Outcomes Following Admission to Paediatric Intensive Care: A Systematic Review

Dr Claire Procter

PRCCLA006

SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE

Masters of Philosophy - PAEDIATRIC CRITICAL CARE

FACULTY OF HEALTH SCIENCES AT THE UNIVERSITY OF CAPE TOWN

Submitted on [07/02/2020]

Supervisors: Prof. Andrew Argent; Prof. Brenda Morrow
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
Table of Contents

Table of Tables .. ii
Table of Figures .. ii
Copyright statement .. iii
Declaration .. iv
Acknowledgements: ... v
Abbreviations ... vi
Title Page .. vii
Abstract .. 1
Key Words: .. 2
Submission-ready manuscript .. 3
Author Guidelines ... 3
Introduction .. 3
Methods ... 5
Results .. 9
Discussion ... 61
Conflict of interest declaration .. 64
References ... 65
Appendix A: Search Strategy ... 71
Appendix B: Excluded Studies ... 72
Appendix C: Journal Author Guidelines .. 90
Table of Tables

Table 1: Summary of findings of articles with the primary outcome of mortality (n=62) .. 11
Table 2: Summary of findings of studies relating to cognitive/developmental outcomes (n=4) 26
Table 3: Summary of findings of studies relating to functional outcomes (n=24) .. 30
Table 4: Summary of findings of studies relating to psychological outcomes (n=24) .. 39
Table 5: Children at risk from PTSD according to Impact of Events Scale .. 47
Table 6: Summary of findings of studies relating to quality of life outcomes (n=19) ... 48
Table 7: Summary of findings of studies relating to social and family outcomes (n=24) ... 53

Table of Figures

Figure 1: Flow Diagram of identified and excluded records .. 10
Figure 2: Mortality In PICU over Time according to Country Income Category (World Bank data at time of study - https://data.worldbank.org/country). Data from Table 1 with best fit lines of correlation: 1,2,4,5,15-72 22
Figure 3: SMRs of mortality in PICU according to Country Income Category (World Bank data at time of study - https://data.worldbank.org/country). Data from Table 1: 2,4,22,25,32,33,39,44,47,50,52,54,63,66,72 ... 23
Figure 4: Cumulative Mortality Rate at and following PICU discharge ... 24
Figure 5: Proportion of patients with PCPC >1 (i.e. cerebral impairment) over time .. 37
Figure 6: Proportion of patients with POPC>1 (i.e. Overall functional impairment) over time 37
Copyright statement

The copyright of this thesis rests with the University of Cape Town. No quotation from it or information derived from it is to be published without full acknowledgement of the source.

The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
Declaration

I, Claire Procter, hereby declare that the work on which this research project is based is my original work (except where acknowledgements indicate otherwise) and that neither the whole work nor any part of it has been, is being, or is to be submitted for another degree in this or any other university.

I authorise the university to reproduce for the purpose of research either the whole or any portion of the contents in any manner whatsoever.

Signature:……[Signed by candidate]

Date: …..07/02/2019………………………………
Acknowledgements:

- The staff and children of the Paediatric Intensive Care Unit, Red Cross Children’s Hospital, Cape Town.
- The library staff of the University of Cape Town
- No funding was obtained for this project.
Abbreviations

PICU = Paediatric Intensive Care Unit
RCWMCH = Red Cross War Memorial Children’s Hospital
PIM = Paediatric Index of Mortality score
SMR = Standardised Mortality Ratio
USA = United States of America
RR = Risk Ratio
SEM = Standard Error of the Mean
SD = Standard Deviation
OR = Odds Ratio
CI = Confidence Interval
RD = Risk Difference
NNTB = Number Needed to Treat for an additional Beneficial outcome
NNTH = Number Needed to Treat for an additional Harmful outcome
PRISMA = Preferred Reporting Item for Systematic Reviews and Meta-Analyses
PRISM = Paediatric Risk of Mortality score
PELOD = Paediatric Logistic Organ Dysfunction score
NICU = Neonatal Intensive Care Unit
PCPC = Paediatric Cerebral Performance Category
POPC = Paediatric Overall Performance Category
UK = United Kingdom
IQ = Intelligence Quotient
RCT = Randomised Controlled Trial
LOS = Length of Stay
FSS = Functional Status Scale
RRT = Renal Replacement Therapy
CPR = Cardiopulmonary Resuscitation
ECMO = Extracorporeal Membrane Oxygenation
PTSD = Post Traumatic Stress Disorder
TBI = Traumatic Brain Injury
NAI = Non-Accidental Injury
DSM-IV = Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition
IES = Impact of Events Score
TISS = Therapeutic Interventions Scoring System
PSS = Parental Stressor Scale
CANTAB = Cambridge Neuropsychological Test Automated Battery
CAPS-C = Clinician Administered PTSD Scale for Children
QOL = Quality of Life
HUI = Health Utilities Index
VAS = Visual Analogue Scale
ASD = Acute Stress Disorder
Title: Outcomes Following Admission to Paediatric Intensive Care: A Systematic Review

Type of Article: Systematic review

Investigators: Claire Procter¹, Brenda Morrow², Genee Pienaar³, Mary Shelton⁴, Andrew Argent¹

¹ Pediatric Intensive Care, Division of Pediatric Critical Care and Children's Heart Disease, Red Cross War Memorial Children's Hospital and University of Cape Town, Cape Town, South Africa

² Department of Paediatrics, University of Cape Town, Cape Town, South Africa

³ Western Cape Department of Health, Cape Town, South Africa

⁴ Reference Librarian, University of Cape Town, Cape Town, South Africa

Corresponding author:

Claire Procter, 17 Planet Africa, Kei Apple Road, Cape Town, 8005 South Africa

E-mail: clairemprocter@gmail.com

Phone: +27720717864 or +447788906
Abstract

Introduction

Paediatric Intensive Care has developed rapidly in recent years with a dramatic increase in survival rates. However, there are increasing concerns regarding the impact that admission to a Paediatric Intensive Care Unit (PICU) has on both the child and their family. Following discharge from PICU, children may be living with complex medical problems as well as dealing with the psychosocial impact that their illness has had on them and their family.

Objectives

To describe the long-term health outcomes of children admitted to a paediatric intensive care unit (PICU).

Methods

A full literature search was conducted including the databases; MEDLINE via PubMed, Cochrane Central Register of Controlled Trials, (CENTRAL), Scopus, Web of Science, CINAHL, ERIC, Health Source Nursing/Academic, APA PsycInfo. All studies including children under 18 admitted to a PICU were included. Primary outcome was short- and longer-term mortality. Secondary outcomes were neurodevelopment/cognition/school performance; physical function, psychological function/behaviour impact, quality of life outcomes and social/family implications. Studies focused on Neonatal Intensive Care Admission and articles with no English translation were excluded.

Results

One hundred and five articles were included in the analysis. Mortality in PICU ranged from 1.3% to 50%. Mortality in high income countries reduced over time but the data did not show the same trend for low- and middle-income countries. Higher income countries were found to have lower Standardised Mortality Rates (SMRs) than low- and middle-income countries. Children had an ongoing risk of death for up to 10 years following PICU admission. Children admitted to PICU also have more ongoing morbidity than their healthy counterparts with more cognitive/developmental problems, more functional health issues, poorer quality of life.
as well as increased psychological problems. Their parents also have an increased risk of Post Traumatic Stress Disorder (PTSD).

Discussion

Most of the studies identified are from high income countries and only include short-term follow up. More data is needed from low- and middle-income countries and over longer terms. The studies were markedly heterogenous and were all observational. Agreement is needed regarding which outcomes are most important to measure as well as standardised methods of assessing them. Further research is needed to identify the risk factors which cause children to have poorer outcomes as well as to identify predictive and modifiable factors which could be targeted in practice improvement initiatives.

Key Words:

Child, Children, Paediatric, Critical Care, Intensive Care, PICU, Outcomes
Submission-ready manuscript

Author Guidelines
This paper has been formatted for the Journal of Paediatric and Child Health. Author guidelines may be found in Appendix B.

Introduction
Paediatric intensive care has developed dramatically in recent years with substantial reductions in mortality rates. In the United States of America (USA), mortality rates have fallen from more than 10% in the 1980s to approximately 1.4% in 2014\(^1\). In South Africa, the Red Cross War Memorial Children’s Hospital (RCWMCH) in Cape Town admits approximately 1300-1400 patients per year to the Paediatric Intensive Care Unit (PICU). The mortality during PICU admission was 6.5% in 2017. This has reduced from 13% in 2000 and 11% in 2006. When adjusted for severity of illness using the Paediatric Index of Mortality (PIM) score these outcomes are similar to those seen in higher income countries; Standardised Mortality Ratio (SMR) 1.1 in 2000, 0.9 in 2006 and 1.19 in 2017\(^2,3\). However, recent literature has suggested that with reduced mortality comes the risk of increased morbidity rates. Instead of dying, children may survive their admission to PICU but with complex chronic, medical problems\(^4,5\). Children discharged from PICU may have multiple problems in terms of their physical health, quality of life, neurodevelopment or school performance and there may be significant psychosocial effects on them and their families\(^6\). These problems may be as a result of the illness that required them to be admitted to PICU, due to their underlying chronic condition or a result of the interventions they received in PICU. Increased childhood survival following complex disorders also means that children being admitted to PICU have increasingly complex morbidities prior to admission\(^6\). At RCWMCH there is currently no routine system for following up children who are discharged from PICU and we do not know what problems they face in the long term as a result of their admission.

A recently introduced concept is “post-hospital syndrome”, referring to a period following discharge from hospital when people are particularly vulnerable to increased morbidity and
mortality. Although this term was first used for adults there is evidence that it also applies to children, particularly those from low and middle income countries. Others have referred specifically to a “post intensive care syndrome” where the focus is specifically on long-term outcome after being in intensive care. This may be significantly worse than for those admitted to general wards due to their increased illness severity and increased interventions.

Multiple factors including deranged physiology, poor nutrition and medication side effects as well as a background of acute and chronic diseases increase the risk of further mortality and morbidity following an admission to hospital. This is likely to be worse if a child required PICU admission with a high severity of illness. The home and family circumstances must also be considered and ameliorated, as these factors may contribute to, or exacerbate, the presenting illness as well as impacting on post-discharge outcome. The length of this post-admission vulnerable period will be very variable depending on the child and the illness. Very few studies or guidelines cover this period so it is not known what interventions should be implemented in order to reduce morbidity and mortality in this high risk period.

Admitting a child to PICU requires substantial resources. In resource limited settings, difficult decisions often need to be made regarding the admission of specific children to PICU. RCWMCH has clearly defined admission criteria, which have been negotiated with clinicians and the provincial health authorities to optimize the use of scarce resources for those who are likely to benefit the most. However, these criteria were based primarily on short-term mortality in PICU. The “outcomes movement” or the “third revolution in medical care” argues that the benefits of increased survival should not come at the expense of significantly impaired quality of life. As we understand the effectiveness of different interventions, we should use this information to make better decisions and develop standards to guide providers in optimizing resource utilization. A review of the long-term outcomes of PICU may help ensure that resources are offered to those who will benefit the most and that we optimise the use of those resources to minimise the long-term risks.

There have been no previous comprehensive reviews of all the outcomes of general PICU admission. In 2009, Rennick et al. conducted a systematic review of the psychological outcomes but excluded studies on functional PICU outcome. Other systematic reviews have focused on a single outcome. It was hypothesised that a systematic review of the current global literature regarding all the outcomes of general PICU admission would allow us to estimate the expected ongoing mortality, morbidity, quality of life and psychosocial impact.
of admission to PICU. It was also hypothesised that the review may identify which outcomes have been sufficiently investigated and which areas which require more attention. A systematic review may also reveal factors that could be addressed during PICU admission to reduce the long-term morbidity or ways to use resources most effectively. Currently, most of the literature on this topic comes from higher income countries and outcomes may be very different in low- and middle-income settings. There are currently no studies from Sub-Saharan Africa that the authors are aware of.

Methods

Study Design

This is a systematic review of published literature. A search was performed of the following databases; MEDLINE via PubMed, Cochrane Central Register of Controlled Trials, (CENTRAL), Scopus, Web of Science, CINAHL, ERIC, Health Source Nursing/Academic, APA PsycInfo (the last four databases via the EBSCO host platform). Reference lists of included articles were screened for potentially missed articles. Efforts were made to include the grey literature including a search of ProQuest Theses and Dissertations. The search strategy was designed to include terms that represented the population (children or adolescents), the intervention (paediatric intensive care) such as “Intensive Care Units, Paediatric or Critical Care”, and treatment outcomes such as “Critical Care Outcomes, Outcome Assessment, Neurodevelopmental disorders, stress, psychological, quality of life, critical illness/psychology or services” with the exclusion of neonatal intensive care. For the full search strategy see Appendix A.

Types of Studies

All types of study designs were included, both full-text and those published as abstracts only. There were no restrictions as to language, provided an English translation was obtained. There was no restriction of publication date.

Types of participants

All children aged up to 18 years admitted to a PICU were included. Primary neonatal studies and studies investigating the PICU outcomes of specific disease processes or interventions
were excluded. Those studies with mixed populations, including both neonates and older children were included in the review.

Types of Intervention

Admission to a PICU as reported by the study authors. It is acknowledged that the definition of “intensive care” may vary amongst different socio-geographic regions but papers were accepted if the authors identified their unit as an intensive care.

Types of Controls

All types of controls were included, this included non-PICU hospital admission or healthy age-matched controls. Observational studies without control groups were also included.

Types of Outcomes

All health outcomes were included.

a) Primary outcome examined was mortality – both short (<30 days; including PICU mortality specifically) and longer-term (<3 months, <6 months, <1year, <5 years and >5 year).

b) Secondary outcomes were any valid measures of neurodevelopment/cognition/school performance, physical function, psychological function/behaviour impact, quality of life and social/family implications made at any time point after PICU discharge (short or longer-term)

Consent and Ethical Approval

As there are no patients involved in this study, no consent was taken. The study protocol was submitted to the PROSPERO register – ID CRD42018086373 and the Research Ethics Committee of the University of Cape Town, who waived the need for ethical review. The study was done in accordance with the Declaration of Helsinki, 2013.

Data Collection and Analysis

Selection of Studies

The articles identified during the literature search (Appendix A) were downloaded to Endnote (Endnote X9; Clarivate Analytics, USA) and reviewed by the primary author (CP). If the title/abstract appeared relevant, the full text was retrieved for review for possible inclusion.
Any duplicates were identified, and multiple reports of the same study collated so each study was included and not each report. The selection process was recorded in a PRISMA flow diagram. Where any questions were raised regarding inclusion, a second author (BM) was consulted and in cases of disagreement a third author (AA) was consulted.

Data Collection Process

Data were extracted from included studies into a form summarising the study characteristics and main findings. These data were then entered into an Excel spreadsheet. It was noted if outcome data were not reported in a usable way. For any missing data it was planned to contact the authors via email. The data extracted included:

1. Methods: Study design, duration, location, setting and date
2. Participants: Sample size, age, inclusion and exclusion criteria, length of follow up, severity of illness
3. Outcomes: Primary and secondary outcomes, assessment tools and time points reported.
4. Notes: Key issues or limitations of the study, funding, notable conflicts of interest of authors

Assessment of risk of bias in included studies

The authors planned to assess the risk of bias for any randomised controlled trial that met the inclusion criteria using the criteria in the Cochrane Handbook for Systematic Reviews of Interventions\(^4\), considering the following aspects when judging risk of bias:

1. Random sequence generation.
2. Allocation concealment.
3. Blinding of participants and personnel.
5. Incomplete outcome data.
6. Selective outcome reporting.
7. Other bias.

Each potential source of bias would be scored as high, low or unclear, and then summarised into an overall risk of bias. For any observational studies the risk of bias tool would be adapted using the GRADE criteria. However, if only the overall outcomes of the entire cohort were included as relevant to this review then randomized controlled studies included in the review would also be treated as observational studies.
Assessment of bias in conducting the systematic review

The review was conducted according to the protocol published on PROSPERO https://www.crd.york.ac.uk/prospero ID CRD42018086373 and any deviations from it reported in the 'Differences between protocol and review' section of the systematic review.

Data Synthesis

Due to the nature and objectives of the review, the different outcomes of groups from randomized controlled trials of specific PICU interventions were not presented separately, and instead overall PICU outcomes of the all trial participants (as a single cohort) were included. It is unlikely to be feasible or ethically permissible to randomize to PICU admission versus no PICU admission, therefore treatment effect cannot be determined. Data synthesis was therefore focused on a descriptive narrative review of the included studies, using “Summary of Findings” tables. Where possible data was extracted from different studies and compared using simple graphs. Countries were categorised as High, Middle or Low income according to the classification from the World Bank in the year the study was performed https://data.worldbank.org/country.

Dealing with missing data

The author planned to contact the investigators or study sponsors for any key missing data where possible (e.g. when a study was available as an abstract only). Where this was not possible, or if missing data was thought to introduce serious bias, these studies would be excluded. For some studies only an abstract was found but these were older studies and no author details were found for contact purposes. The studies included were not thought to introduce significant bias to the overall results as they were small and not recent so were unlikely to change the outcomes.

Reaching Conclusions

Conclusions were based only on the findings of the studies included in the review. Areas of priority for future research were identified where possible, and the data described and recommendations for clinical intervention were limited to study results.

Differences between Protocol and Review Process
1. Included studies were all observational (or treated as observational for the purposes of this review) and were therefore all considered low GRADE and at high risk of bias.
2. A characteristics of excluded studies table was not included due to the large number of exclusions. A summary of the main reasons for exclusion is included in the results.
3. Authors were not contacted for missing data.

