CYSTIC FIBROSIS IN BLACK AFRICAN CHILDREN IN SOUTH AFRICA: A CASE CONTROL STUDY

BY

SANDRA KWARTENG OWUSU

Student Number KWRSAN001

SUBMITTED TO THE

UNIVERSITY OF CAPE TOWN

MPHIL (PAEDIATRIC PULMONOLOGY)

FACULTY OF HEALTH SCIENCES

UNIVERSITY OF CAPE TOWN

Supervisor: Dr Marco Zampoli

Division of Paediatric Pulmonology

Red Cross War Memorial Children’s Hospital

University of Cape Town

Co-Supervisor – (1) Associate Professor Aneesa Vanker

Division of Paediatric Pulmonology

Red Cross War Memorial Children’s Hospital

University of Cape Town

Co-Supervisor – (2) Associate Professor Diane Gray

Division of Paediatric Pulmonology

Red Cross War Memorial Children’s Hospital

University of Cape Town
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
TABLE OF CONTENTS

CYSTIC FIBROSIS IN BLACK AFRICAN CHILDREN IN SOUTH AFRICA: A CASE CONTROL STUDY 1

TABLE OF CONTENTS .. 2

DECLARATION ... 3

ABSTRACT .. 4

 BACKGROUND .. 4
 METHODS ... 4
 RESULTS ... 4
 CONCLUSION .. 4

ACKNOWLEDGEMENTS ... 5

LIST OF TABLES .. 6

LIST OF FIGURES ... 7

ABBREVIATIONS .. 8

CHAPTER 1: ACCEPTED FOR PUBLICATION FORMAT .. 9

CYSTIC FIBROSIS IN BLACK AFRICAN CHILDREN IN SOUTH AFRICA: A CASE CONTROL STUDY 9

 INTRODUCTION ... 10
 METHODS .. 11
 Study design and setting .. 11
 Study population .. 11
 Clinical information at diagnosis ... 12
 Outcomes ... 12
 Statistical analysis .. 12
 RESULTS .. 13
 Demographic and clinical information at diagnosis .. 13
 Outcomes ... 16
 DISCUSSION ... 18

REFERENCES ... 21

APPENDIX 1: DATA GATHERING FORM .. 24

APPENDIX 2: DEPARTMENTAL REVIEWER COMMENTS .. 29

APPENDIX 3: ETHIC APPROVAL, UCT .. 31

APPENDIX 4: ETHICS APPROVAL, WITS UNIVERSITY ... 32

APPENDIX 5: AUTHOR’S GUIDELINES .. 34

APPENDIX 6: REVIEWER COMMENTS ... 44
DECLARATION

I, Dr. Sandra Kwarteng Owusu (student number - KWRSAN001), hereby declare that the work on which this thesis is based, is my original work (except where acknowledgements indicate otherwise) and that neither the whole work nor any part of it has been, is being, or is to be submitted for another degree in this or any other university.
I empower the university to reproduce for the purpose of research either the whole or any portion of the contents in any manner whatsoever.

Signature [Signed by candidate]

Date: 25th October, 2019
ABSTRACT

Background

Cystic fibrosis (CF) is described more commonly in Caucasian populations in whom p.Phe508del is the most common mutation. There is a paucity of data of CF in black African children. The aim of this study was to describe and compare the presentation and outcomes of black African children with CF to those with p.Phe508del genotype.

Methods

A retrospective case-controlled study was conducted from January 2000 – March 2018 of children with CF attending two CF centres in South Africa. Presentation, genotype, nutrition and pulmonary function outcomes of black African children were compared to matched controls with the p.Phe508del mutation.

Results

Thirty-four black African children (cases) with median age of diagnosis (5.5 months, IQR 2.0-15.0) were matched to 34 controls. Among cases, 3120+1G->A CFTR mutation was most commonly identified; homozygous n=22 (64.7%) and heterozygous=7(20.5%). Compared to controls, cases at diagnosis were more malnourished and fewer presented with neonatal bowel obstruction [cases n=2 (5.9%) vs. controls n=10 (29.4%); p = 0.03]. Nutrition and pulmonary function (FEV1 in children ≥ 6 years) outcomes and changes over time from ages 3-16 years were similar in both groups; median FEV1 z-score at age 6,10 and 14 years was -0.9 (±1.5), -1.8 (±2.0) and -1.8 (±1.9) respectively for all patients. Deaths were recorded in three cases (8.8%) and one control (2.9%) (p = 0.6).

Conclusion

Black African children with CF were more malnourished at diagnosis, and fewer presented with neonatal bowel obstruction. Cases and controls had comparable nutritional, pulmonary function and early mortality outcomes.
ACKNOWLEDGEMENTS

My sincere appreciation goes to my supervisor, mentor and head of the Paediatric Cystic fibrosis Clinic at the Red Cross War Memorial Children’s Hospital, Dr. Marco Zampoli for his support and mentorship during my fellowship training and more especially for his leadership role during the development of the concept the conduct and the final write up of the study.

My thanks also go to Associate Professor Brenda Marrow for the immense support she offered with statistics and the final write -up. I am also grateful to the entire Cystic Fibrosis team Susan Klugman and Associate Professor Debbie White at the Charlotte Makeze Academic Hospital, Johannesburg.

I will also like to acknowledge the support of my supporting supervisors Associate Professors Diane Gray and Aneesa Vanker for the support they offered at various stages of this research work.

I am indebted to the African Paediatric Fellowship(APFP) for the award that provided the platform for my fellowship training at the Red Cross War Memorial Children’s Hospital. I am grateful to the entire APFP administrative staff and Avril Du Preez for their massive support and daily encouragement.

I would like to thank the University of Cape Town and the National Research Foundation (NRF) of South Africa for the grant of 17800 ZAR which supported the travel to Johannesburg for the data collection.

Finally, my sincere thanks goes to my Husband Richard, our children Breanna, Jesse and Jayden, for their love encouragement and support offered me during my training.
LIST OF TABLES
Table 1: Demographic and clinical information of cases and controls at time of CF diagnosis and during follow-up period. .. 13
Table 2: Details of early mortality cases.. 18
LIST OF FIGURES

Figure 1: Changes in mean BMI Z score over the study period between cases and controls.
Anova current effect $F (7, 7) = 0.14; p = 0.99.$.. 16

Figure 2: Change in mean HAZ throughout the study period in cases and controls. Anova current
effect $F (7, 21) = 0.79; p = 0.6.$.. 17

Figure 3: Change in mean WAZ from diagnosis to age 10. Anova current effect $F (5, 30) = 0.65;
p = 0.7$.. 17
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF</td>
<td>Cystic Fibrosis</td>
</tr>
<tr>
<td>CFTR</td>
<td>Cystic Fibrosis Transmembrane Conductance Regulator</td>
</tr>
<tr>
<td>RWMCH</td>
<td>Red Cross War Memorial Children’s Hospital</td>
</tr>
<tr>
<td>CMJAH</td>
<td>Charlotte Maxeke Johannesburg Academic Hospital</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
<tr>
<td>SA</td>
<td>South Africa</td>
</tr>
<tr>
<td>WAZ</td>
<td>Weight for age Z-score</td>
</tr>
<tr>
<td>HAZ</td>
<td>Height-for-age Z score</td>
</tr>
<tr>
<td>WFHZ</td>
<td>Weight for height Z score</td>
</tr>
<tr>
<td>SAM</td>
<td>Severe acute malnutrition</td>
</tr>
<tr>
<td>PI</td>
<td>Pancreatic Insufficient</td>
</tr>
<tr>
<td>FEVI</td>
<td>Forced Expiratory volume in the first second</td>
</tr>
<tr>
<td>BMI</td>
<td>Body mass index</td>
</tr>
<tr>
<td>PERT</td>
<td>Pancreatic Enzyme Replacement Therapy</td>
</tr>
<tr>
<td>HIV</td>
<td>Human immunodeficiency virus</td>
</tr>
<tr>
<td>ADHD</td>
<td>Attention deficit hyperactivity disorder</td>
</tr>
<tr>
<td>SA</td>
<td>Staphylococcus aureus</td>
</tr>
<tr>
<td>PA</td>
<td>Pseudomonas aeruginosa</td>
</tr>
<tr>
<td>GLI</td>
<td>Global Lung Initiative</td>
</tr>
<tr>
<td>SES</td>
<td>Socio economic status</td>
</tr>
<tr>
<td>NRF</td>
<td>National Research Foundation.</td>
</tr>
</tbody>
</table>
CHAPTER 1: ACCEPTED FOR PUBLICATION FORMAT
CYSTIC FIBROSIS IN BLACK AFRICAN CHILDREN IN SOUTH AFRICA: A CASE CONTROL STUDY

Sandra Kwarteng Owusu a,d, Brenda M. Morrow c, Debbie White b, Susan Klugman b, Aneesa Vanker a, Diane Gray a, Marco Zampoli,

a. Division of Paediatric Pulmonology, Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town South Africa
b. Department of Paediatric Pulmonology, Charlotte Maxeke Johannesburg Academic Hospital, Faculty of Health Sciences, University of the Witwatersrand South Africa
c. Department of Paediatrics and Child Health, University of Cape Town South Africa
d. Department of Child Health and Paediatrics, Komfo Anokye Teaching Hospital Kumasi Ghana.

Corresponding Author: Marco Zampoli, Division of Paediatric Pulmonology, Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town South Africa. Telephone +27 83 320 8088
Email m.zampoli@uct.ac.za

Background: Cystic fibrosis (CF) is described more commonly in Caucasian populations in whom p.Phe508del is the most common mutation. There is a paucity of data of CF in black African children. The aim of this study was to describe and compare the presentation and outcomes of black African children with CF to those with p.Phe508del genotype.

Methods: A retrospective case-controlled study was conducted from January 2000 – March 2018 of children with CF attending two CF centres in South Africa. Presentation, genotype, nutrition and pulmonary function outcomes of black African children were compared to matched controls with the p.Phe508del mutation.

Results: Thirty-four black African children (cases) with median age of diagnosis (5.5 months, IQR 2.0-15.0) were matched to 34 controls. Among cases, 3120+1G→A CFTR mutation was most commonly identified; homozygous n=22 (64.7%) and heterozygous=7(20.5%). Compared to controls, cases at diagnosis were more malnourished and fewer presented with neonatal bowel obstruction [cases n=2 (5.9%) vs. controls n=10 (29.4%); p = 0.03]. Nutrition and pulmonary function (FEV1 in children ≥ 6 years) outcomes and changes over time from ages 3-16 years were similar in both groups; median FEV1 z-score at age 6,10 and 14 years was -0.9 (±1.5), -1.8 (±2.0) and -1.8 (±1.9) respectively for all patients. Deaths were recorded in three cases (8.8%) and one control (2.9%) (p = 0.6).
Conclusion: Black African children with CF were more malnourished at diagnosis, and fewer presented with neonatal bowel obstruction. Cases and controls had comparable nutritional, pulmonary function and early mortality outcomes.

