Synthesis, Structure-Activity Relationship and Solubility Improvement Studies of Potential Antimalarial and Antischistosomal Pyrido[1,2-α]benzimidazoles

Kelly Chisanga

Supervisor

Professor Kelly Chibale
University of Cape Town,
Department of Chemistry and Institute of Infectious Disease and Molecular Medicine
Rondebosch, 7700

Dissertation Presented for the Thesis towards the Award of the Master of Science (MSc)

Degree by Dissertation

November 2018
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
The copyright of this thesis vests in the author.

No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
DECLARATION

I, Kelly Chisanga, hereby:

a) grant the University of Cape Town free license to reproduce the thesis, in whole or in part, for the purpose of research;

b) acknowledge that I fully understand the meaning and the adverse consequences of plagiarism.

c) declare that this thesis is my own single-handed work, both in concept and execution, and that apart from the normal guidance of my supervisor; I have received no assistance apart from that acknowledged; and that neither the substance nor any part of the thesis has been submitted in the past, or is to be submitted for a Degree at this University or any other University.

Signed: [Signed by candidate] Date: 23rd November 2018
THESIS DEDICATION

TO MY LOVELY WIFE ETHEL LUNGU CHISANGA, MY ADORABLE SON MUTALE CHISANGA AND MY PRECIOUS DAUGHTER MARY MULENGA CHISANGA AS A GESTURE OF MY AFFECTIONATE GRATITUDE FOR YOUR PATIENCE, PERSEVERANCE AND ENDURANCE DURING THE TOUGH TIMES I WAS NOT WITH YOU WHILE I WAS STUDYING THOUSANDS OF MILES AWAY.

TO YOU ALL I SAY THIS IS THE START OF OUR LITTLE STORY, THE PART WHERE YOUR PAGE MEETS MINE NO MATTER WHERE THE TALE TAKES US TOMORROW, OUR STORY WILL ALWAYS BE READ.

LOTS OF LOVE!

BASHI MUTALE.
Conferences and Seminars

June 2018 – Poster Presentation:
Synthesis, Structure-Activity Relationship and Solubility Improvement Studies of Potential Antimalarial and Antischistosomal Pyrido[1,2-a]benzimidazoles at the Gordon Research Seminar (GRS) on Biology of the host-parasite interactions, 9 – 10 June 2018, Salve Regina University, Newport, Rhode Island, United States of America (USA).

June 2018 – Poster Presentation:
Synthesis, Structure-Activity Relationship and Solubility Improvement Studies of Potential Antimalarial and Antischistosomal Pyrido[1,2-a]benzimidazoles at the Gordon Research Conference (GRC) on Biology of the host-parasite interactions, 10 - 15 June 2018, Salve Regina University, Newport, Rhode Island, United States of America (USA).

August 2018 – Poster Presentation:
ACKNOWLEDGEMENTS

Foremost, I acknowledge the sovereignty of God the Almighty and His grace upon my life, the life of my beloved ones, friends and the financial sponsors of this research program.

Secondly, I would like to acknowledge my supervisor, Professor Kelly Chibale for the guidance he provided during this program. You have greatly inspired me in an uncountable number of ways. I am grateful to you for the strides you have made in developing my science career, for the opportunity you gave me to work in your laboratories and for opening my eyes to have a glimpse of the medicinal chemistry research world. It has been a great and motivating experience that will go a long way in my career.

May I also thank the administrative team, Ms Elaine Rutherfoord-Jones and Saroja Naicker for their steady-fast and timeous provision of the research materials. May I also thank Deidre Van-Rooyen for the logistics and facilitation of sample analysis. May God bless you all!

I am grateful to all members of the KC Medicinal Chemistry and H3D research groups for the support you rendered to me materially, emotionally and technically which all together facilitated the smooth flow of my research. May I also gratefully acknowledge Peter Mubanga Cheuka (PhD-Student) for his selflessness in the sharing of knowledge and skills. Most importantly, I want to thank him for sharing his limited and precious time to proof-read my chapters. A lot of thanks go to Godfrey Mayoka (PhD-Student) for the role he played in my research as a mentor and to Dr Aloysius Nchinda (H3D staff member) for helping me organizing and managing my work.

My cordial gratitude and a lot of thanks to Dr Taylor Dale for maintaining a big heart of tolerance during the stressful moment when the transmission and provision of antiplasmodium assays were required. My heartfelt gratitude also goes to Professor Jennifer Keiser (University of Basel, Switzerland) for the endless support in the provision of antischistosomal assays and her technical input in the unfolding of this research. Many thanks also go to Pete Roberts for the spectroscopic evaluation of my data.

Further gratitude goes to my family members for their constant engagement in prayers for me and my work, for your constant encouragement and your trust in me. May God bless you too!

Finally, thanks to Novartis Research Foundation and the Department of Chemistry of the university of Cape Town for their generous financial support to facilitate my research.
Abstract

In 2016, 216 million malaria cases with 445,000 associated deaths were recorded according to the World Health Organization (WHO). Schistosomiasis also remains a public health issue with 207 million cases recorded globally and 280,000 deaths in the same year. Widespread emergence of parasite resistance to once-effective antimalarial options has rendered currently used drugs ineffective. Moreover, the current WHO-recommended first-line antimalarial drugs in clinical use, the artemisinin combination therapies (ACTs) are faced with the challenges of limited availability, unaffordable cost, and undesirable adverse effects. On the other hand, the treatment of schistosomiasis is severely limited to one treatment regimen, praziquantel (PQZ) which, unfortunately, has recently shown low curing rates in some parts of West Africa. Furthermore, this treatment option is far from ideal because its activity is limited to only adult schistosomes while displaying no activity towards young stages of the liver flukes. These challenges collectively provide a justification for stepping up drug discovery and development efforts aimed at identifying novel, safe and efficacious antimalarial and antischistosomal agents.

Whereas, the pyrido[1,2-a]benzimidazole (PBI) scaffold is found in many pharmacologically relevant molecules including Rifaximin, an approved gastrointestinal antibacterial drug, medicinal chemistry explorations around the PBI nucleus have recently identified analogues as novel antimalarial and antischistosomal agents. Additionally, while promising antimalarial efficacy has been demonstrated in animal studies, preliminary in vitro studies of the PBI class of compounds have also demonstrated good activity against Schistosoma parasites. Recently, Mayoka reported the impressive dual antiparasitic potency of the lead compound GMP-19 (figure 1) against Plasmodium and Schistosoma parasites in vitro (IC₅₀ = 0.430 μM, drug-sensitive strain (NF54) and IC₅₀ = 0.210 μM, adult S. mansoni, unpublished data). However, GMP-19 and other PBI analogues in this series of compounds, have been beset by poor solubility.

Towards addressing solubility issues while retaining and improving antiparasitic activity, in this MSc dissertation, the design, synthesis, structure-activity relationship (SAR) and solubility improvement studies of PBI analogues based on the GMP-19 template are reported. In this regard, chemical modification approaches such as disruption of molecular planarity, increasing saturation, incorporating water solubilizing groups such as the polar-ionizable and the neutral-polar functionalities around the PBI nucleus were adopted. Consequently, we obtained SAR 1
analogues after substituting the 4-(trifluoromethoxy)phenyl (4-OCF$_3$Ph) moiety of GMP-19 with assorted α-methyl benzylamines. In addition, the phenyl ring on the left-hand side of the core scaffold was substituted with electron withdrawing groups such as the chloro and fluoro atoms (SAR 1.1 – 1.4), (figure 1). Although some analogues demonstrated a significant loss of antiparasitic activity (> 6.00 µM), strong submicromolar antiparasitic activity was observed with most analogues (IC$_{50}$ = 0.022 -0.940 µM, P_fNF54 and 30 - 69% inhibitory effect at 0.370 µM, against young forms of $S.$ mansoni). Moreover, some analogues demonstrated poor solubility as low as < 10 µM while others showed highly improved solubility as good as 80 µM.

In SAR 2.1 – 2.2, the 4-OCF$_3$Ph and the trifluoromethyl (CF$_3$) on the right-hand side (RHS) of the scaffold were fixed while introducing amino moieties (R) on the lipophilic phenyl ring on the left-hand side (LHS) of the PBI core (figure 2). Upon identifying the moiety with the best balance of solubility and biological activity, the 4-OCF$_3$Ph was replaced with various acyclic aminos (SAR 2.3) while the CF$_3$ was maintained on C-3 of the core scaffold. Finally, the CF$_3$ was replaced with the 4-CF$_3$Ph (SAR 2.4 and 2.5) while keeping fixed the optimal basic amine and the acyclic amino moieties on the LHS, respectively. Interestingly, the pursued structural modifications delivered analogues with a wide diversity of pharmacological and physicochemical properties. While some analogues demonstrated significant loss of pharmacological activity, others exhibited potent submicromolar antiparasitic activity (IC$_{50}$ < 0.012 – 0.990 µM, P_fNF54 and 0.360 – 0.850 µM, adult $S.$ mansoni). Similarly, some analogues demonstrated poor solubility as low as < 10 µM while others demonstrated improved solubility as good as 180 µM.
LIST OF ABBREVIATIONS AND SYMBOLS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>Artemisinin Combination Therapy</td>
</tr>
<tr>
<td>APCI</td>
<td>Atmospheric Pressure Chemical Ionization</td>
</tr>
<tr>
<td>ASU</td>
<td>Asymmetric Unit</td>
</tr>
<tr>
<td>Å</td>
<td>Angström</td>
</tr>
<tr>
<td>°C</td>
<td>Degrees Celsius</td>
</tr>
<tr>
<td>μL</td>
<td>Microlitre</td>
</tr>
<tr>
<td>μM</td>
<td>Micromolar</td>
</tr>
<tr>
<td>μm</td>
<td>Micrometer</td>
</tr>
<tr>
<td>ADMET</td>
<td>Absorption, Distribution, Metabolism, Excretion and Toxicology</td>
</tr>
<tr>
<td>CDCl$_3$-$_d$</td>
<td>Deuterated Chloroform</td>
</tr>
<tr>
<td>CD$_3$OD-$_d$_4</td>
<td>Deuterated Methanol</td>
</tr>
<tr>
<td>cLogP</td>
<td>Calculated logarithm of n-octanol/water partition coefficient</td>
</tr>
<tr>
<td>CYP</td>
<td>Cytochrome P450</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>DFT</td>
<td>Density Functional Theory</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N-Dimethylformamide</td>
</tr>
<tr>
<td>DMPK</td>
<td>Drug Metabolism and Pharmacokinetics</td>
</tr>
<tr>
<td>DMSO-$_d$_6</td>
<td>Deuterated Dimethyl Sulfoxide</td>
</tr>
<tr>
<td>ESI</td>
<td>Electron Spray Ionization</td>
</tr>
<tr>
<td>EtOAc</td>
<td>Ethyl Acetate</td>
</tr>
<tr>
<td>GMP</td>
<td>Godfrey Mayoka’s Project</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric Acid</td>
</tr>
<tr>
<td>HPLC</td>
<td>High-Performance Liquid Chromatography</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>IC$_{50}$</td>
<td>Inhibitory Concentration required to inhibit the growth of 50% of the organism</td>
</tr>
<tr>
<td>ip</td>
<td>intraperitoneal</td>
</tr>
<tr>
<td>PBI</td>
<td>Pyrido[1,2-a]benzimidazole</td>
</tr>
<tr>
<td>PQZ</td>
<td>Praziquantel</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
Table of Contents:

1.0 INTRODUCTION AND LITERATURE REVIEW ... 1
 1.1 Malaria .. 1
 1.1.1 History, introduction and aetiology ... 1
 1.1.2 Epidemiology .. 2
 1.1.3 Malaria parasite life cycle .. 3
 1.1.4 Control, prevention and treatment of malaria .. 4
 1.1.5 Current antimalarials in clinical development ... 9
 1.2 Schistosomiasis .. 13
 1.2.1 History, introduction and aetiology ... 13
 1.2.2 Epidemiology .. 14
 1.2.3 Responsible parasite species and life cycle .. 14
 1.2.4 Control, prevention and treatment ... 15
 1.3 Approaches to antimalarial and antischistosomal drug discovery 17
 1.4 Solubility in drug design and development: importance and strategies for improvement ... 19
 1.5 Strategies to improve solubility ... 19
 1.5.1 Chemical methods .. 19
 1.6 Drug metabolism and pharmacokinetics ... 23
 1.7 Pyridobenzimidazoles: introduction and pharmacological properties 24
 1.7.1 Antimalarial and antischistosomal properties of PBIs 24
 1.8 Aims and objectives ... 27
 1.8.1 Objective .. 27
 1.8.2 Hypothesis ... 27
 1.8.3 Specific aims ... 27
 References ... 28

2.0 SYNTHESIS AND CHARACTERIZATION OF TARGET COMPOUNDS 43
 2.1 Introduction .. 43
 2.2 Design ... 45
 2.2.1 α-Methylbenzylamine-substituted PBI analogues in SAR 1.1 to 1.4 45
 2.2.2 α-Methylbenzylamine-substituted PBI analogues in SAR 2.1 to 2.5 46
 2.3 Synthesis of SAR 1 and 2 compounds .. 64
2.4 Mechanistic details and spectroscopic analyses of SAR 1 intermediate and target compounds ... 53
2.5 Mechanistic details and spectroscopic analyses of SAR 2 intermediate and target compounds ... 61
 2.5.1 Synthesis of amide compounds ... 61
 2.5.2 Synthesis of amine-substituted analogues ... 66
References .. 70
3. PHARMACOLOGICAL AND SOLUBILITY EVALUATION ... 72
 3.1 Introduction .. 72
 3.2 SAR 1: Assessment of the solubility and in vitro antiplasmodium, gametocytocidal, and antischistosomal activities of SAR 1.1 to 1.4 analogues ... 72
 3.2.1 Assessment of the solubility and in vitro antiplasmodium activities of SAR 1 analogues .. 73
 3.2.2 In vitro gametocytocidal activity evaluation of SAR 1 analogues 79
 3.2.3 In vitro antischistosomal evaluation of SAR 1 analogues .. 83
 3.2.4 In vitro activity against adult schistosomes ... 83
 3.2.5 In vitro activity against newly transformed schistosomula (NTS) 84
 3.3 SAR 2: Assessment of the solubility and in vitro antiplasmodium and antischistosomal activities of LHS-modified PBI analogues ... 88
 3.3.1 Assessment of the solubility and in vitro antiplasmodium activities of SAR 2 analogues .. 89
 3.3.2 In vitro gametocytocidal activity evaluation of SAR 2 analogues 95
 3.3.3 In vitro antischistosomal evaluation of SAR 2 analogues .. 96
4. PHYSICOCHEMICAL EVALUATION AND STRUCTURE-PROPERTY RELATIONSHIPS 99
 4.1 Introduction .. 99
 4.2 Results and discussion ... 100
 4.2.1 Physicochemical characterization ... 100
 4.2.2 Relationships between solubility, Mp, cLogP, and HPLC tR 100
REFERENCES .. 105
5. GENERAL SUMMARY ... 106
 5.1 Summary of antiparasitic activities against PfNF54, PfK1, NTS, and adult S. mansoni worms .. 106
5.2 Summary of in vitro antiplasmodium and antischistosomal activities of SAR 1 analogues ... 106
 5.2.1 Summary of structure activity relationship ... 107
 5.2.2 Summary of solubility studies ... 108
5.3 Summary of antiparasitic activity and solubility studies for SAR 2 analogues 109
 5.3.1 Summary of antiparasitic activity .. 109
 5.3.2 Summary of solubility studies ... 111
 5.3.3 General summary of the physicochemical property profiling 111
5.4 Pharmacological profiling of SAR 1 and SAR 2 analogues .. 111
 5.4.1 Pharmacological profiling of SAR 1 and SAR 2 analogues .. 111
 5.4.2 Physicochemical profiling of SAR 1 and SAR 2 analogues .. 111
 5.4.3 Proposed SAR for physicochemical optimization of the α-methylbenzyl-PBI series ... 111
 5.4.4 Proposed SAR for physicochemical optimization of the SAR 2 series 112
 5.4.5 In silico prediction of the physicochemical properties of proposed analogues ... 112
6. EXPERIMENTAL ... 115
6.1 Chapter Overview ... 115
6.2 Chemistry ... 115
 6.2.1 Reagents and Solvents .. 115
 6.2.2 Chromatography .. 115
 6.2.3 Spectroscopic characterization .. 116
 6.2.4 Physical characterization .. 116
6.3 Synthesis and Characterization .. 117
 6.3.1 General procedure for the synthesis of benzimidazole acetonitrile intermediate compounds 1.1a – 2.2a ... 117
 6.3.2 General procedure for the synthesis of hydroxy intermediates compounds (1.1b – 2.4b) .. 119
 6.3.3 General procedure for the synthesis of the chlorinated intermediates (1.1c – 2.4c) .. 121
 6.3.4 General procedure for the aromatic nucleophilic amine coupling: synthesis of the final compounds 1-34 .. 124
 6.3.5 Synthesis of 1-((2-bromoethyl)amino)-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 1.1e .. 128
6.3.6 General procedure for synthesis of the two-carbon spaced analogues- 10 and 11 ... 129
6.3.7 General procedure for synthesis of the amide derivatives- 44 and 45 144
6.3.8 General procedure for synthesis of the final compounds 38 – 41, 48, 49, 53 and 54 using the palladium (0) catalysed amine coupling (Buchwald-Hartwig reaction) ... 149
6.3.9 General procedure for the amino-group deprotection: synthesis of compounds 40, 52 and 55 ... 153
6.4 Biological assays ... 155
 6.4.1 In vitro asexual blood stage antiplasmodium assay .. 155
 6.5.2 In vitro gametocytocidal assay .. 155
6.5 Solubility Determination .. 156
 6.5.1 Kinetic Solubility Employing HPLC .. 156
 6.5.2 Kinetic (Turbidimetric) Solubility ... 156
Table of Figures

Figure 1.1: World malaria map .. 2
Figure 1.2: Life cycle of the *Plasmodium* parasite .. 4
Figure 1.3: Chemical structures of artemisinin and its derivative .. 5
Figure 1.4: Chemical structures of partner drugs used in ACTs ... 6
Figure 1.5: Chemical structures of selected second line antimalarial drugs and antibiotics. 7
Figure 1.6: Annual world malaria cases- 2010 – 2017 .. 8
Figure 1.7: Annual world malaria deaths- 2010 – 2017 ... 8
Figure 1.8: Chemical structures of selected clinical and pre-clinical antimalarial candidates.............. 10
Figure 1.9: Medicines for Malaria Venture antimalarial drug pipeline-2018 ... 12
Figure 1.10: World schistosomiasis distribution ... 13
Figure 1.11: Life cycle of schistosome parasites .. 15
Figure 1.12: Chemical structures of selected antischistosomal drugs ... 16
Figure 1.13: Structures of antischistosomal lead compounds ... 17
Figure 1.14: Selected approaches used to improve aqueous solubility .. 22
Figure 1.15: Pharmacophore of PBI .. 24
Figure 1.16: Bioactive PBIs ... 24
Figure 1.17: The PBI hit compounds identified from MTS ... 25
Figure 1.18: Antimalarial PBIs .. 26
Figure 2.1: Craig plot substituents .. 44
Figure 2.2: Design of PBI analogues in SAR studies 1.1 to 1.4 ... 45
Figure 2.3: Design of PBI analogues in SAR studies 2.1 to 2.5 ... 46
Figure 2.4: Synthesis of compounds in SAR studies 1.1 to 1.4 ... 48
Figure 2.5: Yield for compounds synthesized in SAR studies 1.11 to 1.3 .. 49
Figure 2.6: Yield for compounds synthesized in SAR study 1.4 .. 50
Figure 2.7: Synthesis of compounds in SAR studies 2.1 to 2.5 .. 51
Figure 2.8: Yield for compounds synthesized SAR studies 2.1 to 2.5 .. 52
Figure 2.9: Mechanism of formation of 2-(1H-benzo[d]imidazol-2-yl)acetonitrile (1.4a) 53
Figure 2.10: 1D 1H nuclear magnetic resonance spectroscopy spectrum of 1.4a 54
Figure 2.11: Mechanism of formation of intermediate 1.4b ... 55
Figure 2.12: 1D 1H nuclear magnetic resonance spectrum of 1.4b .. 55
Figure 2.13: 1D 1H nuclear magnetic resonance spectrum of 1.4c .. 56
Figure 2.14: Mechanism of the aromatic nucleophilic addition (SNAr) of amines

Figure 2.15: 1D 1H nuclear magnetic resonance spectrum of compound 18

Figure 2.16: 1D 1H nuclear magnetic resonance spectrum of compound 15

Figure 2.17: 1D 1H nuclear magnetic resonance spectrum of compound 9

Figure 2.18: 1D 1H nuclear magnetic resonance spectra of compounds 3

Figure 2.19: Mechanistic details of the formation of isomeric compounds 2.1.1a and 2.1.2a

Figure 2.20: 1D 1H nuclear magnetic resonance spectra of regio-isomeric compounds 2.1.1a and 2.1.2a

Figure 2.21: H4-spin-spin interactions on 2.1.1a and 2.1.2a

Figure 2.22: 1D 1H nuclear magnetic spectra of the isomeric hydroxyl intermediates 2.1.1b and 2.1.2b

Figure 2.23: 1D 1H nuclear magnetic resonance spectrum of compound 42

Figure 2.24: 1D 1H nuclear magnetic resonance spectrum for compound 43

Figure 2.25: Amide bond formation mechanism

Figure 2.26: 1D 1H nuclear magnetic resonance spectrum of amidated compound 45

Figure 2.27: 1D 1H nuclear magnetic resonance spectrum of compound 37

Figure 2.28: The Buchwald-Hartwig amination reaction

Figure 2.29: Catalytic cycle for the Buchwald-Hartwig amination

Figure 2.30: 1D 1H nuclear magnetic resonance spectrum of compound 41

Figure 2.31: 1D 1H nuclear magnetic resonance spectrum of the morpholine-acyclic-base substituted final analogue 49

Figure 3.1: Design of SAR 1.1 to 1.4 analogues

Figure 3.2: Solubility and in vitro antiplasmodium activity of SAR 1.1 to 1.3 compounds

Figure 3.3: Solubility and in vitro antiplasmodium activity of SAR 1.4 compounds

Figure 3.4: In vitro gametocytogenesis inhibitory effect of SAR 1.1 to 1.3 compounds on early- and late-stage Plasmodium falciparum NF54 gametocytes

Figure 3.5: In vitro gametocytogenesis inhibitory effect of SAR 1.4 compounds on early- and late-stage Plasmodium falciparum NF54 gametocytes

Figure 3.6: In vitro antischistosomal activity of SAR 1.1 to 1.4 compounds against adult Schistosoma mansoni worms

Figure 3.7: In vitro antischistosomal activity of SAR 1.1 to 1.3 compounds against newly transformed schistosomula (NTS)
Figure 3.8: *In vitro* antischistosomal activity of SAR 1.4 (7,8-difluorinated core) compounds against newly transformed schistosomula (NTS) ... 87

Figure 3.9: Points of modification in the SAR 2 study ... 89

Figure 3.10: Solubility and *in vitro* antiplasmodium activity of SAR 2.1 to 2.3 targets 90

Figure 3.11: Solubility and *in vitro* antiplasmodium activity of SAR 2.4 and 2.5 targets 92

Figure 3.12: Density functional theory (DFT)-optimized structure conformations and observed solubilities for compounds 28, 49 and 55 94

Figure 3.13: *In vitro* gametocytogenesis inhibitory effects of SAR 2.2 to 2.5 compounds against early- and late-stage PjNF54 gametocytes ... 95

Figure 3.14: *In vitro* antischistosomal activity of SAR 2.1 to 2.2 compounds against adult *Schistosoma mansoni* worms ... 96

Figure 4.1: Purity validation of all compounds synthesized .. 100

Figure 4.2: Relationships between selected physicochemical properties 101

Figure 4.3: Selected PBI compound with their physicochemical properties 103

Figure 5.1: Antiplasmodium (IC₅₀ (µM)) and antischistosomal (% inhibition at 1.00 µM) of the current PBI leads .. 108

Figure 5.2: Antiparasitic activity and physicochemical profiles of selected SAR 2 analogues ... 109

Figure 5.3: Statistical distribution and summary of antiplasmodium activities 110

Figure 5.4: Proposed compounds for physicochemical properties optimization (SAR 1) 112

Figure 5.5: Proposed compounds for physicochemical properties optimization (SAR 2) 112

Figure 5.6: Future work and recommendations for SAR 1 ... 113

Figure 5.7: Future work and recommendations for SAR 2 ... 114

Figure 6.1: HPLC gradient conditions summary .. 116
1.0 INTRODUCTION AND LITERATURE REVIEW

1.1 Malaria

1.1.1 History, introduction and aetiology

The word “malaria” was derived from two Italian words “mal” (bad) and “aria” (air). The malaria parasites were first detected in a patient’s blood by the French army officer Charles Louis Alphonse Laveran in 1880. Before then, malaria had been associated with marshy areas whose foul air was assumed responsible for its causation.1 In the year 1897, the parasites’ blood sexual stages and the elucidation of the transmission cycle in culicine mosquitoes and birds infected with *Plasmodium relictum* were respectively discovered by William McCallum and Ronald Ross.1,2 These discoveries laid a landmark in understanding the cause and transmission of malaria and thus, paved the way to the conclusive evidence by an Italian malariologist Giovanni Battista Grassi in 1898,1 that human malaria was transmitted by various species of female *Anopheles* mosquitoes.1–3 The consequent discovery of the development of malaria parasites in the liver before entry into the bloodstream by Henry Shortt and Cyril Garnham in 1948 facilitated the ultimate discovery of the presence of dormant stages of the parasite in the liver as was proved by Wojciech Krotoski in 1982.2

Malaria is caused by over 100 known single-celled protozoan parasite species of the genus *Plasmodium* of which, *P. falciparum, P. vivax, P. malariae, P. ovale* and *P. knowlesi* are the main five (5) species known to infect humans.4 *P. falciparum* is the highest in disease transmission, most lethal and is responsible for the world’s most acute cases of sickness, organ dysfunction and deaths.3,5 Although *P. vivax* and *P. ovale* only cause a milder form of the disease and aren’t as life-threatening as *P. falciparum*, they are associated with relapses due to the persistence of dormant hypnozoite forms in the liver.3,6,7 *P. malariae* is usually associated with infections of a chronic nature and can persist in blood asymptptomatically for long periods of time.8 A fifth species, zoonotic *P. knowlesi* that was only known to infect macaques has surprisingly been traced to cause human malaria in some parts of South-East Asia.3,9

Malaria has continued to pose devastating effects on human health and the economy worldwide due to vector resistance to commonly used insecticides,10 unavailability of an effective malaria vaccine,7,11,12 excessive cost, toxicity and severe adverse effects of existing antimalarials besides parasite resistance to these therapeutic agents.13–16
1.1.2 Epidemiology

Malaria is a public health problem whose endemicity spans more than 91 countries worldwide affecting more than 40% of the global population. The highest rates of infection and transmission are confined within the tropical and sub-tropical regions, Amazon and the temperate zones of the world. The highest disease cases and deaths are contributed by sub-Saharan Africa, Amazonia and South-East Asia. Factors contributing to a huge malaria burden in these regions include their auspicious tropical climatic conditions conducive for mosquito breeding and political instability in some resource-poor economies which limit investment in malaria prevention strategies. Although only dealing with the challenges of imported malaria due to international travels and some consequent occasional secondary transmission, regions such as Australia, Europe, North America and some parts of Southern and Northern Africa (figure 1.1) have been classified as non-malaria endemic.

Figure 1.1: World malaria map.

The 2017 World Health Organization (WHO) malaria report revealed that about 216 million people were infected and roughly, 445 000 malaria-related deaths were recorded globally of which 90% and 91% of the infections and deaths, respectively, occurred in tropical regions of sub-Saharan Africa in 2016. In the same region, about 125 million pregnant women have been reported to be at risk of infection and over 200,000 maternal-infant deaths occur each year, translating into a worrisome statistic that one child dies of malaria every two minutes. Records also show that 13 out of the 32 most endemic countries of sub-Saharan Africa account for about 76% and 75% annual global malaria cases and deaths, respectively.
1.1.3 Malaria parasite life cycle

Although there are some minor variations, four-major malaria-causing parasites (*P. falciparum, P. vivax, P. malariae and P. ovale*) exhibit similar development steps and life cycle which completes in two phases including the human and mosquito phases. The human phase of *Plasmodium*’s life cycle starts with an exoerythrocytic asymptomatic stage lasting between 9 and 16 days inside the host’s liver.\(^1\) The cycle inception involves a female *Anopheles* mosquito that inoculates salivary *sporozoites* into the host’s punctured dermis during its blood meal (figure 1.2).\(^1,3\) The *sporozoites* enter hepatocytes and form a parasitophorous vacuole (PV) where they undergo development and maturate into liver *schizonts* each of which contains tens of thousands of the first generation *merozoites*.\(^29,38\) In the case of *P. vivax* and *P. ovale* infection, some exoerythrocytic *schizonts* undergo a dormant period known as the *hypnozoite stage* (which may result in relapses months or even years after the first infection).\(^17,32\) As infected hepatocytes rapture, free *merozoites* invade circulatory erythrocytes to begin the erythrocytic infection stage. At this stage, a *schizont* is formed which, upon maturation, bursts open to release even more *merozoites* that are infectious to new erythrocytes and the cycle continues until death of, or parasites get cleared from the host by chemotherapy.\(^33\) It is at this blood stage infection that malaria symptoms such as intermittent fever attacks, convulsions and vomiting among others, are manifested. These symptoms arise from the simultaneous rupture of the infected erythrocytes and the associated release of antigens and waste products into the blood.\(^4\) The mosquito phase of *Plasmodium* parasite life cycle commences with the intraerythrocytic differentiation of *merozoites* to male and female *gametocytes*.\(^34\) These sexual forms of the parasite are ingested by a healthy mosquito taking a blood meal. Once in the mosquito’s gut, *gametocytes* undergo exflagellation to form *microgametes*, which fuse and undergo fertilization to yield a *zygote*. The *zygote* then develops into an *ookinete*, which penetrates the midgut epithelial cells of the carrier mosquito and develops into an *oocyst* that further undergoes sporogony to produce *sporozoites*.\(^35\) The resulting *sporozoites* lodge in the vector’s salivary glands, which can be injected into the human host to continue the cycle.
1.1.4 Control, prevention and treatment of malaria

A combination of malaria control strategies such as sleeping under insecticide-treated bed nets (ITNs), indoor residual spraying (IRS), use of repellents and the intermittent preventive therapy for pregnant women (IPTp) have significantly mitigated maternal illnesses and prevented infected vector contacts within the high-malaria-risk groups. In addition, filling or draining stagnant water pools (mosquito breeding sites), as a mean of vector control, has supplemented efforts toward preventing the spread of malaria. The awareness campaigns and provision of chemoprophylaxis to travellers to high-risk malaria infested areas ensure informed decision making on disease prevention and management in case of infection. In the case of infection, there is a need for the deployment of appropriate chemotherapies.

In 2005, the WHO issued malaria treatment guidelines and recommended synergistic artemisinin combination therapies (ACTs) as first-line regimens for uncomplicated *P. falciparum* malaria. ACTs are formed by combining a rapid but short-acting artemisinin or a synthetic derivative with a slowly-eliminated but longer-acting partner drug. Such
combinations were envisaged to mitigate parasite resistance to the artemisinin component, facilitate dosing convenience and reduce treatment duration from 7 to 3 days. The artemisinin components of ACTs include artemisinin (1) itself and its synthetic derivatives; dihydroartemisinin (DHA) (2), artemether (3), arteether (4), artesunic acid (5) and artelinic acid (6) (figure 1.3). When administered to patients, the derivatives 3 – 6 are rapidly biotransformed to the active metabolite DHA (2). Apart from its ability to rapidly kill other blood stage forms of the parasite, DHA is also parasiticidal to the sexual forms of the parasite thereby blocking human-to-vector parasite transmission.38,42

Figure 1.3: Chemical structures of artemisinin (1) and its derivatives- DHA (2), Artemether (3), Arteether (4), Artesunic acid (5) and Artelinic acid (6).

The use of a combination of any one of the fast-acting artemisinins (figure 1.3) with a long-acting schizonticide such as lumefantrine (figure 1.4) is known to minimise chances of recrudescence after clearance of initial parasitaemia and/or mitigate emergence of parasite resistance to partner drugs in ACTs.43 A typical example of such an ACT is coartem, a combination of artemether and lumefantrine (AL) which was developed by Novartis Pharmaceuticals in collaboration with Medicines for Malaria Venture (MMV) in 2009.45,46 A further formulation of coartem into the “child-size” and sweet-tasting therapeutic doses, among other malaria control measures, led to significant decline in the global malaria morbidity and mortality in the period 2010 - 2016,10,47 compared to the yesteryears. Other examples of ACTs include artesunate-amodiaquine, artesunate-mefloquine, DHA-piperaquine. For pregnant women, the pyrimethamine (8) and sulphadoxine (11) combination (SP) (figure 1.4) has been recommended.48
The second line options for treatment of complicated *P. falciparum* malaria generally consists of either individual components of ACTs such as artemether (3), artesunate (5) etc which are administered as monotherapies or, quinine (14), atovaquone (15) and proguanil (16) that are administered in combination with an appropriate antibiotic partner drug, which mainly includes clindamycin (17), doxycycline (18) and tetracycline (19) shown in figure 1.5. Additionally, a combination of 15 and 16 has been established for therapeutic application as well as prophylaxis of malaria.49,50 Primaquine (20) remains the only antimalarial known to deliver a radical cure by targeting the liver stage hypnozoites of *P. vivax* and *P. ovale*. It also targets the sexual forms of the malaria parasites thereby blocking transmission into the mosquito vector.3,51–53 Regrettably, it is not recommended for pregnant women and individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency because it causes severe haemolysis in such patients. Thus the requirement that G6PD status of patients is known before initiation of primaquine therapy54 makes it an obvious limitation in malaria treatment in resource-limited African countries. Lastly, chloroquine (21), the oldest, once effective and cheapest antimalarial (figure 1.5) has experienced widespread resistance, and has been withdrawn from clinics and markets in areas of endemic *P. falciparum* malaria.55,56
Figure 1.5: Chemical structures of selected second line antimalarial drugs and the antibiotics—quinine (14), atovaquone (15) proguanil (16), clindamycin (17), doxycycline (18) and tetracycline (19), primaquine (20) and chloroquine (21).

Malaria treatment is currently challenged with the spread of resistance to artemisinin-based antimalarial drugs in both Cambodia and Africa. The emerging resistance, especially in Cambodia and its bordering areas of Vietnam, Laos, Thailand and the Myanmar-Indian border, is threatening to reduce the efficacy of all ACTs. The issues of limited use of ACTs, patient’s poor adherence to previously prescribed long doses (7 days) or under-dosing, low efficacy, poor safety (counterfeit drugs) and unaffordable cost of malaria treatment, have contributed to the emergence of resistance. Parasite resistance to artemisinins has been manifested in the phenomenon of delayed parasite clearance following exposure to the fast-acting artemisinin component in ACTs. This incomplete parasite clearance is thought to increase the chances that some parasites will spontaneously develop genetic resistance to long-acting ACT partner drugs as well.

While estimates of disease burden have been reduced in between the years 2010 and 2014, the impact of resistance in areas of endemic malaria has resulted in an increase in both statistical malaria cases (figure 1.6) and deaths (figure 1.7) between the years 2013 and 2016.
The confirmed reports of spreading resistance and the resulting increase in malaria cases pose a significant threat to the strides made in the control and eradication of malaria so far as can be exemplified by the latest statistics in which 212 million malaria cases and 429 000 deaths reported in the year 2015, increased to 216 million cases and 445, 000 deaths in 2016. This translates into 4 million new malaria cases (figure 1.6) and about 16 000 additional malaria-related deaths (Figure 1.7).

The devastating global morbidity and mortality record, with one child dying of malaria every two minutes, and drug resistance collectively provide justification for stepping up global efforts in antimalarial drug discovery and development research. Intensive efforts should be aimed at
developing new, safer, affordable and effective antimalarial drugs with alternative mechanisms of action so as to impede resistance, roll-back malaria, mitigate morbidity and mortalities while improving the economic livelihoods and wellbeing of the world’s poor majority.