Results

Over 20,000 titles were identified by the initial search. On review of these titles, 779 articles were thought to be relevant and downloaded to Endnote (Endnote X9; Clarivate Analytics, USA). Duplicates were identified and removed (318 articles) – see Figure 1. Of the 461 articles remaining, 247 were from Medline, 47 from EBSCO, 9 from Google Scholar, 10 from ProQuest, 133 from Scopus, and 15 from Web of Science, 0 from CENTRAL. Fifty-four further articles were found from the reference lists of those articles or other links giving a total of 515. For four papers, the abstracts or text could not be found. Of the 511 remaining, 145 were deemed not relevant on review of the abstracts. Twenty-three of these focused on adults some were editorial/review articles and some studying interventions on children whilst still in the ICU rather than outcomes at or following discharge. Three articles were excluded because no English translations were available. The reported mortality in PICU was the primary outcome assessed but otherwise the focus was on outcomes following PICU discharge. Many of the identified studies examined homogenous groups of PICU admissions e.g. patients with sepsis or the outcomes of a specific intervention e.g. cardiac surgery. The search strategy was not designed to pick up all studies regarding the outcomes of specific diseases or specific interventions so a further 252 were excluded. For details of the excluded studies please see Appendix B. Only studies looking at general admissions to PICU were included, a total of 111.
Mortality

Sixty-one articles were included that examined mortality outcomes of PICU. For two of these articles the full text could not be found, only abstracts were available15,16. Most of the studies included all admissions to PICU, where there were specific inclusions or exclusions these are detailed in the table. Most studies also only reported mortality in the PICU or pre-hospital discharge. For those following up over a longer-term, where reported, the loss to follow up rates have been included. All the included studies were cohort study designs with low GRADE evidence and high risk of bias. The studies are summarized in Table 1.

Figure 1: Flow Diagram of identified and excluded records
Table 1: Summary of findings of articles with the primary outcome of mortality (n=62)

<table>
<thead>
<tr>
<th>No</th>
<th>Date</th>
<th>First Author</th>
<th>Study Location</th>
<th>Country Classification</th>
<th>Study Design</th>
<th>Follow up duration</th>
<th>Sample size (n)</th>
<th>Incl/excl criteria, loss to follow up</th>
<th>In PICU</th>
<th>30 days</th>
<th>3 months</th>
<th>6 months</th>
<th>1 year</th>
<th>5 year</th>
<th>>5 year</th>
<th>PIM or PRISM</th>
<th>SMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1987</td>
<td>Beaufils</td>
<td>Europe - 8 units</td>
<td>HIC</td>
<td>Cohort</td>
<td>1 month</td>
<td>714</td>
<td>67 lost</td>
<td>12.5%</td>
<td>15%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1987</td>
<td>Pollack</td>
<td>USA</td>
<td>HIC</td>
<td>Cohort</td>
<td>In PICU</td>
<td></td>
<td></td>
<td>3-17.6%</td>
<td>(9 units)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1987</td>
<td>Pollack</td>
<td>USA</td>
<td>HIC</td>
<td>Cohort</td>
<td>1 year</td>
<td>647</td>
<td></td>
<td>8%</td>
<td>9.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1990</td>
<td>Butt</td>
<td>Australia</td>
<td>HIC</td>
<td>Cohort</td>
<td>36 months</td>
<td>976</td>
<td></td>
<td>20%</td>
<td>(3 year)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1992</td>
<td>Fiser</td>
<td>USA</td>
<td>HIC</td>
<td>Cohort</td>
<td>Hospital stay</td>
<td>1469</td>
<td></td>
<td>5.80%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1993</td>
<td>Kapil</td>
<td>India</td>
<td>LIC</td>
<td>Cohort</td>
<td>In PICU</td>
<td>3025</td>
<td></td>
<td>23.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1995</td>
<td>Gemke</td>
<td>Netherlands</td>
<td>HIC</td>
<td>Cohort</td>
<td>In PICU</td>
<td>1063</td>
<td></td>
<td>7.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1995</td>
<td>Gemke</td>
<td>Netherlands</td>
<td>HIC</td>
<td>Cohort</td>
<td>1 year</td>
<td>468</td>
<td></td>
<td>7.5%</td>
<td>8.3%</td>
<td>10.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Date</td>
<td>First Author</td>
<td>Study location</td>
<td>Country Classification</td>
<td>Study Design</td>
<td>Follow up duration</td>
<td>Sample size (n)</td>
<td>Incl/excl criteria, loss to f/up</td>
<td>In PICU</td>
<td>30 days</td>
<td>3 months</td>
<td>6 months</td>
<td>1 year</td>
<td>5 year</td>
<td>>5 year</td>
<td>PIM or PRISM</td>
<td>SMR</td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>--------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>--------------------------------</td>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>--------------</td>
<td>-----</td>
</tr>
<tr>
<td>9</td>
<td>1997</td>
<td>De Keizer</td>
<td>The Netherlands</td>
<td>HIC</td>
<td>Cohort</td>
<td>1 year</td>
<td>246</td>
<td>Excl <1 year and < 24hour stay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1997</td>
<td>Earle</td>
<td>Mexico and Ecuador</td>
<td>MIC</td>
<td>Cohort</td>
<td>In PICU</td>
<td>1061</td>
<td>8.1% low risk, 28% moderate risk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1998</td>
<td>Tan</td>
<td>Singapore</td>
<td>HIC</td>
<td>Cohort</td>
<td>In PICU</td>
<td>283</td>
<td>4.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1998</td>
<td>Tilford</td>
<td>USA</td>
<td>HIC</td>
<td>Cohort</td>
<td>In PICU</td>
<td>10833</td>
<td>4.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1999</td>
<td>Jeena</td>
<td>South Africa</td>
<td>MIC</td>
<td>Cohort</td>
<td>In PICU</td>
<td>7580</td>
<td>35.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2000</td>
<td>Manzar</td>
<td>Oman</td>
<td>MIC</td>
<td>Cohort</td>
<td>In PICU</td>
<td>131</td>
<td>15%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2001</td>
<td>Singhal</td>
<td>India</td>
<td>LIC</td>
<td>Cohort</td>
<td>In PICU</td>
<td>100</td>
<td>18%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2002</td>
<td>Morrison</td>
<td>Australia</td>
<td>HIC</td>
<td>Cohort</td>
<td>24 months</td>
<td>909</td>
<td>Excl no PRISM 7%</td>
<td>7%</td>
<td>7.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10% (2 years)</td>
<td>Mean PRISM 5.54</td>
</tr>
<tr>
<td>No</td>
<td>Date</td>
<td>First Author</td>
<td>Study location</td>
<td>Country Classification</td>
<td>Study Design</td>
<td>Follow up duration</td>
<td>Sample size (n)</td>
<td>Incl/excl criteria, loss to f/up</td>
<td>In PICU</td>
<td>30 days</td>
<td>3 months</td>
<td>6 months</td>
<td>1 year</td>
<td>5 year</td>
<td>>5 year</td>
<td>PIM or PRISM</td>
<td>SMR</td>
</tr>
<tr>
<td>----</td>
<td>-------</td>
<td>--------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>---------------------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>17</td>
<td>2003</td>
<td>El-Nawawy</td>
<td>Egypt</td>
<td>MIC</td>
<td>Cohort</td>
<td>Hospital stay</td>
<td>406</td>
<td>50%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2003</td>
<td>Goh</td>
<td>Malaysia</td>
<td>MIC</td>
<td>Cohort</td>
<td>Hospital stay</td>
<td>346</td>
<td>12.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2003</td>
<td>Jayashree</td>
<td>India</td>
<td>LIC</td>
<td>Cohort</td>
<td>1 year</td>
<td>150</td>
<td>Excl <24 hour stay, infants and readmission</td>
<td>12.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2003</td>
<td>Taylor</td>
<td>Australia</td>
<td>HIC</td>
<td>Cohort</td>
<td>3.5 years</td>
<td>868</td>
<td>7.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16.20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>2004</td>
<td>Khilnani</td>
<td>India</td>
<td>LIC</td>
<td>Cohort</td>
<td>In PICU</td>
<td>948</td>
<td>6.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mean PRISM 18.5</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>2005</td>
<td>Marcin</td>
<td>USA</td>
<td>HIC</td>
<td>Cohort</td>
<td>In PICU</td>
<td>34880</td>
<td>3.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mean PRISM III 5.8</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>2006</td>
<td>Jones</td>
<td>UK</td>
<td>HIC</td>
<td>Cohort</td>
<td>6 months</td>
<td>7214</td>
<td>6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.7%</td>
<td>Median PIM 2 0.024, PRISM</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Date</td>
<td>First Author</td>
<td>Study Location</td>
<td>Country Classification</td>
<td>Study Design</td>
<td>Follow up duration</td>
<td>Sample size (n)</td>
<td>Incl/excl criteria, loss to followup</td>
<td>In PICU</td>
<td>30 days</td>
<td>3 months</td>
<td>6 months</td>
<td>1 year</td>
<td>5 year</td>
<td>>5 year</td>
<td>PIM or PRISM</td>
<td>SMR</td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>--------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>----------------------------------</td>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>---------</td>
<td>----------------</td>
<td>-----</td>
</tr>
<tr>
<td>24</td>
<td>2006</td>
<td>Lopez²⁵</td>
<td>USA</td>
<td>HIC</td>
<td>Cohort</td>
<td>Hospital stay</td>
<td>5749</td>
<td></td>
<td>3.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.88</td>
</tr>
<tr>
<td>25</td>
<td>2007</td>
<td>Aliev³⁶⁶⁵</td>
<td>Brazil</td>
<td>MIC</td>
<td>Cohort</td>
<td>In PICU</td>
<td>443</td>
<td>Excl <24 hour stay</td>
<td>6.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>2007</td>
<td>Ambuebl⁴¹</td>
<td>Switzerland</td>
<td>HIC</td>
<td>Cohort</td>
<td>2 years</td>
<td>661</td>
<td></td>
<td>3.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.1% (2 year)</td>
<td>Median PIM2</td>
<td>2.36</td>
</tr>
<tr>
<td>27</td>
<td>2007</td>
<td>Mestrovi⁴²</td>
<td>Croatia</td>
<td>MIC</td>
<td>Cohort</td>
<td>6 - 25 months</td>
<td>372</td>
<td></td>
<td>6.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.5% (2 years)</td>
<td>Mean PRISM</td>
<td>6.4, Median 4</td>
</tr>
<tr>
<td>28</td>
<td>2007</td>
<td>Odetola³³³³³</td>
<td>USA</td>
<td>HIC</td>
<td>Cohort</td>
<td>In PICU</td>
<td>8885</td>
<td></td>
<td>4.2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>2007</td>
<td>Qureshi³⁴⁴⁴⁴</td>
<td>Pakistan</td>
<td>LIC</td>
<td>Cohort</td>
<td>In PICU</td>
<td>139</td>
<td></td>
<td>28.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.47 by PRISM</td>
</tr>
<tr>
<td>No</td>
<td>Date</td>
<td>First Author</td>
<td>Study location</td>
<td>Country Classification</td>
<td>Study Design</td>
<td>Follow up duration</td>
<td>Sample size (n)</td>
<td>Incl/excl criteria, loss to follow up</td>
<td>In PICU 30 days</td>
<td>3 months</td>
<td>6 months</td>
<td>1 year</td>
<td>5 year</td>
<td>>5 year</td>
<td>PIM or PRISM</td>
<td>SMR</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>--------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>--------------</td>
<td>--------------------</td>
<td>----------------</td>
<td>-----------------------------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-----------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2008</td>
<td>Gullberg</td>
<td>Sweden</td>
<td>HIC</td>
<td>Cohort</td>
<td>5 years</td>
<td>8063</td>
<td>Excl <1/12</td>
<td>2.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PIM 2, S 1.57 by PELOD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>2009</td>
<td>Bella</td>
<td>India</td>
<td>LIC</td>
<td>Cohort</td>
<td>Hospital stay</td>
<td>203</td>
<td>Excl congenital anomalies, LOS <1hr, age <1/12, left against advice</td>
<td>16.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>2009</td>
<td>Bilan</td>
<td>Pakistan</td>
<td>LIC</td>
<td>Cohort</td>
<td>PICU stay</td>
<td>221</td>
<td></td>
<td>9.05%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mean PRISM 14</td>
<td>1.005</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>2009</td>
<td>Haque</td>
<td>Pakistan</td>
<td>LIC</td>
<td>Cohort</td>
<td>In PICU</td>
<td>313</td>
<td></td>
<td>14%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mean PRISM 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>2009</td>
<td>Typpo</td>
<td>USA</td>
<td>HIC</td>
<td>Cohort</td>
<td>In PICU</td>
<td>44693</td>
<td>Excl <1/12</td>
<td>2.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Date</td>
<td>First Author</td>
<td>Study location</td>
<td>Country Classification</td>
<td>Study Design</td>
<td>Follow up duration</td>
<td>Sample size (n)</td>
<td>Incl/excl criteria, loss to follow up</td>
<td>In PICU 30 days</td>
<td>3 months</td>
<td>6 months</td>
<td>1 year</td>
<td>5 year</td>
<td>>5 year</td>
<td>PIM or PRISM</td>
<td>SMR</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>--------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>--------------------------------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>-------------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>2010</td>
<td>Nakachi</td>
<td>Peru</td>
<td>MIC</td>
<td>Cohort</td>
<td>30 days</td>
<td>819</td>
<td>Excl <3 years</td>
<td>16.2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mean PRISM 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>2010</td>
<td>Namachi vayam</td>
<td>Australia</td>
<td>HIC</td>
<td>Cohort</td>
<td>3 years</td>
<td>5250</td>
<td></td>
<td>0.8 in 1995, 0.59 by PIM 1 in 2006, 0.7 by PIM 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.75</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>2011</td>
<td>Embu</td>
<td>Nigeria</td>
<td>LIC</td>
<td>Cohort</td>
<td>In PICU</td>
<td>302</td>
<td></td>
<td>36.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Median PRISM 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>2011</td>
<td>Volaki</td>
<td>Greece</td>
<td>HIC</td>
<td>Cohort</td>
<td>In PICU</td>
<td>300</td>
<td></td>
<td>9.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>2012</td>
<td>Campos -Mino</td>
<td>Latin America and Europe</td>
<td>MIC</td>
<td>Cohort</td>
<td>In PICU</td>
<td></td>
<td></td>
<td>Mean 12% - 13.3% Latin America, 5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Date</td>
<td>First Author</td>
<td>Study location</td>
<td>Country Classification</td>
<td>Study Design</td>
<td>Follow up duration</td>
<td>Sample size (n)</td>
<td>Incl/excl criteria, loss to f/up</td>
<td>In PICU 30 days</td>
<td>3 months</td>
<td>6 months</td>
<td>1 year</td>
<td>5 year</td>
<td>>5 year</td>
<td>PIM or PRISM</td>
<td>SMR</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-------</td>
<td>--------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>----------------------------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>--------------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>2012</td>
<td>Salamati</td>
<td>Iran</td>
<td>MIC</td>
<td>Cohort</td>
<td>In PICU</td>
<td>240</td>
<td>15%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>2012</td>
<td>Volakli</td>
<td>Greece</td>
<td>HIC</td>
<td>Cohort</td>
<td>2 year</td>
<td>300</td>
<td>9.7%</td>
<td>12.7%</td>
<td>15%</td>
<td>16.7%</td>
<td>19%</td>
<td>19%</td>
<td>19% (2 years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>2013</td>
<td>Cunha</td>
<td>Portugal</td>
<td>HIC</td>
<td>Cohort</td>
<td>6 months</td>
<td>1495</td>
<td>8.50%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>2014</td>
<td>Mukhtar</td>
<td>Pakistan</td>
<td>LIC</td>
<td>Cohort</td>
<td>In PICU</td>
<td>605</td>
<td>16.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>2014</td>
<td>Pollack</td>
<td>USA</td>
<td>HIC</td>
<td>Cohort</td>
<td>Discharge</td>
<td>5017</td>
<td>2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>2014</td>
<td>Solomon</td>
<td>South Africa</td>
<td>MIC</td>
<td>Cohort</td>
<td>In PICU</td>
<td>962 and 1113</td>
<td>13.3% and 11.05%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.1 and 0.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Europe
<table>
<thead>
<tr>
<th>No</th>
<th>Date</th>
<th>First Author</th>
<th>Study location</th>
<th>Country Classification</th>
<th>Study Design</th>
<th>Follow up duration</th>
<th>Sample size (n)</th>
<th>Incl/excl criteria, loss to follow-up</th>
<th>In PICU 30 days</th>
<th>3 months</th>
<th>6 months</th>
<th>1 year</th>
<th>5 year</th>
<th>>5 year</th>
<th>PIM or PRISM</th>
<th>SMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>2015</td>
<td>Choong</td>
<td>Canada</td>
<td>HIC</td>
<td>Cohort</td>
<td>6 months</td>
<td>33</td>
<td>12 months to 17 years, Excl <48-hr stay, transferred from NICU.</td>
<td>3%</td>
<td>6%</td>
<td>9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>2015</td>
<td>Haftu</td>
<td>Ethiopia</td>
<td>LIC</td>
<td>Cohort</td>
<td>In PICU</td>
<td>680</td>
<td></td>
<td>8.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>2015</td>
<td>Haque</td>
<td>Pakistan</td>
<td>LIC</td>
<td>Cohort</td>
<td>In PICU</td>
<td>468</td>
<td></td>
<td>11.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>2015</td>
<td>Mahajan</td>
<td>India</td>
<td>LIC</td>
<td>Cohort</td>
<td>Hospital stay</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mean PRISM 6.8</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>2015</td>
<td>Pollack</td>
<td>USA</td>
<td>HIC</td>
<td>Cohort</td>
<td>In PICU</td>
<td>10078</td>
<td></td>
<td>2.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Median PRISM 0.98</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>2016</td>
<td>Ballot</td>
<td>South Africa</td>
<td>MIC</td>
<td>Cohort</td>
<td>In PICU</td>
<td>1272</td>
<td>182 records lost</td>
<td>16.2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>2016</td>
<td>Peltonie</td>
<td>Finland</td>
<td>HIC</td>
<td>Cohort</td>
<td>In PICU</td>
<td>4876</td>
<td></td>
<td>1.3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mean PIM 23.3</td>
<td></td>
</tr>
</tbody>
</table>
Mortality at Study endpoint

