Initial results for a further four Candidate Management Procedures for the Toothfish (Dissostichus eleginoides) Resource in the Prince Edward Islands vicinity

A. Brandão and D.S. Butterworth

Marine Resource Assessment and Management Group (MARAM)
Department of Mathematics and Applied Mathematics,
University of Cape Town,
Rondebosch 7701, South Africa

October 2019

ABSTRACT

Brandão and Butterworth (2019a) proposed a simple target-based Candidate Management Procedure (CMP) control rule based upon recent average values of CPUE to provide future TAC recommendations for the Prince Edward Islands toothfish resource. Several suggestions made by a Task Team that evaluated the performance of this CMP were addressed by Brandão and Butterworth (2019b). Although the proposed CMP performed satisfactorily under most OMs, it was unable to react appropriately especially under the scenario assumed by OM17, which addresses the concern with the poor fit to the trotline CPUE data for the last two years by assuming an increased tag loss rate. Further CMPs are investigated in this paper to try to achieve better performance. These CMPs include changes to the form of the CMP proposed by Brandão and Butterworth (2019b), as well as the incorporation of the cumulative number of recaptured tags. These CMPs are able to secure an increase in the TAC without adversely affecting the status of the resource under OM01 and OM10. However, their performances under OM17 are still not satisfactory, although CMP(dep t) (which incorporates a time-dependent target) performs better than the other CMPs in so far as the median final spawning biomass remains near the current (2017) abundance level and at about B_{MSY}. However, all CMPs still fall well below the target value of median final depletion under OM17. CMP(slope) (based on the recent trend in CPUE) is the only CMP to perform satisfactorily under OM18. Incorporation of the cumulative numbers of tag returns in the CMP has not been successful in improving its performance for OMs which show problematic resource trends such as OM17 and OM18. However, this might mean that further adjustment of this CMP is needed rather than that the tag information is not useful in discriminating amongst the various scenarios covered by the OMs. Further investigation/adjustment of these CMPs is needed.

INTRODUCTION

An initial simple empirical Candidate Management Procedure (CMP) was proposed by Brandão and Butterworth (2019a) for computing future TACs for toothfish in the Prince Edward Islands region. This simple empirical CMP uses recent trends in the trotline CPUE to set TACs. Brandão and Butterworth (2019b) addressed several suggestions made by a Task Team after evaluating the performance of this CMP; in particular, the Task Team suggested that the CMP considered be tuned to target median final depletion levels of 30%, 40% and 50% under OM10. Deterministic projections of the mean length of the catch and the cumulative numbers of tag-recapture data were also investigated for possibly being incorporated as a
means to provide a more rapid response to resource depletion. Although the proposed CMP performed satisfactorily under most OMs, it was unable to react appropriately, especially under the scenarios assumed by OM17 and OM18. Further CMPs were suggested by the Task Team to try to improve performance. These suggestions include changes to the form of the CMP proposed by Brandão and Butterworth (2019b), as well as the incorporation of other input information apart from just CPUE. The CMPs investigated in this paper are:

- CMP(slope): a CMP in which the TAC is modified in synchrony with the trends in a resource abundance index (such as CPUE),
- CMP(dep t): a modified version of the CMP in Brandão and Butterworth (2019b) to allow the target control parameter (t) to be time-dependent, and
- CMP(mean+tag): a CMP which incorporates trends in the cumulative number of recaptured tags to the CMP in Brandão and Butterworth (2019b).

The Task Team suggested that, for initial work, the results for these CMPs only be tuned to a target median final depletion level of 40% under OM10 and that results would be limited to application of the CMPs to OM01, OM10, OM17 and OM18 only. For comparison, the results for the CMP of Brandão and Butterworth (2019b) tuned to this specification (referred in that paper as CMP40 and CMP(mean) in this paper) is reproduced here as well.

Operating Models and Projections

Assessment component

Brandão and Butterworth (2019c) presented the conditioning of a Reference Set (RS) of Operating Models (OMs) to be used to generate future data to test Candidate Management Procedures (CMPs). Table 1 lists the final Reference Set of OMs and gives details of the differences between the Base case OM (OM01) and each alternative OM. OM18 has been added to this list; however, this is a robustness test that affects only projections of CPUE and presently has been run for the Base case OM only. The OMs developed are Age-Structure Production Models (ASPMs), and the methodology applied to fit (“condition”) these models to updated data are given in Appendix 1.

Projections component

The four CMPs investigated here assume that commercial trotline CPUE data will continue to be available annually, and one of these CMPs also assumes that tag-recapture data from trotlines will be available in the future. The current level of cetacean predation assumed for trotlines by each OM is also assumed to continue in the future. It is assumed that no IUU catches take place in the future.