1.1.5 Current antimalarials in clinical development

To combat the increasing malaria illnesses, deaths and parasite resistance to chemotherapy, research and development have been instituted globally to develop malaria vaccines and drugs, which are meant to backup current antimalarials. Currently, a total of fourteen (14) MMV-supported antimalarial candidates, among others, have been developed and are in preclinical and clinical development. It is noteworthy that nine (9) of these drug candidates provide entirely novel mechanisms of action compared with partner drugs used in ACTs. In addition to these chemotherapeutic candidates, a vaccine candidate (RTS, S/AS01) has been developed and discovered to offer immunity against malaria. Its potential to prevent *P. falciparum* malaria infection has been assessed and proven in infants aged 6–12 weeks and children aged 5–17 months in a phase (III) clinical trial. The clinical trial conducted between 2009 and 2014 proved the concept and revealed that RTS, S/AS01 exhibited at least 50% protection against malaria infections.

Among the newer antimalarial candidates which have advanced into clinical development includes OZ439 (22), KAE609 (23), KAF156 (24), DSM265 (25), AQ-13 (26) and MMV390048 also known as MMV048 (27) whose structures have been summarised in figure 1.8 below. In addition to their unique modes of action, these antimalarial candidates have been studied and found potent with favourable properties such as multiple stage activity, parasite transmission blocking and chemo-protection. A newly discovered artefenomel-based antimalarial candidate OZ439 has been evaluated and found to be a fast-acting schizonticidal agent in addition to its activity at the symptomatic stage of *P. falciparum* malaria. Moreover, OZ439 has been assessed and found to have a good safety profile and is well-tolerated in healthy volunteers.
On the other hand, a spirotetrahydro-β-carboline (spiroindolone) based antimalarial candidate, KAE609 has been studied and shown to target the parasite plasma membrane Na-ATPase and inhibit plasma membrane Na\(^+\) efflux pump (PfATP4) leading to the ultimate disruption of the parasite’s sodium homeostasis.\(^{77}\) Most favourable properties of KAE609 include its activity against the asexual and sexual stages of parasite development and its ability to provide parasite to vector transmission blocking. Conversely, an imidazolopiperazine based antimalarial, KAF156 has shown potent antiplasmodium activity by inhibiting gametocytogenesis. Due to its multistage activity; at pre-erythrocytic liver stages as well as asexual and sexual blood stages of parasite development, KAF156 provides parasite-to-vector transmission blocking and chemoprotection which makes it a suitable chemotherapy for the malaria eradication agenda.\(^{70,71}\)

Further in clinical development, is a novel antimalarial candidate DSM265 which provides a totally different mode of action. The compound targets the pyrimidine biosynthesis pathway where, has been shown to inhibit plasmodial dihydroorotate dehydrogenase (Pf DHODH).\(^{72}\) In addition, it has also been shown to be active against the asexual stage of *P. falciparum* development as well as provide chemoprotection. The 4-aminoquinoline-based antimalarial candidate AQ-13 (26) showed activity against both chloroquine susceptible and
resistant *P. falciparum* parasite strains with a good safety profile in human volunteers and thus has been progressed to the clinical development stage. Finally, amongst the antimalarial candidates in clinical development is MMV390048 (27). Except for hypnozoites, compound 27 was found active against all *Plasmodium* parasite lifecycle stages thus, possessing both transmission blocking and chemo-protection properties. This novel aminopyridine-based antimalarial candidate was identified from a phenotypic whole cell high-throughput screening of commercially available SoftFocus kinase library followed by medicinal chemistry optimization. Moreover, compound 27 has been shown to exert its antimalarial activity by inhibiting *Plasmodium falciparum* phosphatidylinositol 4-kinase (PfPI4K) which also represents a novel mechanism of action in antimalarial drug research. However, compound 27 was found to have low solubility in biorelevant media resulting in variable pharmacokinetic profiles in healthy volunteers and prompting time-consuming formulation studies. As a result, further research at the University of Cape Town (UCT) led to the identification of a back-up candidate, UCT943 (28) (figure 1.8) which was developed with an improved solubility profile.

If successfully developed, compounds 27 and 28 would not only be part of the first new antimalarial drugs in many years to provide a completely new mode of action and treatment option but also, they will be the first-ever antimalarial drugs to be discovered by an African-led international team.

In addition to the above mentioned antimalarials candidates, other compounds which have entered the drug development portfolio with unique modes of actions include (+)-SJ733 (29), P218 (30) and CDRI 9778 (31). These compounds have been assessed in animal models and healthy human volunteers and found to be well tolerated with good safety margins and oral bioavailability. As such, the dihydroisoquinolone-based antimalarial candidate, 29 has been identified with properties that are likely to effect radical cure and prophylaxis in a single exposure. Moreover, the drug candidate has been studied and observed to be well-tolerated and exhibited good oral bioavailability in multiple species. On the other hand, the dihydrofolate reductase (PfDHFR) inhibitor drug candidate, 30 has been identified with excellent ADME-PK profile while exhibiting full activity against the pyrimethamine-resistant parasite strains. The trioxane peroxide based antimalarial candidate 31 is among the inhibitors of plasmodial phospholipid metabolism and is highly efficacious against multidrug-resistant *P. falciparum* strains. In addition to the drug candidates discussed above, various drugs in the antimalarial development portfolio are summarised in figure 1.9 below:
Figure 1.9: Medicines for Malaria Venture antimalarial drug pipeline-2018.76,82
1.2 Schistosomiasis

1.2.1 History, introduction and aetiology

Schistosomiasis, commonly known as bilharzia, is caused by the bisexual blood flukes of the genus *Schistosoma*, which are transmitted by various species of gastropod molluscs (snails). Snails and schistosomes have a coevolutionary relationship spanning more than 200 million years. The predominant pathogenic species of human schistosomiasis, however, were only discovered in the middle of the 18th century and include, in chronological order of detection, *S. haematobium* (1852), *S. japonicum* (1904), *S. mansoni* (1907), *S. intercalatum* (1934) and *S. mekongi* (1978). However, the three trematode species that are most prevalently associated with human infections include *S. mansoni*, *S. haematobium* and *S. japonicum*. The respective vectors include Biomphalaria, Bulinus and Oncomelania snails.

Schistosomiasis is an important, highly prevalent (figure 1.10) and infectious disease that is ranked second to malaria in causing long-term chronic human morbidity in many parts of the world. Since its discovery, schistosomiasis has adversely impacted human health and socioeconomic development. It has affected mainly both the growth and intellectual development of children, increased women exposure to HIV and other sexually transmitted infections (STIs) and compromised women’s reproductive health leading to infertility. Additionally, it has decreased the production and working capacity of adults leading to poor economies and poverty in areas of endemicity. Despite the severe and devastating effects of schistosomiasis on both human health and the economy, no new drug nor vaccine to date has been developed to treat or prevent the infections and transmission of the disease, besides Praziquantel (PQZ), the only chemotherapy of choice.

![Figure 1.10: World schistosomiasis distribution.](image)

Schistosomiasis is mostly predominant in the tropical regions of the world with sub-Saharan Africa accounting for over 90% of the world’s disease burden (figure 1.10).
1.2.2 Epidemiology
Approximately 779 million and about 207 million people are at risk of, and infected with schistosomiasis respectively, leading to about 280,000 annual deaths globally. In the year 2003, sub-Saharan Africa accounted for 90% of the total cases of the disease. However, reduction in the number of disease cases has been observed and reported in 2017 WHO report on schistosomiasis. According to this report, approximately 95.2 million people are at risk of infection while 90 million others are infected, leading to about 41,000 annual deaths globally in the year 2016. In the same report, the number of treated cases increased from ~66.5 to ~90 million people in between the years 2015 and 2016, of which 70.9 million were school-aged children and 18.3 million people were adults.

1.2.3 Responsible parasite species and life cycle
Schistosomes are parasitic, with a life cycle alternating between a snail and the vertebral host as shown in figure 1.11. The three most prevalent schistosome species associated with human infections (S. mansoni, S. haematobium and S. japonicum) share a common life cycle and development stages. Adult schistosome worms living in the blood venules of a human host lay about 300 eggs per day, some of which become trapped in the tissues while others are released through faeces or urine, depending on the schistosome species. Upon contact with freshwater, the eggs hatch into free-swimming miracidia, which seek and infect specific species of snails. The intramolluscan development takes about 4–6 weeks. Within the snail, the miracidia transform into mother sporocysts that undergo asexual replication to produce daughter sporocysts. Each daughter sporocyst undergoes further replication, ultimately yielding cercariae – a second free-swimming form of the parasite, which is infective to humans. Cercariae lose their tails during penetration of the host’s dermis and become schistosomulae. These migrate via the blood circulation to the portal veins of the liver where they differentiate and mature into adult worms. Adult male and female worms pair up, mate, and then migrate to the mesenteric venules of the bowel and rectum or the venous plexus of the bladder to complete the life cycle (figure 1.11). It takes about 6–8 weeks from cercariae penetration to the maturation of worms and laying of eggs.
1.2.4 Control, prevention and treatment

Between 1930 and 1985, control of schistosomiasis was based on chemical molluscicides (niclosamide or copper sulphate) for snail control. In 2015, the WHO recommended mass drug administration (MDA) alongside various preventive measures, which include improved sanitation as has been demonstrated by using modern bio-composting toilets, which have effectively killed parasite eggs. Additionally, draining marshes and swamps is another recommended strategy for vector control and prevention of parasite transmission. Public education campaigns which highlight the risk of employing irrigation methods that involve long-standing still waters have been launched. Furthermore, awareness talks are given to visitors going to schistosome-infested areas about dangers of immersing in potentially contaminated waters. In addition to preventive and control measures, most schistosomiasis affected countries have adopted curative methods in mitigating schistosomiasis.

PQZ (32) (figure 1.12) has been the only readily available drug for treatment of schistosomiasis in about five decades and is characterised by broad spectrum activity against the prevalent three schistosome species while providing good therapeutic efficacy and safety. The drug has shown curative effects at the adult stage of the liver fluke. Antimonium tartaratum (33), the

Figure 1.11: Life cycle of schistosome parasites.
antique drug used to treat *S. haematobium* infections dating back to 1918 was terminated and withdrawn from the market for safety reasons, that mainly involved the bioaccumulation of antimony in the body. In the 1960s and 1970s, furapromidum (34), metrifonate (35) and oxamniquine (36), which were active against *S. japonicum, S. haematobium* and *S. mansoni*, respectively, entered WHO’s model list of essential drugs until the late 1990s. Since then, these drugs (see figure 1.12) are no longer available commercially.

Figure 1.12: Chemical structures of selected antischistosomal drugs- PQZ (32), Antimonium tartaratum, (33) Furapromidum (34), Metrifonate (35) and Oxamniquine (36).

However, PQZ has exhibited a number of challenges that include its bitter taste, high production costs as the drug is produced as a racemic mixture of dextrorotatory [D(−)] and laevorotatory (L(−)] of which only the L(−) isomer has schistosomicidal activity. In addition, the drug has a limited activity to only adult schistosomes and has shown no activity towards young stages of the liver flukes, thus posing risks of relapse of the disease after treatment. Moreover, slow curing rates have recently been noted in some parts of West Africa, thus, posing a risk of the emergence of resistance.

1.2.5 Antischistosomal drug pipeline

Schistosomiasis is one of the most neglected infectious tropical diseases to which, little to no attention has been paid in terms of research and development of new chemotherapeutic agents in about five decades. Several lead compounds including artemisinin (1) artemether (2), artesunate (3), mefloquine (7) (figures 1.3 – 1.4), the ozonides (1,2,4-trioxolanes; OZ288 (37) and OZ418 (38)), trioxaquine (the aminoquinoline linked 1,2,4-trioxane; PA-1259 (39)) and aryl hydantoins (Ro 11-3128 (40) and Ro 13-3978 (41)) (figure 1.13), have been shown to possess antischistosomal properties. Although most of these lead compounds were pursued as antimalarials, they were discovered to have good activity at various stages of the schistosomal liver flukes. Nevertheless, none are currently being actively pursued for further antischistosomal drug development due to lack of funds, prospects of poor investment return.
from the product and the widespread belief that PQZ is a sufficient curative control for schistosomiasis.107

\begin{figure}
\centering
\includegraphics[width=\textwidth]{structures.png}
\caption{Structures of antischistosomal lead compounds}
\end{figure}

There is a need to speed up research and development activities to develop new more affordable and effective antischistosomals to serve as alternatives to PZQ, and which would potentially prevent devastating effects of total resistance to the only available treatment option.

1.3 Approaches to antimalarial and antischistosomal drug discovery

The duration, high labour intensity and the huge cost associated with the development of a drug from scratch is an enormous challenge. Cutting down on such costs requires the strategic adoption of some drug candidates which might have gone through various developmental stages hence, whose pharmacokinetic parameters, formulation and safety or potential toxicity profiles are documented.108,109 Two cost reduction drug discovery approaches namely, drug repurposing and drug repositioning become useful choices. Drug repurposing involves discovering a new therapeutic application of an existing drug that has been approved by the regulatory body for use in a specified medical indication. Upon identification of the therapeutic effect on a totally different medical condition, the next step in development may only involve optimising the dosing regimen for the new application. On the other hand, drug repositioning involves the use of a dispensary or candidate drug as the scaffold for the development of other drug derivatives that possess a therapeutic effect for a totally different medical indication. Drug repurposing and repositioning approaches have been, in the past, effectively exploited in antimalarial, antischistosomal and antitubercular drug discovery and development.110 For instance, sulfa-based drugs for malaria, and fluoroquinolones for tuberculosis (TB) were initially developed for the treatment of non-malaria and non-TB diseases. In principle, a clear
identification of the drug’s target enzyme and understanding of the mode of action of the drug may allow for treatment of two or more different parasites using one drug.

This dissertation research will take advantage of the findings that *Schistosoma* *spp.*, have the same blood-feeding characteristics as *Plasmodium* parasites and coherently share the same haem degradation mechanisms. In this mechanism, the parasite digests host haemoglobin as a major source of amino acids they need to supplement nutritional requirements and complete their sexual development. Toxic free-heme (ferriprotoporphyrin IX) is released in the process, which can produce oxygen radicals or damage cell membranes and parasite proteins. To avoid the toxic effects, *Schistosoma* and *Plasmodium* parasites bio-crystallise heme molecules into inert and insoluble hemozoin.

The postulate that the antimalarial drug candidates could positively effect a similar pharmacological response toward both the blood-digesting liver flukes and *Plasmodium* *spp.* is deemed logical, since their mechanism of action shares a common pathway. Recently, clinically useful antimalarial drugs and drug candidates have been discovered and found with antischistosomical properties upon tests in rodents. Such drugs include mefloquine, artesiminin and its semi-synthetic derivatives such as artemether and artesunate. Additionally, the ozonide class of compounds (1,2,4-trioxolanes: OZ288 (37) and OZ418 (38), and trioxaquines (PA-1259 (39)), (figure 1.13), are some of the other antimalarial drug candidates discovered to possess antischistosomical properties as well. These antischistosomical lead compounds were developed in antimalarial research programs and were at various stages of drug development.
1.4 Solubility in drug design and development: importance and strategies for improvement

In the context of medicinal chemistry, solubility can be defined as the property of a drug molecule to dissolve in an aqueous solvent to form a homogeneous solution at a specified temperature and pH.121 Solubility is a significant physicochemical property in drug discovery that impacts a drug’s pharmacokinetics and how it is used in the clinic.121,122 With the exception of the first-pass metabolism in the liver, oral bioavailability is highly dependent on intestinal absorption, which is a function of the compound’s solubility and permeability.123 Thus, an orally ingested drug with optimal solubility and dissolution rate is most likely absorbed, and permeated which brings about a desired pharmacological response. Conversely, a sub-optimally soluble drug is frequently associated with formulation challenges, limited and variable absorption, poor permeation and bioavailability (in oral administration), and is likely to precipitate if administered intravenously leading to poor tissue distribution and metabolism.124 Such a drug may further present inconsistencies in clinical response due to the drug’s suboptimal pharmacological effect and is likely to result in adverse and side effects.125

1.5 Strategies to improve solubility

Various techniques to enhance the solubility of poorly soluble drug candidates are principally based on physical126 and chemical modifications.127 The choice of the solubility-improving method to apply depends on the drug property, site of absorption and required dosage form characteristics.121 Although a drug’s solubility can be improved upon by physical means and formulation efforts, these approaches have limitations and are expensive. Therefore, it is important that the drug’s sub-optimal solubility is addressed early in the discovery phases using chemical modification approaches.121,128 These methods are discussed in greater detail in the following section.

1.5.1 Chemical methods

Although arduous, chemical structure modification is a key factor in influencing intrinsic solubility properties of a drug candidate.129 Substituent groups bonded to the drug scaffold determine overall lipophilicity, size and ionisability of the final drug molecule. Approaches that are frequently employed by synthetic medicinal chemists in improving aqueous solubility mainly involve modifying the drug core by incorporating hydrogen-bond donors and acceptors, introducing polar-ionisable or neutral polar groups, salt formation, saturation (increasing sp3 character) and disruption of planarity.127,129–131
1.5.1.1 Introducing hydrogen-bonding groups

The hydrogen-bond donors and acceptors such as amino, carbonyl and hydroxyl substituents play a significant role in enhancing aqueous solubility due to their strong hydrophilic aqueous interactions.78,130 In this regard, and as an example, Le Manach \textit{et al.}, have reported improved aqueous solubility by incorporating a water solubilizing hydrogen bonding group to afford a potential clinical candidate UCT943 (figure 1.14A).78 Molecules containing such functional groups can donate and accept hydrogen bonds, are basic in nature, and thus, have influence on the pKa of a compound and can exist in ionized forms at a suitable pH. These substituents are thus important and useful groups that have found widespread application in improving aqueous solubility and frequently given primary consideration in the medicinal chemistry optimization programs.78,129–132 Scheme 1.14A – 1.14D in figure 1.14 summarizes this and other solubility enhancing approaches discussed in this subsection.

1.5.1.2 Polar ionisable and neutral-polar groups

The amino, amide and carboxylic acid functional groups have strong solubilizing potential due to their polar functionality. Improving solubility through the incorporation of such molecular features has found application in different therapeutic areas including antimalarial drug discovery. For instance, artemisinin derivatives containing a carboxylic acid and its corresponding salts (figure 1.14B) are more water soluble than the parent artemisinin.133 Furthermore, the presence of acidic and basic functionalities in the candidate drug provides opportunities for further manipulations such as formulations that may result from the salt formation,134 (figure 1.14B) leading to significant improvement of the drug’s solubility. Many other drug discovery programmes have employed this strategy.108–110

1.5.1.3 Reducing aromaticity by introducing saturation

Increasing saturation by reducing the aromatic character of the analogue is a modification that has also been used in improving the oral aqueous solubility of various drug molecules as has been exemplified in figure 1.14C.131 This approach involves increasing the fraction of sp3-hybridized (Fsp3) carbons which in turn, leads to the reduced structural planarity and less crystal-stacking capability of the drug analogue. Ultimately, the melting point of the saturated final analogue is reduced, thus, leading to improved drug solubility.131

1.5.1.4 Disrupting molecular planarity

Approaches to improve drug solubility may also focus on disrupting planarity of the drug molecule by incorporating substituents which may twist the scaffold out of the plane as has been exemplified in figure 1.14D. In this approach, introducing either chirality on suitable
positions of the scaffold or an electron-rich mono or polyatomic group on ortho positions of a bi-aryl system, includes some of the frequently used approaches to disrupt planarity. The resulting increased dihedral angle makes the drug molecules unsuitable for π-stacking and crystal packing thus, leading to low melting point and improved solubility.127,128,132

1.5.1.5 Pro-drug approach
A pro-drug may be defined as a poorly active or inactive compound, which upon undergoing an \textit{in vivo} biotransformation, either through chemical or enzymatic cleavage, releases the active molecule at efficacious levels at the active site.135 Pro-moieties such as acyl, carbamate, ether, phosphate, ester, among others, are some commonly used bio-reversible derivatives associated with enzymatic hydrolysis to release the active parent drug \textit{in vivo} (figure 1.14E).136 These groups are associated with ideal water solubilizing potential, good absorptivity and permeation properties to bring about improved overall drug efficacy.

In general, pro-drugs have achieved superior physicochemical properties compared to parent drugs. Thus, based on prodrug approach, Zimmermann \textit{et al.}, have successfully improved the solubility and bioavailability of a broad spectrum anthelmintic and anticancer drug (mebendazole) by $> 10,000$ and 2-fold, respectively.136

1.5.1.6 Reducing lipophilicity
Phenyl-polycyclic aromatic analogues are lipophilic and tend to form hydrophobic crystals because of intermolecular π-π interactions.127,128,132 By so doing, molecules tend to form crystals, which have reduced surface area for aqueous interactions and thus, making drug molecules hydrophobic. Approaches such as substituting the lipophilic phenyl rings with pyridyl or pyrimidinyl rings have been studied and observed to reduce lipophilicity leading to improved solubility.128
Chapter 1

Figure 1.14: Selected approaches used to improve aqueous solubility
1.6 Drug metabolism and pharmacokinetics

In drug discovery, lead optimisation, evaluation of drug pharmacology and safety, clinical testing and development, and the final positioning of the drug product into the market are all significantly dependent upon the pharmacokinetics and drug metabolism profile. Medicinal chemists are usually tasked to identify the target enzyme or receptor and use experimental structure-activity relationships to increase the in vitro activity. However, in vitro activity alone does not guarantee good in vivo activity unless the drug is associated with good absorption, permeation, bioavailability and a desirable action duration or half-life.137

The drug’s pharmacokinetic and metabolism profiles are the key determinants of bioavailability and the resulting in vivo therapeutic effect. A parent drug may, upon administration, be metabolised to either an active metabolite (metabolite that is able to exert the desirable therapeutic effect) or a reactive metabolite (a metabolite that is able to exert a toxic effect on biomolecules of the body such as glutathione thus, leading to metabolism-induced cytotoxicity). Such drug metabolism profiles should also be explored for regulatory purposes.138 The kinetics of active metabolite formation, the basic mechanisms of the events involved in absorption, distribution, metabolism and excretion (ADME); the interaction of chemicals with the drug-metabolising enzymes, particularly cytochrome P450 (CYP) should as well be understood to facilitate prediction of the therapeutic outcome and provide ability to explain a drug’s toxicity.137
1.7 Pyridobenzimidazoles: introduction and pharmacological properties

Pyridobenzimidazoles (PBIs) are fused ring heterocyclic aromatic compounds which have recently attracted attention in antimalarial, antischistosomal and antimycobacterial drug discovery. The PBI pharmacophore comprises a tricyclic fused ring system that constitutes a benzene, the central imidazole and a pyridyl ring (figure 1.15).

![Figure 1.15: Pharmacophore of PBI](image)

The PBI pharmacophore is synthetically diverse, chemically stable, and possesses vast biological and medicinal properties. These properties include inhibition of the synthesis of \(b\)-1,6-glucan, a cell wall component in fungus, anti-cancer, antiviral, analgesic, antibacterial, antitumor and antitubercular properties. Selected compounds amongst numerous other chemotherapeutic agents are as shown in figure 1.16:

![Figure 1.16: Bioactive PBIs- antibacterial (42), anticancer (43) antiviral (44) and antituberculosis (45).](image)

The PBI scaffold is found in many pharmacologically relevant molecules including Rifaximin, an approved drug. The PBI pharmacophore is, therefore, regarded as a privileged scaffold. The scaffold has been used as a building block with many sites of modification to yield drug-like compounds. Consequently, medicinal chemistry explorations around the PBI nucleus have recently identified PBI analogues as novel antimalarial and antischistosomal agents.

1.7.1 Antimalarial and antischistosomal properties of PBIs

The PBI core was recently shown to be a novel antimalarial chemotype. The discovery of antimalarial properties of the PBI core stemmed from a medium-throughput screening (MTS) of 1440 commercially available compounds against the multidrug-resistant strain of \(P\).
Consequently, the hit compound TDR15087 (46) (figure 1.17), was identified with moderate in vitro activity (IC$_{50}$ = 170 - 370 nM) against P. falciparum GHA and W2 strains. Furthermore, 535 additional compounds were screened against the multidrug-resistant P. falciparum K1 strain but this time, with a view to exploring the effect of structure diversity around the PBI core. This led to the identification of the N-benzylpiperazinyl derivatives TDR35885 (47) and TDR44047 (48) (figure 1.17), which, in addition to greater in vitro antiplasmodium activity, were found to have better selectivity over the mammalian L-6 cell line. Particularly, the activities against P. falciparum of these hit compounds which were uncovered in the second phase of PBI medium throughput screening showed an IC$_{50}$ = 52 nM for the chloroquine sensitive (NF54) strain and IC$_{50}$ = 50 - 78 nM against the resistance (K1) strain for TDR35885 (47), whereas, IC$_{50}$ = 53 nM for NF54 strain and 23 - 95 nM for the K1 strain was found for TDR44047 (48).

Figure 1.17: The PBI hit compounds identified from MTS.

However, all the 3 hit compounds (46 – 48) proved to be inactive in the standard in vivo P. berghei mouse model at doses of up to 4 x 100 mg/kg (ip), most likely because of a combination of poor solubility and metabolic stability. Since there was no prior art with respect to the antimalarial activity of PBIs, compounds 46 – 48 inspired further medicinal chemistry explorations toward the design and synthesis of structural analogues, which were aimed at realising compounds with improved pharmacokinetic properties as well as enhanced pharmacological profiles. Consequently, the synthesis, structure-activity and structure-property relationship (SAR/SPR) studies of the 3-aryl derivatives with alkylamino side chains (at R1, figure 1.15) were undertaken. As a result, compound 49 (figure 1.17) with improved in vitro activity (IC$_{50}$ = 47 nM) and about 3.5-fold more active than chloroquine (IC$_{50}$ = 170 - 200 nM) on the drug-resistant K1 strain of P. falciparum was identified. Compound 49 was also found to be metabolised in vitro into an active metabolite, compound 50 (figure 1.18). Despite its reduced selectivity over L-6 mammalian cell line, compound 50 exhibited moderate activity,
about 10-fold higher metabolic stability and a relatively improved half-life compared to the parent compound \textit{49}. Thus, further medicinal chemistry exploration around compound \textit{50} identified compound \textit{51} (figure 1.18) with a combination of good \textit{in vitro} antiplasmodium activity against the chloroquine-sensitive (CQ-S) and the resistant strains of \textit{P. falciparum}. Moreover, compound \textit{51} demonstrated an improved \textit{in vivo} antimalarial efficacy when tested using the standard \textit{P. berghei}-infected mouse model (figure 1.18). Regrettably, like the others, this compound was associated with poor solubility.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{compound.png}
\caption{Antimalarial PBIs- Ndakala 2011 (\textit{50}) and Singh 2017 (\textit{51}) and GMP19-unpublished (\textit{52}).}
\end{figure}

Amongst other front-runner compounds researched on and found to have a solubility liability albeit good antimalarial and interestingly, antischistosomal activity is \textit{GMP-19} (\textit{52}) (figure 1.18) which was derived in the year 2015 (unpublished).

Toward addressing sub-optimal solubility, while retaining or improving antiparasitic activity, this research endeavoured to synthesise and undertake SAR/ SPR exploration using the frontrunner compound, \textit{GMP-19} as a template, having demonstrated good \textit{in vitro} activity on schistosomes and \textit{Plasmodium} parasites.

The strategies used in optimising solubility, involved the introduction of water-solubilising amines, amides and saturation, while the SAR/SPR expansion campaign involved the incorporation of chirality, germinal and \(\alpha\)-methylbenzylamine substituents on the PBI core of \textit{GMP-19}. Details of these strategies are outlined in subsequent chapters.
Chapter 1

1.8 Aims and objectives

1.8.1 Objective

The main objective of this research was to enhance the solubility of antimalarial and antischistosomal pyrido[1,2-\(\alpha\)]benzimidazole-based frontrunner compound GMP-19.

1.8.2 Hypothesis

Pyrido[1,2-\(\alpha\)]benzimidazole-based compounds are potential novel antimalarial and antischistosomal drug leads with favorable potency, pharmacokinetics and physicochemical properties.

1.8.3 Specific Aims

i. To synthesise and characterise the antimalarial and antischistosomal Pyrido[1,2-\(\alpha\)]benzimidazoles designed to improve solubility.

ii. To profile the synthesised compounds with respect to antiplasmodium and antischistosomal activities and solubility.

iii. To derive the antiplasmodium and antischistosomal as well as solubility profiles.

iv. To investigate the factors (e.g., melting point, cLogP, and retention time on Reverse-Phase HPLC) affecting solubility and deduce relationships.

v. To submit the selected frontrunner compounds with potent antiplasmodium and/or antischistosomal activities with good solubility for in vitro microsomal metabolic stability, and cytotoxicity profiling.
References

Chapter 1

Chapter 1

2014, (8), 640–648.

Chapter 1

Chapter 1

(69) Macintyre, F.; Baker, M.; Möhrle, J. J. Antimalarial Activity of Artefenomel (OZ439),
Chapter 1

Chapter 1

3487.

Chapter 1

(93) Schistosomiasis http://www.who.int/mediacentre/factsheets/fs115/en/ (accessed Mar

(106) Wang, X.; Dong, Y.; Wittlin, S.; Charman, S. A.; Chiu, F. C. K.; Chollet, J.; Katneni, K.; Mannila, J.; Morizzi, J.; Ryan, E.; Scheurer, C.; Steuten, J.; Santo Tomas, J.; Snyder,
Chapter 1

C.; Vennerstrom, J. L. Comparative Antimalarial Activities and ADME Profiles of Ozonides (1,2,4-Trioxolanes) OZ277, OZ439, and Their 1,2-Dioxolane, 1,2,4-Trioxane, and 1,2,4,5-Tetraoxane Isosteres. *J. Med. Chem.* **2013**, *56* (6), 2547–2555.

Chapter 1

Chapter 1

Chapter 2

2. SYNTHESIS AND CHARACTERIZATION OF TARGET COMPOUNDS

2.1 Introduction

Here, the design, synthesis, and spectroscopic and physical characterization of the synthesized PBI analogues are discussed. The expansion and exploration of structure-activity relationship (SAR) and structure-property relationship (SPR) studies on this series of compounds involved carrying out chemical modifications around the PBI core scaffold. Substituent groups with molecular features likely to improve solubility as well as drug metabolism and pharmacokinetic (DMPK) properties of the target analogues were incorporated.

In the preliminary stage, the design of SAR/SPR studies involved incorporating α-methylbenzylamine moieties into the PBI motif. The incorporation of these features was postulated to disrupt molecular planarity, introduce saturation, and enhance hydrogen bonding properties. Recently, Cui et al. reported an anticancer medicinal chemistry optimization campaign in which an α-methylbenzyl substituent (2,6-dichloro-3-fluoro-α-methyl-benzyl) was incorporated into a lead anticancer drug scaffold to deliver the anticancer drug crizotinib.\(^1\) Furthermore, Tanaji incorporated a gem-dimethyl group to obtain clinically relevant drugs.\(^2\)

This report highlighted the importance of protruding lipophilic methyl groups in improving target binding efficiency, and thus increasing bioactivity. Additionally, phenyl ring substituents were selected in such a way as to incorporate representative Craig plot groups from each of the four quadrants depicted in figure 2.1. In this regard, a plot of Hammett constants (\(\sigma\)) which represents the electronic effect of various atoms or groups of atoms relative to hydrogen against hydrophobicity (\(\pi\)) values\(^3,4\) played a significant role in guiding the selection of various substituents. The selected Craig plot groups and their corresponding quadrants include F, Cl, and OCF\(_3\) (1\(^{st}\)), CH\(_3\)SO\(_2\) (2\(^{nd}\)), OCH\(_3\) and OH (3\(^{rd}\)), and Me (4\(^{th}\)). These groups were fixed at the \(para\)-position of the substituent benzylamine ring, and a few were added to the \(ortho\)-position for control purposes.
Chapter 2

Figure 2.1: Craig plot substituents incorporated in structure-activity and -property relationship studies around novel antimalarial and antischistosomal pyrido[1,2-\(\alpha\)]benzimidazole analogues

With the next phase of SAR/SPR studies, factors that would affect the solubility of PBI compounds will be evaluated. Established organic synthetic methods were used to synthesize the target compounds.

The asexual blood stage antiplasmodium activities of all analogues synthesized were evaluated against both the chloroquine-sensitive \(P. falciparum\) NF54 and the multi-drug-resistant K1 strains. The in vitro gametocytocidal activity of the compounds was also determined using the \(P. falciparum\) NF54 strain. Furthermore, compounds were subjected to \textit{in vitro} antischistosomal activity evaluation against both NTS and adult \textit{Schistosoma mansoni} liver flukes. Finally, the apparent solubility of the analogues was evaluated using turbidimetric and HPLC-based kinetic solubility assays.
Chapter 2

2.2 Design

2.2.1 α-Methylbenzylamine-substituted PBI analogues in SAR 1.1 to 1.4

In the design of SAR 1 target analogues, it was postulated that making structural modifications at position C-1 of the pyridinyl ring, and at positions C-8 and -9 of the phenyl ring of the PBI motif would be essential in exploring and expanding the SAR/SPR studies on this series of compounds. Consequently, although compounds synthesized in SAR 1.1 to 1.4 and SAR 2.1 to 2.5 studies were diversified, the PBI motif was maintained (figure 2.2).

Figure 2.2: Design of PBI analogues in structure-activity relationship (SAR) studies 1.1 to 1.4

In order to introduce structural diversity and explore different chemical spaces, the 4-(trifluoromethoxy)aniline moiety of GMP-19 was replaced with assorted α-methylbenzylamine substituents at C-1 of the PBI core (SAR 1.1). Consequently, analogues showing high biological activity were further modified by incorporating electron-withdrawing mono-atomic substituent groups such as chloro and fluoro atoms, respectively (SAR 1.2 and 1.4). These substitutions were made at positions C-7 and/or C-8 of the core scaffold, while the α-methylbenzylamine substituents that retained high biological activity were maintained at C-1. These modifications were, in addition to SAR expansion, envisaged to improve metabolic stability and/or solubility.
2.2.2 α-Methylbenzylamine-substituted PBI analogues in SAR 2.1 to 2.5

The design of SAR 2 analogues incorporating molecular features known to improve compound solubility. In this regard, polar hydrogen-bonding and water-solubilizing groups were incorporated into the phenyl (SAR 2.1 and 2.2) and pyridinyl rings at C-1 (SAR 2.3, figure 2.3). Thus, amides (SAR 2.1) and amino moieties, such as morpholinyl and piperazinyl groups (SAR 2.2), were introduced into the left-hand side (LHS) of the core scaffold.

- Replace the 4-(trifluoromethoxy)aniline with water-solubilizing bases

- Incorporate various substituents on the lipophilic phenyl ring

![Diagram showing design of PBI analogues in structure-activity relationship (SAR) studies 2.1 to 2.5](image)

Figure 2.3: Design of PBI analogues in structure-activity relationship (SAR) studies 2.1 to 2.5

Initially, the 4-(trifluoromethoxy)aniline (4-OCF₃Ph) moiety of GMP-19 was maintained while making structural changes to the phenyl ring. Once the \(R \) portion of the core scaffold was optimized to a degree with respect to solubility and biological activity, the optimal group was fixed at this position. In this regard, the morpholino group was identified as showing the best balance of aqueous solubility and biological activity. Consequently, the 4-OCF₃Ph moiety was replaced with basic side chains (SAR 2.3). Upon optimization of the right-hand side (RHS) with respect to solubility and biological activity, the next phase of SAR focused on replacing the trifluoromethyl (CF₃) moiety of the GMP-19 template with a 4-trifluoromethylphenyl (4-CF₃Ph) group at C-3 on the RHS. Although replacing CF₃ with a 4-CF₃Ph group resulted in increased lipophilicity, the overall design strategy was to combine the highly improved solubility of SAR 2.4 analogues with an improved antimalarial activity that is associated with the 4-PhCF₃ moiety.⁵
2.3 Synthesis of SAR 1 and 2 compounds

Although numerous synthetic studies have reported diverse protocols for the synthesis of the same heterocyclic PBI core, the synthesis technique used in this study was based on the work of Rida et al.6 and Ndakala et al.5 Furthermore, the work of Paul et al.7 formed the basis and reference for the synthesis of target analogues that required carbon-to-amine coupling (C-N bond formation). In this regard, the Buchwald-Hartwig palladium (0)-catalyzed amination protocol was used. A 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDCI)-mediated coupling protocol8–10 was used to synthesize the target amides.