Key Words

Cystic Fibrosis, Black African children, South Africa,

Introduction

Cystic fibrosis (CF), is a severe life-limiting, autosomal recessive disorder identified in 1938(1). CF is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene located on chromosome 7q31.2. Currently six classes of CFTR mutations have been described. The first three mutations are associated with severe CF disease, this is due to complete absence of CFTR protein on the cell wall of epithelial cells or complete lack of function although present. The most common mutation worldwide is the pPhdel508 mutation a class two mutation in which CFTR protein that is produced is abnormally folded and gets destroyed by the endoplasmic reticulum. This is a mis sense amino acid deletion. (2) The CFTR gene plays a primary role in chloride and bicarbonate transport with secondary effect on sodium transport (3,4). Severity of CF depends partly on the class of CFTR mutation, however genotype-phenotype correlates suggest additional genetic factors such as complex alleles, modifier genes and epigenetic factors significantly influence the phenotypic expression of CF(5). Cystic fibrosis is more prevalent among populations of European descent where the most commonly occurring mutation is p.Phe508del. Among non-Caucasian populations, a wide range of mutations has been reported with p.Phe508del mutation occurring less commonly. Cystic fibrosis is less prevalent among populations of African ancestry and has been sporadically reported in Kenya, South Africa(6,7)and more recently in Sudan and Brazil(8,9). The reported incidence of CF is 1 in 15,100 among African Americans (10). The true incidence of CF in sub-Saharan African is unknown (11).

Due to markedly improved knowledge on cystic fibrosis disease entities over the past six decades the median age of survival has increased from a few months to more than 40 years in advanced countries. In the past death from CF was as a result of meconium ileus and malnutrition secondary to pancreatic malabsorption.(12–14). In the 21st century death occurs mainly from respiratory failure in individuals who have not undergone lung transplant. The major achievements in life expectancy has been due to early institution of airway clearance techniques, aggressive management of airway infections and addressing nutritional deficits(3,15,16).

The 3120+1G→A mutation was first reported by Macek and colleagues (17) among a small group of African Americans with CF. Subsequently it was also reported among South Africans by Carles et al(18). The 3120+1G→A mutation, is a severe class I nonsense mutation(19) and accounts for up to 14% of CF mutation in African Americans and native Africans(17). There are few and conflicting reports of the spectrum of CF phenotypes in African children. In a previous case series,
people with the 3120+1G->A mutation were noted to have mild sinopulmonary symptoms and many presented with abdominal symptomatology, especially meconium ileus (20). By contrast, in a comparative study between black and white American patients with CF, meconium ileus was reported less commonly in the black individuals (21). Masekela et al, in a South African study, reported failure to thrive and protein energy malnutrition as common presentations of CF in individuals with 3120+1G->A mutation. All were pancreatic insufficient and acquired *Pseudomonas aeruginosa* airway infection by their second year of life (22). Pulmonary function outcomes were noted to be poorer in black patients with CF compared to Caucasian patients in the study by Hamosh et al (21).

Cystic fibrosis has been extensively studied and characterised among Caucasians outside South Africa (23)(24) and also among Caucasians in South Africa(11)(25). Although awareness among clinicians of the existence of CF in black African children is improving, there remains a paucity of data on CF disease in black Africans(26).Improved knowledge of CF in African populations may lead to earlier diagnosis and improved outcomes. The primary aim of this study was therefore to compare the genotype, clinical presentation, pulmonary function and nutritional outcomes in black African children diagnosed with CF in SA to matched cases with p.Phe508del genotype. We hypothesized that genotype would be different but presentation and clinical outcomes would be similar.

Methods

Study design and setting

A retrospective case-control study (1:1 ratio) was conducted to compare CF disease in black African children and children with the p. Phe508del *CFTR* mutation. The study was conducted in two paediatric CF centres in SA: Red Cross War Memorial Children’s Hospital (RWMCH), Cape Town, and Charlotte Maxeke Johannesburg Academic Hospital (CMJAH) in Johannesburg. The study was approved by Human Research Ethics committees of the University of Cape Town (HREC 586/2017) and University of the Witwatersrand (Protocol M171149). The requirement for obtaining informed consent was waived as this was a retrospective study.

Study population.

All black African children diagnosed with CF between 1 January 2000 and 31 March 2018, were included. The diagnosis of CF during the study period was confirmed on international CF Foundation consensus criteria: phenotypical manifestations of CF, or a family history of CF and either i) two known disease-causing CFTR mutations identified or ii) two positive sweats tests (sweat chloride > 60 mmol/L)(27). In circumstances where sweat chloride measurements were not available, a diagnosis of CF was considered likely if at least two sweat conductivity tests were > 80mmol/L in the presence of phenotypic manifestation compatible with CF. *CFTR* mutation panel testing most widely available in South Africa during the study period was Elucigene CF29v2 (Elucigene Diagnostics, Manchester, UK). Further testing in some cases was performed independently where financial resources were available.
Matched controls homozygous with p.Phe508del CFTR mutation were identified from medical records at the respective CF centres using the same CF diagnosis criteria. Children heterozygous with p.Phe508del CFTR mutation and another mutation (excluding 3120+1G>A) were selected as controls if no suitable p.Phe508del homozygous control was identified. Index cases were further matched with controls according to the following criteria: diagnosis age (within 12 calendar months); gender; and year of diagnosis (within 12 calendar months).

Clinical information at diagnosis

Data was extracted from the medical records and existing local CF clinic databases from the two study sites. Demographic and country of origin details, genotype and sweat test information was recorded for cases and matched controls. The modes of presentation at the time of diagnosis, including presence of neonatal bowel obstruction, family history of CF, predominantly respiratory disease, predominantly gastrointestinal disease or both were recorded. The World Health Organisation’s (WHO) Anthro or Anthro Plus calculator (version 3.22 January 2011) was used to calculate weight-for-age (WAZ); height-for-age (HAZ) and weight for height (WFHZ) z-scores and body mass index (BMI) and BMI z-scores for children under and over 6 years of age respectively. All anthropometric measurements were standardly taken at the time of diagnosis and at subsequent follow-up visits. Participants with faecal elastase level <200ug/ml or those on pancreatic enzyme replacement therapy (PERT) due to steatorrhea symptoms were classified as pancreatic insufficient (PI).

Outcomes

Best calendar-year annual measurements of weight and height were documented for each study participant at ages 1, 3, 6, 8, 10, 12, 14 and 16 years, where available and applicable. Corresponding best annual pre-bronchodilator forced expiratory flow in one second (FEV1) for participants six years and older was also documented. Ethnic-specific Global Lung Initiative (GLI) equations for were applied to calculate FEV1 Z-scores for age (28).

The age at first documented Pseudomonas aeruginosa infection was recorded as well as age of chronic P.aeruginosa infection as per the modified Leeds’s classification (29). Similar information on Staphylococcus aureus airway infection was also recorded. Mortality outcomes and causes of death were documented where information was available.

Statistical analysis

Data were tested for normality using the Shapiro-Wilks W test, and variables are presented throughout as median (interquartile range, IQR) or n (%) as appropriate for non-normally distributed data, and as mean ± standard deviation (SD) for normally distributed data. Comparisons between cases and controls were conducted using Mann-Whitney U or t-tests for independent variables for continuous variables, and chi square tests (with Yates correction where applicable) for categorical variables. Repeated measures analysis was conducted using ANOVA (one- way and between- and within-groups designs) for measures of lung function and nutritional status at different time periods, after testing for normality of residual distribution. A p-value of less than
0.05 was regarded as statistically significant. Statistica version 12 (StatSoft, USA) was used for analysis.

Results

Demographic and clinical information at diagnosis

Thirty-four (n=21; 61.8% male) black African children (cases), matched to 34 controls, were recruited from the two CF centres: 15 cases and controls from RCWMCH and 19 cases and controls from CMJAH. Median age of diagnosis (5.5 months, IQR 2.0-15.0), and pancreatic insufficiency status (n=59, 86.8%) was similar in cases and controls (Table 1).

The most common CFTR mutation identified in cases was 3120+1G>A, identified in either homozygous or heterozygous state in 23 (67.6%) and 6 (17.6%) cases respectively with an allele frequency of 55/68 (81%); in one case the two mutations identified were Gly458Val/p.Ser466X, and four cases (11.8%) had no mutations identified (Table 1). Among the six cases who were heterozygous for the 3120+1G>A mutation, there were three cases in whom the second mutation could not be identified, two cases with c.1585.3T>G and one with p.Arg792X as the second mutation. Five cases were children of parents originating from other African countries.

Compared to controls, cases at diagnosis were significantly more malnourished, with lower BMI-Z, WAZ, HAZ, and WFHZ scores (Table 1). Mode of presentation was similar except that cases were significantly less likely to present with neonatal bowel obstruction (Table 1).