<table>
<thead>
<tr>
<th>No</th>
<th>Date</th>
<th>First Author</th>
<th>Study location</th>
<th>Country Classification</th>
<th>Study Design</th>
<th>Follow up duration</th>
<th>Sample size (n)</th>
<th>Incl/excl criteria, loss to f/up</th>
<th>In PICU 30 days</th>
<th>3 months</th>
<th>6 months</th>
<th>1 year</th>
<th>5 year</th>
<th>>5 year</th>
<th>PIM or PRISM</th>
<th>SMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>2017</td>
<td>Hartman 1</td>
<td>USA</td>
<td>HIC</td>
<td>Cohort</td>
<td>1 year</td>
<td>109130</td>
<td>1.4%</td>
<td></td>
<td>2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>2017</td>
<td>Johansson 66</td>
<td>Sweden</td>
<td>HIC</td>
<td>Cohort</td>
<td>90 days</td>
<td>21972</td>
<td>2%</td>
<td>2%</td>
<td>4.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>2017</td>
<td>Kyosti 67</td>
<td>Finland</td>
<td>HIC</td>
<td>Case-Control</td>
<td>5 years</td>
<td>2792</td>
<td>Excl <28 days</td>
<td>1.9%</td>
<td>2.3%</td>
<td>3.3%</td>
<td>4.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>2017</td>
<td>Nyirasafari 69</td>
<td>Rwanda</td>
<td>LIC</td>
<td>Cohort</td>
<td>In PICU</td>
<td>210</td>
<td>50%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>2017</td>
<td>Pereira 69</td>
<td>Brazil</td>
<td>MIC</td>
<td>Cohort</td>
<td>In PICU</td>
<td>50</td>
<td>Excl <1 month, prem <12months, <24hr stay on vent pre PICU and readmission</td>
<td>12%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>2017</td>
<td>Pinto 5</td>
<td>USA</td>
<td>HIC</td>
<td>Cohort</td>
<td>3 years</td>
<td>77</td>
<td>3.9%</td>
<td>7.8%</td>
<td>10.4% (3 years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>2018</td>
<td>Fraser 70</td>
<td>England and Wales</td>
<td>HIC</td>
<td>Cohort</td>
<td>10 year</td>
<td>110328</td>
<td>2.8%</td>
<td>11% (10 yr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Date</td>
<td>First Author</td>
<td>Study location</td>
<td>Country Classification</td>
<td>Study Design</td>
<td>Follow up duration</td>
<td>Sample size (n)</td>
<td>Incl/excl criteria, loss to follow up</td>
<td>In PICU 30 days</td>
<td>3 months</td>
<td>6 months</td>
<td>1 year</td>
<td>5 year</td>
<td>>5 year</td>
<td>PIM or PRISM</td>
<td>SMR</td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>--------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>--</td>
<td>----------------</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>----------------</td>
<td>-----</td>
</tr>
<tr>
<td>60</td>
<td>2018</td>
<td>Kalzén</td>
<td>Sweden</td>
<td>HIC</td>
<td>Cohort</td>
<td>4 years</td>
<td>3688</td>
<td>2.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.2%</td>
<td>(2.6 years)</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>2018</td>
<td>Valla</td>
<td>France</td>
<td>HIC</td>
<td>Cohort</td>
<td>In PICU</td>
<td>683</td>
<td>5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>PELO 11, PIM 2.0</td>
<td>0.42</td>
</tr>
</tbody>
</table>

As can be seen in the summary of findings Table 1, the in PICU mortality rates in the included studies were highly variable, ranging from 1.3% in the Finnish paper by Peltoniemi et al in 201665 to 50% in a Rwandan study by Nyirasafari et al in 201768. One clear trend is that mortality in PICU in high income countries has improved over time (Figure 2). Pollack et al measured ICU and hospital mortality during 1981-1982 and 1984-1985 in the USA. They reported a mortality of 8% in ICU and 9.7% at hospital discharge18. The most recent study from the USA by Hartman et al. showed 1.4% mortality in patients admitted between 2006 and 20141, and this may have reduced even further in recent years. However, these are studies from different units so cannot be directly compared. Data from low- and middle-income countries have only emerged in more recent years and the trends are harder to determine, with highly variable results amongst different study sites. According to Figure 2, the trend for mortality over time in low- and middle-income countries does not appear to have improved overall, although individual countries or units have reported improvement in mortality over time. In two South African studies mortality improved from 29.9% in 199528 to 16.7% in 201564 but these were from different units so cannot be directly compared. The trends may also be skewed by a few outlying results e.g. El-Nawawy reported a mortality of 50% in Egypt in 200332. However, their mortality rate was actually lower than expected according to the severity of illness of their patients by PRISM score (which was remarkably high). This highlights the need for measures to compare mortality other than simple mortality rates.
Mortality in PICU varied greatly amongst reports from different units. Many studies only included data from one unit but some included multiple units and used various methods to compare these units. These methods can also be used to compare different studies. Although there are multiple factors that affect mortality in a unit, the most important factor to correct for is the severity of illness of the patients admitted. Various scoring systems have been used to do this. These scoring systems have evolved over time so there are now multiple versions of each of them. This continues to make comparisons difficult. Many of the included studies did not use a predicted risk of mortality score at all and only reported actual mortality. Some studies did report expected mortality according to a scoring system and/or a Standardised Mortality Rate (SMR). SMR = Observed Mortality/Expected Mortality. If a SMR was not reported but enough data provided, SMR was calculated (Table 1). Some studies reported that mortality was higher or lower than expected but did not provide numbers to enable SMR calculations. As can be seen in Figure 3, high income countries consistently had SMRs <1 (i.e. Observed mortalities were less than expected according to the severity of illness scoring system used) whilst the results in low- and middle-income countries were more variable and frequently >1 (i.e. Higher observed mortality than expected). This may be because the reference populations used in creating mortality risk scores such as PRISM and PIM are from higher income countries and have very different population profiles (e.g. emergency vs
elective admissions, communicable disease vs non-communicable disease), from those in low- and middle-income countries. There may also be other factors that affect mortality but it was not possible to examine these in this study.

Figure 3: SMRs of mortality in PICU according to Country Income Category (World Bank data at time of study - https://data.worldbank.org/country). Data from Table 1: 1, 2, 4, 22, 27, 32, 33, 40, 44, 47, 50, 52, 54, 56, 61, 63, 66, 72.

One of the first studies to compare units whilst adjusting for severity of illness was by Beaufils et al17. They studied 714 patients in 8 units across Europe in 1984. Overall the PICU mortality was 12.5%. Across the 8 units included in the study, mortality varied from 4.1% to 20.2% despite similar numbers of severely ill patients (clinical classification score IV). They used the clinical classification score (CCS) to assess severity of illness and also looked for other risk factors for increased mortality. The CCS was a subjective score which may not have differentiated the sickest patients and has since been abandoned in favour of newer scoring systems. Most of the more recent papers report the Paediatric Risk of Mortality Score (PRISM) or the Paediatric Index of Mortality Score (PIM) to enable comparison of different units 2, 3, 20, 22, 24-27, 30-33, 36-40, 43, 44, 46-50, 52, 54-56, 61, 63, 65, 66, 68-72.
Another important consideration is mortality after PICU discharge and the long-term outcomes of PICU admission. Children admitted to PICU are at increased risk of death after discharge compared to children not admitted to PICU or the general population67,1. Many of the studies of PICU mortality only report data of children who died during PICU admission. The Beaufils study was one of the first to suggest that mortality after ICU should be considered as they found that 2.5% of children died in the month after discharge from ICU, bringing the mortality up from 12.5% to 15%17. A total of 18 studies were identified that followed children up after discharge from ICU and reported mortality rates for up to 10 years1,5,17,18,23,31,34,35,38,41,42,45,55,66,67,70,71,73. They are summarized in Figure 4 and almost all of them found an ongoing mortality for years after discharge from PICU. The only one which did not was also the only study from a low- or middle-income country by Jayashree et al in India34.

![Mortality Rates in PICU and after discharge](image)

Figure 4: Cumulative Mortality Rate at and following PICU discharge

A few of the studies were able to compare the mortality rates to their national statistics and found that children admitted to PICU had a significantly higher risk of death than the general
population after hospital discharge. At 5 years post PICU discharge, Gullberg et al reported a 2.15 times higher mortality in the PICU group than the general population in Sweden45 and Hartman et al reported a 2.5 times higher mortality at one year in the USA1. Comparing the observed mortality rate of children admitted to PICU to the death rate of one million age matched healthy controls in Finland, Kyosti et al found that children admitted to PICU had a 53.4 times higher rate of death in the 5 years following discharge67. Even if children discharged from PICU survived the first year, they still had a 16.7 times greater chance of dying than the healthy population.

Cognitive/Developmental Outcomes

Four studies were included in the cognitive/developmental outcome category as they looked purely at intellectual functioning and school performance (Table 2). For clarity, articles reporting on outcomes using the Paediatric Cerebral Performance Category (PCPC) and Paediatric Overall Performance Category (POPC) scores are described in the Functional Outcome category, although it is acknowledged that they do include components of cognitive or developmental assessment as well. The studies included one cohort study, two case-control studies and one Randomised Controlled Trial (RCT). These were all treated as observational studies with a low GRADE of evidence and a high risk of bias as only the overall cohort result of the RCT was included.
Table 2: Summary of findings of studies relating to cognitive/developmental outcomes (n=4)

<table>
<thead>
<tr>
<th>No</th>
<th>Year</th>
<th>First Author</th>
<th>Where</th>
<th>Study Design</th>
<th>Follow up time</th>
<th>Sample size (n)</th>
<th>Incl/excl criteria and details</th>
<th>Indicators used</th>
<th>Results</th>
<th>Risk Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2013</td>
<td>Als74</td>
<td>UK</td>
<td>Case-control</td>
<td>6 months</td>
<td>88 case, 100 control</td>
<td>5-16 years, no prior neuro disorder</td>
<td>Wide Range Intelligence Test, Wechsler Abbreviated Scale of Intelligence, Children's Memory Scale, Cambridge Neuropsychological Test Automated Battery, Questionnaire previously used to assess academic performance</td>
<td>PICU admitted children underperform on neuropsych testing (p<0.02) with worse educational performance</td>
<td>Meningoencephalitis and sepsis, younger, lower class, seizures</td>
</tr>
<tr>
<td>2</td>
<td>2015</td>
<td>Als75</td>
<td>UK</td>
<td>Cohort</td>
<td>12 months</td>
<td>23</td>
<td>5-16 years, no prior neuro disorder</td>
<td>Cambridge Neuropsychological Test Automated Battery, the Children's Memory Scale and the Wechsler Abbreviated Scale of Intelligence of Wide Range Intelligence Test</td>
<td>Significant improvements in measures of memory were seen but with little change in IQ and visual attention over the study period. Educational progress remained below expectation.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No</th>
<th>Year</th>
<th>First Author</th>
<th>Where</th>
<th>Study Design</th>
<th>Follow up time</th>
<th>Sample size (n)</th>
<th>Indcl/excl criteria and details</th>
<th>Indicators used</th>
<th>Results</th>
<th>Risk Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2008</td>
<td>Elison</td>
<td>UK</td>
<td>Case-control</td>
<td>5 months</td>
<td>16 and 16</td>
<td>CANTAB battery (visual memory) and verbal memory with the Children Memory Scale, Intelligence Quotient was tested using the Wechsler Abbreviated Scale of Intelligence. Emotional and behavioural function was measured with the Strengths and Difficulties Questionnaire and Impact of Event Scales</td>
<td>Poorer performance on tests of spatial memory, sustained attention (rapid visual information) and verbal memory (word pairs learning and delayed recognition) in children admitted to PICU.</td>
<td>Septic illness</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Year</td>
<td>First Author</td>
<td>Where</td>
<td>Study Design</td>
<td>Follow up time</td>
<td>Sample size (n) and Incl/excl criteria</td>
<td>Indicators used</td>
<td>Results</td>
<td>Risk Factors</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>--------------</td>
<td>-------</td>
<td>--------------</td>
<td>----------------</td>
<td>--</td>
<td>----------------</td>
<td>---------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2012</td>
<td>Mesotten</td>
<td>Belgium</td>
<td>RCT</td>
<td>3 years</td>
<td>569 and 216 healthy controls</td>
<td>Wechsler IQ Scale, Beery-Buktenica Developmental Test of Visual Motor Integration, attention, motor co-ordination and executive functions. Amsterdam Neuropsychological Tasks, Children's Memory Scale and Child Behaviour Checklist</td>
<td>Tight glucose control did not result in worse measures of intelligence (compared to usual care). IQ scores were 15 points ($p=0.001$) lower in post PICU patients than in healthy controls. This reduced to 9 points ($p=0.001$) after matching for baseline risks and biometrics at follow up.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3 PICU = Paediatric Intensive Care Unit, UK = United Kingdom, IQ = Intelligence Quotient, CANTAB = Cambridge Neuropsychological Test Automated Battery, RCT = Randomised Controlled Trial
The included studies all used a battery of tests to examine intelligence, memory and executive function (Table 2). All the studies found that scores of cognitive testing worsened after PICU admission. The two studies by Als et al were studies of the same cohort which started with 88 children. The second study was a follow up study to see if outcomes changed at 12 months after ICU compared to 6 months in the first study. At 12 months, the sample size was small with substantial dropouts (n=23). They reported some improvement in memory scores but that children still under performed at school75. Elison et al conducted a small study on 16 patients with 16 healthy controls (children of hospital staff or recruited from a local school) using similar tests and also found poorer outcomes in the children admitted to PICU76. The largest study, including 569 patients, followed the children up over the longest period (almost 4 years). Although this was an intervention study, it was included in this review because it reported overall outcomes of children admitted to PICU versus healthy controls (siblings of patients and recruited from schools). Mesotten et al. showed a reduction in Intelligence Quotient (IQ) scores, visual-motor integration, Attention Motor Coordination and Memory in children admitted to PICU compared to healthy controls at 4 years following their admission77.

Functional Outcome

The functional outcome of children was much harder to define than other categories because it can be affected by so many factors. It was decided to include all physical health outcomes as well as studies examining PCPC (which is primarily focused on neurological outcomes) and POPC, as these scoring systems also report on overall function. Although there is a functional component to Quality of Life outcome measurement, studies using scores prioritizing quality of life were included in the “Quality of Life” group. Twenty-four studies were included in the analysis of functional outcome. For one study, only the abstract could be found. A summary of these studies can be found in Table 3. Again, all the studies were observational cohort studies except for one RCT which was treated as a cohort study as it reported the overall outcome of a cohort admitted to PICU. Therefore, all the studies were considered to have a low GRADE of evidence with a high risk of bias.
Table 3: Summary of findings of studies relating to functional outcomes (n=24)

