cord injury after blunt trauma is low (4), we cannot dispute that SMR is necessary for some trauma patients. Therefore, developing an appropriate spinal management strategy that incorporates criteria into a decision tool with more prehospital specific instructions
for selective SMR is of value. These instructions should specifically minimize patient harms associated with both over and under immobilization (61). This may be achieved through an SMR algorithm which provides the practitioner with different treatment considerations. More specifically, an algorithm that considers the setting, skills, and capability of EMS personnel and the availability of equipment and the patient condition will be of value in informing the EMS practitioners decision-making with regards to appropriate SMR.

There are a few studies that incorporated selective SMR decision making tools with these factors in mind. Interestingly, the Norwegian guidelines for prehospital management of the trauma patient (20), although in support of NEXUS use, suggested that SMR should not delay nor preclude in the critically injured patient life-saving interventions. It further suggests that in these instances, SMR should be de-emphasized. Another SMR algorithm used in Arizona (55), provides the practitioner with detailed information on what may constitute an unreliable patient, how to perform a motor or sensory examination, and SMR preferred packaging types for different evaluation outcomes. This is not a binary SMR decision tool. In addition, this algorithm emphasizes that life-threatening conditions and evacuation from imminent threat take priority over SMR (63). This may be relevant for the South African EMS, who are often dispatched to areas of high criminal activity, where real threats to the practitioner and patient are imminent.

Furthermore, the Emergency Medicine Spinal Immobilization Protocol developed for Germany’s EMS is an algorithm that allows for variable decision-making regarding patient packaging methods, which are dependent on the condition and the injury pattern of the trauma patient (54). This algorithm guides three types of motion restriction practices: to establish motion restriction manually, the second is minimal motion restriction performed using only a cervical collar, and the third includes full-motion restriction using all devices. This algorithm may guide the management approach of the patient who has sustained multiple traumas. This algorithm is similar to the recommendations made by a consensus group that developed new national guidelines on spinal stabilization of adult patients for Denmark EMS through the Danish National Board of Health (36). They provided a useful example of an algorithm that incorporates motion restriction outcomes based on initial clinical findings, thereby guiding specific treatment options (36). These SMR
categories include i) No efforts of spinal stabilization, ii) spinal stabilization on a vacuum mattress, and iii) Time-critical spinal stabilization. However, it must be noted that there is no implementation study on the effectiveness of this algorithm available in English print. For the South African EMS landscape and other similar settings where there often exists a mismatch between the demand for emergency medical care and the resource capacity, an SMR decision algorithm which indicates alternative packaging options to the provider may be especially useful when the most appropriate SMR device is not readily available.

It may also be useful to incorporate additional factors into prehospital spinal assessments. A retrospective cohort study conducted in the state of Victoria, Australia (7) investigated predictors of TSCI additional to the NEXUS and CCSR criteria. This investigation found several easily detectable factors associated with confirmed TSCI, one being the Ambulance Victoria Potential Major Trauma Criteria. Encouraging other EMS to integrate similar trauma assessment criteria into their guidelines may improve accuracy in identifying TSCI. Although only validated for the in-hospital setting (87), many South African EMS practitioners already make use of the South African Triage Scale (SATS) (88). Since SMR research is limited in South Africa, this provides an opportunity to use the state of Victoria’s research as a framework to guide future studies which investigate and identify prediction criteria other than that of the NEXUS and CCSR.

Lastly, although some literature suggests no relevance in a ‘stand and take down’ approach for use in patients walking on the scene (10) or refusing care, it is recommended that extreme caution be exercised, especially in those patients refusing cervical collar placement. A retrospective review conducted in Cedars-Sinai Medical Centre in the USA (89), made a strong argument that non-cooperative or non-compliant patients were most at risk of C-spine injury. Of the 16 confirmed cervical spine injury cases in this study, three were among the non-compliant group. Although this knowledge would most likely not change EMS practice as it would be very difficult persuading a non-cooperative patient, the importance of this information is that the practitioner would not assume that what appears as a stubborn, or otherwise stable, walking patient, is necessarily the case.
Strengths and limitations

This scoping review has several potential limitations. First studies published not published in English were excluded, and therefore important literature relevant to the topic may have been missed. Second, the search was limited to January 2000 – December 2020 with an updated search using the same search string completed in February 2021. Since this was not a systematic review or a meta-analysis the strength and validity of studies included in this scoping review was not determined.

CONCLUSION

This scoping review found limited, often inconsistent literature available investigating the effectiveness and safety of the CCSR or the NEXUS rule as a spinal clearance tool in the prehospital setting, especially in poorly resourced settings. SMR decision support tools that incorporate and modify the NEXUS rule and CCSR, on the other hand, were commonly found in use by prehospital personnel. This modification may have been done to address the documented challenges when using the NEXUS and CCSR criteria and increase its sensitivity in the prehospital setting. These NEXUS-based decision tools also present with their challenges to EMS personnel due to some of the subjective nature of the criteria. Therefore, more studies are needed to definitively assess for the safety, efficacy, and effectiveness of clinical spine clearance within the prehospital setting. It is believed that a selective SMR decision tool with more specific instructions for the prehospital practitioner to make use of may accommodate such challenges and is an area that needs further investigation.

Furthermore, several other factors have also been found which may impact the safety, and efficacy of the use of SMR decision tools in addition to the continuation of spinal care at a secondary level; however, only the prevalent themes have been addressed in this manuscript. These include
education, implementation and dissemination of guidelines (4), lack of protocol compliance and the standardization of patient report documentation when reporting on spinal evaluation findings, quality assurance in the form of clinical governance of spinal care practices, individual provider barriers and facilitators in the use of SMR decision tools, use of SMR during extrication procedures, and finally, the applicability of appropriate transportation decision making after identifying the high risk spinal injured patient in the prehospital setting.