Table 1: Demographic and clinical information of cases and controls at time of CF diagnosis and during follow-up period.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Cases (n=34) n (%)</th>
<th>Controls (n=34) n (%)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at diagnosis months (median, IQR)</td>
<td>5.0 (2.0 – 15.0)</td>
<td>6.0 (3.0 – 15.0)</td>
<td>1</td>
</tr>
<tr>
<td>Male gender</td>
<td>21 (61.7)</td>
<td>17(50.0)</td>
<td>0.7</td>
</tr>
<tr>
<td>Country of origin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA</td>
<td>29 (85.2)</td>
<td>34(100)</td>
<td>0.2</td>
</tr>
<tr>
<td>Ghana</td>
<td>1(2.9)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Malawi</td>
<td>2(5.9)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>1(2.9)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mozambique</td>
<td>1(2.9)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Variable</td>
<td>Cases (n=34) n (%)</td>
<td>Controls (n=34) n (%)</td>
<td>P-value</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------------------</td>
<td>-----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Sweat chloride mmol/L</td>
<td>111.8 ± 19.0 (n=11)</td>
<td>108.8 ± 11.6 (n=15)</td>
<td>0.6</td>
</tr>
<tr>
<td>Sweat conductivity mmol/L</td>
<td>103.2 ± 30.5 (n=12)</td>
<td>101.9 ± 38.0 (n=8)</td>
<td>0.7</td>
</tr>
<tr>
<td>CFTR mutations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p.Phe508del homozygous</td>
<td>0</td>
<td>25(73.5)</td>
<td></td>
</tr>
<tr>
<td>p.Phe508del heterozygous</td>
<td>0</td>
<td>9(26.5)</td>
<td></td>
</tr>
<tr>
<td>3120+1G->A homozygous</td>
<td>23 (67.6)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3120+1G->A heterozygous</td>
<td>6 (17.6)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pancreatic insufficient</td>
<td>n=30 (88.2%)</td>
<td>n=29 (85.3%)</td>
<td>1</td>
</tr>
<tr>
<td>Nutritional status at diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI-Z</td>
<td>-3.1 ± 2.2</td>
<td>-1.2 ± 3.2</td>
<td>0.009</td>
</tr>
<tr>
<td>WAZ</td>
<td>-4.3 ± 2.0</td>
<td>-2.6 ± 1.9</td>
<td>0.0008</td>
</tr>
<tr>
<td>HAZ</td>
<td>-3.5 ± 2.5</td>
<td>-2.1 ± 2.2</td>
<td>0.02</td>
</tr>
<tr>
<td>WFHZ</td>
<td>-3.0 ± 2.1</td>
<td>-1.6 ±2.2</td>
<td>0.02</td>
</tr>
<tr>
<td>FEV1 Z score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 6</td>
<td>-0.9 ± 1.9</td>
<td>-0.9 ± 1.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Age 10</td>
<td>-2.8 ± 2.05</td>
<td>-1.1 ±1.3</td>
<td>0.08</td>
</tr>
<tr>
<td>Age 14</td>
<td>-1.4 ± 1.3</td>
<td>-2.3 ± 2.6</td>
<td>0.2</td>
</tr>
<tr>
<td>Presenting symptoms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable</td>
<td>Cases (n=34) n (%)</td>
<td>Controls (n=34) n (%)</td>
<td>P-value</td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
<td>-----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Predominantly respiratory</td>
<td>7(20.5)</td>
<td>7(21.9)</td>
<td>0.8</td>
</tr>
<tr>
<td>Predominantly GIT*</td>
<td>9(26.47)</td>
<td>4(12.5)</td>
<td>0.6</td>
</tr>
<tr>
<td>Combined GIT* and respiratory</td>
<td>16(47.1)</td>
<td>9(28.2)</td>
<td>0.1</td>
</tr>
<tr>
<td>Neonatal bowel obstruction</td>
<td>2(5.9)</td>
<td>10(31.3)</td>
<td>0.03</td>
</tr>
<tr>
<td>Family history/neonatal screening</td>
<td>0</td>
<td>2(6.3)</td>
<td>0.4</td>
</tr>
<tr>
<td>Airway infections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ever PA infection</td>
<td>21(61.7)</td>
<td>24(70.6)</td>
<td>0.6</td>
</tr>
<tr>
<td>Ever SA infection</td>
<td>26(76.5)</td>
<td>31(91.2)</td>
<td>0.2</td>
</tr>
<tr>
<td>Age at first PA (median, IQR)</td>
<td>11 (5.5 – 48.5)</td>
<td>22.0 (12.0 – 32.0)</td>
<td>0.7</td>
</tr>
<tr>
<td>Chronic PA infection</td>
<td>6 (17.6)</td>
<td>5 (14.7)</td>
<td>1</td>
</tr>
<tr>
<td>Other significant infections</td>
<td>16 (47.1)</td>
<td>20(58.8)</td>
<td>0.5</td>
</tr>
<tr>
<td>Comorbid conditions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning difficulties</td>
<td>2(5.9)</td>
<td>1(2.9)</td>
<td></td>
</tr>
<tr>
<td>ADHD</td>
<td>0</td>
<td>3 (8.8)</td>
<td></td>
</tr>
<tr>
<td>Congenital heart disease</td>
<td>1(2.9)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HIV exposed</td>
<td>2(5.9)</td>
<td>1(2.9)</td>
<td></td>
</tr>
<tr>
<td>Gunshot injury to abdomen</td>
<td>1(2.9)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Deaths</td>
<td>3(21.4)</td>
<td>1(7.1)</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Legend: IQR- Interquartile range, WAZ- Weight for age Z-score, HAZ Height for age Z-score, WFAZ-Weight for age Z-score, BMIZ-Body mass index, GIT-Gastro intestinal, ADHD-Attention deficit Hyper activity disorder, HIV-Human immunodeficiency virus: SA-Staphylococcus aureus ; PA- Pseudomonas aeruginosa; Categorical data are presented as n (%) and continuous data as mean ± SD unless otherwise indicated; * CFTR variants of unknown clinical significance or not reported in CFTR2 database.
Outcomes

Although nutritional status was significantly poorer at diagnosis in cases compared to controls (Table 1), there were no significant differences between groups in the change over time (Figures 1-3) and by three years of age there was no longer a significant difference in nutritional status between groups, for any outcome measures (BMI Z score, HAZ or WAZ).

There were no differences between groups in the change of FEV1 over time (p = 0.5); and there were also no differences in FEV1 Z scores between groups at specific ages (Table 1). Median age (15.0 months, IQR 7.0-32.0) of first documented *P.aeruginosa* infection and prevalence (n=11, 16%) of chronic *P.aeruginosa* infection was similar in cases and controls (Table 1).

There were three early (8.8%) deaths among cases (two with shock and respiratory failure, and one of unknown cause) and one (2.9%) early death in the control group, due to severe malnutrition and sepsis at the time of diagnosis (Table 2).

![Figure 1: Changes in mean BMI Z score over the study period between cases and controls. Anova current effect F (7,7) = 0.14; p = 0.99.](image-url)
Figure 2: Change in mean HAZ throughout the study period in cases and controls. Anova current effect F (7, 21) = 0.79; p = 0.6.

Figure 3: Change in mean WAZ from diagnosis to age 10. Anova current effect F (5, 30) = 0.65; p = 0.7.
Table 2: Details of early mortality cases

<table>
<thead>
<tr>
<th></th>
<th>Patient 1</th>
<th>Patient 2</th>
<th>Patient 3</th>
<th>Patient 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case/Control</td>
<td>Case</td>
<td>Case</td>
<td>Case</td>
<td>Control</td>
</tr>
<tr>
<td>Sex</td>
<td>Male</td>
<td>Female</td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>Affected Sibling</td>
<td>Unknown</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year of presentation</td>
<td>2005</td>
<td>2007</td>
<td>2009</td>
<td>2008</td>
</tr>
<tr>
<td>Age at presentation</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>(months)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at the time of death</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>(months)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode of presentation</td>
<td>*SAM/Recurrent Pneumonia</td>
<td>SAM</td>
<td>SAM/Recurrent Pneumonia</td>
<td>Family History</td>
</tr>
<tr>
<td>Sweat chloride</td>
<td>120</td>
<td>Not done</td>
<td>Not done</td>
<td>122</td>
</tr>
<tr>
<td>Genotype</td>
<td>Negative</td>
<td>3120+1G->A homozygous</td>
<td>p.Phe508del homozygous</td>
<td></td>
</tr>
<tr>
<td>Pancreatic Status</td>
<td>*PI</td>
<td>PI</td>
<td>PI</td>
<td>PI</td>
</tr>
<tr>
<td>Airway Infections</td>
<td>Staphylococcus aureus</td>
<td>Not documented</td>
<td>Not documented</td>
<td>Staphylococcus aureus</td>
</tr>
<tr>
<td>Cause of Death</td>
<td>Sepsis</td>
<td>Sepsis</td>
<td>Severe pneumonia</td>
<td>Sepsis</td>
</tr>
</tbody>
</table>

SAM - Severe acute malnutrition, PI - Pancreatic insufficient

Discussion

This is the largest series reported to date on CF presentation and disease course among black African children. Our findings highlight the features of CF disease among black African children for which there was previously a paucity of data. Despite some differences observed in presentation, clinical course and outcomes over time were similar to a matched cohort with p.Phe508del genotype in this non-screened population. This is important as it demonstrates comparable outcomes are achievable with appropriate care, regardless of genotype or race, even in SA which according to a World Bank report is the most unequal society in the world (30). These findings confirm our hypothesis that the genotypes are different among cases and controls, found
and mode of presentation maybe different. Despite these differences long term management outcomes were similar for both groups.

At diagnosis, cases were found to be more malnourished and fewer presented with neonatal bowel obstruction than controls with the p.Phe508del CFTR mutation. Our finding agrees with earlier reports by Masekela et al (2013) in SA (22), Prapphal, (31) and Hamosh et al, in the United States (21), that among black ethnic populations, severe malnutrition and failure to thrive is more likely to be present at diagnosis with lower incidence of meconium ileus. Although socioeconomic status (SES) was not documented, the higher prevalence of malnutrition among cases at diagnosis in our study may relate to lower SES and poverty due to social and wealth inequality gaps aligned with racial demographics that persist in SA society today (30). Lower SES and social deprivation are important determinants of poorer CF-related outcomes throughout the world(32,33). The occurrence of three early infant deaths among cases due to respiratory tract infection and severe malnutrition with complications may reflect a failure to recognise CF in the differential diagnosis of children with severe malnutrition in the SA setting in the non-Caucasian population(cases). Although malnutrition was more severe amongst cases at diagnosis, long term nutritional outcomes in our study were comparable; suggesting that severe malnutrition at diagnosis may not have long-term impact. However, severe malnutrition in infants is an important risk factor for sepsis and may lead to early infant deaths as observed in our cohort. In the absence of newborn screening, early diagnosis, targeted management and appropriately timed interventions are key to optimising clinical outcomes of CF regardless of genotype or SES.

CF is a disease with extensive genetic heterogeneity (24). The 3120 +1G>A, a severe class I nonsense mutation(19), was the commonest CFTR mutation occurring among black Africans with CF (cases) in this series, both in homozygous and compound heterozygote states. This confirms previous findings that it is the most common pathogenic CFTR mutation in black African people with CF in the sub-Saharan Africa, with reported allele frequency ranging between 11-46% (34) of tested alleles, which is lower than found in this series (81%). We speculate that this higher allele frequency represents a more accurate picture than previous reports which were derived from smaller samples (7,11,22). The 3120+1G->A mutation is believed to be a founder mutation that may have existed long ago among African populations and may have spread to many different continents through migration (35–37). This CFTR mutation was initially reported by Macek (35), among African Americans and later by Carles and colleagues in SA (18). Our current study also identified unknown, novel or other CFTR mutations occurring with 3120+1G->A as compound heterozygotes: c.1585.3T>G and p.Arg792X. This suggests the existence of several undescribed CFTR mutations among black African populations yet to be documented. Our series also suggests that genotype confirmation of CF diagnosis is possible in the majority of black Africans in sub-Saharan Africa where, except for SA, access to CF diagnosis tests including sweat testing is not available. The parents of five children with CF were immigrants from neighbouring African countries where CF had not been previously described. This suggests that CF must occur in these countries, but affected children are either dying early or misdiagnosed with other conditions.
Our study has several important implications for future CF-related care and research in Africa. Firstly, understanding the disease spectrum and unique CFTR mutation profile in black Africans will guide the development of appropriate CF molecular diagnosis approaches including newborn screening strategies. Secondly, recognition that 3120+1G>A is the most prevalent CFTR mutation in black Africans has important treatment implications in the era of CFTR modulator therapies where to date no effective compound for class I nonsense CFTR mutations has been registered for clinical use (38,39). This has implications for the progression of disease and long-term survival outcomes for patients with this mutation. Further research in the regard is warranted.

The strength of this study lies in the number of cases recruited from the two largest paediatric CF centres in SA. The study is limited by the relatively young population, with no follow up to adulthood, and the small number of patients for whom spirometry could be documented in the long term. Another limitation is that all cases and controls were those already diagnosed with typical CF and managed at CF centres, so this series may have excluded milder disease phenotypes or children who died before CF was diagnosed and is therefore not truly reflective the whole CF population. Environmental exposures, chronic therapies and compliance are potential confounding factors that could have affected outcomes but we could not evaluate these in this retrospective study as this information was not accurately recorded in the medical records. Next generation sequencing is not widely available in routine care in SA but may have identified additional CFTR variants in those without genetic confirmation of CF. Further studies are warranted to document the genotype and phenotype trajectories over time in all ethnic groups with CF in SA.

In conclusion, black African children with CF were more malnourished at the time of diagnosis, and fewer presented with neonatal bowel obstruction than patients with the p. Phe508del CFTR mutation. However, nutritional and pulmonary function outcomes were comparable over time. A high index of suspicion for CF amongst health workers is needed for black African infants presenting with unexplained malnutrition and other symptoms of CF disease. Continual education, improved CF awareness and improved access to CF diagnosis testing are needed in Africa.

