Quantitative fit analysis of acromion fracture plating systems using three-dimensional anatomical modelling

by

Doctor Johan Charilaou - MBChB (UFS), FC Orth (SA) (UCT)

Faculty of Health Sciences, Department of Surgery, Division of Orthopaedic Surgery, University of Cape Town

Student Number: CHRJOH008

This study is in partial fulfilment of the requirements for the degree:

Master of Medicine in Orthopaedic Surgery

University of Cape Town

Supervisor: Professor Stephen Roche

Graduation: May 2019
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
“Doctors are men who prescribe medicines of which they
know little, to cure diseases of which they know less, in human beings of
whom they know nothing”

- Voltaire
TABLE OF CONTENTS

40 **DECLARATION** .. 5

41 **ABSTRACT** .. 6

42 **ACKNOWLEDGMENTS** ... 7

43 **LIST OF TABLES AND FIGURES** .. 8

44 **ABBREVIATIONS** ... 9

45 **PART A: LITERATURE REVIEW** .. 11

46 **OBJECTIVES** ... 11

47 **LITERATURE SEARCH STRATEGY** .. 11

48 **SUMMARY AND INTERPRETATION OF LITERATURE** ... 12

49

Scapula fractures ... 12

50 3D printing ... 15

51 Quantitative fit analysis .. 24

52 **IDENTIFICATION OF GAPS OR NEEDS FOR FURTHER RESEARCH** 28

53 **REFERENCES** .. 28

54 **PART B: MANUSCRIPT IN ARTICLE FORMAT** .. 36

55 **TITLE PAGE** ... 36

56 **MAIN TEXT OF ARTICLE** .. 38

57

 ABSTRACT .. 38

58

 INTRODUCTION .. 40

59

 MATERIALS AND METHODS .. 43

60

 RESULTS .. 49

61

 DISCUSSION .. 54

62 **REFERENCES** .. 55

63 **APPENDIX** ... 60
Plate fit analysis on 3D acromion

DISCUSSION .. Error! Bookmark not defined.

CONCLUSION .. 58

REFERENCES .. 59

PART C: ADDENDA .. 61

CONTRIBUTIONS OF AUTHORS ... 61

COMPETING INTERESTS AND FUNDING 61

RELEVANT JOURNAL INFORMATION AND INSTRUCTIONS TO
AUTHORS .. 61

QUESTIONNAIRE / DATA CAPTURE INSTRUMENT 78

CONSENT FORMS AND ANY RELATED PARTICIPANT

INFORMATION SHEETS ... 79

RESEARCH PROTOCOL .. 79

HREC APPROVAL LETTER .. 90

COVER LETTER 1 .. 91

COVER LETTER 2 .. 92

AIMS, OBJECTIVES AND HYPOTHESES 93

TURNITIN .. 94

4
Plate fit analysis on 3D acromion

DECLARATION

I, Johan Charilaou, hereby declare that the work on which this thesis is based is my original work (except where acknowledgements indicate otherwise) and that neither the whole work nor any part of it has been, is being, or is to be submitted for another degree in this or any other university. I authorise the University to reproduce for the purpose of research either the whole or any portion of the contents in any manner whatsoever.

I further declare the following:

I know that plagiarism is a serious form of academic dishonesty.

I have read the document about avoiding plagiarism, am familiar with its contents and have avoided all forms of plagiarism mentioned there.

Where I have used the words of others, I have indicated this by the use of quotation marks.

I have referenced all quotations and properly acknowledged other ideas borrowed from others.

I have not and shall not allow others to plagiarise my work.

I declare that this is my own work.

I attached the summary of the Turnitin match overview.

Signed by candidate

Signature:

Date: 11 / 10 / 2019
Plate fit analysis on 3D acromion

ABSTRACT

Background
Displaced acromial fractures are challenging to treat. Complex bony anatomy, variable fracture morphology and limitations of available implants present challenges in achieving favourable surgical outcomes.

We determined to what extent currently available scapular and clavicular plating systems are able to provide adequate fixation options.

Methods
Patients presenting to an urban trauma centre with acromial fractures sustained from blunt trauma between 2012 and 2016 were identified (n = 15, 14M / 1F). The fracture patterns were categorized according to location (Type I = 13%, Type II = 27%, Type III = 60%). Computed Tomography (CT) scans were reconstructed to produce three-dimensional (3D) printed anatomical models on which a quantitative fit analysis was performed. Measurements were performed twice, by five separate observers, with fit graded as anatomical fit (< 2mm), intermediate fit (> 2mm) or no-fit.

Results
The anterior clavicle 6 hole plate fitted best in 45.7% of cases. Acromial plates only achieved 27.3%. The acromion short plate together with the lateral clavicle short plates performed the best in Type II fractures. An inter-observer intraclass correlation coefficient (ICC) agreement of 0.974 was obtained.
Plate fit analysis on 3D acromion

Conclusion

The available commercial acromial plating system fails to provide adequate congruency and fit for fixation. Clavicular plates were superior alternative implants. 3D printed anatomical models can be used effectively to assist in templating implants preoperatively.

Level of evidence

Level IV – Observational biomechanical basic sciences study.

Keywords

3D printing, additive manufacturing, scapula fracture, osteosynthesis, internal fixation, quantitative fit analysis, scapula plate, acromion fracture.

ACKNOWLEDGMENTS

Steve Roche: Supervisor, data collection and editing.

The study was conducted in conjunction with the Department of Human Biology’s division of Biomechanics.

Roopam Dey, under the supervision of Sudesh Sivarasu: Technical support, processing and rendering of 3D models, editing and statistical analysis.

Frida Hansson: Data collection for the pilot study.

Ruan van Staden: Data collection and rendering 3D models.

Sithombo Maqungo: Editing.

Marilize Burger: Statistical analysis, editing and write up support.

Michael McCaul: Statistical analysis.

Carey Linden: Implant logistics and data capturing.
Plate fit analysis on 3D acromion

LIST OF TABLES AND FIGURES

Figure I: Articles published by anatomical location of the 3D printed model .. 16

Figure II: The 3D printing process from start to finish .. 19

Figure III: Type I fracture - acromion process lateral to acromion angle 44

Figure IV: Type II fracture - acromion angle to spinoglenoid notch 44

Figure V: Type III fracture - medial to the spinoglenoid notch or into scapular spine .. 45

Figure VI: Anatomical fit < 2mm gap, no overhang .. 47

Figure VII: Intermediate fit > 2mm, but can bend to improve fit 47

Figure VIII: No fit > 2mm gap, can’t fit with bending .. 47

Figure IX: Frequencies with which specific plates were chosen as the ‘best fit’ amongst five independent specialists for (A) all fractures, (B) type I, (C) type II and (D) type III acromion fractures 51

Table I: Plate fit assessment on cadaver specimens .. 41

Table II: Mechanism of injury ... 49

Table III: Quantitative fit combined analysis per plate per patient 52
Plate fit analysis on 3D acromion

ABBREVIATIONS

3D: Three dimensional

ABS: Acrylonitrile butadiene styrene

CAD: Computer Aided Design

CNC: Computer numerical controlled

CO₂: Carbon dioxide

COI: Conflict of interest

CT: Computed tomogram

DICOM: Digital imaging and communications in medicine

FDM: Fused deposition modelling

FMRI: Functional magnetic resonance imaging

ICC: Intraclass correlation coefficient

LCP: Locking Compression Plate

MIMICS: Materialise interactive medical image control system software

MR / MRI: Magnetic resonance imaging

PET: Positron emission tomography

PJ: Polyjet

RP: Rapid prototyping

SLA: Stereolithography

SLS: Selective laser sintering

SPECT: Single-photon emission computed tomography
Plate fit analysis on 3D acromion

190 SSSC: Superior shoulder suspensory complex

191 STL: Stereolithography

192 US: Ultrasound scan

193 UV: Ultraviolet

194
PART A: LITERATURE REVIEW

OBJECTIVES

To discuss:

- Scapula fracture epidemiology, management and complications.
- Acromion fractures and its fixation options.
- Three-dimensional (3D) printing techniques and development.
- The use of 3D printing in orthopaedic and other surgical disciplines.
- Quantitative fit analysis of scapula plates.
- Gaps in current literature and possible future directives.

LITERATURE SEARCH STRATEGY

A literature review was conducted in the following databases: PubMed, PubMed Central, National Centre for Biotechnology Information (NCBI) and Google Scholar. Keywords used in this search were: 3D printing, additive manufacturing, scapula fracture, osteosynthesis, internal fixation, quantitative fit analysis, scapula plate, and acromion fracture. Peer-reviewed publications where the original article was available were included. Articles from the last 10 years were utilized. All articles were written in English or had an English translation. In articles that had references quoted which conveyed an integral concept applicable to this thesis, the original article was cross-referenced. Some cross-referenced articles were older than 10 years and these were also included to give a comprehensive overview of the topic.
SUMMARY AND INTERPRETATION OF LITERATURE

Scapula fractures

The surgical management of scapula fractures was first documented by the French.5,12 In 1579 the first drawing of a scapula fracture was published by Ambroise Paré in his rendition of an injury during battle.12,40 Jean-Louis Petit devised the first classification of scapula fractures. He divided the fractures into neck, body, and process with fractures of the scapular body being further divided into longitudinal, transverse and oblique.12,42 Scapula fractures were specified by Monteggia as a fracture of the coracoid process, acromion process or the body of the scapula.22,36 The first documentation of internal fixation of the scapula was in 1913, by Albin Lambotte of Belgium.12,29 The index documentation of the surgical treatment for non-union of acromion fractures was performed by Darrach (1914), with two silk sutures.12,22

Associated injuries occur concomitantly with scapular fractures in almost 90\% of patients. These are mainly localized to the same extremity (50\%), thoracic injury (80\%), head injuries (48\%) and spinal fractures (26\%).12,49

The lateral border of the scapula comprises of the acromion process. Fractures of this process represent 8\% - 16\% of scapula fractures and are thus infrequent.11,30 It is recognized as an increasing complication of reverse shoulder arthroplasty.11,13 Overuse and shoulder trauma are the main causes of acromion fractures. These fractures can be seen in combination with scapular body fractures, glenoid process fractures, distal clavicle fractures or disorders of superior shoulder suspensory complex.11,38

Acromion fracture pattern classifications comprise the following:
Plate fit analysis on 3D acromion

Ogawa & Naniwa (1997) subdivided it into Type 1 lateral to the spinoglenoid notch and Type 2 medial to the notch.11,39

Kuhn (1994): Type 1 marginally displaced. Type 2 displaced but subacromial space maintained. Type 3 subacromial space significantly reduced.11,28

AO/OTA classification grouped according to the amount of comminution and the measured displacement.11,33

Literature with regards to surgical management of these fractures is scarce, comprising mainly of case reports and small case series studies. This leaves a gap in some conclusive surgical indications and sufficient long term follow up to evaluate patient-reported outcomes.3 The available data on decision making and management outcomes is mainly retrospective, with no distinction between surgical versus non-surgical treatment.7

When dealing with an undisplaced, isolated acromion fracture, conservative treatment will produce excellent results because of the supporting anatomical structures. The fractured fragment is kept in place by thick periosteum on top and by the deltoid and trapezius muscles, which pull the fragment in opposite directions with the same force. With substantial downward displacement, open reduction and internal fixation is suggested in an attempt to reduce the resultant subacromial impingement and the risk of non-union.14,39

