AN IMMUNOHISTOCHEMICAL STUDY OF
BETA-CATENIN IN HNPCC COLON TUMOURS

Dr Jennifer G Watkins

Thesis Presented for the Degree of
MASTER OF MEDICINE
in the Division of Anatomical Pathology,
UNIVERSITY OF CAPE TOWN

FEBRUARY 2004
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
DECLARATION

I, Dr Jennifer Grace Watkins, hereby declare that the work on which this thesis is based is my original work (except where acknowledgements indicate otherwise) and that neither the whole work nor any part of it has been, is being, or is to be submitted for another degree is this or any other University.

I empower the University to reproduce for the purpose of research either the whole or any portion of the contents in any manner whatsoever.

Signed by candidate

signature removed

Signature

24 Nov 2004

DATE
ACKNOWLEDGEMENTS

Many people assisted with this thesis and I would like to offer my appreciation. My supervisor, Professor Pauline Hall, for hours of patient help and guidance. Her input made this an extremely valuable learning experience. Nafiesa Allie and Heather McCleod for the expert immunohistochemical staining. CANCER foundation for the funding to make it possible. Hannes Holm for the hours he spent tracking down the HNPCC cases. The Colorectal Cancer Consortium, specifically Professor Goldberg and Professor Ramesar. Prof Isaacs for his assistance with the statistical analysis of the results. Prof Govender for his advice and last but not least Matthew for all his support and help with the computer.
ABBREVIATIONS

APC Adenomatous polyposis coli
CRC Colorectal cancer
FAP Familial adenomatous polyposis
GSK Glycogen synthase kinase
HNPCC Hereditary non-polyposis colorectal cancer
MDRI Multi-drug resistance 1
MMP7 Matrix metalloproteinase 7
MMR Mismatch repair
MSI Microsatellite instability
MSI-H Microsatellite instability-high
MSI-L Microsatellite instability-low
MSS Microsatellite stable
TCF/LEF T-cell factor/Lymphoid enhancer factor
VEGF Vascular endothelial growth factor
ABSTRACT

AN IMMUNOHISTOCHEMICAL STUDY OF BETA-CATENIN IN HEREDITARY NON-POLYPOSIS COLON CANCER (HNPPC) COLON TUMOURS.

Beta-catenin is normally complexed with adenomatous polyposis coli (APC) protein and E-cadherin adhesion molecule, and localized on the cell membrane. If APC/beta-catenin is disrupted, beta-catenin transfers into the nucleus, where it functions as a transcriptional activator, causing unregulated cell proliferation. The localisation of beta-catenin in HNPPC adenomas has not been studied but a shift in beta-catenin to the nucleus has been previously demonstrated in a range of colorectal cancers, including those in HNPPC. The aim of the first part of the study was to determine whether there is a beta-catenin shift occurring as an early event in HNPPC tumours. Coded sections of tumours were immunohistochemically stained with antibody against beta-catenin and counterstained in haematoxylin. 14 HNPPC adenomas, 13 HNPPC carcinomas, 10 FAP adenomas, 10 FAP carcinomas, 10 sporadic adenomas and carcinomas and 10 juvenile polyps -three with dysplasia and seven without- were studied. A score was given for loss of membrane staining (0-1), presence of cytoplasmic staining (0-2) or nuclear staining (0-2) and a total out of five obtained. An shift in beta-catenin was demonstrated at the adenoma phase in HNPPC. HNPPC tumours were compared with sporadic tumours and a statistically significant similarity in prevalence of beta-catenin shift found in adenomas and carcinomas. The early shift in beta-catenin in HNPPC led to the second part of the study evaluating the "down-stream" effects of this shift in HNPPC tumours. The HNPPC sections were immunohistochemically stained with E-cadherin, c-myc and cyclin D1. The results showed a positive correlation between E-cadherin loss, increased cyclin D1 and a shift in beta-catenin. No significant change in c-myc or correlation between c-myc and a shift of beta-catenin was found. In conclusion the study indicates that disruption of the APC/beta-catenin pathway plays a similar role in HNPPC tumours to that in sporadic tumours. A notable expection is the effect on c-myc and further study is needed in this regard.
TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION

1.1 Familial colon cancer syndromes
 - 1.1.1 Familial adenomatous polyposis
 - 1.1.2 Juvenile polyposis
 - 1.1.3 Hereditary non-polyposis colorectal cancer

1.2 Role of beta-catenin in carcinogenesis

1.3 Colorectal cancer carcinogenesis

CHAPTER 2: BETACATENIN STUDY

2.1 Aim

2.2 Materials and methods

2.3 Results

2.4 Discussion

CHAPTER 3: E-CADHERIN, CYCLIN D1 AND C-MYC STUDY

3.1 Aim

3.2 Materials and methods

3.3 Results

3.4 Discussion
CHAPTER 4: CONCLUSION

4.1 Therapeutic implications

4.2 Future studies

CHAPTER: 5 REFERENCES
CHAPTER 1: INTRODUCTION

Colon cancer is one of the most common malignancies worldwide, with the incidence in developed countries being about 5% of the general population.1,2 Approximately 20% of these have a familial risk, of which 5-10% have Mendelian inheritance.3 This subset can be divided into a number of syndromes, of which hereditary non-polyposis colorectal cancer (HNPCC), familial adenomatous polyposis (FAP) and juvenile polyposis are the most frequent and well-studied.

The incidence of colon cancer is reported to be lower in African people in South Africa. The incidence for Africans is reported as 2 per 100 000, whereas the incidence for white males in South Africa is 40 per 100 000.4-6 This is thought to be partially due to underreporting in Africans, but a real difference in incidence also exists. This low incidence is thought to be related to diet and environment. African Americans have one of the highest incidences in the world, supporting an environmental influence rather than a genetic one.6 The incidence is thus likely to change with progressive Westernisation.7

1.1 FAMILIAL COLON CANCER SYNDROMES

1.1.1 FAMILIAL ADENOMATOUS POLYPOSIS

Patients with this syndrome present with numerous (100's to 1000's) adenomatous colonic polyps and untreated have a lifetime risk of colonic cancer approaching 100%.3 Inheritance is autosomal dominant with approximately 25% having no family history and
presumably occurring due to new germline mutations. Germline mutations of the *adenomatous polyposis coli* gene are responsible for this syndrome. The *adenomatous polyposis coli* gene was discovered in 1991 and is situated at chromosome 5q21-22. The gene is large, comprising 8535 bp spanning 21 exons. Exon 15 accounts for over 75% of the coding sequence and most mutations occur at the 5' end of exon 15. Over 300 germline mutations have been described. Loss or mutation of both *APC* alleles occurs in FAP adenomas as small as 3mm in size. The *APC* gene product is a large protein with multifunctional domains that mediate both oligomerisation and binding to many intracellular proteins including beta-catenin, gamma-catenin, glycogen synthase kinase-3beta (GSK-3β), axin, tubulin, EB1 and hDLG. The majority of *APC* mutations lead to loss of the beta-catenin degradation sites and the associated GSK-3β sites. The mutant *APC* can thus bind but not down-regulate beta-catenin and levels of free cytoplasmic beta-catenin increase. Studies of sporadic tumours have demonstrated that the *APC* gene is not only important in FAP, but responsible for initiation of the majority (>80%) of sporadic cases of colorectal cancer.