Acknowledgements

This research was supported by the African Paediatric Fellowship Programme; the University of Cape Town and the National Research Foundation (NRF) of South Africa.

Conflicts of Interests: None declared
REFERENCES

APPENDIX 1: DATA GATHERING FORM

<table>
<thead>
<tr>
<th>ID</th>
<th>Date of Data Capturing _ _ / _ _ / __</th>
</tr>
</thead>
</table>
| CF Clinic Site | □ 0 RCWMCH
| | □ 1 CMH |
| DOB | Hospital Number |
| Q1 | Date of diagnosis _ _ / _ _ / _ _ |
| Q2 | Age in months at diagnosis |
| Q3 | Sex
| | □ 0 Male |
| | □ 1 Female |
| Q4 | Country of Origin (Country of origin of parents)
| | □ 0 SA |
| | □ 1 Zimbabwe |
| | □ 2 Malawi |
| | □ 3 Mozambique |
| | □ 4 Botswana |
| | 5 Other: __________ |
| Q5 | Sweat (chloride) Conductivity concentration
| | □ ----- mmol/l |
| | □ ----- mmol/l |
| Q6 | Genotype
| | □ 0 Delta F508 homozygous |
| | □ 1 3120+1GA homozygous |
| | □ 2 3120+1GA /Other: ________________________ |
| | □ 3 3120+1GA/unknown |
| | □ 4 Unknown/unknown |
| | □ 5 Other; ________________________ |
| Q7 | Feecal elastase levels __________ ug.ml
| | □ 0 PS | |
| | □ 1 PI |
| Q8 | Mode of Presentation | ☐ 0 Neonatal bowel Obstruction |
| | | ☐ 1 Predominantly GIT symptoms: malnutrition |
| | | ☐ 2 Predominantly Respiratory symptoms |
| | | ☐ 3 Combined GIT and Respiratory symptoms |
| | | ☐ 4 Family history/newborn screen |
| | | ☐ 5 Other |

Longitudinal Outcome Data (From diagnosis to 31st March 2017)

<table>
<thead>
<tr>
<th>Q9a</th>
<th>Visit 0</th>
<th>Weight (Kg)</th>
<th>Height(cm)</th>
<th>FEV1 (L) (> 6yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Date:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q9b</td>
<td>Visit 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Date:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q9c</td>
<td>Visit 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Date:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q9d</td>
<td>Visit 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Date:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q9e</td>
<td>Visit 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Date:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q9f</td>
<td>Visit 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Date:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q9g</td>
<td>Visit 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Date:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q9h</td>
<td>Visit 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Date:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q9i</td>
<td>Visit 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Date:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q9j</td>
<td>Visit 9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Date:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q9k</td>
<td>Visit 10</td>
<td>Date:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q9l</td>
<td>Visit 11</td>
<td>Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q9m</td>
<td>Visit 12</td>
<td>Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q9n</td>
<td>Visit 13</td>
<td>Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q9o</td>
<td>Visit 14</td>
<td>Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q9p</td>
<td>Visit 15</td>
<td>Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q9q</td>
<td>Visit 16</td>
<td>Date:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q9r</td>
<td>Visit 17</td>
<td>Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q9s</td>
<td>Visit 18</td>
<td>Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q9t</td>
<td>Visit 19</td>
<td>Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q9u</td>
<td>Visit 20</td>
<td>Date:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Q10a | Alive on 31 March 2017 | □ 1 Yes
 | | □ 0 No |
| Q10b | If no then | □ 0 Died
 | Date last seen: ________ | □ 1 Transfer to another facility
 | | □ 2 Lost to follow up. |
| Q10c | If patient died, state the cause of death. | |
| Q11a | Has patient ever had pseudomonas | □ 1 Yes
 | | □ 0 No | |
| Q11b | Date of first pseudomonas infection | |
| Q11c | Age at first pseudomonas infection | |
| Q11d | Chronic pseudomonas colonization | □ 1 Yes
 | | □ 2 No | |
| Q11e | Date at pseudomonas colonisation | |
| Q12f | Age at first pseudomonas colonization | |
| Q12a | Has patient ever had any staphylococcal infection | □ 1 Yes
<pre><code>| | □ 2 No |
</code></pre>
<p>| Q12b | Date at first staphylococcal infection | |
| Q12c | Age at first staphylococcal infections colonization | |</p>
<table>
<thead>
<tr>
<th>Question</th>
<th>Description</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q13a</td>
<td>Other significant infections</td>
<td>1 Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 No</td>
</tr>
<tr>
<td>Q13b</td>
<td>List significant</td>
<td></td>
</tr>
<tr>
<td>Q14a</td>
<td>Other comorbidity</td>
<td>1 Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 No</td>
</tr>
<tr>
<td>Q14b</td>
<td>List Co morbidities</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX 2: DEPARTMENTAL REVIEWER COMMENTS

Review of Proposal:

UCT Department of Paediatrics and Child Health
Clinical science review: QUANTITATIVE

Study Title:
Cystic Fibrosis in ethnic African Populations in South Africa- A Retrospective case control study.

Name of reviewer (not to be shown to researcher): **ANON**

Date submitted:
Date returned:

Please mark the appropriate column: **✓**

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>Unclear</th>
<th>No</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Abstract/Summary - is this complete?</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Background and literature review: Is the setting and the current practice described? Are gaps in the literature identified? Is the problem and purpose of the study clearly stated? Is it appropriately detailed depending on the research method chosen, and does it discuss the major concepts being studied?</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comment:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Objectives – Are objectives clearly stated and linked to the purpose?</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comment:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Methodology:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Design – Will the design answer the research question?</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comment: But it depends on numbers of children in each arm. Low numbers may make it difficult to judge differences. Would it not be better to to have two control patients if possible?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Sample – Are the subjects and/or documents to be reviewed well described? Are there clear inclusion and exclusion criteria? Is the sample representative and is there a rationale for sample size (eg power analysis)?</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comment: See above. Sample size is not a sample – it is all available patients</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Data – Is there clear description of which data will be collected? By whom? Is storage and security of data clear? Is each objective linked to a specific item or set of items of data? If field/community workers are collecting data, what training will they receive?</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comment: The nutrition/growth parameters are inadequate. There is an opportunity to measure BMI/WFH (much better measures of the nutrition of child with CF) that should be taken. WHO has charts for young children</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Analysis – Is the statistical analysis described – (including electronic programme e.g. Excel, Stata, other; probability levels, confidence boundaries)</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comment:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Are the limitations stated, and appropriate to the study design, population and sample size?</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comment:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6. Is the **scope of the study feasible** within the available time and resources?
Comment:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. **Ethical Considerations** – Are the ethical considerations well described?
Are research subjects assured of confidentiality, anonymity and respect?
Are possible adverse effects or risks associated with the audit outcomes described?
Comment:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. **References** – Are all references included with the same referencing format throughout?
Comment:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9. **Appendices** – Consent and assent form (if appropriate)? Budget? Please note that Institutional permission must be obtained before the study can be conducted
Comment:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. **Timeline**?
Comment:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11. **Postgraduate Degree** – Is the study for postgraduate degree purposes? If so, is it appropriate for the degree level?
Comment:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General:

It would be useful to have some idea of how many patients are likely to be recruited. The danger is that there will be so few that nothing will be learnt.

Recommendation: Approved ✓ □ Conditional □ Not approved □
APPENDIX 3: ETHIC APPROVAL, UCT

04 August 2017

HREC REF: 586/2017

Dr M Zampoli
Division of Paediatric Pulmonology
Paediatrics & Child Health
Red Cross Hospital
Rondebosch

Dear Dr Zampoli

PROJECT TITLE: CYSTIC FIBROSIS IN ETHNIC AFRICAN POPULATIONS IN SOUTH AFRICA: A RETROSPECTIVE CASE CONTROL STUDY (M.Phil.-candidate-Dr S Owusu)

Thank you for submitting your study to the Faculty of Health Sciences Human Research Ethics Committee for review.

It is a pleasure to inform you that the HREC has formally approved the above-mentioned study.

Approval is granted for one year until the 30th August 2018.

Please submit a progress form, using the standardised Annual Report Form if the study continues beyond the approval period. Please submit a Standard Closure form if the study is completed within the approval period.

(Forms can be found on our website: www.health.uct.ac.za/fhs/research/humanethics/forms)

We acknowledge that the student, Dr S Owusu will also be involved in this study.

Please quote the HREC REF in all your correspondence.

Please note that the ongoing ethical conduct of the study remains the responsibility of the principal investigator.

Yours sincerely

PROFESSOR M BLOCKMAN
CHAIRPERSON, FHS HUMAN RESEARCH ETHICS COMMITTEE

signature removed
APPENDIX 4: ETHICS APPROVAL, WITS UNIVERSITY

OFFICE OF THE DEPUTY VICE-CHANCELLOR (RESEARCH & POST GRADUATE AFFAIRS)

TO: Dr D White et al
School of Clinical Medicine
Department of Paediatrics and Child Health
Charlotte Maxeke Johannesburg Academic Hospital

E-mail: Debbie White@wits.ac.za

CC: Supervisor: Not applicable <>
and <HREC-Medical ResearchOffice@wits.ac.za>

FROM: Iain Burns
Human Research Ethics Committee (Medical)
Tel: 011 717 1252
E-mail: Iain.Burns@wits.ac.za

DATE: 13/02/2018

REF: R14/49

PROTOCOL NO: M171149 (This is your ethics application study reference number. Please quote this reference number in all correspondence relating to this study)

PROJECT TITLE: Cystic Fibrosis in children with African ethnicity: a retrospective case control study

Please find attached the Clearance Certificate for the above project. I hope it goes well and that an article in a recognized publication comes out of it. This will reflect well on your professional standing and contribute to the Government funding of the University.

signature removed

M$Works2000/Iain0008/Clearscan.wps
UNIVERSITY OF THE WITWATERSRAND, JOHANNESBURG
Office of the Deputy Vice-Chancellor Research & Post Graduate Affairs

MEMORANDUM
(This memo is not a clearance certificate)

TO: Dr Debbie White et al
Department of Pediatrics
E-mail: Debbie.white@wits.ac.za

FROM: Zanele Ndlovu
Administrative Officer: Human Research Ethics Committee (Medical)
Tel: 011 717 2700
E-mail: zanele.ndlovu@wits.ac.za

DATE: 21 December 2017

REF: R14/49

PROTOCOL NO: M171149 (This is your ethics application study reference number. Please quote this reference number in all correspondence relating to this study)

The protocol below was considered at a meeting of the Human Research Ethics Committee (Medical) on Friday 24 November 2017. The Committee requires the following amendments/corrections/information from you before your application can be approved.

Project Title: Cystic Fibrosis in children with African Ethnicity: A Retrospective Case Control Study

Conditions: Provisionally approved subject to:
(This memo is not a clearance certificate – not yet cleared)

- Permission/s:
 - Providing written permission to do the study from the CEO of CMJAH.

NB:
1. This memo is not a clearance certificate, no research should commence prior to obtaining a clearance certificate.