Conservative treatment of displaced acromion fractures is associated with numerous complications. This spectrum ranges from intractable pain, partial or full rotator cuff tears secondary to subacromial impingement, reduced active and passive range of motion, acromioclavicular joint dislocation or subluxation, shoulder weakness, glenohumeral joint subluxation, damage to the brachial plexus and symptomatic non-union.22,39
Plate fit analysis on 3D acromion

Indications for surgical treatment for these process fractures include superior shoulder suspensory complex (SSSC) injuries with 2 or more disruptions, more than one centimeter of displacement, painful non-union and an associated ipsilateral fracture of other parts of the scapula.3,19

A multitude of complications is associated with operative management around scapula fractures. Infection rates of up to 4% are documented. Revision surgery for wound debridement, hardware removal, repeat open reduction and internal fixation in up to 17%.7,15

Various surgical options and techniques for internal fixation of acromion fractures have been tested and accepted. This includes plate fixation, tension band wiring or the use of Kirschner wires.3,39 Interfragmentary screw fixation3,35 and plate fixation supplemented with interfragmentary screws3,16 has also been described. Plate osteosynthesis of far lateral fractures can cause implant prominence and skin irritation. Tension band wiring is better suited in this setting. This technique affords rotational stability of the lateral fragment as well as compression with a distraction force. Alternatively, a fixed angle locking plate on the superior surface may be considered. Care should be taken to avoid long screws penetrating the subacromial space with resultant rotator cuff impingement. The plate can also be used to buttress the lateral end of the acromion.3

More research is needed in this area to determine whether guidelines are too rigid or what the true outcomes of both surgical and non-surgical management are. Prospective studies are needed to prove that the benefit outweighs the risk of surgery.7 As with any other fracture, the decision-making process is influenced by a number of factors, including the type of fracture, the degree of displacement and comminution, overall injury pattern as well as patient age and level of activity.
Once the surgical treatment is decided based on the patient and fracture features, the main objective of open reduction and internal fixation is to achieve anatomical reduction and secure fixation that will allow for early rehabilitation and bony union.

3D printing

Three-dimensional (3D) printing technology and its applications in the realm of healthcare provision has evolved exponentially since its inception into the industrialized world. Subsequently, various uses for this technology have developed. This dramatic evolution is exponential and the Orthopaedic society has embraced the ability to turn computer data into a tangible physical model with materials such as plastic and metal.

The predecessor of 3D printing as we know it today was developed in 1979 just before the advent of Computed Tomography (CT) scans. The model was created with a process of subtractive milling instead of additive layering as there were no 3D printers at the time. This technique starts with a block of material that is shaped under the control of a Computer Numerical Controlled (CNC) machine. This resembles sculpting a figure from a block of stone.

Over the next 40 years, the 3D printing capabilities increased with the improvements in computer hardware and especially software programs and processing capabilities. More complex imaging modalities became available to generate detailed 2-dimensional reconstructions. The clinical applications and demands in 3D images became increasingly relevant.
Plate fit analysis on 3D acromion

Commercially available prototypes gradually made inroads into the Orthopaedic market and medicine as a whole. This was still experimental and minimal clinical introduction of this interesting new development was documented.17,21

Further innovations were continually being developed, and it became apparent that the regulation of this field was imminent to adhere to strict governing policies. Quality control and economic policies were slow to keep up with the ever-changing advances.37,51

\textbf{Figure I: Articles published by anatomical location of the 3D printed model.}

\textit{Sourced from Hoang et al 2016.}23

Advances in technology have made 3D modelling and 3D printing more affordable and readily available.21,47 Various articles have been produced covering a wide spectrum of anatomical locations of interest with the most form the maxilla-facial area (Figure I).
Plate fit analysis on 3D acromion

Recent improvements in clinical image acquisition, user-friendly 3D software, as well as more affordable printing devices have now enabled 3D computer modelling and printing to become more accessible for use as an in-house technology. The key benefit of 3D printing in medical applications is stereotaxis or tactile understanding of the anatomy. By integrating 3D models into surgical practice, studies have shown the potential to reduce surgical time, decrease the time required under anesthesia, lower the risk of postoperative complications, and can possibly improve patient outcomes.

This technology has also shown benefits for patients’ education, and a 3D printed model of a patient’s affected anatomy can greatly increase their understanding and acceptance of a planned procedure. In addition, it is easier to gain informed consent when patients are uncertain or have reservations regarding their treatment. Likewise, it provides benefits to a surgeon’s education and training. When a surgeon is learning a new surgical technique, it can be beneficial to have increased visualization of topographical structures and the relationship between anatomic landmarks. This knowledge is usually gained through cadaver dissections during medical training; however, due to societal pressure, cost restrictions, health regulations, and the scarcity of desired abnormal cases, sufficient practical experience can be difficult to gain.

Usage of individualized 3D printed models of bony anatomy will likely become standard practice in preoperative preparation, surgical replication, intraoperative assistance, and implant improvement. Other applications of 3D printing models include the reconstruction of large bone defects. A mirror image created from the contralateral side of the pathology will adequately provide the required implant
Plate fit analysis on 3D acromion

dimensions that would enable the specialist to contour the implant to the appropriate dimensions for an ideal fit preoperatively.17

Anatomic prototype production is the most common use of 3D printing in surgery. In a review by Hoang et al, the author report on 126 publications which reported the use of 3D printed anatomic models. Of these, only 18 publications reports on implants, prosthesis, splints, and external fixators, whilst 36 publications reported on surgical instrumentation and guides.23

A recent study in 2016 compared the benefit of 3D printed models compared to 3D images during preoperative planning. Participants planned surgery using 3D computer and physical models respectively. The residents reviewing the printed models achieved higher overall scores. The conclusion was made that 3D printed modelling improved the preoperative planning techniques of inexperienced surgeons.23,53

Kim et al defined an innovative technique by producing a real-size (3D) printed clavicle model. In this study, a CT scan of both clavicles was obtained, and a real-size clavicle 3D printed model produced. Utilizing a mirror image technique, the intact clavicle of the contralateral uninjured side is 3D printed inversely to produce a replica of the fractured side before the injury.26 This technique could be used pre- and intraoperatively as an adjunct tool for minimally invasive plating of displaced comminuted midshaft clavicle fractures.

Distinguishing bone from adjacent soft tissue remains a big challenge when creating accurate 3D models from CT images of in situ scapulae. The glenoid in particular is a problematic anatomical area as the cancellous bones’ radiodensity is almost indistinguishable from the surrounding soft tissue. Results from work by
Plate fit analysis on 3D acromion

Bryce et al validated the accuracy and reproducibility of creating 3D models from
in situ scapulae by using efficient segmentation.\(^8\)

There are 4 main stages involved in producing a 3D prototype model (Figure II)
from Hoang *et al*:

1. Imaging
2. Image processing and segmentation
3. Creation of a reconstructed 3D computer model
4. Creation of the 3D printed model \(^{23}\)

Figure II: The 3D printing process from start to finish.

*Sourced from Hoang *et al* 2016.\(^{23}\)

Imaging

3D medical imaging is the basis for all 3D models, and it is vital that the radiology
department is involved and aware of the desire to create a 3D model before the
imaging of the patient.\(^{21,48}\) Considerations for the imaging should not only include
Plate fit analysis on 3D acromion

the basic modality (CT), but also the imaging parameters such as the slice spacing
and thickness, as well as the required resolution.10,21 The most appropriate choice of imaging modality is dependent on the tissue of
interest and intended outcome. Bone is best captured with CT, whereas soft tissues
such as the brain or heart are best viewed with MRI; both modalities are capable of
producing images of sufficient quality for use in modelling.21,54 Once an
appropriate imaging modality has been chosen, the parameters of the scan also
need to be considered. It is important that the imaging is set up to be 3D and in
general the higher the resolution the better for creating 3D models or printing.
Once created, the stack of DICOM (Digital Imaging and Communications in
Medicine) images can be sent for model creation.21,34

\textit{Image processing}

The image processing components of this pathway can be split into 3 main
components:

Preprocessing of the images to improve quality.

Segmentation (selecting the regions of the image to be included in the
model) and postprocessing.

Rendering (creation of a 3D interactive model).

The aim of preprocessing is to clean the raw image and improve quality, which
most often calls for removing or minimizing noise from the image. Noise in an
imaging sense is erroneous data or artifacts (visual static) created during the
imaging process.4,21
Segmentation, using masking techniques, is the process by which the desired anatomy is separated from the surrounding unwanted tissue and any remaining noise.21,52 The result is a binary mask, in which each voxel is labelled as either inside or outside the volume of interest. This is a vital step along the path to creation of a 3D model, and there are a number of issues affecting the final accuracy of the model that need to be considered, including the partial volume effect as well as a range of techniques for carrying out the segmentation process.21

After segmentation, the model is exported as a stereolithography (STL) file, and some further processing of the data is required before it is ready for use.21,43 The software uses the STL file to generate a computer model of the object by representing the surface as a unique collection of small triangles, or tessellations, closely fitted together without gaps or overlapping. This tessellated surface then represents the objects virtual surface as an overlying mesh of triangles.21

Additional surplus noise and segmentation artifacts in the model must be identified and removed. Segmentation artifacts come in 2 basic types: surface irregularities, and unwanted bridges between sections that should not be connected.21,46

3D computer model

Smoothing of the model is the process by which the voxelated model from segmentation is turned into a smooth, more natural looking object. Caution must be taken when smoothing a model, however, as the tendency to “over smooth” can be strong. At this stage in the process, the 3D model can now be virtually manipulated to take measurements or test surgical procedures or virtual surgery can even be performed.21
Plate fit analysis on 3D acromion

3D printed model

The printer resolution or thickness of the printed layers is an important consideration. Thicker filament layers used in a model will result in a poorer quality appearance, and important features that have been carefully maintained throughout the modelling process can be lost. The process of printing a complex 3D shape generally requires the use of support material. This material is used by the printer to support the model during its creation and is then removed upon completion. Support material is particularly important when there are overhangs or delicate geometry associated with complex anatomy or pathology. Printing time is also an important factor to consider. The time to print a model after the segmentation and model development process is dependent on 3 factors: printer resolution, the volume of the model, and the orientation of the model. The most common 3D printing technologies used in the medical field are:

- Fused deposition modelling (FDM)
- Laminated object manufacturing
- Stereolithography (SLA)
- Polyjet (PJ) printing
- Colourjet printing
- Selective laser sintering (SLS)

FDM is a technique in which the 3D printer melts plastic and extrudes it out of a nozzle in a controlled path, gradually building the printed shape in layers, most
Plate fit analysis on 3D acromion

commonly used by consumer or hobby printers. These printers are affordable and often have open-source software and technology.9,21 With laminated object manufacturing very thin layers of the build material (paper, polymer, or metal) are cut to precise shape, stacked, and bound together. This method was very popular for Orthopedic modelling and rapid prototyping and is cost effective because the raw materials are so readily available. However, this technique is now less commonly used as other technologies have been developed further and became more popular.

Both SLA and PJ printers use ultraviolet (UV) curable photopolymer resins to construct the model. Colourjet printing works by applying layers of powder or gypsum to a tray, then spraying directed bursts of glue onto each layer binding the powder together.

SLS uses a high-power carbon dioxide (CO\textsubscript{2}) laser to fuse the powdered plastic together. The print bed is first covered in a layer of fine plastic polymer; once the layer has been deposited, each sequential layer is bound together by the CO\textsubscript{2} laser.