<table>
<thead>
<tr>
<th>Year</th>
<th>First Author</th>
<th>Location</th>
<th>Study Design</th>
<th>Follow up time</th>
<th>Sample size (n)</th>
<th>Incl/excl criteria</th>
<th>Severity of illness score</th>
<th>Indicators used</th>
<th>Results</th>
<th>Risk Factors for poor outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2007 Aliev</td>
<td>Brazil</td>
<td>Cohort</td>
<td>In PICU</td>
<td>443</td>
<td>Excl <24 hr stay</td>
<td>PIM 2</td>
<td>PCPC and POPC</td>
<td>PCPC: 46% cognitive impairment on admission, 60% on discharge. POPC: 66% global impairment on admission, 86% at discharge. Median POPC and PCPC worsened. 4.7% POPC improved.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2014 Bone</td>
<td>USA</td>
<td>Cohort</td>
<td>In PICU</td>
<td>29352</td>
<td></td>
<td>PCPC and POPC</td>
<td>PCPC: 3.4%acquired cognitive disability, POPC: 10.3% acquired global disability.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1990 Butt</td>
<td>Australia</td>
<td>Cohort</td>
<td>36 months</td>
<td>976</td>
<td>Clinical Classification Score</td>
<td>Questionnaire to parents</td>
<td>20% died, 5% had a severe handicap, 2% moderate, 12% mild, 17% functional normal but required medical supervision, 42% normal. 80% survived 30 months or more, 91% of survivors would probably lead independent life.</td>
<td>Trauma, severity of illness, unscheduled admission, oncology and neurology, ventilation, RRT, CPR and ECMO</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>First Author</td>
<td>Location</td>
<td>Study Design</td>
<td>Follow up time</td>
<td>Sample size (n)</td>
<td>Incl/excl criteria</td>
<td>Severity of illness score</td>
<td>Indicators used</td>
<td>Results</td>
<td>Risk Factors for poor outcome</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>----------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-----------------</td>
<td>---------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>4</td>
<td>Choong</td>
<td>Canada</td>
<td>Cohort</td>
<td>6 months</td>
<td>33</td>
<td>12/12-17 years, excl <48 hour stay, from NICU, already mobilizing well or at baseline functional status at time of screening, Language barrier</td>
<td>PIM2 and PELOD</td>
<td>Pediatric Evaluation of Disability Inventory Computer Adaptive Test (includes FSS) and Pediatric Evaluation of Disability Inventory and the Participation and Environment Measure for Children and Youth, POPC and PCPC</td>
<td>POPC: 45% global impairment at admission. PCPC: 39% cognitive impairment at admission. 28% and 42% of cohort recovered to baseline function by 3 and 6 months respectively.</td>
<td>Pre-existing chronic condition/global or cognitive impairment.</td>
</tr>
<tr>
<td>5</td>
<td>Choong</td>
<td>Canada</td>
<td>Cohort</td>
<td>6 months</td>
<td>182</td>
<td>12/12-17 years with at least one organ dysfunction, excl patients not expected to survive, NICU transfers and patients unable to do long term follow up</td>
<td>Pediatric Evaluation of Disabilities Inventory Computer Adaptive Test</td>
<td>46.3% had functional limitations at baseline and 81.5% experienced functional deterioration following critical illness. 67.1% demonstrated some recovery by 6/12</td>
<td>Higher baseline function and a neurologic insult at PICU admission were the most sig predictors of functional deterioration. Higher baseline function and increasing age were associated with slower functional recovery</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>First Author</td>
<td>Location</td>
<td>Study Design</td>
<td>Follow up time</td>
<td>Sample size (n)</td>
<td>Incl/excl criteria</td>
<td>Severity of illness score</td>
<td>Indicators used</td>
<td>Results</td>
<td>Risk Factors for poor outcome</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>----------</td>
<td>--------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>----------------</td>
<td>---------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>6</td>
<td>Ebrahim²⁹</td>
<td>Canada</td>
<td>Cohort</td>
<td>1 month</td>
<td>65</td>
<td>1/12-18yr, Only urgent admissions</td>
<td>Vineland Adaptive Behaviour Scale 2, PCPC and POPC, Pediatric Quality of Life Inventory 4 and Visual Analogue Scale.</td>
<td>PCPC did not change from baseline to 1 month but POPC improved (p=0.03). Low mean adaptive behaviour and quality of life scores at 1 month post admission.</td>
<td>Resuscitation intensity and illness severity</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Fiser²²</td>
<td>USA</td>
<td>Cohort</td>
<td>Hospital discharge</td>
<td>1469</td>
<td>PRISM</td>
<td>POPC and PCPC</td>
<td>POPC and PCPC correlate well with more comprehensive outcome measures</td>
<td>LOS and PRISM</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Fiser²²</td>
<td>USA</td>
<td>Cohort</td>
<td>6 months</td>
<td>200</td>
<td>PCPC 5-6 at discharge excluded</td>
<td>POPC and PCPC, Stanford-Binet Intelligence Scale 4th edn, Bayley Scales of Infant Development 2nd edn, Vineland Adaptive Behaviour Scales</td>
<td>Normal children improved from 1 month to 6 months after discharge but POPC category 2 children decreased in function. No statistically sig differences over time for categories 3 and 4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Fiser²²</td>
<td>USA</td>
<td>Cohort</td>
<td>In PICU</td>
<td>11106</td>
<td>POPC and PCPC</td>
<td>10% increase in impairment by PCPC, 14% by POPC.</td>
<td>LOS and PIM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Gemke²²</td>
<td>The Netherlands</td>
<td>Cohort</td>
<td>1 year</td>
<td>254</td>
<td>Excl <1 year and <24 hour stay</td>
<td>Multiattribute Health Status Classification</td>
<td>25.7% health status improved, 27.4% deteriorated but most changes minor</td>
<td>No correlation mortality risk and attributes affected</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>First Author</td>
<td>Location</td>
<td>Study Design</td>
<td>Follow up time</td>
<td>Sample size (n)</td>
<td>Incl/excl criteria</td>
<td>Severity of illness score</td>
<td>Indicators used</td>
<td>Results</td>
<td>Risk Factors for poor outcome</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>----------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>--------------------------</td>
<td>-----------------</td>
<td>--------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>11</td>
<td>Gupta</td>
<td>USA</td>
<td>Cohort</td>
<td>In PICU</td>
<td>160570</td>
<td></td>
<td>PCPC</td>
<td></td>
<td>1.04% declined by at least 2 categories by PCPC.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>higher weight at PICU admission, higher PIM 2, cardiac arrest, stroke, seizures, trauma, ventilation, oscillation, prolonged LOS, prolonged ventilation. Protective - chromosomal anomaly, cardiac surgery and inhaled nitric oxide.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Jayashree</td>
<td>India</td>
<td>Cohort</td>
<td>1 year</td>
<td>150</td>
<td>Excl <1 year and <24 hour stay and readmission</td>
<td>Mutliattribute Health Status Classification</td>
<td></td>
<td>75% improved or were equal to their baseline score, 25% deteriorated.</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Knoester</td>
<td>The Netherlands</td>
<td>Cohort</td>
<td>3 months</td>
<td>186</td>
<td></td>
<td>POPC and PCPC</td>
<td></td>
<td>69% had physical sequelae. At 3 months PCPC: 5% impairment at admission, 75% at discharge, 23% at 3 months, POPC: 27% impairment at admission, 99% at discharge and 69% at 3 months.</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>First Author</td>
<td>Location</td>
<td>Study Design</td>
<td>Follow up time</td>
<td>Sample size (n)</td>
<td>Incl/excl criteria</td>
<td>Severity of illness score</td>
<td>Indicators used</td>
<td>Results</td>
<td>Risk Factors for poor outcome</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>----------</td>
<td>--------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>---------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>14</td>
<td>Namachivayam 2</td>
<td>Australia</td>
<td>Cohort</td>
<td>3 years</td>
<td>5250</td>
<td></td>
<td>PIM 1 and PIM 2</td>
<td>Modified Glasgow Outcome Score</td>
<td>Proportion with moderate to severe disability at f/up increased from 8.4% in 1982 to 17.9% in 2005-2006. Total dying or surviving with severe disability did not change.</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Pereira62</td>
<td>Brazil</td>
<td>Cohort</td>
<td>1 day</td>
<td>50</td>
<td>Excl <1 month, prems <12 months , <24 hour stay, on vent pre picu and readmission</td>
<td>PIM2</td>
<td>FSS</td>
<td>18% normal. 6 % severe or very severe impairment at discharge.</td>
<td>Readmission, longer stay, PIM 2</td>
</tr>
<tr>
<td>16</td>
<td>Pinto2</td>
<td>USA</td>
<td>Cohort</td>
<td>3 years</td>
<td>77</td>
<td></td>
<td>FSS</td>
<td>FSS</td>
<td>FSS increased by > 3 from baseline in 5.2% at discharge, 6.5% at 6 months, 10.4% at 3 years. 44% survived without change whilst <10% had functional gains.</td>
<td>Severity illness, invasive therapy</td>
</tr>
<tr>
<td>17 and 18</td>
<td>Pollack34,31</td>
<td>USA</td>
<td>Cohort</td>
<td>Hospital discharge</td>
<td>5017</td>
<td></td>
<td>FSS, POPC and PCPC</td>
<td>4.8% new morbidities; improved on hospital discharge. FSS and POPC/PCPC system closely associated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Pollack22</td>
<td>USA</td>
<td>Cohort</td>
<td>In PICU</td>
<td>10078</td>
<td></td>
<td>PRISM III</td>
<td>FSS</td>
<td>4.6% new morbidity</td>
<td>PRISM</td>
</tr>
</tbody>
</table>

Modified Glasgow Outcome Score

FSS

PRISM III

POPC

PCPC

<table>
<thead>
<tr>
<th>Year</th>
<th>First Author</th>
<th>Location</th>
<th>Study Design</th>
<th>Follow up time</th>
<th>Sample size (n)</th>
<th>Incl/excl criteria</th>
<th>Severity of illness score</th>
<th>Indicators used</th>
<th>Results</th>
<th>Risk Factors for poor outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Pulham32</td>
<td>UK</td>
<td>Cohort</td>
<td>1 year</td>
<td>160</td>
<td></td>
<td>POPC and PCPC, Child behaviour checklist</td>
<td>77% normal at baseline and 71% at discharge but 61% of parents had behavioural concerns at 1 year.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Taylor31</td>
<td>Australia</td>
<td>Cohort</td>
<td>3.5 years</td>
<td>727</td>
<td></td>
<td>PRISM</td>
<td>Glasgow Outcome Score (function)</td>
<td>89.7% survivors had favourable outcomes and were likely to lead independent lives.</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Typpo49</td>
<td>USA</td>
<td>Cohort</td>
<td>In PICU</td>
<td>44693</td>
<td>Excl <1/12</td>
<td>PIM II, PRISM II and PRISM III</td>
<td>POPC and PCPC</td>
<td>POPC and PCPC scores worsened in PICU.</td>
<td>Day 1 Multi-organ dysfunction score</td>
</tr>
<tr>
<td>23</td>
<td>Volakli33</td>
<td>Greece</td>
<td>Cohort</td>
<td>2 years</td>
<td>300</td>
<td></td>
<td>PRISM III</td>
<td>POPC and PCPC</td>
<td>PCPC: 33% impairment at admission, 34% at 2 years, ie. no significant difference. POPC: 41% impairment at admission, 53% at 2 years ie. significant worsening in global function (p=0.001)</td>
<td>Best resp and post op</td>
</tr>
<tr>
<td>24</td>
<td>Watson37</td>
<td>USA</td>
<td>RCT</td>
<td>6 months</td>
<td>949</td>
<td></td>
<td>POPC and PCPC</td>
<td>Functional status worsened in 20%</td>
<td>Baseline impairment4</td>
<td></td>
</tr>
</tbody>
</table>

4 PICU = Paediatric Intensive Care, USA = United States America, PIM = Paediatric Index Mortality, PRISM = Paediatric Risk Mortality Score, LOS = Length of Stay, PCPC = Paediatric Cerebral Performance Category, POPC = Paediatric Overall Performance Category, FSS = Functional Status Scale, RRT = Renal Replacement Therapy, CPR = Cardiopulmonary Resuscitation, ECMO = Extracorporeal Membranous Oxygenation, PELOD = Pediatric Logisitic Organ Dysfunction, NICU = Neonatal Intensive Care Unit RCT = Randomised Controlled Trial
Comparing outcomes of the different studies was challenging because of marked heterogeneity in outcomes reporting. Various outcome measures were used: 13 studies used PCPC and POPC as outcome measures; six used the Functional Status Scale (FSS), two used the Glasgow Outcome Scale (GOS), two used the Multi-attribute Health Status Classification (MHSC) and two used the Paediatric Evaluation of Disability Inventory (Table 3). Even studies using the same outcome measure reported results in very different ways, for example change in median vs. percentage with abnormal scores.

Ten out of the 24 studies only reported changes in function between admission and discharge and did not follow the children up thereafter. The longest duration of follow up was 3.5 years with many patients changing over time, either worsening or improving but showing that discharge function was not a reliable measure of long-term outcome35. Of the 24 studies, only three were from low- or middle-income countries; two studies from Brazil29 and one from India34. The majority of included studies were conducted in the USA.

The first paper to look at functional PICU outcome was by Butt et al from Australia, who followed a cohort admitted in 1982-198319. They reported that 20% died, 5% had a severe handicap, 2% moderate handicap, 12% mild handicap, 17% were functionally normal but required medical supervision and 42% had normal function. 91% of survivors were assessed as likely to lead an independent life19. This was followed by the paper by Namachivayam et al who studied two further Australian cohorts in 1995 and 2005-2006. They reported that although the length of stay and severity of illness of children admitted to PICU had not changed, the mortality was significantly reduced in the second cohort. This reduction was accompanied by an increase in children surviving with moderate to severe disability – from 8.4% in 1982 to 17.4% in the 2005-6 cohort4.

Data were synthesized from the studies reporting PCPC and POPC, where there was sufficient detail for calculations. The results can be seen in Figures 5 and 6, which show that all the studies reported worsening of function between admission to and discharge from PICU. Some of the studies that followed children up for longer saw a trend to recovery over time with some even returning to baseline function whilst others report ongoing deterioration. More patients had a global impairment as determined by POPC than cognitive impairment as measured by PCPC.
Figure 5: Proportion of patients with PCPC >1 (i.e. cerebral impairment) over time

Figure 6: Proportion of patients with POPC >1 (i.e. Overall functional impairment) over time
Psychological/Behaviour Outcomes

Twenty-four studies were included in this category, which used various outcome measures to assess psychological outcomes after PICU admission (Table 4). Two of the studies examining functional outcome were from India87,88 whilst the remaining studies were all from high-income countries, the majority from the UK. For one study only the abstract could be found. All except one of the studies were cohort studies and the one RCT was again treated as a cohort study therefore all were considered as having a low GRADE of evidence and high risk of bias.
<table>
<thead>
<tr>
<th>No</th>
<th>Year</th>
<th>First Author</th>
<th>Where</th>
<th>When</th>
<th>Study Design</th>
<th>Follow up time</th>
<th>Sample size and details</th>
<th>Incl/excl criteria</th>
<th>Severity of illness</th>
<th>Indicators used</th>
<th>Results</th>
<th>Risk Factors for poor outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2017</td>
<td>Als89</td>
<td>UK</td>
<td>2008-2010</td>
<td>Case-control</td>
<td>6 months</td>
<td>33</td>
<td>Excl. prior neuro disorder</td>
<td>PIM 2</td>
<td>Impact of Events Scale (IES)</td>
<td>36.4% at risk for PTSD. Mean IES 13.1</td>
<td>Past health problems and sepsis</td>
</tr>
<tr>
<td>2</td>
<td>2015</td>
<td>Als90</td>
<td>UK</td>
<td>2007-2010</td>
<td>Cohort</td>
<td>5 months</td>
<td>88 case, 100 control</td>
<td>5-16 years, no prior neuro disorder</td>
<td>IES</td>
<td>20% at risk for psych disorder, 38% high levels of symptoms of PTSD</td>
<td>Sepsis</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2005</td>
<td>Board91</td>
<td>USA</td>
<td>2007-2010</td>
<td>Cohort</td>
<td>24 hours</td>
<td>21</td>
<td>7-12 years, developmentally normal and no previous hospital</td>
<td>Schoolagers Coping Strategies Inventory, Child Drawing; Hospital</td>
<td>Children’s memories of the people in ICU were good but they also remembered having bad feelings whilst in PICU. Low levels of coping strategies.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2011</td>
<td>Board92</td>
<td>USA</td>
<td>2007-2010</td>
<td>Cohort</td>
<td>3 months</td>
<td>8</td>
<td>Previously normal only</td>
<td>PRISM and TISS</td>
<td>Parent Stressor Scale, State-Trait Anxiety Scale, Child Drawing: Hospital,</td>
<td>Mothers’ anxiety increased whilst children’s PTSD decreased over time.</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Year</td>
<td>First Author</td>
<td>Where</td>
<td>When</td>
<td>Study Design</td>
<td>Follow up time</td>
<td>Sample size and details</td>
<td>Incl/excl criteria</td>
<td>Severity of illness</td>
<td>Indicators used</td>
<td>Results</td>
<td>Risk Factors for poor outcome</td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>--------------</td>
<td>-------</td>
<td>------</td>
<td>-------------</td>
<td>---------------</td>
<td>-------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>---------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>5</td>
<td>2008</td>
<td>Bronner</td>
<td>The Netherlands</td>
<td>2002-2005</td>
<td>Case-control</td>
<td>9 months</td>
<td>36 plus 355 controls</td>
<td>8-17 only, previously healthy</td>
<td>Dutch Children's Responses to Trauma Inventory</td>
<td>34.5% subclinical PTSD, 13.8% met criteria for PTSD at 3 months increasing to 35.7% and 17.9% at 9 months (not sig diff). Same levels as fire victims</td>
<td>Maternal PTSD</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2008</td>
<td>Colville</td>
<td>UK</td>
<td>2004-2005</td>
<td>Cohort</td>
<td>3 months</td>
<td>102</td>
<td>7-17 years</td>
<td>ICU Memory Scale and IES</td>
<td>63% had one factual memory, 33% delusional memories. IES median score 9, 28% at risk of PTSD.</td>
<td>TBI worsens factual memory, opiates/benzos increased delusions. PTSD increased if delusions</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2012</td>
<td>Colville</td>
<td>UK</td>
<td>Cohort</td>
<td>12 months</td>
<td>66</td>
<td>7-17 years. Excl sig learning difficulty and readmission</td>
<td>PIM</td>
<td>Children's Revised-IES, SPAN (Short version Davidson Trauma Scale)</td>
<td>44% either child or parent scored positive for PTSD at 12 months. At 3 months 42% parents and 32%</td>
<td>Higher PIM</td>
<td></td>
</tr>
</tbody>
</table>