2. Please submit two hard copies of the following to the Research Office:
 - Covering letter: list all the conditions above and write your response below the each condition and attach relevant documentation listed above, highlight/track any changes made.
 - Signed declaration confirming that data has not been collected for the study.
 - Amendments must be sent within 3 months after submission. Application pending amendments on which no action has been taken by the Principal Investigator will be removed from the agenda. This will deem the application null and void; a new resubmission will be required.
 - The default in the research office is hard copies. Email submission will not be considered.

3. Delivery Address for amendments:
 - Research Office, Faculty of Health Sciences, Phillip Tobias Building, 3rd Floor, Office 301, 29 Princess of Wales Terrace, Parktown, 2193
APPENDIX 5: AUTHOR’S GUIDELINES

JOURNAL OF CYSTIC FIBROSIS
The Official Journal of the European Cystic Fibrosis Society

TABLE OF CONTENTS

• Description
• Audience
• Impact Factor
• Abstracting and Indexing
• Editorial Board
• Guide for Authors

p.1
p.1
p.1
p.2
p.3

ISSN: 1569-1993

DESCRIPTION
The Journal of Cystic Fibrosis is the official journal of the European Cystic Fibrosis Society. The journal is devoted to promoting the research and treatment of cystic fibrosis. To this end the journal publishes original scientific articles, editorials, case reports, short communications and other information relevant to cystic fibrosis. The journal also publishes news and articles concerning the activities and policies of the ECFS as well as those of other societies related the ECFS.

Benefits to authors
We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services. Please see our Guide for Authors for information on article submission. If you require any further information or help, please visit our Support Center

AUDIENCE
Pediatricians, pulmonologists, gastroenterologists, internists, microbiologists, pharmacologists, immunologists, psychologists, basic scientists, physiotherapists, dieticians and nurses dealing with the investigation and treatment of cystic fibrosis.

IMPACT FACTOR
2016: 4.727 © Thomson Reuters Journal Citation Reports 2017

ABSTRACTING AND INDEXING
Medline/Index Medicus
EMBASE
Science Citation Index
ScienceDirect
Scopus

EDITORIAL BOARD
Editor-in-Chief
Scott Bell, Dept. of Thoracic Medicine, The Prince Charles Hospital (Queensland Health), Rode Road, Chermside, QLD 4032, Queensland, Australia
Deputy Editors
C. Castellani, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
P. Flume, Medical University of South Carolina (MUSC), Charleston, South Carolina, USA
H.G.M. Heijerman, Haga Teaching Hospital, Gravenhage, Netherlands
G. Rogers, Adelaide, Australia

P. McCray, Iowa City, Iowa, USA
M. Muhlebach, Chapel Hill, North Carolina, USA
G.B. Pier, Boston, Massachusetts, USA
B.W. Ramsey, seattle, Washington, USA
F. Ratjen, Toronto, Ontario, Canada
S. Row, Birmingham, Alabama, USA
M. Schwarz, Manchester, UK
L. Sherrard, Belfast, Northern Ireland, UK
A. Stephenson, Toronto, Canada
D. Touw, Groningen, Netherlands
Your Paper Your Way

We now differentiate between the requirements for new and revised submissions. You may choose to submit your manuscript as a single Word or PDF file to be used in the refereeing process. Only when your paper is at the revision stage, will you be requested to put your paper in to a 'correct format' for acceptance and provide the items required for the publication of your article.

To find out more, please visit the Preparation section below.

Journal of Cystic Fibrosis publishes original scientific articles, editorials, case reports, short communications and other information relevant to cystic fibrosis and is published six times a year.

Papers are accepted on the understanding that they have not been published, and are not being considered for publication elsewhere and are subject to editorial revision.

Original articles Original research papers should contain no more than 3,000 words plus no more than 5 figures or tables in total and 30 references. The abstract should consist of 4 paragraphs, labelled Background, Methods, Results, and Conclusions.

Review articles Review papers should be authoritative, well-referenced reviews of a relevant subject and should not contain more than 5,000 words and 30 references with no more than 6 figures or tables.

Letters Headings should not be used in a letter; no abstract or keywords are required. The text should be no more than 800 words; there should be a maximum of 5 references and 1 table or figure may be included.

Correspondence Short articles relating to papers recently published in the Journal, or containing brief reports of unusual or preliminary findings. Maximum length 400 words, 1 table or figure and a maximum of 10 references.

Editorials These tend to be invited papers but unsolicited editorials are welcome. There are no abstract, keywords or section headings.

Short Communications 1,200 words plus no more than 3 figures or tables in total and 20 references.

Case Reports These must be carefully documented and must be of importance because they illustrate or describe unusual features or have important therapeutic implications. Maximum length 1,200 words, no more than a page and a half in length and a maximum of 1 table or figure. Case reports do not require a structured abstract and should include no more than 5 references.

Page charges

This journal has no page charges.

Submission checklist

You can use this list to carry out a final check of your submission before you send it to the journal for review. Please check the relevant section in this Guide for Authors for more details.

Ensure that the following items are present:

- One author has been designated as the corresponding author with contact details:
 - E-mail address
 - Full postal address

- All necessary files have been uploaded:
 - Manuscript:
 - Include keywords
 - All figures (including relevant captions)
 - All tables (including titles, description, footnotes)
 - Ensure all figure and table citations in the text match the files provided
 - Indicate clearly if color should be used for any figures in print
 - Graphical Abstracts / Highlights files (where applicable)
 - Supplemental files (where applicable)

- Further considerations:
 - Manuscript has been 'spell checked' and 'grammar checked'
 - All references mentioned in the Reference List are cited in the text, and vice versa
 - Permission has been obtained for use of copyrighted material from other sources (including the Internet)

BEFORE YOU BEGIN

Ethics in publishing

Please see our information pages on Ethics in publishing and Ethical guidelines for journal publication. Work on human beings that is submitted to Respiratory Medicine should comply with the principles laid down in the Declaration of Helsinki; Recommendations guiding physicians in biomedical research involving human subjects. Adopted by the 18th World Medical Assembly, Helsinki, Finland, June 1964, amended by the 25th World Medical Assembly, Tokyo, Japan, October 1975, the 30th World Medical Assembly, Venice, Italy, October 1983, and the 41st World Medical Assembly, Hong Kong, September
1989. The manuscript should contain a statement that the work has been approved by the appropriate ethical committees related to the institution(s) in which it was performed and that subjects gave informed consent to the work. Studies involving experiments with animals must state that their care was in accordance with institution guidelines. Patients' and volunteers' names, initials, and hospital numbers should not be used.

Declaration of interest

All authors must disclose any financial and personal relationships with other people or organizations that could inappropriately influence (bias) their work. Examples of potential conflicts of interest include employment, consultancies, stock ownership, honoraria, paid expert testimony, patent applications/registrations, and grants or other funding. Authors must disclose any interests in two places: 1. A summary declaration of interest statement in the title page file (if double-blind) or the manuscript file (if single-blind). If there are no interests to declare then please state this: 'Declarations of interest: none'. This summary statement will be ultimately published if the article is accepted. 2. Detailed disclosures as part of a separate Declaration of Interest form, which forms part of the journal’s official records. It is important for potential interests to be declared in both places and that the information matches. More information.

Submission declaration and verification

Submission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see ‘Multiple, redundant or concurrent publication’ section of our ethics policy for more information), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. To verify originality, your article may be checked by the originality detection service CrossCheck.

Authorship

All authors should have made substantial contributions to all of the following: (1) the conception and design of the study, or acquisition of data, or analysis and interpretation of data, (2) drafting the article or revising it critically for important intellectual content, (3) final approval of the version to be submitted.

Changes to authorship

Authors are expected to consider carefully the list and order of authors before submitting their manuscript and provide the definitive list of authors at the time of the original submission. Any addition, deletion or rearrangement of author names in the authorship list should be made only before the manuscript has been accepted and only if approved by the journal Editor. To request such a change, the Editor must receive the following from the corresponding author: (a) the reason for the change in author list and (b) written confirmation (e-mail, letter) from all authors that they agree with the addition, removal or rearrangement. In the case of addition or removal of authors, this includes confirmation from the author being added or removed.

AUTHOR INFORMATION PACK 19 Nov 2017 www.elsevier.com/locate/jcf 5

Only in exceptional circumstances will the Editor consider the addition, deletion or rearrangement of authors after the manuscript has been accepted. While the Editor considers the request, publication of the manuscript will be suspended. If the manuscript has already been published in an online issue, any requests approved by the Editor will result in a corrigendum.

Clinical trial results

In line with the position of the International Committee of Medical Journal Editors, the journal will not consider results posted in the same clinical trials registry in which primary registration resides to be prior publication if the results posted are presented in the form of a brief structured (less than 500 words) abstract or table. However, divulging results in other circumstances (e.g., investors’ meetings) is discouraged and may jeopardize consideration of the manuscript. Authors should fully disclose all posting in registries of results of the same or closely related work.

Randomised controlled trials

All randomised controlled trials submitted for publication in the Journal of Cystic Fibrosis should include a completed Consolidated Standards of Reporting Trials (CONSORT) flow chart. Please refer to the CONSORT statement website at http://www.consort-statement.org for more information.

Journal of Cystic Fibrosis has adopted the proposal from the International Committee of Medical Journal Editors’ (ICMJE) which require, as a condition of consideration for publication of clinical trials, registration in a public trials registry. Trials must register at or before the onset of patient enrolment. The clinical trial registration number should be included at the end of the abstract of the article. For this purpose, a clinical trial is defined as any research study that prospectively assigns human participants or groups of humans to one or more health-related interventions to evaluate the effects of health outcomes. Health-related interventions include any intervention used to modify a biomedical or health-related outcome (for example drugs, surgical procedures, devices, behavioural treatments, dietary interventions, and process-of-care changes). Health outcomes include any biomedical or health-related measures obtained in patients or participants, including pharmacokinetic measures and adverse events. Purely observational studies (those in which the assignment of the medical intervention is not at the discretion of the investigator) will not require registration. Further information can be found at http://www.icmje.org

Copyright

Upon acceptance of an article, authors will be asked to complete a 'Journal Publishing Agreement' (see more information on this). An e-mail will be sent to the corresponding author confirming receipt of the manuscript together with a 'Journal Publishing Agreement' form or a link to the online version of this agreement.

Subscribers may reproduce tables of contents or prepare lists of articles including abstracts for internal circulation within their institutions. Permission of the Publisher is required for resale or distribution outside the institution and for all other derivative works, including compilations and translations. If
excerpts from other copyrighted works are included, the author(s) must obtain written permission from the copyright owners and credit the source(s) in the article. Elsevier has preprinted forms for use by authors in these cases.

For open access articles: Upon acceptance of an article, authors will be asked to complete an ‘Exclusive License Agreement’ (more information). Permitted third party reuse of open access articles is determined by the author's choice of user license.

Author rights
As an author you (or your employer or institution) have certain rights to reuse your work. More information.

Elsevier supports responsible sharing
Find out how you can share your research published in Elsevier journals.

Role of the funding source
You are requested to identify who provided financial support for the conduct of the research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. If the funding source(s) had no such involvement then this should be stated.

AUTHOR INFORMATION PACK 19 Nov 2017 www.elsevier.com/locate/jcf 6

Funding body agreements and policies
Elsevier has established a number of agreements with funding bodies which allow authors to comply with their funder’s open access policies. Some funding bodies will reimburse the author for the Open Access Publication Fee. Details of existing agreements are available online.