To calculate the filters and smoothing algorithms required to produce high-quality meshes, high-performance computers are recommended. There are Computer Aided Design (CAD) workstations that have been purposefully designed, optimizing the linear calculations used by the segmentation and modelling software. There are many commercial and freeware programs available that can be used to segment a region of interest out of a DICOM stack.21

Various materials can be used to print in 3 dimensions:

Sintered powdered metal

Stainless steel
Plate fit analysis on 3D acromion

Nitinol
Titanium
Ceramic
Bone-like (e.g., CT-bone [Xiloc, Geleen, Netherlands]
Plastics (e.g., PolyJet [Stratasys, Eden Prairie, Minnesota], polyether ether ketone, polyether ketone ketone, acrylonitrile butadiene styrene [ABS]).

Quantitative fit analysis

Orthopaedic plate implants have been around since 1896. The design and applications have improved and are continuously expanded. Advances have been made with better materials used and the plates becoming more low profile and with a smaller footprint on bone. Various systems include Compression Plate, Dynamic Compression Plate, Limited Contact Dynamic Compression Plate, Point Contact Fixator, Less Invasive Stabilization System plate, Locking Compression Plate (LCP) and Pre-contoured LCP. The newer designs facilitate and promote a more bioactive healing process.

From a structural point of view, while pre-contoured LCP’s are made for a specific site, they cannot always fit the anatomy of all patients. The variation in bone morphology, due to various factors including age, gender, race, and nutrition, is the main cause of a non-fit. Trying to provide plate shapes for all the possible anatomical variations, is impossible and would lead to an immense logistical challenge for hospitals and manufacturing companies. Plates are designed based on the average anatomical shapes of the bone morphology of the group evaluated.

Locked pre-contoured plates are a form of internal fixation implants. Stability is achieved without plate compression onto the bone. An anatomical fit between the
Plate fit analysis on 3D acromion plate-bone interface is not a prerequisite for a biomechanically stable fixation. Locking plate mechanics, however, demonstrate optimal load transfer when the interface from plate to screw is closest to the bone cortex it is applied to.1,45 The greater this distance becomes, the less efficient it is for load transfer, due to the increased screw bending moment.44,45 Therefore, to promote maximum fracture healing, there needs to be a balance in the distance between the plate and the bone. An anatomical plate, fitting securely without a gap will help achieve this balance. Quantitative fit assessment involves measuring the distance between a plate and the underlying bone according to specific criteria. It is necessary to determine the suitable criteria and parameters for a clinically significant fit assessment. Traditional fit analyses of fixation plates were done by visual inspection of a plate fitted to cadaver or prototype bones. This process had its limitations. When using cadaver bones from a museum collection, it will include older bones. To use these in fit analyses the morphological changes through generations will be disregarded. Furthermore, the visual inspection of the plate fit produces results that are qualitative in nature. In an effort to remedy these challenges, newer studies started to focus on using computerized or virtual methods to evaluate fit congruence. These methods will offer a mode of assessing fit in a standardized and objective way. The availability of new technology in medical imaging opens up access to large data sets of bone morphology from present-day populations. This will improve the development of automated and semi-automated assessment methods. Virtual bone models can be reconstructed from CT or Magnetic Resonance Imaging (MRI). Virtual 3D plate models can also be created and digitally applied for fit
Plate fit analysis on 3D acromion

assessments. New implant development and improvement of current systems can be derived from these data sets.

Previously, used manual and semi-automated fit assessment methods are not ideal since both methods require a long processing time and are operator-dependent.

Computerized fit assessment methods integrating plate fit and positioning has become superior. This will make batch processing a possibility, which in turn will improve efficiency and result in an operator-independent outcome.45

Quantitative fit analysis was first described in the fit assessment for proximal tibia plates. Cadaver bones were used for the fit assessment.20,45 Kozic et al proposed the first automated fit assessment on 93 tibias. With a proximal tibial plate being templated on models.27,45

In the upper limb, various studies have incorporated fit analysis to assess plates. Malhas et al used plates from four different manufacturers and applied it to 79 right human clavicles from cadaver specimens.32 The most anatomical fitting plate from each manufacturer was clamped in place by two examiners with the fit then graded into, poor fit, good fit or anatomic fit. Intra-observer and inter-observer reliability was assessed by examiners repeating the process. A final score for each plate for each clavicle was obtained from the average scores. Resulting data indicate that systems with variable implant options are superior in smaller and usually female clavicles. No statistical difference was shown in larger clavicles. Plate contouring was needed in 73% of cases.32

In a different study, 100 clavicle pairs were analyzed by Huang et al.24 A digitizer and modeling software were utilized to determine the position and size of the superior clavicular curve. Axial radiographs were produced of all clavicles and a
Plate fit analysis on 3D acromion

pre-contoured LCP form Acumed was templated. Adobe Photoshop technology was used to freely translate and rotate the plates on the clavicle to assess the amount and location of the best fit. This was, however, a two-dimensional analysis of plate fit rather than a three-dimensional analysis and attributed as the main limitation of this study.²⁴

Park et al conducted a study to evaluate the congruency of current scapular plate designs.⁴¹ They used sophisticated 3D modeling techniques to virtually place fragment-specific locking plates on CT reconstructions of multiple cadaveric scapulae. All 4 plate designs from a single manufacturer were considered. To their knowledge, this was the first study to evaluate the congruency of fit for locking scapular plates. This study allowed for virtual, noninvasive analysis of several different measurement variables. This 3D image-analysis technique can be used to evaluate the congruency of any implant with any surface. Any number of implants may be studied in this manner.⁴¹

A new technique was proposed by Beliën et al by utilizing 3D models and distal clavicle reconstruction plates to treat acromion fractures and symptomatic os acromiale.⁶ The authors suggested that this approach would be a valuable addition to traditional techniques. They printed a 3D model of the acromion whilst an osteosynthesis plate was pre-bent to fit the anatomical shape of the specific acromion. The technique was tested, and reports were presented on five patients, of which three had os acromiale and the other two presented with acromial fractures. These patients were followed-up during their rehabilitation and evaluated using the Constant–Murley and the Disabilities of the Arm, Shoulder and Hand scores. Making use of a preoperative patient-customized plate is a new technique with many potential uses.⁶
IDENTIFICATION OF GAPS OR NEEDS FOR FURTHER RESEARCH

Literature on the combined themes of modelling fracture specific plates around the acromion on 3D printed anatomical models is limited with available literature being of low evidence with confusing methodologies. Acromion fractures are uncommon and therefore optimum treatment is not well documented with no prospective patient outcome measured trials to support current practices. Additionally, guidelines are made but not always followed. Further adjuncts have become available to obtain a tactile understanding of the complex anatomy considering the need to identify the optimal plate for a specific fracture pattern.

The advances in 3D printing are astronomical and the applications limitless. Specialists, therefore, need to embrace the new possibilities and engage in taking it forward to the advantage of all involved around providing quality healthcare, but more importantly, to the benefit of the patients.

REFERENCES

Plate fit analysis on 3D acromion

47. Starosolski ZA, Kan JH, Rosenfeld SD, Krishnamurthy R, Annapragada A. Application of 3-D printing (rapid prototyping) for creating physical models.
Plate fit analysis on 3D acromion

Sugar A, Bibb R, Morris C, Parkhouse J. The development of a collaborative
medical modelling service: organisational and technical considerations. Br. J.

Tadros AMA, Lunsjo K, Czechowski J, Abu-Zidan FM. Multiple-region
scapular fractures had more severe chest injury than single-region fractures: a
prospective study of 107 blunt trauma patients. J. Trauma. 2007
Oct;63(4):889–93. doi:10.1097/01.ta.0000235876.32569.db

Tetsworth K, Block S, Glatt V. Putting 3D modelling and 3D printing into
practice: virtual surgery and preoperative planning to reconstruct complex
doi:10.1051/sicotj/2016043

Tetsworth KD, Mettyas T. Overview of Emerging Technology in Orthopedic
doi:10.1097/BTO.0000000000000187

Viceconti M, Zannoni C, Testi D, Cappello A. CT data sets surface extraction
for biomechanical modeling of long bones. Comput. Methods Programs

Zheng Y, Yu D, Zhao J, Wu Y, Zheng B. 3D Printout Models vs. 3D-

Zia S, Jaffar MA, Mirza AM, Choi T-S. Rician noise removal from MR
images using novel adapted selective non-local means filter. Multimed. Tools
Plate fit analysis on 3D acromion

Title

Quantitative fit analysis of acromion fracture plating systems using three-dimensional anatomical modelling

Running title

Plate fit analysis on 3D acromion

Authors

Dr. Johan Charilaou - MBChB, FC Orth (SA)
Mr. Roopam Dey - MSc Medical Engineering
Dr. Sudesh Sivarasu - PhD Engineering
Dr. Frida Hansson - MD (Sweden)
Dr. Ruan van Staden - MBChB
Prof. Sithombo Maqungo - MBChB, FC Orth (SA)
Prof. Stephen Roche - MBChB, FC Orth (SA)

Institutional accreditation

Faculty of Health Sciences, Department of Surgery, Division of Orthopaedic Surgery, University of Cape Town and Orthopaedic Biomechanics Laboratory, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town.

Source of support/sponsor

Clinical Research Centre, University of Cape Town, Groote Schuur Hospital.
Plate fit analysis on 3D acromion

Correspondence

Dr. Johan Charilaou

University of Cape Town, Division of Orthopaedic Surgery, Old Main Building, Room H49, Groote Schuur Hospital, Main Road, Observatory, Cape Town, South Africa, 7935.

E-mail: johancharilaou@hotmail.com

Disclaimer

None

Acknowledgements

Dr. Marilize Burger - statistical analysis, editing and write up support.

Dr. Michael McCaul - statistical analysis.

Mrs. Carey Linden - implant logistics and data capturing.

Ethical committee approval

University of Cape Town, Faculty of Health Science, Human Research Ethics Committee HREC REF 695/2016.
Plate fit analysis on 3D acromion

MAIN TEXT OF ARTICLE

ABSTRACT

Background

Displaced acromial fractures are challenging to treat. Complex bony anatomy, variable fracture morphology and limitations of available implants present challenges in achieving favourable surgical outcomes.

We determined to what extent currently available scapular and clavicular plating systems are able to provide adequate fixation options.

Methods

Patients presenting to an urban trauma centre with acromial fractures sustained from blunt trauma between 2012 and 2016 were identified (n = 15, 14M / 1F). The fracture patterns were categorized according to location (Type I = 13%, Type II = 27%, Type III = 60%). Computed Tomography (CT) scans were reconstructed to produce three-dimensional (3D) printed anatomical models on which a quantitative fit analysis was performed. Measurements were performed twice, by five separate observers, with fit graded as anatomical fit (< 2mm), intermediate fit (> 2mm) or no-fit.

Results

The anterior clavicle 6 hole plate fitted best in 45.7% of overall cases. Acromial plates only achieved 27.3%. The acromion short plate together with the lateral clavicle short plates performed the best in type II fractures. An inter-observer intraclass correlation coefficient (ICC) agreement of 0.974 was obtained.
Conclusion

The available commercial acromial plating system fails to provide adequate congruency and fit for fixation. Clavicular plates were superior alternative implants. 3D printed anatomical models can be used effectively to assist in templating implants preoperatively.

Level of evidence

Level IV – Observational biomechanical basic sciences study.