1.1.2 JUVENILE POLYPOSIS

Juvenile polyps are characterized histologically by dilated crypts in a loosely packed oedematous stroma with no glandular dysplasia. The majority of polyps are colorectal. They may be sporadic or occur as part of familial juvenile polyposis. Juvenile polyposis is an autosomal dominantly inherited syndrome characterized by multiple juvenile polyps of the gastrointestinal.
The patients also have an increased risk of tumours of the stomach, duodenum, biliary tree and pancreas. Two thirds of patients present in the first two decades of life and untreated about 60% will have colorectal cancer by 60 years of age. Clinically the syndrome is characterized by greater than five juvenile polyps in the colorectum, juvenile polyps throughout the gastrointestinal tract or a family history with any number of juvenile polyps. There are two possibilities for the development of cancer in these patients. These are an adenoma arising de nova, or via adenomatous change in a juvenile polyp. Pure adenomas have been found to be rare and dysplastic change has been found in about 10% of classic juvenile polyps. Atypical juvenile polyps are multilobated and often adopt a villous or papillary configuration. Dysplasia of varying severity is found in 50% of these lesions. The finding of these mixed juvenile polyp/adenomas favours the later mode of carcinogenesis. Juvenile polyposis appears to be a genetically heterogeneous syndrome, but mutations in the Smad4 gene on chromosome 18q21.1 have been found in some families. The frequency of this mutation has been reported as anything from 20 to >50% of patients. Smad4 is an important mediator in the transforming growth factor-beta pathway, and thus has a role in regulating the transcription of genes involved in cell cycle and transcriptional regulation. The genes regulated include the cyclin dependent kinase inhibitors p16 and p21, cyclin D1 and TGF-β itself.
Figure 1.1: Smad 2 and 3 are phosphorylated by activated TGF-β. They bind with each other and with Smad4. The complex then transfers into the nucleus where it regulates the transcription of genes.15

1.1.3 HEREDITARY NON-POLYPOSIS COLORECTAL CANCER

Hereditary non-polyposis colorectal cancer is the most common hereditary colon cancer syndrome, with the quoted incidence varying between 1 and 10\%.16,17 There is no single pathognomonic feature that characterises this disorder. It can be recognized clinically by a combination of features, described initially by Lynch.18 These criteria were standardised by the International Collaborative Group on HNPCC in 1990, to provide
uniformity in collaborative studies. The criteria (called Amsterdam Criteria I) were since modified, to include extra-colonic cancers, and called the Amsterdam Criteria II, namely:

There should be at least three relatives with an HNPCC-associated cancer: colorectal cancer (CRC), or cancer of the endometrium, small bowel, ureter or renal pelvis.

• One patient should be a first degree relative of the other two.

• At least two successive generations should be affected.

• At least one tumour should be diagnosed before age 50 years.

• Familial adenomatous polyposis should be excluded in the CRC case/s, if any.

• Tumours should be verified by histopathological examination.

Diagnosis of HNPCC can be made by fulfillment of these criteria or by genetic testing for germline DNA mismatch repair mutations.

The colonic tumours in HNPCC are frequently of the right colon and may be multiple. Adenomas are less frequently seen and occur in a smaller number compared to those in FAP, hence the name non-polyposis. The relatively small numbers of adenomas is explained by a rapid accumulation of genetic mutations and thus rapid progression from normal epithelium through adenoma to carcinoma.

The genetic defect in HNPCC is an abnormality in DNA repair. The mode of inheritance is autosomal dominant, with a 70-80% penetrance. Germline mutations in hMLH1, hMSH2, hMSH6, hPMS1 and hPMS2 have been identified, with hMLH1 and hMSH2
accounting for more than 80%. Studies in yeasts show that MSH2 complexes with either MSH6 to recognize single base pair mismatches, or with MSH3 to recognize larger 2 to 4-base pair deletions or insertions. The MLH1 and PMS2 gene products then excise the mismatched nucleotides from the newly synthesized strand. Defects in the mismatch repair (MMR) system thus result in many DNA replication errors. These errors are usually detected in simple repetitive sequences, the so-called microsatellites. Microsatellites are present in coding and non-coding DNA throughout the genome. Defects in MMR results in microsatellite instability in which the length of these normally stable repeats varies considerably. This microsatellite instability can be detected in the vast majority of HNPCC cancers.

HNPCC IN THE WESTERN CAPE

294 families composed of 1079 individuals have been identified in the North Western Cape area. 291 of these families have had mutational screening and those who are mutation positive, or have not had genetic testing, undergo regular colonoscopic surveillance.
Figure 1.2 Distribution of HNPCC families with hMLH1 (Map courtesy of Prof Ramesar, Human Genetics, UCT)

1.2 BETA-CATENIN ROLE IN CARCINOGENESIS

Beta-catenin is the 92 kDa protein product of the beta-catenin gene localised on chromosome 3p21. Beta-catenin plays an important physiological role in embryonic development. Increased expression of beta-catenin has been demonstrated in a range of cancers, including those occurring in the oesophagus, stomach, colon and endometrium. In normal epithelial and cancer cells beta-catenin is involved in cellular adhesion by interaction with E-cadherin, and with cell cycle regulation via the wnt pathway.
E-cadherin

Beta-catenin was originally discovered as a cadherin-binding protein.24 The cadherins are mediators of cell-cell adhesion. They are divided into 10 subclasses, of which the E-cadherins are responsible for epithelial cohesiveness. E-cadherin is a 120kd transmembrane glycoprotein that mediates cell adhesion through calcium dependant, homotypic interactions.21 The cytoplasmic domain of E-cadherin is associated with undercoat proteins, termed catenins (alpha, beta and gamma). Beta and gamma bind to the cytoplasmic domain of E-cadherin and alpha-catenin links beta and gamma-catenin to the actin cytoskeleton. Several studies have shown that the integrity of this complex is necessary for the function of E-cadherin.25 Loss of E-cadherin function leads to impaired cell adhesion which is responsible for loss of contact inhibition of growth. It is also necessary for an epithelial tumour to acquire metastatic potential.21

Decreased E-cadherin has been found in many human tumours.26 Decreased expression is reported in 40-50% of colorectal carcinomas.27,28 This decreased expression is associated with loss of differentiation and a worse prognosis.27,29,26 The study of Takayama et al. of colon, gastric and oesophageal cancer demonstrated immunohistochemically that decreased membrane staining for beta-catenin was associated with decreased E-cadherin staining in a significant number of tumours.22 Hermiston et al. have suggested, using mouse model experiments, that this loss of E-cadherin can occur at the adenoma stage and that forced re-expression of E-cadherin restores the altered cell cycle.10 This has been confirmed in sporadic colonic adenomas
where Valizeh et al. and Gagliardi et al. showed decreased E-cadherin expression in 30%, all associated with nuclear beta-catenin expression.²⁵,³¹

Signal transduction /wnt signaling

A separate role for beta-catenin has been found in cell signaling by participation in the Wnt/Wingless pathway.³² The wnt (or its Drosophila homolog wingless) pathway is essential in embryological development and tumourigenesis. The wnt family is composed of more than 15 closely related glycoproteins. Receptors for the wnt proteins are members of the frizzled family of transmembrane proteins. Wnt signalling, which is characterised by nuclear accumulation of beta-catenin, regulates embryological processes. For example it induces epithelial-mesenchymal transitions in human cell culture experiments. Wnt is also involved in development of various organs including intestinal development.²¹

In unstimulated cells free beta-catenin is bound to and destabilised by a multiprotein complex containing axin, glycogen synthase kinase-3beta and APC. Interaction between axin and GSK-3β facilitates phosphorylation of beta-catenin by GSK-3β. This phosphorylation targets beta-catenin for degradation by the proteasome pathway.²

When cells are stimulated by wnt ligands a signal is transduced to a cytoplasmic protein, Disheveled (Dv10), which upon activation inhibits the activity of GSK-3β by binding to axin.³² GSK-3β is usually responsible for the degradation of beta-catenin and the wnt
signaling thus stabilises beta-catenin and leads to increased cytoplasmic levels and transfer of this protein to the nucleus.23,2 Nuclear beta-catenin associates with the T cell factor/lymphoid enhancer factor (TCF/LEF) family of transcription factors. In the absence of beta-catenin these factors are poor transcriptional activators. Complexed with beta-catenin they are efficient activators and alter the expression of the wnt signaling target genes.34