After acceptance, open access papers will be published under a noncommercial license. For authors requiring a commercial CC BY license, you can apply after your manuscript is accepted for publication.

Open access
This journal offers authors a choice in publishing their research:

Subscription
• Articles are made available to subscribers as well as developing countries and patient groups through our universal access programs.
• No open access publication fee payable by authors.

Open access
• Articles are freely available to both subscribers and the wider public with permitted reuse.
• An open access publication fee is payable by authors or on their behalf, e.g. by their research funder or institution.

Regardless of how you choose to publish your article, the journal will apply the same peer review criteria and acceptance standards.

For open access articles, permitted third party (re)use is defined by the following Creative Commons user licenses:
Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)
For non-commercial purposes, lets others distribute and copy the article, and to include in a collective work (such as an anthology), as long as they credit the author(s) and provided they do not alter or modify the article.

The open access publication fee for this journal is USD 3300, excluding taxes. Learn more about Elsevier’s pricing policy: http://www.elsevier.com/openaccesspricing.

Green open access
Authors can share their research in a variety of different ways and Elsevier has a number of green open access options available. We recommend authors see our green open access page for further information. Authors can also self-archive their manuscripts immediately and enable public access from their institution’s repository after an embargo period. This is the version that has been accepted for publication and which typically includes author-incorporated changes suggested during submission, peer review and in editor-author communications. Embargo period: For subscription articles, an appropriate amount of time is needed for journals to deliver value to subscribing customers before an article becomes freely available to the public. This is the embargo period and it begins from the date the article is formally published online in its final and fully citable form. Find out more.

This journal has an embargo period of 12 months.

Language (usage and editing services)
Please write your text in good English (American or British usage is accepted, but not a mixture of these). Authors who feel their English language manuscript may require editing to eliminate possible grammatical or spelling errors and to conform to correct scientific English may wish to use the English Language Editing service available from Elsevier’s WebShop.

Informed consent and patient details
Studies on patients or volunteers require ethics committee approval and informed consent, which should be documented in the paper. Appropriate consents, permissions and releases must be obtained where an author wishes to include case details or other personal information or images of patients and any other individuals in an Elsevier publication. Written consents must be retained by the author and copies of the consents or evidence that such consents have been obtained must be provided to Elsevier on request. For more information, please review the Elsevier Policy on the Use of Images or Personal Information of Patients or other Individuals. Unless you have written permission from the patient (or, where applicable, the next of kin), the personal details of any patient included in any part of the article and in any supplementary materials (including all illustrations and videos) must be removed before submission.

AUTHOR INFORMATION PACK 19 Nov 2017 www.elsevier.com/locate/jcf 7

Submission
Our online submission system guides you stepwise through the process of entering your article details and uploading your files. The system converts your article files to a single PDF file used in the peer-review process. Editable files (e.g., Word, LaTeX) are required to typeset your article for final publication. All correspondence, including notification of the Editor’s decision and requests for
revision, is sent by e-mail.
Submit your article
Please submit your article via http://ees.elsevier.com/jcf/.

PREPARATION

NEW SUBMISSIONS

Submission to this journal proceeds totally online and you will be guided stepwise through the creation and uploading of your files. The system automatically converts your files to a single PDF file, which is used in the peer-review process. As part of the Your Paper Your Way service, you may choose to submit your manuscript as a single file to be used in the refereeing process. This can be a PDF file or a Word document, in any format or layout that can be used by referees to evaluate your manuscript. It should contain high enough quality figures for refereeing. If you prefer to do so, you may still provide all or some of the source files at the initial submission. Please note that individual figure files larger than 10 MB must be uploaded separately.

References

There are no strict requirements on reference formatting at submission. References can be in any style or format as long as the style is consistent. Where applicable, author(s) name(s), journal title/book title, chapter title/article title, year of publication, volume number/book chapter and the pagination must be present. Use of DOI is highly encouraged. The reference style used by the journal will be applied to the accepted article by Elsevier at the proof stage. Note that missing data will be highlighted at proof stage for the author to correct.

Formatting requirements

There are no strict formatting requirements but all manuscripts must contain the essential elements needed to convey your manuscript, for example Abstract, Introduction, Materials and Methods, Results, Conclusions, Artwork and Tables with Captions. If your article includes any Videos and/or other Supplementary material, this should be included in your initial submission for peer review purposes.

Divide the article into clearly defined sections. Figures and tables embedded in text

Please ensure the figures and the tables included in the single file are placed next to the relevant text in the manuscript, rather than at the bottom or the top of the file. The corresponding caption should be placed directly below the figure or table.

Cover letter

Corresponding authors must provide a cover letter which includes statements answering the following questions:
• Has the work been seen and approved by all co-authors?
• How is the work clinically relevant, and how does it add to existing research?
• Have papers closely related to the submitted manuscript been published or submitted for publication elsewhere? If so please provide details.

Failure to provide a cover letter addressing each of the questions above will result in the paper being returned to the author. The cover letter must be uploaded as a separate submission item.

REVISED SUBMISSIONS

Use of word processing software

Regardless of the file format of the original submission, at revision you must provide us with an editable file of the entire article. Keep the layout of the text as simple as possible. Most formatting codes will be removed and replaced on processing the article. The electronic text should be prepared in a way very similar to that of conventional manuscripts (see also the Guide to Publishing with Elsevier). See also the section on Electronic artwork.

To avoid unnecessary errors you are strongly advised to use the ‘spell-check’ and ‘grammar-check’ functions of your word processor.

AUTHOR INFORMATION PACK 19 Nov 2017 www.elsevier.com/locate/jcf 8

Subdivision - numbered sections

Divide your article into clearly defined and numbered sections. Subsections should be numbered 1.1 (then 1.1.1, 1.1.2, ...), 1.2, etc. (the abstract is not included in section numbering). Use this numbering also for internal cross-referencing: do not just refer to 'the text'. Any subsection may be given a brief heading. Each heading should appear on its own separate line.

Essential title page information

• Title. Concise and informative.Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible.

• Author names and affiliations. Please clearly indicate the given name(s) and family name(s) of each author and check that all names are accurately spelled. You can add your name between parentheses in your own script behind the English transcription. Present the authors' affiliation addresses (where the actual work was done) below the names. Indicate all affiliations with a lowercase superscript letter immediately after the author's name and in front of the appropriate address.

• Corresponding author. Clearly indicate who will handle correspondence at all stages of refereeing and publication, also post-publication. This responsibility includes answering any future queries about Methodology and Materials. Ensure that the e-mail address is given and that contact details are kept up to date by the corresponding author.

• Present/permanent address. If an author has moved since the work described in the article was done, or was visiting at the time, a 'Present address' (or 'Permanent address') may be indicated as a footnote to that author's name. The address at which the author actually did the work must be retained as the main, affiliation address. Superscript Arabic numerals are used for such footnotes. Avoid use of extraneous words such as "study" and "investigation". The title should be given in capital letters (not exceeding 100 letters), and a running title (not exceeding 50 letters) should also be provided.
If data from the manuscript have been presented at a meeting, list the full name, date and location of the meeting and reference any previous abstracts in the bibliography.

Abstracts
An abstract of your manuscript, summarizing the content, should be provided. A maximum of 150 words, should be written in a structured manner (for original articles only) since this will be the only part of the article studied by some readers. In original articles, the Abstract should consist of 4 paragraphs, labelled Background, Methods, Results, and Conclusions. They should briefly describe the problem being addressed in the study, how the study was performed and which measurements were carried out, the most relevant results, and what the authors conclude from the results.

Highlights
Highlights are mandatory for this journal. They consist of a short collection of bullet points that convey the core findings of the article and should be submitted in a separate editable file in the online submission system. Please use 'Highlights' in the file name and include 3 to 5 bullet points (maximum 85 characters, including spaces, per bullet point). You can view example Highlights on our information site.

Keywords
A list of three to six keywords should be supplied: full instructions are provided when submitting the article online

Abbreviations
Define abbreviations that are not standard in this field in a footnote to be placed on the first page of the article. Such abbreviations that are unavoidable in the abstract must be defined at their first mention there, as well as in the footnote. Ensure consistency of abbreviations throughout the article.

Acknowledgements
Collate acknowledgements in a separate section at the end of the article before the references and do not, therefore, include them on the title page, as a footnote to the title or otherwise. List here those individuals who provided help during the research (e.g., providing language help, writing assistance or proof reading the article, etc.).

Formatting of funding sources
List funding sources in this standard way to facilitate compliance to funder's requirements: AUTHOR INFORMATION PACK 19 Nov 2017 www.elsevier.com/locate/jdf 9
Funding: This work was supported by the National Institutes of Health [grant numbers xxxx, yyyyy]; the Bill & Melinda Gates Foundation, Seattle, WA [grant number zzzzz]; and the United States Institutes of Peace [grant number aaaaa].
It is not necessary to include detailed descriptions on the program or type of grants and awards. When funding is from a block grant or other resources available to a university, college, or other research institution, submit the name of the institute or organization that provided the funding.
If no funding has been provided for the research, please include the following sentence:
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Units
Follow internationally accepted rules and conventions: use the international system of units (SI). If other units are mentioned, please give their equivalent in SI.

Footnotes
Footnotes should be used sparingly. Number them consecutively throughout the article. Many word processors build footnotes into the text, and this feature may be used. Should this not be the case, indicate the position of footnotes in the text and present the footnotes themselves separately at the end of the article.

Artwork
Electronic artwork
General points
• Make sure you use uniform lettering and sizing of your original artwork.
• Preferred fonts: Arial (or Helvetica), Times New Roman (or Times), Symbol, Courier.
• Number the illustrations according to their sequence in the text.
• Use a logical naming convention for your artwork files.
• Indicate per figure if it is a single, 1.5 or 2-column fitting image.
• For Word submissions only, you may still provide figures and their captions, and tables within a single file at the revision stage.
• Please note that individual figure files larger than 10 MB must be provided in separate source files. A detailed guide on electronic artwork is available.

You are urged to visit this site; some excerpts from the detailed information are given here.

Formats
Regardless of the application used, when your electronic artwork is finalized, please 'save as' or convert the images to one of the following formats (note the resolution requirements for line drawings, halftones, and line/halftone combinations given below):
EPS (or PDF): Vector drawings. Embed the font or save the text as ‘graphics’.
TIFF (or JPEG): Color or grayscale photographs (halftones): always use a minimum of 300 dpi.
TIFF (or JPEG): Bitmapmed line drawings: use a minimum of 1000 dpi.
TIFF (or JPEG): Combinations bitmapped line/halftone (color or grayscale): a minimum of 500 dpi is required.
Please do not:
• Supply files that are optimized for screen use (e.g., GIF, BMP, PICT, WPG); the resolution is too low.
• Supply files that are too low in resolution.
• Submit graphics that are disproportionately large for the content.

Color artwork
Please make sure that artwork files are in an acceptable format (TIFF (or JPEG), EPS (or PDF), or MS Office files) and with the correct resolution. If, together with your accepted article, you submit usable color figures then Elsevier will ensure, at no additional charge, that these figures will appear.
in color online (e.g., ScienceDirect and other sites) regardless of whether or not these illustrations are reproduced in color in the printed version. For color reproduction in print, you will receive information regarding the costs from Elsevier after receipt of your accepted article. Please indicate your preference for color: in print or online only. Further information on the preparation of electronic artwork.