Target compounds for the initial phase of the SAR study were synthesized using the synthetic protocol outlined below in figure 2.4. Condensation of a commercially available and appropriately substituted benzene-1,2-diamine with an ethyl 2-cyanoacetate under reflux conditions produced a bicyclic-benzimidazole acetonitrile intermediate, which underwent further condensation to yield a suitably substituted oxo-/hydroxyl-functionalized tricyclic PBI intermediate that was subsequently converted into a chlorinated intermediate. Microwave-assisted regio-selective amination was performed to produce target molecules for the SAR 1.1 to 1.4 study. Among the intermediate analogues at this stage, those with suitable functionalities were subjected to further reactions, such as base-catalyzed hydrolysis of the ester group to deliver intermediate acids for subsequent amide coupling. Moreover, the analogues that possessed suitable halogens on the phenyl ring of the core scaffold underwent Buchwald-Hartwig palladium-catalyzed amination reactions to produce SAR 2.1 to 2.5 compounds. SAR 1.1 to 1.4 and SAR 2.1 to 2.5 target compounds were obtained via the 4 and 6-step synthetic procedures outlined in figure 2.4 and 2.7, respectively. The isolated yields are tallied in figures 2.5, 2.6, and 2.8.
Figure 2.4: Synthesis of compounds in structure-activity relationship (SAR) studies 1.1 to 1.4

Reagents and conditions: (a) Ethyl cyanoacetate, dimethylformamide (DMF), 160 °C, 3 h; (b) ethyl 4,4,4-trifluoro-3-oxobutanoate, NH₄OAc, 145 °C, 2 h; (c) POCl₃, 130 °C, 3 h; (d) amine, triethylamine (TEA), tetrahydrofuran (THF), 80 °C, microwave (150 W), 20 min; (e) i. 2.0 M KOH, MeOH, 25 °C, 10 min.; ii. 2.0 M HCl; (f) 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, 4-dimethylaminopyridine, methylene dichloride (DCM), 0-25 °C, 2 h; (g) CBr₄, PPh₃, DMF, 25 °C, 10 min.; (h) K₂CO₃, DMF, 75 °C, 2 h.
Figure 2.5: Yield for compounds synthesized in structure-relationship (SAR) studies 1.1 (compounds 1-11), 1.2 (12-14), and 1.3 (15)
Figure 2.6: Yield for compounds synthesized in structure-relationship (SAR) study 1.4 (compounds 16-34)
Figure 2.7: Synthesis of compounds in structure-activity relationship (SAR) studies 2.1 to 2.5

Reagents and conditions: (a) Ethyl cyanoacetate, DMF, 160 °C, 3 h; (b) NH₄OAc, 145 °C, 2 h; (c) POCl₃, 130 °C, 3 h; (d) TEA, THF, 80 °C, microwave (150 W), 20 min; (e) NH₄Cl, Fe, MeOH:H₂O (1:1), 65 °C, 45 min; (f) DCM, EDCI, DMAP, 0 °-25 °C, 6-12 h; (g) amine, Pd₂(dba)₃, RuPhos, Cs₂CO₃, 1,4-dioxane/DMF (1:1), 80 to 110 °C; (h) 2.0 M HCl, 25 °C, 1 h
Figure 2.8: Yield for compounds synthesized in structure-relationship (SAR) studies 2.1 (compounds 35-41), 2.2 (42-45), 2.3 (46-47), 2.4 (48-49), and 2.4 (50-55)
2.4 Mechanistic details and spectroscopic analyses of SAR 1 intermediate and target compounds

Details of selected key reaction steps leading to the formation of critical intermediates and selected final analogues and the proton nuclear magnetic resonance (¹H NMR) spectroscopy analyses of representative compounds are described here. The unsubstituted benzimidazole acetonitrile intermediate \(\text{1.1a} \) (figure 2.4) was commercially available and used as purchased, and the symmetrically and asymmetrically substituted benzimidazole acetonitrile intermediates \(\text{1.2a, 1.4a, 2.1.1a, 2.1.2a and 2.2a} \) (figures 2.4 and 2.7) were obtained from commercially available and appropriately halogenated and nitro-substituted benzene-1,2-diamine precursors. These precursors include the 4-chloro \((\text{1.2})\), 4,5-dichloro \((\text{1.3})\), 4,5-difluoro \((\text{1.4})\), 3-chloro \((\text{2.2})\), and 3-nitro \((\text{2.1})\) benzene-1,2-diamine moieties (figures 2.4 and 2.7). The formation of various benzimidazole acetonitrile intermediates used in this study is exemplified by the formation of the symmetrically substituted 2-(5,6-difluoro-1H-benzo[d]imidazol-2-yl)acetonitrile (compound \(\text{1.4a} \), figure 2.9). The consecutive steps involved in the condensation reaction required for the formation of \(\text{1.4a} \) include the nucleophilic addition of the amino group in compound \(\text{1.4} \) to the carbonyl carbon of ethyl cyanoacetate (figure 2.9).

![Figure 2.9: Mechanism of formation of 2-(1H-benzo[d]imidazol-2-yl)acetonitrile (1.4a)](image)

Next, ethoxide ion-mediated deprotonation of the intermediate \(\text{1.4.1} \) occurs. An intramolecular nucleophilic addition takes place, leading to a ring closure and a subsequent proton transfer to form \(\text{1.4.3} \). A dehydration reaction leads to the formation of 2-(cyanomethyl)-1H-benzo[d]imidazol-3-ium ion, intermediate \(\text{1.4.4} \). Charge stabilization of \(\text{1.4.4} \) then occurs by means of a hydroxide mediated proton abstraction that leads to the formation of the desired
product, 1.4a. The mono-, di-chlorinated, and 7-nitro benzimidazole acetonitrile intermediates (1.2a, 1.3a, 2.1a, and 2.2a) were synthesized following the steps outlined in figure 2.9.

The structure of 1.4a was confirmed via 1D 1H NMR spectroscopy, and the following signals were identified: highly deshielded NH proton (H^4) peak at $\delta = 12.8$ ppm, two electronically equivalent aromatic proton signals at $\delta = 7.6$ ppm (H^2 and H^3), and a sharp singlet peak at $\delta = 4.4$ ppm, corresponding to the two relatively shielded methylene protons (H^1). Although the F-H-coupling was not evident at this stage, the 19F-NMR showed the presence of the two fluorine atoms and the 1H NMR spectrum obtained (figure 2.10) was consistent with the structure of compound 1.4a.

![Figure 2.10: 1D 1H nuclear magnetic resonance spectroscopy spectrum of 1.4a showing the NH (H^4) and the methylene (H^1) proton singlet peaks at $\delta = 12.8$ ppm and $\delta = 4.4$ ppm, respectively in DMSO-d$_6$ at 300 MHz.](image)

The intermediate 1.4a was progressed further to a condensation reaction. The ammonium acetate ion then deprotonates one of the partially acidic methylene protons of 1.4a and forms a resonance-stabilized methanide ion. The nucleophilic addition of the methanide ion onto a more electrophilic carbonyl (keto) carbon of the beta-ketoester occurs next. Consequently, the hydroxyl group is converted into a suitable leaving group by protonation. The dehydration that occurs via an E2 elimination mechanism leads to the formation of the C-C π-bond (figure 2.11). Furthermore, the protonation of the carbonyl oxygen of the ester group increases the electrophilicity of the carbonyl carbon and thus facilitates an intramolecular nucleophilic addition, which is followed by elimination and aromatization steps to form the oxo/hydroxyl intermediate 1.4b. The spectroscopic results in figure 2.12 indicate an increase in the number of the aromatic signals and confirm the formation of the compound.
Figure 2.11: Mechanism of formation of intermediate 1.4b

![Mechanism of formation of intermediate 1.4b](image)

Figure 2.12: 1D 1H nuclear magnetic resonance spectrum of 1.4b showing aromatic signals in DMSO-d_6 at 300 MHz

A singlet peak that integrates for one proton (1H) is evident at $\delta = 6.4$ ppm, and this corresponds to the newly introduced proton H1. Additionally, a separation of signals and a change in the splitting pattern of H2 and H3 in 1.4b were observed. The presence of the OH on the RHS affected the electronic environment between the two protons, thus leading to the observed peak separation, which was not previously observed on the 1D 1H NMR spectrum of 1.4a. Moreover, the observed doublet of doublets (dd) splitting pattern is attributed to the presence of fluorine.
atoms, which influence the electronic environment of the protons via fluorine-to-proton spin-spin coupling. The β-fluorine splits a proton into a doublet whereupon the magnetic influence of the γ-fluorine nucleus through long-range coupling leads to further splitting. Therefore, the two fluorine atoms present between the two protons on the LHS of compound 1.4b caused H2 and H3 to split into the observed pattern.

Chlorination of 1.4b led to the formation of the common amination intermediate 1.4c, which displayed downfield migration of the singlet peak from δ = 6.4 in 1.4b to δ = 7.7 ppm in 1.4c (figure 2.13). The shift is attributed to the stronger deshielding effect of the chloro atom on H1 compared to that of the hydroxyl group.

![Figure 2.13: 1D 1H nuclear magnetic resonance spectrum of 1.4c showing aromatic signals in DMSO-d6 at 600 MHz](image)

The amination of 1.4c involved nucleophilic aromatic substitution involving an amino group of the α-methylbenzylamine (or any appropriate amine) (figure 2.14).

![Figure 2.14: Mechanism of the aromatic nucleophilic addition (SNAr) of amines](image)

The successful formation of compound 18 was confirmed via 1D 1H NMR spectroscopy (figure 2.15). The spectrum signals are consistent with the structure of the compound.
Figure 2.15: 1D 1H nuclear magnetic resonance spectrum of compound 18 showing the newly introduced protons corresponding to the amino, methyl, methylene, and additional aromatic groups in DMSO-d_6 at 300 MHz.

Two symmetrical signals typical of a para-substituted phenyl ring were identified in the aromatic region.11 The clear separation of the symmetrical doublet peaks arising from $1H^8$ ($\delta = 7.6$ ppm, $J = 8.5$ Hz) and $1H^7$ ($\delta = 7.4$ ppm, $J = 8.5$ Hz) is attributed to the presence of a deshielding chloro atom at the para-position of the benzyl ring. In addition, the methine proton ($1H^6$: $\delta = 5.2$ ppm) at the α-position, which appeared as a slightly deshielded multiplet was a key diagnostic feature to confirm the formation of the target compound. Furthermore, a doublet peak identified upfield in the aliphatic region integrating for three protons ($3H^5$, $\delta = 1.8$ ppm, $J = 6.7$ Hz), indicating the presence of a methyl group. Moreover, the existence of a doublet peak identified downfield at $1H^4$ ($\delta = 8.3$ ppm; $J = 6.4$ Hz) indicates the presence of an amino functional group on the molecule, which is attributed to the vicinal spin-spin coupling with H^6 (figure 2.15).

Several other analogues in this section were derived and characterized and showed similar spectral features to those of compound 18. The 1D 1H NMR spectrum of analogue 15 and the structure of this compound is also shown in figure 2.16. Unlike the complex multiplicities observed with compound 18, compound 15 showed well-resolved singlet peaks corresponding to $1H^3$ ($\delta = 7.9$ ppm) and $1H^2$ ($\delta = 8.4$ ppm). Further diagnostics performed to confirm the structure of compound 15 included identification of the presence of the symmetrical doublet peaks due to para-fluoro substitution on the benzylamine moiety. In this regard, the newly introduced protons $2H^8$ ($\delta = 7.2$ ppm, $J = 8.9$ Hz) exhibited a well-resolved triplet (t) due to equal vicinal spin-spin coupling with H^7 and the fluoro (F) atom. On the other hand, $2H^7$ ($\delta =$...
7.6 ppm, $J = 8.5, 5.4$ Hz) split into dd arising from a vicinal coupling with H^8 and a long-range coupling to F.

![Figure 2.16: 1D 1H nuclear magnetic resonance spectrum of compound 15 showing the presence of a symmetrically-substituted benzyl moiety in DMSO-d_6 at 600 MHz](image)

The appearance of a multiplet peak corresponding to H^6 ($\delta = 5.2$ ppm) upfield confirmed the presence of an α-methine proton. Another vicinal coupling of H^6 to the neighbouring amino-NH proton H^4 led to further splitting which brought about the observed multiplet splitting pattern. On the other hand, a broad singlet was observed at $\delta = 8.4$ ppm due to H^4. Moreover, the presence of the methyl group was confirmed by the appearance of a clearly resolved doublet peak upfield at $\delta = 1.8$ ppm, $J = 6.7$ Hz, which integrated into three protons (3H), corresponding to the methyl protons H^5.

Furthermore, analogues with an unsubstituted phenyl ring of the PBI nucleus, such as compound 9, are among the target compounds synthesized in this SAR study. The 1D 1H NMR spectrum confirming the formation of this representative compound is displayed in figure 2.17.
The diagnostic features identified as characteristic of aminated final molecules such as compounds 18 and 15 are also evident in the 1H NMR spectrum of compound 9. Briefly, such features include the symmetrical splitting of the para-substituted benzyl protons (H^{10} and H^{9}, $\delta = 7.6$ and $\delta = 7.4$ ppm, respectively), the presence of the methine peak (H^8, $\delta = 5.2$ ppm), the methyl peak (H^7, $\delta = 1.8$ ppm), and a broad doublet peak corresponding to the NH (H^6) at $\delta = 8.3$ ppm downfield. Additionally, as theoretically expected, the core scaffold showed doublet of doublets peaks downfield corresponding to $1H^2$ ($\delta = 8.6$, ppm, $J = 8.5$, 1.9 Hz) and $1H^5$ ($\delta = 7.9$ ppm, $J = 8.2$, 1.7 Hz). The peak identified as H^4 coalesced with H^{10} at approximately $\delta = 7.6$ ppm, thus making it difficult to determine the multiplicity. A doublet of triplets (dt) and singlet peaks corresponding to the aromatic protons $1H^3$ ($\delta = 7.5$ ppm) and $1H^1$ ($\delta = 6.2$ ppm) were observed.

Furthermore, unsubstituted core scaffold-based analogues possessing a carboxylate group were derivatized by the introduction of water-solubilizing amide functionality. An amidated analogue (5), its precursors, and the corresponding 1D 1H NMR spectra are shown in figure 2.18.
The existence of a singlet peak corresponding to the methyl ester protons $3H^6 (\delta = 3.8 \text{ ppm})$ of compound 3 and its consequent disappearance from the spectrum of compound 4 indicates the presence and successful demethylation of the methyl group of compound 3. Consequently, the appearance of the symmetrical 1,1-dioxidothiomorpholinyl doublet peaks in compound 5 (H^9 and H^8, $\delta = 4.1$ and 3.1 ppm, respectively) on the lower spectrum indicates the presence of this amidated compound. Although the chemical shifts in compound 5 appeared slightly migrated downfield, the α-methylene proton of compounds 3, 4, and 5 are represented by the synonymous signals at H^7, H^6, and H^7 respectively ($\delta = 5.9$, 5.8, and 6.4 ppm, respectively). Although the NH proton was not visible in precursors 3 and 4, its presence in compound 5 ($1H^6$) at $\delta = 8.0 \text{ ppm}$ confirms the presence of the amino group. Additionally, other characteristic features were observed, such as a singlet peak corresponding to H^1 at approximately $\delta = 6.2$ to 6.5 ppm, unsubstituted benzyl aromatic proton signals at approximately $\delta = 7.5$ to 7.8 ppm and shielded and unshielded phenyl protons appearing at approximately $\delta = 7.4$ to 7.8 ppm and $\delta = 7.9$ to 8.6 ppm, respectively.
2.5 Mechanistic details and spectroscopic analyses of SAR 2 intermediate and target compounds

Here, the formation of key intermediate analogues and selected representative synthesized target compounds modified with various water-solubilizing groups at different positions of the phenyl and pyridyl rings of the PBI core scaffold are discussed. Because most of the starting precursors were asymmetric, the core scaffolds formed in isomeric forms. Nitro-substituted analogues showed the cleanest separation of the isomers, and their corresponding intermediate and target analogues are therefore used to facilitate spectroscopic evaluations and discussions here.

2.5.1 Synthesis of amide compounds

Although the symmetrical disubstituted benzimidazole acetonitrile intermediates derived in figure 2.7 only produced a monomeric compound, the corresponding monosubstituted asymmetric benzimidazole acetonitrile intermediate formed isomers. The presence of the isomeric compounds was confirmed via liquid chromatography-mass spectrometry (LC-MS), which revealed two distinct signals with the same \(m/z \) value (200.9) at 3.06 and 3.18 minutes, respectively. The formation of isomers is thought to arise from deprotonation of the benzimidazolium ion via two possible routes (figure 2.19).

![Possible deprotonation pathways leading to asymmetrical benzimidazole acetonitrile regio isomers](image)

Figure 2.19: Mechanistic details of the formation of isomeric compounds \(2.1.1a \) and \(2.1.2a \)

Interestingly, the two isomers were separated by trituration in diethyl ether and obtained as solid residue (yellow) and etheryl solution (orange solid after drying). The spectroscopic analysis of these isolates confirmed the formation and existence of the two isomeric products. The two structures were distinguished by the spin-spin coupling constants and the splitting patterns on their respective 1D \(^1\text{H} \) NMR spectra shown below in figure 2.20.
Figure 2.20: 1D 1H nuclear magnetic resonance spectra of regio-isomeric compounds 2.1.1a and 2.1.2a showing the difference in splitting patterns of 2.1.1a-4H and 2.1.2a-4H in CD$_3$CN-d_3 at 400 MHz.

Possible spin-spin coupling interactions that are likely to bring about the observed spectroscopic results from the two isomers are shown in figure 2.20. The 3H of compound 2.1.1a exhibited a doublet of the doublets of doublets with coupling constants $J = 8.0, 7.5, 1.0$ Hz (figure 2.20).

The observed splitting pattern is due to a vicinal coupling with 4H (magenta), which is further split by two long-range couplings with 5H (blue) and the NH proton 2H (green), respectively (figure 2.21). On the contrary, 3H of compound 2.1.2a exhibited a clearly resolved doublet of doublet (dd) peak ($J = 8.0, 1.0$ Hz) due to vicinal coupling with 4H (t, $J = 8.1$ Hz, magenta) and only one long-range coupling with 5H (dd, $J = 8.2, 1.0$ Hz, blue). This implies that 2H on 2.1.1a occupies a different position, as has been proposed with compound 2.1.2a. The new position (five bonds away) prevents any long-range coupling that would bring about further splitting as observed with 2.1.1a. Additionally, the spectrum of compound 2.1.1a showed widely separated double doublets corresponding to 1H4 and 1H5 ($\delta = 7.4$ and 8.0 ppm, $J = 7.5, 1.5$ and 8.8, 1.5 Hz, respectively), while compound 2.1.2a exhibited closely spaced double doublets (1H3 and 1H5, $\delta = 8.1$ and 8.2 ppm, $J = 8.0, 1.0$ and 8.2, 1.0 Hz, blue).
Hz, respectively). The deshielding effect of the Sp²-hybridized nitrogen (red) appears to be responsible for the downfield migration of the signals.

Next, compounds 2.1.1a and 2.1.2a (figure 2.21) underwent the reaction shown in step (ii), figure 2.7. The proposed mechanistic steps and details leading to the formation of monomeric intermediate compounds 2.1.1b and 2.1.2b are similar to those outlined in figure 2.9. Both compounds were diagnostically characterized by the loss of a proton and the downfield migration of the respective singlet peaks from δ = 3.7 and δ = 4.3 ppm, corresponding to the aromatic proton H¹ of compounds 2.1.1a and 2.1.2a respectively, to δ = 6.1 and δ = 6.4 ppm, corresponding to H¹ of compounds 2.1.1b and 2.1.2b, respectively (figure 2.22).

![Figure 2.22: 1D ¹H nuclear magnetic spectra of the isomeric hydroxyl intermediates 2.1.1b and 2.1.2b in CD₃CN-d₃ at 400 MHz](image)

Respective aromatic nucleophilic substitution reactions (SNAr, section 2.4) on hydroxyl-functionalized intermediate compounds 2.1.1b and 2.1.2b delivered the corresponding chlorinated compounds 2.1.1c and 2.1.2c (Fig. 2.22.1). The ¹H NMR spectrum (data not shown) was consistent with the structure of the chlorinated compounds. Consequently, the amination of 2.1.2c produced the nitro-substituted intermediate compound 42. The formation of compound 42 was confirmed via 1D ¹H NMR spectroscopy. The newly introduced para-substituted phenyl group resulted in the
symmetrical and clear doublet peaks at approximately $\delta = 7.4$ to 7.5 ppm corresponding to H^5 and H^6, respectively (figure 2.23).

![Figure 2.23: 1D 1H nuclear magnetic resonance spectrum of compound 42. The symmetric doublet peaks at approximately $\delta = 7.4$ to 7.5 ppm confirm the amination and the presence of a para-substituted benzyl moiety in DMSO-d_6 at 300 MHz](image)

The nitro group was selectively reduced to form compound 43, whose structure was confirmed via 1D 1H NMR spectroscopy. A singlet peak at $\delta = 3.3$ ppm, which integrated for two upfield protons, was identified and corresponds to the new aniline protons (H^5, figure 2.24).

![Figure 2.24: 1D 1H nuclear magnetic resonance spectrum for compound 43, showing a sharp singlet peak at $\delta = 3.3$ ppm corresponding to the new aniline protons (H^5) in CD$_3$CN-d_3 at 400 MHz](image)

The subsequent amidation of compound 43 with appropriate carboxylic acids led to the formation of the desired amide compounds 44 and 45, as shown in figures 2.25 and 2.26.

Formation of the amide bond involves deprotonation of the substituent carboxylic acid by the nitrogen lone electron pair of EDCI, thereby making the imide carbon even more electrophilic.
(figure 2.25). A nucleophilic attack on protonated EDCI by the carboxylate ion produced the O-acylisourea mixed ester, which was trapped by DMAP. The addition of a suitable amino substrate to the activated complex (Y) led to the formation of the desired amide bond.

\[
\begin{align*}
\text{figure 2.25: Amide bond formation mechanism}^{13,14}
\end{align*}
\]

\[
\begin{align*}
\text{figure 2.26: 1D } ^1\text{H nuclear magnetic resonance spectrum of amidated compound 45 showing the upfield singlet peaks corresponding to carbamate (H}_7, \delta = 3.3 \text{ ppm) and methylene protons (H}_6, \delta = 3.3 \text{ ppm) in CD}_3\text{CN-d}_3 \text{ at } 400 \text{ MHz.}
\end{align*}
\]

The appearance of upfield aliphatic proton signals corresponding to carbamate and methylene protons (H\textsubscript{7}, \delta = 1.5 ppm and H\textsubscript{6}, \delta = 4.1 ppm, respectively, figure 2.26), in addition to the other spectral features described earlier with regard to compound 43 (figure 2.24), confirmed the formation and the structure of amidated product compound 45.
2.5.2 Synthesis of amine-substituted analogues

In addition to polar carbonyl-functionalized analogues, aryl-aminated analogues were also explored with regard to solubility improvement. The steps involved in the synthesis of aryl halide intermediates are outlined in figure 2.7 (steps i-iv), and the proposed formation mechanisms are similar to those outlined in figures 2.9, 2.11, and 2.14. A typical aryl chloride (37) (ortho-chloro) with its 1D 1H NMR spectrum is shown in figure 2.27.

Figure 2.27: 1D 1H nuclear magnetic resonance spectrum of compound 37, showing the four methoxy aniline protons coalescing as a single peak in DMSO-d_6 at 300 MHz

A Buchwald-Hartwig amination reaction was conducted to transform aryl halides into target aryl amine analogues. as shown below in figure 2.28.

Figure 2.28: The Buchwald-Hartwig amination: reagents and conditions: i) amine, Pd$_2$(dba)$_3$, RuPhos, Cs$_2$CO$_3$, 1,4-dioxane/DMF, 80 to 110 °C

The Buchwald-Hartwig cross-coupling reaction proceeds via a catalytic cycle as shown in figure 2.29. Four major steps, including oxidative addition, ligand coordination, transmetalation, and reductive elimination, are involved in completing this amination reaction. The oxidative addition of the aryl halide to the palladium (0) complex (Pd$_2$(dba)$_3$) catalyst occurs, after which the amine coordinates to the palladium metal centre. Deprotonation of the amine by a base, in this case, Cs$_2$CO$_3$, generates the highly nucleophilic amide ion, which then substitutes the chlorine atom. The final aminated product is formed via a reductive elimination
step while the ligand-bound palladium (Pd(0)) catalyst is regenerated to continue the cycle (figure 2.29).

![Catalytic cycle for the Buchwald-Hartwig amination](image)

Figure 2.29: Catalytic cycle for the Buchwald-Hartwig amination

Analogues synthesized via the Buchwald-Hartwig cross coupling protocol shown in figure 2.29 include piperazinyl- and the morpholinyl-substituted analogues, among others. A representative Buchwald-Hartwig aminated analogue (41) and its 1D 1H NMR spectrum is shown in figure 2.30. Successful amination was confirmed by the appearance of the symmetrical 1,1-dioxidothiomorpholinyl signals in the aliphatic region upfield. The well-resolved triplet peaks identified at $\delta = 4.2$ ppm and $\delta = 3.2$ ppm correspond to H^5 and H^6, respectively, integrating for four methylene protons (4H) each. Furthermore, thiomorpholinyl signals were identified with very close spin-spin coupling constants (H^5 and H^6, $J = 5.2$ and 5.2 Hz, respectively) suggesting that the protons H^5 and H^6 are next to each other. Moreover, the four protons of the *para*-substituted phenyl group resonated into unclearly resolved symmetrical signals integrating for four (04) protons (4H, $\delta = 7.4$ ppm) in the aromatic region. Although the symmetry of the phenyl signal was not clearly separated into the expected doublet peaks, it was not as coalesced as was observed for compound 37 (figure 2.27).
Figure 2.30: 1D 1H nuclear magnetic resonance spectrum of compound 41 showing typical thiomorpholine dioxide protons signals upfield in CD$_3$CN-d_3 at 400 MHz.

Generally, the ortho-substituted aryl amine target analogues were obtained in low yields presumably due to the competitive and dominant formation of the dehalogenated-hydrogenated by-product shown in figure 2.30.1. The bulkiness of the cyclic amine moiety may have affected ligand coordination during the amination process at 9th position (ortho) of the core-scaffold leading to 90% formation of the side-product at the expense of the desired product whenever amination was attempted at this position. On the other hand, the meta position (C-7) was less sterically hindered and thus readily facilitated amine couplings. Highly improved yields (>70%) were accordingly observed. An example of a meta-aminated target analogue (49) and its 1D 1H NMR spectrum are shown in figure 2.31 below. Diagnostic spectral features include a high number of aliphatic signals upfield. Here, a triplet peak that integrated for six protons (6H) at $\delta = 1.1$ ppm corresponding to two methyl group protons (H14) was observed. Additionally, a well-resolved quartet that integrated for four protons (4H, H10) corresponding to the two electronically equivalent methylene groups was identified slightly downfield at $\delta = 2.8$ ppm. Moreover, the presence of the symmetrical triplet peaks corresponding to the methylene protons 2H9 and 2H8 ($\delta = 3.0$ and 3.6 ppm, $J = 5.9$ and 6.1 Hz, respectively) further indicated the presence of the ethylene linker of the basic side chain (figure 2.31).
Moreover, the presence of the morpholino group was identified by the appearance of two symmetrical morpholinyl multiplet peaks that integrated for four protons \((4\text{H})\) each at \(\delta = 3.8\) ppm and \(\delta = 3.2\) ppm, corresponding to the methylene protons \(\text{H}^4\) and \(\text{H}^5\). Additionally, the meta-aminated core scaffold was distinguished from the para-substituted by the existence of a doublet peak \((J = 2.1\) Hz\) that integrated for one proton \((1\text{H}, \text{H}^6)\) resonating downfield at \(\delta = 7.9\) ppm. Its poorly resolved doublet peak is rationalized by the small spin-spin coupling constant resulting from long-range coupling with \(\text{H}^3\). Additionally, a dd peak that integrated into one proton \(\text{H}^3\) \((J = 8.9, 2.1\) Hz\) was identified at \(\delta = 7.3\) ppm. This splitting pattern is explained by the strong vicinal spin-spin coupling of \(\text{H}^3\) with \(\text{H}^2\) and long-range coupling with \(\text{H}^6\), respectively. Finally, as expected, \(\text{H}^2\) split into a clear doublet that was identified at \(\delta = 7.7\) ppm \((J = 8.9)\) due to strong vicinal spin-spin coupling with \(\text{H}^3\).

A total of 55 analogues were synthesized for SAR/SPR studies. 1D \(^1\text{H}\) NMR spectroscopy was used to characterize the synthesized analogues. The characterization details are outlined in Chapter 6. The 1D \(^1\text{H}\) NMR results were consistent with the various structures of the analogues and no advanced techniques were employed to complete the characterization of any compound. The analogues were submitted for solubility and \textit{in vitro} pharmacological evaluations. In the next chapter, the pharmacological activity and solubility of the compounds synthesized are discussed.
Chapter 3

References

(1) Cui, J. J.; McTigue, M.; Kania, R.; Edwards, M. Case History: Xalkori™ (Crizotinib), a Potent and Selective Dual Inhibitor of Mesenchymal Epithelial Transition (MET) and Anaplastic Lymphoma Kinase (ALK) for Cancer Treatment; 2013; pp 421–434.

Chapter 3

No. 95, 4052–4053.

3. PHARMACOLOGICAL AND SOLUBILITY EVALUATION

3.1 Introduction

In this chapter, the \textit{in vitro} antiplasmodium activity against asexual blood-stage parasites, gametocytocidal and antischistosomal activities, as well as the solubility of the synthesized PBI target compounds are discussed. The antiparasitic activities of the analogues were evaluated in the chloroquine-sensitive NF54 (SAR 1.1 to 1.4 and SAR 2.1 to 2.4 compounds) and the chloroquine-resistant K1 (SAR 2.1 to 2.4) strains of the human malaria parasite \textit{P. falciparum}. Furthermore, the \textit{in vitro} antischistosomal activities of SAR 1.1 to 1.4 analogues were assessed against both newly transformed schistosomula (NTS) and adult worms or adult liver flukes of \textit{Schistosoma mansoni}. SAR 2.1 to 2.4 analogues were only screened against the adult liver flukes of \textit{S. mansoni}. Besides the antiparasitic activities, compound solubility is also discussed here.

3.2 SAR 1: Assessment of the solubility and \textit{in vitro} antiplasmodium, gametocytocidal, and antischistosomal activities of SAR 1.1 to 1.4 analogues

Here, the 4-(trifluoromethoxy)aniline moiety at C-1 on the pyridyl ring of GMP-19 was replaced with various α-methylbenzylamine moieties (figure 3.1).

\textbf{Figure 3.1}: Design of SAR 1.1 to 1.4 analogues

Various moieties were incorporated to introduce moderate saturation and to potentially disrupt molecular planarity. Indeed, the introduction of saturation has been shown to lead to improved
Furthermore, although electron-withdrawing atoms such as fluoro and chloro groups were incorporated on the phenyl ring at C-7 and C-8, the 3-CF₃ group on the pyridyl ring of the PBI core was kept constant. Previous studies have shown that the left-hand side (LHS) phenyl ring of the PBI core is a metabolic hotspot (Mayoka, unpublished data). In efforts to potentially block metabolism on this site, fluoro and chloro groups were appended onto the LHS phenyl ring. This is in view of the fact that drug molecules containing electron-withdrawing groups undergo reduced cytochrome P450 (CYP)-mediated oxidation. A diverse set of target compounds with varying antiparasitic activities and solubility were identified. The in vitro antiplasmodium and antischistosomal activities and solubility values are summarized in figure 3.2.

3.2.1 Assessment of the solubility and in vitro antiplasmodium activities of SAR 1 analogues

A PBI core scaffold with no substitution on the phenyl ring was used in the first phase of this SAR study (figure 3.2). Fully saturated amino moieties such as (R) and S-1-cyclohexylethan-1-amine (analogues 1 and 2) were randomly sampled and incorporated at C-1 of the PBI core. However, these substitutions were detrimental to antiplasmodium activity (1, IC₅₀ = 3.070 μM; and 2, IC₅₀ = 2.757 μM) relative to IC₅₀ = 0.430 μM of the frontrunner GMP-19. Additionally, both analogues demonstrated poor solubility (< 10 μM), which may be attributed to the highly lipophilic nature of the incorporated substituents. In the same SAR, α-carboxylate benzylamine-substituted analogues and their corresponding amide derivatives exhibited improved solubility at the expense of antiplasmodium activity. In this regard, the methyl ester 3 (solubility = 30 μM), its carboxylic acid form 4 (solubility = 150 μM), and the 1,1-dioxidothiomorpholinyl amidated derivative 5 (solubility = 50 μM) exhibited 6-, 30-, and 10-fold increases in solubility, respectively, compared to GMP-19 (solubility = 5 μM). All three analogues (IC₅₀ = 6.000 μM) exhibited a 14-fold reduction in antiplasmodium potency relative to GMP-19 (IC₅₀ = 0.430 μM, figure 3.2). Furthermore, the effect of introducing an electron-withdrawing group on the phenyl ring of the substituent benzylamine was investigated. Although not as active as GMP-19, the para-fluorinated racemic compound 6 (IC₅₀ = 1.274 μM) demonstrated a 5-fold increase in potency compared to compounds 1 to 5, but a 3-fold reduction in potency compared to GMP-19. Compound 7, the resolved pure R-enantiomer, showed even higher activity (IC₅₀ = 0.875 μM), with a 2-fold increase in antiplasmodium potency compared to the racemic form, compound 6, and the S-enantiomer, compound 8 (IC₅₀ = 2.039 μM).
Figure 3.2: Solubility and in vitro antiplasmodium activity of SAR 1.1 to 1.3 compounds

SAR 1.1, black; SAR 1.2, purple, and SAR 1.3, pink

*Mean values were calculated from at least two independent experiments on the P. falciparum strain NF54 (individual values within ± 2-fold). Artesunate (IC$_{50}$ = 0.007 µM) and chloroquine (IC$_{50}$ = 0.012 µM) were used as reference drugs.

* Determined using a turbidimetric method.
Thus, the reduced activity of the racemic form 6 may be attributed to the antagonistic effect of the S-enantiomer. In addition, compound 9 (IC$_{50} = 1.020$ μM), a racemate similar to the fluoro-substituted analogue 6 but possessing a chloro group, was equipotent to compound 6. This indicates that the nature of the halogen at the para position of the substituent phenyl ring is irrelevant to antiplasmodium potency. Furthermore, incorporating a 2-carbon methylene spacer between the two nitrogen atoms (the PBI core scaffold-linked N and the α-methylene carbon-linked N of the substituent benzylamine moiety) resulted in improved solubility at the expense of biological activity, as demonstrated by compounds 10 and 11 (10: solubility = 180 μM, IC$_{50}$ = 2.896 μM; 11: solubility = 150 μM, IC$_{50}$ = 3.177 μM), which exhibited 2- and 7-fold lower antiplasmodium activity relative both compounds 10, 11 and GMP-19, respectively.

The next phase of SAR exploration involved introducing substitutions on the phenyl ring of the PBI core scaffold. Initially, a mono-substitution involving a chloro atom was introduced on the phenyl ring of the core scaffold at C-8. The effect of 8-chloro substitution on antiplasmodium activity was evaluated at the same time, thus providing prospects for SAR expansion. The poor antiplasmodium activity of compound 13 (IC$_{50} = 4.35$ μM) was comparable to that of the unsubstituted compound 3 (IC$_{50} = 6.00$ μM). Generally, 8-chloro mono-substitution had a negative impact on antiplasmodium activity. Compounds 12, 13, and 14 showed 14-, 10-, and 7-fold decreases in potency relative to that of GMP-19. Although poor antiplasmodium activity was demonstrated, the amide-substituted analogue 12 exhibited the highest improvement in solubility (solubility = 80 μM) compared to the other two analogues 13 and 14 (solubility = 30 and 20 μM, respectively). The difference in solubility between the amide-substituted compound 12 and the methyl ester-substituted compound 13 may be attributed to the enhanced hydrogen-bond donor and acceptor properties of compound 12.