Acknowledgements

Was removed to ensure blind review.

Disclosure statement

The authors declare no conflict of interest.
REFERENCES

28. Munn Z, Peters MD, Stern C, Tufanaru C, McArthur A, Aromataris E. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping

https://doi.org/10.1186/s12874-018-0611-x

http://dx.doi.org/10.7326/M18-0850

 http://dx.doi.org/10.1097/00005373-200210000-00021
 http://dx.doi.org/10.1016/j.annemergmed.2005.02.004
 http://dx.doi.org/10.1016/j.annemergmed.2009.03.008
 http://dx.doi.org/10.1016/j.ienj.2015.11.008
 http://dx.doi.org/10.1007/s12245-009-0082-2
 http://dx.doi.org/10.1080/10903127.2019.1645923

Figure 1: Prisma diagram describing selection of articles for review.
<table>
<thead>
<tr>
<th>Section</th>
<th>Item</th>
<th>PRISMA-ScR checklist item</th>
<th>Reported on page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td></td>
<td>Identify the report as a scoping review.</td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td></td>
<td>Provide a structured summary including, as applicable: background, objectives, eligibility criteria, sources of evidence, charting methods, results and conclusions that relate to the review question(s) and objective(s).</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td></td>
<td>Describe the rationale for the review in the context of what is already known. Explain why the review question(s)/objective(s) lend themselves to a scoping review approach.</td>
<td></td>
</tr>
<tr>
<td>Rationale</td>
<td></td>
<td>Provide an explicit statement of the question(s) and objective(s) being addressed with reference to their key elements (e.g., population or participants, concepts and context), or other relevant key elements used to conceptualize the review question(s) and/or objective(s).</td>
<td></td>
</tr>
<tr>
<td>Methods</td>
<td></td>
<td>Indicate if a review protocol exists, if and where it can be accessed (e.g., web address), and, if available, provide registration information including registration number.</td>
<td></td>
</tr>
<tr>
<td>Protocol and registration</td>
<td></td>
<td>Specify the characteristics of the sources of evidence (e.g., years considered, language, publication status) used as criteria for eligibility, and provide a rationale.</td>
<td></td>
</tr>
<tr>
<td>Eligibility criteria</td>
<td></td>
<td>Describe all information sources (e.g., databases with dates of coverage, contact with authors to identify additional sources) in the search, as well as the date the most recent search was executed.</td>
<td></td>
</tr>
<tr>
<td>Information sources</td>
<td></td>
<td>Present the full electronic search strategy for at least one database, including any limits used, such that it could be repeated.</td>
<td></td>
</tr>
<tr>
<td>Search</td>
<td></td>
<td>State the process for selecting sources of evidence (i.e., screening, eligibility) included</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Item</td>
<td>PRISMA-ScR checklist item</td>
<td>Reported on page #</td>
</tr>
<tr>
<td>evidence</td>
<td></td>
<td>in the scoping review.</td>
<td></td>
</tr>
<tr>
<td>Data charting process</td>
<td></td>
<td>Describe the methods of charting data from the included sources of evidence (e.g., piloted forms; forms that have been tested by the team before their use, whether data charting was done independently, in duplicate) and any processes for obtaining and confirming data from investigators.</td>
<td></td>
</tr>
<tr>
<td>Data items</td>
<td></td>
<td>List and define all variables for which data were sought and any assumptions and simplifications made.</td>
<td></td>
</tr>
<tr>
<td>Critical appraisal of individual sources of evidence</td>
<td>12</td>
<td>If done, provide a rationale for conducting a critical appraisal of included sources of evidence; describe the methods used and how this information was used in any data synthesis (if appropriate).</td>
<td></td>
</tr>
<tr>
<td>Summary measures</td>
<td></td>
<td>Not applicable for scoping reviews.</td>
<td></td>
</tr>
<tr>
<td>Risk of bias across studies</td>
<td></td>
<td>Not applicable for scoping reviews.</td>
<td></td>
</tr>
<tr>
<td>Additional analyses</td>
<td></td>
<td>Not applicable for scoping reviews.</td>
<td></td>
</tr>
<tr>
<td>Results</td>
<td></td>
<td>Selection of sources of evidence</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Give numbers of sources of evidence screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally using a flow diagram.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>For each source of evidence, present characteristics for which data were charted and provide the citations.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If done, present data on critical appraisal of included sources of evidence (see item 12).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Results of individual sources of evidence</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>For each included source of evidence, present the relevant data that were charted that relate to the review question(s) and objective(s).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Synthesis of</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Summarize and/or present the charting results as they relate to the review.</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Item</td>
<td>PRISMA ScR checklist item</td>
<td>Reported on page #</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------</td>
<td>---</td>
<td>--------------------</td>
</tr>
<tr>
<td>results</td>
<td>21</td>
<td>question(s) and objective(s).</td>
<td></td>
</tr>
<tr>
<td>Risk of bias across studies</td>
<td>22</td>
<td>Not applicable for scoping reviews.</td>
<td></td>
</tr>
<tr>
<td>Additional analyses</td>
<td>23</td>
<td>Not applicable for scoping reviews.</td>
<td></td>
</tr>
<tr>
<td>Discussion</td>
<td>24</td>
<td>Summarize the main results (including an overview of concepts, themes, and types of evidence available), explain how they relate to the review question(s) and objectives, and consider the relevance to key groups.</td>
<td></td>
</tr>
<tr>
<td>Limitations</td>
<td>25</td>
<td>Discuss the limitations of the scoping review process.</td>
<td></td>
</tr>
<tr>
<td>Conclusions</td>
<td>26</td>
<td>Provide a general interpretation of the results with respect to the review question(s) and objective(s), as well as potential implications and/or next steps.</td>
<td></td>
</tr>
<tr>
<td>Funding</td>
<td>27</td>
<td>Describe sources of funding for the included sources of evidence, as well as sources of funding for the scoping review. Describe the role of the funders of the scoping review.</td>
<td></td>
</tr>
</tbody>
</table>
SUPPLEMENTARY FILE

Table 2. List of articles identified and included in the scoping review (n=42).