Child Post Traumatic Stress Index
<table>
<thead>
<tr>
<th>No</th>
<th>Year</th>
<th>First Author</th>
<th>Where</th>
<th>When</th>
<th>Study Design</th>
<th>Follow up time</th>
<th>Sample size and details</th>
<th>Incl/excl criteria</th>
<th>Severity of illness</th>
<th>Indicators used</th>
<th>Results</th>
<th>Risk Factors for poor outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>2013</td>
<td>Colville</td>
<td>UK</td>
<td>2004-2005</td>
<td>Cohort</td>
<td>1 year</td>
<td>97</td>
<td>>7 years with no learning diff</td>
<td>Children's Revised-IES- 8</td>
<td>Higher emotional functioning than a community cohort</td>
<td>Assoc lower QOL, Emergency admission especially TBI</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2013</td>
<td>Dow</td>
<td>Australia</td>
<td>2008-2011</td>
<td>Cohort</td>
<td>6 months</td>
<td>59</td>
<td>6-16 years, >8 hour stay, excl previous PICU, LOS >28/7, NAI, dev delay</td>
<td>PIM 2</td>
<td>Children's PTSD Inventory</td>
<td>25% scored as having PTSD by DSM-IV, 29% by PTSD-alternative algorithm</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2018</td>
<td>Dow</td>
<td>Australia</td>
<td>2008-2011</td>
<td>Cohort</td>
<td>3 weeks</td>
<td>95</td>
<td>6-16 years, >8 hour stay, excl previous PICU, LOS>28/7, amnesia >28/7, NAI, dev delay</td>
<td>Children's Revised-IES</td>
<td>Children’s Revised-IES mean score 18.56, 20% scored as having PTSD</td>
<td>Younger age, admission for traumatic injury and cognitive/affective factors</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Year</td>
<td>First Author</td>
<td>Where</td>
<td>Study Design</td>
<td>Follow up time</td>
<td>Sample size and details</td>
<td>Incl/excl criteria</td>
<td>Severity of illness</td>
<td>Indicators used</td>
<td>Results</td>
<td>Risk Factors for poor outcome</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>--------------</td>
<td>-------</td>
<td>--------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>---------</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2013</td>
<td>Ebrahim⁷⁹</td>
<td>Canada</td>
<td>Cohort 2008-2010</td>
<td>1 month</td>
<td>65</td>
<td>1/12-18yr, Only urgent admissions</td>
<td>Vineland Adaptive Behaviour Scale 2, PCPC and POPC, Pediatric Quality of Life Inventory 4 and Visual Analogue Scale.</td>
<td>Mean score adaptive behaviour 83.2, considered low/moderate behaviour function.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2008</td>
<td>Elison⁷⁶</td>
<td>UK</td>
<td>Case-control</td>
<td>3-7 months</td>
<td>16 cases plus 16 controls</td>
<td>5-16 years</td>
<td>PIM</td>
<td>CANTAB battery, Children Memory Scale, Wechsler Abbreviated Scale of Intelligence, Strengths and Difficulties Questionnaire, IES</td>
<td>Reduced Working Memory (p=0.01), Visual Information Processing (p=0.009) and Verbal Memory (p=0.05) after PICU.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2005</td>
<td>Karande⁸⁸</td>
<td>India</td>
<td>Cohort 2001-2001</td>
<td>1-5 days</td>
<td>50</td>
<td>5-12 years, excl <24hr stay and previous PICU</td>
<td>Questionnaire</td>
<td>74% had neutral recollections of PICU stay, 28% positive, 24% negative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2017</td>
<td>Manning⁹⁹</td>
<td>UK</td>
<td>Case study 2012-2013</td>
<td>6-20 months</td>
<td>9</td>
<td>6-16 years</td>
<td>Interviews and art-based approaches</td>
<td>Complex stories with numerous challenges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Year</td>
<td>First Author</td>
<td>Where</td>
<td>When</td>
<td>Study Design</td>
<td>Follow up time</td>
<td>Sample size and details</td>
<td>Incl/excl criteria</td>
<td>Severity of illness</td>
<td>Indicators used</td>
<td>Results</td>
<td>Risk Factors for poor outcome</td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>--------------</td>
<td>-------</td>
<td>------</td>
<td>--------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>---------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>15</td>
<td>2004</td>
<td>Melink^100</td>
<td>USA</td>
<td>1 year</td>
<td>Case-control</td>
<td>1 year</td>
<td>163</td>
<td>2-7 years. Excl stay >21 days, readmission</td>
<td>State Anxiety Index, Profile of Mood states, Parental Stressor Scale, Post Hospital Stress Index, Behavioural Assessment System for Children</td>
<td>25.9% behavioural problems at 1 year. 14.3% externalising behaviour problems at 6 months, increasing to 22.2% at 12 months.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2008</td>
<td>Muranjan^87</td>
<td>India</td>
<td>1 month</td>
<td>Case-Control</td>
<td>30+30 hrs</td>
<td>30+30</td>
<td>>5 years, >48 hrs</td>
<td>PRISM, TISS</td>
<td>Temperament Measurement Scale, IES, Birleson Depression Scale, Self-esteem Scale</td>
<td>43% had intrusive thoughts at discharge from PICU vs 6.7% discharged from ward, but scores were the same at 1 month. Mean IES score 1.56</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>2012</td>
<td>Paulus^101</td>
<td>USA</td>
<td>26 mother child pairs</td>
<td>Cohort</td>
<td>26 mother child pairs</td>
<td>Stanford and Child Acute Stress Questionnaires, PSS:PICU</td>
<td>Environmental stressors, Parental Stress</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Year</td>
<td>First Author</td>
<td>Where</td>
<td>Study Design</td>
<td>Follow up time</td>
<td>Sample size and details</td>
<td>Incl/excl criteria</td>
<td>Severity of illness</td>
<td>Indicators used</td>
<td>Results</td>
<td>Risk Factors for poor outcome</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>--------------</td>
<td>-------</td>
<td>--------------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>---------</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2000</td>
<td>Playford</td>
<td>UK</td>
<td>Cohort</td>
<td>38</td>
<td>>4 years</td>
<td>Structured interview</td>
<td>15% of recollections were negative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2004</td>
<td>Rees</td>
<td>UK</td>
<td>Cohort</td>
<td>1 year</td>
<td>35 cases and 31 controls</td>
<td>CAPS-C, Impact of Events Scale, Strengths and Difficulties Questionnaire, Birleson Depression Scale, Revised Children's Anxiety Manifest Scale, Child Somatisation Inventory</td>
<td>21% PTSD after PICU, 0% after ward admission</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2002</td>
<td>Rennick</td>
<td>Canada</td>
<td>Cohort</td>
<td>6 months</td>
<td>60+60</td>
<td>6-17 years</td>
<td>Child IES</td>
<td>No sig difference between PICU and ward for levels of PTSD, control over health, fears and behaviour changes</td>
<td>Younger, severe illness, invasive procedures - increased fears, lower sense of control and PTSD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Year</td>
<td>First Author</td>
<td>Where</td>
<td>When</td>
<td>Study Design</td>
<td>Follow up time</td>
<td>Sample size and details</td>
<td>Incl/excl criteria</td>
<td>Severity of illness</td>
<td>Indicators used</td>
<td>Results</td>
<td>Risk Factors for poor outcome</td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>--------------</td>
<td>-------</td>
<td>------</td>
<td>--------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>---------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>21</td>
<td>2006</td>
<td>Small</td>
<td>USA</td>
<td>1997-2002</td>
<td>Cohort</td>
<td>6 months</td>
<td>163</td>
<td>2-7 years</td>
<td>State Trait Anxiety Index, Stressful Family Life Events Measure, Visual Analog Scale, Index of Parent Participation, Post Hospitalisation Questionnaire, Behavioural Assessment System for Children</td>
<td>Elevations of externalising and internalising behaviours after PICU compared to baseline - worst at 3 months then improving at 6 months.</td>
<td>Maternal anxiety, Marital status, previous behaviour, age</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>2015</td>
<td>Stowman</td>
<td></td>
<td>Cohort</td>
<td>7 weeks</td>
<td>50</td>
<td>9-17 years</td>
<td>Children's PTSD Inventory, Children's Depression Inventory, Multidimensional Anxiety Scale for Children, Subjective Experience Measure</td>
<td>26% substantial PTSD symptoms</td>
<td>Acute stress disorder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Year</td>
<td>First Author</td>
<td>Where</td>
<td>Study Design</td>
<td>Follow up time</td>
<td>Sample size and details</td>
<td>Incl/excl criteria</td>
<td>Severity of illness</td>
<td>Indicators used</td>
<td>Results</td>
<td>Risk Factors for poor outcome</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>--------------</td>
<td>-------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---</td>
<td>--</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>2016</td>
<td>Verstraete¹⁰⁷</td>
<td>Belgium</td>
<td>Cohort</td>
<td>4 years</td>
<td>449 +100 controls</td>
<td></td>
<td></td>
<td>Amsterdam neuropsychological Tasks, Wechsler Intelligence Quotient Scale, Berry-Butenika Development Scale, Children's Memory Scale, Children's Behaviour Checklist</td>
<td>Phthalates were higher in children in PICU and associated with attention deficit and poorer motor coordination</td>
<td>Phthalate levels</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2016</td>
<td>Vet¹⁰⁸</td>
<td>Netherlands</td>
<td>RCT</td>
<td>8 weeks</td>
<td>8 > 4 years</td>
<td></td>
<td></td>
<td>Dutch Children's Responses to Trauma Inventory</td>
<td>No PTSD found</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

¹⁰⁷ UK = United Kingdom. PIM = Paediatric Index Mortality. PTSD = Post Traumatic Stress Disorder, IES = Impact of Events Scale. LOS = Length of Stay, USA = United States of America, TBI = Traumatic Brain Injury, NAI = Non-Accidental Injury, DSM-IV = Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, TISS = Therapeutic Interventions Scoring System, PCPC = Paediatric Cerebral Performance Category, POPC = Paediatric Overall Performance Category, CANTAB = Cambridge Neuropsychological Test Automated Battery, PSS = Parental Stressor Scale. CAPS-C = Clinician Administered PTSD Scale for Children
Most of the included studies concentrated on the risk of Post-Traumatic Stress Disorder (PTSD) but some also examined other mental health or behaviour problems. Outcome measures used included: The Impact of Events Scale (IES) in 10 studies, the State Trait Anxiety Scale in 3 studies and multiple other assessment scales/inventories for childhood behaviour/memory/depression. Due to the complexities of assessing childhood psychology the studies all used different age groups, many only using school aged children and excluding younger children. Most also excluded children with prior psychological or neurological problems. These studies were mostly small studies, with the largest having 449 patients.

Only a few of the studies reporting IES Results could be compared because of the different methods of reporting eg. Medians/means/percentages. Table 5 presents the proportion of children reported to be at risk of PTSD using the IES at different time points after PICU admission. From these findings, approximately one third of children appear to be at risk of PTSD for up to one year post ICU discharge.

Table 5: Children at risk from PTSD according to Impact of Events Scale

<table>
<thead>
<tr>
<th>Study</th>
<th>% at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Als, UK, 2017</td>
<td>36%</td>
</tr>
<tr>
<td>Als, UK, 2015</td>
<td>34%</td>
</tr>
<tr>
<td>Colville, UK, 2004-2005</td>
<td>28%</td>
</tr>
<tr>
<td>Colville, UK, 2012</td>
<td>32%</td>
</tr>
<tr>
<td>Dow, Australia, 2008-2011</td>
<td>20%</td>
</tr>
</tbody>
</table>

Quality of Life

Nineteen included studies examined quality of life following PICU admission (Table 6). The outcome measures used were mostly the Health Utilities Index (9 studies), the Paediatric Quality of Life Inventory (3 studies) and the Royal Alexandra Hospital Measure of Function (3 studies). Multiple versions of the Health Utilities Index were used so it was not possible to combine the data. Only one RCT was included and was treated as a cohort study, the rest were cohort studies with a low GRADE of evidence and high risk of bias.
<table>
<thead>
<tr>
<th>No</th>
<th>Year</th>
<th>Author</th>
<th>Where</th>
<th>Where</th>
<th>Study Design</th>
<th>Follow up time</th>
<th>Sample size (n)</th>
<th>Incl/excl criteria</th>
<th>Severity of illness</th>
<th>Indicators used</th>
<th>Results</th>
<th>Risk Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2007</td>
<td>Ambuebl</td>
<td>Switzerland</td>
<td>2001</td>
<td>Cohort</td>
<td>2 years</td>
<td>661</td>
<td></td>
<td></td>
<td>Health State Classification Index</td>
<td>Good outcome 77%, moderate 15%, poor 8%. 21% new chronic illness</td>
<td>Respiratory illness - best, worse if cardiac</td>
</tr>
<tr>
<td>2</td>
<td>2016</td>
<td>Aspesberro</td>
<td>USA</td>
<td>2012-2013</td>
<td>Cohort</td>
<td>12 weeks</td>
<td>367</td>
<td></td>
<td></td>
<td>Pediatric Quality of Life Index Scores</td>
<td>Mean change in QOL score physical domain 34.8 and in psychosocial domain, 23.1.</td>
<td>Chronic disease</td>
</tr>
<tr>
<td>3</td>
<td>2013</td>
<td>Colville</td>
<td>UK</td>
<td>2004-2005</td>
<td>Cohort</td>
<td>1 year</td>
<td>97</td>
<td>>7 years with no learning diff</td>
<td></td>
<td>Paediatric Quality of Life Inventory</td>
<td>At 3 months after PICU lower mean QOL score than community but same by 1 year</td>
<td>PTSD</td>
</tr>
<tr>
<td>4</td>
<td>2012</td>
<td>Cunha</td>
<td>Portugal</td>
<td>2002-2004</td>
<td>Cohort</td>
<td>6 months</td>
<td>252</td>
<td>>6 years</td>
<td></td>
<td>PIM and PRISM III Health Utilities Index (HUI) Mark 3</td>
<td>Median score 0.86 at admission, 0.83 at follow up, 40% improved, 38% declined, 21% no change</td>
<td>Severe disability - improved. Trauma worsened.</td>
</tr>
<tr>
<td>5</td>
<td>2013</td>
<td>Cunha</td>
<td>Portugal</td>
<td>2002-2004</td>
<td>Cohort</td>
<td>6 months</td>
<td>320</td>
<td>>6 years</td>
<td></td>
<td>PIM and PRISM III Health Utilities Index Mark 3</td>
<td>Median score 0.87 at admission, 0.84 at follow up, 38% improved, 41% declined, 21% no change</td>
<td>Improvement predicted by no ventilation, pre-admission pain and lower pre-admission score</td>
</tr>
<tr>
<td>No</td>
<td>Year</td>
<td>Author</td>
<td>Where</td>
<td>When</td>
<td>Study Design</td>
<td>Follow up time</td>
<td>Sample size (n)</td>
<td>Incl/excl criteria</td>
<td>Severity of illness</td>
<td>Indicators used</td>
<td>Results</td>
<td>Risk Factors</td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>-------------------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>--------------------</td>
<td>---------------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>1997</td>
<td>De Keizer²⁴</td>
<td>The Netherlands</td>
<td>1997</td>
<td>Cohort</td>
<td>1 year</td>
<td>209</td>
<td>Excl <1 year and <24 hour stay</td>
<td>PRISM</td>
<td>Health Utility Index</td>
<td>Worse score 1 year after ICU</td>
<td>Cardiac surgery protective.</td>
</tr>
<tr>
<td>7</td>
<td>2015</td>
<td>Ebrahim¹¹</td>
<td>Canada</td>
<td>2008-2010</td>
<td>Cohort</td>
<td>1 month</td>
<td>52</td>
<td>> 4 years</td>
<td>Health Utilities Index 3 and Visual Analog Scale (VAS)</td>
<td>Mean VAS and HUI-3 utilities were 0.82 and 0.70, respectively, at baseline, and worsened to 0.81 and 0.58 at one month.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2013</td>
<td>Ebrahim⁷⁹</td>
<td>Canada</td>
<td>2008-2010</td>
<td>Cohort</td>
<td>1 month</td>
<td>65</td>
<td>1/12-18yr, Only urgent admissions</td>
<td>Vineland Adaptive Behaviour Scale 2, PCPC and POPC, Paediatric Quality of Life Inventory 4 and VAS</td>
<td>Significant decline in adaptive behaviour functioning. Mean QOL rating of 52.8 = poor QOL at 1 month.</td>
<td>Resuscitation intensity and illness severity</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2003</td>
<td>Jayashree³ 4</td>
<td>India</td>
<td>1999-2000</td>
<td>Cohort</td>
<td>1 year</td>
<td>150</td>
<td>Excl <24 hour stay or readmission</td>
<td>Multiattribute Health Status Classification</td>
<td>75% improved or equal to baseline</td>
<td>Neurological illness</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2006</td>
<td>Jones³⁸</td>
<td>UK</td>
<td>2001-2002</td>
<td>Cohort</td>
<td>6 months</td>
<td>2642</td>
<td>Excl <6 months</td>
<td>PIM2, PRISM III</td>
<td>Health Utility Index</td>
<td>27.3% in full health, 4.4% impaired in all outcome measures</td>
<td>PIM 2 and PRISM III</td>
</tr>
<tr>
<td>No</td>
<td>Year</td>
<td>Author</td>
<td>Where</td>
<td>When</td>
<td>Study Design</td>
<td>Follow up time</td>
<td>Sample size (n)</td>
<td>Incl/excl criteria</td>
<td>Severity of illness</td>
<td>Indicators used</td>
<td>Results</td>
<td>Risk Factors</td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>--------</td>
<td>-------</td>
<td>------</td>
<td>--------------</td>
<td>----------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>11</td>
<td>2008</td>
<td>Knoester</td>
<td>The Netherlands</td>
<td>2002-2005</td>
<td>Cohort</td>
<td>9 months</td>
<td>81</td>
<td>TNO-AZL (Preschool) Children's Quality of Life Questionnaire Parents</td>
<td>1-6 years more lung problems, worse liveliness, better appetite and problem solving than normal. 6-15 years worse motor function. All improved at 9 months compared with 3 months post discharge.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2018</td>
<td>Kyosti</td>
<td>Finland</td>
<td>2009-2010</td>
<td>Cohort</td>
<td>6 years</td>
<td>1109</td>
<td>Paediatric Quality of Life Inventory Scores</td>
<td>8.4% poor QOL</td>
<td>Chronic disease, daily medication, increased healthcare services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2007</td>
<td>Mestrovic</td>
<td>Croatia</td>
<td>2002-2004</td>
<td>Cohort</td>
<td>25 months</td>
<td>371</td>
<td>PIM 2 Royal Alexandra Hospital Measure of Function</td>
<td>88.8% with no chronic condition and 81.6% with chronic condition excl. neurodevelopment had good QOL. With Neurodevelopmental problems 39.3% poor, 39.3% fair QOL.</td>
<td>Neurodevelopmental disability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2002</td>
<td>Morrison</td>
<td>Australia</td>
<td>1992-1994</td>
<td>Cohort</td>
<td>24 months</td>
<td>432</td>
<td>Excl no PRISM</td>
<td>Royal Alexandra Hospital Measure of Function</td>
<td>59.3% normal, 32.4% fair, 2% poor QOL.</td>
<td>Comorbidities, LOS, Malignancy</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Year</td>
<td>Author</td>
<td>Where</td>
<td>When</td>
<td>Study Design</td>
<td>Follow up time</td>
<td>Sample size (n)</td>
<td>Incl/excl criteria</td>
<td>Severity of illness</td>
<td>Indicators used</td>
<td>Results</td>
<td>Risk Factors</td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>--------</td>
<td>-------</td>
<td>------</td>
<td>--------------</td>
<td>----------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>------------------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>15</td>
<td>2010</td>
<td>Namachiva yam(^4)</td>
<td>Australia</td>
<td>1982-2006</td>
<td>Cohort</td>
<td>3 years</td>
<td>5250</td>
<td>>2 years</td>
<td>PIM 1 and PIM 2</td>
<td>Health Status Utility Index</td>
<td>84% good QOL in 1995, 66% good QOL in 2005</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2013</td>
<td>Polic(^{114})</td>
<td>Croatia</td>
<td>2006-2008</td>
<td>Case-control</td>
<td>24 months</td>
<td>189 + 179</td>
<td>10-18 years</td>
<td>PIM 2</td>
<td>Royal Alexandra Hospital Measure of Function</td>
<td>70% good QOL but worse than pre-admission and controls</td>
<td>Chronic condition</td>
</tr>
<tr>
<td>17</td>
<td>2012</td>
<td>Rantell(^{115})</td>
<td>UK</td>
<td>2001-2002</td>
<td>Cohort</td>
<td>6 months</td>
<td>1221</td>
<td>>6 months</td>
<td>PIM, PIM 2, PRISM and PRISM 3</td>
<td>Health Utilities Index Mark 2</td>
<td>66% mod to severe disability, PIM</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2003</td>
<td>Taylor(^{35})</td>
<td>Australia</td>
<td>1995</td>
<td>Cohort</td>
<td>3.5 years</td>
<td>727</td>
<td></td>
<td>PRISM</td>
<td>Health State Utility Index</td>
<td>83.6% favourable QOL</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2016</td>
<td>Vet(^{108})</td>
<td>The Netherlands</td>
<td>RCT</td>
<td>8 weeks</td>
<td>64</td>
<td></td>
<td></td>
<td>Child Health Questionnaire</td>
<td>Below Dutch normative scores for QOL. Behaviour scores higher.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^{6}\) PIM = Paediatric Index Mortality, PRISM = Paediatric Risk of Mortality, PTSD = Post Traumatic Stress Disorder, QOL = Quality of Life, HUI = Health Utilities Index, VAS = Visual Analogue Scale, PCPC = Paediatric Cerebral Performance Category, POPC = Paediatric Overall Performance Category.
The children were followed up for longer in studies reporting on quality of life outcomes than in some of the other outcome categories, with a maximum of 6 years follow-up in a large Finnish study that showed that 8.4% of children still have poor quality of life 6 years after PICU admission113. All the studies showed that some children had impaired quality of life after PICU but the numbers were quite variable. One of the largest studies, by Jones et al from the UK, reported that only 27.3% of children were in full health at 6 months post PICU but also that only 4.4% had impairment in all areas38. The Indian study by Jayashree et al showed that 75% had improved or equal quality of life at one year compared to pre-admission, suggesting that PICU was beneficial to their long term health and quality of life34. This was the only study from a lower income country, the rest were from high-income countries.