Keywords

3D printing, additive manufacturing, scapula fracture, osteosynthesis, internal fixation, quantitative fit analysis, scapula plate, acromion fracture.
INTRODUCTION

Acromion fractures are uncommon and comprise 8% – 16% of scapula fractures.\(^2,6\) With the advent of increasing reverse total shoulder arthroplasty, acromion fractures is an associated complication in 5% – 6.9% of cases.\(^5,6\) Fractures of the scapula process are generally managed non-operatively with relatively good results.\(^1\) Literature regarding surgical management is predominantly low-level and circumstantial.\(^1\)

Anecdotal experience suggests that pre-contoured plates assigned and developed for other anatomical sites sometimes fit better on alternative periarticular regions. Lateral end of clavicle plates are options when internal fixation of the acromion is performed.\(^2\)

Quantitative fit assessment measures the distance between a plate used for internal fixation and the underlying fractured bone fragments.\(^13\) This analysis was customarily performed by visual inspection of the templated implant on cadaver or prototype bones. The evolution in medical imaging technology allows access to morphological data of bone from modern populations. These datasets afford virtual methods for fit analysis and therefore enables enhancements in implant design.\(^13\)

Additive manufacturing or three-dimensional (3D) printing encompass any technique used for creating a physical object from computer data through an additive process. A variety of materials can be laid down in successive layers.\(^9,14\) 3D computer modelling and printing have become more accessible for everyday use in Orthopaedic practice since recent advances in clinical image acquisition, user-friendly software applications, and inexpensive printing devices.\(^9\)
Plate fit analysis on 3D acromion

fundamental benefit of 3D printing in medical applications is the stereotaxis that provides a tactile understanding of the anatomy.9,10 Beliën et al developed a novel method to treat acromion fractures and os acromiale by using a 3D model and a distal clavicle reconstruction plate.2 The authors reported on the technique and outcomes in 5 patients. The models were printed, and the plates contoured to fit preoperatively. The fixation achieved was adequate for bone union. The conclusion was made that fashioning the plates according to patient-specific anatomy is possible and reduces surgical time.2

We conducted a pilot study on cadaver dry bone specimens, (unpublished data) which reported long acromion plates not to fit in 48% of specimens whilst the combined anatomical fit for acromion plates was only achieved in 51% of specimens (Table I).

\textit{Table I: Plate fit assessment on cadaver specimens}

<table>
<thead>
<tr>
<th></th>
<th>Anatomical fit (%)</th>
<th>Intermediate fit (%)</th>
<th>No fit (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acromion long</td>
<td>15</td>
<td>37</td>
<td>48</td>
</tr>
<tr>
<td>\hspace{0.5cm} (n=46)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acromion short</td>
<td>36</td>
<td>62</td>
<td>2</td>
</tr>
<tr>
<td>\hspace{0.5cm} (n=47)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lateral clavicle short (n=46)</td>
<td>28</td>
<td>67</td>
<td>4</td>
</tr>
<tr>
<td>Lateral clavicle long (n=46)</td>
<td>2</td>
<td>70</td>
<td>28</td>
</tr>
</tbody>
</table>
Plate fit analysis on 3D acromion

This highlights the need to critically evaluate acromion and clavicle plate congruence on acromion fractures. This observation served as a further need to investigate specialised fracture plates for the acromion.

However, limited theatre time and resource constraint environments make this difficult to test in vivo. The aim of this study is, therefore, to utilize actual size 3D printed models of acromion fractures to template and evaluate acromion and clavicle plate congruence. This can determine to what extent currently available plating systems are able to provide adequate fixation options for acromial fractures.
MATERIALS AND METHODS

Study design

This study followed an observational biomechanical basic science design. A multi-observer quantitative fit analysis of the scapular plates was performed. This was followed up with statistical analysis to investigate the extent to which these plates were successful in fitting to the fractured bone surface, within the surgical parameters.

Characteristics of the study and population

All patients with scapula fractures, who underwent a CT scan of the shoulder, presenting to Groote Schuur Hospital (Cape Town, South Africa) from 2012 to 2016 were identified using Phillips iSite Electronic Radiology System database. All fractures due to blunt trauma, irrespective of whether these fractures were surgically or conservatively managed, were considered for inclusion. Participants with Goss and Ideberg Type 1a and 1b fracture-dislocations of the glenoid rim were excluded. Malunited fractures undergoing delayed surgery and fractures due to gunshot wounds were also excluded. Gunshot wounds are typically difficult to segment due to scattered bullet fragments. These fracture patterns are also very comminuted and do not fit the usual fracture classifications or management paths. A total of 41 scapulae were examined and classified according to the anatomical location of the fracture on the scapula body, glenoid neck and -fossa, coracoid and acromion/scapula spine. Fifteen acromion fractures were finally identified for inclusion. The fractures were divided into 3 types according to the anatomical location of the fracture lines: (Figures III - V)

Type I – acromion process lateral to acromion angle. (n = 2, 13%)
Plate fit analysis on 3D acromion

Type II – acromion angle to spinoglenoid notch. (n = 4, 27%)

Type III – medial to the spinoglenoid notch or into scapular spine. (n = 9, 60%)

Figure III: Type I fracture - acromion process lateral to acromion angle

Figure IV: Type II fracture - acromion angle to spinoglenoid notch
Plate fit analysis on 3D acromion

Figure V: Type III fracture - medial to the spinoglenoid notch or into scapular spine

Research procedures

The Digital Imaging and Communication in Medicine (DICOM) files were obtained from the CT scans previously identified from the database. Multiplanar reconstruction (MPR; axial, sagittal, coronal) and 3D volume rendering of the fracture was obtained. Working on the 3D-reconstruction, the fractured bone was isolated with a digital cropping tool. The CT scans were reconstructed in-silico. Materialise Mimics® (Leuven, Belgium). The Surface Rendering model of the fractured bone was created and exported to a Stereolithography (STL) file. The files were analyzed and prepared for printing with 3D dedicated Z-suite software. The Zortrax M200 printer system and acrylonitrile butadiene styrene (ABS), a common thermoplastic polymer plastic filament, was used to produce the prototypes. Areas of the fracture were identified, and care taken to treat each fractured fragment as a separate entity. The reconstructed model of each bone was synthesized into a physical 3D scapula using an additive manufacturing technique.
Plate fit analysis on 3D acromion

Fracture fragments were debrided, anatomically reduced and kept in position using ordinary glue. The only available plating system currently available in South-Africa is supplied by Acumed (Hillsboro, OR, USA).

Eight implants were used: (i) acromion short, (ii) acromion long, (iii) lateral clavicle short 4 hole, (iv) lateral clavicle short 8 hole, (v) lateral clavicle long 4 hole, (vi) lateral clavicle long 8 hole, (vii) anterior clavicle 6 hole, (viii) anterior clavicle 8 hole. We chose to include clavicle plates as we have been using these to stabilise acromial fractures for many years.

Conformity of fit and the potential degree of plate bending that might be required for an anatomic fit were assessed. The variables were a gap, alignment, and overhang. A digital Vernier caliper was used for measurements.

We devised the following grading system: (Figures VI to VIII)

Anatomical fit: if there was a 2mm or less gap between the plate and bone, no overhang and no bending needed to align the plate. Fracture fixation adequate with a minimum of 3 screws either side of the fracture line.

Intermediate fit: if more than a 2mm gap or if bending was required to narrow this gap or to correct the overhang to achieve the required fixation criteria.

No fit: if there was too much off ending and/or overhang to correct with plate manipulation, thus having screw holes not over the bone or if the plate was inadequate to obtain fixation, thus less than 3 screw holes on each side of the fracture.
Plate fit analysis on 3D acromion

Figure VI: Anatomical fit < 2mm gap, no overhang

Figure VII: Intermediate fit > 2mm, but can bend to improve fit

Figure VIII: No fit > 2mm gap, can’t fit with bending

Five raters, comprising of a specialist Orthopaedic upper limb surgeon, a trainee Orthopaedic Surgery registrar, a medical student, a Bioengineer, and a
Plate fit analysis on 3D acromion

Biokineticist conducted the measurements on two separate occasions to determine the intraclass correlation coefficient (ICC). There was a two-week interval between measurements.

Data Analysis

All the data sets were collected and captured and patient details with demographics were identified. Stata 14 data analysis and statistical software were used. Data is described as a mean ± standard deviation if normally distributed.

Each observation was converted into a numerical score (no fit – 0; intermediate fit – 5; anatomical fit - 10) which were processed using IBM SPSS Statistics v.25 (Armonk, NY: IBM Corp).

Categorical data are presented as counts with frequencies indicated where appropriate. The best fitting plate per type of fracture was calculated as a frequency:

\[
\frac{(\text{Rater 1 score} + \text{Rater 2 score} + \text{Rater 3 score} + \text{Rater 4 score} + \text{Rater 5 score})}{\text{Total possible score per plate}} \times 100
\]
RESULTS

Demographic data

The mean age of all participants, 14 male and 1 female, was 42.3 ± 13.8 years. In six patients, the left side was affected whilst nine patients were injured on the right-hand side. The majority of injuries (46.7%) occurred due to pedestrian-vehicle accidents (Table II).

Table II: Mechanism of injury

<table>
<thead>
<tr>
<th>Mechanism of injury</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian-vehicle accident</td>
<td>7 (46.7)</td>
</tr>
<tr>
<td>Motor vehicle accident</td>
<td>5 (33.3)</td>
</tr>
<tr>
<td>Motorbike accident</td>
<td>1 (6.7)</td>
</tr>
<tr>
<td>Blunt trauma</td>
<td>2 (13.3)</td>
</tr>
</tbody>
</table>

Data is presented as a count with the frequency indicated in parentheses

Fracture types

Two patients had a type I fracture (13.3%), four had a type II fracture (26.7%), and nine patients suffered from a type III fracture (60%).
Plate fit analysis on 3D acromion

1001 Printing time
The mean printing time was 504.7 ± 123.3 minutes.

1003 Inter-observer reliability
The overall intra-class correlation coefficient (ICC) agreement was 0.974.

1005 Quantitative fit analysis
The Anterior clavicle 6 hole plate was the plate of choice in 45.7% of cases when all fractures were considered (Figure IX - A). Lateral clavicle short plates were the best fit in type I fractures (60.0% and 67.5% respectively) (Figure IX - B). The long acromion plate only fitted in 11% of fractures. The acromion short plate together with the two types of lateral clavicle short plates performed the best in type II fractures (Figure IX - C). In type III fractures the anterior clavicle 6 hole plate had the best fit (60%) followed by the anterior clavicle 8 hole plate (48.3%). The two lateral clavicle plates also had a 26.7% (lateral clavicle long 6 hole) and 27.8% (lateral clavicle long 8 hole) best fit in type III fractures (Figure IX - D).

1016 The categorical data (Table III) is summarized as a consensus between the 5 rates for each plate per patient.
Figure IX: Frequencies with which specific plates were chosen as the ‘best fit’ amongst five independent specialists for (A) all fractures, (B) type I, (c) type II and (D) type III acromion fractures.
Plate fit analysis on 3D acromion

Table III: Quantitative fit combined analysis per plate per patient

<table>
<thead>
<tr>
<th>Patient</th>
<th>Fracture type</th>
<th>Acromion Short</th>
<th>Acromion Long</th>
<th>Later al Clavicle Short 4</th>
<th>Later al Clavicle Short 8</th>
<th>Later al Clavicle Long 4</th>
<th>Later al Clavicle Long 8</th>
<th>Anterior Clavicle 6 Hole</th>
<th>Anterior Clavicle 8 Hole</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>f</td>
<td>i</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>f</td>
<td>i</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>i</td>
<td>i</td>
<td>i</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>i</td>
<td>n</td>
<td>i</td>
<td>i</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>i</td>
<td>i</td>
<td>f</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>f</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>n</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>i</td>
<td>i</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>f</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>i</td>
<td>i</td>
<td>f</td>
<td>i</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>i</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
</tr>
</tbody>
</table>

n = no fit, i = intermediate fit, f = anatomical fit
DISCUSSION

The majority of acromion fractures in our cohort occurred as a result of high energy trauma sustained by a male predominance with a median age of 42.3 years (Table II).