AUTHOR INFORMATION PACK 19 Nov 2017 www.elsevier.com/locate/jcf 10

Illustration services
Elsevier’s WebShop offers Illustration Services to authors preparing to submit a manuscript but concerned about the quality of the images accompanying their article. Elsevier’s expert illustrators can produce scientific, technical and medical-style images, as well as a full range of charts, tables and graphs. Image ‘polishing’ is also available, where our illustrators take your image(s) and improve them to a professional standard. Please visit the website to find out more.

Figure captions
Ensure that each illustration has a caption. A caption should comprise a brief title (not on the figure itself) and a description of the illustration. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used.

Tables
Please submit tables as editable text and not as images. Tables can be placed either next to the relevant text in the article, or on separate page(s) at the end. Number tables consecutively in accordance with their appearance in the text and place any table notes below the table body. Be sparing in the use of tables and ensure that the data presented in them do not duplicate results described elsewhere in the article. Please avoid using vertical rules and shading in table cells.

References
Manuscripts should use the Vancouver style for references. Citation in text
Please ensure that every reference cited in the text is also present in the reference list (and vice versa). Any references cited in the abstract must be given in full. Unpublished results and personal communications are not recommended in the reference list, but may be mentioned in the text. If these references are included in the reference list they should follow the standard reference style of the journal and should include a substitution of the publication date with either 'Unpublished results' or 'Personal communication'. Citation of a reference as ‘in press’ implies that the item has been accepted for publication.

Reference links
Increased discoverability of research and high quality peer review are ensured by online links to the sources cited. In order to allow us to create links to abstracting and indexing services, such as Scopus, CrossRef and PubMed, please ensure that data provided in the references are correct. Please note that incorrect surnames, journal/book titles, publication year and pagination may prevent link creation. When copying references, please be careful as they may already contain errors. Use of the DOI is encouraged.

A DOI can be used to cite and link to electronic articles where an article is in-press and full citation details are not yet known, but the article is available online. A DOI is guaranteed never to change, so you can use it as a permanent link to any electronic article. An example of a citation using DOI for an article not yet in an issue is: VanDecar J.C., Russo R.M., James D.E., Ambeh W.B., Franke M. (2003). Aseismic continuation of the Lesser Antilles slab beneath northeastern Venezuela. Journal of Geophysical Research, https://doi.org/10.1029/2001JB000884. Please note the format of such citations should be in the same style as all other references in the paper.

Web references
As a minimum, the full URL should be given and the date when the reference was last accessed. Any further information, if known (DOI, author names, dates, reference to a source publication, etc.), should also be given. Web references can be listed separately (e.g., after the reference list) under a different heading if desired, or can be included in the reference list.

Conflict of interest disclosure
The Journal of Cystic Fibrosis has adopted the Conflict of Interest Disclosure form provided by the International Committee of Medical Journal Editors (ICMJE) and requests authors to complete it during the submission process; a copy of the form can be found here http://www.icmje.org/conflicts-of-interest/

AUTHOR INFORMATION PACK 19 Nov 2017 www.elsevier.com/locate/jcf 11

Data references
This journal encourages you to cite underlying or relevant datasets in your manuscript by citing them in your text and including a data reference in your Reference List. Data references should include the following elements: author name(s), dataset title, data repository, version (where available), year, and global persistent identifier. Add [dataset] immediately before the reference so we can properly identify it as a data reference. The [dataset] identifier will not appear in your published article.

References in a special issue
Please ensure that the words 'this issue' are added to any references in the list (and any citations in the text) to other articles in the same Special Issue.

Reference management software
Most Elsevier journals have their reference template available in many of the most popular reference management software products. These include all products that support Citation Style Language (CSL) styles, such as Mendeley and Zotero, as well as EndNote. Using the word processor plug-ins from these products, authors only need to select the appropriate journal template when preparing their article, after which citations and bibliographies will be automatically formatted in the journal’s style. If no template is yet available for this journal, please follow the format of the sample references and citations as shown in this Guide.

Users of Mendeley Desktop can easily install the reference style for this journal by clicking the following link:
http://open.mendeley.com/use-citation-style/journal-of-cystic-fibrosis
When preparing your manuscript, you will then be able to select this style using the Mendeley plugins for Microsoft Word or LibreOffice.

Reference formatting

There are no strict requirements on reference formatting at submission. References can be in any style or format as long as the style is consistent. Where applicable, author(s) name(s), journal title/book title, chapter title/article title, year of publication, volume number/book chapter and the pagination must be present. Use of DOI is highly encouraged. The reference style used by the journal will be applied to the accepted article by Elsevier at the proof stage. Note that missing data will be highlighted at proof stage for the author to correct. If you do wish to format the references yourself they should be arranged according to the following examples:

Reference style

Text: Indicate references by number(s) in square brackets in line with the text. The actual authors can be referred to, but the reference number(s) must always be given.

List: Number the references (numbers in square brackets) in the list in the order in which they appear in the text.

Examples:

Reference to a journal publication:

Reference to a book:

Reference to a chapter in an edited book:

Reference to a website:

Reference to a dataset:

Note shortened form for last page number. e.g., 51–9, and that for more than 6 authors the first 6 should be listed followed by ‘et al.’ For further details you are referred to ‘Uniform Requirements for Manuscripts submitted to Biomedical Journals’ (J Am Med Assoc 1997;277:927–34) (see also Samples of Formatted References).

AUTHOR INFORMATION PACK 19 Nov 2017 www.elsevier.com/locate/jcf 12

Journal Abbreviations Source

Journal names should be abbreviated according to this list of title word abbreviations:
http://www.issn.org/22261-LTWA-online.php

Video

Elsevier accepts video material and animation sequences to support and enhance your scientific research. Authors who have video or animation files that they wish to submit with their article are strongly encouraged to include links to these within the body of the article. This can be done in the same way as a figure or table by referring to the video or animation content and noting in the body text where it should be placed. All submitted files should be properly labeled so that they directly relate to the video file’s content. In order to ensure that your video or animation material is directly usable, please provide the files in one of our recommended file formats with a preferred maximum size of 150 MB in total. Any single file should not exceed 50 MB. Video and animation files supplied will be published online in the electronic version of your article in Elsevier Web products, including ScienceDirect. Please supply ‘stills’ with your files; you can choose any frame from the video or animation or make a separate image. These will be used instead of standard icons and will personalize the link to your video data. For more detailed instructions please visit our video instruction pages.

Note: since video and animation cannot be embedded in the print version of the journal, please provide text for both the electronic and the print version for the portions of the article that refer to this content.

Supplementary material

Supplementary material such as applications, images and sound clips, can be published with your article to enhance it. Submitted supplementary items are published exactly as they are received (Excel or PowerPoint files will appear as such online). Please submit your material together with the article and supply a concise, descriptive caption for each supplementary file. If you wish to make changes to supplementary material during any stage of the process, please make sure to provide an updated file. Do not annotate any corrections on a previous version. Please switch off the ‘Track Changes’ option in Microsoft Office files as these will appear in the published version.

RESEARCH DATA

This journal encourages and enables you to share data that supports your research publication where appropriate, and enables you to interlink the data with your published articles. Research data refers to the results of observations or experimentation that validate research findings. To facilitate reproducibility and data reuse, this journal also encourages you to share your software, code, models, algorithms, protocols, methods and other useful materials related to the project.

Below are a number of ways in which you can associate data with your article or make a statement about the availability of your data when submitting your manuscript. If you are sharing data in one of these ways, you are encouraged to cite the data in your manuscript and reference list. Please refer to the “References” section for more information about data citation. For more information on depositing, sharing and using research data and other relevant research materials, visit the research data page.

Data linking

If you have made your research data available in a data repository, you can link your article directly to the dataset. Elsevier collaborates with a number of repositories to link articles on ScienceDirect with
relevant repositories, giving readers access to underlying data that gives them a better understanding of the research described. There are different ways to link your datasets to your article. When available, you can directly link your dataset to your article by providing the relevant information in the submission system. For more information, visit the database linking page.

For supported data repositories a repository banner will automatically appear next to your published article on ScienceDirect. In addition, you can link to relevant data or entities through identifiers within the text of your manuscript, using the following format: Database: xxxx (e.g., TAIR: AT1G01020; CCDC: 734053; PDB: 1XFN).

AUTHOR INFORMATION PACK 19 Nov 2017 www.elsevier.com/locate/jcf

Mendeley Data
This journal supports Mendeley Data, enabling you to deposit any research data (including raw and processed data, video, code, software, algorithms, protocols, and methods) associated with your manuscript in a free-to-use, open access repository. Before submitting your article, you can deposit the relevant datasets to Mendeley Data. Please include the DOI of the deposited dataset(s) in your main manuscript file. The datasets will be listed and directly accessible to readers next to your published article online. For more information, visit the Mendeley Data for journals page.

Data statement
To foster transparency, we encourage you to state the availability of your data in your submission. This may be a requirement of your funding body or institution. If your data is unavailable to access or unsuitable to post, you will have the opportunity to indicate why during the submission process, for example by stating that the research data is confidential. The statement will appear with your published article on ScienceDirect. For more information, visit the Data Statement page.

Additional Information
Authors should use the 'Track Changes' option when revising their manuscripts, so that any changes made to the original submission are easily visible to the Editors. Those revised manuscripts upon which the changes are not clear may be returned to the author.

Specific comments made in the Author Comments in response to referees' comments must be organised clearly. For example, use the same numbering system as the referee, or use 2 columns of which one states the comment and the other the response.

AFTER ACCEPTANCE

Online proof correction
Corresponding authors will receive an e-mail with a link to our online proofing system, allowing annotation and correction of proofs online. The environment is similar to MS Word: in addition to editing text, you can also comment on figures/tables and answer questions from the Copy Editor. Web-based proofing provides a faster and less error-prone process by allowing you to directly type your corrections, eliminating the potential introduction of errors.

If preferred, you can still choose to annotate and upload your edits on the PDF version. All instructions for proofing will be given in the e-mail we send to authors, including alternative methods to the online version and PDF.

We will do everything possible to get your article published quickly and accurately. Please use this proof only for checking the typesetting, editing, completeness and correctness of the text, tables and figures. Significant changes to the article as accepted for publication will only be considered at this stage with permission from the Editor. It is important to ensure that all corrections are sent back to us in one communication. Please check carefully before replying, as inclusion of any subsequent corrections cannot be guaranteed. Proofreading is solely your responsibility.

Offprints
The corresponding author, at no cost, will be provided with a PDF file of the article via e-mail (the PDF file is a watermarked version of the published article and includes a cover sheet with the journal cover image and a disclaimer outlining the terms and conditions of use). For an extra charge, paper offprints can be ordered via the offprint order form which is sent once the article is accepted for publication. Both corresponding and co-authors may order offprints at any time via Elsevier's WebShop. Authors requiring printed copies of multiple articles may use Elsevier WebShop's 'Create Your Own Book' service to collate multiple articles within a single cover.

Online only publication of selected papers
With the increasing numbers of submissions to JCF, the Editorial Board working with Elsevier has decided to publish a component of papers as online only versions. This is an approach taken by a number of journals over the recent years.