In the next SAR study, double substitution on the phenyl ring of the core scaffold was investigated. This modification resulted in drastically improved antiplasmodium activity, as demonstrated by the 7,8-dichlorinated analogue 15 (IC$_{50} = 0.220$ μM, figure 3.2). Although this analogue exhibited the strongest antiplasmodium activity compared to both GMP-19 and the rest of the compounds in SAR 1, further generation of dichlorinated analogues in this series was not undertaken due to the increased lipophilicity in such analogues. Thus, substitutions that could provide reduced lipophilicity while retaining antiplasmodium activity were explored. Consequently, the chloro groups in compound 15 were replaced with fluoro atoms, producing a slightly less lipophilic 7,8-difluorinated racemic analogue (compound 16, figure
3.3). Interestingly, compound 16 demonstrated improved antiplasmodium activity (IC$_{50} = 0.140$ μM) and was three times more potent compared to GMP-19. This increase in pharmacological activity triggered interest in the respective pure enantiomers. The pure R-enantiomer (compound 17) demonstrated even greater antiplasmodium potency (IC$_{50} = 0.022$ μM), with 7- and 20-fold improvements in antiplasmodium activity compared to the racemic analogue compound 16 and the front-runner compound GMP-19, respectively. This indicates that the S-enantiomer may be antagonizing the antiplasmodium activity of its R-counterpart. However, the S-enantiomer should be obtained and tested to confirm these hypotheses.

Similarly, while the fluoro groups were maintained at the C-7 and C-8 positions of the PBI core scaffold, the fluoro atom at the para-position of the α-methylbenzylamine moiety was replaced with a chloro atom to produce a racemic analogue (compound 18). The resulting racemic mixture was three times more potent (IC$_{50} = 0.051$ μM) than the corresponding para-fluorophenyl-based racemic compound 16. Unfortunately, the enantiomerically pure derivatives of compound 18 could not be obtained as none of the pure forms of the amine starting materials were available at the time of completing the programme. Furthermore, as the 7,8-difluoro substitution on the phenyl ring of the PBI core was maintained, the introduction of additional Craig plot substituents possessing positive and negative inductive effects on the phenyl ring of the α-methylbenzylamine moiety was investigated. The unsubstituted pure enantiomeric compounds 19 (S) and 20 (R) served as controls for the enantiomerically pure analogues, which demonstrated similar sub-micromolar antiplasmodium activities (IC$_{50} = 0.340$ and 0.250 μM, respectively, figure 3.3).
Figure 3.3: Solubility and in vitro antiplasmodium activity of SAR 1.4 compounds

Mean values were calculated from at least two independent experiments on the *P. falciparum* strain NF54 (individual values within ± 2-fold). Artesunate (IC$_{50}$ = 0.007 µM) and chloroquine (IC$_{50}$ = 0.012 µM) were used as reference drugs.

* Determined using a turbidimetric methodb
Amongst the representative substituent groups, the OCF\(_3\)-substituted analogue 21 (IC\(_{50}\) = 0.940 μM) exhibited higher antiplasmodium activity than the sulfone-substituted compound 22 (IC\(_{50}\) = 6.000 μM). In addition, although the ortho-chloro R-α-methylbenzylamine-substituted compound 23 (IC\(_{50}\) = 0.153 μM) demonstrated equipotent antiplasmodium activity compared to the unsubstituted analogue 20 (IC\(_{50}\) = 0.250 μM), its S-counterpart (25, IC\(_{50}\) = 0.155 μM) demonstrated a 2-fold increase in potency relative to compound 19 (IC\(_{50}\) = 0.340 μM). Similarly, the enantiomerically pure isomers 23 and 25 demonstrated equipotent antiplasmodium activities (IC\(_{50}\) = 0.153 and 0.155 μM, respectively), thus suggesting that potency is not stereoselective. Similarly, the ortho-chloro racemate forms 26, 25 (S), and 23 (R; IC\(_{50}\) = 0.153, 0.155, and 0.170 μM, respectively) all demonstrated equipotent activity relative to each other. Furthermore, the substitution of the H with an OH group on the ortho position resulted in significant loss of antiplasmodium activity as demonstrated by compound 24 (IC\(_{50}\) = 1.100 μM), which exhibited a 4-fold decrease in antiplasmodium activity relative to the unsubstituted compound 20. Additionally, when the electron-withdrawing and electron-donating groups were compared, the ortho-chloro analogue 23 exhibited greater activity (IC\(_{50}\) = 0.153 μM) than the ortho-phenolic analogue 24 (IC\(_{50}\) = 1.100 μM). This demonstrates a 7-fold increase in potency in favour of the lipophilic electron-withdrawing chloro group. Additionally, as demonstrated by the racemic mixtures 18 (para, IC\(_{50}\) = 0.051 μM) and 26 (ortho, IC\(_{50}\) = 0.170 μM), para-chloro substitution resulted in a 3-fold increase in activity compared to ortho substitution. Moreover, the racemic para-tolylamine-substituted analogue 27 (IC\(_{50}\) = 0.099 μM) exhibited comparable activity to the para-fluoro compound 16 (IC\(_{50}\) = 0.140 μM) and demonstrated a 2-fold decrease in potency compared to the para-chloro-substituted analogue 18 (IC\(_{50}\) = 0.051 μM). Furthermore, compound 27 demonstrated 9- and >60-fold increases in antiplasmodium potency relative to the electron-rich OCF\(_3\)-substituted analogue 21 (IC\(_{50}\) = 0.940 μM) and the sulfone moiety-substituted analogue 22 (IC\(_{50}\) = 6.000 μM), respectively. The effect of lipophilic benzylamine substituent moieties and the corresponding activity can be summarized as follows: chloro (18: IC\(_{50}\) = 0.051 μM) > methyl (27: IC\(_{50}\) = 0.099 μM) > fluoro (16: IC\(_{50}\) = 0.140 μM) > OCF\(_3\) (21: IC\(_{50}\) = 0.940 μM).

Further antiplasmodium SAR studies on the 7,8-difluorinated PBI core scaffold involved variations on the α-methylene carbon of the α-methylbenzylamine moieties. The α-cyclopropyl-substituted benzylamine moiety conferred the greatest potency to compound 30 (IC\(_{50}\) = 0.045 μM), while the α-germinal dimethylbenzylamine-substituted analogue 28 (IC\(_{50}\) = 0.286 μM) and the α-ethylbenzylamine-substituted analogue 29 (IC\(_{50}\) = 0.497 μM) showed
lower activities. The closed ring cyclopropyl group at the α-carbon in compound 30 appears to be crucial to antiparasitic potency, with 6- and 11-fold increases in activity observed in relation to its linear counterparts 28 and 29, respectively. α-Carboxylate benzylamine substituents on the same 7,8-difluorinated core scaffold were revisited. Although a significant improvement in the antiparasitic activities of the α-carboxylate benzylamine analogues was achieved compared to the unsubstituted versions shown in figure 3.2, the carboxylate analogues generally exhibited lower activity (S-enantiomer 32: $IC_{50} = 1.010 \mu M$, and R-enantiomer 33: $IC_{50} = 1.900 \mu M$, figure 3.3). A snapshot contracted heterocyclic aromatic amine SAR revealed significant loss in antiparasitic activity from the five-membered ring pyrazolylamine-substituted analogue 34 ($IC_{50} = 5.810 \mu M$).

A few analogues of the 7,8-difluorinated PBI core scaffold exhibited encouraging solubility profiles. Although only one analogue (30) of this part of the SAR also demonstrated sub-micromolar antiparasitic activity ($IC_{50} = 0.045 \mu M$), the other analogues demonstrated high solubility at the expense of in vitro antiparasitic potency. The para-phenolic compound 24 (solubility = 80 μM), α-carboxylate compounds 32 and 33 (solubility = 80 μM), and the pyrazolylamine-substituted analogue 34 (solubility = 80 μM) were amongst the analogues showing encouraging solubility but low antiparasitic potency. The OCF$_3$-substituted analogue 21 (solubility = 20 μM) showed low solubility in combination with sub-micromolar antiparasitic potency. Unfortunately, the rest of the compounds in this series demonstrated poor solubility (< 10 μM).

3.2.2 In vitro gametocytocidal activity evaluation of SAR 1 analogues

In this section, the gametocytocidal activities of the previously described α-methylbenzylamine-substituted PBI analogues are discussed. Preliminary evaluation of these analogues revealed potency at both the early and late stages of gametocytogenesis. Their inhibitory effects were determined after treatment with 1.0 and 5.0 μM (figure 3.4). Interestingly, some analogues showed gametocytocidal activity at both the early and late stages.
Although the monochlorinated core scaffold (SAR 1.2) exhibited inactivity at the sexual stages of parasite development, analogues derived from the unsubstituted phenyl ring of the core scaffold displayed <32% gametocytogenesis inhibition at both 1.0 and 5.0 µM test concentrations. Analogue 15, which contained a 7,8-dichlorinated core scaffold, demonstrated significant improvement in gametocytocidal activity at 5 µM. However, this compound exhibited approximately 37- and 3-fold decreases in potency against the early and late stages of parasite development, respectively, at 1.0 µM relative to the control drug and Phase II clinical candidate MMV048. Moreover, the analogues derived from a 7,8-difluorinated core scaffold generally exhibited significantly improved gametocytocidal activity (figure 3.5). Compound 16 showed 15 and 72% inhibition of early- and late-stage parasites at 1.0 µM, respectively, or 7- and 2-fold increases in potency relative to analogue 15. Additionally, compound 16 exhibited late-stage activity at 1.0 µM equal to that of MMV048 (72 and 92% inhibition at 1.0 µM for compound 16 and MMV048, respectively), and 5-fold lower early-
stage gametocyte inhibition (15 and 77% early-stage inhibition at 1.0 µM, respectively). Furthermore, compound 16 (racemate) demonstrated equipotent gametocytocidal activity to that of the pure R-enantiomer 17 (15 and 19% early-stage inhibition at 1.0 µM, 88 and 90% early-stage inhibition at 5.0 µM, 72 and 77% late-stage inhibition at 1.0 µM, and 88 and 90% late-stage inhibition at 5.0 µM for compounds 16 and 17, respectively). Moreover, although compound 16 exhibited late-stage activity comparable to that of compound 18, a 2-fold increase in early-stage gametocytocidal potency was observed relative to compound 16 (19 and 42% inhibition at 1.0 µM for compounds 16 and 18, respectively). In addition, the presence of a fluoro atom on the para-position of the benzylamine ring was essential to gametocytocidal activity, as was demonstrated by the lack of activity of the unsubstituted R-enantiomer (compound 20). Furthermore, replacement of a fluoro or chloro group with OCF₃, SO₂Me, or Me was detrimental to gametocytocidal activity, as was demonstrated by compounds 21, 22, and 27, which generally exhibited poor activity at both the early and late stages of gametocytogenesis. In this regard, gametocytocidal activity appears to be favoured by electron-withdrawing lipophilic substituents on the benzylamine substituents as demonstrated by the >4-fold reduction in activity of the electron-rich analogue 24 (21% early-stage gametocytes inhibition at 5.0 µM) relative to that of the lipophilic analogue 25 (90% early-stage gametocyte inhibition at 5.0 µM). Although the open α-germ-dimethylbenzylamine-substituted analogue 28 and its isomeric analogue 29 exhibited negligible gametocytocidal activity, the α-cyclopropyl benzylamine-substituted analogue 30 demonstrated the highest early-stage gametocytocidal activity (72 and 97% inhibition at 1.0 and 5.0 µM, respectively). Although compound 30 only displayed stage-specific activity toward early gametocytes, this compound demonstrated activity equal to that of MMV048 (77% inhibition at 1.0 µM) against this stage. The R- and S-α-carboxylate benzylamine-substituted analogues showed comparably low gametocytocidal activity. This weak activity is demonstrated by compounds 32 and 33 (56 and 64% inhibition at 5.0 µM, respectively) against late-stage gametocytes, while the 5-membered heterocyclic amine-substituted analogue 34 exhibited a complete lack of gametocytocidal activity.

Although some compounds such as 16, 17, 18, and 25 demonstrated dual-stage activity, compound 30 exhibited stage-specific action against early gametocytes. Lipophilic substitutions conferred greater gametocytocidal activity relative to electron-rich hydrophilic substitutions.
Figure 3.5: *In vitro* gametocytogenesis inhibitory effect of SAR 1.4 compounds on early- and late-stage *Plasmodium falciparum* NF54 gametocytes

Reference drugs

<table>
<thead>
<tr>
<th>Code</th>
<th>R</th>
<th>Early gametocytes</th>
<th>Late gametocytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Methylene blue</td>
<td>93% (luc)</td>
<td>90% (luc), 50% (ATP)</td>
</tr>
<tr>
<td>2</td>
<td>Dihydroartemisinin</td>
<td>75% (luc)</td>
<td>70% (luc), 15% (ATP)</td>
</tr>
<tr>
<td>3</td>
<td>MMV048</td>
<td>77% (n=3)</td>
<td>92% (n=3)</td>
</tr>
</tbody>
</table>

luc, parasite viability measured by luciferase reporter assay; ATP, parasite viability measured by ATP bioluminescence assay

2018 MSc Thesis: Kelly Chisanga
3.2.3 In vitro antischistosomal evaluation of SAR 1 analogues

This antischistosomal activity of the previously described α-methylbenzylamine-substituted PBI analogues is described here. Although the IC\textsubscript{50} values of the analogues described here (compounds 1 to 34) were not determined, a preliminary single-point screen of some of these compounds revealed strong antischistosomal properties. The compounds’ inhibitory effects were determined at 10.00 µM, 1.00 µM, and 0.37 µM test concentrations. Interestingly, although a few analogues showed high activity against both NTS (juvenile worms) and adult schistosomes, most of the compounds tested showed greater inhibition against juvenile worms. Activity against NTS does not only attract attention for further exploration of this series of compounds but is also an indicator of the potential of this class of compounds to supplement the medical gap in treating schistosomiasis, as the current clinical drug (praziquantel) is only active against adult worms. Details of these compounds and their antischistosomal activities at various concentrations are presented in figures 3.6, 3.7, and 3.8.

3.2.4 In vitro activity against adult schistosomes

Except for the four analogues shown in figure 3.6, SAR 1.1 to 1.4 compounds generally demonstrated poor activity against adult schistosomes at both 10.00 µM and 1.00 µM. Of all the analogues synthesized from the unsubstituted ring of the PBI core (SAR 1.1), only three compounds (6, 7, and 8, figure 3.6) exhibited inhibitory effects (29 to 60% inhibition at 10.00 µM). Although inactivity was also observed with analogues bearing a 7,8-difluorinated PBI core scaffold (SAR 1.4), one analogue (compound 18) demonstrated strong antischistosomal activity with 100% inhibition at both 10.00 and 1.00 µM, as shown in figure 3.6. Other compounds showed no activity and are therefore not included in this figure.
3.2.5 *In vitro* activity against newly transformed schistosomula (NTS)

Similar to that observed against adult worms, analogues derived from the PBI core scaffold bearing an unsubstituted phenyl ring showed little to no activity against NTS. In addition, the α-carboxylate benzylamine-substituted analogues and their corresponding amide derivatives exhibited poor antischistosomal activity against NTS even at the highest test concentration, as demonstrated by compounds 4 and 5 (35 and 55 % inhibition at 10.00 µM, respectively, figure 3.7). The most active analogue in this category, compound 6, showed 100, 38, and 19% inhibition at 10.00, 1.00, and 0.37 µM respectively. Although still low, the chloro-substituted core scaffold showed improved antischistosomal activity against NTS as demonstrated by the α-carboxylate benzylamine-substituted analogues. A significant improvement in antischistosomal activity was observed by the introduction of a chloro atom on the phenyl ring of the PBI core. In this regard, the antischistosomal inhibitory effects of compound 4 increased from 35% and 0% to 100% and 24% for compound 13, at 10.0 and 1.0 µM, respectively, after introducing a chloro atom at C-8 (SAR 1.2).
Figure 3.7: In vitro antischistosomal activity of SAR 1.1 to 1.3 compounds against newly transformed schistosomula (NTS)

SAR 1.1, black (unsubstituted core); SAR 1.2, magenta (8-chloro); SAR 1.3, pink (7, 8-dichloro)
Control: praziquantel, 100% inhibition at 0.37 µM

This improvement in antischistosomal activity corresponds to a 3-fold increase in favour of the monochlorinated phenyl of the PBI core scaffold. The primary amide (compound 12) also exhibited improved activity (100% inhibition at 10.00 µM, and 30% inhibition at 1.0 µM) compared to the α-carboxylate benzylamine-substituted analogues derived from the unsubstituted phenyl ring of the PBI core. The para-sulfonyl benzylamine-substituted analogue showed 60% inhibition at 10.0 µM while no activity was observed at both 1.0 and 0.37 µM test concentrations. The effect of phenyl ring disubstitution of the PBI core scaffold on activity was also examined. The benzylamine moiety of compound 6, which resulted in the greatest activity in this portion of the SAR study, was incorporated into the 7,8-dichlorinated (SAR 1.3) PBI core scaffold to produce compound 15. An improvement in activity was observed from 100, 38, and 19% to 100, 58, and 35% by compound 6 and 15 respectively, at 10.00, 1.00, and 0.37 µM test concentrations.
Introduction of the 7,8-difluoro substitution on the phenyl ring of the PBI core scaffold (figure 3.8) provided further opportunities to expand the SAR study by reducing the cytotoxicity that was observed with the dichlorinated core scaffold (Mayoka, unpublished data), in addition to reducing both molecular weight and lipophilicity. Interestingly, analogues that were derived from this portion of the SAR study demonstrated a drastic improvement in antischistosomal activity, as shown by the 7,8-difluoro-substituted phenyl analogue 16 (100% inhibition at both 10.0 and 1.0 μM, and 48% inhibition at 0.37 μM, figure 3.8) in comparison with the 7,8-dichloro-substituted analogue 15 (100, 58, and 35% inhibition at 10.00, 1.00, and 0.37 μM test concentrations, respectively, figure 3.7). Enantiomerism did not affect antischistosomal activity, as was demonstrated by the racemic analogue 16 and the pure enantiomer 17 (R), both of which exhibited 100% inhibition at both 10.0 and 1.0 μM, and 48 and 35% inhibition at 0.37 μM, respectively. Equipotency was also observed in the enantiomerically pure analogues 19 (R) and 20 (S), both of which exhibited 100% inhibition at 10.0 and 1.0 μM, and 21 and 25% inhibition at 0.37 μM, respectively. Furthermore, the R- and S-carboxylate benzylamine-substituted analogues also displayed similar antischistosomal activities, as was demonstrated by compound 32 (S; 100, 73, and 17% inhibition at 10.00, 1.00, and 0.37 μM, respectively) and compound 33 (R; 100% inhibition at both 10.0 and 1.0 μM, and 19% inhibition at 0.37 μM). Moreover, the α-methyl ester substitution on the substituent amine did not affect activity, as shown by compound 19 (100% inhibition at both 10.0 and 1.0 μM, and 21% at 0.37 μM), compound 33 (100% inhibition at both 10.0 and 1.0 μM, and 19% at 0.37 μM), compound 20 (100% inhibition at 10.0 and 1.0 μM, and 25% at 0.37 μM), and compound 32 (100, 73, and 17% inhibition at 10.00, 1.00, and 0.37 μM, respectively). Interestingly, α-cyclopropyl benzylamine-substituted analogue 30 exhibited impressive potency against NTS at 0.37 μM (69% inhibition), while demonstrating 100% inhibition at both 10.00 and 1.00 μM. Furthermore, substitution of the fluoro with the chloro group at the para-position of the benzylamino moiety did not affect the antischistosomal potency as shown by compounds 16 and 18, which both showed 100% inhibition at 10.0 and 1.0 μM, and 48 and 31% inhibition at 0.37 μM, respectively.
Figure 3.8: *In vitro* antischistosomal activity of SAR 1.4 (7,8-difluorinated core) compounds against newly transformed schistosomula (NTS) Control: praziquantel, 100% inhibition at 0.37 µM
Similarly, the presence or absence of the fluoro atom on the benzyl ring did not affect antischistosomal activity, as shown by compounds 17 and 19, which both exhibited 100% inhibition at 10.0 and 1.0 μM, and 35 and 21% inhibition at 0.37 μM, respectively. However, compound 16 (100% inhibition at both 10.0 and 1.0 μM, and 48% inhibition at 0.37 μM) and compound 27 (52% inhibition at 10.0 μM and no inhibition at both 1.0 and 0.37 μM) demonstrate the importance of including an electron-withdrawing group on the benzyl ring. The presence of the hydroxyl, trifluoromethyl, and sulfone groups led to a loss of antischistosomal activity. The inactivity of the analogues following the substitution of these groups is demonstrated by the trifluoromethyl-substituted analogue 21 (100, 44, and 15% inhibition at 10.00, 1.00, and 0.37 μM, respectively), the sulfone-based analogue 22 (100 and 38% inhibition at 10.00 and 1.00, respectively, and no activity shown at 0.37 μM), and the meta-hydroxyl-substituted analogue 24 (100, 33, and 6% inhibition at 10.00, 1.00, and 0.37 μM, respectively). The contraction of the ring of the substituent amino moiety resulted in the loss of antischistosomal activity as demonstrated by the pyrazolylamine-substituted analogue 34, which showed 67% inhibition at 10.0 μM and <10% inhibition at 1.0 and 0.37 μM.

3.3 SAR 2: Assessment of the solubility and in vitro antiplasmodium and antischistosomal activities of LHS-modified PBI analogues

This phase of SAR and structure-property relationship (SPR) studies were aimed at improving physicochemical properties. Although enhancement of solubility was the major focus, modifications that could produce analogues with improved in vitro antiparasitic activity were highly sought. The PBI nucleus underwent modifications including the incorporation of hydrophilic amino moieties (figure 3.9). Antiplasmodium activity evaluation of the analogues was carried out in both NF54 and K1 P. falciparum strains, and the antischistosomal evaluation was performed against S. mansoni. Compounds with a range of low to high solubility and antiparasitic activities were obtained. The in vitro antiparasitic activities (IC_{50} values) and corresponding solubility values for various target compounds are shown in figures 3.10-3.12. For the sake of brevity, the discussion of all the antiplasmodium results will be based on potency against the chloroquine-sensitive (Pf/NF54) malaria parasite strain.
3.3.1 Assessment of the solubility and in vitro antiplasmodium activities of SAR 2 analogues

The front-runner compound GMP-19 (compound 35) was used as a control in the antiplasmodium evaluation. Although similar IC\textsubscript{50} values were obtained for the resynthesized material of GMP-19 (compound 36, IC\textsubscript{50} = 0.25 \(\mu\)M) and previously synthesized material against the K1 strain, an unexpected 3-fold difference in activity was noted against the NF54 strain (IC\textsubscript{50} = 0.43 and 0.17 \(\mu\)M for compound 35 and 36, respectively). The derivatives demonstrated antiplasmodium potencies ranging from low to high, as shown in figure 3.10. Generally, moderately lipophilic groups around the PBI core influenced potency. The loss of potency observed upon replacing the morpholine with a piperazine group (compound 39, IC\textsubscript{50} = 0.18 \(\mu\)M, and 40, IC\textsubscript{50} = 9.60 \(\mu\)M) indicates that introduction of the polar NH group was detrimental to activity. Furthermore, the phenyl ring on the LHS of the PBI core was modified by incorporating polar non-ionizable amide functionalities. These analogues include a lipophilic N-ethylated amide compound 44, which demonstrated poor antiplasmodium activity (IC\textsubscript{50} > 10 \(\mu\)M). However, the moderately lipophilic N-des-ethyl amidated analogue 45 demonstrated a >37-fold improvement in antiplasmodium activity (IC\textsubscript{50} = 0.27 \(\mu\)M) compared to compound 44 (figure 3.10).
Figure 3.10: Solubility and *in vitro* antiplasmodium activity of SAR 2.1 to 2.3 compounds

SAR 2.1, blue; SAR 2.2, brown; SAR 2.3, red

*a*Mean values were calculated from at least two independent experiments on the *P. falciparum* strains NF54 and K1 (individual values within ± 2-fold). Artesunate (IC$_{50}$ = 0.007 µM in NF54 and 0.930 ng/mL in K1) and chloroquine (IC$_{50}$ = 0.012 µM in NF54 and 86 ng/mL in K1) were used as reference drugs.

*b*Kinetic solubility determined via UHPLC
The introduction of polar heterocyclic aromatic amino moieties was detrimental to antiplasmodium activity but caused a significant improvement in solubility, as demonstrated by compounds 46 (IC$_{50}$ = 5.87 µM; solubility = 50 µM) and 47 (IC$_{50}$ = 6.00 µM; solubility = 105 µM). However, the highly polar and basic piperazinyl-substituted analogue 40 (solubility = 150 µM) demonstrated a 2-fold improvement in solubility compared to the less polar morpholinyl-substituted analogue 39 (solubility = 80 µM). However, a 4-fold decrease in solubility was observed when the morpholine moiety of compound 40 was substituted with a 1,1-dioxidothiomorpholine group as in compound 41 (solubility = 20 µM). Sulfone- and the nitro-substituted compounds have been reported to have the unfavourable energy for hydrogen-bonding interactions with water molecules (this is discussed in more details in chapter 4). Moreover, a 2-fold improvement in aqueous solubility was observed upon substituting the nitro group of compound 42 (solubility = 20 µM) with an amino group in analogue 43 (solubility = 40 µM). The improvement in solubility was further observed with polar non-ionizable amide-functionalized analogues such as the N-ethylated amide compound 44 (solubility = 50 µM) and the N-des-ethyl amidated compound 45 (solubility = 85 µM). Thus, amide derivative 45 showed a 2-fold improvement in solubility compared to compound 44. Except for compound 38 (solubility <5 µM), aromatic moieties conferred greater solubility, as shown by compounds 46 and 47 (solubility <50 and 105 µM, respectively).

Based on the antiplasmodium and solubility evaluation, compound 39 was identified as an optimally active analogue and the morpholinyl substituent was therefore fixed on the phenyl ring in the next phase of the SAR study. As a result, the 4-(trifluoromethoxy)aniline substituent on the pyridyl ring of the core scaffold was substituted with saturated basic amino moieties to produce target analogues shown in figure 3.11 below. However, such substitutions initially produced analogues with reduced in vitro antiplasmodium activities, translating to a >30-fold loss in potency against the PfNF54 strain compared to that of compound 39. Such analogues include compounds 48 (IC$_{50}$ = 6.000 µM) and 49 (IC$_{50}$ = 4.940 µM, figure 3.12). In an attempt to probe the effect of re-introducing aromatic properties, the 4-(trifluoromethyl)phenyl moiety was incorporated in place of the trifluoromethyl group at C-3. A drastic improvement in antiplasmodium activity was observed as demonstrated by compound 53 (IC$_{50}$ = 0.670 µM). Although low, the carbamate-substituted analogue 51 demonstrated antiplasmodium activity comparable to that of the N-ethylated amino analogue 50 (IC$_{50}$ = 0.710 µM).
Figure 3.11: Solubility and in vitro antiplasmodium activity of SAR 2.4 and 2.5 compounds SAR 2.4, pink; SAR 2.5, brown

a Mean values were calculated from at least two independent experiments on the P. falciparum strains NF54 and K1 (individual values within ± 2-fold). Artesunate (IC$_{50}$ = 0.007 µM in NF54 and 0.0024 µM in K1) and chloroquine (IC$_{50}$ = 0.012 µM in NF54 and 0.270 µM in K1) were used as reference drugs.

b Kinetic solubility determined via UHPLC

Interestingly, a dramatic improvement in antiplasmodium activity was observed in the N-des-ethyl aminated compound 52 (IC$_{50}$ < 0.012 µM), thus demonstrating a >40-fold improvement in antiplasmodium activity compared to that of the N-ethylated analogue 50. Moreover, compound 52 demonstrated >59-fold improvement in antiplasmodium potency compared to the carbamate N-carbamate aminated analogue 51. A slight loss of antiplasmodium activity was observed with the morpholine substituted analogue 53 (IC$_{50}$ = 0.670 µM) relative to that of the chloro-substituted analogue 50. Furthermore, similar activities were observed in the carbamate-based analogues 54 and 51 (IC$_{50}$ = 0.870 and 0.710 µM, respectively). Interestingly, sub-micromolar antiplasmodium potency was retained with the fully substituted (N-des-ethyl/morpholine aminated) analogue 55 (IC$_{50}$ = 0.250 µM). The final analogue (55), however, demonstrated a >12-fold decrease in activity compared to compound 52. Similar sub-micromolar antiplasmodium activities were observed in the N-ethylated and N-carbamate aminated analogues 53 and 54 (IC$_{50}$ = 0.670 and 0.870 µM, respectively). Furthermore, the N-des-ethyl/morpholine aminated analogue 55 demonstrated improved activity, translating to
approximately a 3-fold increase compared to both the N-ethylated and N-carbamate aminated analogues 53 and 54. Moreover, these analogues demonstrated low to moderate solubility, although the analogues with a trifluoromethyl group at position C-3 did so at the expense of antiplasmodium potency. Compounds that demonstrated improvement in kinetic solubility at the expense of antiplasmodium activity include compounds 48 and 49 (solubility = 105 and 150 µM, respectively). The substitution of a CF$_3$ group with a 4-CF$_3$Ph moiety at the C-3 position resulted in low solubility for the chloro-substituted intermediate analogues 50 to 52 (solubility = 20 µM). The poor solubility of these analogues may be attributed to the anticipated π–π stacking due to the planar conformations. Not surprisingly, solubility was restored upon substitution of a chloro group with a morpholine moiety on the core scaffold. Compounds 53 and 54 (solubility = 100 and 105 µM, respectively) demonstrated a 5-fold improvement in solubility compared to the corresponding chloro-substituted analogues 50 and 51. Moreover, analogue 55 (solubility = 150 µM) showed a >7-fold improvement in solubility compared to its corresponding chlorinated analogue 53. Density functional theory (DFT) calculations revealed that in the lowest energy state, the morpholine-substituted analogues assume an anti-coplanar conformation. These conformations disrupt molecular symmetry to reduce π–π stacking and are thought to be responsible for the high solubility demonstrated by compounds 49 and 55. Although some 3-dimension character was observed, compounds such as 28 exhibited poor solubility because of residual planarity (figure 3.12).
Figure 3.12: Density functional theory (DFT)-optimized structure conformations and observed solubilities for compounds 49, 55, and 28
3.3.2 *In vitro* gametocytocidal activity evaluation of SAR 2 analogues

Although not all SAR 2 compounds were preliminarily screened for dual-point inhibition against the early and late stages of parasite gametocytogenesis, a few compounds demonstrated activity at 1.0 and 5.0 μM test concentrations. Details of these compounds and their gametocytocidal inhibitory effects at various concentrations are shown in figure 3.13.

![In vitro gametocytogenesis inhibitory effects of SAR 2.2 to 2.5 compounds against early- and late-stage PfNF54 gametocytes](image)

Figure 3.13: *In vitro* gametocytogenesis inhibitory effects of SAR 2.2 to 2.5 compounds against early- and late-stage PfNF54 gametocytes

Luc, parasite viability measured via luciferase reporter assay; ATP, parasite viability measured via ATP bioluminescence assay.

Although analogues with polar functionalities such as the amide-substituted compound 45, the heterocyclic aromatic amine-substituted analogues 46 and 47, and the double-aminated analogues 48 and 50 demonstrated negligible activity, the lipophilic analogues derived from the 4-CF₃Ph-substituted core scaffold demonstrated higher activity (compounds 51 to 55). Compound 52 demonstrated the highest potency.
3.3.3 *In vitro* antischistosomal evaluation of SAR 2 analogues

The *in vitro* antischistosomal activities of SAR 2.1 and 2.2 analogues against adult schistosomes were evaluated. The analogues in this SAR study were obtained by modifying the LHS of compound 35. Although the analogues in this series demonstrated potent antischistosomal effects, reduced potency was observed for all compounds, including the resynthesized control sample compound 36, compared to the previously reported activity of front-runner compound 35 (data not shown). Details of these compounds and their antischistosomal activities (IC$_{50}$ values) are presented in figure 3.14 below.

![Figure 3.14: In vitro antischistosomal activity of SAR 2.1 to 2.2 compounds against adult *Schistosoma mansoni* worms](image)

SAR 2.1, blue; SAR 2.2, brown
Control: praziquantel, IC$_{50}$ = 0.21 μM

An unexpected significant difference in antischistosomal activities between the previously reported result for the front-runner GMP-19 (compound 35, IC$_{50}$ = 0.210 μM) and the resynthesized sample (compound 36, IC$_{50}$ = 1.04 μM), corresponding to a 5-fold difference in antischistosomal activity against the adult worms, was observed. However, these results were reconciled after a repeat analysis of the front-runner sample 35 alongside the resynthesized sample 36. In this controlled analysis, compound 35 demonstrated lower antischistosomal activity (IC$_{50}$ = 1.24 μM) than originally reported (IC$_{50}$ = 0.210 μM).
A modification that involved incorporating an electron-withdrawing group on the phenyl ring produced the less active intermediate compound 37 (IC\textsubscript{50} = 1.41 μM). Similarly, reduced antischistosomal activity was observed when a nitro group was incorporated to produce compound 42 (IC\textsubscript{50} = 1.23 μM). Furthermore, incorporating an electron-donating group such as an amino group, as demonstrated by compound 43, also resulted in lower potency (IC\textsubscript{50} = 1.26 μM). Despite the difference in the electronic nature of compounds 42 and 43, no significant difference in antischistosomal activity was observed. Thus, the nitro-substituted analogue 42 and its reduced form 43 showed similar activities against adult S. mansoni worms. Although the final aminated and amidated analogues did not show clear SARs, 1,1-dioxidothiomorpholinyl-substituted analogue 41 exhibited the strongest antischistosomal activity (IC\textsubscript{50} = 0.36 μM) compared to the morpholinyl-substituted analogue 39 (IC\textsubscript{50} = 1.87 μM). Similarly, the analogue 45 (IC\textsubscript{50} = 0.850 μM) demonstrated a 2-fold increase in activity against adult worms compared to the analogue 44 (IC\textsubscript{50} = 1.89 μM).