A variety of fixation techniques have been described for the open reduction and internal fixation of acromion fractures, including tension band wiring for more distal fractures, plate fixation for fractures that are more proximal or through the acromial base and spine,1,12 interfragmentary screw fixation,1,11 plate fixation supplemented with interfragmentary screws,1,7 and fixation with Kirschner wires.1,12 However, published data about decision-making and treatment success of acromion fractures are mostly retrospective and do not compare operative versus non-operative treatment.3

The aim of this study was to determine to what extent a currently available scapular and clavicular plating system is able to provide adequate fixation options for acromion fractures (Figure IX: A - D).

The results from this study show that acromion plates, manufactured specifically for use in acromion fractures, were only deemed ‘somewhat suitable’ by a panel of five independent investigators, when fitted on 3D printed acromion fractures. Long and short acromial plates do not fit the fracture patterns identified at our level 1 trauma hospital in 80% of cases. The dedicated acromion plates were, however, more suitable for a subset of acromion fractures, termed type II (48.75%) fractures and less so for type I (3.75%) and III fractures (0.6%).

The majority (60%) of fracture types were categorised as type III extending into the scapular spine region (Figures III - V). This highlights the observation that the
Plate fit analysis on 3D acromion

anatomically designed plates do not adequately address fracture patterns seen in our cohort.

A wide spectrum of heterogenicity of the acromion anatomy, infrequently used approaches, and limitations of available implants, together with variable fracture morphology present challenges in trying to achieve favourable fixation and resultant outcomes following surgery. Currently, surgeons incorporate the use of various fixed angle plate options intended for other periarticular areas in the fixation of scapula fractures. Plate systems for the lateral clavicle have been shown to be a good match for the acromion. This trialling of implants is done intraoperatively and may add to the surgical time. This study confirms that the clavicular plating systems can be successfully used as alternative implants to the anatomical designed acromial plates. The location of the fracture lines determines the type of plate to be considered. The advantage of these lateral end of clavicle plates are that more screws with a smaller diameter are available for fixation to the lateral side of the acromion process in type I fractures (Figure IX - B) as compared to the dedicated acromion plates with larger diameter options in a straight line that will be more appropriate for a type II fracture (Figure IX - C). Plate congruence does not equal adequate biomechanical fixation and the fracture pattern needs to be adequately assessed.

The Intra class correlation ranges were observed to be between 0.89 to 0.99 for the first set of observations and between 0.81 and 0.99 for the second set of observations. The overall average ICC was found to be 0.965. This supports the agreements between the 5 investigators relating to the overall fit assessment and shows excellent inter-observer reliability regarding whether the
Plate fit analysis on 3D acromion

1078 plates would adequately address the fracture patterns, supporting the fact that even though the orthopaedic knowledge was varied, the observations correlated well.

1080 The intra-rater reliability was not formally processed in the analysis of the data and can be seen as a possible limitation.

1082 By integrating 3D models into surgical practice, as done in this study, there is a potential to reduce the surgical and anaesthetic time and therefore reduce overall cost. This may also lower the risk of postoperative complications and improve patient outcomes. Better planning procedures improve plate selection for the fracture pattern and therefore optimal fixation. The literature has shown the added benefit of educating patients and empowering them to make informed decisions around accepting a proposed surgical plan when using 3D modelling. Likewise, it provides benefits to surgeons’ education and training.

1090 The use of custom 3D printed models of patient bone may become standard in preoperative planning, surgical simulation, intraoperative guidance, and implant development.

1093 Results from the work by Bryce et al verify that accurate and reproducible 3D models can be created from in situ scapulae by use of effective segmentation. This validation of the accuracy of the prototype models that can be produced replicates the true nature of matching fracture fragments as done intra-operatively.

1097 This study integrated three components, namely fracture fixation, 3D printing of anatomical acromion models and quantitative fit analysis of plates to come to the stated observations. The combination of these processes can assist surgeons preoperatively. One can apply these techniques to any anatomical site or implant system. 3D printing expertise is rapidly becoming more accessible to clinicians.
Plate fit analysis on 3D acromion

worldwide. The initial concerns of excessive costs and long production times are swiftly becoming negated. Clinicians need to be wary to still maintain high standards of quality control whilst complying to regulatory guidelines.

The production of 3D prototypes is an attainable skill not limited to surgeons or engineers. It is preferable to have basic anatomical knowledge to assure accuracy.

The technique can initially take a novice a long time. This time shortened over the course of the study as investigators improved on their learning curve. The technical capabilities of the printer used also impacts the time needed to produce a 3D model. This, combined with the complexity of the fracture fragments itself, add up to the print time as shown with our mean printing time of 504.7 minutes per model. The print time was not subdivided and recorded for each stage of the process and also weakens the result. This was however only a secondary observation.

Another limitation of this study is that we believe this is the only anatomical scapula plating system available and therefore conclusions are limited to the sole supplier. The design is however inadequate especially for type I and III fractures (Figure IX: B and D). This is conceivably an avenue to pursue to develop customized patient-specific plates or to collaborate with the current developers to maximize the plate fit and design.

The sample size is also limited due to the rarity of these injuries. This is, however, the largest data set currently investigated.

The advances in 3D printing are progressive and the applications invariably will become limitless. We need to embrace these new possibilities with caution and
Plate fit analysis on 3D acromion

1125 engage in taking it forward to the advantage of all involved in providing improved

1126 quality of healthcare.

1127
CONCLUSION

Currently, available dedicated acromial plating systems fail to provide adequate congruency and fit for fixation of the majority of acromial fractures in the present cohort. A more anatomical and versatile plating system is required. Clavicular plates were found to provide a better fit and potential better fixation, which should be borne in mind when planning operative fixation of acromial fractures.

Using 3D printed anatomical models can be used effectively to assist in templating implants preoperatively.
REFERENCES

8. Eltorai AEM, Nguyen E, Daniels AH. Three-Dimensional Printing in
Plate fit analysis on 3D acromion

PART C: ADDENDA

CONTRIBUTIONS OF AUTHORS

Johan Charilaou: Primary author and principal investigator, data collection and processing. Final write up.

Steve Roche: Supervisor. Data collection and editing.

Roopam Dey, under the supervision of Sudesh Sivarasu: Technical support, processing and rendering of 3D models, editing and statistical analysis.

Frida Hansson: Data collection

Ruan van Staden: Data collection and rendering 3D models.

Sithombo Maqungo: Editing and review.

COMPETING INTERESTS AND FUNDING

There are no competing interests and no funding was received during this study.

RELEVANT JOURNAL INFORMATION AND INSTRUCTIONS TO AUTHORS

The Journal of Shoulder and Elbow Surgery is a scientific medical journal containing information relative to the investigation of the development, preservation, and restoration of the form and function of the shoulder girdle, arm, elbow, and associated structures by medical, surgical, and physical means. The objectives of the Journal are to enhance the professional study and practice of shoulder and elbow surgery, to act as a stimulant to research by providing a forum for discussion of new scientific advances and to further international cooperation.
Plate fit analysis on 3D acromion among shoulder and elbow societies by serving as an official publication for recognized societies.

To accomplish these goals, the *Journal* accepts for publication original articles, descriptions of surgical and other patient care techniques, case reports, historical and current reviews, editorials, comments on published material, and announcements or proceedings of participating societies.

The *Journal* requires at least a two-year follow-up for all patients enrolled in clinical treatment studies. Exceptions at the editor's discretion will be allowed when studies are stopped due to adverse events, or other significant or important differences are detected before the two-year minimum follow-up is reached (e.g. studies of fracture where union is the outcome measure of interest), or for certain case reports.

All manuscripts which deal with the study of human subjects must be accompanied by Institutional Review Board (IRB) or Ethical Committee Approval, or the national or regional equivalent in your geographic area. The name of the Board or Committee giving approval and the study number assigned must accompany the submission, preferably by a scanned copy of the IRB or Ethical Committee Approval uploaded to the submission.

All manuscripts which deal with animal subjects must be approved by an Institutional Review Board (IRB), Ethical Committee, or an Animal Utilization Study Committee, and this statement, and approval number must accompany the submission, preferably by a scanned copy of the IRB or Ethical Committee Approval uploaded to the submission. The manuscript should contain information about any postoperative care and pain management for the animals.
Plate fit analysis on 3D acromion

Materials are accepted for exclusive publication in the *Journal of Shoulder and Elbow Surgery*, and published manuscripts along with their illustrations become the property of the *Journal*. Permission to reproduce material published in the *Journal* must be obtained from the publisher. Authors will also be consulted, when possible, in regard to the republication of their material.

Statements and opinions expressed in the articles and communications herein are those of the author(s) and not necessarily those of the Editor(s) and publisher, and the Editor(s) and publisher disclaim any responsibility or liability for such material. Neither the Editor(s) nor the publisher guarantees, warrants, or endorses any product or service advertised in this publication and, they do not guarantee any claim made by the manufacturer of such product or service.

For authors of Case Reports and Database-Mining Articles, in particular, you are encouraged to submit to the *JSES Open Access (JSESOA)* at https://ees.elsevier.com/jsesoa/default.asp. *JSESOA* will be a quarterly publication, online only. Other types of articles that should be submitted to the *JSESOA* include: National Arthroplasty Registry reports; Original articles; Review articles; Technique articles; and Validation studies of Outcome Instruments.

Author's guidelines, as well as the review process, are similar to those for the *JSES*.

To provide open access, the *JSESOA* has an open access fee (also known as open access publication fee) which needs to be met by the authors or their research funders. Submission to the *JSESOA* is free of charge; however, if the paper is accepted for publication in the *JSESOA*, the open access publication fee will be
charged. Fees at this time will be $1,250 (US) for original or review articles, and
$750 (US) for case reports or technical notes.

The open access fee is all-inclusive; Elsevier will not add any additional charges.

Depending on local regulations, VAT can be charged by local authorities.

Submission of manuscripts

Manuscripts and all other communications for the Editor(s) must be written in English. Submission of the materials in the correct format will expedite the review process and prevent unnecessary delay in publication.

For authors whose primary language is not English, we urge you to consider a language review of your manuscript by a primary English speaker prior to submission to the journal. There are also several such services available via the Internet which will review your paper and improve the English grammar and syntax.

Authors must submit new manuscripts and all related documentation electronically via the Elsevier Editorial System (EES) at http://ees.elsevier.com/jses. On receipt of the manuscript or other materials, peer review will be performed by an Editor and usually two additional reviewers. Should the material require revision, authors are requested to complete and submit revisions within three months.

Levels of Evidence: Although this will be reviewed by our Editorial Staff, and their opinion will be final, the Journal asks authors to assign a Level of Evidence to all clinically oriented manuscripts.

Treatment Studies investigate the results of treatment on patient outcomes and complications.
Plate fit analysis on 3D acromion

1276 Prognosis Studies investigate the natural history of a disease or disorder and
evaluate the effect of a patient characteristic on the outcome of the disease.
1278 Diagnostic Studies evaluate the effectiveness of a diagnostic test or outcome
assessment.
1280 Economic / Decision Analysis or Modeling Studies explore costs and alternatives
or may either develop or assess the effectiveness of decision models.
1282 Systematic Reviews and Meta-Analyses are assigned a Level of Evidence
equivalent to the lowest level of evidence used from the manuscripts analyzed.
1284 Prospective Study-Defined is a study in which the research question was
developed, (and the statistical analysis for determining power) were developed
before data was collected.
1287 Retrospective Study-Defined is a study in which the research question was
determined after the data was collected (even for studies where the authors
collected general data prospectively).