<table>
<thead>
<tr>
<th>#</th>
<th>Author, year</th>
<th>Journal</th>
<th>Title</th>
<th>Study design</th>
<th>Study aim</th>
<th>Setting</th>
<th>Theme</th>
</tr>
</thead>
</table>
| 1 | Armstrong et al., 2007 | Emergency Medical Journal | Prehospital clearance of the cervical spine: does it need to be a pain in the neck? | Observational, clinical audit | To determine whether the incidence of unnecessary e-spine immobilization by ambulance personnel could be safely reduced through the implementation of an evidence-based algorithm | Prehospital United Kingdom | **Facilitator:**
 - Patient centered selective SMR algorithm which goal is to minimize harms associated to SMR devices |
<table>
<thead>
<tr>
<th></th>
<th>Burton et al., 2006</th>
<th>Journal of Trauma</th>
<th>A statewide, prehospital emergency medical service selective patient spine immobilization protocol.</th>
<th>Observational, retrospective chart review</th>
<th>To evaluate the practices and outcomes associated with a statewide, EMS protocol for trauma patient spine assessment and selective patient immobilization</th>
<th>Prehospital United States of America, rural</th>
<th>Barrier:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Burton et al., 2005</td>
<td>Prehospital Emergency Care</td>
<td>EMS provider findings and interventions with a statewide EMS spine assessment protocol.</td>
<td>Observational, prospective descriptive study</td>
<td>To describe the utilization and findings with a statewide, prehospital spine-assessment protocol for EMS providers in a rural state</td>
<td>Prehospital United States of America, rural</td>
<td>Adverse event:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>
| 4 | Domeier et al., 2002 | Journal of Trauma | Multicenter prospective validation of prehospital clinical spinal clearance criteria | Observational, prospective descriptive study | To evaluate five prehospital clinical criteria—altered mental status, neurologic deficit, spine pain or tenderness, evidence of intoxication, or suspected extremity fracture—the absence of which identify prehospital trauma patients without a significant spine injury | Prehospital United States of America | **Barrier:**
- Lack of guideline compliance
- Protocol miss/protocol deficiency
Adverse event:
- Missed injury |
<p>| 5 | Connor et al., 2013 | Emergency Medical Journal | Prehospital immobilization: an initial consensus statement | Consensus statement | To review the evidence available on the practice of spinal immobilization in the prehospital environment | Prehospital | - |</p>
<table>
<thead>
<tr>
<th>#</th>
<th>Author, year</th>
<th>Journal</th>
<th>Title</th>
<th>Study design</th>
<th>Study aim</th>
<th>Setting</th>
<th>Theme</th>
</tr>
</thead>
</table>
| 6 | Domeier et al., 2005 | Annals of Emergency Medicine | Prospective performance assessment of an out-of-hospital protocol for selective spine immobilization using clinical spine clearance criteria. | Observational, prospective descriptive study | To determine whether the use of an EMS protocol for selective spine immobilization would result in appropriate immobilization without spinal cord injury associated with non-immobilization | Prehospital United States of America | Barrier:
- Lack of guideline compliance
- Protocol misapplication/protocol violation
Adverse event:
- Missed injury |
| 7 | Stroh and Braude, 2001 | Annals of Emergency Medicine | Can an out-of-hospital cervical spine clearance protocol identify all patients with injuries? An argument for | Observational, retrospective chart review | To evaluate the sensitivity of EMS selective spine immobilization protocol in identifying patients with potential cervical spine injury | Emergency Department and prehospital, United States of America | Barrier:
- Lack of guideline compliance |
| 8 | Ahn et al., 2011 | Journal of Neurotrauma | Pre-hospital care management of a potential spinal cord injured patient. A systematic review of the literature and evidence-based guidelines. | Systematic review | To provide evidence-based guidelines to identify optimal care in key areas in the prehospital setting for patients with potential SCI | Not applicable | • Protocol miss/deficiency
• Protocol misapplication/violation
Adverse event: Missed injury
Barrier:
• Lack of guideline compliance | United states of America |
<table>
<thead>
<tr>
<th></th>
<th>Author(s)</th>
<th>Journal</th>
<th>Title</th>
<th>Study Type</th>
<th>Description</th>
<th>Facilitator:</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Oteir et al., 2014</td>
<td>Prehospital and Disaster Medicine</td>
<td>The prehospital management of suspected spinal cord injury: an update</td>
<td>Review</td>
<td>To review the available literature on the epidemiology of TSCI and practice of prehospital spinal immobilization</td>
<td>Not applicable</td>
</tr>
<tr>
<td>10</td>
<td>Stiell and Bennett, 2007</td>
<td>Academic Emergency Medicine</td>
<td>Implementation of clinical decision rules in the emergency department.</td>
<td>Review</td>
<td>To review the results of implementation studies evaluating the effect of four Clinical Decision Rules: the Ottawa Ankle Rules, the Ottawa Knee Rule, the Canadian C-Spine Rule, and the Canadian CT Head Rule</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Facilitator:
- Development and adoption of context fit decision tool criteria
- Well established and comprehensive implementation approach based
<table>
<thead>
<tr>
<th></th>
<th>Vaillancourt et al., 2009</th>
<th>Annals of Emergency Medicine</th>
<th>The out-of-hospital validation of the Canadian C-spine rule by paramedics.</th>
<th>Prospective multicenter cohort study</th>
<th>To prospectively assess the performance characteristics, reliability, and clinical sensibility of the CCSR for alert, stable, and cooperative trauma patients when used by paramedics in the prehospital setting.</th>
<th>Prehospital Canada</th>
<th>on behavioral change theory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Barrier:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Variation of guideline utilization</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Protocol misapplication</td>
</tr>
<tr>
<td>#</td>
<td>Author, year</td>
<td>Journal</td>
<td>Title</td>
<td>Study design</td>
<td>Study aim</td>
<td>Setting</td>
<td>Theme</td>
</tr>
<tr>
<td>----</td>
<td>--------------------</td>
<td>--------------------------</td>
<td>--</td>
<td>-------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>12</td>
<td>Gonzalez et al., 2013</td>
<td>American Surgeon</td>
<td>Prehospital clinical clearance of the cervical spine: a prospective study.</td>
<td>Prospective Study</td>
<td>To prospectively assess whether EMS personnel can effectively clinically clear the c-spine of blunt trauma injured patients with a GCS of 14 and above.</td>
<td>Prehospital United States of America, Urban</td>
<td>Barrier: Lack of guideline compliance</td>
</tr>
<tr>
<td>13</td>
<td>Clement et al., 2011</td>
<td>International Emergency Nursing</td>
<td>Perceived facilitators and barriers to clinical clearance of the cervical spine by emergency department nurses: a major step towards changing</td>
<td>Prospective quantitative survey</td>
<td>To identify potential facilitators and barriers to an implementation policy that would allow nurses to clinically clear the c-spine of minor trauma patients</td>
<td>Emergency Departments Canada</td>
<td>Facilitator: Well established and comprehensive implementation approach based on behavioral change theory</td>
</tr>
<tr>
<td>ID</td>
<td>Author(s)</td>
<td>Journal</td>
<td>Practice</td>
<td>Research Design</td>
<td>Objective</td>
<td>Setting</td>
<td>Facilitator</td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>---------</td>
<td>----------</td>
<td>----------------</td>
<td>-----------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>14</td>
<td>Jin et al., 2007</td>
<td>European Journal of Trauma and Emergency Surgery</td>
<td>practice in the emergency department.</td>
<td>A retrospective study of five clinical criteria and one age criterion for selective prehospital spinal immobilization</td>
<td>Retrospective chart review</td>
<td>To retrospectively investigate and examine the sensitivity of a selective prehospital spinal immobilization protocol that adds an age criterion to five clinical spine clearance criteria.</td>
<td>Emergency Department and prehospital, Netherlands</td>
</tr>
<tr>
<td>15</td>
<td>Kreinest et al., 2017</td>
<td>European Journal of Trauma and Emergency Surgery</td>
<td>Expertise of German paramedics concerning the prehospital treatment of patients with spinal trauma.</td>
<td>Questionnaire</td>
<td>To analyze German paramedics’ subjective uncertainty in terms of their prehospital assessment and treatment</td>
<td>Prehospital, Germany</td>
<td>Patient centered selective SMR algorithm</td>
</tr>
<tr>
<td></td>
<td>Larson et al., 2018</td>
<td>Journey of Emergency Nursing</td>
<td>The use of clinical cervical spine clearance in trauma patients: a literature review.</td>
<td>Systematic literature review</td>
<td>To review the available literature to present evidence of the risks associated with the use of cervical collars, and to identify the latest evidence recommendation regarding clinical clearance of C-Spine immobilization precautions in trauma patients.</td>
<td>Not applicable</td>
<td>Barrier:</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td>-----------------</td>
<td>--</td>
<td>-----------------</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