The evaluation of the CMPs require the simulation of such future data from projections for the population. These projections are effected using the following procedure:

1. Numbers-at-age \(N_{y'/a} \) for the start of the year in which projections commence (i.e. \(y' = 2018 \)) are estimated by applying equations (A1.1)–(A1.3). To allow for variation in biomass projections initially (as the stochastic effects enter later only through variability in future recruitment which takes a period to propagate through to the exploitable component of the biomass), the numbers-at-age for the first seven years are allowed to vary, where these variations are simulated by generating \(\phi \) factors distributed as \(N(0,\sigma_{\phi}^2) \), where \(\sigma_{\phi} = 0.5 \). The reason for this is that the catch-at-length data to which the OMs are fitted provides no information on recruitment residuals \(\zeta_y \) for these year classes which have yet to enter the fishery, so that these \(\zeta_y \) are estimated to be zero in the
assessments. Thus, for ages 1–7, the numbers-at-age are given by \(N_{\alpha} \cdot \exp\left(\alpha - \frac{\sigma_{\alpha}^2}{2}\right) \). The future catches-at-age \((C_{\alpha},a) \) are obtained from equations (A1.4) and (A1.5). Such future catch-at-age values are generated under the assumption that the commercial selectivity function remains the same as that for the last year of the assessment. Future recruitments are obtained from the stock-recruitment relationship given by equation (A1.3), which allows for fluctuations about this relationship. These fluctuations are computed for each future year simulated by generating \(\zeta_{\alpha} \) factors distributed as \(N\left(0, \sigma_{\alpha}^2\right) \), where \(\sigma_{\alpha} = 0.5 \).

2. Future spawning and exploitable biomasses are calculated using equations (A1.14) and (A1.23). Given the exploitable biomass for trotlines, the expected (trotline) CPUE abundance index \(I_{\alpha}^{\text{CPUE}} \) is first generated using equation (A1.24); then a log-normal observation error is added to this expected value. The fits to the trotline CPUE indices by the RS OMs do not estimate the last two of these index values well; as a result future projected CPUE indices are much higher than those observed recently. To take this into account, the projected CPUE indices have been multiplied by the ratio of the average of the last two CPUE indices observed to the fitted average for each OM \(\left(\theta \right) \). Thus projections of the trotline CPUE (accounting for bias and cetacean depredation) are given by:

\[
I_{\alpha}^{\text{CPUE}} = \frac{\theta}{\phi} q B_{\alpha}^{\text{MP}} e^{\varepsilon_{\alpha}},
\]

where \(\varepsilon_{\alpha} \) is normally distributed with a mean zero and a standard deviation \(\sigma \) which is the estimate obtained by the operating model (equation (A1.26)) as is \(q \) (from equation (A1.25)), for the trotline fishery.

3. For the purpose of applying equation (1) below, which describes the CMP considered to calculate future TACs, the following strategy has been adopted to take the actual TACs already set for 2018 and 2019 into account:

\[
TAC_y = \begin{cases}
575 & y = 2018 \\
543 & y = 2019 \\
TAC_y & y \geq 2020
\end{cases}
\]

For future years (i.e. 2020, 2021, etc. for year \(y' \)), the generated trotline CPUE abundance indices are used to compute future TACs \((TAC_{y',1}) \) from the TACs for the current year \((TAC_y) \) as described in the next section which specifies the CMPs.

4. The true catch \((C_{\alpha}) \) (removal from the population) is given by the sum of \(TAC_y \) (the legal component) and any assumed illegal component (taken to be zero at present), together with the assumed level of cetacean depredation which is taken to remain at its current level in the OM concerned. To account for the now known catch in 2018 and the currently unallocated percentage of the TAC that is set until the 2021 season, the true catch is calculated as:
where ϕ denotes the factor by which the catch is changed due to the cetacean depredation assumed, and τ is the percentage of the TAC that is being allocated (0.886). The numbers-at-age for year y' are projected forward under this true catch (removal); the operating model is used to obtain values for $C_{y',a}$ and $N_{y'+1,a}$. The same assumptions about the commercial selectivity function and recruitment fluctuations as made in step (1) above are also made for these projections.

5. The number of tags released each year is assumed to be constant in the future (assumed to be 400 in this paper). The age distribution of tags released in year $y' (R_{y',a})$, given the abundance of toothfish $N_{y',a}$ is generated as:

$$R_{y',a} = 400 \frac{N_{y',a} \bar{R}_a / N_a}{\sum_a (N_{y',a} \bar{R}_a / N_a)}$$

where:

- \bar{R}_a is the average number (over the period 2005 to 2017) of released tags of age a, and
- \bar{N}_a is the average number (over the period 2005 to 2017) in the population of age a.

Given the fishing mortality for toothfish in year y' of age a for fleet $f (F_{y',a})$, equation (A1.38) is used to compute the estimated numbers of recaptured tags for trotlines $\left(\hat{r}_{y',a}\right)$. Future age aggregated numbers of recaptured tags from trotlines $\left(\hat{r}_{y'}\right)$ are then generated as realisations from a Poisson distribution, where $\hat{r}_{y'} = \sum_a \hat{r}_{y',a}$. The cumulative recapture numbers are then calculated from the age aggregated generated numbers of recaptured tags.