1290 **Cover Letter**

1291 It is essential that the material is accompanied by two cover letters. The first letter
must include information on prior or duplicate submission or publication
elsewhere of any part of the work including details of any presentation of the study
as an abstract at a professional meeting, a statement that the manuscript has been
read and approved by all authors, and a statement that each author believes that the
manuscript represents honest work. All manuscripts will be checked by an
internet-based algorithmic searching method to check for possible duplication of
previously published work. This first letter also should identify the name, this
information must be described for all authors listed on the paper and should be
provided in the form of a list of the authors. If no such conflict of interest exists for
Plate fit analysis on 3D acromion

an author, please state the following after the authors' name: "This author, their immediate family, and any research foundation with which they are affiliated did not receive any financial payments or other benefits from any commercial entity related to the subject of this article." This second letter must then list any outside funding or grants received that assisted in this study, the name of the source providing the funding, and the grant number. If any outside funding or grant was received, it should be described if the outside source of funds was involved in data collection, data analysis, or the preparation of or editing of the manuscript. Finally, where applicable, please upload a copy of your Institutional Review Board (IRB) or Ethical Committee Approval, or your national or regional equivalent, including the name of the Board or Committee giving approval, and the study number assigned - please note IRB requirements for human and animal studies as set out in Purposes and Policies above. The name of the Approval giving authority and the Study Number must also be included within your manuscript's Title Page file.

Patient consent

Appropriate consents, permissions, and releases must be obtained where authors wish to include case details or other personal information or images of patients and any other individuals in their JSES submission. It is generally not sufficient to anonymize a photograph simply by using eye bars or blurring the face of the individual concerned. Consent documents should be uploaded in the document category Figure Permissions, thus NOT seen by reviewers and NOT unblinding your submission.

Preparation of manuscripts
Plate fit analysis on 3D acromion

The *Journal* adheres to the "Uniform Requirements for Manuscripts Submitted to Biomedical Journals" (the Vancouver style) developed by the International Committee of Medical Journal Editors as described in the Journal of the American Medical Association (1993;269:2282-6) (also may be retrieved at http://www.icmje.org/), with the exception that the references must be placed in alphabetic order by author(s) name, numbered sequentially, and appear as superscript numbers in the text but without brackets (see section on "References").

Formatting Manuscripts

The *Journal* suggests that authors follow these guidelines when writing and formatting their work: Randomized controlled trials should follow the CONSORT (Consolidated Standards of Reporting Trials) guidelines (http://www.consort-statement.org). Case reports, case series, cross-sectional and other observational studies should follow the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) guidelines (http://www.strobe-statement.org). If the detailed methods are explicitly stated in the manuscript for single case studies, STROBE is not needed.

Authors producing systematic reviews and meta-analyses should follow the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines (http://www.prisma-statement.org).

Type the manuscript with margins of at least 25 mm (1 inch). Use double-line spacing throughout the entire manuscript, typing in Times New Roman font size 12, and include continuous line numbering. Please use Insert Page Break and begin each of the following sections on a new page: Abstract; Introduction; Materials and Methods; Results; Discussion; Conclusion; References; and Figure and Table.
Plate fit analysis on 3D acromion

Legends. Figures and Tables should be uploaded separately and individually (see below). Number the pages consecutively in the lower right-hand corner of each page beginning with the Title Page as number 1. Place a six-word short-form/running title in the header space of the manuscript document. The manuscript file must be in a Word format. Manuscripts without continuous line numbering will be returned to the author.

Word Count

Submissions of review and original articles (including abstract, introduction, materials and methods, results, discussion, and conclusion) should have a maximum word count of 4,750; submissions which exceed this limit will be returned to the author for further revision without being reviewed. Case reports should not exceed 2,250 words.

Review and Technique Articles

The Journal has limited space to publish numerous review and technique articles and these are usually solicited by the Review Article and Special Projects Editors. Authors must remember the Journal only publishes one review paper per issue or about 12 per year. In a typical year, the Journal receives in excess of 200 review articles submitted in consideration for publication. Hence, the acceptance rate of review articles for the Journal is usually around 3%-4%. Authors considering submission of a review article are encouraged to read "What is the value of a systematic review?" (JShoulderElbowSurg23:1-2,2014; http://dx.doi.org/10.1016/j.jse.2013.09.001) to critically evaluate whether their submission may be suitable for publication in the journal. Please contact the Review and Special Projects Editor (T. Bradley...
Plate fit analysis on 3D acromion

Edwards, M.D.) via jsesedit@gmail.com outlining your proposed article. Video Technique Articles are acceptable but will be published only on the website.

Title Page

The title page should include a concise but informative title of the article, plus a six-word short-form/running-title, and the first name, middle initial, and last name along with the highest earned academic degree of each author. The title page should also include the name of the department and the institution to which each author's work should be attributed. The name, mailing address, and e-mail address of the author responsible for correspondence should be identified, as should any source of support in the form of grants, equipment, or other items. The title page file must be in a Word format. If illustrations must be published in colour, note this explicitly on the title page of the article.

Disclaimer

List here (on the title page) any financial remuneration the authors or any member of their family, may have received related to the subject of the article. If no such financial biases exist for any author, state "none". Please also include information about Institutional Review Board (IRB) or Ethical Committee approval related to the study, including the name of the IRB providing approval and the study number. Please also include on your title page Acknowledgments of those who have contributed to the paper but whose contributions do not justify authorship. They may be named and their contribution described. Such persons must have given their permission to be so named, because readers may infer their endorsement of the data and the conclusions reached. Technical help may also be acknowledged. Upload the title page on the EES system as Title Page. Do not include the above information in your manuscript text which for review purposes should be blinded.
Plate fit analysis on 3D acromion

Abstract

The first text page of observational and experimental articles and review articles should be an abstract of no more than 250 words. This abstract should state the purpose of the study, basic procedures, essential findings, and principal conclusions, and should be formatted into Hypothesis and/or Background; Methods; Results; and Discussion and/or Conclusion. The abstract should emphasize new and important aspects of the observation or study but may not contain data that are not presented in the main text. Case reports do not require an abstract and are published without abstracts.

For full research articles, include the Level of Evidence of the study performed (see above) and Keywords at the end of the abstract. The authors should assign their own Level of Evidence although this will be reviewed by the Journal's Editorial Staff and should also list 6-8 Keywords that highlight the topic of the article, allowing for easier electronic retrieval.

Manuscript Text

The text of observational and experimental articles is divided into 5 sections with the headings: Introduction; Materials and Methods; Results; Discussion; and, Conclusions. Each section should start on a new page. Longer articles may need subheadings within headings to clarify their content. Other articles, such as reviews, case reports, and editorials need not take the form of manuscripts describing observational or experimental studies. A case report should include Keywords at the end of the Introduction.

All manuscript texts should be blinded for review purposes. Blind institute location, author initials, and references by the same authors. To blind an item, use Black Text Highlight Colour to black-out the text.
Plate fit analysis on 3D acromion

Introduction. The purpose of the article should be stated and the rationale for the study or observation summarized. Pertinent references should be given, but the subject should not be reviewed extensively.

Materials and Methods. Clearly describe the selection of the observational or experimental subject(s). Identify the methods, apparatus, and procedures in sufficient detail to allow others to reproduce the results. Give references to established methods, including statistical methods. Identify precisely all devices or drugs used, including generic names, manufacturers, and manufacturer locations. Give numbers of observations. Report any losses to observation. Provide details about randomization. Describe statistical methods in enough detail to enable a knowledgeable reader who has access to the original data to verify reported results. Avoid sole reliance on statistical hypothesis testing, such as the use of P values, which might fail to convey important quantitative information. Avoid nontechnical uses of technical terms in statistics, such as random or significant. All recent clinical studies should be performed with Institutional Review Board (IRB) approval, and confirmation of IRB approval should be given in this section. In general, exact P-values or statistical measures should be given, rather than, e.g., $p < 0.05$. Please also remember the proper use of significant figures and do not overuse extra decimal places, taken as an average, which may imply a degree of precision which does not exist in the work.

Results. Results should be presented in a logical sequence in the text, illustrations and/or tables. Do not repeat in the text the data presented in tables and illustrations but emphasize or summarize the important observations. For reports on reconstructive procedures, a minimum 2-year evaluation period is recommended.
Plate fit analysis on 3D acromion

Discussion. New and important aspects of the study should be emphasized, and conclusions that follow from them should be made. It is not desirable to repeat the data or material given in other sections of the manuscript. The discussion should describe the implications of the findings and their limitations, including suggested future research needs. The observations can be related to relevant studies.

Unqualified statements and conclusions incompletely supported by the data should be avoided. Recommendations may be included.

Conclusions. A short concluding paragraph summarizing the hypothesis and reason for the study and its results should be included.

References
The Reference List should be in alphabetical order by authors' last name, in double-line spacing, and numbered sequentially. At the end of each reference, please include the Digital Object Identifier (DOI) (http://www.doi.org/) or ISBN number for all references dating from 2002 to today. References with identical author(s) should be listed by the youngest first. If there is more than one reference with the same first author, use 2nd, 3rd author etc. to decide the alphabetical order.

When a reference citation has 6 or fewer authors, list all the authors; when there are 7 or more authors, list the first 6 then "et al." Identify references in the text, tables, and illustration legends by superscript Arabic numerals without brackets.

References must conform to Vancouver style. Abbreviate titles of journals according to the style used in PubMed. Examples of the correct forms of references are provided below:

Journal article: 1. Richards RS, Curl LA, Moorman CT, Mallon WJ. Sterile synovio-cutaneous fistula: A potential complication of repair of large and massive
Plate fit analysis on 3D acromion

(ISBN No. 978-0443084577)

Illustrations and Legends

Each figure should be uploaded as a separate file (and name/numbered in the Description box on the Attach Files page of the submission process). For photographic images upload your images in a standard acceptable digital format (e.g., *.tif or *.jpg) to the journal's online submission website (http://ees.elsevier.com/jses). For line illustrations, use thick, solid lines and bold, solid type; avoid the use of shading or dotted patterns. If illustrations must be published in colour, note this explicitly on the title page of article. For more detailed information on preparing your figures for submission, please visit: http://www.elsevier.com/artworkinstructions.

Letters, numbers, and symbols should be clear and of sufficient size that when reduced for publication each will be legible. Figures should be numbered in the order of their mention in the text and the number included in the Description box.

Title and explanations of figures (and tables) belong on a dedicated legends page following the reference list in the manuscript, and not on the illustrations themselves. If a figure has been taken from previously copyrighted material, the legend must give full credit to the original source (see below).

Figure/Photograph Permissions: Photographs in which a person's face is recognizable must be accompanied by a letter of release from that person explicitly granting permission for publication in the Journal. X-rays should NOT show
Plate fit analysis on 3D acromion

Patient's name. For any previously published material, authors must obtain written permission for both print and electronic reprint rights from the copyright holder/publisher. This is necessary even if you are an author of the borrowed material. These permission letters must then be uploaded as part of the submission process or the author must state in an uploaded document that the permission has been requested and provide an approximate date when the permission is expected to be received. Authors are also responsible for paying any fees required by copyright holders to reprint material.