which goal is to minimize harms associated to SMR devices
<table>
<thead>
<tr>
<th>#</th>
<th>Author, year</th>
<th>Journal</th>
<th>Title</th>
<th>Study design</th>
<th>Study aim</th>
<th>Setting</th>
<th>Theme</th>
</tr>
</thead>
</table>
| 17 | Clement et al., 2016 | International Emergency Nursing | Facilitators and barriers to application of the Canadian C-spine rule by emergency department triage nurses. | Survey | To evaluate the nurses, physicians and administrators views on the facilitators and barriers to the implementation of the CCSR | Emergency Department Canada | **Facilitator:**
- Well established and comprehensive implementation approach based on behavioral change theory

Barrier:
- Lack of guideline compliance
- Protocol misapplication |
| 18 | Fontaine et al., 2018 | Journal of Emergency Nursing | Cervical spine collar removal by emergency room nurses: a quality improvement project. | This practice improvement project had three aims: 1. To train ED nurses how to use CCSR in alert, orientated, low risk, adult trauma patient, in so doing remove the cervical collar; 2. to monitor its use throughout the project, and 3. to compare the assessment of nurses using the CCSR with the assessments done by emergency physicians on the same patients. | Emergency Department, Canada | Facilitator:
- Well established and comprehensive implementation approach based on behavioral change theory
Barrier:
- Protocol misapplication
- Lack of guideline compliance |
| 19 | Desai et al., 2018 | Academic Emergency Medicine | Effectiveness of implementing evidence-based interventions to reduce C-spine image ordering in the emergency department: a systematic review. | Systematic review | To review the literature on the implementation and effectiveness of evidence-based interventions aimed at reducing C-spine imaging in adults presenting to the ED with neck trauma. | Not applicable | Facilitator: |
| | | | | | | | • Well established and comprehensive implementation approach based on behavioral change theory |
| | | | | | | | Barrier: |
| | | | | | | | • Lack of guideline compliance |