Figure 1.3. Wnt pathway in normal and tumour cells. (a) Normal cells: Beta-catenin bound in a multi-protein complex is phosphorylated by GSK-3\beta and degraded. (b) Normal cells: Regulated stabilized beta-catenin translocates to the nucleus and acts as a transcription factor. (c) Tumour cells: disruption of the multiprotein complex due to \textit{APC} mutation leads to beta-catenin upregulation of beta-catenin, transfer to the nucleus and unregulated transcriptional activation.21
A number of genes have been identified as targets for wnt signaling. Cyclin D1 is a well
known oncogene which stimulates cell proliferation by allowing progression through G1
of the cell cycle. When a cell receives growth promoting signals it synthesizes cyclin D1.
This cyclin D1 binds to cyclin dependant kinase (CDK) 4 and then 6 in early G1 of the
cell cycle. The CDK 4 and 6 then phosphorylate Retinoblastoma protein (Rb). In the
unphosphorylated state Rb is bound to E2F transcription factors and inactivates them.
Phosphorylation of Rb releases E2F which is then responsible for the synthesis of factors
necessary for progression through the S phase of the cell cycle.35 Cyclin D1 gene
contains a binding site for TCF/LEF. The binding of TCF/LEF stimulates cyclin D1
synthesis which promotes cell proliferation. Increased beta-catenin has been shown to be
associated with an increase in cyclin D1 in colon cancer cell lines.36 This is thus one
mechanism whereby wnt pathway activation and beta-catenin accumulation is thought to
lead to uncontrolled cell proliferation. An increase in nuclear cyclin D1 has been
demonstrated at the adenoma stage in FAP and in 30% of unselected colorectal adenomas
and carcinomas.37,28

C-myc is another oncogene identified as a target for wnt signaling. C-myc proto-oncogene
is expressed in virtually all cells. When a cell receives a growth stimulus the levels of c­
myc increase rapidly and then decline to a basal level. After translation c-myc is
transported to the nucleus, binds to DNA and acts as a transcriptional activator,
promoting cell proliferation.39 As early as 1989 deregulation of c-myc in colonic cancers
was found to be linked to allele loss on chromosome 5q.40 This is now known to be the
site of APC gene loss. The link between APC and c-myc has been reported to be beta-
catenin, which regulates transcription of c-myc via the TCF transcription factor. Gamma-catenin (plakoglobin), a protein with analogous structure and function to beta-catenin, is also regulated by binding to APC. Kollings et al. showed that gamma-catenin activation of the TCF transcription factor leads to an increase in c-myc expression. This function was independent of beta-catenin, which they found to have no effect on c-myc expression. Gamma-catenin expression is increased in about 85% of sporadic colon cancers.

Numerous studies in the late eighties and early nineties showed an increase in c-myc RNA and protein in colonic carcinomas using Western blotting, Northern blotting and immunohistochemical staining. Elevated levels of c-myc have also been demonstrated at the adenoma stage in FAP. A study comparing c-myc expression with tumour grade showed varied staining results. Increased nuclear staining was seen in well differentiated lesions and decreased nuclear uptake with cytoplasmic staining in poorly differentiated tumours. Predominantly cytoplasmic staining was also found by Imaseki et al., but this was irrespective of tumour grade. It is not known whether cytoplasmic c-myc reflects only inability to reach the nucleus, or whether it has a specific role in the cytoplasm. Wang et al. challenged this elevated c-myc in their recent studies. Using immunohistochemistry and PCR they demonstrated that while c-myc m-RNA was increased in 2/3 of tumours, c-myc nuclear protein expression as detected by immunohistochemistry, was not increased. This was substantiated by Western blotting, which also showed an unaltered or decreased c-myc level.
Aside from disordered cell proliferation, tumour invasion also requires digestion of the basement membrane and extra-cellular matrix. The matrix metalloproteinases are a family of enzymes responsible for extracellular matrix and collagen digestion. Matrix metalloproteinase 7 (MMP7) is, unlike the other metalloproteinases, produced exclusively by tumour cells. MMP7 is overexpressed in 80% of unselected colorectal carcinomas. MMP7 has also been demonstrated to play a role in adenoma development as the inhibition of MMP7 suppresses adenoma formation. The MMP7 gene has two binding sites for TCF and is activated by beta-catenin/TCF. Beta-catenin increase and shift to the nucleus has been associated with increased MMP7 in immunohistochemical study of human sporadic colon cancers. The increased levels were found to be present at the adenoma phase.

Laminin-gamma-2 is an invasion marker which is overexpressed in the invasive front of colorectal carcinomas. Laminin is a component of the basement membrane. It is cleaved by the matrix-metalloproteinases and the gamma-2 chain activates cell migration. Beta-catenin and laminin-gamma-2 have been shown to be overexpressed at the invasive tumour front. Beta-catenin activates laminin-gamma-2 and thus enhances the ability of tumour cells to invade.

Another important factor in tumour progression is angiogenesis. Vascular endothelial growth factor (VEGF) has been found to be important in most tumours. It has also been shown to be increased at the colon adenoma stage. The regulators of VEGF are different in different tissues. In colon cancer cell line experiments VEGF is regulated by K-ras and beta-catenin/wnt signaling.
Beta-catenin is also implicated in colonic cell differentiation. Cell line experiments have shown that down-regulation of beta-catenin/TCF occurs with colonic cell differentiation. This function is thought to be mediated indirectly by down-regulation of transcription factors whose normal role is to repress the expression of genes associated with the onset of differentiation. Cdx-1, encoding a homeobox factor, Id2 (inhibitor of differentiation-2) and ENCl (ectodermal neurocortex 1) have been identified. Homeobox genes are genes containing a 180 nucleotide motif, the homeobox, which is conserved between species and in vertebrates is implicated in the patterning of limbs and vertebrae.

The combination of all these factors makes beta-catenin a potent oncogene. The loss of membranous beta-catenin and accumulation of nuclear beta-catenin contributes to the ability of tumour cells to proliferate, survive, dedifferentiate and invade.
1.3 COLORECTAL CANCER CARCINOGENESIS

The multistep process of carcinogenesis, with multiple genetic mutations occurring in sequence, is well recognized and described in well known pathology texts. Colon cancer has long been recognised to result from progression of normal epithelium through gradually more dysplastic adenomas to carcinoma. The study of these preneoplastic lesions, particularly in FAP, has done much to contribute to the understanding of carcinogenesis in general.

The well-known classic, or “gatekeeper”, pathway of colorectal carcinogenesis was defined mainly through study of FAP adenomas and carcinomas. In FAP a germline mutation in APC gene, followed by somatic mutation of the wild type allele, results in the development of numerous adenomas. The somatic mutation is thus the rate limiting step in this process and APC is known as a “gatekeeper” gene. "Gatekeeper" genes are responsible for maintaining a constant cell number in renewing cell populations. Mutation of other genes, in the presence of a normal gatekeeper gene, does not result in adenoma development. Evidence supporting this role for APC is that APC mutations are found in the earliest dysplastic lesions (aberrant crypt foci) and mutation of other genes, such as p53, do not result in adenomas in the absence of an APC mutation. More than 80% of sporadic adenomas and carcinomas have been demonstrated to have a somatic APC mutation. The pathway of carcinogenesis is thus thought to follow roughly the same pattern of mutations in all these lesions. The initial loss of APC is followed by loss of other tumour suppressor genes, namely K-ras at the adenoma stage, TP53 on chromosome 17 and deletions on chromosome 18q at transition to malignancy.
inactivation of the second copy of these genes is usually by non-dysjunctional loss leading to loss of heterozygosity. This loss of heterozygosity is correlated with gross chromosomal changes and these tumours are invariably aneuploid.10