Tables

Each table should be uploaded as an individual Table document separate from the manuscript (and name/numbered in the Description Box). Tables should be uploaded in a format that can be edited, preferably .doc or .docx. Tables should be self-explanatory and numbered in Roman numerals. They should be mentioned in numerical order through the text. Table Legends (and figure legends) should be listed on a dedicated page of the manuscript text that follows the reference list. Abbreviations should be defined in a footnote at the end of the table. If any material in a table or a table itself has been taken from previously copyrighted material, a footnote must give full credit to the original source and permission of the author and publisher must be obtained. Table permission letters should be uploaded in the document category Figure/Photograph Permissions.

Big Data

Authors are requested to upload their full databases of studies, both clinical and basic science, as Supplemental Files. This information should be both blinded and anonymized. At present this is not mandatory but recommended. Please use
Plate fit analysis on 3D acromion

standard files types. Supplemental Files are published online as a link; the JSES print edition includes details of links.

Instructions for Submitting Videos

The *Journal* encourages authors to submit a video to be published on the *Journal*'s web site at http://www.jshoulderelbow.org/ as an illustration incorporated in an article that the author is submitting for publication or as video paired with a journal cover illustration. All videos are subject to peer review. We expect professional quality and narration, regardless of method of production. A soundtrack is highly desirable and is requested. These formats for video will be accepted

- MPEG-1 or MPEG-2 (.mpg)
- QuickTime (.mov) The *Journal* will not edit any video, but a reviewer may suggest that the author make changes.

Requirements

- Include in your COI statement (second cover letter) a statement confirming that the video is part of your submission and has been viewed by all authors.
- Submit a single video per manuscript, not multi-part videos.
- Maximum length of videos is 4.5 minutes.
- Video file cannot exceed 50 MB. The submission program will time out if the file size is larger than 50 MB.
- Please ZIP the file and upload the zipped file to hasten the upload time.
- A complete legend for the video must be included in the manuscript.
- The video must be cited in the text of your manuscript just like a figure.
- Sound narration is highly desirable and is requested.

Units of Measurement
Plate fit analysis on 3D acromion

Measurements of height, length, weight, or volume should be reported in metric units. Temperatures should be given in degrees Celsius; blood pressures should be given in millimeters of mercury. All laboratory measurements should be reported in the metric system.

Abbreviations

Only standard abbreviations should be used, and abbreviations should be avoided in the title or abstract. The full term for an abbreviation should precede its first use in the text unless it is a standard unit of measurement.

Letters to the editor

Letters to the Editor should be sent to the Editor-in-Chief of the Journal via the EES system following the guidelines for all other submissions. Letters should be no longer than 2 pages in length. Letters should be signed by all authors and concern only articles that have been published recently in the Journal of Shoulder and Elbow Surgery. A response to the letter will be requested from the author of the article in question, and both the letter and response will be published together if there is a response.

Announcements

Announcements of participating society activities must be received at least 10 weeks before the desired issue of publication. Send announcements to the office of the Editor-in-Chief.

Reprints

Single reprints of articles must be obtained from the author. Reprint order forms will be sent to authors after articles are slated for publication in a specific issue.
Plate fit analysis on 3D acromion
Plate fit analysis on 3D acromion

QUESTIONNAIRE / DATA CAPTURE INSTRUMENT

Microsoft Excel spreadsheet

<table>
<thead>
<tr>
<th>box</th>
<th>nr</th>
<th>date</th>
<th>researcher name</th>
<th>patient name</th>
<th>colour</th>
<th>3D print model</th>
<th>fragments fit (< 2\text{mm})</th>
<th>no fit (> 2\text{mm})</th>
<th>nibble</th>
<th>yes</th>
<th>no</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>acromion plate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Short</td>
<td>fit (< 2\text{mm})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>interim (> 2\text{mm})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no fit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Long</td>
<td>fit (< 2\text{mm})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>interim (> 2\text{mm})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no fit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>lat clav plate</td>
<td>Short 4</td>
<td>fit (< 2\text{mm})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>interim (> 2\text{mm})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no fit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Short 8</td>
<td>fit (< 2\text{mm})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>interim (> 2\text{mm})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no fit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Long 4</td>
<td>fit (< 2\text{mm})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>interim (> 2\text{mm})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no fit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Long 8</td>
<td>fit (< 2\text{mm})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>interim (> 2\text{mm})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no fit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ant clav plate</td>
<td>6 hole</td>
<td>fit (< 2\text{mm})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>interim (> 2\text{mm})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no fit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8 hole</td>
<td>fit (< 2\text{mm})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>interim (> 2\text{mm})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no fit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CONSENT FORMS AND ANY RELATED PARTICIPANT INFORMATION SHEETS

Not applicable as this was a retrospective review of a patient imaging with no clinical impact on management.

RESEARCH PROTOCOL

Title
Scapula fractures: Planning osteosynthesis using 3D printed anatomical models

Investigators
Principal: J. Charilaou
Supervisor: S. Roche
Co-authors: R. Dey, S. Sivarasu, F. Hansson, R. van Staden, S. Maqungo

Sponsor
University of Cape Town, Clinical Research Centre
Old Main Building, L51
Groote Schuur Hospital
Observatory
021 406 6281

Study coordinating center
University of Cape Town, Division of Orthopaedic Surgery
Old Main Building, H49
Groote Schuur Hospital
Plate fit analysis on 3D acromion

Observatory
021 404 5118
johancharilaou@hotmail.com

Table of contents
1. Title
2. Investigators
3. Purpose of the study
4. Background
5. Methodology
6. Study design
7. Characteristics of study and population
8. Recruitment and enrolment
9. Research procedures
10. Data analysis
11. Risks and benefits to the trial participants
12. Difficulties and complications
13. Declarations
14. Appendix
15. References

Title
Scapula fractures: Planning osteosynthesis using 3D printed anatomical models

Investigators
Principal: J. Charilaou
Supervisor: S. Roche
Purpose of the study
The use of anatomical modelling of three-dimensionally (3D) printed scapula fracture fragments to assist in preoperative planning.

The secondary aim is to ascertain the anatomical congruence of an available pre-contoured plating system.

Background
Scapula fractures are notoriously difficult to manage operatively. Difficult surgical approaches, implant limitations, anatomical challenges, and morphological variance leads to hesitance from surgeons to perform osteosynthesis.

3D Printing, also known as additive manufacturing or rapid prototyping, is described frequently as a technical and industrial revolution that might significantly change the way we live. This manufacturing method is based on 3D computer models for the reconstruction of a 3D object by the addition of material layers, such as plaster, metal or plastic. Selective laser sintering (SLS), fused deposition modeling, and inkjet printing have emerged and almost overtaken stereolithography in terms of frequency of use. Imaging modalities have evolved exponentially, and we can obtain detailed reconstructions on electronic formats. Accurate and reproducible 3D models can be created from in situ scapulae by the use of effective segmentation. The sources of digital multidimensional images are, computerized tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), single photon
emission computed tomography (SPECT), ultrasound (US), functional MR (fMRI), magnetic source imaging, and surface light scanning.5

However, the in vivo milieu poses challenges to safely and adequately reduce and fixate complex fractures. Anatomically pre-contoured implants invariably need some adjustment and bending around the scapula. This leads to added surgical time and with it the associated risks. Intraoperative fluoroscopy is also difficult to accurately obtain due to the anatomic orientation of the shoulder girdle.

3D Models can help with a better understanding of indirect manipulation of fragments required to achieve anatomical congruence. It also improves the understanding of anatomy and pathology by means of tactile and visual experience to complement images displayed on a computer monitor.

Increased accessibility and lower costs make this field an exciting prospect for future medical applications. A wide variety of surgical subspecialties already implementing this valuable adjunct include tumour resections, craniomaxillofacial reconstruction, and cardiothoracic surgery.

Benefits include intraoperative guidance, preoperative planning, teaching, and training. The model can be shown to the patient, drastically improving their education and refining the consent.2 Accurate plate selection, screw lengths, and orientation can be determined.

Disadvantages are the costs of specialized machinery4 and the time needed to produce a model. The segmentation can take hours and the printing time itself is proportional to the size and desired quality of the model. The average printing time is approximately 7 hours. Complexity of the fracture is directly proportional to time consumed to produce the final model.
Plate fit analysis on 3D acromion

1668 The field of bioengineering is also rapidly acquiring the skills and understanding
to accurately collaborate with radiologists and surgeons to produce high-quality
models. The accuracy of the 3D print is dependent on the contrast in the parent
image, and also on the technical capabilities of the printer. Contemporary 3D
printers have a filament thickness of about 0.1 mm. In practice, because of the
vibrations originating in the motion of the heads themselves, the achievable spatial
resolution rarely reaches this limit, and it is usually about 0.5 mm.²
1675 These advantages and disadvantages need to be extensively evaluated and explored
in the field of Orthopaedic Surgery.

1677 **Methodology**

1678 **Study design**

1679 Observational biomechanical basic sciences study

1680 **Characteristics of study and population**

1681 We will conduct a pilot project to ascertain the anatomical congruence of a pre-
contoured plating system. This will be done on intact dry museum specimens. The
specimens are denuded of soft tissues and displayed no evidence of previous
fractures or callus formation. We will obtain these from the University of Cape
Town, Department of Anatomy in the Faculty of Health Sciences. The specimens
are skeletally mature. No demographic details are available on the origin, gender
or age of the specimens.
1688 We want to confirm that the plating system does not supply enough options to
adequately fixate all fracture types. The glenoid plate, in particular, is difficult to
fit according to anecdotal experience.
Plate fit analysis on 3D acromion

The main study will be conducted in conjunction with the Department of Human Biology’s division of Biomechanics. We will identify patients with scapula fractures who underwent a shoulder CT scan following blunt trauma presenting to Groote Schuur Hospital from 2012 to 2016. We will evaluate 41 scapulae and classify the fracture patterns according to anatomical location of the scapula body, glenoid neck and fossa, coracoid and acromion/spine. The first fracture pattern to be used is the acromion/spine component. The other fracture patterns will be used as a separate study.

Recruitment and enrollment

The Phillips Electronics iSite Electronic Radiology System will be used to search for all shoulder CT scans performed during the study period. This data is not public domain and access is password protected for appropriate healthcare providers. We did not obtain consent for the use of these CT scans as we are doing the study retrospectively and no intervention was affected or altered. A power analysis was done using the formula:

\[n = \frac{Z \times P(1-P)}{E^2} \]

Z star = value from standard normal distribution corresponding to desired confidence level (Z=1.96 for 95% CI), P is expected proportion, E is desired precision (half desired CI width). For small populations n is adjusted so that \(n(\text{adj}) = \frac{N \times n}{N+n} \). Analysis (done using R). Assuming a power of 95%, we need to test 36 scapulae. We also calculated the total for a CI of 75% to be 24 scapulae. We will continually reassess the feasibility of the project to try and obtain as many 3D models, so we can improve the statistical significance. The sample size will be
Plate fit analysis on 3D acromion

subdivided into the different fracture classifications and each subgroup will be proportionally represented by random selection.

Inclusion criteria:

- All scapula fractures due to blunt trauma will be included irrespective if they were surgically or conservatively managed.

Exclusion criteria:

- Goss and Ideberg Type 1a and b fracture-dislocations of the glenoid rim. These fractures seldom need open reduction and fixation as the fragments are small knock off or avulsed entities.
- Malunited fractures undergoing delayed surgery were also excluded.
- Gunshot wounds were excluded as they are difficult to segment due to scattering from bullet fragments. These fracture patterns are also very comminuted and do not fit the usual fracture classifications.