Social/Family Outcomes

Twenty-four studies were identified that examined some aspect of the impact of PICU admission on the family (Table 7). Most of the studies focused on the mental health of the parents and the risk of PTSD. Five studies used the Parent Stressor Scale as an outcome measure. Other studies were qualitative research, describing the parents/family’s journey through PICU and beyond. For five papers, only the abstract could be found. The social/family outcomes papers were mostly smaller studies with maximum 223 patients. The maximum follow-up duration was 5 years. One case-control study was included, the rest were all cohort studies and therefore considered to have a low GRADE of evidence with a high risk of bias.

All the studies agreed that admission of a child to PICU is a stressful experience for most parents with high rates of both acute and chronic stress as well as a significant risk of PTSD for parents. A recent study by Rodrigues-Rey et al observed a 23 % rate of PTSD in parents at 6 months post PICU admission116. Several papers reported similar results. No papers from lower income countries were found in this category.
<table>
<thead>
<tr>
<th>No</th>
<th>Year</th>
<th>First Author</th>
<th>Where</th>
<th>When</th>
<th>Study Design</th>
<th>Follow up time</th>
<th>Sample size and details</th>
<th>Incl/excl criteria</th>
<th>Severity of illness</th>
<th>Indicators used</th>
<th>Results</th>
<th>Risk Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2012</td>
<td>Atkins117</td>
<td>UK</td>
<td>117</td>
<td>Cohort</td>
<td>18 months</td>
<td>9-16 years.</td>
<td>Excl <24 hours. 1 biological parent</td>
<td>Described family journeys - physical recovery first before psych and social. Families have to find a “new normal”.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2004</td>
<td>Balluffi118</td>
<td>USA</td>
<td>2000-2001</td>
<td>Cohort</td>
<td>2 months</td>
<td>272 >48 hr stay</td>
<td>PRISM III, ASD Scale, PTSD Checklist</td>
<td>32% of parents ASD, 21% PTSD</td>
<td>ASD symptoms, unexpected admission, parent's degree of worry child might die, another hospital admission or other traumatic event subsequent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2011</td>
<td>Board92</td>
<td>USA</td>
<td>2011</td>
<td>Cohort</td>
<td>3 months</td>
<td>Previously normal only</td>
<td>PRISM, TISS, PSS, State-Trait Anxiety Scale, Child Drawing: Hospital, Child PTSD Index</td>
<td>Mother's anxiety increased whilst child's PTSD decreased over time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Year</td>
<td>Author</td>
<td>Where</td>
<td>When</td>
<td>Study Design</td>
<td>Follow up time</td>
<td>Sample size and details</td>
<td>Incl/excl criteria</td>
<td>Severity of illness</td>
<td>Indicators used</td>
<td>Results</td>
<td>Risk Factors</td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>--------</td>
<td>------------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>-------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>2002</td>
<td>Board</td>
<td>USA</td>
<td>Case-control</td>
<td>6 months</td>
<td>31/32/32</td>
<td>< 5 years, no abuse or chronic illness, parents co-habiting</td>
<td>PSS: PICU, Symptom Checklist-90, Family Assessment Measure III, Family Inventory of Life Events and Changes</td>
<td>PICU parents had higher stress levels than general ward. Stress related symptoms and difficulties with family functioning were ongoing at 6 months.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2008</td>
<td>Bronner</td>
<td>The Netherlands</td>
<td>Cohort</td>
<td>9 months</td>
<td>144</td>
<td>Previously normal only. Ventilated >24 hours or LOS >7/7 or trauma/RSV/Meningococc. Not abuse/self-intoxication</td>
<td>Self-Rating Scale for post-traumatic stress disorder</td>
<td>15% mothers and 9.3% fathers had clinical PTSD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2010</td>
<td>Bronner</td>
<td>The Netherlands</td>
<td>Cohort</td>
<td>9 months</td>
<td>190</td>
<td>Unexpected admissions only</td>
<td>30.3% parents had subclinical with 12.6% clinical PTSD at 3 months and didn't</td>
<td>Earlier stressful life events, earlier psychosocial care and PTS at 3/12 predictive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Year</td>
<td>First Author</td>
<td>Where</td>
<td>Study Design</td>
<td>Follow up time</td>
<td>Sample size and details</td>
<td>Incl/excl criteria</td>
<td>Severity of illness</td>
<td>Indicators used</td>
<td>Results</td>
<td>Risk Factors</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>--------------</td>
<td>-------</td>
<td>--------------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>---------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1999</td>
<td>Carnevale</td>
<td></td>
<td>Cohort</td>
<td>5 years</td>
<td>10 parents</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[122]</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2009</td>
<td>Colville</td>
<td>UK</td>
<td>Cohort</td>
<td>4 months</td>
<td>>12 hours PIM</td>
<td>Post-traumatic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[123]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Growth Inventory,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IES, The Hospital</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Anxiety and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Depression Scale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2012</td>
<td>Colville</td>
<td>UK</td>
<td>Cohort</td>
<td>12 months</td>
<td>66 children's</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[95]</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Parents describe striving to recapture their previous life.

88% parents reported a positive change to great degree. This was associated with moderate PTSD more than low or high levels of PTSD.

In 44% of child-parent pairs, at least one member scored for PTSD with scores increasing over time.

Emergency admission, child higher scores.
<table>
<thead>
<tr>
<th>No</th>
<th>Year</th>
<th>First Author</th>
<th>Where</th>
<th>When</th>
<th>Study Design</th>
<th>Follow up time</th>
<th>Sample size and details</th>
<th>Incl/excl criteria</th>
<th>Severity of illness</th>
<th>Indicators used</th>
<th>Results</th>
<th>Risk Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2006</td>
<td>Colville</td>
<td>UK</td>
<td>8 months</td>
<td>Cohort</td>
<td>34</td>
<td>PSS, General Health Questionnaire, IES</td>
<td>18% mothers scored as having PTSD.</td>
<td>Don't talk about feelings at admission. Reports of feeling stressed retrospectively</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1985</td>
<td>Eberly</td>
<td>Cohort</td>
<td>223+262</td>
<td>PSS, State-Trait Anxiety Scale</td>
<td>Admission was reported as stressful</td>
<td>Worse if unplanned</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2015</td>
<td>Hagstrom</td>
<td>USA</td>
<td>5 weeks</td>
<td>Cohort</td>
<td>8 >1 week stay. Excl 2/52 stay in another unit, acute event in last 48 hours, abuse, DNR, Foster care, parent <18</td>
<td>Family Inventory of Life Events and Family System Stressor Strength Inventory.</td>
<td>Describes the sources of stress for parents. These were reported to change in over time but compounded each other.</td>
<td>Separation, not knowing, and the child's illness and distress</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1999</td>
<td>Mitchell</td>
<td>Cohort</td>
<td>6 months</td>
<td>Resiliency Model can predict outcomes at 1 and 3 months but not 6 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Year</td>
<td>First Author</td>
<td>Where</td>
<td>When</td>
<td>Study Design</td>
<td>Follow up time</td>
<td>Sample size and details</td>
<td>Incl/excl criteria</td>
<td>Severity of illness</td>
<td>Indicators used</td>
<td>Results</td>
<td>Risk Factors</td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>--------------</td>
<td>-------</td>
<td>------</td>
<td>-------------</td>
<td>--------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>----------</td>
<td>--------------</td>
</tr>
<tr>
<td>16</td>
<td>2018</td>
<td>Muscara¹² ⁸</td>
<td>Australia</td>
<td>2010-2012</td>
<td>Cohort</td>
<td>18 months</td>
<td>159</td>
<td>Excl another major trauma</td>
<td>ASD Scale, Post-traumatic Stress Checklist-Specific Version</td>
<td>33% had low stress levels whilst 52% had high levels stress that declined. 13% had high stress levels that continued</td>
<td>Mood, anxiety, and emotional response</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>2017</td>
<td>Muscara¹² ⁹</td>
<td>Australia</td>
<td>2010-2012</td>
<td>Cohort</td>
<td>4 weeks</td>
<td>171</td>
<td>Excl another major trauma</td>
<td>ASD Scale, Depression-Anxiety Stress Scales - Short Form, Psychosocial Assessment Scale, State Trait Anxiety Inventory</td>
<td>Psychosocial factors significantly explained 36.8% of the variance in parent acute stress responses.</td>
<td>Younger parental age</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2004</td>
<td>Rees¹³</td>
<td>UK</td>
<td>1998-2000</td>
<td>Cohort</td>
<td>1 year</td>
<td>35 and 31 controls</td>
<td>5-18 years</td>
<td>CAPS-C, IES., Strengths and Difficulties Questionnaire, Birleson Depression Scale, Revised Children's Anxiety</td>
<td>27% parents from PICU but only 7% parents from the wards screened positive for PTSD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Year</td>
<td>First Author</td>
<td>Where</td>
<td>When</td>
<td>Sample size</td>
<td>Follow up time</td>
<td>Indicators used</td>
<td>Severity of illness</td>
<td>Results</td>
<td>Risk Factors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>--------------</td>
<td>-------</td>
<td>------</td>
<td>-------------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>---------</td>
<td>--------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2017</td>
<td>Rodriguez-Rey</td>
<td>Spain</td>
<td>Cohort</td>
<td>143</td>
<td>6 months</td>
<td>Posttraumatic Growth Inventory, Davidson Trauma Scale, Hospital Anxiety and Depression Scale</td>
<td>3.1% parents had PTSD, 21% moderate to severe anxiety, 9.1% moderate to severe depression. 37.1% medium degree of post traumatic growth</td>
<td>Higher PTSD, depression and anxiety was associated with greater post traumatic growth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2018</td>
<td>Rodriguez-Rey</td>
<td>Spain</td>
<td>Cohort</td>
<td>196</td>
<td>6 months</td>
<td>23% parents had symptoms of PTSD, 21% moderate-severe anxiety, 9% moderate-severe depression. Not different at 6 months compared to 3 months</td>
<td>47% of the variance in psychopathology symptoms at 6 months can be predicted at diagnosis. Resilience was a strong negative predictor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>2015</td>
<td>Stowman</td>
<td>USA</td>
<td>Cohort</td>
<td>50</td>
<td>7 weeks</td>
<td>Acute Stress Disorder Scale, Beck Depression Inventory, Multi-dimensional</td>
<td>24% parents had significant PTSD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Year</td>
<td>First Author</td>
<td>Where</td>
<td>When</td>
<td>Study Design</td>
<td>Follow up time</td>
<td>Sample size and details</td>
<td>Incl/excl criteria</td>
<td>Severity of illness</td>
<td>Indicators used</td>
<td>Results</td>
<td>Risk Factors</td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>--------------</td>
<td>-------</td>
<td>------</td>
<td>--------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>22</td>
<td>2017</td>
<td>Stremler</td>
<td>Canada</td>
<td>Cohort In ICU</td>
<td>118</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>State Trait Anxiety Index, Centre for Epidemiological Studies Depression Scale, Decisional Conflict Scale, sleep diaries</td>
<td>24% parents had severe anxiety, 51% depression, 26% decisional conflict</td>
<td>Social support protective. Lack of or changing place of sleep worsened.</td>
</tr>
<tr>
<td>23</td>
<td>2017</td>
<td>Terp</td>
<td>Sweden</td>
<td>Cohort</td>
<td>2 years</td>
<td>10</td>
<td>Child -15 years. Excl child died</td>
<td></td>
<td></td>
<td></td>
<td>Parents carried vivid memories and the family continued to be affected by the experience.</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1995</td>
<td>Tomlinson</td>
<td>Canada</td>
<td>Cohort</td>
<td>9 weeks</td>
<td>20</td>
<td>2 days to 17 years</td>
<td></td>
<td></td>
<td></td>
<td>70% parents had a decrease in mental health scores, 43% reported a change in family behaviour</td>
<td>Chronic disease</td>
</tr>
<tr>
<td>No</td>
<td>Year</td>
<td>First Author</td>
<td>Where</td>
<td>Study Design</td>
<td>Follow up time</td>
<td>Sample size and details</td>
<td>Incl/excl criteria</td>
<td>Severity of illness</td>
<td>Indicators used</td>
<td>Results</td>
<td>Risk Factors</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>--------------</td>
<td>-------</td>
<td>--------------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>-------------------</td>
<td>--------------------</td>
<td>-----------------</td>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1995</td>
<td>Youngblut</td>
<td>USA</td>
<td>Cohort</td>
<td>3 years</td>
<td>27 + 25</td>
<td>1-5 years</td>
<td>PRISM</td>
<td>Cohesion and</td>
<td>Family functioning not sig</td>
<td>PRISM, LOS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>134</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adaptability</td>
<td>Adaptability</td>
<td>different between PICU and general ward cohorts.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>subscales of the</td>
<td>subscales of the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Family Adaptation</td>
<td>Family Adaptation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and Cohesion</td>
<td>and Cohesion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scales III and the</td>
<td>Scales III and the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Feetham Family</td>
<td>Feetham Family</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Functioning</td>
<td>Functioning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Survey</td>
<td>Survey</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1993</td>
<td>Youngblut</td>
<td>USA</td>
<td>Cohort</td>
<td>4 weeks</td>
<td>9</td>
<td><5 years</td>
<td>PRISM</td>
<td>Parental Concern</td>
<td>Mothers' family cohesion and satisfaction with family after discharge were negatively related to time the child was intubated.</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>135</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scale and PSS,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Posthospitalization Behavior Questionnaire,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Feetham Family</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Functioning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Survey and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Family Adaptation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and Cohesion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scales</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7 UK = United Kingdom, USA = United States of America, ASD = Acute Stress Disorder, PTSD = Post Traumatic Stress Disorder, PRISM = Paediatric Risk Mortality. TISS = Therapeutic Intervention Scale. PICU = Paediatric Intensive Care Unit, PSS = Parental Stressor Scale, LOS = Length of Stay,
Discussion

This review showed that mortality rates in PICU have improved over time in high-income countries. The data extracted here did not confirm the same trend for low- and middle-income countries, but country specific reports suggest that most countries are following the same trend. The SMR was lower in high- income countries than in low- and middle-income countries. It is not within the scope of this study to determine the reasons for these differences, and it is recommended that these be addressed in future studies. More studies from low- and middle-income countries are needed to determine expected mortality in these resource limited settings. Mortality prediction scores should then be adjusted to include this data. Following this review, it is intended that a large, prospective, long-term cohort study of children admitted to PICU in South Africa will be conducted.

It is recommended that future studies use standardized methods of reporting mortality including both actual and predicted mortalities so that a SMR can be used to compare the results of different units. Comparing the outcomes of different units and countries is challenging, as multiple, complex factors may influence mortality and other PICU outcomes. These factors include: when the study was done, the size of the unit, location, characteristics of patients admitted (including admission criteria, pre-existing health conditions, severity of illness, family background and length of stay), staffing levels and facilities/treatments available. It was beyond the scope of this review to identify independent risk factors that may worsen outcomes of PICU.