The antiplasmodium and antischistosomal SARs of PBI analogues were explored and analogues displaying high antiplasmodium and antischistosomal activities were identified. Additionally, compound 52 was identified as an analogue with strong in vitro asexual blood-stage antiplasmodium activity (IC\textsubscript{50} < 0.012 μM) and dual activity at both the early and late stages of gametocytogenesis (>96% inhibition at 5.0 μM). Additionally, stage-specific activity against early-stage gametocytes (77% inhibition at 1.0 μM) was identified in compound 30. Moreover, the same compound showed potent sub-micromolar dual antiparasitic in vitro activity (30: IC\textsubscript{50} = 0.045 μM in PjNF54, 72% early-stage gametocyte inhibition at 1.0 μM, and 69% schistosomal inhibition of S. mansoni NTS at 0.370 μM). Furthermore, compounds displaying sub-micromolar in vitro antischistosomal activity (41: IC\textsubscript{50} = 0.360 μM) were identified, as well as compounds also showing highly improved kinetic solubility between 30 and 85 μM (such as compound 45, IC\textsubscript{50} = 0.270 in PjNF54, IC\textsubscript{50} = 0.850 μM in adult S. mansoni). Additional details of the physicochemical properties and the exploration of certain factors affecting the solubility of PBI compounds are presented in the next chapter.
Chapter 3

References:

4. PHYSICOCHEMICAL EVALUATION AND STRUCTURE-PROPERTY RELATIONSHIPS

4.1 Introduction

A drug’s medical benefits depend entirely on its pharmacological effects and the duration of its action within the body. Specifically, the benefits of a drug are related to pharmacokinetic properties such as absorption, distribution, metabolism, and excretion (ADME). Ideally, the physicochemical properties of a drug-like molecule determine these ADME properties.1,2 Most importantly, aqueous solubility and lipophilicity remain pivotal physicochemical properties in determining how much of the drug is dissolved, permeates the lipophilic biological membranes, and is absorbed.1

Lipinski’s rule of five has been devised to provide guidelines on the suitable characteristic properties of drug-like compounds. This rule is based on a study of oral drug leads that progressed into the advanced stages of clinical development. Generally, the rule provides guidelines on the inherent properties of drug-like compounds, such as the physical count of the hydrogen-bond donors (HBD, ideally ≤ 5) and the hydrogen-bond acceptors (HBA, ideally ≤ 10). In addition, the rule emphasizes the importance of molecular weight (Mw, ideally ≤ 500 g.mol-1), which, in addition to the number of HBDs and HBAs, affects lipophilicity. Lipophilicity is defined as the \textit{in silico} calculated partition coefficient (cLogP), which should ideally be ≤ 5.3

However, certain properties that are not addressed by the rule of five but also have a significant effect on solubility, such as the topological polar surface area (tPSA) and saturation (increase in sp3 character), have been evaluated and established. Although an increase in sp3 character has previously been studied and associated with molecular conformations that influence crystallinity and thus improve solubility and permeability,5 Veber \textit{et al.} restricted the ideal total number of rotatable bonds to fewer than 10 and the optimal tPSA in the range 65 to 140 Å2.6 Similarly, the introduction of chirality leads to the disruption of molecular planarity and influences the crystal packing of the compound, which lowers the melting point (Mp) and leads to improved solubility.4,7

In this study, some of these intrinsic properties were evaluated to determine their effect on the solubility of PBI lead compounds. Parameters such as the Mp, cLogP, tPSA, and the high-pressure liquid chromatography (HPLC) retention times (t_R) were further evaluated.
4.2 Results and discussion

4.2.1 Physicochemical characterization

To minimize factors that may lead to uncertainties in the profiling of physicochemical properties, the purities of all the compounds used in this study were reassessed via HPLC in a single batch using the same HPLC buffer and solvent system, to ensure compounds were >95% pure. Results of the purity assessment for all compounds synthesized (n = 55) were found to be within 98.39 ± 2.58% at 95% confidence limit and are shown below in figure 4.1. The purity results were satisfactory, and all compounds displayed the minimum required purity.

![Chart showing purities of all compounds](image)

Figure 4.1: Purities of all compound synthesized (SAR 1.1 to 2.4) determined via high-performance liquid chromatography (HPLC)

This chart shows compliance with the 95% minimum purity requirement. LL, lower limit; UL, the upper limit.

4.2.2 Relationships between solubility, Mp, cLogP, and HPLC \(t_R \)

The solubilities and Mp were measured using appropriate techniques (outlined in Chapter 6), and the retention times were determined via HPLC. To ensure minimum uncertainties in the determination of the \(t_R \), compounds were analyzed in a single sequence using the same buffer and solvent system. The cLogP and the tPSA values were generated *in silico* using ChemDraw professional 16.0 and StarDrop™ 64 softwares, respectively. Using Microsoft Excel 16.0, the statistical charts shown in figure 4.2 were produced to investigate the relationships between i) solubility and tPSA, ii) solubility and Mp, iii) solubility and cLogP, and iv) solubility and HPLC \(t_R \).
Figure 4.2: Relationships between selected physicochemical properties
A, solubility vs topological polar surface area (tPSA); B, solubility vs melting point; C, solubility vs calculated partition coefficient (cLogP); D, solubility vs high-performance liquid chromatography (HPLC) retention time (tR)
Chapter 4

Although a more accurate solubility determination method could have revealed clearer statistical correlations, the compound-specific inherent properties observed here appear to strongly influence the linear relationships shown in figure 4.2. An increase in tPSA is theoretically expected to improve hydrogen-bonding properties, and thus result in increased aqueous interactions and improved solubility. However, certain compounds such the nitro-substituted analogue 42 demonstrated poor solubility (20 µM) and high tPSA (112.46 Å²). A similar result was observed with the sulfone-based analogue 41, which exhibited poor solubility (< 20 µM) despite having a high tPSA (128.08 Å²). Thus, the weak correlation (R² = 0.272) between solubility and the tPSA was attributed to the unusual behaviour of analogues such as compounds 42 and 41 (figure 4.3), which, despite showing favourably high tPSA, demonstrated low solubility. Inherent factors that limit the solubility of sulfone- and nitro-substituted analogues have been reported in the literature and are attributed to their weak hydrogen-bond interactions with water molecules. Despite having more hydrogen-bonding sites, the NO₂- and SO₂-substituted analogues show unfavourable hydration energies, thus leading to poor solvation. The unusual relationship between tPSA and solubility displayed by such compounds are thought to have skewed the correlation observed in figure 4.2A.
Figure 4.3: Selected PBI compound with their physicochemical properties

Additionally, although weak, a positive correlation ($R^2 = 0.151$) was observed between solubility and Mp, as demonstrated by the negative gradient shown in figure 4.2B. The negative slope observed is typical of the inverse linear relationship between solubility and Mp. Theoretically, the solubility of a chemical substance should increase as the Mp decreases. However, this theoretical expectation is limited by other factors that form part of the inherent properties of a compound. In addition to the number of rotatable bonds and saturation, which are thought to influence the Mp and in turn affect solubility, polar functionalities should increase optimally to facilitate hydrophilic interactions. In this regard, the saturated cyclohexyl-substituted analogues 1 and 2 demonstrated poor solubility (<10 µM) although complying with Veber’s rules (<10 rotatable bonds) and demonstrating desirably low Mp (182 °C).
The positive trend between solubility and cLogP (figure 4.2C) was the strongest correlation observed ($R^2 = 0.298$) relative to that between other physicochemical parameters. Ideally, the solubility of a compound should vary inversely with cLogP, and a plot of solubility against cLogP is therefore expected to display a linear negative slope. Although this was observed in figure 4.2C, the inherent characteristics of different compounds will affect the *in silico*-predicted lipophilicities (cLogP) differently. Based on these *in silico*-generated cLogP values, the experimental solubilities may vary and depart from theoretical expectations. This may be because of the inherent properties of certain compounds that the software does not consider. Such properties may include inductive electronic effects, which mostly upsurge the basicity of some non-hydrogen-containing functional groups such as tertiary amines. In addition, the software may not recognize the effect of anti-coplanar structural conformations, although these may strongly impact crystal packing, Mp, and solubility. The piperazinyl- and linear amine-functionalized analogues 40 and 48 (cLogP = 6.55 and 4.96, solubility = 150 and 105 µM, for 40 and 48, respectively, figure 4.3) are amongst the analogues that were thought to be affected by these software limitations.

Another aberrant experimental result that is thought to be functional group-specific concerns the sulfone- and the piperazinyl-substituted analogues 40 and 41 (cLogP = 6.55 and 5.59, solubility = 150 and 20 µM, for 40 and 41, respectively). In these two cases, structures with lower cLogP values may theoretically be associated with higher solubilities, however, the opposite was observed here. These and other factors not discussed here are thought to have weakened these correlations.

Similarly, aberrant relationships between solubility and cLogP were demonstrated by compounds 45 (cLogP = 4.97, solubility = 150 µM) and 53 (cLogP = 5.69, solubility = 100 µM). Such compounds may have fewer hydrogen-bond donors but contain tertiary-substituted nitrogen atoms (3°) that are highly basic. The aberrant linear relationships between solubility and cLogP that are demonstrated by the nitro-, sulfonyl-, and tertiary nitrogen-substituted analogues are attributable to the weak correlation observed ($R^2 = 0.298$). The fact that weak linear correlations were observed across all relationships indicates that several other factors including inductive effects, hydration, and crystal packing energies affect the solubility of these PBI compounds.
Chapter 4

References

Chapter 5

5. GENERAL SUMMARY

The synthesis, solubility, and pharmacological profiling of PBI compounds were successfully conducted. As a result, a new series of N-benzyl-3-trifluoromethylpyrido[1,2-a]benzimidazole analogues was identified and widely explored, leading to the successful expansion of SAR and SPR studies. Established synthetic protocols were employed to synthesize target analogues, which were characterized using nuclear magnetic resonance spectroscopy [1H- and 13C-NMR] and HPLC coupled to mass spectrometry (HPLC-MS), and subjected to Mp determination.

5.1 Summary of antiparasitic activities against PfNF54, PfK1, NTS, and adult S. mansoni worms

In vitro antiplasmodium activities were assessed against the chloroquine-sensitive *P. falciparum* strain NF54 and the chloroquine-resistant strain K1. SAR 1.1 to 1.4 and SAR 2.1 to 2.5 analogues were tested *in vitro* against asexual and sexual blood-stage *Pf*NF54 malaria parasites. In addition to this evaluation, SAR 2.1 to 2.4 analogues were screened against the chloroquine-resistant *P. falciparum* strain K1. SAR 2.1 to 2.4 compounds demonstrated similar activities against both the *Pf*NF54 and *Pf*K1 strains. Furthermore, the *in vitro* antischistosomal activities of the analogues were evaluated against both NTS and adult *S. mansoni*. Except for compound 18, which showed dual activity against the juvenile and the adult schistosomes, all compounds in this series demonstrated variable activity against the two stages of parasite development (figure 5.1). Moreover, the solubility of the 55 analogues synthesized in SAR 1.1 to 1.4 and 2.1 to 2.5 was assessed using the turbidimetric and HPLC-based kinetic solubility protocols.

5.2 Summary of *in vitro* antiplasmodium and antischistosomal activities of SAR 1 analogues

i. Analogues possessing an unsubstituted phenyl ring in the core scaffold demonstrated poor antiplasmodium activity and showed a 2- to 14-fold decrease in potency relative to that of GMP-19. Similarly, these analogues also demonstrated weak inhibition of the early and late stages of gametocytogenesis. Moreover, the compounds exhibited weak inhibition of the growth of both NTS and the adult worms (10 to 55% inhibition at 1.0 µM).

ii. Compounds containing the monosubstituted 8-chloro core PBI scaffold demonstrated poor activity with a 7- to >14-fold decrease in antiplasmodium activity compared to that of GMP-19. Similarly, the monosubstituted analogues also exhibited negligible gametocytocidal effects against both early- and late-stage parasites. Low antischistosomal activity was also observed (0 to 55% inhibition at 1.0 µM).
 iii. Analogues derived from a 7,8-dichlorinated core PBI scaffold demonstrated significant improvement in both antiplasmodium and antischistosomal activities and showed a 2-, 4-, and 14-fold increase in potency relative to that of GMP-19. Analogues 7 (a most active compound from SAR 1.1) and 14 (a most active analogue from SAR 1.2) also exhibited improved gametocytocidal effects (78 and 85% inhibition in early- and late-stage gametocytes at 5.0 µM, respectively).

 iv. The 7,8-difluorinated core PBI scaffold (SAR 1.4) conferred the greatest antiplasmodium potency relative to that of GMP-19. In this regard, 15 of the 19 analogues from SAR 1.1 to 1.3 showed sub-micromolar asexual blood stage antiplasmodium activities ranging between 0.022 and 0.940 µM. The following is noteworthy:
 - They exhibited 2- to 20-fold increases in asexual blood-stage antiplasmodium activity relative to that of the front-runner compound GMP-19
 - One compound 30 exhibited early-stage gametocytocidal activity, which was comparable to that of MMV048 (72 and 77% inhibition at 1.0 µM for 30 and MMV048, respectively)
 - Compound 30 demonstrated antischistosomal activity with a 69% NTS inhibition at 0.37 µM

 5.2.1 Summary of structure-activity relationship
 i. Lipophilicity was identified as a key determinant of activity in this part of the SAR study.
 ii. Compounds containing benzylamine moieties with electron-rich hydrophilic groups exhibited poor antischistosomal and antiplasmodium activities against both the asexual and sexual stages.
 iii. Sulfonyl substitution and ring contraction compromised antischistosomal and antiplasmodium activities against both the asexual and sexual stages of parasite development.
 iv. Although further investigations may be required, R-enantiomers displayed stronger activities than their S-counterparts against both parasites.
 v. Para-substituted compounds demonstrated superior antiplasmodium activity, with 3-fold increases in potency relative to their ortho-substituted counterparts.

 Various substitutions and their relative effects on antiplasmodium and antischistosomal activities are summarized below in figure 5.1 while the distribution of antiplasmodium activity for all the 55 compounds is shown in figure 5.3.
Figure 5.1: Antiplasmodium (IC\textsubscript{50} (µM)) and antischistosomal (% inhibition at 1.00 µM) of the current PBI leads

5.2.2 Summary of solubility studies

Solubility studies were conducted using HPLC-based and turbidimetric kinetic solubility protocols. The melting points (Mp) were determined while predicted cLogP and the tPSA values were generated \textit{in silico} for all analogues (figure 5.1) and compared to solubility. Findings were as follows:

i. As expected all analogues bearing a lipophilic substituent, such as the saturated lipophilic hexylamine, analogues 1 and 2, and those containing chloro, fluoro, and methyl groups on the benzylamine ring, generally exhibited poor solubility (<10 µM).
Chapter 5

ii. Chiral esters and their amide derivatives, analogues bearing a 2-carbon spacer (10 and 11), and the 5-membered heterocyclic-substituted analogue 34 demonstrated moderate to high solubility with 4- to 36-fold increases in solubility relative to that of GMP-19.

5.3 Summary of antiparasitic activity and solubility studies for SAR 2 analogues

Generally, the in vitro antiplasmodium and antischistosomal activities of SAR 2 analogues were improved. Analogues demonstrated up to a 36-fold increase in antiplasmodium potency relative to that of GMP-19. The following deductions were made:

5.3.1 Summary of antiparasitic activity

i. Antiplasmodium activity increased with lipophilicity as demonstrated by compound 53:
 - The presence of electron-rich hydrophilic groups led to a decrease in activity against both the asexual and sexual blood-stage.
 - Replacing the 4-OCF₃Ph with hydrophilic amino moieties reduced the activity of C-3 CF₃-substituted analogues as exemplified by compound 48.

ii. The introduction of partially acidic substituent moieties such as the sulfonyl and amide groups (41 and 45: figure 5.2) increased antischistosomal activity.

Figure 5.2: Antiparasitic activity and physicochemical profiles of selected SAR 2 analogues: cLogP (Black); tPSA (Red); NF54 (Blue); S. mansoni IC₅₀ (µM: Brown); solubility (µM: Pink)
Figure 5.3: Statistical summary and distribution of antiplasmodium activities for all synthesized compounds (n = 55)
Activity ranges are in IC$_{50}$ (µM) values against NF54 parasites
5.3.2 Summary of solubility studies

i. Generally, all analogues possessing a morpholino group on the phenyl ring and an acyclic amino moiety on the pyridyl ring of the core scaffold demonstrated a >30-fold increase in solubility relative to that of GMP-19.

ii. The introduction of amide functionalities on the phenyl ring of the core scaffold resulted in a >10-fold improvement in solubility relative to that of GMP-19.

iii. Compounds containing the sulfonyl group exhibited poor solubility, with approximately 4- and 7-fold reductions in aqueous solubility relative to that of analogous compounds 39 and 40, respectively.

5.3.3 General summary of the physicochemical property profiling

i. In this study, cLogP, tPSA, and Mp were moderately correlated ($R^2 = 0.298$, 0.272, and 0.151, respectively), and were identified as suitable predictive parameters for solubility.

ii. No correlation was observed between solubility and HPLC t_R.

5.4 Future work and recommendations

5.4.1 Pharmacological profiling of SAR 1 and SAR 2 analogues

Considering the high sub-micromolar antiplasmodium activity exhibited by the newly explored N-benzyl-3-trifluoromethylpyrido[1,2-a]benzimidazole compounds, the following should be investigated:

i. Antischistosomal $in vitro$ dose-response profiles (IC50)

ii. Cytotoxicity and metabolic stability profiles

iii. $In vivo$ PK and efficacy profiles in appropriate animal models

iv. PfK1 and cross-resistance profiles

v. Mechanism of action studies through target identification

5.4.2 Physicochemical profiling of SAR 1 and SAR 2 analogues

Poor solubility was observed in the most potent analogues, thus requiring medicinal chemistry optimization studies. The proposed SAR 1 and SAR 2 analogues were designed to improve the tPSA while maintaining some degree of lipophilicity.

5.4.3 Proposed SAR for physicochemical optimization of the α-methylbenzyl-PBI series

The recommendations are based on front-runner compounds 16, 17, 18, 27, and 30 as shown in figure 5.4.
Figure 5.4: Proposed compounds for physicochemical property optimization

*Activity was determined as % inhibition at 0.37 µM, with 100% inhibition shown at 1.0 µM. Compound 27 exhibited no activity at both 0.37 and 1.0 µM.

5.4.4 Proposed SAR for physicochemical optimization of the SAR 2 series

Recommendations are based on front-runner compound 52 as shown in figure 5.5.

Figure 5.5: Proposed compounds for physicochemical properties optimization

5.4.5 In silico prediction of the physicochemical properties of proposed analogues

From this study, cLogP and tPSA were positively correlated with solubility. Therefore, the design of the new analogues aimed to maintain lipophilicity while increasing the tPSA. The details of the predicted physicochemical parameters including the tPSA (Å), cLogP, and calculated molar weights of the proposed new analogues for SAR 1 and SAR 2 are shown in figures 5.6 and 5.7, respectively.
Figure 5.6: Future work and recommendations for SAR

*Activity is expressed as % inhibition at 0.37 µM, with 100% inhibition shown at 1.0 µM; *% inhibition at both 0.37 and 1.0 µM;
- - recommended assays for future work
Table 5.1: SAR Analysis for Different Functional Groups

<table>
<thead>
<tr>
<th>Functional Group</th>
<th>Parameter/Target</th>
<th>65 ≤ tPSA ≤ 140</th>
<th>clogP ≤ 5</th>
<th>clogP ≤ 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td></td>
<td>63.45</td>
<td>5.79</td>
<td>407.88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>82.75</td>
<td>4.66</td>
<td>425.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>76.96</td>
<td>3.11</td>
<td>426.88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>93.48</td>
<td>5.04</td>
<td>465.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>73.61</td>
<td>5.02</td>
<td>450.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>88.77</td>
<td>5.06</td>
<td>450.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>76.61</td>
<td>5.29</td>
<td>464.93</td>
</tr>
<tr>
<td>CN</td>
<td></td>
<td>87.24</td>
<td>5.08</td>
<td>419.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>106.54</td>
<td>3.95</td>
<td>432.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100.75</td>
<td>2.40</td>
<td>433.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>117.27</td>
<td>4.33</td>
<td>472.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>97.41</td>
<td>4.31</td>
<td>457.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>112.56</td>
<td>4.35</td>
<td>457.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>97.40</td>
<td>4.58</td>
<td>471.95</td>
</tr>
<tr>
<td>O=N</td>
<td></td>
<td>83.68</td>
<td>4.69</td>
<td>405.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>102.98</td>
<td>3.56</td>
<td>423.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>97.19</td>
<td>2.01</td>
<td>424.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>113.71</td>
<td>3.93</td>
<td>463.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>93.84</td>
<td>3.91</td>
<td>448.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>109.00</td>
<td>3.95</td>
<td>448.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>93.84</td>
<td>4.18</td>
<td>462.94</td>
</tr>
<tr>
<td>OH</td>
<td></td>
<td>72.68</td>
<td>5.00</td>
<td>419.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>91.98</td>
<td>3.88</td>
<td>437.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>86.90</td>
<td>2.32</td>
<td>438.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>102.71</td>
<td>4.25</td>
<td>477.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>82.84</td>
<td>4.23</td>
<td>462.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98.00</td>
<td>4.28</td>
<td>462.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>82.84</td>
<td>4.50</td>
<td>476.97</td>
</tr>
<tr>
<td>S=O</td>
<td></td>
<td>80.52</td>
<td>4.06</td>
<td>451.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99.82</td>
<td>2.93</td>
<td>469.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>94.03</td>
<td>1.38</td>
<td>470.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>110.55</td>
<td>3.31</td>
<td>486.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90.68</td>
<td>3.28</td>
<td>510.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>105.84</td>
<td>3.33</td>
<td>495.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90.68</td>
<td>3.55</td>
<td>509.03</td>
</tr>
</tbody>
</table>

Figure 5.7: Future work and recommendations for SAR 2
Chapter 6

6. EXPERIMENTAL

6.1 Chapter Overview

In Chapter six, supplementary experimental protocols and spectroscopic data for Chapters 2, 3, and 4 are described. The Chapter starts with a description of chemical materials used, the instrumental and technical requirements for the testing after which a detailed spectroscopic characterization of all the synthesized intermediate and target molecules is covered. The chapter ends with the description of biological assay protocols used to generate biological data reported in this dissertation.

6.2 Chemistry

6.2.1 Reagents and Solvents

All the commercially available chemicals and reagents were purchased from either Sigma-Aldrich in South Africa or Combi-Blocks Limited in the United States of America (USA) and were used without further purification. All the anhydrous solvents such as 1,4-dioxane, dimethyl sulfoxide (DMSO), acetonitrile (CH$_3$CN) and dimethylformamide (DMF) were purchased as such from Sigma Aldrich (South Africa). However, only tetrahydrofuran (THF) and ethanol which were purchased and used as analytical reagent (AR) grade and absolute (99.9%), respectively. HPLC grade solvents such as CH$_3$CN and methanol (MeOH) for HPLC-MS mobile phase preparation were purchased from Romil Ltd (Cambridge, UK).

6.2.2 Chromatography

The progress of reactions was monitored by a combination of analytical thin layer chromatography (TLC) and HPLC-MS. The TLC plates employed were sourced from Merck (TLC Silica gel 60 F254 coated on aluminium sheets). The TLC plates were visualized under ultraviolet light (UV 254 and 366 nm). An Agilent LC-MS instrument with the following components was used to monitor the progress of reactions including per cent purity determinations: Agilent 1260® Infinity Binary Pump, Agilent 1260® Infinity Diode Array Detector, Agilent 1290® Infinity Column Compartment, Agilent 1260® Infinity Autosampler, Agilent 6120® Quadrupole LC/MS, and Peak Scientific® Genius 1050 Nitrogen Generator. An X-bridge® (C18, 2.5 µm, 3.0 mm (ID) x 50 mm length) column maintained at 35 °C was used. The chromatographic mobile phases composed of 10 mM aqueous ammonium acetate (NH$_4$OAc) spiked with 0.4% acetic acid and 10 mM NH$_4$OAc in methanol spiked with 0.4% acetic acid (figure 6.1). The mass spectra were acquired using electrospray ionisation (ESI) or atmospheric pressure chemical ionization (APCI) in the positive or negative ionisation modes, respectively depending on the nature of the compound.
Chapter 6

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>% A</th>
<th>% B</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00-1.00</td>
<td>90</td>
<td>10</td>
<td>10.0 mM NH₄OAc (0.40% acetic acid buffer) in 90% HPLC grade CH₃OH in H₂O</td>
</tr>
<tr>
<td>1.00-3.00</td>
<td>5</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>3.00-5.00</td>
<td>5</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>5.00-6.50</td>
<td>90</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>6.50-7.00</td>
<td>90</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Figure 6.1: HPLC gradient conditions summary

Biotage grade silica gel was employed for column chromatographic purifications on the Biotage Isolera One Flash Chromatography system. The manual glass tube columns employed Fluka high purity grade silica gel (pore size 60 Å, 70 – 230 mesh, 63 – 200 μm). Additionally, Analtech Uniplate preparative TLC (prep-TLC) plates (20 × 20 cm, 2000 microns) were used for prep-TLC purifications. The solvents used as mobile phases were AR grade and were used without further distillation.

6.2.3 Spectroscopic characterization

¹H NMR and ¹³C NMR spectra were recorded on a Ultrashield-Plus Bruker or Varian Mercury 300 (¹H 300.1, ¹³C 75.5 MHz) or a Bruker (600 MHz) spectrometers. All ¹H NMR and ¹³C NMR spectra were acquired at 30 °C in deuterated solvents (CDCl₃, CD₃OD, CD₃CN, or DMSO-d₆). The one-dimensional ¹H NMR and ¹³C NMR spectra were processed using MestReNova 6.2.1-7569. Multiplicity patterns are reported using the following abbreviations: br s = broad singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, ddd = doublet of doublet of doublets, dt = doublet of triplets. Coupling constants (J values) are reported in Hertz (Hz).

6.2.4 Physical characterization

Melting points were measured using a digital thermometer Reichert Jung THERMONOVAR. The 4-chlorophenyl boronic acid (m.p = 284 – 289 °C) was used as a melting point control sample and was read every ten measurements. An average melting point 285 – 291 °C (n = 6) was obtained. The recorded melting points were measured in duplicate and are an average of the clear point which is a temperature at which all solid material on the slides turns to liquid. All the final compounds were subjected to purity check experiments using HPLC-MS to ensure an acceptable level of purity (≥ 95%).
6.3 Synthesis and Characterization

6.3.1 General procedure for the synthesis of benzimidazole acetonitrile intermediate compounds 1.1a – 2.2a

A suitably substituted 1,2-diaminobenzene (1.0 equiv), ethyl cyanoacetate (3.0 equiv) and DMF (1.0 mL/0.100g sample) were stirred at 160°C for 3 hours. At the completion of the reaction, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, washed with 20mL portions of 5% lithium chloride (20 mL x 3), distilled water (20 mL x 3) and brine (10 mL x 3) in a separatory funnel. The treated organic layer was dried on anhydrous MgSO₄, concentrated and finally dried in vacuo. For the nitro-substituted benzimidazole, the product was purified by trituration using toluene at 40-45 °C filtered and solid 2.1.2a was washed with diethyl ether and dried at ambient conditions. The toluene mixture was concentrated and solid was triturated using diethyl ether to obtain 2.1.1a.

2-(6-chloro-1H-benzo[d]imidazol-2-yl)acetonitrile, 1.2a

Compound 1.2a was obtained from 4-chloro-1,2-diaminobenzene (1.2) (2.5 g, 17.53 mmol, 1.0 equiv), ethyl cyanoacetate (5.6 mL, 0.053 Mol., 3.0equiv) as a brown solid (2.82 g, 84%); Rf (MeOH : DCM, 0.5 : 9.5) 0.26; ¹H NMR (400 MHz, Acetonitrile-d₃) δ 12.9 (s, 1H, H₅), 7.6 (d, J = 1.9 Hz, 1H, H⁴), 7.5 (d, J = 8.6 Hz, 1H, H₂), 7.2 (dd, J = 8.6, 1.9 Hz, 1H, H³), 4.17 (s, 2H, H¹). ¹³C NMR (101 MHz, Acetonitrile-d₃) δ 145.9, 145.2, 143.4, 120.4, 116.7, 116.0, 113.5, 110.2, 18.9; HPLC-MS (ACI/ESI): Purity = 86%, t_R = 0.74 min, m/z [M-H]⁻ = 190.0.

2-(5,6-dichloro-1H-benzo[d]imidazol-2-yl)acetonitrile, 1.3a

Compound 1.3a was obtained from 4,5-dichlorobenzene-1,2-diamine (1.3) (0.088 g, 0.50 mmol, 1.0 equiv) and ethyl cyanoacetate (0.170 g, 1.50 mmol, 3.0 equiv) as brown solid (0.073 g, 65 %); Rf (MeOH : DCM, 0.5 : 9.5) 0.30; ¹H NMR (400 MHz, DMSO-d₆) δ 12.9 (s, 1H, H⁵), 7.9 (s, 2H, H², H³), 4.4 (s, 2H, H¹); ¹³C NMR (101 MHz, DMSO-d₆) δ 148.4, 145.2, 143.4, 120.4, 116.7, 116.0, 113.5, 110.2, 18.9; HPLC-MS (APCI/ESI): Purity = 90%, t_R = 4.01 min, m/z [M+H]⁺ = 226.0.
2-(5,6-difluoro-1H-indol-2-yl)acetonitrile, 1.4a

Compound 1.4a was obtained from 4,5-difluorobenzene-1,2-diamine (1.4) (3.48 g, 23.84 mmol, 1.0 equiv) and ethyl cyanoacetate (8.09 g, 71.49 mmol ml 3.0 equiv) as a deep red solid (2.98 g, 65%); RF (MeOH : DCM, 1 : 9) 0.32; 1H NMR (300 MHz, DMSO-d_6) δ 12.8 (s, 1H, H4), 7.6 (s, 2H, H2, H3), 4.4 (s, 2H, H1). 13C NMR (101 MHz, DMSO-d_6) δ 148.4, 147.4, 146.0, 116.8, 106.5 (2C), 100.1 (2C), 18.9. HPLC-MS (ACI/ESI): Purity = 90%, t_R = 2.24 min, m/z [M-H]$^-$ = 192.1.

2-(7-Chloro-1H-benzo[d]imidazole-2-yl)acetonitrile, 2.1.2a

Compound 2.1.2a was obtained from 3-nitro-1,2-diaminobenzene (2.1) (5.0 g, 32.65 mol, 1.0 equiv) and ethyl cyanoacetate (11.1 g, 97.45 mmol 3.0 equiv) as a yellowish solid (5.4 g, 82%); RF (EtOAc : Hexane, 7 : 3) 0.43; 1H NMR (300 MHz, DMSO-d_6) δ 8.2 (dd, J = 8.2, 1.0 Hz, 1H, H4), 8.1 (dd, J = 8.0, 1.0 Hz, 1H, H2), 7.4 (t, J = 8.1 Hz, 1H, H3), 4.3 (s, 2H, H1); 13C NMR (151 MHz, DMSO-d_6) δ 149.2, 146.3, 133.4, 128.9, 127.3, 119.5, 116.5, 18.8. HPLC-MS (ACI/ESI): Purity = 99%, t_R = 3.06 min, m/z [M-H]$^-$ = 200.9.

2-(7-Chloro-1H-benzo[d]imidazole-2-yl)acetonitrile, 2.2a

Compound 2.2a was obtained from 3-chloro-1,2-diaminobenzene (2.2) (2.6 g, 18.23 mol, 1.0 equiv) and ethyl cyanoacetate (6.20 g, 54.70 mmol, 3.0 equiv) as a brown solid (2.8 g, 80%); RF (EtOAc : Hexane, 7 : 3) 0.33; 1H NMR (300 MHz, DMSO-d_6) δ 13.0 (s, 1H, H5), 7.5 (dd, J = 7.5, 1.1 Hz, 1H, H4), 7.3 (dd, J = 7.8, 1.1 Hz, 1H, H2), 7.2 (t, J = 7.8 Hz, 1H, H3), 4.4 (s, 2H, H1). 13C NMR (151 MHz, DMSO-d_6) δ 149.2, 146.3, 133.4, 128.9, 127.3, 122.0, 119.5, 116.5, 18.8. HPLC-MS (ACI/ESI): Purity = 96%, t_R = 1.71 min, m/z [M+H]$^+$ = 191.9.
6.3.2 General procedure for the synthesis of hydroxy intermediates compounds (1.1b – 2.4b)

An appropriate benzimidazole acetonitrile (1.0 equiv), a suitably substituted β-keto ester (1.2 equiv) and ammonium acetate (2.0 equiv) were stirred under reflux conditions at 145 °C for 2 hours. Following completion of the reaction, the mixture was cooled to 70°C, followed by addition of 10 mL acetonitrile and stirring reaction product mixture stirred for a further 10 minutes at that temperature. The treated reaction mixture was cooled to room temperature. The cooled reaction mixture was filtered, the resulting solid product was washed with cold acetonitrile (2-3 mL x 3), dry ether (3-5mL x 3) and finally, the product was dried at ambient conditions. The product was used in subsequent step without further purification.

1-hydroxy-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 1.1b

Compound 1.1b was obtained from 1.1a (1.25 g, 7.95 mmol, 1.0 equiv) and ethyl 4,4,4-trifluoro-3-oxobutanoate (1.76 g, 9.54 mmol, 1.2 equiv) and ammonium acetate (1.23 g, 15.90 mmol, 2.0 equiv) as a brown solid (0.88 g, 40%); Rf (EtOAc : Hexane, 3 : 7) 0.22; ¹H NMR (300 MHz, DMSO-d₆) δ 8.6 (dd, J = 7.8, 1.6 Hz, 1H, H₅), 7.6 (dd, J = 7.8, 1.6 Hz, 1H, H²), 7.6 – 7.5 (dt, J = 7.8, 1.6 Hz, 1H, H³), 7.3 (dt, J = 7.7, 1.7 Hz, 1H, H⁴), 6.23 (s, 1H, H¹). ¹³C NMR (101 MHz, DMSO-d₆) δ 158.3 (3C), 148.3, 132.4, 127.8, 123.5, 116.8, 114.6, 112.3, 111.2, 103.3 (2C). HPLC-MS (ACI/ ESI): Purity = 98%, tᵣ = 2.57 min, m/z [M+H]⁺ = 278.0.

8-chloro-1-hydroxy-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 1.2b

Compound 1.2b was obtained from 1.2a (1.90 g, 9.92 mmol, 1.0 equiv) and ethyl 4,4,4-trifluoro-3-oxobutanoate (2.19 g, 11.90 mmol, 1.2 Eq) as yellow solid (2.16 g, 70%); Rf (MeOH : DCM, 0.5 : 9.5) 0.20. ¹H NMR (300 MHz, DMSO-d₆) δ 8.5 (d, J = 2.2 Hz, 1H, H⁵), 7.7 (d, J = 8.6 Hz, 1H, H²), 7.5 (dd, J = 8.4, 2.2 Hz, 1H, H³), 6.4 (s, 1H, H¹). ¹³C NMR (101 MHz, DMSO-d₆) δ 158.0, 127.7, 123.4 (2C), 117.9 (2C), 116.4 (2C), 114.2, 112.4 (2C), 103.1 (2C). HPLC-MS (ACI/ ESI): Purity = 96%, tᵣ = 2.95 min, m/z [M+H]⁺ = 309.9.
7,8-dichloro-1-hydroxy-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile: 1.3b

Compound 1.3b was obtained from 1.3a (0.113 g, 0.50 mmol, 1.0 equiv) and ethyl 4,4,4-trifluoro-3-oxobutanoate (0.110 g, 0.60 mmol, 1.2 equiv) and as grey solid (0.142 g, 82 %) Rf (EtOAc : Hexane 7 : 3) 0.36; 1H NMR (300 MHz, DMSO-d6) δ 8.7 (s, 1H, H2), 7.7 (s, 1H, H1), 6.5 (s, 2H, H2, H3). 13C NMR (101 MHz, DMSO) δ 170.9, 168.0, 158.0, 155.2, 145.2, 130.2, 128.5, 124.0, 121.3, 116.7, 118.0, 117.7, 95.4. HPLC-MS (APCI/ESI): Purity = 96%, tR = 2.98 min, m/z [M+H]+ = 346.0.

7,8-difluoro-1-hydroxy-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 1.4b.

Compound 1.4b was obtained from 1.4a (2.86 g, 14.80 mmol, 1.0 equiv), ethyl 4,4,4-trifluoro-3-oxobutanoate (3.26 g, 17.8 mmol, 1.2 equiv) as a brown solid (1.76 g, 86 %); Rf (EtOAc : Hexane, 7 : 3) 0.25; 1H NMR (300 MHz, DMSO-d6) δ 8.5 (dd, J = 10.3, 7.4 Hz, 1H, H2), 7.7 (dd, J = 10.0, 7.0 Hz, 1H, H3), 6.4 (s, 1H, H1). 13C NMR (101 MHz, DMSO-d6) δ 157.8, 149.4, 129.7, 123.7, 114.7, 105.6 (2C), 102.7 (3C), 101.5 (3C). HPLC-MS (ACI/ESI): Purity = 99%, tR = 2.69 min, m/z [M-H]- = 313.03.