<p>| 20 | Myers et al., 2009 | International Journal of Emergency Medicine | Efficacy and compliance of a prehospital spinal immobilization guideline. | Retrospective chart review | To retrospectively examine the efficacy of a prehospital spinal clearance guideline and Emergency Department andprehospital, | Emergency Department andprehospital, | Facilitator: |
| | | | | | | | • Criteria medication |
| | | | | | | | Barrier: |</p>
<table>
<thead>
<tr>
<th>Year</th>
<th>Author(s)</th>
<th>Journal</th>
<th>Study Design</th>
<th>Objective</th>
<th>Setting</th>
<th>Facilitator</th>
<th>Barrier</th>
</tr>
</thead>
</table>
| 2015 | Cardozo and Angus | Journal of Trauma Nursing | Use of an electronic C-spine clearance strategy to ensure compliance with confrontational examinations. | To retrospectively evaluate and improve the documentation of c-spine clearances by standardizing the confrontational spine examination for patients sustaining blunt trauma using the EMR. | Emergency Department, United States of America | - Well established and comprehensive implementation approach based on behavioral change theory | - Lack of guideline compliance.

Adverse event:
- Missed injury
<table>
<thead>
<tr>
<th>#</th>
<th>Author, year</th>
<th>Journal</th>
<th>Title</th>
<th>Study design</th>
<th>Study aim</th>
<th>Setting</th>
<th>Theme</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Kornhall et al., 2017</td>
<td>Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine</td>
<td>The Norwegian guidelines for the prehospital management of adult trauma patients with potential spinal injury.</td>
<td>Systematic review</td>
<td>To review the evidence base in order to provide/develop practice guideline recommendations for the management of adult trauma patients with potential spinal injury in the prehospital setting.</td>
<td>Not applicable</td>
<td>Facilitator: Patient centered selective SMR algorithm which goal is to minimize harms associated to SMR devices</td>
</tr>
</tbody>
</table>
| 23 | Kreinest et al., 2016 | Scandinavian Journal of Trauma, Resuscitation and | Development of a new emergency medicine spinal immobilization protocol for trauma patients and a test of applicability by | Survey after systematic review | To review the evidence in order to develop a protocol that supports decision-making for SMR in adult trauma patients and to carry out the first | Prehospital, Europe | Facilitator:
- Patient centered selective SMR algorithm which goal is to minimize harms |
<table>
<thead>
<tr>
<th>Emergency Medicine</th>
<th>German emergency care providers.</th>
<th>applicability test by emergency medical personnel</th>
<th>associated to SMR devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>McDonald et al., 2016</td>
<td>Outcomes and characteristics of non-immobilized, spine-injured trauma patients: a systematic review of prehospital selective immobilization protocols.</td>
<td>Systematic review</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Facilitator:
- Patient centered selective SMR algorithm which goal is to minimize harms associated to SMR devices

Barrier:
- Protocol miss/deficiency

Adverse event:
- Missed injury
- Well established and comprehensive implementation approach based on behavioral change theory
Barrier:
- Protocol misapplication
- Lack of guideline compliance |
<p>| 26 | Castro-Marín, 2020 | Prehospital Emergency Care | Prehospital protocols reducing long spinal board use are not associated with a Retrospective, observational study | To determine if implementation of SMR protocols, which reduce Emergency Department, and Prehospital, |</p>
<table>
<thead>
<tr>
<th>#</th>
<th>Author, year</th>
<th>Journal</th>
<th>Title</th>
<th>Study design</th>
<th>Study aim</th>
<th>Setting</th>
<th>Theme</th>
</tr>
</thead>
</table>
| 27 | Hauswald and Braude, 2002 | Current Opinion in Critical Care | Spinal immobilization in trauma patients: is it really necessary? | Opinion statement | To review the evidence on minimizing harm from both under- and over-immobilization in trauma patients. | Not applicable | | Facilitator:
 - Patient centered selective SMR algorithm which goal is to minimize harms associated to SMR devices |
| 28 | Dunn et al., 2004 | Prehospital Emergency Care | Are emergency medical technician-basics able to use a selective immobilization of the | Preliminary report: a prospective | To determine whether EMT–Basics can use a protocol that allows for | Prehospital, United States of America | | Facilitator:
 - Patient centered selective SMR algorithm which |
| cervical spine protocol? | scenario-based study | selective immobilization of the cervical spine. | goal is to minimize harms associated to SMR devices
- Well established and comprehensive implementation approach based on behavioral change theory
- Development and adoption of context fit decision tool criteria

Barrier:
| 29 | Collins et al., 2013 | European Journal of Emergency Medicine | The NEXUS criteria: do they stand the test of time? | Case study | To conduct a case study report on the elderly population who are more likely to sustain c-spine injury because of blunt trauma as oppose to the younger patients, urging caution in using NEXUS | Emergency Department, Ireland. | • Protocol misapplication
• Protocol deficiency
• Lack of guideline compliance
Adverse:
• Increase in false positive cases

Barrier:

Adverse event:
• Missed injury
<table>
<thead>
<tr>
<th>No.</th>
<th>Author(s)</th>
<th>Journal</th>
<th>Study Design</th>
<th>Primary Outcomes</th>
<th>Additional Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Hankins et al., 2001</td>
<td>Prehospital Emergency Care</td>
<td>Spinal immobilization in the field: clinical clearance criteria and implementation.</td>
<td>Consensus statement report/presentation</td>
<td>To review the evidence to highlight and discuss controversies around SMR.</td>
</tr>
<tr>
<td>31</td>
<td>Hong et al., 2014</td>
<td>Western Journal of Emergency Medicine</td>
<td>Comparison of three prehospital cervical spine protocols for missed injuries.</td>
<td>Cross-sectional study</td>
<td>To compare three existing EMS SMR protocols; the PHTLS; the Domeier protocol; and the Hankins’ criteria, by determining the proportion of patients who would require cervical SMR per</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
protocol and evaluate the number of missed cervical spine injuries, had each protocol been followed with 100% compliance.
<table>
<thead>
<tr>
<th>#</th>
<th>Author, year</th>
<th>Journal</th>
<th>Title</th>
<th>Study design</th>
<th>Study aim</th>
<th>Setting</th>
<th>Theme</th>
</tr>
</thead>
</table>
| 32 | Maschmann et al., 2019 | Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine | New clinical guidelines on the spinal stabilisation of adult trauma patients – consensus and evidence based | Systematic Review-Consensus Report | To review the literature to provide updated clinical guidelines on prehospital procedures for spinal stabilisation of adult trauma patients in Denmark. | Not applicable | Facilitator:
 - Patient centred selective SMR algorithm which goal is to minimise harms associated to SMR devices

Adverse event:
 - Over-immobilisation / over triage |
| 33 | Oteir et al., 2017 | Prehospital Emergency Care | Prehospital predictors of traumatic spinal cord injury in Victoria, Australia. | Retrospective cohort study – chart review | To retrospectively identify the predictors of TSCI and describe the differences between confirmed and potential TSCI cases in the prehospital setting | Emergency Department, and Prehospital, Australia | Facilitator:
 - Development and adoption of context fit decision tool criteria |
<table>
<thead>
<tr>
<th>SMR practice increasing on scene time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cacho García et al., 2019</td>
</tr>
<tr>
<td>International Journal of Critical Care and Emergency Medicine</td>
</tr>
<tr>
<td>Efficacy of cervical immobilisation in multiple trauma patients.</td>
</tr>
<tr>
<td>Bibliographic narrative review</td>
</tr>
<tr>
<td>To review the literature and contrast the effectiveness of immobilisation in multiple trauma patients.</td>
</tr>
<tr>
<td>Not applicable</td>
</tr>
<tr>
<td>Sebastian et al., 2001</td>
</tr>
<tr>
<td>California Journal of Emergency Medicine</td>
</tr>
<tr>
<td>EMS Adherence to a pre-hospital cervical spine clearance protocol</td>
</tr>
<tr>
<td>Retrospective descriptive study</td>
</tr>
<tr>
<td>To retrospectively determine the degree of adherence to a c-spine clearance protocol by pre-hospital EMS personnel by both self-assessment and receiving hospital assessment, to describe deviations from the protocol, and to determine if the rate of Emergency Department, and Prehospital, United States of America.</td>
</tr>
<tr>
<td>Facilitator:</td>
</tr>
<tr>
<td>Development and adoption of context fit decision tool criteria</td>
</tr>
<tr>
<td>Facilitator:</td>
</tr>
<tr>
<td>Well established and comprehensive implementation approach based on</td>
</tr>
<tr>
<td>#</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>36</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>37</td>
</tr>
<tr>
<td>38</td>
</tr>
<tr>
<td>39</td>
</tr>
</tbody>
</table>

Facilitator:
- Development and adoption of context fit decision tool criteria
<table>
<thead>
<tr>
<th>No.</th>
<th>Authors, Year</th>
<th>Setting</th>
<th>Methodology</th>
<th>Objective</th>
<th>Facilitator</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>Fischer et al., 2018</td>
<td>Prehospital Emergency Care</td>
<td>Spinal motion restriction in the trauma patient – a joint position statement.</td>
<td>To review the evidence and provide an updated guidance on the practices of SMR in the trauma patient by EMS personnel, EMS medical directors, emergency physicians, trauma surgeons, and nurse.</td>
<td>Not applicable</td>
</tr>
<tr>
<td>41</td>
<td>Coggins et al., 2019</td>
<td>Australasian Emergency Care</td>
<td>A prospective evaluation of cervical spine immobilisation in low-risk trauma patients at a</td>
<td>To prospectively investigate the practices and rate of concordance with established international guidelines.</td>
<td>Emergency Department, Australia.</td>
</tr>
</tbody>
</table>

Facilitator:
- Patient centred selective SMR algorithm which goal is to minimise harms associated to SMR devices
<table>
<thead>
<tr>
<th>No.</th>
<th>Authors</th>
<th>Journal</th>
<th>Title</th>
<th>Type</th>
<th>Summary</th>
<th>Key to abbreviations</th>
</tr>
</thead>
</table>

Barrier:
- Lack of guideline compliance

Harms associated to SMR devices
Part C: Appendices
Appendix A: Prehospital Emergency Care Journal: Instructions for Authors

The journal selected for publication is the Prehospital Emergency Care (Prehosp. Emerg. Care) Journal, as the findings from our scoping review have relevance to an international audience, and open access is available.