Not all adenomas have a polypoid configuration. Flat adenomas are described and may be early (not yet polypoid) lesions or represent horizontal spread of proliferating tubules. The flat adenomas have been noted to often lack k-ras mutations.62

A second “mutator” pathway has more recently been elucidated through study of HNPCC cancers.20 In HNPCC an inherited mutation of a mismatch repair gene, with somatic loss of the second copy, leads to failure to repair errors that occur during DNA replication. This results in mutations of single nucleotides and alterations in simple repetitive microsatellite sequences. Microsatellites are tandem repeats of simple sequences that occur abundantly and randomly throughout the genetic sequence. They consist of 10-50 copies of 1-6bp motifs that can occur as perfect tandem repeats, imperfect (interrupted) repeats or as a combination of the two types. The repeats are prone to replication errors during DNA replication, but these are normally repaired by DNA mismatch repair proteins. The length of a repeat is thus normally transmitted unaltered through mitosis and meiosis. Novel alterations of these sequences have been demonstrated in tumours.63 These alterations in the microsatellites, termed microsatellite instability (MSI), are the characteristic phenotype of HNPCC and are detected in the majority of these tumours.11,20 Thus there is DNA instability rather than the chromosomal instability seen in the classic
pathway. Once the initial mismatch repair defect is present the lesions progress rapidly to carcinomas, because of the increased mutation rate.

The presence of MSI, in sporadic and HNPCC tumours, has been noted by various groups since 1993. A National Cancer Group Workshop in America met in 1997 to establish acceptable criteria for defining a MSI tumour. Five markers, including two mononucleotide and three dinucleotide markers, were selected. MSI-high (MSI-H) tumours were defined as having instability in two or more markers, while MSI-low (MSI-L) have instability in one marker. Microsatellite stable (MSS) tumours are those showing no instability using these five markers. Subsequent studies have usually included these markers, although additional markers have often been added. Using these criteria 10-15% of all colorectal cancers are MSI-H.

The vast majority of sporadic MSI-H tumours have been shown to have hypermethylation of the MLH1 promoter, suggesting that this is the primary mechanism underlying MSI-H in sporadic tumours. Both hypermethylation and hypomethylation of DNA have been linked to colonic cancer. Methylation occurs at CpG sites. CGIs are short sequences rich in CpG dinucleotide found in the 5' region of about half of all human genes. Methylation of cystine within 5' CGIs is associated with loss of gene expression. Physiological methylation is seen in conditions such as X chromosome inactivation. Aberrant methylation of CGIs is associated with transcriptional inactivation of tumour-suppressor genes in neoplasms, including colorectal cancer. Two distinct types of hypermethylation are described in cancer. Type A (A for aging-specific) and Type C (C
for cancer-specific). Type A methylation of genes occurs in an aging-related manner in normal colonic epithelium, and hypermethylation of these genes occurs at a high frequency in colorectal cancer. In contrast type C methylation is never seen in normal epithelium and is relatively infrequent in cancer epithelium. A minority of tumours display high levels of type C methylation. MLH1 is methylated in about 50% of these tumours. These account for the majority of MSI-H sporadic colorectal cancers.

Morphologic features noted in MSI-H cancers are predominance of right sided lesions, poor differentiation, mucinous differentiation, intra-epithelial and Crohn's-like lymphocytic infiltration, reduced invasiveness, improved prognosis, female preponderance and multiplicity. With the exception of lymphocytic infiltration these features have been found to be more pronounced in sporadic MSI-H cancers than in HNPCC.

The discovery of this proposed second "mutator" pathway of carcinogenesis led to numerous studies attempting to establish whether DNA instability leads to accumulation of genetic alterations in oncogenes and tumour suppressor genes similar to those found in the classic pathway. Most early studies did not make the distinction between sporadic MSI-H tumours and HNPCC tumours. A number of differences emerged between Microsatellite stable (MSS) and Microsatellite instability-high (MSI-H) tumours. Mutations involving TGF-β type 2 receptor gene are characteristic of MSI tumours. This mutation causes the cell to express an abnormal TGF-β receptor on its surface, and thereby fail to bind TGF-β, which has a potent tumour suppressor activity. Mutations of TGF-β have not been detected in MSS tumours. Mutations of IGF-2R and bax have
also been found at increased frequency in MSI-H cancers. Numerous studies have shown a decreased incidence of APC, p53 and k-ras mutations in sporadic MSI-H cancers.20,59,73,19,74 A study by Shitoh et al. on Japanese sporadic colorectal cancers disagreed with this and found a decreased K-ras mutation rate, but no difference in APC and p53 mutation rate between MSI-H and MSS cancers.75 Huang et al. also found a high incidence of APC mutations (50\%) in MSI-H cancers.76 This apparent disparity is explained by Jass by dividing MSI-H cancers into those from patients with HNPCC and those occurring in a sporadic setting.71 The cases in the study of Shitoh et al. were known to include HNPCC cases.75 The Huang et al. study only included six MSI-H cancers and Jass et al. argues that HNPCC cases may have been unknowingly included.76,71 Recent studies lend support to this suggestion as studies including only HNPCC cancers have found a 20\%71,77 to 50\% mutation rate in APC.78

Since the main function of APC appears to be regulating beta-catenin, many groups have looked for \textit{beta-catenin} mutations in tumours with preserved APC. Experiments on carcinogen-induced rat colon cancers have demonstrated a high incidence of \textit{beta-catenin} mutation, especially in exon 3, in tumours with no APC mutation.79-82 This was thus proposed to be a different method of disruption of the APC/beta-catenin complex, and ultimate activation of wnt signaling, with its downstream effects. Morin et al. showed that mutations rendering beta-catenin insensitive to APC-induced phosphorylation had the same effect as APC mutations.24 Studies of unselected colon cancers have shown beta-catenin mutations in 13\% - 50\% of cancers without APC mutation.83-85 Salashor et al. looked for \textit{beta-catenin} mutations in unselected MSI-H cancers and found none.20
Loving et al. found no mutations in sporadic MSI-H cancers. This is in contrast to Rowan et al. who found a high frequency of \textit{beta-catenin} in MSI-H without \textit{APC} mutations (4/7). It is not known what percentage of these tumours was from HNPCC patients. The sample in the study of Salashor et al. was from unselected cases while Rowan et al. used cell lines. Miyaki et al. studied HNPCC tumours and found \textit{APC} mutations in 20\% and \textit{beta-catenin} mutations in 50\%.(Miyaki M et al. 1999) Review of this data lends weight to the suggestion that HNPCC tumours have a different genetic profile to MSI-H tumours. The histogenesis also appears to be different. While they are not frequent in comparison to adenomas in FAP, adenomas are seen in HNPCC. Carcinomas can also be seen arising in these adenomas. In contrast, sporadic MSI-H adenomas are rarely seen and these tumours appear to arise through serrated polyps. Serrated polyps include hyperplastic polyps, mixed polyps and serrated adenomas. Serrated adenomas are polyps with dysplasia and crypt infolding.

The current evidence, published predominantly by Jass et al, is thus that HNPCC cancers have a similar rate of disruption of the \textit{wnt} pathway as sporadic lesions, but that sporadic MSI tumours have little evidence of \textit{wnt} disruption. While it is usually assumed that \textit{wnt} disruption is an early "gatekeeper" event, very few studies have examined \textit{APC} and \textit{beta-catenin} mutation or beta-catenin shift to the nucleus in HNPCC adenomas. Akiyama et al. studied 14 HNPCC adenomas and found \textit{APC} mutations in 50\% and \textit{beta-catenin} mutations in 14\% of those without \textit{APC} mutations.77
CHAPTER 2: BETA-CATENIN STUDY

The first part of the study aimed to confirm the shift in beta-catenin previously reported in FAP, juvenile and sporadic lesions and to determine if this complex is playing a similar role in the early development of HNPCC lesions. The hypothesis was that beta-catenin shift to the nucleus would occur in HNPCC adenomas at an equal frequency to that occurring in sporadic adenomas.