Critically ill children admitted to PICU are at higher risk of death than the general population and they remain at risk of death for years after PICU discharge45,67. This may be related to having a pre-existing chronic disease that precipitated PICU admission; an acute illness requiring PICU admission; or a complication of the PICU admission itself. Further research is required to identify the causes of ongoing mortality as well as to identify predictive and modifiable factors which could be targeted in practice improvement initiatives. It was also noted that loss to follow up is a major concern for studies following children up after discharge and all methods to minimise this should be included in any studies. This may be very variable amongst different communities with different levels of mobility and stability.

Mortality may, however, no longer be the most important outcome of PICU admission5. The effects of an admission to PICU are multiple and far reaching, affecting not just the child’s
physical and mental health but also the family, community and general population. As more children survive PICU, other outcome measures are needed to ensure the reduction in child mortality does not come with too high a cost to the child, their family or the wider community. If it is possible to predict morbidity, it may be that this should also be considered in deciding if a child should be admitted to PICU. However, whilst this may prove difficult, there is a need to identify interventions and processes in the PICU that are associated with long-term morbidity and improve performance in those areas. It was not possible to identify these risk factors with this study. We also need to consider health care budgets. PICU admission is expensive and may impact on the health of other children e.g. by reducing budgets available for primary health care.

This review highlighted the body of data showing that children admitted to PICU have greater ongoing morbidity than their healthy counterparts with more cognitive/developmental and functional health problems, poorer quality of life and increased psychological problems. Their parents also have an increased risk of PTSD. This has significant implications for the healthcare system if ongoing care is required. From this study it was not possible to determine the root causes of these problems, or what could be done to improve the outcomes for children admitted to PICU.

This review identified 105 studies describing various outcomes of PICU admission. Most of the studies are from high income countries and focused on outcomes during PICU admission or shortly thereafter. Studies that investigated longer term outcomes mostly focused on one outcome, such as quality of life or functional status. Those that examined more than one outcome mostly included mortality data and then focused on one other outcome. However, these are complex outcomes that are a result of an amalgamation of multiple issues. With such complex issues there is a need to define measurable, clearly defined, agreed outcomes of interest to standardise the data and make it comparable. Many studies not included in this review examined outcomes of one condition such as cardiac disease or sepsis. A review of these studies may reveal specific interventions that impact on outcomes or allow comparison of outcomes for different diseases. No studies were found that described all the possible long-term outcomes of general PICU admission.

Other studies not included here examined outcomes of adult intensive care admission. Although these studies may reveal some areas for consideration there are too many differences between children and adults to allow direct comparison. PICUs generally have lower mortality rates than their adult versions and the impact of PICU interventions on a
growing and developing brain may be very different from the impact on an adult brain. Follow up of children will also be longer and may impact that child throughout their lives, including their adult productive lives, which will have ongoing financial implications.

The studies included in this review were markedly heterogenous and were all observational making it very difficult to compare studies, and impossible to accurately pool data or perform meta-analyses. The studies were all a low GRADE level of evidence (observational studies); and furthermore were at risk of substantial bias in all domains. Even those studies that seemed to examine the same outcome did so in very different ways using different outcome measures or ways of reporting those outcomes. Research is needed to determine which outcomes are most important to study, not just to medical professionals but to the patients and their families. There may also need to be consideration of other perspectives and outcomes e.g. medical managers, governments and health care insurers will all have outcomes that they deem important and affect their policies. Agreement is needed in determining what outcomes to assess, how to assess and how to report them. This will be difficult and time consuming but large studies, in different locations, using the same outcome assessment methods, are needed. It may be impossible to perform randomized controlled trials looking at PICU versus no PICU admission, but other control groups may be used such as hospitalized, non-PICU admitted children or healthy children. Randomised controlled studies may also be able to look at particular interventions that have an effect on outcome in children with the same disease or interventions may be compared in different diseases.

If functional outcome can be predicted, then it may be possible to include this assessment in determining admission criteria in the future, but this is unlikely. Current scores such as PIM and PRISM only include the likelihood of short-term mortality but other, holistic, outcomes should also be considered and new scores created to aid in determining the best resource allocation.

Further research is also needed to determine what interventions could be implemented to reduce the ongoing morbidity and mortality seen in children after PICU admission. Does the intervention need to take place in PICU or could follow up clinics/therapy have a significant impact on these children after they are discharged to hospital wards or home? We also need to identify whose responsibility this follow up is. Intensivists usually only manage children during their time in PICU and it is often difficult to identify whose responsibility it is to follow up all the aspects of a child’s care. As Hartman et al said in their review paper in 2013
“Having saved them in the ICU, these children remain our responsibility. And what a tremendous accomplishment it will be when a good save means not just being alive but rather living life. ¹³” This applies to all children admitted to PICU, not just those with severe sepsis. However, until we know what “living life” means, we cannot properly measure the outcomes of PICU.

Limitations of the Study

This was a systematic review of the current literature. It is hoped that all relevant studies were found through the extensive search process, but some studies may have been missed. If the text could not be found or no English translation was available then studies were not included and this may be a source of bias. To reduce bias, it would be preferable to have the articles reviewed by more than one person but this was not possible for this study. It would also be beneficial to assess each study for risk of bias but there is no agreed upon tool for doing this. The authors are looking at ways to do this in the future.

Conflict of interest declaration

We, the researchers, declare that we have no conflicts of interest.
References

115. Rantell K. An investigation into the relationship between risk of mortality on admission to a Paediatric Intensive Care Unit and Health Related Quality of Life at six month follow-up in the United Kingdom [Ph.D.]. Ann Arbor: University of Sheffield (United Kingdom); 2012.

132. Terp KS-S, A. Parents' experiences and the effect on the family two years after their child was admitted to a PICU—An interview study. *Intensive and Critical Care Nursing* 2017; **43**: 143-8.

Appendix A: Search Strategy

Table A1: PubMed Search strategy, modified as needed for other electronic databases

<table>
<thead>
<tr>
<th>Intensive Care</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#1 MeSH terms:</td>
<td>Intensive Care Units, Pediatric [MeSH] OR Critical Care [MeSH]</td>
</tr>
<tr>
<td>#2 Keyword search in title/abstract fields</td>
<td>intensive care OR PICU OR critical care</td>
</tr>
<tr>
<td>#3 #1 OR #2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Children</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#4 MeSH terms:</td>
<td>Child [MeSH] OR Adolescent [MeSH]</td>
</tr>
<tr>
<td>#5 Keyword search in title/abstract fields</td>
<td>child OR children OR adolescent OR teenage OR youths OR paediatric OR pediatric</td>
</tr>
<tr>
<td>#6 #4 OR #5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outcome:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#8 Keyword search in title/abstract fields</td>
<td>treatment outcome OR clinical effectiveness OR clinical efficacy OR treatment effectiveness OR patient-relevant outcome OR treatment efficacy OR follow-up OR follow up OR post-hospital syndrome OR post-traumatic stress OR psychosocial OR psychological OR emotional OR cognitive OR post-discharge OR neurodevelopment OR neurodevelopmental OR neurocognitive OR neurologic OR behavioural OR behavioral</td>
</tr>
<tr>
<td>#9 #7 OR #8</td>
<td></td>
</tr>
<tr>
<td>#10 #3 AND #6 AND #9</td>
<td></td>
</tr>
<tr>
<td>#11 Keyword search in title/abstract fields</td>
<td>"neonatal intensive care” OR "neonatal critical care” OR "neonatal ICU” OR “NICU”</td>
</tr>
<tr>
<td>#12 #10 NOT #11</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B: Excluded Studies

1. Papers only including children with cardiac disease or interventions:

PRCCLA006

2. Papers only including children with endocrine disease or interventions:

3. Papers only including children with gastroenterology disease or interventions:

4. Papers only including children with haematology/oncology disease or interventions:

PRCCLA006
5. Papers only including children with neurological disease or interventions:

6. Papers only including children with renal disease or interventions:

7. Papers only including children with respiratory disease or interventions:

8. Papers only including children with sepsis:

9. Papers only including children after traumatic injury in PICU:

10. Papers only including children who underwent specific interventions in PICU:

11. Papers only including children who were re-admitted to PICU:

12. Papers only including children with specific risk factors:

13. Papers with no available abstract:

14. Papers with no available English translation:

15. Papers only including adult patients:

16. Reviews, editorials and other articles deemed not relevant as primary studies

Appendix C: Journal Author Guidelines

CONTENTS
1. SUBMISSION
2. AIMS AND SCOPE
3. MANUSCRIPT CATEGORIES AND REQUIREMENTS
4. PREPARING A MANUSCRIPT FOR SUBMISSION
5. EDITORIAL POLICIES AND ETHICAL CONSIDERATIONS
6. AUTHOR LICENSING
7. PUBLICATION PROCESS AFTER ACCEPTANCE
8. POST PUBLICATION
9. EDITORIAL OFFICE CONTACT DETAILS

1. SUBMISSION
Authors should kindly note that submission implies that the content has not been published or submitted for publication elsewhere except as a brief abstract in the proceedings of a scientific meeting, conference or symposium.

Once the submission materials have been prepared in accordance with the Author Guidelines, manuscripts should be submitted online at: https://mc.manuscriptcentral.com/jpch

Data protection
By submitting a manuscript to or reviewing for this publication, your name, email address, and affiliation, and other contact details the publication might require, will be used for the regular operations of the publication, including, when necessary, sharing with the publisher (Wiley) and partners for production and publication. The publication and the publisher recognize the importance of protecting the personal information collected from users in the operation of these services, and have practices in place to ensure that steps are taken to maintain the security, integrity, and privacy of the personal data collected and processed. You can learn more at https://authorservices.wiley.com/statements/data-protection-policy.html.

2. AIMS AND SCOPE

Journal of Paediatrics and Child Health is the official journal of the Paediatrics and Child Health Division (The Royal Australasian College of Physicians) in affiliation with the Perinatal Society of Australia and New Zealand, the Paediatric Research Society of Australia and the Australasian Association of Paediatric Surgeons, and publishes original research articles of scientific excellence in paediatrics and child health. Research Articles and Editorial Correspondence are published, together with invited Reviews, Annotations, Editorial Comments and manuscripts of educational interest.

3. MANUSCRIPT CATEGORIES AND REQUIREMENTS

Viewpoint

Word limit: 2,500 words maximum
Abstract: 250 words maximum; unstructured
References: Referenced only if appropriate (Vancouver style).
Description: Viewpoint is available for papers expressing a personal practice or personal view on medical or non-medical topics that are relevant to the readers. They can be up to 2,500 words long, with an unstructured abstract, and referenced if appropriate.

Annotations

Word limit: 1,500 words maximum (excludes 5 required keywords, abstract & references)
Abstract: 150 words maximum; unstructured
References: Maximum of 12 references (Vancouver style).
Key Points: Summarise the main points raised in the manuscript
Multiple choice questions: 3 multiple choice questions preferably ‘A-type’ single best of 5 alternatives with brief explanations for each answer) based on the article. Ensure that brief explanations are provided for both correct and incorrect answers.

Ethical Debate
Word limit: 2,500 words maximum
Abstract: 250 words maximum; unstructured
References: Referenced only if appropriate (Vancouver style).
Description: Ethical Debate is available for papers describing an ethical dilemma in clinical practice. They may argue only one perspective or two different viewpoints.

Position Paper
Word limit: 2,500 words maximum
References: Maximum of 50 references (Vancouver style).
Description: Position Papers express the consenses view of an organisation, e.g. about the management of a condition. Any recommendations should be evidence-based and should state the Level of Evidence (using NHMRC criteria).

Review Article
Word limit: 2,500 words maximum
Abstract: 150 words maximum; unstructured or structured using sub heads: Aim, Methods, Results, Conclusions. (Abstract must state: The purpose, basic procedures, main findings and principal conclusions of study.)
References: Maximum of 50 references (Vancouver style).
Key Points: Summarise the main points raised in the manuscript with 3 brief Key Points.

Original Article
Word limit: 2,500 words maximum
Abstract: 250 words maximum; structured using sub heads: Aim, Methods, Results, Conclusions. (Abstract must state: The purpose, basic procedures, main findings and principal conclusions of study.)
References: Maximum of 24 references (Vancouver style).
Brief Points: Authors are to provide up to 3 separate points for each Brief Point: ‘What is already known on this topic’ and ‘What this paper adds’.

Instructive Cases
Word limit: 1,200 words maximum
Abstract: No abstract or key words required
References: Maximum of 8 references (Vancouver style).
Figures/Tables: Maximum combined limit of 3 figures/tables
Learning Points: A Summary listing learning points should be included at the end of the Instructive Case.
Description: Instructive Cases involve a clinical problem or issue of clear educational benefit. There is an initial case report, then a brief discussion with appropriate references.

Journal Club
Word limit: 2,500 words maximum
Abstract: 250 words maximum; structured using sub heads: Aim, Methods, Results, Conclusions. (Abstract must state: The purpose, basic procedures, main findings and principal conclusions of study.)
References: Maximum of 24 references (Vancouver style).
Description: They should reflect what happens at journal clubs where doctors come with a clinical question, search for evidence, critically appraise the best evidence and then apply it to their patient, reflecting how the research could have been conducted better. The paper should be divided into the headings: Scenario, Structured clinical question, Search strategy, Table (of relevant papers found in the search), Critical appraisal of all relevant papers (using standard critical appraisal guidelines), followed by a brief discussion of how to do the research better, how to apply the information to the patient and the clinical bottom line.

Brief Communications
Word limit: 600 words maximum
Description: Brief Communications are used to fill gaps in the Journal of Paediatrics and Child Health and will be indexed. They are supposed to be entertaining, humourous, informative, thought-provoking or all of the above. They should be relevant, in a broad sense, to paediatrics and those who work in child health. Examples include humourous or poignant stories or instructive mistakes. Consent will be needed if the subject of the Brief Communication is identifiable.

Image of the Month
Submit a photograph or image, together with a short clinical question and a brief answer. For an example, please follow these links: Question and Answer. If the photograph is identifiable, please send written permission from a parent and/or child or confirm that verbal approval has been obtained. Privacy is the responsibility of the author(s).

Heads Up
Word limit: 200 words approximately
Description: A Heads Up submission is a summary of a recent paper of interest. This should not be the abstract but a short digest of the results, putting them in context of what the paper adds. Please attach a file with a single graph or histogram (preferably not a table) from the paper to make the most important point visually (not essential). A photograph or illustration (subject to copyright) would also be suitable.

Humorous Article
Word limit: 2,500 words maximum
Abstract: An unstructured and tweetable abstract to be provided.
References: Referenced only if appropriate (Vancouver style).
Description: Open format. Make us laugh.

Letters to the Editor
Word limit: 400 words maximum
References: Maximum of 4 references (Vancouver style).
Figures/Tables: Combined maximum of 1 figure/table
Description: New Case Notes/Reports will now only be considered for publication as a Letter to the Editor. Please format as a Letter to the Editor as outlined above and remember that Clinical Trials must be registered with the appropriate governing body.

4. PREPARING A MANUSCRIPT FOR SUBMISSION

Parts of the Manuscript
The manuscript should be submitted in separate files: Title page; main text file; figures.

Title Page
The title page should contain (i) a short informative title that contains the major key words. The title should not contain abbreviations (ii) the type of manuscript (e.g. Original Article, Instructive Case, Editorial Correspondence: Case Note), (iii) the full names of the authors and (iv) the addresses of the institutions at which the work was carried out together with (v) the full postal and email address, plus telephone numbers, of the author to whom correspondence about the manuscript, proofs and requests for offprints should be sent. The present address of any author, if different from that where the work was carried out, should be supplied in a footnote. (v) Acknowledgements, (vi) Conflicts of interest.

Acknowledgements
The source of financial grants and other funding should be acknowledged, including a frank declaration of the authors’ industrial links and affiliations. The contribution of colleagues or institutions should also be acknowledged. Thanks to anonymous reviewers are not allowed. This is to be placed in the title page file only for blinding purposes.

Main Text
As papers are double-blind peer reviewed the main text file should not include any information that might identify the authors. The main text of the manuscript should be presented in the following order: (i) Abstract and key words, (ii) text, (iv) references, (v) tables (each table complete with title and footnotes), (vi) figure legends.

Abstract and Key Words
Please refer to the section ‘Manuscript Categories and Requirements’ for details about which article types require abstracts. The abstract should not contain abbreviations or references.

Key words should be taken from those recommended by the US National Library of Medicine's Medical Subject Headings (MeSH) browser list.

Text

Authors should use subheadings to divide the sections of their manuscript: Introduction, Materials and Methods, Results, Discussion.

Figures and Supporting Information should be submitted as separate files. Footnotes to the text are not allowed and any such material should be incorporated into the text as parenthetical matter. Photos that identify individuals where faces are visible, the eyes must be pixelated or have a coloured bar covering them for privacy.

Reference Style

Manuscripts are to follow the Vancouver style, as detailed in the International Committee of Medical Journal Editors' revised 'Uniform Requirements for Manuscripts Submitted to Biomedical Journals: Writing and Editing for Biomedical Publication', as presented at http://www.ICMJE.org.

In the text, references should be cited using superscript Arabic numerals in the order in which they appear. If cited only in tables or figure legends, number them according to the first identification of the table or figure in the text. In the reference list, the references should be numbered and listed in order of appearance in the text.

Cite the names of all authors when there are six or fewer; when there are seven or more list the first three followed by et al.

Names of journals should be abbreviated in the style used in Index Medicus.

Reference to unpublished data and personal communications should not appear in the list but should be cited in the text only (e.g. A Smith, unpubl. data, 2000).

Journal Article

Online Article not yet Published in an Issue

An online article that has not yet been published in an issue (therefore has no volume, issue or page numbers) can be cited by its Digital Object Identifier (DOI). The DOI will remain valid and allow an article to be tracked even after its allocation to an issue.