1-hydroxy-9-Nitro-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 2.1.2b

Compound 2.1.2b was obtained 2.1.2a (5.0 g, 25 mmol, 1.0 equiv) and ethyl 4,4,4-trifluoro-3-oxobutanoate (0.29 g, 4.6 ml 1.2 equiv) and ammonium acetate (3.9 mg, 50 mmol, 2.0 equiv) as red solid (3.4 g, 42 %); Rf (EtOAc : Hexane, 8 : 2) 0.25; 1H NMR (300 MHz, DMSO-d6) δ 9.0 (d, J = 8.0 Hz, 1H, H4), 8.3 (d, J = 8.3 Hz, 1H, H5), 7.5 (t, J = 8.2 Hz, 1H, H3), 6.4 (s, 1H, H1); 13C NMR (151 MHz, DMSO-d6) δ 158.5, 151.8, 139.7, 134.5, 132.3, 123.7, 122.3 (2C), 121.9, 121.5, 114.9, 102.2, 67.4. HPLC-MS (ACI/ESI): purity = 99%, tR = 1.23 min, m/z [M+H]+ = 323.0.
9-chloro-1-hydroxy-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 2.2b

Compound 2.2b was obtained from 2.2a (1.1 g, 5.6 mmol, 1.0 equiv), ethyl 4,4,4-trifluoro-3-oxobutanoate (1.2 g, 6.8 mmol, 1.2 Eq) and ammonium acetate (0.97, 12.5 mmol, 2.0 equiv) as a beigy solid (1.4 g, 80%); Rf (EtOAc : Hexane, 7 : 3) 0.32; \(^1^H\) NMR (300 MHz, Chloroform-d\(_3\)) \(\delta 8.6 (dd, J = 8.8, 1.2 \text{ Hz}, 1H, H^4), 7.8 (dd, J = 7.8, 1.2 \text{ Hz}, 1H, H^5), 7.5 (t, J = 7.9 \text{ Hz}, 1H, H^3), 7.3 (s, 1H, H^1). \(^{13}\)C NMR (101 MHz, DMSO-d\(_6\)) \(\delta 166.0, 125.8 (2C), 122.3 (2C), 121.6, 121.4 (2C), 119.7, 118.3, 117.0, 96.6 (2C); HPLC-MS (ACI/ESI): Purity = 99%, \(t_R = 2.63 \text{ min}, m/z [M+H]^+ = 309.7.\)

8-chloro-1-hydroxy-3-(4-(trifluoromethyl)phenyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 2.4b

Compound 2.4b was obtained from 1.2a (1.47 g, 7.67 mmol, 1.0 equiv) and ethyl 3-oxo-3-(4-(trifluoromethyl)phenyl)propanoate (2.39 g, 9.20 mmol, 1.2 equiv) as brown solid (1.72 g, 58%; Rf (EtOAc : Hexane, 7 : 10) 0.27. \(^1^H\) NMR (600 MHz, DMSO-d\(_6\)) \(\delta 8.6 (d, J = 2.0 \text{ Hz}, 1H, H^4), 7.9 (d, J = 8.1 \text{ Hz}, 2H, H^5), 7.9 (d, J = 8.0 \text{ Hz}, 2H, H^6), 7.6 (d, J = 8.4 \text{ Hz}, 1H, H^3), 7.4 (dd, J = 8.3, 2.1 \text{ Hz}, 1H, H^1), 6.1 (s, 1H, H^1). \(^{13}\)C NMR (151 MHz, DMSO-d\(_6\)) \(\delta 158.2, 151.8, 148.5, 141.4, 131.6, 129.5 (3C), 127.2, 126.0 (3C), 123.2, 117.9, 116.4, 113.4, 111.8, 105.7, 105.5. \) HPLC-MS (ACI/ESI): Purity = 98%, \(t_R = 3.02 \text{ min}, m/z [M+H]^+ = 388.0.\)

6.3.3 General procedure for the synthesis of the chlorinated intermediates (1.1c – 2.4c)

A mixture of an appropriate hydroxy intermediate compound (1.0 equiv) and phosphoryl oxychloride (POCl\(_3\); 20.0 equiv) was stirred at 130°C for 3 hours. On completion of the reaction, the reaction mixture was cooled to room temperature. The excess POCl\(_3\) was removed in vacuo. Ice cooled water (20 mL) was added to the treated reaction mixture with consistent stirring for 15 minutes. The mixture was neutralized using sodium bicarbonate, crude product filtered off, washed with water and dried at ambient conditions. The product was used in the subsequent step without further purification.
Chapter 6

1-chloro-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 1.1c

Compound 1.1c was obtained from 1.1b (0.94 g, 3.39 mmol, 1.0 Eq) and POCl₃ (10.4 g, 67.82 mmol, 20 Eq) as a yellow solid (0.812 g, 81%); Rf (EtOAc : Hexane, 1 : 9) 0.35; ¹H NMR (300 MHz, chloroform-d) ð 8.7 (dd, J = 7.8, 1.2 Hz, 1H, H²), 8.6 (dd, J = 7.8, 1.2 Hz, 1H, H³), 7.8 (dt, J = 7.8, 1.3 Hz, 1H, H⁴), 7.6 (dt, J = 8.1, 1.2 Hz, 1H, H⁵), 7.2 (s, 1H, H¹). ¹³C NMR (101 MHz, DMSO-d₆) ð 158.1, 148.0, 132.3, 127.8 (2C), 123.6 (2C), 116.8 (2C), 112.3 (2C), 103.3 (2C). HPLC-MS (ACI/ESI): Purity = 99%, tᵣ = 3.25 min, m/z [M+H]⁺ = 296.0.

1,8-dichloro-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 1.3c

Compound 1.3c was obtained from 1.3b (1.2 g, 3.9 mmol, 1.0 equiv) and POCl₃ (1.3 g, 79 mmol, 1.5 equiv) as yellow solid (0.7 g, 85%); Rf (EtOAc : Hexane, 1.5 : 8.5) 0.21. ¹H NMR (600 MHz, DMSO-d₆) ð 8.7 (d, J = 1.1 Hz, 1H, H²), 8.2 (d, J = 8.6 Hz, 1H, H³), 7.9 (s, 1H, H¹), 7.7 – 7.6 (dd, J = 9.1, 1.1 Hz 1H, H³). ¹³C NMR (101 MHz, DMSO-d₆) ð 157.8, 148.6, 132.0, 127.9, 123.6, 117.9, 116.2, 114.3, 113.6, 112.0, 103.7 (3C). HPLC-MS (ACI/ESI): Purity = 91%, tᵣ = 1.13 min, m/z [M-H]⁻ = 329.90.

1,7,8-trichloro-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 1.3c

Compound 1.3c was obtained from 1.3b (0.080 g, 0.23 mmol, 1.0 equiv) and POCl₃ (0.71 g, 4.6 mmol, 20.0 equiv) as yellow solid (0.080 g, 95 %) Rf (EtOAc : Hexane 1 : 9) 0.25; ¹H NMR (300 MHz, DMSO-d₆) ð 8.86 (s, 1H, H³), 8.4 (s, 1H, H¹), 7.9 (s, 1H, H²); ¹³C NMR (101 MHz, DMSO) ð 158.3 (2C), 150.2 (4C), 139.2, 132.7, 124.3 (2C), 120.3, 117.4. HPLC-MS (APCI/ESI): Purity = 99%, tᵣ = 5.04 min, m/z [M-H]⁻ = 361.93.
Chapter 6

1-chloro-7,8-difluoro-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 1.4c

Compound 1.4c was obtained from 1.4b (0.93 g, 3.0 mmol, 1.0 equiv) and phosphoryl oxychloride (9.11 g, 59.3 mmol, 20 equiv) as yellow solid (0.93 g, 95%); Rf (EtOAc : Hexane, 1.5 : 8.5) 0.17; 1H NMR (300 MHz, DMSO-d_6) δ 8.8 (dd, $J = 11.0, 7.4$ Hz, 1H, H2), 8.2 (dd, $J = 10.7, 7.6$ Hz, 1H, H3), 7.9 (s, 1H, H1). 13C NMR (101 MHz, DMSO-d_6) δ 157.7, 136.8, 112.4, 108.3 (2C), 107.8, 107.6, 105.4, 105.1, 103.0 (2C), 101.5, 101.3. HPLC-MS (ACI/ ESI): Purity = 99%, $t_R = 2.80$ min, m/z [M+H]$^+$ = 332.0.

1-chloro-9-nitro-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 2.1.2c

Compound 2.1.2c was obtained from 2.1.2b (0.40 g, 1.4 mmol, 1.0 equiv) and POCl$_3$ (2.6 g, 28.0 mmol, 20.0 equiv) as a yellow solid (0.37 g, 78%); Rf (MeOH : DCM, 0.5 : 9.5) 0.25. 1H NMR (400 MHz, DMSO-d_6) δ 7.8 (d, $J = 8.1$ Hz, 1H, H4), 7.1 (t, $J = 7.9$ Hz, 1H, H3), 6.8 (d, $J = 7.9$ Hz, 1H, H2), 6.2 (s, 1H, H1). 13C NMR (101 MHz, DMSO-d_6) δ 158.7, 148.0, 13.0, 129.3, 123.7 (2C), 115.8, 111.1 (2C), 104.7 (2C), 100.3 (2C). HPLC-MS (ACI/ ESI): Purity = 96%, $t_R = 1.04$ min, m/z [M+H]$^+$ = 341.0.

9-chloro-1((4-(trifluoromethoxy)phenyl)amino)-3-(trifluoromethyl)benzo[4,5]-imidazo-[1,2-a]pyridine-4-carbonitrile, 2.2c

Compound 2.2c was obtained from 2.2b, (0.85 g, 5.2 mmol, 1.0 equiv), and 4-(trifluoromethoxy)aniline (0.92 g, 5.2 mmol, 2.0 equiv) as a yellow solid (0.80 g, 94%); Rf (DCM) 0.25; 1H NMR (300 MHz, chloroform-d_3) δ 8.6 (dd, $J = 8.7, 0.9$ Hz, 1H, H2), 7.8 (dd, $J = 7.8, 0.9$ Hz, 1H, H3), 7.5 (t, $J = 8.7$ Hz, 1H, H4), 7.3 (s, 1H, H1). 13C NMR (101 MHz, DMSO-d_6) δ 158.9, 148.6, 133.2 (2C), 127.9, 123.6, 119.6, 116.2, 114.3, 115.6, 111.0, 104.7 (2C). HPLC-MS (ACI/ ESI): Purity = 99%, $t_R = 1.19$ min, m/z [M+H]$^+$ = 330.1.
1,8-dichloro-3-(4-(trifluoromethyl)phenyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 2.4c

Compound 2.4c was obtained from 2.4b (1.30 g, 6.78 mmol, 1.0 equiv) and POCl₃ (0.100 g, 67.1 mmol, 20 equiv) as yellow solid (0.79 g, 58%); Rf (EtOAc : Hexane, 3 : 7) 0.22. ¹H NMR (600 MHz, DMSO-d₆) δ 8.7 (d, J = 1.9 Hz, 1H, H₄), 8.0 (d, J = 8.2 Hz, 2H, H⁵), 8.0 (d, J = 8.3 Hz, 2H, H⁶), 8.0 (d, J = 8.7 Hz, 1H, H²), 7.7 (dd, J = 8.8, 2.0 Hz, 1H, H³), 7.5 (s, 1H, H¹). ¹³C NMR (151 MHz, DMSO-d₆) δ 148.8, 139.4, 135.1, 130.3 (3C), 127.3, 127.9, 126.3 (3C), 123.2, 121.6, 119.5, 117.6, 115.8, 114.9, 113.4 (2C). HPLC-MS (ACI/ ESI): Purity = 99%, tᵣ = 3.08 min, m/z [M+H]^+ = 406.0.

6.3.4 General procedure for the aromatic nucleophilic amine coupling: synthesis of the final compounds 1-34

A mixture of a chloro intermediate (1.1c – 2.4c: 1.0 equiv), an appropriate amine (2.0 equiv) and triethylamine (2.0 equiv) in tetrahydrofuran (THF) (2 mL/ 100mg sample) was reacted with continuous stirring in a microwave set at 150W, 80°C for 25 minutes. The cooled reaction mixture was transferred to a round bottom flask and concentrated in vacuo. The product was recrystallised in a minimum volume of acetone (or ethanol). Where purification was required, a column with a 25-30% ethyl acetate (EtOAc) in hexane eluent system was used to purify the compound. The appropriate fractions were reconstituted, concentrated and dried in vacuo.

(R)-1-((1-cyclohexylethyl)amino)-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 1

Compound 1 was obtained from 1.1c (0.124 g, 0.42 mmol, 1.0 equiv) and S-1-cyclohexylethan-1-amine (0.107 g, 0.84 mmol, 2.0 equiv) as yellow solid (0.109 g, 67%), m.p 182 - 184 °C; Rf (EtOAc : Hexane, 3 : 7) 0.33. ¹H NMR (400 MHz, DMSO-d₆) δ 8.4 (dd, J = 7.8, 1.4 Hz, 1H, H⁵), 7.9 (dd, J = 7.8, 1.4 Hz, 1H, H³), 7.6 (m, 2H, H¹, H²), 7.5 (dt, J = 7.8, 1.4 Hz, 1H, H⁵), 6.5 (s, 1H, H¹), 3.9 (m, 1H, H⁸), 2.0 – 1.6 (m, 6H, H⁶, H⁷, H⁸). ¹³C NMR (101 MHz, DMSO-d₆) δ 150.2, 145.5, 128.4, 127.0 (2C), 121.5, 119.3, 115.9, 86.6, 55.2, 42.6, 29.9, 29.2 (2C), 26.4 (2C), 26.3 (3C), 17.6 (2C). HPLC-MS (ACI/ ESI): Purity = 99%, tᵣ = 3.27 min, m/z [M+H]^+ = 387.1.
Compound 2 was obtained from 1.1c (0.124 g, 0.42 mmol, 1.0 equiv) and R-1-cyclohexylethan-amine (0.107 g, 0.84 mmol, 2.0 equiv) as yellow solid (0.117 g, 72%), m.p 182 - 184 °C; Rf (EtOAc : Hexane, 3 : 7) 0.30. 1H NMR (400 MHz, DMSO-d6) δ 8.4 (d, J = 7.8, 1.4 Hz, 1H, H5), 7.9 (dd, J = 7.8, 1.4 Hz, 1H, H2), 7.6 (m, 2H, H3, 6), 7.5 (dt, J = 7.8, 1.4 Hz, 1H, H4), 6.5 (s, 1H, H1), 3.9 (m, 1H, H8), 2.0 – 1.6 (m, 6H, H9, 10a, 11a, 12a), 1.3 (d, J = 6.4 Hz, 3H, H7), 1.3 – 1.0 (m, 5H, H10e, 11e 12e).

Methyl (R)-2-((4-cyano-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridin-1-yl)amino)-2-phenylacetate, 3

Compound 3 was obtained from 1.1c (1.00 g, 3.38 mmol, 1.0 equiv) and methyl (R)-2-amino-2-phenylacetate (1.36 g, 6.76 mmol, 2.0 equiv) as yellow solid (0.520g, 36%), m.p 224 - 226 °C; Rf (MeOH : DCM, 0.2 : 9.8) 0.21. 1H NMR (600 MHz, DMSO-d6) δ 8.7 (dd, J = 8.4, 1.3 Hz, 1H, H2), 7.9 (dd, J = 8.2, 1.3 Hz, 1H, H5), 7.7 – 7.6 (m, 3H, H4, 8), 7.6 (dt, J = 7.9, 1.3 Hz, 1H, H5), 7.4 (t, J = 7.8 Hz, 2H, H3), 7.4 (m, 1H, H10), 6.3 (s, 1H, H1), 5.9 (s, 1H, H7), 3.8 (s, 3H, H6). 13C NMR (151 MHz, DMSO-d6) δ 171.2, 149.0, 148.0, 136.5 (2C), 129.3 (3C), 128.9, 128.8, 128.1 (3C), 127.1 (2C), 122.4 (2C), 116.3 (2C), 114.4, 53.4 (2C). HPLC-MS (ACI/ ESI): Purity = 97%, tR = 3.36 min, m/z [M+H]+ = 425.1.

(R)-2-((4-cyano-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridin-1-yl)amino)-2-phenyl-acetic acid, 4

A solution of compound 3 (0.45 g, 1.06 mmol, 1.0 equiv) in methanol (1.0 mL) was heated to 30 °C with continuous stirring. Potassium hydroxide (KOH: 0.12 mg, 2.12 mmol, 2.0 equiv) was added to the treated solution at that temperature and the reaction mixture was stirred for 10 minutes. The reaction mixture was cooled to room temperature, diluted with deionised water (10 mL) after which it was acidified using hydrochloric acid (HCl: 0.12 g, 3.20 mmol, 3.0 equiv). The organic residues were taken-up in ethyl EtOAc after which the aqueous phase was
removed using a separatory funnel. The EtOAc layer was washed with deionised water (20 mL x 3), brine (10 mL x 3), dried over Na₂SO₄ and was finally concentrated in vacuo. Compound 4 was obtained as yellow solid (0.422 g, 97%), m.p 244 – 246 °C; Rf (MeOH : DCM, 1 : 9) 0.17. ¹H NMR (600 MHz, DMSO-d₆) δ 8.6 (dd, J = 8.2, 1.6 Hz, 1H, H²), 8.0 (dd, J = 8.2, 1.7 Hz, 1H, H³), 7.8 – 7.7 (m, 3H, H⁴-⁷), 7.6 (dt, J = 7.8, 1.7 Hz, 1H, H⁴), 7.4 (t, J = 7.8 Hz, 2H, H⁸), 7.4 (m, 1H, H⁹), 6.2 (s, 1H, H¹), 5.8 (s, 1H, H⁶). ¹³C NMR (151 MHz, DMSO-d₆) δ 171.6, 148.6, 136.8, 129.3 (3C), 128.9, 128.6, 128.0 (3C), 127.2 (2C), 122.4, 119.1, 115.5 (2C), 114.2, 88.7, 60.8 (2C). HPLC-MS (ACI/ ESI): Purity = 98%, tᵣ = 3.06 min, m/z [M+H]⁺ = 411.0.

1-((1-(4-fluorophenyl)ethyl)amino)-4-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-3-carbonitrile, 6

Compound 6 was obtained from 1.1c (0.087 g, 0.31 mmol, 1.0 equiv) and 1-(4-fluorophenyl)ethan-1-amine (0.087 g, 0.63 mmol, 2.0 Eq) as yellow solid (0.079 g, 64%), m.p 181 – 183 °C; Rf (EtOAc : Hexane, 3 : 7) 0.26. ¹H NMR (400 MHz, DMSO-d6) δ 8.6 (dd, J = 7.8, 2.1 Hz, 1H, H²), 8.3 (s, 1H, H⁶), 7.9 (dd, J = 7.8, 2.0 Hz, 1H, H⁵), 7.7 (dt, J = 7.6, 2.1 Hz, 1H, H³), 7.6 (dd, J = 8.3, 5.6 Hz, 2H, H¹⁰), 7.5 (dt, J = 7.8, 2.1 Hz, 1H, H⁴), 7.5 (d, J = 8.5 Hz, 2H, H⁹), 6.2 (s, 1H, H¹), 5.3 (q, J = 6.9 Hz, 1H, H⁸), 1.8 (d, J = 6.7 Hz, 3H, H⁷). ¹³C NMR (151 MHz, DMSO-d₆) δ 149.6, 145.6, 139.2, 128.7 (3C), 127.1, 121.8 (2C), 119.5, 116.3 (2C), 115.8 (3C), 87.8 (2C), 53.6 (2C), 23.4 (2C). HPLC-MS (ACI/ ESI): Purity = 99%, tᵣ = 3.05 min, m/z [M+H]⁺ = 399.1.
Compound 7 was obtained from 1.1c (0.100 g, 0.36 mmol, 1.0 equiv) and \(R\)-1-(4-fluorophenylethan-1-amine (0.100 g, 0.72 mmol, 2.0 Eq) as yellow solid (0.092 g, 64%), m.p 175 – 177 °C; Rf (MeOH : DCM, 1 : 9) 0.37.

\(^1\)H NMR (600 MHz, DMSO-\(d_6\)) \(\delta\) 8.6 (dd, \(J = 7.8, 2.1\) Hz, 1H, \(H^2\)), 8.0 (s, 1H, \(H^6\)), 7.9 (dd, \(J = 7.7, 1.8\) Hz, 1H, \(H^5\)), 7.7 (dd, \(J = 7.7, 5.4\) Hz, 2H, \(H^{10}\)), 7.7 (dd, \(J = 8.4, 0.9\) Hz, 2H, \(H^9\)) 7.6 (dt, \(J = 7.8, 1.7\) Hz, 1H, \(H^3\)), 7.5 (dt, \(J = 7.8, 1.7\) Hz, 1H, \(H^4\)), 6.2 (s, 1H, \(H^1\)), 5.2 (q, \(J = 6.7\) Hz, 1H, \(H^8\)), 1.8 (d, \(J = 6.7\) Hz, 3H, \(H^7\)). \(^{13}\)C NMR (151 MHz, DMSO-\(d_6\)) \(\delta\) 149.6, 145.6, 139.2, 128.7 (3C), 127.1, 121.8 (2C), 119.4, 116.3 (2C), 115.8 (3C), 87.8 (2C), 53.6 (2C), 23.4 (2C). HPLC-MS (ACI/ESI): Purity = 98%, \(t_R = 2.95\) min, m/z [M+H]^+ = 399.1.

Compound 8 was obtained from 1.1c (0.100 g, 0.36 mmol, 1.0 equiv) and (S)-1-(4-fluorophenylethan-1-amine (0.100 g, 0.72 mmol, 2.0 equiv) as yellow solid (0.047 g, 33%), m.p 182 – 184 °C; Rf (EtOAc : Hexane, 3 : 7) 0.21.

\(^1\)H NMR (600 MHz, DMSO-\(d_6\)) \(\delta\) 8.6 (dd, \(J = 7.7, 1.7\) Hz, 1H, \(H^2\)), 8.1 (s, 1H, \(H^6\)), 7.9 (dd, \(J = 7.8, 1.8\) Hz, 1H, \(H^5\)), 7.7 (dd, \(J = 7.7, 5.4\) Hz, 2H, \(H^{10}\)), 7.7 (dd, \(J = 8.5, 0.9\) Hz, 2H, \(H^9\)) 7.6 (dt, \(J = 7.8, 1.7\) Hz, 1H, \(H^3\)), 7.5 (dt, \(J = 7.9, 1.7\) Hz, 1H, \(H^4\)), 6.2 (s, 1H, \(H^1\)), 5.2 (q, \(J = 5.9\) Hz, 1H, \(H^8\)), 1.8 (d, \(J = 6.8\) Hz, 3H, \(H^7\)). \(^{13}\)C NMR (151 MHz, DMSO-\(d_6\)) \(\delta\) 149.6, 145.6, 139.2, 128.7 (3C), 127.1, 121.8 (2C), 119.4, 116.4 (2C), 115.8 (3C), 87.8 (2C), 53.6 (2C), 23.4 (2C). HPLC-MS (ACI/ESI): Purity = 99%, \(t_R = 2.90\) min, m/z [M+H]^+ = 399.1.
Chapter 6

1-((1-(4-chlorophenyl)ethyl)amino)-4-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-3-carbonitrile, 9

Compound 9 was obtained from 1.1c (0.14 g, 0.42 mmol, 1.0 Eq) and 1-(4-chlorophenyl)ethan-1-amine (0.163 g, 0.85 mmol, 2.0 Eq) as yellow solid (0.119 g, 68%), m.p 185 – 187 °C; Rf (EtOAc : Hexane, 1 : 9) 0.27. ¹H NMR (400 MHz, DMSO-d₆) δ 8.6 (dd, J = 8.5, 1.9 Hz, 1H, H²), 8.3 (d, J = 6.4 Hz, 1H, H⁵), 7.9 (dd, J = 8.2, 1.7 Hz, 1H, H³), 7.6 (m, 3H, H⁴, 10), 7.5 (dt, J = 7.8, 1.8 Hz, 1H, H¹), 7.4 (d, J = 8.5 Hz, 2H, H⁸), 6.2 (s, 1H, H¹), 5.2 (m, 1H, H⁸), 1.8 (d, J = 6.7 Hz, 3H, H²). ¹³C NMR (101 MHz, DMSO-d₆) δ 149.6, 148.2, 145.4, 142.1 (3C), 132.4 (3C), 127.2 (2C), 121.7, 119.4 (2C), 116.5 (2C), 87.8, 53.4 (2C), 23.3 (2C). HPLC-MS (ACI/ ESI): Purity = 99%, tᵣ = 2.97 min, m/z [M+H]+ = 415.1.

1-((2-hydroxyethyl)amino)-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 1.1d

Compound 1.1d was obtained from 1.1c (0.200 g, 0.70 mmol, 1.0 equiv) and 2-aminoethan-1-ol (0.083 g, 1.35 mmol, 2.0 equiv) as yellow solid (0.147 g, 68%); Rf (MeOH : DCM, 0.1 : 9.9) 0.47. ¹H NMR (600 MHz, DMSO-d₆) δ 8.6 (dd, J = 8.1, 1.5 Hz, 1H, H²), 7.8 (dd, J = 8.0, 1.6 Hz, 1H, H³), 7.6 (dt, J = 8.1, 1.5 Hz, 1H, H¹), 7.4 (dt, J = 8.2, 1.5 Hz, 1H, H³), 3.8 (t, J = 5.8 Hz, 2H, H⁷), 3.7 (t, J = 5.9 Hz, 2H, H⁸). ¹³C NMR (151 MHz, DMSO-d₆) δ 149.6, 126.4 (2C), 121.1 (2C), 118.7 (2C), 115.8 (2C), 86.6 (2C), 60.3 (2C), 47.3 (2C). HPLC-MS (ACI/ ESI): Purity = 98%, tᵣ = 2.97 min, m/z [M+H]+ = 321.1.

6.3.5 Synthesis of 1-((2-bromoethyl)amino)-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 1.1e¹

A mixture of 1.1d (0.300 g, 0.94 mmol, 1.0 Eq) and triphenylphosphine (PPh₃) (0.370 g, 1.41 mmol, 1.5 Eq) in DMF (1.0 mL) was cooled to 0 °C with continuous stirring. Tetrabromomethane (CBr₄) (0.470 g, 1.41 mmol, 1.5 Eq) was added to the reaction mixture at that temperature. The treated reaction mixture was stirred at room temperature for 1.5 hours in a sealed tube. The product was purified by column chromatography using 15% EtOAc in hexane.
Chapter 6

Compound **1.1e** was obtained as yellow solid (0.231 g, 64%); Rf (MeOH : DCM, 0.1 : 9.9) 0.47. \(^1\)H NMR (600 MHz, DMSO-\(d_6\)) \(\delta\) 8.6 (dd, \(J = 8.3, 1.5\) Hz, 1H, H\(^3\)), 7.9 (dd, \(J = 8.1, 1.5\) Hz, 1H, H\(^2\)), 7.6 (dt, \(J = 8.2, 1.4\) Hz, 1H, H\(^3\)), 7.5 (dt, \(J = 8.1, 1.5\) Hz, 1H, H\(^4\)), 6.6 (s, 1H, H\(^1\)), 4.1 (t, \(J = 6.4\) Hz, 2H, H\(^6\)), 3.9 (t, \(J = 6.4\) Hz, 2H, H\(^7\)). \(^13\)C NMR (151 MHz, DMSO-\(d_6\)) \(\delta\) 143.9, 134.5, 130.7, 128.1, 127.4, 122.1 (2C), 118.6 (2C), 115.8, 114.3, 87.9 (2C), 45.6, 31.6. HPLC-MS (ACI/ ESI): Purity = 85%, \(t_R = 3.29\) min, m/z [M+H] \(^+\) = 383.0/385.0.

6.3.6 General procedure for the synthesis of the two-carbon spaced (2-C between the PBI core scaffold-linked N and the \(\alpha\)-methylene carbon-linked N of the substituent benzylamine moiety) analogues- 10 and 11

A mixture of 1.1e (1.0 equiv), the appropriate amine (1.2 equiv) and anhydrous potassium carbonate (K\(_2\)CO\(_3\): 2.0 equiv) in acetonitrile (1.0 mL per 100 mg of the sample) were heated to 79 °C with continuous stirring for 2.0 hours. The reaction mixture was cooled to room temperature, diluted with EtOAc and washed with deionized water (20 mL x 3), dried with brine and finally over Na\(_2\)SO\(_4\). The organic layer was concentrated and dried **in vacuo**. The product was purified by trituration in DCM.

\((S)-1-((2-((1-(4-fluorophenyl)ethyl)amino)ethyl)amino)-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 10\)

Compound **10** was obtained from **1.1d** (0.100 g, 0.26 mmol, 1.0 equiv) and \(R\)-1-(4-fluorophenyl)ethan-1-amine (0.035 g, 0.25 mmol, 1.2 equiv) as yellow solid (0.054 g, 58%); Rf (MeOH : DCM, 0.2 : 9.9) 0.28. \(^1\)H NMR (400 MHz, Methanol-\(d_4\)) \(\delta\) 8.4 (dd, \(J = 8.3, 1.8\) Hz, 1H, H\(^3\)), 7.9 (dd, \(J = 8.3, 1.8\) Hz, 1H, H\(^2\)), 7.6 (dt, \(J = 8.2, 1.8\) Hz, 1H, H\(^3\)), 7.5 (dt, \(J = 8.3, 1.8\) Hz, 1H, H\(^4\)), 7.6 (d, \(J = 6.8\) Hz, 1H, H\(^5\)), 7.7 (dd, \(J = 8.7, 5.5\) Hz, 2H, H\(^3\)), 7.2 (dd, \(J = 8.5, 5.6\) Hz, 2H, H\(^2\)), 6.3 (s, 1H, H\(^1\)), 4.5 (m, 1H, H\(^11\)), 3.9 (s, 1H, H\(^9\)), 3.3 (t, \(J = 5.7\) Hz, 2H, H\(^7\)), 2.0 (t, \(J = 5.9\) Hz, 2H, H\(^8\)), 1.7 (d, \(J = 6.9\) Hz, 3H, H\(^10\)). \(^13\)C NMR (101 MHz, Methanol-\(d_4\)) \(\delta\) 132.5 (5C), 131.7 (5C), 129.7 (2C), 144.5 (4C), 143.2 (3C), 143.1, 142.6, 22.3 (2C). HPLC-MS (ACI/ ESI): Purity = 99%, \(t_R = 2.90\) min, m/z [M+H] \(^+\) = 442.1.
Chapter 6

(S)-1-((2-((1-(p-tolyl)ethyl)amino)ethyl)amino)-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 11

Compound 11 was obtained from **1.1d** (0.120 g, 0.31 mmol, 1.0 equiv) and (R)-1-(p-tolyl)ethanol-1-amine (0.063 g, 0.37 mmol, 1.2 equiv) as yellow solid (0.087 g, 64%); Rf (MeOH : DCM, 0.1 : 9.9) 0.21. \(^1\)H NMR (400 MHz, Methanol-d4) δ 8.1 (dd, J = 7.6, 1.9 Hz, 1H, H2), 7.6 (dd, J = 8.3, 1.8 Hz, 1H, H3), 7.6 (dt, J = 8.2, 1.9 Hz, 1H, H5), 7.5 (dt, J = 8.5, 1.9 Hz, 1H, H4), 7.6 (s, 1H, H6), 7.4 – 7.3 (d, J = 7.6 Hz, 2H, H12), 7.1 (d, J = 7.7 Hz, 2H, H13), 6.3 (s, 1H, H1), 4.5 (q, J = 6.9 Hz, 1H, H11), 3.9 (s, 1H, H9), 3.3 (t, J = 5.7 Hz, 2H, H7), 2.3 (s, 3H, H14), 2.0 (t, J = 5.8 Hz, 2H, H8), 1.7 (d, J = 6.8 Hz, 3H, H10). \(^13\)C NMR (101 MHz, Methanol-d4) δ 132.4 (4C), 131.7 (7C), 129.7, 128.7 (8C), 127.5, 127.0, 122.2, 18.1. HPLC-MS (ACI/ESI): Purity = 99.40%, tR = 2.95 min, m/z [M+H]⁺ = 438.1.

(R)-2-((8-chloro-4-cyano-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridin-1-yl)amino)-2-phenylacetamide, 12

Compound 12 was obtained from **1.3c** (0.043 g, 0.13 mmol, 1.0 equiv) and 2-aminophenylacetamide (0.039 g, 0.26 mmol, 2.0 equiv) as orange solid (0.098 g, 74%), m.p 147 – 149 °C; Rf (MeOH : DCM, 1 : 9) 0.12. \(^1\)H NMR (600 MHz, DMSO-d6) δ 8.6 (s, 1H, H5), 8.5 (d, J = 2.5 Hz, 1H, H4), 7.9 (d, J = 7.7 Hz, 1H, H2), 7.7 (dd, J = 7.8, 2.6 Hz, 1H, H3), 7.56 (dd, J = 7.0, 2.3 Hz, 2H, H8), 7.5 (s, 2H, H6), 7.4 (dt, J = 7.5 Hz, 2H, H7), 7.4 (dt, J = 7.5, 2.4 Hz, 1H, H10), 6.1 (s, 1H, H1), 5.5 (s, 1H, H2). \(^13\)C NMR (151 MHz, DMSO-d6) δ 129.2 (4C), 129.7, 128.7 (8C), 127.5, 127.0, 122.2, 18.1. HPLC-MS (ACI/ESI): Purity = 98%, tR = 3.23 min, m/z [M+H]⁺ = 444.0.
Chapter 6

Methyl-(R)-2-((8-chloro-4-cyano-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridin-1-yl)amino)-2-phenylacetate, 13

Compound 13 was obtained from 1.3c (0.100 g, 0.30 mmol, 1.0 equiv) and methyl (R)-2-amino-2-phenylacetate (0.100 g, 0.60 mmol, 2.0 equiv) as orange solid (0.121 g, 88%), m.p 183 – 187 °C; Rf (EtOAc : Hexane, 1 : 8) 0.25. ¹H NMR (600 MHz, DMSO-d₆) δ 8.59 (s, 1H, H₅), 7.9 (d, J = 2.3 Hz, 1H, H⁴), 7.7 (d, J = 7.7 Hz, 1H, H³), 7.6 (dd, J = 7.8, 2.4 Hz, 1H, H³), 7.5 (dd, J = 7.2, 2.4 Hz, 2H, H⁸), 7.4 (t, J = 7.5 Hz, 1H, H³), 7.4 (dt, J = 7.5, 2.4 Hz, 1H, H¹⁰), 6.3 (s, 1H, H¹), 6.0 (s, 1H, H⁷), 3.8 (s, 3H, H₆). ¹³C NMR (151 MHz, DMSO-d₆) δ 170.9, 148.9 (2C), 129.3 (6C), 128.2 (4C), 127.4, 122.4, 117.5, 114.1, 61.1 (3C), 53.5 (2C). HPLC-MS (ACI/ESI): Purity = 99%, tᵣ = 3.40 min, m/z [M+H]⁺ = 459.0.

8-chloro-1-((1-(4-(methylsulfonyl)phenyl)ethyl)amino)-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 14

Compound 14 was obtained from 1.3c (0.150 g, 0.46 mmol, 1.0 equiv) and 1-(4-(methylsulfonyl)phenyl)ethan-1-amine (0.182 g, 0.91 mmol, 2.0 equiv) as yellow solid (0.163 g, 72%), m.p 139 - 143 °C; Rf (MeOH : DCM, 0.2 : 9.8) 0.18. ¹H NMR (600 MHz, DMSO-d₆) δ 8.7 (s, 1H, H⁵), 8.7 (d, J = 2.4 Hz, 1H, H⁴), 8.0 (d, J = 8.4 Hz, 2H, H³), 7.9 (d, J = 8.1 Hz, 2H, H⁸), 7.6 (dd, J = 7.9, 2.4 Hz, 1H, H³), 7.5 (d, J = 8.3 Hz, 1H, H²), 6.2 (s, 1H, H¹), 5.3 (q, J = 6.0 Hz, 1H, H¹), 3.2 (s, 3H, H¹⁰), 1.8 (d, J = 6.0 Hz, 3H, H⁶). ¹³C NMR (151 MHz, DMSO-d₆) δ 149.6, 140.5, 128.3, 127.7 (7C), 121.4, 117.4, 116.5, 88.9, 54.1 (2C), 50.2, 44.1 (3C), 23.4 (2C). HPLC-MS (ACI/ESI): Purity = 99%, tᵣ = 2.75 min, m/z [M+H]⁺ = 491.0.
7,8-dichloro-1-((1-(4-fluorophenyl)ethyl)amino)-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 15

Compound 15 was obtained from 1.3c (0.070 g, 0.19 mmol, 1.0 equiv) and 1-(4-fluorophenyl)ethan-1-amine (0.053 g, 0.38 mmol, 2.0 equiv) as yellow solid (0.043 g, 48%), m.p 224 – 226 °C; Rf (EtOAc : Hexane, 3 : 7) 0.37. 1H NMR (600 MHz, DMSO-d$_6$) δ 8.6 (s, 1H, H2), 8.4 (s, 1H, H3), 7.9 (s, 1H, H5), 7.6 (dd, $J = 8.5$, 5.4 Hz, 2H, H7), 7.2 (t, $J = 8.9$ Hz, 2H, H8), 6.3 (s, 1H, H1), 5.3 – 5.1 (m, 1H, H6), 1.8 (d, $J = 6.7$ Hz, 3H, H5). 13C NMR (151 MHz, DMSO-d$_6$) δ 162.8, 149.9, 141.7, 138.9, 129.7, 128.8 (3C), 126.7 (2C), 125.5, 123.5, 115.7 (3C), 89.5 (2C), 53.9 (2C), 23.2 (2C). HPLC-MS (ACI/ ESI): Purity = 98%, $t_R = 3.13$ min, m/z [M+H]$^+$ = 467.0.