2.1 AIM

To examine the expression and distribution of beta-catenin in colorectal adenomas and carcinomas in order to

1) confirm the findings of beta-catenin staining in FAP, juvenile and sporadic adenomas and carcinoma.

2) determine if beta-catenin staining is altered in HNPCC

3) determine if beta-catenin alteration is an early or late event in HNPCC

2.2 MATERIALS AND METHOD

A thesis proposal was submitted for approval to the Groote Schuur Hospital/University of Cape Town Ethics Committee and ethical approval was obtained.
2.2.1 MATERIALS

Ten cases each of FAP and sporadic adenomas and carcinomas, and 10 polyps from patients with juvenile polyposis were included in the study. Only one adenoma and/or carcinoma was used from any one patient. For each case a single block was chosen. Where available the section included both tumour and adjacent normal epithelium.

Seven FAP cancers from the Anatomical Pathology Division of Groote Schuur Hospital were included and three additional cases were obtained from the Anatomical Pathology Department of Tygerberg Hospital. The patient ages ranged from 15 to 78 years (mean 45yrs). Ten adenomas were randomly chosen from ten different FAP patients, who had previously undergone polypectomy or colonic resections, at Groote Schuur Hospital. The age range was 29 to 60 years (mean 25yrs). The ten polyps from patients most recently diagnosed with juvenile polyposis, available at the Anatomical Pathology archives at Groote Schuur Hospital, were chosen. All HNPCC cases available at the Anatomical Pathology Division of Groote Schuur Hospital were used in this study. This included 14 adenomas and 13 carcinomas. The ages of the patients with adenomas ranged from 29 to 73 years (mean 36yrs), and carcinomas from 24 to 73 years (mean 39yrs). All the carcinomas were sited in the right side of the colon. Ten sporadic adenomas and ten sporadic carcinomas were selected from sequential cases reported by the investigator and two colleagues, in the period of 2000 to 2002. The age range of patients with adenomas ranged from 31 to 78 years (mean 65yrs). The age range of patients with carcinomas was from 52 to 78 years (mean 64yrs). Eight of the ten carcinomas originated from the left side of the colon.
The FAP and HNPCC cases all had a positive family history and in all but two HNPCC cases proven germline mutations. Cases of juvenile polyposis were selected from children with a history of multiple colonic polyps. No mutation studies were available. The sporadic cases had no family history or morphologic evidence of an inherited syndrome. Testing for hMLH1, hMSH2 and hMSH6 was done in an attempt to exclude any unsuspected HNPCC cases. The method previously described by the investigator’s consortium was used.91

Figure 2.1: Typical juvenile polyps. (a) Whole mount showing dilated crypts (b) Low power view showing crypt architecture and stromal inflammation.
2.2.2 METHOD: Beta-catenin immunohistochemistry

The chosen method for assessing protein upregulation in this study was through immunohistochemistry. This method has the advantage of giving not only an estimate of the quantity of a protein in a cell but also the subcellular location of the protein. This knowledge is vital with beta-catenin as it is fulfilling different roles at different sites. The stains can also be performed on formalin-fixed, paraffin wax-embedded tissue, which makes study of archival material possible. A disadvantage is that assessment of protein quantity is based on a visual evaluation of staining intensity and is thus subjective.

Pilot Study

In 2001 a pilot study was performed in the immunohistochemical laboratory at the Division of Anatomical Pathology, Groote Schuur Hospital on seven FAP carcinomas, to assess beta-catenin staining. FAP carcinomas were chosen as these lesions have been well described to have a shift in beta-catenin from the cell membrane to the nucleus in all
cases. The cases were all the FAP cancers currently available in the archives of the Anatomical Pathology Division at Groote Schuur Hospital. A section showing both invasive tumour and normal epithelium was chosen for each case.

Immunohistochemical protocol

2-3micrometer paraffin wax-embedded sections were floated onto APES-coated slides and incubated overnight in a 60°C incubator. Sections were dewaxed in xylene, rehydrated in graded ethanols and washed in water. The sections were blocked for endogenous peroxidase in a 3% H2O2 water solution for 5 minutes. After washing in water, heat-mediated antigen retrieval with a citrate buffer and pressure-cooking was performed at pH6. Sections were rinsed in phosphate buffered saline (PBS) pH7.6. Non-specific binding was blocked using a 5% goat serum solution at room temperature for 10 minutes (Dako X0907). The goat serum was drained off and the sections were incubated with the beta-catenin antibody (NCL-beta-catenin;Novocastra,UK) at a dilution of 1:100 for 2hrs at room temperature. Sections were well washed in PBS and then treated with goat anti-mouse immunoglobulins labeled with horseradish peroxidase (Envision:Dako D4001) at room temperature for 30 minutes. Sections were washed in PBS and positivity developed by applying 3.3’-diaminobenzidine (Dako K3466) at room temperature for 5-10 minutes. Sections were washed well in water and counter-stained in haemotoxylin, followed by dehydration using graded ethanols and xylene before mounting with entallan.
The protocol was established after trying the commercially recommended protocol and making adjustments. Sections of normal colonic epithelium and colon cancers were stained at various dilutions for different lengths of incubation. The results in normal epithelium were then compared with that reported in previous studies and the dilution and length of incubation selected to produce similar results.

Normal epithelium: Staining was isolated to the cell membrane. No cytoplasmic or nuclear staining was present. This is in accordance with previous studies\(^{21,92-94}\). Loss of membrane staining and positive staining in the cytoplasm and nucleus were seen in some adenomas and carcinomas.

Immunohistochemical scoring

Staining was evaluated according to the presence of membranous, cytoplasmic and nuclear staining. The scoring system described by Jass et al. was used in this study.\(^95\)

<table>
<thead>
<tr>
<th>Membrane staining</th>
<th>Cytoplasmic staining</th>
<th>Nuclear staining</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = no loss</td>
<td>0 = absent</td>
<td>0 = absent</td>
</tr>
<tr>
<td>1 = loss</td>
<td>1 = weak</td>
<td>1 = weak</td>
</tr>
<tr>
<td></td>
<td>2 = strong</td>
<td>2 = strong</td>
</tr>
</tbody>
</table>

The three scores were then added to give a total out of five, with four or five considered a positive result.

Beta-catenin staining has been shown to be greater at the invasive front of tumours.\(^95\) If this area was available it was evaluated. In the case of biopsies the highest scoring area of the available tissue was scored.
The tumours were coded and scored by the investigator, who was blinded to the origin of each tumour. A random sample of the tumours was then scored by a second pathologist. The results were statistically analysed using the chi-squared and Mann-Whitney tests.