Book

Chapter in a Book

Tables

Tables should be self-contained and complement, but not duplicate, information contained in the text. Tables should be numbered consecutively in Arabic numerals. Tables should be presented at the end of the article file after the references with a comprehensive but concise legend above the table OR they can be placed into one separate file. Tables should be double-spaced and vertical lines should not be used to separate columns. Column headings should be brief, with units of measurement in parentheses; all abbreviations should be defined in footnotes. Footnote symbols: †, ‡, §, ¶ should be used (in that order) and *,**, *** should be reserved for P-values. Statistical measures such as SD or SEM should be identified in the headings. The table and its legend/footnotes should be understandable without reference to the text.

Preparing Figures
Although we encourage authors to send us the highest-quality figures possible, for peer-review purposes we are happy to accept a wide variety of formats, sizes, and resolutions. Do not provide separate files in a zip file, each figure must be uploaded separately as requested.

Do not provide separate files in a zip file. Each figure must be uploaded as a separate file and must be deidentified if there are human subjects included. Click here for the basic figure requirements for figures submitted with manuscripts for initial peer review, as well as the more detailed post-acceptance figure requirements.

Colour figures
Figures submitted in colour will be reproduced in colour online and in the journal issue free of charge.

Reproduction of Copyright Material
If excerpts from copyrighted works owned by third parties are included, credit must be shown in the contribution. It is the author’s responsibility to also obtain written permission for reproduction from the copyright owners. For more information visit Wiley’s Copyright Terms and Conditions FAQ.

Figure Legends
Legends should be concise but comprehensive – the figure and its legend must be understandable without reference to the text. Include definitions of any symbols used and define/explain all abbreviations and units of measurement.

Appendices
Appendices will be published after the references. For submission they should be supplied as a separate file and referred to in the text as ‘Supporting Information’.

Supporting Information
Supporting information is information that is not essential to the article but that provides greater depth and background. It is hosted online, and appears without editing or typesetting. It may include tables, figures, videos, datasets, etc. Click here for Wiley’s FAQs on Supporting Information.

Note, if data, scripts or other artefacts used to generate the analyses presented in the paper are available via a publicly available data repository, authors should include a reference to the location of the material within their paper.

General Style Points
The following points provide general advice on formatting and style.

Formatting: The main text file should be prepared using Microsoft Word, using 1.5 line spacing.

Spelling: The journal uses UK spelling and authors should therefore follow the latest edition of the Concise Oxford Dictionary.

Abbreviations: In general, terms should not be abbreviated unless they are used repeatedly and the abbreviation is helpful to the reader. Initially, use the word in full, followed by the abbreviation in parentheses. Thereafter use the abbreviation only.

Units of measurement: Measurements should be given in SI or SI-derived units. Visit the Bureau International des Poids et Mesures (BIPM) website for more information about SI units.

Numbers: Numbers under 10 are spelt out, except for: measurements with a unit (8mmol/l); age (6 weeks old), or lists with other numbers (11 dogs, 9 cats, 4 gerbils).

Equations: Equations should be numbered sequentially with Arabic numerals; these should be ranged right in parentheses. All variables should appear in italics. Use the simplest possible form for all mathematical symbols.

Trade Names: Chemical substances should be referred to by the generic name only. Trade names should not be used. Drugs should be referred to by their generic names. If proprietary drugs have been used in the study, refer to these by their generic name, mentioning the proprietary name and the name and location of the manufacturer in parentheses.

Resource Identification Initiative

The journal supports the Resource Identification Initiative, which aims to promote research resource identification, discovery, and reuse. This initiative, led by the Neuroscience Information Framework and
the [Oregon Health and Science University Library](https://library.ohsu.edu), provides unique identifiers for antibodies, model organisms, cell lines, and tools including software and databases. These IDs, called Research Resource Identifiers (RRIDs), are machine-readable and can be used to search for all papers where a particular resource was used and to increase access to critical data to help researchers identify suitable reagents and tools.

Authors are asked to use RRIDs to cite the resources used in their research where applicable in the text, similar to a regular citation or Genbank Accession number. For antibodies, authors should include in the citation the vendor, catalogue number, and RRID both in the text upon first mention in the Methods section. For software tools and databases, please provide the name of the resource followed by the resource website, if available, and the RRID. For model organisms, the RRID alone is sufficient.

Additionally, authors must include the RRIDs in the list of key words associated with the manuscript.

To Obtain Research Resource Identifiers

Use the [Resource Identification Portal](https://resourceidentification.org), created by the Resource Identification Initiative Working Group.

Search for the research resource (please see the section titled ‘Search Features and Tips’ for more information).

Click on the ‘Cite This’ button to obtain the citation and insert the citation into the manuscript text.

If there is a resource that is not found within the Portal, authors are asked to register the resource with the appropriate resource authority. Information on how to do this is provided in the ‘Resource Citation Guidelines’ section of the Portal.

If any difficulties in obtaining identifiers arise, please contact rii-help@scicrunch.org for assistance.

Example Citations:

Antibodies: Wnt3 was localized using a rabbit polyclonal antibody C64F2 against Wnt3 (Cell Signaling Technology, Cat# 2721S, RRID: AB_2215411).

Model Organisms: Experiments were conducted in c. elegans strain SP304 (RRID:CGC_SP304).

Cell lines: Experiments were conducted in PC12 CLS cells (CLS Cat# 500311/p701_PC-12, RRID:CVCL_0481).

Tools, Software and Databases: Image analysis was conducted with CellProfiler Image Analysis Software, V2.0 (http://www.cellprofiler.org, RRID:nif-0000-00280).

Wiley Author Resources

Manuscript Preparation Tips

Wiley has a range of resources for authors preparing manuscripts for submission available [here](https://authorservices.wiley.com). In particular, we encourage authors to consult Wiley’s best practice tips on [Writing for Search Engine Optimization](https://authorservices.wiley.com). Editing, Translation and Formatting Support

Wiley Editing Services can greatly improve the chances of a manuscript being accepted. Offering expert help in English language editing, translation, manuscript formatting, and figure preparation, Wiley Editing Services ensures that the manuscript is ready for submission.

5. EDITORIAL POLICIES AND ETHICAL CONSIDERATIONS

Peer Review and Acceptance

The acceptance criteria for all papers are the quality and originality of the research and its significance to journal readership. Except where otherwise stated, manuscripts are double-blind peer reviewed. Papers will only be sent to review if the Editor-in-Chief determines that the paper meets the appropriate quality and relevance requirements.

Wiley's policy on the confidentiality of the review process is available [here](https://authorservices.wiley.com).

MEDLINE evaluates a journal’s ethical policy by checking that journals ask submitting authors to provide three things: a declaration of conflict of interest (CoI), confirmation that informed consent was sought from test subjects, and that animal rights were taken into consideration. The reviewer will then check three things during the review:

Policy Exists: Is there evidence in the author guidelines that the journal requires that the appropriate ethical
requirements are followed?
Policy is Adequate: Is the policy appropriate for the journal? E.g. a review journal does not need to have a statement on human/animal rights or informed consent.
Policy Consistently Followed: Is there evidence in all the published articles that authors have declared their conflicts of interest and that appropriate procedures were followed when the research was conducted? This will be checked in the final published articles.
It is recommended that all articles include a statement regarding CoI, regardless of whether or not a CoI exists – for example, ‘The authors have stated explicitly that there are no conflicts of interest in connection with this article.’
There should be robust journal workflows in place to ensure all three criteria are met. Examples of failures would be: a journal that requires authors to declare that institutional review board (IRB) approval was sought for their research, but this is not communicated to the readers of the final article; journals that do require declarations of informed consent, but don't say so in the author guidelines; or journals that only publish statements when conflicts-of-interest were declared, and assume that all readers know omission means that there aren't any conflicts.

Human Studies and Subjects
For manuscripts reporting medical studies that involve human participants, a statement identifying the ethics committee that approved the study and confirmation that the study conforms to recognized standards is required, for example: Declaration of Helsinki; US Federal Policy for the Protection of Human Subjects; or European Medicines Agency Guidelines for Good Clinical Practice. It should also state clearly in the text that all persons gave their informed consent prior to their inclusion in the study.
Patient anonymity should be preserved. When detailed descriptions, photographs, or videos of faces or identifiable body parts are used that may allow identification, authors should obtain the individual's free prior informed consent. Authors do not need to provide a copy of the consent form to the publisher; however, in signing the author license to publish, authors are required to confirm that consent has been obtained. Wiley has a standard patient consent form available for use. Where photographs are used they need to be cropped sufficiently to prevent human subjects being recognized; black eye bars should not be used as they do not sufficiently protect an individual’s identity).

Animal Studies
A statement indicating that the protocol and procedures employed were ethically reviewed and approved, as well as the name of the body giving approval, must be included in the Methods section of the manuscript. Authors are encouraged to adhere to animal research reporting standards, for example the ARRIVE guidelines for reporting study design and statistical analysis; experimental procedures; experimental animals and housing and husbandry. Authors should also state whether experiments were performed in accordance with relevant institutional and national guidelines for the care and use of laboratory animals:
US authors should cite compliance with the US National Research Council's Guide for the Care and Use of Laboratory Animals, the US Public Health Service's Policy on Humane Care and Use of Laboratory Animals, and Guide for the Care and Use of Laboratory Animals.
UK authors should conform to UK legislation under the Animals (Scientific Procedures) Act 1986 Amendment Regulations (SI 2012/3039).
European authors outside the UK should conform to Directive 2010/63/EU.

Clinical Trial Registration
The journal requires that clinical trials are prospectively registered in a publicly accessible database and clinical trial registration numbers should be included in all papers that report their results. Authors are asked to include the name of the trial register and the clinical trial registration number at the end of the abstract. If the trial is not registered, or was registered retrospectively, the reasons for this should be explained.

Research Reporting Guidelines
Accurate and complete reporting enables readers to fully appraise research, replicate it, and use it. Authors are encouraged to adhere to recognised research reporting standards. The EQUATOR Network collects more than 370 reporting guidelines for many study types, including for:

Randomised trials: CONSORT
Observational studies: STROBE
Systematic reviews: PRISMA
Case reports: CARE
Qualitative research: SRQR
Diagnostic/Prognostic studies: STARD
Quality improvement studies: SQUIRE
Economic evaluations: CHEERS
Animal pre-clinical studies: ARRIVE
Study protocols: SPIRIT
Clinical practice guidelines: AGREE

We also encourage authors to refer to and follow guidelines from:
Future of Research Communications and e-Scholarship (FORCE11)
National Research Council's Institute for Laboratory Animal Research guidelines

The Gold Standard Publication Checklist from Hooijmans and colleagues
Minimum Information guidelines from Diverse Bioscience Communities (MIBBI) website
FAIRsharing website

Species Name
Upon its first use in the title, abstract, and text, the common name of a species should be followed by the scientific name (genus, species, and authority) in parentheses. For well-known species, however, scientific names may be omitted from article titles. If no common name exists in English, only the scientific name should be used.

Genetic Nomenclature
Sequence variants should be described in the text and tables using both DNA and protein designations whenever appropriate. Sequence variant nomenclature must follow the current HGVS guidelines; see varnomen.hgvs.org, where examples of acceptable nomenclature are provided.

Sequence Data
Nucleotide sequence data can be submitted in electronic form to any of the three major collaborative databases: DDBJ, EMBL, or GenBank. It is only necessary to submit to one database as data are exchanged between DDBJ, EMBL, and GenBank on a daily basis. The suggested wording for referring to accession-number information is: ‘These sequence data have been submitted to the DDBJ/EMBL/GenBank databases under accession number U12345’. Addresses are as follows:
DNA Data Bank of Japan (DDBJ): www.ddbj.nig.ac.jp
EMBL Nucleotide Archive: ebi.ac.uk/ena

Proteins sequence data should be submitted to either of the following repositories:
Protein Information Resource (PIR): pir.georgetown.edu
SWISS-PROT: expasy.ch/sprot/sprot-top

Structural Data
For papers describing structural data, atomic coordinates and the associated experimental data should be deposited in the appropriate databank (see below). Please note that the data in databanks must be released, at the latest, upon publication of the article. We trust in the cooperation of our authors to ensure that atomic coordinates and experimental data are released on time.
Organic and organometallic compounds: Crystallographic data should not be sent as Supporting Information, but should be deposited with the Cambridge Crystallographic Data Centre (CCDC; ccdc.cam.ac.uk/services/structure%5Fdeposit)

Inorganic compounds: Fachinformationszentrum Karlsruhe (FIZ; fiz-karlsruhe.de)

Proteins and nucleic acids: Protein Data Bank (rcsb.org/pdb)

NMR spectroscopy data: BioMagResBank (bmrbr.wisc.edu)

Conflict of Interest

The journal requires that all authors disclose any potential sources of conflict of interest. Any interest or relationship, financial or otherwise that might be perceived as influencing an author's objectivity is considered a potential source of conflict of interest. These must be disclosed when directly relevant or directly related to the work that the authors describe in their manuscript. Potential sources of conflict of interest include, but are not limited to: patent or stock ownership, membership of a company board of directors, membership of an advisory board or committee for a company, and consultancy for or receipt of speaker's fees from a company. The existence of a conflict of interest does not preclude publication. If the authors have no conflict of interest to declare, they must also state this at submission. It is the responsibility of the corresponding author to review this policy with all authors and collectively to disclose with the submission ALL pertinent commercial and other relationships.

Funding

Authors should list all funding sources in the Acknowledgments section. Authors are responsible for the accuracy of their funder designation. If in doubt, please check the Open Funder Registry for the correct nomenclature: https://www.crossref.org/services/funder-registry/

Authorship

The journal follows the ICMJE definition of authorship, which indicates that authorship be based on the following 4 criteria:

Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; AND

Drafting the work or revising it critically for important intellectual content; AND

Final approval of the version to be published; AND

Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

In addition to being accountable for the parts of the work he or she has done, an author should be able to identify which co-authors are responsible for specific other parts of the work. In addition, authors should have confidence in the integrity of the contributions of their co-authors.

All those designated as authors should meet all four criteria for authorship, and all who meet the four criteria should be identified as authors. Those who do not meet all four criteria should be acknowledged. These authorship criteria are intended to reserve the status of authorship for those who deserve credit and can take responsibility for the work. The criteria are not intended for use as a means to disqualify colleagues from authorship who otherwise meet authorship criteria by denying them the opportunity to meet criterion #s 2 or 3. Therefore, all individuals who meet the first criterion should have the opportunity to participate in the review, drafting, and final approval of the manuscript.

Data Sharing and Data Accessibility

The journal encourages authors to share the data and other artefacts supporting the results in the paper by archiving it in an appropriate public repository. Authors should include a data accessibility statement, including a link to the repository they have used, in order that this statement can be published alongside their paper.

Human Subject Information in Databases

The journal refers to the World Health Medical Association Declaration of Taipei on Ethical Considerations Regarding Health Databases and Biobanks.

Publication Ethics
This journal is a member of the Committee on Publication Ethics (COPE). Note this journal uses iThenticate’s CrossCheck software to detect instances of overlapping and similar text in submitted manuscripts. Read Wiley’s Top 10 Publishing Ethics Tips for Authors [here](#). Wiley’s Publication Ethics Guidelines can be found [here](#).

ORCID

As part of the journal’s commitment to supporting authors at every step of the publishing process, the journal requires the submitting author (only) to provide an ORCID iD when submitting a manuscript. This takes around 2 minutes to complete. Find more information [here](#).

6. AUTHOR LICENSING

If a paper is accepted for publication, the author identified as the formal corresponding author will receive an email prompting them to log in to Author Services, where via the Wiley Author Licensing Service (WALS) they will be required to complete a copyright license agreement on behalf of all authors of the paper.

Authors may choose to publish under the terms of the journal’s standard copyright agreement, or **OnlineOpen** under the terms of a Creative Commons License.

General information regarding licensing and copyright is available [here](#). To review the Creative Commons License options offered under OnlineOpen, please click [here](#). (Note that certain funders mandate a particular type of CC license be used; to check this please click [here](#).)

Self-Archiving Definitions and Policies

Note that the journal’s standard copyright agreement allows for self-archiving of different versions of the article under specific conditions. Please click [here](#) for more detailed information about self-archiving definitions and policies.

Open Access Fees

Authors who choose to publish using OnlineOpen will be charged a fee. A list of Article Publication Charges for Wiley journals is available [here](#).

Funder Open Access

Please click [here](#) for more information on Wiley’s compliance with specific Funder Open Access Policies.

7. PUBLICATION PROCESS AFTER ACCEPTANCE

Accepted Article Received in Production

When an accepted article is received by Wiley’s production team, the corresponding author will receive an email asking them to login or register with Wiley Author Services. The author will be asked to sign a publication license at this point.

Proofs

Once the paper is typeset, the author will receive an email notification with full instructions on how to provide proof corrections.

Please note that the author is responsible for all statements made in their work, including changes made during the editorial process—authors should check proofs carefully. Note that proofs should be returned within 48 hours from receipt of first proof.

Early View

The journal offers rapid publication via Wiley’s Early View service. Early View (Online Version of Record) articles are published on Wiley Online Library before inclusion in an issue. Note there may be a delay after corrections are received before the article appears online, as Editors also need to review proofs. Once the article is published on Early View, no further changes to the article are possible. The Early View article is fully citable and carries an online publication date and DOI for citations.

8. POST PUBLICATION

Access and Sharing

When the article is published online:

The author receives an email alert (if requested).
The link to the published article can be shared through social media.

The author will have free access to the paper (after accepting the Terms & Conditions of use, they can view the article).

For non-open access articles, the corresponding author and co-authors can nominate up to ten colleagues to receive a publication alert and free online access to the article.

Promoting the Article

To find out how to best promote an article, click here.

Measuring the Impact of an Article

Wiley also helps authors measure the impact of their research through specialist partnerships with Kudos and Altmetric.

9. EDITORIAL OFFICE CONTACT DETAILS

Martha Rundell, Editorial Office
Journal of Paediatrics and Child Health
Email: jpc.eo@wiley.com
Tel: +61 3 9274 3167

Wiley
155 Cremorne Street
Richmond, Victoria 3121
Australia

Guidelines updated 10 September 2019