The instructions for Authors can be found at the following link:

https://www.tandfonline.com/action/authorSubmission?show=instructions&journalCode=ipec20#prep
Appendix B: Research Protocol

FACTORS WHICH AFFECT THE APPLICATION AND IMPLEMENTATION OF A SPINAL MOTION RESTRICTION PROTOCOL BY PREHOSPITAL PROVIDERS IN LOW RESOURCE SETTINGS: A SCOPING REVIEW

STUDENT: Student name: Charlene Geduld

Degree(s): National Diploma Emergency Medical Care, B Tech Emergency Medical Care

Affiliation: University of Cape Town

Student number: GDLCHA002

SUPERVISOR(s):

Name of supervisor: Colleen Saunders

Degree(s): BSc (MED) Hons, PhD

Affiliation: University of Cape Town

Name of co-supervisor: Henra Muller

Degree(s): M Tech Radiography (Diagnostic)

Affiliation: Central University of Technology

This study is in partial fulfilment of the MPhil Emergency Medicine Degree
DECLARATION

I, Charlene Geduld, hereby declare that the work contained in this assignment is my original work and that I have not previously submitted it, in its entirety or in part, at any university for a degree.

Signature:

Date: 1 July 2020
INTRODUCTION

Spinal cord injury, or nerve root injury, is a recognised complication of spinal trauma where it is referred to as Traumatic Spinal Cord Injury (TSCI). Over the last several decades, South African (SA) prehospital emergency medical services (EMS) staff have routinely immobilised patients with any trauma related injury as provision for any underlying TSCI. Spinal motion restriction (SMR) is primarily performed to minimise or prevent further damage to the spinal cord, which can result in further instability of the spinal column. Cervical spine immobilisation (CSI) is a subset of SMR with specific consideration to immobilising the cervical spine (C-spine), and this is intended to protect the potential C-spine injury and prevent injury progression (1). Current practice is to assume the presence of C-spine injury in any patient with a mechanism of injury suggestive of CSI where there are relevant clinical findings and proceed to triple immobilisation of the C-Spine. The triple immobilisation includes the use of a cervical collar, head restraints and either a long spinal board or orthopaedic scoop stretcher (2).

Historically, the decision making for the safe removal of immobilisation devices, such as those used for CSI in particular, was done by physicians within the hospital setting (3)(4)(5). One method used to clear the C-spine was is a clinical spinal clearance tool, the Canadian C-Spine Rule (CCSR), initially designed and validated for usage in the stable and alert trauma patient who presents to the emergency department (ED) and in whom a cervical spinal injury was a concern (4). Furthermore, the CCSR was not only used to determine the safe removal of immobilisation devices (neck collar) but also to identify the need for diagnostic imaging. This was done to reduce the use of C-spine imaging, thereby decreasing patient exposure to radiation, minimising health care expenditure for the patient and contributing to patient satisfaction (3)(4)(5).

Recent evidence has started to question and raise concern about the immobilisation practices of EMS providers. This includes SMR being unnecessarily performed (i.e. inappropriate patient selection and/or low risk of TSCI post-trauma) (6)(7)(8)(9)(10)(11), time consuming (i.e. delay in identification and treatment of life-threatening conditions) (6)(10), and inappropriately applied (i.e. poorly performed practice, and/or incorrect equipment used for procedure) (6)(11). In addition, evidence highlighted that SMR is not
without its harmful effects where it is viewed that the risks and complications far outweigh its benefits. In CSI, in particular, the harms associated with the use of neck collars have been linked to causing tissue necrosis, increased movement of unstable fractures, increased intracranial pressure, and general discomfort for the patient (6)(11). Moreover, prolonged immobilisation has been linked to the development of pressure ulcers and general patient discomfort and pain. As a result, there have been recommendations for extending selective SMR protocol usage to ED nurses and EMS providers within the prehospital setting.

“Clinical decision (or prediction) rules help to reduce the uncertainty of medical decision making by standardising the collection and interpretation of clinical data” (12). Of late, various clinical methods for reliably determining the absence of clinically important spinal injury in the prehospital setting or the ED have been explored to eliminate long, needless uncomfortable immobilisation for some patients (1)(12)(13)(14)(15)(16)(17). Whilst literature has shown promising results in this regard; it is to be noted that most of these studies were conducted within high resource settings. As a result, the findings of such research may not necessarily be generalisable to different practice environments internationally, especially that of low resource settings. Moreover, it is to be noted that although favourable results were shown, some of the same literature identified limitations and barriers to the application of spinal immobilisation protocols. For these reasons, it was found necessary to conduct a scoping review to identify factors which may either limit or facilitate the safe and effective practice of selective SMR and/or CSI by EMS providers within low resource contexts.

Overall, the scoping review is aimed at identifying any knowledge and, or practice gaps, as it is believed that once this is done, it may guide future research of selective CSI and the implementation thereof within low resource settings. There is no dispute that there are several benefits to selective immobilisation protocols in both out of hospital and in-hospital settings, especially those operating within low resourced settings. These benefits include decreased costs to the patient and the healthcare setting, minimising concerns over patient discomfort and associated complications arising from C-spine immobilisation, and decreased prehospital time. Therefore, identification of system-specific barriers and
facilitators are important components of successful knowledge translation for the realization of such benefits.

AIM AND OBJECTIVES:

The aim of this scoping review is to identify the published literature describing the use of selective SMR decision support tools for adult, blunt trauma patients, and to identify the factors which may facilitate or challenge the safe and effective application of these tools by EMS personnel in low resource settings. In particular, we seek to answer the following questions:

- Which selective SMR decision support tools have been implemented and evaluated in the prehospital setting and/or are currently in use by EMS?

- What are the potential barriers and facilitators that EMS practitioners may encounter in applying selective SMR decision support tools?