2.3 RESULTS

All of the FAP adenomas had some shift in beta-catenin staining. 7/10 cases had a score of four or five (Table 2.1). All of the FAP carcinomas had complete shift with a score of five. (Table 2.2)

Table 2.1: Beta-catenin score in FAP adenomas

<table>
<thead>
<tr>
<th>Code</th>
<th>Membrane</th>
<th>Cytoplasm</th>
<th>Nucleus</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>FA 2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>FA 3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>FA 4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>FA 5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>FA 6</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>FA 7</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>FA 8</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>FA 9</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>FA 10</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Beta-catenin staining scored according to the presence of membranous, cytoplasmic and nuclear staining. Membrane staining scored 0 if present and 1 if absent. Cytoplasmic and nuclear staining scored 0 if absent, 1 if weak and 2 if strong. The three scores are then added to give a total out of five, with four or five considered a positive result.
A shift in staining was seen in the three juvenile polyposis polyps with dysplasia. The shift was seen in the dysplastic cells. None of the polyps without dysplasia showed a shift one of the polyps without dysplasia showed a shift (Table 2.3) Nine of the sporadic adenomas had some shift in staining, five had nuclear staining and four a score of five (40%). (Table 2.4) All of the sporadic carcinomas had some shift in staining with nuclear staining and six had a score of four or five (60%). (Table 2.5)
Table 2.3: Beta-catenin score in juvenile polyposis polyps

<table>
<thead>
<tr>
<th>Code</th>
<th>Dysplasia</th>
<th>Membrane</th>
<th>Cytoplasm</th>
<th>Nucleus</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP 1</td>
<td>Yes</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>JP 2</td>
<td>Yes</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>JP 3</td>
<td>Yes</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>JP 4</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>JP 5</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>JP 6</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>JP 7</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>JP 8</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>JP 9</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>JP 10</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2.4: Beta-catenin score in sporadic adenomas

<table>
<thead>
<tr>
<th>Code</th>
<th>Membrane</th>
<th>Cytoplasm</th>
<th>Nucleus</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA 1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>SA 2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>SA 3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>SA 4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>SA 5</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>SA 6</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>SA 7</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>SA 8</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>SA 9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SA 10</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 2.5: Beta-catenin score in sporadic carcinomas

<table>
<thead>
<tr>
<th>Code</th>
<th>Membrane</th>
<th>Cytoplasm</th>
<th>Nucleus</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC 1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>SC 2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>SC 3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>SC 4</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>SC 5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>SC 6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>SC 7</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>SC 8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>SC 9</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>SC 10</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

The HNPCC adenomas showed some shift in 13/14 cases; nuclear staining in 7/14 cases (50%), and four had a score of five (28.6%). (Table 2.6) The HNPCC carcinomas all had some shift with 11/13 (84.6%) having nuclear staining and 9/13 (69.2%) having a score of four or five. (Table 2.7)
Table 2.6: Beta-catenin score in HNPCC adenomas

<table>
<thead>
<tr>
<th>Code</th>
<th>Membrane</th>
<th>Cytoplasm</th>
<th>Nucleus</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA 1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>HA 2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>HA 3</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>HA 4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>HA 5</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>HA 6</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>HA 7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HA 8</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>HA 9</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>HA 10</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>HA 11</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>HA 12</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>HA 13</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>HA 14</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 2.7: Beta-catenin score in HNPCC carcinomas

<table>
<thead>
<tr>
<th>Code</th>
<th>Membrane</th>
<th>Cytoplasm</th>
<th>Nucleus</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC 1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>HC 2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>HC 3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>HC 4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>HC 5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>HC 6</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>HC 7</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>HC 8</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>HC 9</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>HC 10</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>HC 11</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>HC 12</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>HC 13</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

HNPCC adenomas were compared with sporadic adenomas and no difference in betacatenin total score was found. The similarity was significant with a Mann-Whitney score of 0.89. The lesions were then stratified into positive shift and negative shift. A score of one to three was viewed as negative and a score of four or five as positive. There was once again no difference between the two groups. The chi-squared test was used and the p-value is 0.88. The same comparison was done with the sporadic and HNPCC
carcinomas and no difference was found. Mann-Whitney value 0.9 and chi-squared test 0.88.

Figure 2.4: (a): membranous beta-catenin staining in a juvenile polyp with no dysplasia
(b): Nuclear beta-catenin staining in an area of dysplasia in a juvenile polyp.

Figure 2.5: Surface epithelium with normal membranous beta-catenin staining (thin arrow), HNPCC carcinoma with nuclear beta-catenin staining (thick arrow).
2.4 DISCUSSION

The majority of sporadic colorectal cancers are known to occur via the classic pathway of carcinogenesis with progression from normal epithelium, via adenomas, to carcinomas.61 Mutation of the \textit{APC} gene plays a crucial "gatekeeper" role in these tumours. Mutation of the \textit{APC} gene leads to decreased phosphorylation and degradation of beta-catenin, and a shift of beta-catenin from the cell membrane to the nucleus. Beta-catenin then binds to TCF transcription factors and leads to increased cell proliferation and decreased apoptosis.23

Tumours occurring in the setting of HNPCC, and a small subset of sporadic tumours, have loss of DNA mismatch repair genes as the initiating event and follow the so-called "mutator" phenotype. The role of the APC/beta-catenin complex in these lesions is not as well defined.

The results of this study show a shift in beta-catenin in 7/10 FAP adenomas and 10/10 of the FAP carcinomas. Inomata et al. showed beta-catenin shift in all their FAP adenomas and carcinomas.93 The finding of beta-catenin shift in all the cases in this study is in accordance with this result. They did not attempt to score cases beyond positive or negative for shift.

In the juvenile polyposis cases beta-catenin shift was found only in the polyps with dysplasia. The remainder of the lesion had membranous beta-catenin staining. A similar
The finding of beta catenin shift in polyps of juvenile polyposis has been previously reported. The finding of focal beta-catenin nuclear staining in those lesions with dysplasia indicates that Wnt pathway disruption is probably implicated in the development of carcinomas in these lesions.

A shift in beta-catenin staining to the nucleus was seen in five out of ten sporadic adenomas. Previous immunohistochemical studies of beta-catenin in sporadic adenomas have shown very varied results. Inomata et al. found no nuclear staining, Hao et al. found nuclear staining in 50% of adenomas, Valizadeh et al. in 65% and Iwamoto et al. in 100%. In carcinomas Hugh et al. showed beta-catenin shift in 75% with nuclear staining in 50%. Hao et al. showed nuclear staining in 78.8%. Wang et al. in 83% and Iwamoto et al. in 100%. The scoring system for each of these studies was different. Hao et al. viewed nuclear staining in >5% of nuclei as positive and Iwamoto required nuclear staining in >10% of tumour cells. Wang reported any nuclear staining as positive and >50% staining as diffuse. Hugh et al. divided beta-catenin score into negative (no staining), focal (less than 75%) and diffuse (>75%). This variability in scoring highlights the difficulty experienced when attempting to evaluate and compare the results of different immunohistochemistry studies.

The tumours in these above mentioned studies were not stratified according to microsatellite instability. Microsatellite evaluation was not available for the current study. Sporadic lesions should ideally have been stratified into MSI-H and MSS lesions to allow comparison between these two groups and the HNPCC tumours. An attempt was made to
do this by immunohistochemically testing for loss of MLH1, MSH2 and MSH6. This staining was done using the method previously devised by the investigators research consortium. All the cases chosen had preserved mismatch repair staining and are thus unlikely to be from unsuspected HNPCC or sporadic MSI-H cases.

Nuclear beta-catenin staining was demonstrated in seven of 14 HNPCC adenomas and 11 of 13 HNPCC carcinomas. Despite the small sample size, these results show statistically significant similarity to the results for the sporadic adenomas and carcinomas, thus supporting the hypothesis.

Mutational analysis of HNPCC cancers has shown that the combination of beta-catenin or APC mutation occurs with approximately equal frequency in these tumours as in sporadic cancer. Immunohistochemical localization of beta-catenin can be expected to reflect this. This is supported by this study. The study also demonstrates that the situation in the South African cases is similar to that found in European and Japanese studies. The immunohistochemical demonstration of a beta-catenin shift at the adenoma stage is, to the investigator’s knowledge, a new finding. A single Japanese study showed beta-catenin and APC mutations to be present in a percentage of these adenomas. The study was based on 14 adenomas from Japanese patients with HNPCC. The finding of beta-catenin shift in the HNPCC tumours led to the second part of the study looking at the “down stream” effects of this shift.
CHAPTER 3: E-CADHERIN, CYCLIN D1 AND C-MYC STUDY

The hypothesis was that the E-cadherin, cyclin D1 and c-myc staining in HNPCC adenomas and carcinomas would be the same as that reported in sporadic cases. A further hypothesis was that the decrease in E-cadherin and increase in cyclin D1 and c-myc would be positively correlated with nuclear beta-catenin staining.