What does this mean? If the Editorial Executive decides a specific paper will be published online only, the paper will continue to appear in the Table of Contents for a specific issue, it will appear in PubMed and any online supplementary files will be published as they are at present. The only difference is the paper will not appear in the print issue of the journal.

Who decides and when? The Editorial Executive of JCF will make this decision and this will be made after a paper has been accepted and at the time of compilation of an issue of JCF.

AUTHOR INFORMATION PACK 19 Nov 2017 www.elsevier.com/locate/jcf

Will the authors know in advance? Yes at the time your paper is due to be compiled into an issue, the corresponding author will receive notification by email.

Cystic Fibrosis Research News
Online Journal, "Cystic Fibrosis Research News" will be launched in early 2015. This journal will compile lay summaries of full length articles and short communication style papers at the time of acceptance of a paper in JCF. The initiative aims to foster enhanced knowledge by patients, their families and other members of the lay community about research advances published in JCF.

The Journal will be published in English and be made available on the ECFS website (www.ecfs.eu) and will be open access. All authors will receive an email at the time of acceptance to highlight this requirement before an accepted paper can be published in JCF. The inaugural Editor in Chief is Dr
Harry Heijerman, previous Editor in Chief of JCF. He has assembled a skilled Editorial Board including members of the CF health care and scientific communities and members of the lay community. The lay summary will be a maximum of 500 words and cover the following fields: What was your research question? Why is this important? What did you do? What did you find? What does this mean and reasons for caution? What's next?

AUTHOR INQUIRIES
Visit the Elsevier Support Center to find the answers you need. Here you will find everything from Frequently Asked Questions to ways to get in touch.
You can also check the status of your submitted article or find out when your accepted article will be published.

© Copyright 2014 Elsevier | http://www.elsevier.com
APPENDIX 6: REVIEWER COMMENTS

REVIEWER COMMENTS
Reviewer #1: Cystic fibrosis is a life-limiting, multisystemic, autosomal recessive disorder. Its incidence varies and is higher in Caucasian communities of Northern European ancestry. More than 2000 variants of the Cystic Fibrosis Transmembrane Regulator (CFTR) gene have been reported so far, and the variant F508del remains the most common. Cystic fibrosis (CF) in black African population is less frequently encountered and has been poorly described. In this paper, the authors compared a cohort of CF black African children with matched controls carrying the variant F508del to determine differences in clinical presentation and outcomes in black African children diagnosed with CF.

Below are some suggestions for the authors to consider.

Major comments:
1. The objectives of the study were not clearly stated in a dedicated section (both in the abstract and core text). Although the aim of the study is shortly mentioned in the introduction, the authors could consider including a specific section describing the primary and secondary objectives in more detail. What aspects of the clinical presentation are they exactly looking for? Which outcomes will be compared between the two groups (e.g. lung function decline, BMI, exacerbation rates, mortality)? Did the authors postulate hypotheses about the differences they were expecting between the cases and the controls?
Response: Thank you for these suggestions. We have revised the last paragraph of Introduction to reflect the aims and hypothesis of this study as suggested: “The primary aim of this study was therefore to describe and compare the genotype, clinical presentation, pulmonary function and nutritional outcomes in black African children diagnosed with CF in SA to matched cases of children in South Africa with. p.Phe508del genotype. We hypothesized that genotype is different but presentation and clinical outcomes would be similar”.

2. The authors mentioned that children heterozygous with p.Phe508del mutation and another mutation were selected as controls if no suitable p.Phe508del homozygous control was identified. In these cases, was the second mutation a mutation with residual function or not? If so, can the authors comment on the potential impact on the results by choosing these controls?
Response: We did not include the details of the “Other” mutations in p.Phe508del heterozygotes as we believed the similar proportion of pancreatic sufficient cases in each group (88.2% cases, 85.3% controls) demonstrates sufficient evidence of equal prevalence of mutations with residual function in each group. For completeness we now have listed all the other mutations in control group too, table 1.

3. Comorbid conditions listed in Table 1 include health issues that are not necessarily associated with CF (ADHD, HIV, etc.). It might have been interesting to include other comorbidities related to CF such as rhinosinusitis, diabetes or distal intestinal obstruction syndrome (DIOS) to determine if their prevalence seems to be different between the two groups.
Response: We included these non-CF related comorbidities to highlight these socioeconomic and other factors in our setting that could potentially have influenced CF-related outcomes. There were no cases of diabetes or DIOS in this cohort. Rhinosinusitis is a very common symptom in all children in SA and therefore not commonly recorded in the CF medical records.
4. FEV1 is typically expressed as a percent predicted by comparing the person's value in litres to a healthy reference population taking into consideration age, height, race, and sex. A less common method is to report Z-scores (number of standard deviations from the mean value). Can the authors comment about why they have not presented the FEV1 data as % predicted and chose to use Z-scores instead?

Response: We recognise that FEV1 has been conventionally reported as percent predicted. Global Lung Initiative (GLI) ethnic-specific reference equations and expression of LF as z-scores, however, are preferred for two reasons: 1) there was no normative spirometry data for black African children prior to GLI. Historical reference equations for “African-Americans” are unsuitable for African children and result in under estimation of lung function; 2) Expression of lung function in standard deviations is considered by GLI more appropriate as it removes any age-related bias and is a better representation of normative LF distribution. We refer the reviewer to recent commentary on this matter which supports our view that z-scores are preferable to percent predicted: https://breathe.ersjournals.com/content/9/6/462.

Not sure whether to present % predicted values- my sense is will be same?

5. Significant differences in nutritional status based on height, weight and BMI Z-scores were reported between the two groups. Although statistically significant, do the authors consider these differences clinically significant? It would be useful to include some discussion in the manuscript about the clinical importance of this difference, if there is one.

Response: We do consider these differences as clinically significant as malnutrition in infancy predisposes to severe infection and sepsis. Although numbers are too small for meaningful analysis, it is important to note that all CF-related deaths reported in this cohort were sepsis-related and occurred at or soon after the time of CF diagnosis. An important contributing factor was likely to have been severe malnutrition. We have added a comment about this in the second paragraph in Discussion: “However, severe malnutrition in infants is an important risk factor for sepsis and may lead to early infant deaths as observed in our cohort. In the absence of newborn screening, early diagnosis, targeted management and appropriately timed interventions are key to optimising clinical outcomes of CF, regardless of genotype or SES.”

6. The authors mentioned some limitations of their study and commented about the potential impact of low socioeconomic status on their results. Did they identify other possible confounding factors (e.g. environmental exposures, chronic lung therapies, compliance, etc.)? Could they comment about selection bias, confusion bias and missing data?

Response: We thank the reviewer for highlighting these additional limitations. Although environmental exposures, chronic therapies and compliance are potential confounding factors, we could not evaluate these in this retrospective study because this information was not accurately recorded in the medical records. We believe the cases accurately represent all black African children diagnosed with CF at the two centres over the study period as both CF clinics keep comprehensive historical medical records. However, this data will have excluded any children who died before CF was diagnosed or considered as a cause of illness or malnutrition. A higher case: control ratio (e.g. 1:2) would have been preferable and eliminated any selection bias in controls but we were limited by the small number of matched controls in our setting. We have highlighted these additional limitations in the Discussion.
7. Some ideas and discussion points are uneasy to grasp and fully understand as the phrasing is sometimes difficult to follow or words seem to be missing. For example: "Firstly, understanding the disease spectrum and unique CFTR mutation profile in black Africans will guide the development of future diagnosis strategies including newborn screening approaches."

Response: We have rephrased this statement as follows: “Firstly, understanding the disease spectrum and unique CFTR mutation profile in black Africans will guide the development of appropriate CF molecular diagnosis approaches including newborn screening strategies.”

Minor comments:
1. The authors may consider to uniformize the format better. For example, they should probably use the same nomenclature for the p.Phe508del mutation; it varies in the text and both p.Phe508del and phe508del are used intermittently. Titles, punctuation and spaces between words/sentences should also be uniformized.

Response: Thank you for pointing out these inconsistencies. We have addressed and corrected this in the manuscript. Where possible, we have used the protein sequence nomenclature or legacy name (where protein sequence not reported)- which is more familiar to most readers.

2. It would have been interesting to include a table summarizing the FEV1 Z-scores instead of only describing a portion of them in the text.

Brenda- could we maybe add this? Not sure if permissible to add another table?

3. Figure 1-3: When printed in black and white, the distinction between the lines is impossible to perceive in the figures.

Can we replace the colours with other data point markers along the lines?

4. The section title "conclusion" should be presented as the others, in bold and numbered.

Response: We have reformatted all headings and sub-headings without numbering now.

Reviewer #2: This is an interesting and important report proving that African cases with CF may have the same quality of life and life expectancy when properly treated and diagnosed early. The authors also disputed previous reports on the "worse" course of CF in Africans, based on small and/or clinically heterogeneous cohorts.

Generally the paper is well written, but several additional issues need to be addressed:

1) the paper did not specify genetic testing and which variants were previously tested?

Response: genetic testing available in South Africa for routine diagnostic use over the study period varied from single variant PCR (p.Phe508del) as first step , to the Elucigene CF29v2 kit which includes 29 common variants including c.2988+1G>A. In a few cases clinicians were able to do next generation sequencing through private funding or pro-bono offers by private laboratories. We have now included a sentence in Methods describing the genetic testing. Where possible, we have used the protein sequence nomenclature or legacy name (where protein sequence not reported)- which is more familiar to most readers.

2) proper variant nomenclature should be used and indicated according to CFTR1 database

Response: Thank you for highlighting this oversight. We have revised all variant nomenclature according to current CFTR database nomenclature where this was provided.

3) additional CFTR variants should be discussed in terms of their clinical annotation in CFTR2.org, is there any differences, naturally where applicable?

Response: we have now listed all the other variants in table 1 and highlighted with a * those not reported (1) or variants with unknown significance (2).
4) the authors did not discuss whether consanguinity was present in examined 3120+1 G>A homozygotes.
Response: there was no consanguinity in this cohort. Consanguinity is extremely rare in the local population.

5) sweat chloride concentrations / it is not clear how these were established (conductance versus pilocarpine iontophoresis)?
Response: The two CF centres used different sweat collection and analysis techniques. Both techniques however stimulate sweat glands with pilocarpine iontophoresis. The centre in Cape Town performs Gibson and Cooke collection method with sweat chloride analysis while the centre in Johannesburg collect and analyse sweat using the Macroduct (Sweatcheck) Conductance analyser. This centre does not have facilities to measure sweat chloride in the collected sweat sample and therefore conductance (> 80 mmol/L) was considered diagnostic for CF as per recommended guidelines.

6) how P. aeruginosa bronchial colonisation was established?
Response: respiratory samples are routinely collected at clinic visits and submitted for CF pathogen cultures. We adopted and cited (ref no 22) the Modified Leeds criteria to define colonisation.

7) how do the authors explain family history of previous CF-related deaths in given families (e.g. due to lower socioeconomic status, neglect)?
Response: This particular family did not return for genetic counselling after the death of the first sibling and were untraceable until the second child presented. Poor SES and limited insight into genetic diseases as well as untraceable contact numbers were likely factors.