Research procedures

- Pilot study

Each scapula will be templated with the 6 different anatomically contoured plates available for the various fracture patterns. These are a glenoid, an acromial, two medial border and two lateral border plates. The plates will be aligned to the intended anatomical site.

Conformity of fit and the potential degree of plate bending that might be required for an anatomic fit will be assessed. The variables are gap, alignment and overhang. A digital Vernier caliper will be used to do the measurements. We will use this devised grading system: Anatomical fit will be if there was a 2mm or less gap between the plate and bone, no overhang and no bending needed to align the
Plate fit analysis on 3D acromion plate. Intermediate fit is a more than 2mm gap or if bending is required to narrow this gap or to correct the overhang. No fit is if there is too much offending and/or overhang to correct with plate manipulation, thus having screw holes not over bone. This will be performed by two Orthopaedic surgery registrars on a single occasion to limit the inter-observer variability. The exact morphology and dimensions of each clavicle were not measured.

- Main study

The Digital Imaging and Communication in Medicine (DICOM) file will be uploaded. Multiplanar reconstruction (MPR; axial, sagittal, coronal) and 3D volume rendering of the fracture will be obtained. Working on the 3D-reconstruction, the fractured bone can be isolated with a digital scissor tool. The CT scans will be reconstructed in-silico using Materialise Interactive Medical Image Control System Software (Mimics®). This is image processing software for 3D design and modelling, developed by Materialise NV, a Belgian company specialized in additive manufacturing software and technology for medical, dental and additive manufacturing industries.

Then the Surface Rendering model of the fractured bone can be created and exported to a Stereolithography (STL) file. The file can be analyzed and prepared for printing with 3D dedicated Z-suite software. The Zortrax M200 printer system and acrylonitrile butadiene styrene (ABS), a common thermoplastic polymer plastic filament will be used to produce the prototype. Areas of the fracture will be identified, and care will be taken to treat each fractured part as a separate entity. The reconstructed model of each bone will be
Plate fit analysis on 3D acromion

synthesized into a physical three-dimensional scapula using additive manufacturing technique.
The same measurements will be conducted as for the pilot study to determine plate congruence. The digital Vernier caliper will also be utilized.
A Specialist Orthopaedic Surgeon, a Trainee Orthopaedic Surgery Registrar and a Medical student will conduct the measurements on two separate occasions to limit inter- and intra-observer variability.

Data Analysis

The primary objective is to evaluate the use of 3D reconstruction in preoperative planning. This includes anatomical reduction, implant selection, plate congruence and selection of an appropriate surgical approach.
Fracture fragments will be printed in different colours. These will be reduced and kept in position using ordinary glue. The only locally available plating system is from Acumed (Hillsboro, OR, USA). This system will be used, and the best plate identified to address the fracture configuration. Any adjustments to the anatomically pre-contoured plates can be made and templated. Other alternatives like a lateral end clavicle plate for acromial fracture fixation will also be templated. The best surgical approach can be identified once the above were considered.
All recorded data will be recorded on an Excel/Numbers spreadsheet. All data will be collected by the investigators and stored on password protected computers to ensure confidentiality. No names will be used once the data has been collected and patients will be identified by a random number held separately from the demographic data. Statistical analysis can be performed once the data has been collected.
Plate fit analysis on 3D acromion

Risks and benefits to the trial participants

This will benefit patients undergoing open reduction and internal fixation for these difficult fractures in future. There is no risk to the patients we used to obtain the CT scan files.

Difficulties and complications

Validation of accuracy of printed models needs to be considered.

The cost to produce a model needs to be kept low to make it viable.

The total time to complete a single model will initially be long. As the investigators improve and practice the technique this will become shorter.

The power analysis demonstrates a large number of scapulae needed to gain sufficient and relevant statistical data. This could be a limiting factor taking time and cost into account.

Declarations

The investigators have no conflict of interest to declare.

Appendices

Appendix 1 - Data capture form

References

Plate fit analysis on 3D acromion

Plate fit analysis on 3D acromion

<table>
<thead>
<tr>
<th>HREC APPROVAL LETTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal Investigator to complete the following:</td>
</tr>
<tr>
<td>1. Protocol Information</td>
</tr>
<tr>
<td>Data when submitting this form: 18/01/2019</td>
</tr>
<tr>
<td>HREC REF Number: 89/2019</td>
</tr>
<tr>
<td>Current Ethics Approval was granted until: 30/10/2017</td>
</tr>
<tr>
<td>Protocol title: Qualitative fit analysis of acromion fracture plating systems using three-dimensional anatomical modeling</td>
</tr>
<tr>
<td>Are there any sub-studies linked to this study? No</td>
</tr>
<tr>
<td>If yes, could you please provide the HREC Ref’s for all sub-studies? Note: A separate FHSP108 must be submitted for each sub-study.</td>
</tr>
<tr>
<td>Principal Investigator: Prof. A. Roche</td>
</tr>
<tr>
<td>Department / Office: Orthopaedic Surgery</td>
</tr>
<tr>
<td>Internal Mail Address: stephen.roche@uct.ac.za</td>
</tr>
<tr>
<td>Does this protocol receive US Federal Funding?</td>
</tr>
</tbody>
</table>
COVER LETTER 1

Correspondence

Dr. Johan Charilaou

University of Cape Town, Division of Orthopaedic Surgery, Old Main Building, Room H49, Groote Schuur Hospital, Main Road, Observatory, Cape Town, South Africa, 7935

johancharilaou@hotmail.com

Approval

This manuscript has been read and approved by all authors.

Each author believes that the manuscript represents honest work.

Declaration

This manuscript was accepted as a podium presentation at the following:

- International Society of Orthopaedic Surgery and Traumatology’s (SICOT) 38th Orthopaedic World Congress, Cape Town, South Africa, 30 November - 2 December 2017.
- 8th World Congress of Biomechanics (WCB), Dublin, Ireland, July 2018.
Conflict of interest statement

None of the authors, their immediate families or any research foundations with which they are affiliated received any financial payments or other benefits from any commercial entity related to the subject of this article.

Ethical committee approval

University of Cape Town, Faculty of Health Science, Human Research Ethics Committee HREC REF 695/2016
AIMS, OBJECTIVES, AND HYPOTHESES

Aim

To determine to what extent currently available plating systems are able to provide adequate fixation options for acromial fractures.

Objective

To print three-dimensional (3D) anatomical models of acromion fractures.

To ascertain if 3D models can assist templating clavicle and acromion plates on acromion and scapular spine fracture models and assessing quantitative fit of plates.

Hypothesis

Available acromion plates used in open reduction and internal fixation do not fit the anatomy adequately. The use of 3D printing anatomical scale models can assist in templating these fractures to assist in quantitative fit analysis of acromion and other alternative plates.
Plate fit analysis on 3D acromion

<table>
<thead>
<tr>
<th>Match Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Source</th>
<th>Match Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>European Surgical Ort...</td>
<td>1%</td>
</tr>
<tr>
<td>2</td>
<td>www.dnrpa.gov.ar</td>
<td>1%</td>
</tr>
<tr>
<td>3</td>
<td>Nicola Bizzotto, Andrea...</td>
<td>1%</td>
</tr>
<tr>
<td>4</td>
<td>Zohra Moallemzadeh, ".."</td>
<td>1%</td>
</tr>
<tr>
<td>5</td>
<td>www.heallo.com</td>
<td>1%</td>
</tr>
<tr>
<td>6</td>
<td>Bryce, C.D., "Validation ..."</td>
<td>1%</td>
</tr>
<tr>
<td>7</td>
<td>Anavian, Jack, Coen A...</td>
<td>1%</td>
</tr>
<tr>
<td>8</td>
<td>Malhas, Amar M., Yan...</td>
<td><1%</td>
</tr>
<tr>
<td>9</td>
<td>jse-online.biomedcent...</td>
<td><1%</td>
</tr>
<tr>
<td>10</td>
<td>Berdien Brandsema, Va...</td>
<td><1%</td>
</tr>
<tr>
<td>11</td>
<td>Submitted to University...</td>
<td><1%</td>
</tr>
<tr>
<td>12</td>
<td>Submitted to Universiti ...</td>
<td><1%</td>
</tr>
<tr>
<td>13</td>
<td>Kim, Hyong Nyun, Xiao...</td>
<td><1%</td>
</tr>
</tbody>
</table>
Figure I: Articles published by anatomical location of the 3D printed model.

Sourced from Hoang et al 2016.23
Plate fit analysis on 3D acromion

Figure II: The 3D printing process from start to finish.

*Sourced from Hoang et al 2016.\(^{23}\)

Figure III: Type I fracture - acromion process lateral to acromion angle
Plate fit analysis on 3D acromion

Figure IV: Type II fracture - acromion angle to spinoglenoid notch

Figure V: Type III fracture - medial to the spinoglenoid notch or into scapular spine
Plate fit analysis on 3D acromion

Figure VI: Anatomical fit < 2mm gap, no overhang

Figure VII: Intermediate fit > 2mm, but can bend to improve fit

Figure VIII: No fit > 2mm gap, can’t fit with bending
Plate fit analysis on 3D acromion

Figure IX: Frequencies with which specific plates were chosen as the ‘best fit’ amongst five independent specialists for (A) all fractures, (B) type I, (C) type II and (D) type III acromion fractures.
Plate fit analysis on 3D acromion

Table I: Plate fit assessment on cadaver specimens

<table>
<thead>
<tr>
<th></th>
<th>Anatomical fit (%)</th>
<th>Intermediate fit (%)</th>
<th>No fit (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acromion long</td>
<td>15</td>
<td>37</td>
<td>48</td>
</tr>
<tr>
<td>(n=46)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acromion short</td>
<td>36</td>
<td>62</td>
<td>2</td>
</tr>
<tr>
<td>(n=47)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lateral clavicle long (n=46)</td>
<td>2</td>
<td>70</td>
<td>28</td>
</tr>
</tbody>
</table>

Table II: Mechanism of injury

<table>
<thead>
<tr>
<th>Mechanism of injury</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian vehicle accident</td>
<td>7 (46.7)</td>
</tr>
<tr>
<td>Motor vehicle accident</td>
<td>5 (33.3)</td>
</tr>
<tr>
<td>Motorbike accident</td>
<td>1 (6.7)</td>
</tr>
<tr>
<td>Blunt trauma</td>
<td>2 (13.3)</td>
</tr>
</tbody>
</table>

Data is presented as a count with the frequency indicated in parentheses
Table III: Quantitative fit combined analysis per plate per patient

<table>
<thead>
<tr>
<th>Patient</th>
<th>Fracture type</th>
<th>Acromion</th>
<th>Acromion</th>
<th>Later al Clavicle Shor t 4</th>
<th>Later al Clavicle Shor t 8</th>
<th>Later al Clavicle Long 4</th>
<th>Later al Clavicle Long 8</th>
<th>Anter ior Clavicle 6 Hole</th>
<th>Anter ior Clavicle 8 Hole</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>f</td>
<td>i</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>n</td>
<td>n</td>
<td>f</td>
<td>f</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>i</td>
<td>i</td>
<td>i</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>i</td>
<td>n</td>
<td>i</td>
<td>i</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>i</td>
<td>i</td>
<td>f</td>
<td>i</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>f</td>
<td>i</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>n</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>i</td>
<td>i</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>f</td>
<td>i</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>i</td>
<td>i</td>
<td>f</td>
<td>i</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>i</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
</tr>
</tbody>
</table>

n = no fit, i = intermediate fit, f = anatomical fit