3.1 AIM

To examine the expression and distribution of E-cadherin, cyclin D1 and c-myc in HNPCC adenomas and carcinomas to

1) determine if E-cadherin membranous expression is decreased in HNPCC

2) determine if cyclin D1 and c-myc nuclear expression is increased in HNPCC

3) determine the relationship between beta-catenin distribution and the expression of E-cadherin, cyclin D1 and c-myc.

3.2 MATERIALS AND METHOD

The same HNPCC adenoma and carcinoma blocks used in the beta-catenin study were used. Immunohistochemical staining for E-cadherin, cyclin D1 and c-myc was performed using the same immunohistochemistry protocol that was used in the beta-catenin study, with the following antibody dilutions and incubation times:
<table>
<thead>
<tr>
<th>AG retrieval</th>
<th>Ab dilution</th>
<th>Time</th>
<th>Buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-cadherin(code081223)Zymed</td>
<td>pH6</td>
<td>1:2</td>
<td>1hr</td>
</tr>
<tr>
<td>C-myc (Clone 9E10)DAKO, USA</td>
<td>pH8</td>
<td>1:500</td>
<td>2hr</td>
</tr>
<tr>
<td>Cyclin D1 (codeM7155)DAKO, Denmark</td>
<td>pH6</td>
<td>1:150</td>
<td>1hr</td>
</tr>
</tbody>
</table>

Background staining occurred with the cyclin D1 (codeM7155; DAKO, Denmark) and c-myc (Clone 9E10; DAKO, USA) antibodies. Blocking for endogenous peroxidase and treatment with goat serum improved, but did not totally remove, this staining. The staining did not however obscure the morphology of mucosal staining.

3.2.1 E-CADHERIN

Normal epithelium: baso-lateral membrane staining was present.

Loss of membrane staining was evaluated and a score of 1 awarded for <30% loss (focal) and 2 for >30% loss (diffuse). This scoring system was adapted from that used by Gagliardi et al.31

The coded sections were scored by the investigator and a second pathologist.

The E-cadherin results were correlated with the beta-catenin results.
3.2.2 CYCLIN D1

Weak membranous and cytoplasmic staining was present in the normal epithelium. No nuclear staining was observed.

Staining could not be performed on one adenoma as the tissue had cut away. Nuclear staining was assessed and a score of 1 awarded for positive staining in <30% of tumour nuclei and 2 for staining in >30% of tumour nuclei.

The sections were scored by the investigator and a second pathologist.

The cyclin D1 results were correlated with the beta-catenin results.

3.2.3 C-MYC

Strong nuclear staining was seen in the crypts and surface epithelium in the normal mucosa. Weak cytoplasmic staining was also observed. The staining was uniform throughout to the length of the epithelium. Occasional inflammatory cells in the stroma also stained positive. The nuclear and cytoplasmic staining in the carcinomas was compared to the normal epithelium and reported as weaker, the same or stronger staining.

The adenomas were not evaluated as the tissue had cut away in 5/14 and only two polyps had adjacent normal epithelium for comparison. Attempts were made to quantify the difference in staining in terms of percentages, but this was found to yield too much intra-observer and inter-observer variation. Good intra-observer and inter-observer reproducibility was found using the simple more, less or the same staining system.
3.3 RESULTS

3.3.1 E-CADHERIN

Normal membrane staining was seen in 10/14 HNPCC adenomas (71.4%). Focal loss of staining (<30% loss) was seen in four cases (28.6%). No adenomas had diffuse loss of staining. 9/13 (69.2%) HNPCC carcinomas had loss of E-cadherin staining. Staining was diffusely lost (>30% loss) in 6/13 (46.1%) and focally lost (<30% loss) in three cases (23%).

The beta-catenin score was then correlated with the score for loss of E-cadherin staining.

A strong positive correlation was found (correlation co-efficient 0.7).

![Image of E-cadherin immunohistochemistry]

Figure 3.1: E-cadherin immunohistochemistry – positive staining in normal epithelium (right) and negative staining in the tumour (left)

3.3.2 CYCLIN D1

9/13 cases had no nuclear staining (69%). 4/13 (30.8%) showed focal nuclear staining (<30% of tumour cells). No adenomas had diffuse nuclear staining. 4/13 HNPCC
canceromas (30.8%) had no nuclear staining. 5/13 (38.5%) had focal staining and 4/13 (30.7%) had diffuse nuclear staining.

The beta-catenin score was then correlated with the score for cyclin D1 staining. A strong positive correlation was found (correlation co-efficient 0.63). Division of adenomas and carcinomas into separate groups did not affect the significance of the correlation. Stratification of beta-catenin into groups of negative (0-3) and positive (4-5), and cyclin D1 into no nuclear staining (0) and nuclear staining (1-2), also had no effect on the significance.

Figure 3.2: nuclear cyclin D1 staining in an adenoma (a) and carcinoma (b)
Table 3.1: E-cadherin and cyclin D1 scores in (a) HNPCC adenomas and (b) HNPCC carcinomas

<table>
<thead>
<tr>
<th>Code</th>
<th>E-cadherin</th>
<th>Cyclin D1</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA 1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HA 2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HA 3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>HA 4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HA 5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HA 6</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>HA 7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HA 8</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>HA 9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HA 10</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>HA 11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HA 12</td>
<td>0</td>
<td>c/away</td>
</tr>
<tr>
<td>HA 13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HA 14</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

a

Loss of E-cadherin membrane staining: a score of 1 awarded for <30% loss (focal) and 2 for >30% loss (diffuse). Cyclin D1 nuclear staining: a score of 1 awarded for positive staining in <30% of tumour nuclei and 2 for staining in >30% of tumour nuclei.

3.3.3 C-MYC

Staining was heterogeneous within the tumours, with most lesions showing areas of increased and decreased nuclear staining. When the entire section was evaluated 3/13 tumours showed an overall increase in nuclear staining. Four tumours showed no difference in nuclear staining compared to the adjacent normal mucosa and six tumours had decreased nuclear staining. Increased cytoplasmic staining was seen in five tumours including the three cases with increased nuclear staining.

No relationship between beta-catenin and nuclear c-myc staining could be demonstrated. Nuclear staining showed no relationship to tumour grade.
Figure 3.3: a) c-myc expression in normal mucosa b) c-myc in HNPCC carcinoma of same patient.

Table 3.2: Nuclear and cytoplasmic c-myc expression in an HNPCC carcinoma compared to the adjacent normal epithelium

<table>
<thead>
<tr>
<th>Code</th>
<th>Nucleus</th>
<th>Cytoplasm</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC 1</td>
<td>Decreased</td>
<td>No change</td>
</tr>
<tr>
<td>HC 2</td>
<td>Increased</td>
<td>Increased</td>
</tr>
<tr>
<td>HC 3</td>
<td>Increased</td>
<td>Increased</td>
</tr>
<tr>
<td>HC 4</td>
<td>No change</td>
<td>Increased</td>
</tr>
<tr>
<td>HC 5</td>
<td>Decreased</td>
<td>No change</td>
</tr>
<tr>
<td>HC 6</td>
<td>Decreased</td>
<td>No change</td>
</tr>
<tr>
<td>HC 7</td>
<td>No change</td>
<td>No change</td>
</tr>
<tr>
<td>HC 8</td>
<td>No change</td>
<td>No change</td>
</tr>
<tr>
<td>HC 9</td>
<td>Increased</td>
<td>Increased</td>
</tr>
<tr>
<td>HC 10</td>
<td>Decreased</td>
<td>Increased</td>
</tr>
<tr>
<td>HC 11</td>
<td>No change</td>
<td>No change</td>
</tr>
<tr>
<td>HC 12</td>
<td>Decreased</td>
<td>No change</td>
</tr>
<tr>
<td>HC 13</td>
<td>Decreased</td>
<td>No change</td>
</tr>
</tbody>
</table>

3.4 DISCUSSION

Evidence of beta-catenin shift to the nucleus in HNPCC tumours led to the second part of the study looking at the down-stream effects of this shift. Studies in sporadic carcinomas have linked beta-catenin/wnt to upregulation of cyclin D1 and c-myc. Loss of membranous beta-catenin has also been linked to a decrease in E-cadherin. These
changes have been shown to be present at the adenoma and carcinoma stage in FAP and sporadic lesions. To the investigator's knowledge the expression of these proteins has not been evaluated in HNPCC adenomas.