- What are the potential adverse events associated with the application of selective SMR decision support tools by EMS personnel?

METHODOLOGY

Study design

The proposed study is a scoping review to identify the published literature describing the use of selective SMR decision support tools for adult, blunt trauma patients. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Review checklist will be used to structure the final report.

Search strategy and information sources

The Medline (via PubMed), Embase Cochrane, Cumulative Index of Nursing and Allied Health Literature (CINAHL), Web of Science, Turning Research Into Practice (TRIP) and EBSCO host online databases will be searched using the following advanced search string in the first instance:

(((emergency responders) OR (emergency care practitioner) OR (emergency medical technicians) OR (emergency medical services) OR (EMS) OR
(prehospital) OR (out-of-hospital) OR ("out of hospital") OR (ambulances) OR (paramedic)) AND (((cervical) OR (c-spine) OR (spinal injury)) NOT (cancer)) AND ((clearance) OR (protocol) OR (algorithm) OR (rule) OR (triage) OR (NEXUS) OR (Canadian C-spine))) AND (trauma) AND (2000:2020[pdat])

Search results will be limited to those published in or after 2000. Reference lists of selected articles will also be examined for further articles, potentially meeting the search criteria.

Screening and eligibility

Article titles and abstracts will be screened for potential relevance and duplicate articles will be removed. Following this initial screening, the full text of articles identified in the first screening step will be reviewed and screened against the inclusion and exclusion criteria.

Articles for which the full text is not available in English will be excluded.

Studies will be eligible for inclusion if they describe the use of any clinical spinal clearance decision tools in the first line management of blunt trauma patients by medical practitioners in the ED or by EMS personnel working in a prehospital setting in any country. Studies that focus only on paediatric patients will be excluded as these patients are unable to describe their symptoms, and have unique anatomical, physiological and development characteristics. Studies describing patients who sustained penetrating injuries will be excluded since SMR may have minimal benefits to these patients as it is unlikely to cause instability (18), may be associated with higher mortality (19) (20), and may increase the risk of deterioration (21).

Data extraction

Information from studies meeting the eligibility criteria and passing the screening process will be extracted and charted for analysis. The following fields will be extracted for each article:

Author(s)

Year of publication
Bibliographic details

Study design

Study aim or purpose

Study setting and population

Findings or recommendations

Record of rationale for inclusion of the study

Results will then be classified under main conceptual themes and summarised.

ETHICAL CONSIDERATIONS

This study does not involve human participants. There is no risk to human participants in this study. All included documents are already published in the public domain and there are, therefore no concerns regarding confidentiality. Ethical approval of this study is, therefore not required; however, the study proposal will be submitted to the University of Cape Town Human Research Ethics Committee for confirmation and notification.

DISSEMINATION PLAN

It is anticipated that this scoping review will be submitted for publication in a DHET accredited, peer-reviewed journal. The findings of this study will also be written up and submitted in completion of the MPhil dissertation.

TIMELINE

It is anticipated that the search and review process will be completed by end 2020, and that the MPhil dissertation will be submitted for examination in early 2021.
REFERENCES

5. Stiell I, Clement C, Rowe B, Al E. The Canadian C-Spine Rule versus the NEXUS Low-Risk Criteria in Patients with Trauma. 2003;

10. Stuke LE, Pons PT, Guy JS, Chapleau WP, Butler FK, Mcswain NE. Prehospital

Appendix C: HREC Approval Letter

UNIVERSITY OF CAPE TOWN
Faculty of Health Sciences
Human Research Ethics Committee

Room 650-46 Old Main Building
Groote Schuur Hospital
Observatory 7925
Telephone (021) 406 6492
Email: hrec-ehr@uct.ac.za
Website: www.health.uct.ac.za/hha/research/humanethics/forms

08 December 2020

HREC REF 859/2020

Dr Colleen Saunders
Department of Emergency Medicine
FS1, OMB

Email: c.saunders@uct.ac.za
Student: CGLCHA002@myuct.ac.za

Dear Dr Saunders

PROJECT TITLE: FACTORS WHICH AFFECT THE APPLICATION AND IMPLEMENTATION OF A SPINAL MOTION RESTRICTION PROTOCOL BY PREHOSPITAL PROVIDERS IN LOW RESOURCE SETTINGS: A SCOPING REVIEW. (MPhil CANDIDATE: MS C GEDULU)

Thank you for submitting your request to the Faculty of Health Sciences Human Research Ethics Committee.

The HREC note that the proposed study is a systematic review.

As the systematic review involves published literature available through publicly accessible electronic databases, research ethics review and approval is not required.

This is in accordance with Section 1.1.6 of the Department of Health’s Ethics in Health Research: Principles, Processes and Structures (South African Department of Health, 2015), which states: “Research that relies exclusively on publicly available information or accessible through legislation or regulation usually need not undergo formal ethics review. This does not mean that ethical considerations are irrelevant to the research.”

The HREC recommend that researchers refer to the PRISMA website, for the PRISMA statement and checklist, to facilitate the reporting of systematic reviews and meta-analyses. For more information, please refer to http://www.prisma-statement.org/.

Further, fundamental ethical principles for health-related research should be considered in the objectives and methods of the systematic review. See, for example, the Declaration of Helsinki (Fortaleza, Brazil, 2013) and the Department of Health’s Ethics in Health Research: Principles, Processes and Structures (South African Department of Health, 2015).

The HREC acknowledge that the PhD Candidate, Ms Charlene Geduld, was also involved in this project.

Yours sincerely

PROFESSOR M BLOCKMAN
CHAIRPERSON, FHS HUMAN RESEARCH ETHICS COMMITTEE