7,8-difluoro-1-((1-(4-fluorophenyl)ethyl)amino)-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 16

Compound 16 was obtained from 1.4c (0.080 g, 0.26 mmol, 1.0 equiv) and 1-(4-fluorophenyl)ethan-1-amine (0.071 g, 0.51 mmol, 2.0 equiv) as yellow solid (0.064 g, 56.5%), m.p 182-185 °C; Rf (EtOAc : Hexane, 1 : 1) 0.25. 1H NMR (400 MHz, DMSO-d$_6$) δ 8.7 (dd, $J = 11.5$, 7.2 Hz, 1H, H2), 8.3 (d, $J = 6.2$ Hz, 1H, H3), 8.0 (dd, $J = 10.9$, 7.6 Hz, 1H, H5), 7.7 (dd, $J = 8.6$, 5.6 Hz, 2H, H7), 7.2 (t, $J = 8.9$ Hz, 2H, H8), 6.2 (s, 1H, H1), 5.2 (m, 1H, H6), 1.8 (d, $J = 6.7$ Hz, 3H, H5). 13C NMR (101 MHz, DMSO-d$_6$) δ 163.1, 149.2, 139.1, 128.8 (4C), 115.9 (4C), 106.2 (2C), 105.4 (2C), 88.4 (2C), 53.5 (2C), 23.4 (2C). HPLC-MS (ACI/ ESI): Purity = 98%, $t_R = 2.95$ min, m/z [M+H]$^+$ = 435.0.
\((R)-7,8\text{-difluoro-1-} \)\((1\text{-}(4\text{-fluorophenyl})\text{ethyl}a\)mino\)-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 17

Compound 17 was obtained from 1.4c (0.046 g, 0.14 mmol, 1.0 equiv) and 1-(4-fluorophenyl)ethan-1-amine (0.039 g, 0.28 mmol, 2.0 equiv) as yellow solid (0.029 g, 48%), m.p 210 - 212 °C; Rf (EtOAc : Hexane, 1 : 1) 0.24. \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 8.7 (dd, \(J = 11.2, 7.3\) Hz, 1H, H\(^2\)), 8.3 (d, \(J = 6.2\) Hz, 1H, H\(^4\)), 8.0 (dd, \(J = 11.0, 7.7\) Hz, 1H, H\(^3\)), 7.6 (dd, \(J = 8.6, 5.6\) Hz, 2H, H\(^2\)), 7.2 (t, \(J = 8.9\) Hz, 2H, H\(^6\)), 6.2 (s, 1H, H\(^1\)), 5.2 (m, 1H, H\(^5\)), 1.8 (d, \(J = 6.9\) Hz, 3H, H\(^5\)). \(^{13}\)C NMR (101 MHz, DMSO-\(d_6\)) \(\delta\) 163.1, 149.3, 139.1, 128.8 (4C), 115.9 (4C), 106.3 (2C), 105.4 (2C), 88.4 (2C), 53.6 (2C), 23.4 (2C). HPLC-MS (ACI/ ESI): Purity = 99%, \(t_R = 2.96\) min, m/z [M+H]+ = 435.0.

\(1\text{-}((1\text{-}(4\text{-chlorophenyl})\text{ethyl}a\)mino\)-7,8\text{-difluoro-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 18

Compound 18 was obtained from 1.4c (0.080 g, 0.26 mmol, 1.0 equiv) and 1-(4-chlorophenyl)ethan-1-amine (0.098 g, 0.51 mmol, 2.0 equiv) as yellow solid (0.080 g, 68%), m.p 182 – 184 °C; Rf (EtOAc : Hexane, 1 : 1) 0.18. \(^1\)H NMR (300 MHz, DMSO-\(d_6\)) \(\delta\) 8.7 (dd, \(J = 11.4, 7.2\) Hz, 1H, H\(^2\)), 8.3 (d, \(J = 6.4\) Hz, 1H, H\(^4\)), 8.0 (dd, \(J = 11.0, 7.6\) Hz, 1H, H\(^3\)), 7.6 (\(J = 8.5\) Hz, 2H, H\(^5\)), 7.4 (d, \(J = 8.5\) Hz, 2H, H\(^6\)), 6.2 (s, 1H, H\(^1\)), 5.3–5.1 (m, 1H, H\(^6\)), 1.8 (d, \(J = 6.7\) Hz, 3H, H\(^5\)). \(^{13}\)C NMR (101 MHz, DMSO-\(d_6\)) \(\delta\) 149.2, 141.9, 132.5, 129.1 (3C), 128.7 (4C), 114.2, 106.3 (2C), 105.4 (2C), 88.4 (2C), 53.5 (2C), 23.2 (2C). HPLC-MS (ACI/ ESI): Purity = 99%, \(t_R = 3.35\) min, m/z [M-H]– = 449.0.
(S)-7,8-difluoro-1-((1-phenylethyl)amino)-4-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-3-carbonitrile, 19

Compound 19 was obtained from 1.4c (0.061 g, 0.18 mmol, 1.0 equiv) and 1-phenylethan-1-amine (0.045 g, 0.37 mmol, 2.0 equiv) as yellow solid (0.025 g, 34%), m.p 193 – 195 °C; Rf (EtOAc : Hexane, 3 : 7) 0.19. 1H NMR (400 MHz, DMSO-d$_6$) δ 8.7 (dd, $J = 11.3, 7.2$ Hz, 1H, H$_2$), 8.3 (s, 1H, H$_4$), 8.0 (dd, $J = 11.6, 7.7$ Hz, 1H, H$_3$), 7.6 – 7.5 (dd, $J = 7.5, 2.1$ Hz, 2H, H7), 7.4 (t, $J = 7.3$ Hz, 2H, H8), 7.3 (dt, $J = 7.3, 2.2$ Hz, 1H, H9), 6.2 (s, 1H, H1), 5.2 (q, $J = 6.6$ Hz, 1H, H6), 1.8 (d, $J = 6.8$ Hz, 3H, H5). 13C NMR (101 MHz, DMSO-d$_6$) δ 149.3, 143.0, 129.2 (3C), 127.9 (2C), 126.6 (4C), 123.7, 106.4, 105.4 (2C), 88.4 (2C), 54.3 (2C), 23.4 (2C). HPLC-MS (ACI/ ESI): Purity = 97%, $t_R = 2.98$ min, m/z [M+H]$^+$ = 417.19.

(R)-7,8-difluoro-1-((1-phenylethyl)amino)-4-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-3-carbonitrile, 20

Compound 20 was obtained from 1.4c (0.080 g, 0.24 mmol, 1.0 equiv) and 1-phenylethan-1-amine (0.059 g, 0.48 mmol, 2.0 equiv) as orange solid (0.052 g, 52%), m.p 210 – 212 °C; Rf (EtOAc : Hexane, 3 : 7) 0.20. 1H NMR (400 MHz, DMSO-d$_6$) δ 8.7 (dd, $J = 11.3, 7.2$ Hz, 1H, H$_2$), 8.4 (d, $J = 6.4$ Hz, 1H, H$_4$), 8.0 (dd, $J = 10.7, 7.7$ Hz, 1H, H$_3$), 7.6 – 7.5 (dd, $J = 7.5, 2.2$ Hz, 2H, H7), 7.4 (t, $J = 7.3$ Hz, 2H, H8), 7.3 (dt, $J = 7.4, 2.2$ Hz, 1H, H9), 6.2 (s, 1H, H1), 5.2 (m, 1H, H6), 1.8 (d, $J = 6.7$ Hz, 3H, H5). 13C NMR (101 MHz, DMSO-d$_6$) δ 149.8, 149.3, 143.0, 129.2 (3C), 127.9 (2C), 126.6 (4C), 123.7, 106.4, 105.4 (2C), 88.4 (2C), 54.3, 23.4 (2C). HPLC-MS (ACI/ ESI): Purity = 99%, $t_R = 2.98$ min, m/z [M+H]$^+$ = 417.19.
Chapter 6

7,8-difluoro-1-((1-(4-(trifluoromethoxy)phenyl)ethyl)amino)-3-(trifluoromethyl)benzo[4,5]-imidazo[1,2-a]pyridine-4-carbonitrile, 21

Compound 21 was obtained from **1.4c** (0.081 g, 0.24 mmol, 1.0 equiv) and 1-phenylcyclopropan-1-amine (0.100 g, 0.49 mmol, 2.0 equiv) as yellow solid (0.053 g, 44%), m.p 213 – 215 °C; Rf (EtOAc : Hexane, 3 : 7) 0.25. **¹H NMR** (400 MHz, DMSO-**d₆**) δ 8.7 (dd, J = 11.3, 7.2 Hz, 1H, H²), 8.3 (d, J = 6.2 Hz, 1H, H³), 8.0 (dd, J = 10.7, 8.0 Hz, 1H, H⁴), 7.7 (d, J = 7.7 Hz, 2H, H⁸), 7.4 (d, J = 7.9 Hz, 2H, H⁷), 6.2 (s, 1H, H⁶), 5.3 (m, 1H, H⁵), 1.8 (d, J = 6.7 Hz, 3H, H⁹). **¹³C NMR** (101 MHz, DMSO-**d₆**) δ 149.2, 148.0, 142.4, 128.7 (4C), 121.7 (4C), 114.2, 106.3 (2C), 105.4 (2C), 88.4 (2C), 53.4 (2C), 23.2. HPLC-MS (ACI/ESI): Purity = 99%, tᵣ = 3.06 min, m/z [M+H]+ = 501.0.

7,8-difluoro-1-((1-(4-(methylsulfonyl)phenyl)ethyl)amino)-3-(trifluoromethyl)benzo[4,5]-imidazo[1,2-a]pyridine-4-carbonitrile, 22

Compound 22 was obtained from **1.4c** (0.084 g, 0.27 mmol, 1.0 equiv) and 1-(4-(methylsulfonyl)phenyl)ethan-1-amine (0.11 g, 0.54 mmol, 2.0 equiv) as yellow solid (0.063 g, 46%), m.p 261 – 263 °C; Rf (EtOAc : Hexane, 0.5 : 9.5) 0.18. **¹H NMR** (400 MHz, DMSO-**d₆**) δ 8.7 (dd, J = 11.3, 7.1 Hz, 1H, H²), 8.4 (d, J = 8.8 Hz, 2H, H⁸), 7.9 (d, J = 8.5 Hz, 2H, H⁷), 6.3 (s, 1H, H⁶), 5.4 (q, J = 7.5 Hz, 1H, H⁵), 3.2 (s, 3H, H⁹), 1.8 (d, J = 6.7 Hz, 3H, H⁸). **¹³C NMR** (101 MHz, DMSO-**d₆**) δ 149.8, 149.2, 148.7, 141.8, 140.4, 127.8 (6C), 114.2, 106.4, 105.5 (2C), 88.3, 53.7 (2C), 43.9 (2C), 3.1 (2C). HPLC-MS (ACI/ESI): Purity = 99%, tᵣ = 3.43 min, m/z [M-H]- = 493.0.
Compound 23 was obtained from 1.4c (0.100 g, 0.30 mmol, 1.0 equiv) and (S)-1-(2-chlorophenyl)ethan-1-amine (0.094 g, 0.60 mmol, 2.0 equiv) as yellow solid (0.117 g, 86%), m.p 232 - 235 °C; Rf (DCM) 0.24.

1H NMR (400 MHz, DMSO-d6) δ 8.8 (dd, J = 11.3, 7.2 Hz, 1H, H2), 8.4 (s, 1H, H4), 8.0 (dd, J = 11.0, 7.0 Hz, 1H, H3), 7.8 (dd, J = 8.3, 3.0 Hz, 1H, H10), 7.6 (m, 1H, H9), 7.5-7.3 (m, 2H, H7-8), 5.9 (s, 1H, H1), 5.3 (q, J = 7.1 Hz, 1H, H6), 1.8 (d, J = 6.7 Hz, 3H, H5).

13C NMR (101 MHz, DMSO-d6) δ 149.6, 149.0, 139.8, 131.8, 129.9 (4C), 128.6 (2C), 128.2 (2C), 114.0, 105.5 (2C), 87.9 (2C), 51.8 (2C), 21.9 (2C). HPLC-MS (ACI/ESI): Purity = 97%, tR = 3.16 min, m/z [M-H]- = 451.0.

Compound 24 was obtained from 1.4c (0.089 g, 0.29 mmol, 1.0 equiv) and 2-(1-aminoethyl)phenol (0.100 g, 0.57 mmol, 2.0 equiv) as yellow solid (0.095 g, 76%), m.p 231 – 233 °C; Rf (MeOH : DCM, 3 : 7) 0.21. 1H NMR (400 MHz, DMSO-d6) δ 10.1 (s, 1H, H11), 8.7 (dd, J = 11.3, 7.2 Hz, 1H, H2), 8.3 (d, J = 6.7 Hz, 1H, H3), 8.0 (dd, J = 11.0, 7.6 Hz, 1H, H1), 7.5 (dd, J = 7.7, 1.7 Hz, 1H, H10), 7.1 (dt, J = 7.8, 1.7 Hz, 1H, H9), 6.9 (dt, J = 8.2, 1.7 Hz, 1H, H8), 6.8 (dd, J = 7.5, 1.7 Hz, 1H, H7), 6.4 (s, 1H, H1), 5.3 (m, 1H, H6), 1.7 (d, J = 6.7 Hz, 3H, H5). 13C NMR (101 MHz, DMSO-d6) δ 154.5, 149.9, 149.1, 129.0 (2C), 128.4, 127.7, 123.5, 121.2, 120.1, 115.8, 114.4, 106.2 (2C), 104.9 (2C), 87.8 (2C), 49.3, 22.1 (2C). HPLC-MS (ACI/ESI): Purity = 98%, tR = 2.92 min, m/z [M+H]+ = 433.1.
(S)-1-((1-(2-chlorophenyl)ethyl)amino)-7,8-difluoro-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 25

Compound 25 was obtained from 1.4c (0.100 g, 0.30 mmol, 1.0 equiv) and 1-(4-(methylsulfonyl)phenyl)ethan-1-amine (0.0.094 g, 0.60 mmol, 2.0 equiv) as yellow solid (0.101 g, 74%), m.p 231 - 233 °C; Rf (DCM) 0.23. 1H NMR (400 MHz, DMSO-d6) δ 8.8 (dd, J = 11.5, 7.4 Hz, 1H, H2), 8.4 (s, 1H, H4), 7.8 (dd, J = 11.0, 7.0 Hz, 1H, H3), 7.8 (dd, J = 8.9, 3.3 Hz, 1H, H10), 7.6 (m, 1H, H6), 7.5-7.3 (m, 2H, H7,8), 5.9 (s, 1H, H1), 5.2 (q, J = 6.7 Hz, 1H, H5), 1.8 (d, J = 7.1 Hz, 3H, H6). 13C NMR (101 MHz, DMSO-d6) δ 149.2 (2C), 131.8, 130.7, 129.8 (4C), 128.3 (3C), 105.4 (3C), 88.0 (3C), 52.0 (4C). HPLC-MS (ACI/ ESI): Purity = 97%, tR = 3.15 min, m/z [M-H]− = 451.0.

1-((1-(2-chlorophenyl)ethyl)amino)-7,8-difluoro-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 26

Compound 26 was obtained from 1.4c (0.20 g, 0.61 mmol, 1.0 equiv) and 1-(2-chlorophenyl)ethan-1-amine (0.19 g, 1.22 mmol, 2.0 equiv) as yellow solid (0.150 g, 55.0 %), m.p 231 - 233 °C; Rf (EtOAc : Hexane, 4 : 6) 0.26. 1H NMR (400 MHz, DMSO-d6) δ 8.7 (dd, J = 11.3, 7.2 Hz, 1H, H2), 8.4 (d, J = 6.5 Hz, 1H, H4), 7.8 (dd, J = 10.9, 7.0 Hz, 1H, H3), 7.8 (dd, J = 8.3, 3.3 Hz, 1H, H10), 7.5 (m, 1H, H6), 7.4-7.3 (m, 1H, H7,8), 5.9 (s, 1H, H1), 5.3 (m, 1H, H5), 1.8 (d, J = 6.7 Hz, 3H, H6). 13C NMR (101 MHz, DMSO-d6) δ 149.0, 139.7, 131.8, 129.9 (4C), 128.6 (2C), 128.2 (2C), 114.0, 106.4, 105.4 (2C), 87.8 (2C), 51.8 (2C), 21.8 (2C). HPLC-MS (ACI/ ESI): Purity = 97.0%, tR = 3.18 min, m/z [M-H]− = 451.1.
Chapter 6

7,8-difluoro-1-((1-(p-tolyl)ethyl)amino)-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 27

Compound 27 was obtained from 1.4c (0.070 g, 0.21 mmol, 1.0 equiv) and 1-(p-tolyl)ethan-1-amine (0.057 g, 0.42 mmol, 2.0 equiv) as orange solid (0.074 g, 82%), m.p 215 – 217 °C; Rf (DCM) 0.27. 1H NMR (400 MHz, DMSO-d6) δ 8.68 (dd, J = 11.3, 7.2 Hz, 1H, H²), 8.3 (d, J = 5.7 Hz, 1H, H⁴), 8.0 (dd, J = 11.0, 7.6 Hz, 1H, H³), 7.5 (d, J = 7.8 Hz, 2H, H⁶), 7.2 (d, J = 7.8 Hz, 2H, H⁸), 6.3 (s, 1H, H¹), 5.1 (m, 1H, H⁶), 2.3 (s, 3H, H⁹), 1.8 (d, J = 6.7 Hz, 3H, H⁵). 13C NMR (101 MHz, DMSO-d6) δ 149.26, 139.9, 137.1, 129.7 (3), 126.6 (4C), 106.2 (2C), 105.3 (2C), 88.4 (2C), 54.1 (2C), 21.1 (2C). HPLC-MS (ACI/ ESI): Purity = 98%, tR = 3.07 min, m/z [M+H]+ = 431.1.

7,8-difluoro-1-((2-phenylpropan-2-yl)amino)-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 28

Compound 28 was obtained from 1.4c (0.10 g, 0.30 mmol, 1.0 equiv) and 2-phenylpropan-2-amine (0.81 g, 0.60 mmol, 2.0 equiv) as orange solid (0.11 g, 85%), m.p 197 – 199 °C; Rf (EtOAc : Hexane, 3 : 7) 0.36. 1H NMR (400 MHz, DMSO-d6) δ 8.5 (dd, J = 11.1, 7.3 Hz, 1H, H²), 8.4 (s, 1H, H⁴), 8.0 (dd, J = 11.0, 7.6 Hz, 1H, H³), 7.6 (dd, J = 9.7, 1.3 Hz, 2H, H⁶), 7.4 (t, J = 9.5 Hz, 2H, H⁸), 7.4 (dt, J = 7.7, 1.3 Hz, 1H, H⁸), 5.6 (s, 1H, H¹), 1.9 (s, 6H, H⁵). 13C NMR (101 MHz, DMSO-d6) δ 149.6, 129.2, 129.0 (5C), 127.8 (2C), 127.2 (5C), 105.1 (2C), 88.6 (3C), 11.5 (3C). HPLC-MS (ACI/ ESI): Purity = 99.0%, tR = 3.77 min, m/z [M-H]- = 429.1.
7,8-difluoro-1-((1-phenylpropyl)amino)-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 29

Compound 29 was obtained from 1.4c (0.10 g, 0.30 mmol, 1.0 equiv) and 1-phenylpropan-1-amine (0.81 g, 0.60 mmol, 2.0 equiv) as orange solid (0.11 g, 85%), m.p 185 – 187 °C; Rf (MeOH : DCM, 0.4 : 9.6) 0.25. 1H NMR (400 MHz, DMSO-d6) δ 8.7 (dd, J = 11.3, 7.3 Hz, 1H, H2), 8.2 (s, 1H, H4), 7.9 (dd, J = 10.8, 7.7 Hz, 1H, H5), 7.6 (dd, J = 7.5, 1.3 Hz, 2H, H6), 7.4 (t, J = 7.6 Hz, 2H, H5), 7.3 (dt, J = 7.7, 1.4 Hz, 1H, H8), 6.2 (s, 1H, H10), 4.8 (t, J = 5.6 Hz, 1H, H7), 2.3 – 1.9 (m, 2H, H8), 0.8 (t, J = 7.4 Hz, 3H, H9). 13C NMR (101 MHz, DMSO-d6) δ 148.5, 145.1, 129.4 (3C), 127.8 (2C), 125.7 (4C), 114.1, 106.0 (3C), 90.5 (2C), 58.9, 29.6 (4C). HPLC-MS (ACI/ ESI): Purity = 99%, tR = 3.13 min, m/z [M-H]- = 429.1.

7,8-difluoro-1-((1-phenylcyclopropyl)amino)-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 30

Compound 30 was obtained from 1.4c (0.080 g, 0.24 mmol, 1.0 equiv) and 1-phenylcyclopropan-1-amine (0.063 g, 0.48 mmol, 2.0 equiv) as yellow solid (0.066 g, 64%), m.p 182 – 184 °C; Rf (EtOAc : Hexane, 3 : 7) 0.17. 1H NMR (400 MHz, DMSO-d6) δ 9.0 (s, 1H, H4), 8.9 (dd, J = 11.7, 7.3 Hz, 1H, H2), 8.0 (dd, J = 11.0, 7.7 Hz, 1H, H3), 7.3 (m, 4H, H6-7), 7.3 (dt, J = 7.2, 1.6 Hz, 1H, H8), 6.2 (s, 1H, H1), 1.6 (s, 4H, H5). 13C NMR (101 MHz, DMSO-d6) δ 150.0 (2C), 141.0, 129.0 (4C), 126.9, 124.9 (2C), 114.4, 106.2 (2C), 105.2 (2C), 88.9 (2C), 38.0 (2C), 20.4 (3C). HPLC-MS (ACI/ ESI): Purity = 99%, tR = 2.99 min, m/z [M+H]+ = 429.1.
Chapter 6

7,8-difluoro-1-((2-(4-fluorophenyl)propan-2-yl)amino)-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 31

Compound 31 was obtained from 1.4c (0.045 g, 0.15 mmol, 1.0 equiv) and 1-phenylpropan-1-amine (0.045 g, 0.30 mmol, 2.0 equiv) as orange solid (0.037 g, 61%), m.p 229 – 231 °C; Rf (MeOH : DCM, 4 : 6) 0.27. \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta 8.6\) (dd, \(J = 11.2, 7.2\) Hz, 1H, H\(^2\)), 8.4 (s, 1H, H\(^4\)), 8.1 (dd, \(J = 10.9, 7.6\) Hz, 1H, H\(^3\)), 7.7 (dd, \(J = 8.7, 5.5\) Hz, 2H, H\(^6\)), 7.3 (t, \(J = 8.8\) Hz, 2H, H\(^7\)), 5.6 (s, 1H, H\(^1\)), 1.9 (s, 6H, H\(^5\)). \(^{13}\)C NMR (101 MHz, DMSO-\(d_6\)) \(\delta 148.4, 141.7, 141.3, 128.0\) (4C), 123.9, 116.0 (4C), 114.0, 106.4, 105.8 (2C), 90.4 (2C), 58.5, 29.7 (3C). HPLC-MS (ACI/ ESI): Purity = 99%, \(t_R = 3.13\) min, m/z [M+H]\(^+\) = 449.0.

Methyl (S)-2-((3-cyano-7,8-difluoro-4-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridin-1-yl)amino)-2-phenylacetate, 32

Compound 32 was obtained from 1.4c (0.080 g, 0.26 mmol, 1.0 equiv) and methyl (S)-2-amino-2-phenylacetate (0.084 g, 0.51 mmol, 2.0 equiv) as yellow solid (0.033 g, 28%), m.p 228 – 230 °C; Rf (EtOAc : Hexane, 4 : 6) 0.24. \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta 8.6\) (dd, \(J = 9.4, 7.3\) Hz, 1H, H\(^2\)), 8.5 (dd, \(J = 8.8, 7.5\) Hz, 1H, H\(^3\)), 8.0 (s, 1H, H\(^4\)), 7.7 (dd, \(J = 7.4, 1.6\) Hz, 2H, H\(^7\)), 7.5 (t, \(J = 8.2\) Hz, 2H, H\(^8\)), 7.4 (dt, \(J = 7.3, 1.7\) Hz, 1H, H\(^9\)), 6.3 (s, 1H, H\(^1\)), 6.0 (s, 1H, H\(^3\)), 3.8 (s, 3H, H\(^6\)). \(^{13}\)C NMR (101 MHz, DMSO-\(d_6\)) \(\delta 149.3, 148.6\) (3C), 129.3 (6C), 129.1 (2C), 128.3 (6C), 123.8, 53.6 (3C). HPLC-MS (ACI/ ESI): Purity = 99%, \(t_R = 2.98\) min, m/z [M-H]\(^-\) = 459.0.
Chapter 6

Methyl (R)-2-((3-cyano-7,8-difluoro-4-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridin-1-yl)amino)-2-phenylacetate, 33

Compound 33 was obtained from 1.4c (0.12 g, 0.36 mmol, 1.0 equiv) and methyl (S)-2-amino-2-phenylacetate (0.12 g, 0.72 mmol, 2.0 equiv) as orange solid (0.070 g, 42%), m.p 232 – 235 °C; Rf (EtOAc : Hexane, 4 : 6) 0.24. 1H NMR (400 MHz, DMSO-d6) δ 8.6 (dd, J = 9.4, 7.2 Hz, 1H, H2), 8.5 (dd, J = 8.8, 7.6 Hz, 1H, H3), 8.0 (s, 1H, H4), 7.7 (dd, J = 7.4, 1.4 Hz, 2H, H2), 7.5 (t, J = 7.5 Hz, 2H, H5), 7.32 (dt, J = 7.31, 1.63 Hz, 1H, H6) 6.3 (s, 1H, H1), 6.0 (s, 1H, H5), 3.8 (s, 3H, H6). 13C NMR (101 MHz, DMSO-d6) δ 149.4, 148.6 (2C), 129.3 (7C), 129.1 (2), 128.3 (7), 124.0, 53.6 (2). HPLC-MS (ACI/ ESI): Purity = 98%, tR = 2.98 min, m/z [M-H]− = 459.0.

7,8-difluoro-1-((1-(1-methyl-1H-pyrazol-4-yl)ethyl)amino)-3-(trifluoromethyl)benzo[4,5]-imidazo[1,2-a]pyridine-4-carbonitrile, 34

Compound 34 was obtained from 1.4c (0.10 g, 0.30 mmol, 1.0 equiv) and 1-(1-methyl-1H-pyrazol-4-yl)ethan-1-amine (0.075 g, 0.60 mmol, 2.0 equiv) as yellow solid (0.098 g, 78%), m.p 233 – 235 °C; Rf (EtOAc : Hexane, 3 : 7) 0.18. 1H NMR (400 MHz, DMSO-d6) δ 8.6 (dd, J = 11.4, 7.2 Hz, 1H, H2), 8.3 – 8.2 (d, J = 7.0 Hz, 1H, H6), 8.0 (dd, J = 11.0, 7.7 Hz, 1H, H3), 7.8 (s, 1H, H8), 7.5 (s, 1H, H5), 6.5 (s, 1H, H1), 5.2 (m, 1H, H6), 3.8 (s, 3H, H9), 1.7 (d, J = 6.7 Hz, 3H, H5). 13C NMR (101 MHz, DMSO-d6) δ 150, 149.2, 137.3 (2C), 129.2 (2C), 123.6, 123.1, 114.4, 106.2 (2C), 105.2 (2C), 88.0 (2C), 46.5 (2C), 22.2 (2C). HPLC-MS (ACI/ ESI): Purity = 99%, tR = 3.07 min, m/z [M-H]− = 419.1.
1-((4-(trifluoromethoxy)phenyl)amino)-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, GMP-19 (36)

Compound 36 was obtained from 1.1c (0.079 g, 0.27 mmol, 1.0 Eq) and 4-(trifluoromethoxy)aniline (0.054 g, 0.53 mmol, 2.0 Eq) as a yellow solid (0.091 g, 77%); Rf (EtOAc : Hexane, 1 : 1) 0.43; 1H NMR (400 MHz, DMSO-d6) δ 8.8 (dd, J = 7.7, 1.2 Hz, 1H, H5), 7.7 (dd, J = 8.1, 1.1 Hz, 1H, H2), 7.6 (dt, J = 7.7, 1.7 Hz, 1H, H3), 7.4 (t, J = 8.8, 1.9 Hz, 1H, H4), 7.3 (d, J = 8.3 Hz, 2H, H7), 7.2 (d, J = 8.7 Hz, 2H, H6), 6.2 (s, 1H, H1). 13C NMR (151 MHz, DMSO-d6) δ 149.3, 145.8, 130.2, 126.7 (2C), 124.9 (4C), 122.8 (4C), 122.4 (2C), 116.0 (2C), 114.5, 92.7 (2C). HPLC-MS (ACI/ ESI): Purity = 99%, tR = 3.06 min, m/z [M+H]+ = 437.0.

9-chloro-1-((4-(trifluoromethoxy)phenyl)amino)-3-(trifluoromethyl)benzo[4,5]imidazo-[1,2-a]pyridine-4-carbonitrile, 37

Compound 37 was obtained from 2.2c (0.85 g, 2.58 mmol, 1.0 equiv) and 4-(trifluoromethoxy)aniline (0.91 g, 5.16 mmol, 3.0 equiv) as a yellow solid (0.57 g, 47%); Rf (EtOAc : Hexane, 7 : 3) 0.35; 1H NMR (300 MHz, DMSO-d6) δ 8.6 (d, J = 8.4 Hz, 1H, H4), 7.7 (d, J = 8.0 Hz, 1H, H5), 7.5 (d, J = 0.5 Hz, 4H, H3, 6), 7.4 (t, J = 8.2 Hz, 1H, H2), 6.4 (s, 1H, H1). 13C NMR (101 MHz, DMSO-d6) δ 149.1 (2C), 145.8, 129.9 (2), 127.0 (2C), 124.9, 123.7, 123.1, 123.0, 122.7 (2C), 120.4, 119.7, 117.4 116.1 (3C), 114.0. HPLC-MS (ACI/ ESI): Purity = 99%, tR = 3.37 min, m/z [M+H]+ = 471.0.
9-nitro-1-((4-(trifluoromethoxy)phenyl)amino)-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 42

Compound 42 was obtained from 2.1.2c (0.36 g, 1.07 mmol, 1.0 equiv) and 4-(trifluoromethoxy)aniline (0.38 g, 2.14 mmol, 2.0 equiv) as a yellow solid (0.24 g, 47%); Rf (EtOAc: Hexane, 4 : 6) 0.32; \(^1\)H NMR (400 MHz, DMSO-\textit{d}6) \(\delta\) 9.1 (d, \(J = 8.3\) Hz, 1H, H\(^4\)), 8.4 (d, \(J = 8.2\) Hz, 1H, H\(^2\)), 7.6 (t, \(J = 8.3\) Hz, 1H, H\(^3\)), 7.5 – 7.4 (d, \(J = 8.5\) Hz, 2H, H\(^6\)), 7.4 (d, \(J = 8.6\) Hz, 2H, H\(^5\)), 6.4 (s, 1H, H\(^1\)). \(^{13}\)C NMR (101 MHz, DMSO-\textit{d}6) \(\delta\) 151.6, 149.2, 145.5, 132.1, 124.6 (4), 123.2 (2C), 123.0 (6C), 120.9, 114.7, 94.8 (2C). HPLC-MS (ACI/ ESI): Purity =99%, \(t_R = 3.31\) min, m/z [M+H]\(^+\) = 482.0.

9-amino-1-((4-(trifluoromethoxy)phenyl)amino)-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 43

A mixture of compound 42 (0.22 g, 0.46 mmol, 1.0 equiv) and ammonium chloride (0.26 g, 4.60 mmol 10.0 equiv) and iron (0.26 g, 4.60 mmol, 10.0 equiv) in a 1:1 methanol-water solution (2.0 mL) was stirred at 65 °C for 45 minutes. The reaction mixture was cooled to room temperature after which it was taken up in ethyl acetate (10.0 mL). The treated reaction mixture was filtered through celite, washed with deionised water (20 mL x 3), dried with brine (10 mL x2) and finally dried over MgSO\(_4\). The organic layer was concentrated and dried \textit{in vacuo}. The product was purified by flash-chromatography using EtOAc.

Compound 43 was obtained as a yellow solid (0.19 g, 90%); Rf (MeOH (NH\(_3\)): DCM, 1 : 9) 0.28; m.p 223 – 226 °C; \(^1\)H NMR (400 MHz, Acetonitrile-\textit{d}3) \(\delta\) 7.8 (dd, \(J = 8.4, 0.8\) Hz, 1H, H\(^2\)), 7.4 (d, \(J = 0.5\) Hz, 4H, H\(^7,8\)), 7.2 (dd, \(J = 8.4, 7.7\) Hz, 1H, H\(^3\)), 6.8 (dd, \(J = 7.7, 0.8\) Hz, 1H, H\(^4\)), 6.2 (s, 1H, H\(^1\)), 5.5 (s, 1H, H\(^6\)), 3.3 (s, 2H, H\(^5\)). \(^{13}\)C NMR (101 MHz, Acetonitrile-\textit{d}3) \(\delta\) 138.6, 133.2, 128.4, 127.0, 125.2, 122.1 (2C), 122.5 (2C), 118.6, 108.9 (2C), 104.4 (2C), 90.0 (2C), 29.8 (4C). HPLC-MS (ACI/ ESI): Purity = 97%, \(t_R = 1.22\) min, m/z [M+H]\(^+\) = 452.0.
6.3.7 General procedure for the synthesis of the amide derivatives - compounds 44 and 45

A mixture of a suitable carboxylic acid (1.5 equiv), \(\text{N,N}\)-dimethylpyridin-4-amine (DMAP) (1.5 equiv) and \(\text{N}\)-Ethyl-\(\text{N}'\)-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCI) (1.5 equiv) in 0 °C cooled dichloromethane (1.0 mL per 100 mg of compound) was stirred at 0 °C for 5 minutes after which the temperature was increased to 17 – 25 °C (ambient temperature) for 15 minutes. The amine was added to the treated reaction mixture and stirring was continued at that temperature for 1.5 hours. The product was washed with three portions of 10 mL deionised water, filtered, washed using diethyl ether and finally dried on the filter paper at ambient conditions.