This study found focal E-cadherin loss in 30% of HNPCC adenomas. This is the same percentage as that found by Valizadeh et al. (30%) and similar to the findings of Gagliardi et al. (25%) in unselected colon tumours.25,31 46% of HNPCC cancers showed diffuse loss of staining. This is the same as the findings of Dorudi et al. (46%) and very similar to the results of Gagliardi et al. (44%) in unselected cases.25,29,31 The loss of E-cadherin showed a significant correlation with a shift of beta-catenin from the membrane to the nucleus. The hypothesis regarding E-cadherin was thus supported.

Increased expression of nuclear cyclin D1 was found focally in 30% of the HNPCC adenomas. This is similar to that reported by Arber et al. (34%).38 69% of HNPCC carcinomas in this study showed nuclear cyclin D1 staining. This is higher than that found in the Arber et al. study (30%). The comparison of the two studies is made difficult by the difference in scoring of staining. Arber et al describe positive staining as nuclear staining present in >5% of one microscopic field.38 The magnification is however not stated making this statement meaningless. Another study has disagreed with their findings and showed positive nuclear staining in all of their sporadic colorectal carcinomas.50 A positive correlation was found between nuclear beta-catenin and increased cyclin D1 staining. The hypothesis regarding cyclin D1 was thus supported.
C-myc staining was found to be highly heterogeneous in the carcinomas studied. 3/13 showed increased nuclear staining when compared to the adjacent epithelium. The remaining 10 showed equal or decreased staining. Five tumours showed increased cytoplasmic staining, including the three with increased nuclear staining. This is in apparent conflict with studies performed in the late eighties, that showed increased c-myc RNA and protein in all colonic cancers using Western blotting, Northern blotting and immunohistochemical staining.45-47 This elevated c-myc could however not be shown by Wang et al. in their recent study. Using immunohistochemistry and PCR they demonstrated that while c-myc m-RNA was increased in 2/3 of tumours, c-myc nuclear protein expression as detected by immunohistochemistry, was not increased. They did not comment on the presence or absence of cytoplasmic staining. The decreased nuclear staining was substantiated by Western blot which also showed an unaltered or decreased c-myc level. The Wang et al. study was however small, including only 12 colonic cancers. Furthermore five of the twelve were tumours of the right colon, raising the possibility that these may represent unsuspected HNPCC or sporadic MSI-H lesions.50 Royds et al. also found decreased nuclear staining in carcinomas, but noted an increase in cytoplasmic staining. They used electron microscopy to demonstrate that this was genuine binding to polyribosomes and not staining artifact. The finding of cytoplasmic c-myc may explain the increase in c-myc found in studies using Western and Northern blotting and not immunohistochemistry. The major function of c-myc is thought to be in the nucleus where it is involved in progression through the cell cycle. It is possible that cytoplasmic c-myc performs an as yet unknown function.49
No relationship was found in this study between beta-catenin and c-myc expression. This is in contrast to cell culture studies, using human colon cancer cell lines, which have shown that nuclear beta-catenin leads to increased expression of c-myc.41 Wang et al. however found no relationship between beta-catenin and c-myc expression. They thus hypothesised that nuclear localization of beta-catenin and c-myc expression are not linked in-vivo.50 The cell culture experiments of Kollings et al. showed that gamma-catenin activation of the TCF transcription factor leads to an increase in c-myc expression. This function was independent of beta-catenin, which they found to have no effect on c-myc expression.43 Gamma-catenin expression is increased in about 85% of sporadic colon cancers.42

One explanation for the low incidence of c-myc increase in the current study may be due to the fact that the tumours are from HNPCC patients and not sporadic cancers. Rothberg et al. showed a significant correlation between increased c-myc expression and tumours of the left colon, with significantly less c-myc expression in tumours of the right colon. They thus suggested that increased c-myc is less prominent in HNPCC carcinomas compared to FAP and sporadic tumours.98 The studies showing an increase in c-myc in all tumours do not specify whether their cases are sporadic or familial, or from the right or left colon.45-47 It is, however, likely that most originated from the left as these tumours are more common. A possible explanation for this finding of decreased c-myc expression in tumours from the right side of the colon, is that the level of APC mutation is thought to be lower in tumours from HNPCC patients, with an increased contribution by beta-catenin mutations.77 Since gamma-catenin is regulated by APC, the lower incidence of
APC mutations may also lead to less gamma-catenin expression, with possible effects on the expression of c-myc.

In the absence of a relationship to beta-catenin staining, a correlation with tumour differentiation was sought. No correlation with nuclear staining could be demonstrated, but increased cytoplasmic staining was positively correlated with poor differentiation. Sikora et al. showed a similar result with increased cytoplasmic staining in poorly differentiated tumours.45
CHAPTER 4: CONCLUSION

This study demonstrates that beta-catenin plays as significant a role in HNPCC adenomas and carcinomas, as it does in sporadic tumours. Chemopreventative and chemotherapeutic strategies targeting beta-catenin, which are currently the focus of much attention, are thus appropriate in these individuals.

4.1 THERAPEUTIC IMPLICATIONS

The demonstration of the role and importance of beta-catenin/TCF signals has raised the possibility of developing cancer therapies based on targeting this pathway. Kim et al. demonstrated that the inhibition of the oncogenic form of beta-catenin is sufficient to reverse the transformed properties of human cancer cell lines. They thus provided evidence that pharmacological inhibition of oncogenic beta-catenin is likely to be an effective strategy for reversing the malignant properties of advanced human tumours with upregulated beta-catenin.

Various laboratories have used different methods to target this pathway. Chen et al. introduced a cell death gene fadd under the control of wild-type TCF/LEF into colon cancer cell lines. They were able to selectively target tumour cells that had defects in the wnt/beta-catenin/TCF signal transduction pathway. Kwong et al. achieved a similar result using gene therapy in nude mice. They introduced a recombinant adenovirus, which carries a herpes simplex virus thymidine kinase gene under the control of a beta-
catenin/TCF-response promoter linking to a minimum CMV promoter. A combination of the adenovirus and gancyclovir suppressed the growth of colon cancer cells with upregulated beta-catenin in the mice.101

A simpler approach is the use of anti-inflammatories. Non-steroidal anti-inflammatories reduce beta-catenin/TCF transcription. They do this via the inactivation of a phosphatase thus leading to an increase in phosphorylated beta-catenin and greater beta-catenin degradation.102

4.2 FUTURE STUDIES

1) Sporadic MSI-H tumours were not included in this study. It has been suggested that the wnt pathway is less involved in these lesions. A study, similar to the current one, but focusing on these sporadic cases would be useful.

2) Evaluation of gamma-catenin expression in HNPCC tumours, and the possible link between gamma-catenin expression and c-myc expression.
CHAPTER 5: REFERENCES

17. Edmonston TB, Cuesta KH, Burkholder S. Colorectal carcinomas with high microsatellite instability: defining a distinct immunologic and molecular entity with respect to prognostic markers. Human Pathology 2000;31(12):1506-1514.

73. Loving T, Meling GI, Diep CB et al. APC and CTNNB1 mutations in a large series of sporadic colorectal carcinomas stratified by the microsatellite instability status. Scandinavian journal of gastroenterology 2002;37(10):1184-1193.