\((R)-1-((2\text{-morpholino-2-oxo-1-phenylethyl})\text{amino})-3-(\text{trifluoromethyl})\text{benzo}[4,5]\text{imidazo}[1,2-a]\text{pyridine-4-carbonitrile}, 5\)

Compound 5 was obtained from compound 4 (0.078 g, 0.19 mmol, 1.0 equiv) and 1, 1-dioxidothiomorpholine (0.039 g, 0.29 mmol, 1.5 equiv) as yellow solid (0.038 g, 38%), m.p 322 – 324 °C; Rf (EtOAc : Hexane, 0.1 : 9.9) 0.19. \(^1\)H NMR (600 MHz, DMSO-\(d_6\)) \(\delta\) 8.6 (dd, \(J = 7.9, 1.77\) Hz, 1H, H\(^2\)), 8.5 (dd, \(J = 8.2, 1.4\) Hz, 1H, H\(^5\)), 8.0 (s, 1H, H\(^6\)), 7.8 (dd, \(J = 7.4, 1.2\) Hz, 2H, H\(^{10}\)), 7.7 (m, 2H, \(H^3, 4\)), 7.5 (t, \(J = 7.6\) Hz, 2H, H\(^{11}\)), 7.4 (m, 1H, H\(^{12}\)), 6.5 (s, 1H, H\(^1\)), 6.4 (s, 1H, H\(^7\)), 4.3 - 3.8 (m, 4H, H\(^9\)), 3.4 – 2.9 (m, 4H, H\(^8\)). \(^{13}\)C NMR (151 MHz, DMSO-\(d_6\)) \(\delta\) 168.8, 147.9, 147.4, 145.7, 136.1, 129.6 (4C), 128.3 (3C), 127.3, 122.5, 120.1, 114.4 (2C), 86.9 (2C), 57.0 (2C), 43.8, 42.3 (3C). HPLC-MS (ACI/ESI): Purity = 99%, \(t_R = 3.14\) min, m/z [M+H]\(^+\) = 528.1.
Compound 44 was obtained from compound 43 (0.06 g, 0.13 mmol, 1.0 equiv) and N-(tert-butoxycarbonyl)-N-ethylglycine (0.040 g, 0.20 mmol, 1.5 equiv) as a beige solid (0.072 g, 81%), m.p 219 – 221 °C; Rf (EtOAc : Hexane, 6:4) 0.35. ¹H NMR (300 MHz, Acetonitrile-d₃) δ 9.0 (s, 1H, H⁵), 8.4 (dd, 8.4, 1.1 Hz, 1H, H²), 8.2 (dd, J = 8.0, 1.2 Hz, 1H, H⁴), 7.3 (d, J = 7.9 Hz, 2H, H¹¹), 7.3 (t, J = 8.3 Hz, 1H, H³), 7.2 (d, J = 7.6 Hz, 2H, H¹⁰), 6.1 (s, 1H, H¹), 3.6 (s, 2H, H⁶), 3.1 (q, J = 7.2 Hz, 2H, H⁸), 1.5 (s, 9H, H⁷), 1.2 (t, J = 6.5 Hz, 3H, H⁹). ¹³C NMR (101 MHz, Acetonitrile-d₃) δ 152.8, 150.4, 127.6, 123.8 (3C), 122.2 (3C), 120.0 (2C), 112.0, 110.9 (2C), 89.1 (3C), 80.0, 53.3, 31.1 (2C), 29.8 (3C), 27.6 (5C). HPLC-MS (ACI/ ESI): Purity = 99%, tᵣ = 3.37 min, m/z [M-H]⁻ = 635.0.

tert-buty|l (2-((4-cyano-1-((4-(trifluoromethoxy)phenyl)amino)-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridin-9-yl)amino)-2-oxoethyl)(ethyl) carbamate, 45

Compound 45 was obtained from compound 43 (0.06 g, 0.13 mmol, 1.0 equiv) and (tert-butoxycarbonyl)glycine (0.035 g, 0.20 mmol, 1.5 Eq) as an orange solid (0.029 g, 37%), m.p 215 – 218 °C; Rf (MeOH : DCM, 1 : 9) 0.18. ¹H NMR (300 MHz, Acetonitrile-d₃) δ 9.0 (s, 1H, H⁵), 8.4 (dd, J = 8.3, 0.9 Hz, 1H, H²), 8.3 (dd, J = 8.0, 1.2 Hz, 1H, H⁴), 7.3 (d, J = 7.9 Hz, 2H, H¹¹), 7.3 (t, J = 8.1 Hz, 1H, H³), 7.2 (d, J = 7.7 Hz, 2H, H⁸), 6.1 (s, 1H, H¹), 4.1 (s, 2H, H⁶), 1.5 (s, 9H, H⁷). ¹³C NMR (101 MHz, Acetonitrile-d₃) δ 168.5, 149.9, 127.2, 124.3 (3C), 122.3 (3C), 120.4, 114.2 (2C), 111.9, 89.8 (3C), 80.0, 51.5 (2C), 43.5 (3C), 30.8, 29.8, 27.6 (3C). HPLC-MS (ACI/ ESI): Purity = 99%, tᵣ = 3.35 min, m/z [M-H]⁻ = 607.0.
Chapter 6

1-((5,6-dimethoxypyrimidin-4-yl)amino)-7,8-difluoro-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 46

Compound 46 was obtained from 1.4c (0.15 g, 0.45 mmol, 1.0 equiv) and 5,6-dimethoxypyrimidin-4-amine (0.14 g, 0.90 mmol, 2.0 equiv) as yellow solid (0.093 g, 46%), m.p 299 – 302 °C; Rf (EtOAc : Hexane, 3 : 7) 0.18. 1H NMR (400 MHz, DMSO-d6) δ 8.4 (s, 1H, H1), 8.3 (dd, J = 10.7, 7.5 Hz, 1H, H2), 8.3 (dd, J = 8.7, 6.9 Hz, 1H, H3), 6.1 (s, 1H, H1), 4.2 (s, 3H, H7), 4.0 (s, 3H, H6). 13C NMR (101 MHz, DMSO-d6) δ 153.9, 145.2 (2C), 127.4, 119.2 (2C), 113.6, 111.1, 104.4, 106.2 (3C), 105.2 (3C), 88.0 (2C), 46.5 (2C). HPLC-MS (ACI/ ESI): Purity = 97%, tR = 3.17 min, m/z [M+H]+ = 451.1

7,8-difluoro-1-((2-fluoropyridin-4-yl)amino)-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 47

Compound 47 was obtained from 1.4c (0.10 g, 0.30 mmol, 1.0 equiv) and 1-(1-methyl-1H-pyrazol-4-yl)ethan-1-amine (0.075 g, 0.60 mmol, 2.0 equiv) as yellow solid (0.098 g, 78%), m.p > 300 °C; Rf (EtOAc : Hexane, 3 : 7) 0.18. 1H NMR (400 MHz, DMSO-d6) δ 8.2 (d, J = 7.7 Hz, 1H, H6), 8.4 (dd, J = 10.9, 7.4 Hz, 1H, H2), 7.8 (dd, J = 7.8, 6.6 Hz, 1H, H3), 6.8 (d, J = 7.6 Hz, 1H, H5), 6.5 (d, J = 7.3 Hz, 1H, H4), 6.2 (s, 1H, H1). 13C NMR (101 MHz, DMSO-d6) δ 166.4, 165.3 (2C), 147.5 (3), 128.1, 121.2, 119.0, 113.9, 113.1, 106.2 (2C), 99.1 (2C), 88.0 (3C). HPLC-MS (ACI/ ESI): Purity = 96%, tR = 3.03 min, m/z [M-H]- = 409.0
Chapter 6

8-chloro-1-((2-methoxyethyl)amino)-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 2.2d

Compound 2.2d was obtained from 2.2c (0.11 g, 0.32 mmol, 1.0 equiv) and 2-methoxyethan-1-amine (0.048 mL, 0.64 mmol, 2.0 equiv) as yellow solid (0.063 g, 53%); Rf (EtOAc : Hexane, 4 : 6) 0.12. ¹H NMR (400 MHz, DMSO-d₆) δ 8.7 (d, J = 2.2 Hz, 1H, H⁴), 8.6 (d, J = 8.8 Hz, 1H, H¹), 8.0 (dd, J = 8.9, 2.2 Hz, 1H, H³), 6.6 (s, 1H, H¹), 3.9 (t, J = 5.4 Hz, 2H, H⁵), 3.7 (t, J = 5.4 Hz, 2H, H⁶), 3.4 (s, 3H, H⁷), 3.0 (s, 3H, H⁷). ¹³C NMR (101 MHz, DMSO-d₆) δ 150.3, 127.2, 120.1, 118.3, 116.9 (2C), 115.2, 87.2 (2C), 70.9 (2C), 58.7 (2C), 44.0 (3C). HPLC-MS (ACI/ESI): Purity = 97%, tᵣ = 3.11 min, m/z [M+H]^+ = 369.0.

1-((2-(diethylamino)ethyl)amino)-8-morpholino-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 49

Compound 2.2d was obtained from 2.2c (0.088 g, 0.27 mmol, 1.0 equiv) and N¹, N¹-diethylethane-1,2-diamine (0.037.3 g, 0.32 mmol, 1.2 Eq) as an orange solid (0.062 g, 56%), m.p 238 – 240 °C; Rf (EtOAc : Hexane, 7 : 3) 0.22. ¹H NMR (400 MHz, DMSO-d₆) δ 7.9 (d, J = 2.3 Hz, 1H, H¹), 7.8 (s, 1H, H⁵), 7.7 (d, J = 9.4 Hz, 1H, H²), 7.3 (dd, J = 8.9, 2.3 Hz, 1H, H³), 6.31 (s, 1H, H¹), 3.63 (t, J = 6.1 Hz, 2H, H⁶), 2.98 (t, J = 6.33 Hz, 2H, H⁷), 2.9 – 2.7 (q, J = 7.2 Hz, 4H, H⁸), 1.1 (t, J = 7.2 Hz, 6H, H⁹). ¹³C NMR (101 MHz, DMSO-d₆) δ 155.9, 149.8, 141.7, 130.2, 119.8 (2C), 117.6, 102.2 (3C), 85.7, 73.8 (2C), 66.7 (2C), 51.1, 46.7, 11.4 (2C). HPLC-MS (ACI/ESI): Purity = 96%, tᵣ = 2.56 min, m/z [M-H]⁻ = 409.8/410.0.
Chapter 6

8-chloro-1-pol((2-(diethylamino)ethyl)amino)-3-(4-(trifluoromethyl)phenyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 50

Compound 50 was obtained from 2.4c (0.11 g, 0.27 mmol, 1.0 equiv) and N\textsubscript{1}, N\textsubscript{1}-diethylethane-1,2-diamine (0.063 g, 0.54 mmol, 2.0 equiv) as yellow solid (0.083 g, 63%); Rt (EtOAc : Hexane, 1 : 1) 0.20. 1H NMR (600 MHz, DMSO-d\textsubscript{6}) δ 8.7 (d, J = 2.1 Hz, 1H, H\textsubscript{4}), 8.6 (dd, J = 8.9, 2.1 Hz, 1H, H\textsubscript{3}), 8.0 (d, J = 8.2 Hz, 2H, H\textsubscript{11}), 8.0 (d, J = 8.3 Hz, 2H, H10), 7.8 (s, 1H, H5), 7.6 (d, J = 8.9 Hz, 1H, H2), 6.3 (s, 1H, H1), 3.6 (t, J = 6.3 Hz, 2H, H\textsubscript{6}), 2.9 (t, J = 6.3 Hz, 2H, H2), 2.7 (q, J = 7.1 Hz, 4H, H\textsubscript{8}), 1.0 (t, J = 7.1 Hz, 6H, H\textsubscript{9}). 13C NMR (151 MHz, DMSO-d\textsubscript{6}) δ 149.4, 141.9, 130.0 (3), 129.0 (2), 126.0 (3), 121.6, 117.3, 114.1, 111.8, 91.7, 51.2 (2), 46.8 (3), 41.7 (2), 12.1 (3). HPLC-MS (ACI/ ESI): Purity = 92%, R\textsubscript{f} = 2.85 min, m/z [M+H]+ = 486.1.

tert-Butyl (2-((8-chloro-4-cyano-3-(4-(trifluoromethyl)phenyl)benzo[4,5]imidazo[1,2-a]pyridin-1-ylamino)ethyl)(ethyl)carbamate, 51

Compound 51 was obtained from compound 2.4c (0.110 g, 0.27 mmol, 1.0 equiv) and tert-butyl (2-aminoethyl)(ethyl)carbamate (0.102 g, 0.54 mmol, 2.0 equiv) as yellow solid (0.134 g, 89%), m.p 235 – 237 °C; Rt (EtOAc : Hexane, 3 : 7) 0.27. 1H NMR (600 MHz, DMSO-d\textsubscript{6}) δ 8.7 (d, J = 2.2 Hz, 1H, H4), 8.6 (dd, J = 8.9, 2.1 Hz, 1H, H3), 8.0 (d, J = 8.2 Hz, 2H, H\textsubscript{12}), 7.9 (d, J = 8.3 Hz, 2H, H11), 7.8 (s, 1H, H5), 7.6 (d, J = 8.6 Hz, 1H, H2), 6.4 (s, 1H, H1), 3.7 (t, J = 6.2 Hz, 2H, H\textsubscript{6}), 3.6 (t, J = 6.4 Hz, 2H, H7), 3.3 (q, J = 6.97 Hz, 2H, H5), 1.2 (s, 9H, H\textsubscript{8}), 1.1 (t, J = 8.7 Hz, 3H, H10). 13C NMR (151 MHz, DMSO-d\textsubscript{6}) δ 155.7, 151.1, 149.1, 130.0 (2C), 126.8, 126.0 (2C), 120.6, 120.0, 118.2, 116.2, 115.2, 91.2, 79.4, 46.4 (2C), 45.3, 42.6 (3C), 28.4 (4C), 13.9, 9.0 (2C). HPLC-MS (ACI/ ESI): Purity = 99%, R\textsubscript{f} = 3.37 min, m/z [M+H]+ = 558.1.
6.3.8 General procedure for the synthesis of the final compounds 38 – 41, 48, 49, 53 and 54 using the palladium (0) catalysed amine coupling (Buchwald-Hartwig reaction)

A mixture of an aryl-halide (2.3d, 2.3e, 37, 50 – 52: 1.0 equiv), tris(dibenzylideneacetone) dipalladium (0) (Pd2dba3: 0.1 equiv), RuPhos (0.2 equiv), cesium carbonate (Cs2CO3: 3.0 equiv) and the appropriate amine (2.0 equiv) in anhydrous 1,4-dioxane in a sealed tube was flushed with nitrogen gas for 15 minutes. The treated reaction mixture was heated to 110 °C for aliphatic cyclic amines and at 120 °C for an aromatic amine for 8-16 hours at respective temperatures with continuous stirring. The excess solvent was removed in vacuo and the resulting residue taken up in ethyl acetate, washed with lithium chloride (20 mL x 3), deionized water (20 mL x 3), brine (10 mL x 3), dried over anhydrous magnesium sulphate (MgSO4), filtered through celite, concentrated and dried in vacuo to obtain solid residues. A column was used where the compound needed further purification.

9-(pyrimidin-2-ylamino)-1-((4-(trifluoromethoxy)phenyl)amino)-3-(trifluoromethyl)benzo-[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 38

Compound 38 was obtained from compound 37 (0.080 g, 0.17mmol, 1.0 equiv) and 2-amino pyrimidine (0.019 g, 0.20 mmol, 1.2 equiv) as a yellow solid (0.031 g, 34%); m.p 242 – 244 °C; Rf (EtOAc : Hexane, 3 : 7) 0.32; 1H NMR (300 MHz, Acetonitrile-d3) δ 9.0 (s, 1H, H7), 8.8 (s, 1H, H8), 8.6 (d, J = 5.04 Hz, 2H, H6), 8.3 (dd, J = 8.0, 0.9 Hz, 1H, H2), 8.2 (t, J = 8.7 Hz, 1H, H3), 7.5 (d, J = 8.2 Hz, 2H, H9), 7.4 (dd, J = 8.7, 0.8 Hz, 1H, H1), 7.4 (d, J = 7.8 Hz, 2H, H10), 7.0 (t, J = 4.9 Hz, 1H, H5), 6.4 (s, 1H, H4). 13C NMR (151 MHz, DMSO-d6) δ 158.8, 157.9 (3C), 152.2 (4C), 144.8, 143.5, 142.8 (2C), 138.7 (3C), 132.3, 132.3 (2C), 122.8, 118.2 (2C), 114.2, 98.5 (2C). HPLC-MS (ACI/ ESI): Purity = 98%, tR = 3.27 min, m/z [M+H]+ = 530.1.
Chapter 6

9-morpholine-1-((4-(trifluoromethoxy)phenyl)amino)-3-(trifluoromethyl)benzo-[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 1.7b

Compound 39 was obtained from 37 (0.10 g, 0.21 mmol, 1.0 equiv) and morpholine (0.037 g, 0.42 mmol, 2.0 equiv) as a yellow solid (0.022 g, 20%), m.p 212 – 215 °C; Rf (EtOAc : Hexane, 7 : 3) 0.21; 1H NMR (300 MHz, DMSO-d6) δ 8.9 (s, 1H, H7), 8.1 (dd, J = 7.3, 1.9 Hz, 1H, H2), 7.5 (d, J = 8.7 Hz, 2H, H8), 7.4 (d, J = 8.6 Hz, 2H, H9), 7.4 (t, J = 8.2 Hz, 1H, H3), 7.2 (dd, J = 8.1, 2.1 Hz, 1H, H4), 6.4 (s, 1H, H1), 3.9 (m, 4H, H5), 3.5 (m, 4H, H6). 13C NMR (151 MHz, DMSO-d6) δ 148.8, 148.6, 148.1, 147.7, 147.3, 145.9, 130.0, 124.8 (2C), 123.1, 122.8 (2C), 114.2, 66.7 (2C), 50.6 (2C). HPLC-MS (ACI/ ESI): Purity = 98%, tR = 3.20 min, m/z [M+H]+ = 522.0.

tert-Butyl 4-(4-cyano-1-((4-(trifluoromethoxy)phenyl)amino)-3-(trifluoromethyl)benzo-[4,5]imidazo[1,2-a]pyridin-9-yl)piperazine-1-carboxylate, 2.2d

Compound 2.2d was obtained from 37 (0.15 g, 0.32 mmol, 1.0 equiv) and tert-butyl piperazine-1-carboxylate (0.12 g, 0.64 mmol, 1.2 Eq) as a orange solid (0.070 g, 35%), m.p 185 – 187 °C; Rf (EtOAc : Hexane, 3 : 7) 0.29; 1H NMR (300 MHz, DMSO-d6) δ 8.8 (s, 1H, H8), 8.5 (d, J = 8.9 Hz, 2H, H9), 8.4 (dd, J = 8.6, 2.0 Hz, 1H, H2), 8.2 (d, J = 8.9 Hz, 2H, H10), 7.4 (t, J = 8.3 Hz, 1H, H3), 6.8 (dd, J = 7.9, 2.0 Hz, 1H, H4), 5.7 (s, 1H, H1), 4.2 (m, 4H, H5), 4.1 (m, 4H, H6) 1.3 (s, 9H, H9). 13C NMR (101 MHz, DMSO-d6) δ 163.7, 153.8, 143.3 (3C), 133.2 (3C), 127.5 (3C), 123.7, 122.6, 122.1, 121.8, 120.4 (4C), 105.5, 99.3 (2C), 77.9, 49.2 (2C), 26.7 (4C). HPLC-MS (ACI/ ESI): Purity = 98%, tR = 3.19 min, m/z [M-H]− = 618.7.
9-((1,1-dioxidothiomorpholino)-1-((4-(trifluoromethoxy)phenyl)amino)-3-trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 41

Compound 41 was obtained from 37 (0.056 g, 0.12 mmol, 1.0 equiv) and thiomorpholine-1,1-dioxide (0.032 g, 0.24 mmol 2.0 equiv) as orange solid (0.021 g, 30%), m.p > 300 °C; Rf (EtOAc : Hexane, 1 : 1) 0.36; ¹H NMR (400 MHz, Acetonitrile-d₃) δ 8.0 (dd, J = 7.5, 2.2 Hz, 1H, H²), 7.4 (d, J = 9.2 Hz, 2H, H¹), 7.4 (d, J = 9.4 Hz, 2H, H⁸), 7.3 (t, J = 8.2 Hz, 1H, H³), 7.1 (dd, J = 7.5, 2.2 Hz, 1H, H⁴), 6.3 (s, 1H, H¹), 4.2 (t, J = 5.2 Hz, 4H, H⁶), 3.2 (t, J = 5.2 Hz, 4H, H⁸), 1H, 13C NMR (151 MHz, Acetonitrile-d₃) δ 148.7, 146.6, 146.3, 140.0, 138.2, 136.9, 136.7, 129.8, 125.5 (2C), 123.3, 122.7 (3C), 121.4, 121.4, 113.8, 113.2, 108.6, 90.5, 51.0 (2C), 48.5 (2C). HPLC-MS (ACI/ ESI): Purity = 99%, tᵣ = 3.23 min, m/z [M+H]^+ = 570.0.

1-((2-methoxyethyl)amino)-8-morpholino-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 48

Compound 48 was obtained from 2.2d (0.060 g, 0.16 mmol, 1.0 equiv) and morpholine (0.043 g, 0.49 mmol, 3.0 equiv) as an orange solid (0.023 g, 35%), m.p 185 - 188; Rf (EtOAc : Hexane, 8 : 2) 0.36; ¹H NMR (400 MHz, Methanol-d₄) δ 8.2 (d, J = 9.2 Hz, 1H, H²), 7.3 (d, J = 2.0 Hz, 1H, H⁶), 6.8 (dd, J = 8.4, 2.0 Hz, 1H, H³), 6.6 (s, 1H, H¹), 4.0 - 3.9 (m, 4H, H⁴), 3.9 (t, J = 5.7 Hz, 2H, H⁸), 3.6 (t, J = 5.7 Hz, 2H, H⁷), 3.4 (s, 3H, H⁹), 3.4 - 3.3 (m, 4H, H⁵). ¹³C NMR (101 MHz, Methanol-d₄) δ 130.1, 118.6, 113.8, 112.2, 107.9, 102.5, 85.8 (2C), 71.6, 69.9, 66.6 (3C), 57.9, 50.5 (2C), 49.3, 42.9 (2C), 36.8. HPLC-MS (ACI/ ESI): Purity = 99%, tᵣ = 2.95 min, m/z [M+H]^+ = 420.0.
Chapter 6

1-((2-(diethylamino)ethyl)amino)-8-morpholino-3-(trifluoromethyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 49

Compound 49 was obtained from 2.2d (0.058 g, 0.14 mmol, 1.0 equiv) and N′, N′-diethylethane-1,2-diamine (0.015 g, 0.17 mmol, 1.2 equiv) as an orange solid (0.022 g, 33%), m.p 232 – 235 °C; Rf (EtOAc : Hexane, 8 : 2) 0.17. 1H NMR (400 MHz, DMSO-d6) δ 7.9 (d, J = 2.1 Hz, 1H, H6), 7.7 (d, J = 8.9 Hz, 1H, H5), 7.3 (dd, J = 8.9, 2.1 Hz, 1H, H3), 6.2 (s, 1H, H1), 3.9 – 3.8 (m, 4H, H4), 3.6 (t, J = 6.2 Hz, 2H, H8), 2.9 (q, J = 7.2 Hz, 4H, H10), 1.1 (t, J = 7.0 Hz, 6H, H10). 13C NMR (101 MHz, DMSO-d6) δ 150.6, 146.8, 139.9, 129.7, 118.8 (2C), 117.6, 102.2, 85.7, 66.7 (3C), 51.0 (5C), 46.6 (3C), 11.2 (3C). HPLC-MS (ACI/ ESI): Purity = 99%, tR = 2.94 min, m/z [M-H]− = 459.1.

tert-Butyl (2-((4-cyano-8-morpholino-3-((4-(trifluoromethyl)phenyl)benzo[4,5]imidazo[1,2-a]pyridin-1-yl)amino)ethyl)(ethyl)carbamate, 54

Compound 54 was obtained from 51 (0.11 g, 0.20 mmol, 1.0 equiv) and morpholine (0.034 g, 0.39 mmol, 2.0 equiv) as orang solid (0.073 g, 60%), m.p 235 – 237 °C; Rf (EtOAc : Hexane, 3 : 7) 0.22. 1H NMR (600 MHz, DMSO-d6) δ 8.4 (s, 1H, H7), 8.0 (d, J = 8.2 Hz, 2H, H14), 7.9 (d, J = 8.3 Hz, 2H, H13), 7.9 (d, J = 2.1 Hz, 1H, H6), 7.7 (d, J = 8.9 Hz, 1H, H2), 7.4 (dd, J = 9.0, 2.1 Hz, 1H, H3), 6.5 (s, 1H, H1), 3.8 (m, 4H, H5), 3.8 (t, J = 6.2 Hz, 2H, H8), 3.6 (t, J = 6.1 Hz, 2H, H9), 3.1 (m, 4H, H4), 3.2 (q, J = 10.0 Hz, 2H, H10), 1.2 (s, 9H, H12), 1.1 (t, J = 9.9 Hz, 3H, H11). 13C NMR (151 MHz, DMSO-d6) δ 150.7, 141.3, 130.0 (3C), 126.0 (3C), 118.1, 117.5, 116.0, 111.7, 102.6, 100.7, 92.5, 79.4, 66.6 (3C), 50.7 (2C), 49.3, 45.3, 42.7 (3C), 28.4 (4C), 13.9 (2C). HPLC-MS (ACI/ ESI): Purity = 99%, tR = 3.71 min, m/z [M+H]+ = 609.2.
6.3.9 General procedure for the amino-group deprotection: synthesis of compounds 40, 52 and 55

A solution of 4 M HCl in 1,4-dioxane (1.0 mL per 100 mg sample) was added to a solution of an appropriate carbamate analogue. The reaction mixture was stirred for 1 hour from 0 °C to room temperature (17 - 25 °C). The completion of the reaction was confirmed by TLC and HPLC-MS after which excess 1, 4-dioxane and HCl were removed in vacuo. The compound residue was basified to pH 11 by a steady addition of saturated solution of sodium bicarbonate (NaHCO₃). The organic residues were taken up in ethyl acetate (EtOAc) after which the aqueous phase was removed using a separatory funnel. The EtOAc layer was washed with deionised water (20 mL x 3), brine (10 mL x 3), dried over MgSO₄ and was finally concentrated in vacuo.

9-((piperan-1-yl)-1-((4-(trifluoromethoxy)phenyl)amino)-3-(trifluoromethyl)benzo [4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 40

Compound 40 was obtained from 2.2d (0.050 g, 0.080 mmol, 1.0 equiv) and HCl in dioxane (0.012 g, 0.096mmol, 1.2 equiv) as a brown solid (0.036 g, 87%), m.p: ND; Rf (MeOH : DCM, 0.5 : 9.5) 0.21; ¹H NMR (300 MHz, DMSO-d₆) δ 8.9 (s, 1H, H₈), 8.5 (d, J = 8.8 Hz, 2H, H₆), 8.4 (dd, J = 8.3, 2.0 Hz, 1H, H⁴), 8.2 (d, J = 8.8 Hz, 2H, H¹⁰), 7.4 (t, J = 8.1 Hz, 1H, H³), 6.8 (d, J = 7.9, 2.0 Hz, 1H, H⁴), 5.7 (s, 1H, H¹), 4.1 (m, 4H, H⁷), 3.7 (m, 4H, H⁶) 1.1 (s, 1H, H⁵). ¹³C NMR (101 MHz, DMSO-d₆) δ 163.7, 143.3 (2C), 133.2 (3C), 127.5 (3C), 123.7, 122.6, 122.1, 121.8, 120.4 (4C), 105.5, 99.3 (2C), 49.1 (2C), 45.9 (2C). HPLC-MS (ACI/ ESI): Purity = 98%, tᵣ = 2.95 min, m/z [M+H]⁺ = 521.1.
Chapter 6

8-chloro-1-((2-(ethylamino)ethyl)amino)-3-(4-(trifluoromethyl)phenyl)benzo[4,5]imidazo-[1,2-a]pyridine-4-carbonitrile, 52

Compound 52 was obtained from compound 51 (0.070 g, 0.13 mmol, 1.0 equiv) and 4.0 M HCl in 1, 4-dioxane (0.70 mL) as yellow solid (0.057 g, 96%), m.p 226 - 228 °C; Rf (MeOH : DCM, 0.1 : 9.9) 0.17.

1H NMR (600 MHz, DMSO-d_6) δ 8.6 (s, 1H, H$_5$), 8.4 (d, J = 2.2 Hz, 1H, H4), 8.0 (d, J = 8.5 Hz, 2H, H$_{11}$), 8.0 (d, J = 8.6 Hz, 2H, H10), 7.9 (dd, J = 8.6, 2.0 Hz, 1H, H9), 7.6 (d, J = 8.6 Hz, 1H, H2), 6.4 (s, 1H, H1), 3.9 (t, J = 6.2 Hz, 2H, H6), 3.4 (t, J = 6.0 Hz, 2H, H7), 3.1 (q, J = 6.2 Hz, 2H, H8), 1.3 (t, J = 6.2 Hz, 3H, H9). 13C NMR (151 MHz, DMSO-d_6) δ 151.2, 148.9, 141.6, 130.1 (3C), 127.0, 126.0 (2C), 125.4, 120.9, 120.0, 118.2, 117.1, 116.7, 115.7, 91.8, 91.6, 45.1, 45.0, 42.9, 42.9, 11.3. HPLC-MS (ACI/ESI): Purity = 99%, t_R = 2.97 min, m/z [M-H]$^-$ = 458.1.

1-((2-(ethylamino)ethyl)amino)-8-morpholino-3-(4-(trifluoromethyl)phenyl)benzo[4,5]imidazo[1,2-a]pyridine-4-carbonitrile, 55

Compound 55 was obtained from compound 54 (0.07 g, 0.12 mmol, 1.0 equiv) and 2.0 M HCl in 1, 4-dioxane (0.5 mL) as orange solid (0.041 g, 70%), m.p 192 – 195 °C; Rf (MeOH : DCM, 0.4 : 9.6) 0.18. 1H NMR (600 MHz, DMSO-d_6) δ 8.4 (s, 1H, H7), 8.0 (d, J = 8.7 Hz, 2H, H$_{14}$), 7.9 (d, J = 8.7 Hz, 2H, H$_{13}$), 7.8 (d, J = 8.9 Hz, 1H, H2), 7.4 (dd, J = 9.0, 2.1 Hz, 1H, H3), 7.3 (d, J = 2.2 Hz, 1H, H8), 6.3 (s, 1H, H1), 3.9 (m, 4H, H5), 3.8 (t, J = 6.3 Hz, 2H, H6), 3.3 (t, J = 6.2 Hz, 2H, H9), 3.3 – 3.2 (m, 4H, H5), 3.1 (q, J = 7.2 Hz, 2H, H$_{11}$), 1.3 (s, 1H, H10), 1.2 (t, J = 7.2 Hz, 3H, H$_{12}$). 13C NMR (151 MHz, DMSO-d_6) δ 149.6, 142.0, 130.0 (3C), 126.0 (2C), 119.0, 117.4, 115.8, 103.4, 102.7, 90.6, 66.7 (3C), 50.9, 49.75, 45.4 (2C), 42.9 (2C), 26.5, 26.2, 22.2, 11.9 (2C). HPLC-MS (ACI/ESI): Purity = 97%, t_R = 3.19 min, m/z [M+H]$^+$ = 509.2.
6.4 Biological assays

6.4.1 In vitro asexual blood stage antiplasmodium assay

Compounds were screened against multidrug-resistant (K1) and sensitive (NF54) strains of *P. falciparum* in vitro using the modified $[^3]$H-hypoxanthine incorporation assay.4 *P. falciparum* was cultivated in a variation of the medium previously described,5,6 consisting of RPMI 1640 supplemented with 0.5% ALBUMAX® II, 25 mM Hepes, 25 mM NaHCO$_3$ (pH 7.3), 0.36 mM hypoxanthine and 100 μg/mL neomycin. Human erythrocytes served as host cells. Cultures were maintained at 37 °C in an atmosphere of 3% O$_2$, 4% CO$_2$ and 93% N$_2$ in humidified modular chambers. Compounds were dissolved by sonication in DMSO (10 mg/mL) and diluted in hypoxanthine-free culture medium. Infected erythrocytes (100 μL per well with 2.5% hematocrit and 0.3% parasitemia) were added to each drug titrated in 100 μL duplicates over a 64-fold range. After 48 hours incubation, 0.5 μCi of $[^3]$Hhypoxanthine in 50 μL medium was added and plates were incubated for an additional 24 hours. Parasites were harvested onto glass-fibre filters and radioactivity was counted using a Betaplate liquid scintillation counter (Wallac, Zurich). The results were recorded as counts per minute (cpm) per well at each drug concentration and expressed as a percentage of the untreated controls. Fifty per cent inhibitory concentrations (IC$_{50}$) were estimated by linear interpolation.7

6.5.2 In vitro gametocytocidal assay

6.4.2.1 Luciferase Reporter Assay

Two transgenic parasite lines (NF54-PfS16-GFP-Luc and NF54-Mal8p1.16-GFP-Luc) were used in the luciferase assays which facilitated stage-specific determination of gametocytocidal activity. Gametocytes were produced according to Reader *et al.*8 On days 5 and 10 which respectively represent > 90% of early stage (I – III) and > 90% of late stage (IV and V) gametocytes, drug assays were set up. In both cases, 2 – 3% gametocytaemia and 1.5% haematocrit culture were used with a 48-hour drug pressure in a gas chamber (90% N$_2$, 5% O$_2$ and 5% CO$_2$) at 37°C. To 20 μL parasite lysates, 50 μL of luciferin substrate (Promega Luciferase Assay System) was added at room temperature. Luciferase activity was determined by detection of resulting bioluminescence at an integration constant of 10 seconds using the GloMax®-Multi+ Detection System with Instinct® Software. Methylene blue and dihydroartemisinin were used as controls.
6.4.2.2 ATP assay

In the ATP assay, late-stage gametocytes (IV and V, primarily stage V) were enriched using density gradient centrifugation and magnetic separation. Dilutions for the compounds were prepared in triplicate in 96-well plates. To each well, about 50,000 gametocytes in the glucose-rich complete medium were added to make a final volume of 100 μL where after the plates were incubated at 37 °C in a humidified gas chamber (90% N₂, 5% O₂ and 5% CO₂) for 24 hours. The BacTiter-Glo™ assay (Promega) was then carried out in accordance with the manufacturer’s guidelines at room temperature in the dark with assay substrate incubated for 10 minutes to detect ATP levels. The GloMax®-Multi+ Detection System with Instinct® Software was used to detect bioluminescence at an integration constant of 0.5 seconds. Methylene blue and dihydroartemisinin were used controls.

6.5 Solubility Determination

6.5.1 Kinetic Solubility Employing HPLC

Using a miniaturised shake flask method,¹⁰ solubility assays were obtained from a 10 mM stock solutions of the test compounds dissolved in DMSO, calibration standards (10 - 220 μM in DMSO) were prepared. The 10 mM stock solutions were also used to spike (1:50) duplicate aqueous samples in phosphate buffered saline (pH 6.5). The DMSO was dried off in a GeneVac (MiVac, 90 min, 37 °C) after which the samples were incubated while shaking for 20 hours at 25 °C. Thereafter, the solutions were filtered, and their absorbance measured using HPLC-DAD (Agilent 1200 Rapid Resolution HPLC with a diode array detector). The calibration standards were used to plot the calibration curves, which were used to determine the solubility of the aqueous samples.

6.5.2 Kinetic (Turbidimetric) Solubility¹¹

A phosphate buffered saline (PBS) solution comprising 0.14 M NaCl, 0.003 M KCl and 0.01 M phosphate buffer (pH 7.4) was prepared by dissolving one intact PBS buffer tablet in 1 L of water. Particulate contaminants were removed by filtering the solution through a 0.22 μm nylon filter and the pH verified using a pH meter. Stock solutions (10 mM) of test compounds were prepared by dissolving in DMSO. Using a 96-well plate, serial dilutions of the compounds in DMSO were prepared in triplicate starting from 8 mM to 0.25 mM (predilution plate). Secondary serial dilutions (5 – 200 μM) in DMSO and PBS buffer, also in triplicate, were prepared by pipetting 4 μL aliquots from the predilution plate to corresponding wells in the
secondary plate containing 196 µL DMSO and PBS buffer (final volume of 200 µL in each well). The serial dilutions in DMSO acted as controls to make sure the test compounds in solution did not absorb electromagnetic radiation at the test wavelength. The plate was covered and incubated for 2 hours in an oven maintained at 37 °C. The absorbance values of the wells were then measured by a UV-Visible Multiskan Go 1510-05438 spectrometer (Thermo Scientific). The values were then corrected by subtracting the absorbance of the blank wells containing only DMSO and 2% DMSO in PBS. The corrected absorbance values were plotted as a function of concentration using excel. A constant absorbance value of 0 at all concentrations indicates the compound is soluble at all concentrations. Insoluble compounds will precipitate and cause turbidity the absorbance of which was measured by a UV-Visible spectrometer. Solubility was taken to be that concentration above which the test compound precipitates from solution causing a sustained upward deviation of absorbance values from zero.
Chapter 6

References