6. Steps (2)–(4) are repeated for each future year considered.

7. This projection procedure is replicated 100 times, to provide the probability distributions for projection results arising from uncertainties in future recruitment and observation errors in CPUE.

The updated GLMM-standardised trotline CPUE estimate for 2018\(^1\) (0.906 see Brandão and Butterworth, 2019d) and the observed number of tags released and the number of tag-recaptures observed for 2018 are used as the starting point inputs in the projections.

The CMPs Considered

\(^1\) A year y in this paper refers to a “fishing”-year or season, which is defined to be from 1 December of year $y-1$ to 30 November of year y.

Four CMPs are considered in this paper, where the TAC is modified in synchrony with the trends in resource abundance indices (such as CPUE and tag recapture data):

CMP(mean):

$$\text{TAC}_{y+1} = \text{TAC}_y \left[1 + \lambda \left(\frac{\mu_{y}^{\text{CPUE}} - t}{t} \right) \right] ,$$

where μ_{y}^{CPUE} is the mean trotline CPUE for the previous three years ($y-2$, $y-1$, y) and λ and t are control parameters.

CMP(slope):

$$\text{TAC}_{y+1} = \text{TAC}_y \left[1 + \alpha \left(s_{y}^{\text{CPUE}} - s_t \right) \right]$$

where s_{y}^{CPUE} is the slope of a log-linear regression of the abundance index CPUE against time for the previous five years and α and s_t are control parameters.

CMP(dep t):

$$\text{TAC}_{y+1} = \text{TAC}_y \left[1 + \beta \left(\frac{\mu_{y}^{\text{CPUE}} - t_y}{t_y} \right) \right]$$

where μ_{y}^{CPUE} is the mean trotline CPUE for the previous three years and t_y is a time-dependent target value given by $t_y = \bar{T} + \delta (y - 2028)$ and β, \bar{T} and δ are control parameters.

CMP(mean+tag):

$$\text{TAC}_{y+1} = \text{TAC}_y \left[1 + \phi \left(\frac{\mu_{y}^{\text{CPUE}} - t^*}{t^*} \right) \right] \left[1 - \gamma \left(s_{y}^{\text{cum(recap)}} - s_{t^*}^{*} \right) \right]$$

where μ_{y}^{CPUE} is the mean trotline CPUE for the previous three years, $s_{y}^{\text{cum(recap)}}$ is the slope of a log-linear regression of the cumulative number of recaptured tags against time for the previous five years and ϕ, γ, t^* and $s_{t^*}^{*}$ are control parameters.

These CMPs also constrain TACs to a maximum inter-annual change of 15%. The CMP of equation (1) is the same as CMP40 of Brandão and Butterworth (2019b), but renamed here to match the nomenclature of the CMPs in this paper.

RESULTS AND DISCUSSION

The performances of different CMPs have been considered in terms of future projections over a 20 year period, and in particular the following four categories of statistics which are intended to capture key features of the trade-off choices to be made:

Catches achieved

Average annual catch: $\bar{C} = \frac{1}{20} \sum_{y=2019}^{2038} C_y$, where s represents simulation s as well as other averages of annual catch for different periods of projections.

Risk to resource
Final resource depletion:

\[\frac{B_{2038}^{\text{sp}(s)}}{K_{2038}^{\text{sp}(s)}} \]

Final resource depletion relative to current (2017):

\[\frac{B_{2038}^{\text{sp}(s)}}{B_{2017}^{\text{sp}(s)}} \]

Final resource depletion relative to the MSY level:

\[\frac{B_{2038}^{\text{sp}(s)}}{B_{\text{MSY}}^{\text{sp}(s)}} \]

Industrial stability

Average annual catch variation (over 20 years):

\[AAV^s = \frac{1}{20} \sum_{y=2019}^{2038} |\frac{C^s_y - C^s_{y-1}}{C^s_{y-1}}| \]

Economic viability

Final CPUE relative to recent level:

\[\frac{1}{3} \sum_{y=2015}^{2017} CPUE^s_y \]

Over the simulations \(s \) there is a distribution for each of these statistics, and performance is reported in terms of statistics of those distributions (typically the median and 90\% probability interval).

Experimentation with different values of the control parameters led to the following selections for the CMPs of equations (1) to (4) under a target of 40\% of the median final depletion under OM10:

- CMP(mean): \(\lambda = 1 \) and \(t = 0.768 \),
- CMP(slope): \(\alpha = 1.2 \) and \(s_1 = 0.001 \),
- CMP(dep t): \(\beta = 1 \), \(\delta = 0.0275 \) and \(\bar{t} = 0.8 \), and
- CMP(mean+tag): \(\phi = 1 \), \(\gamma = 1 \), \(t^* = 0.78 \) and \(s^*_1 = 0.15 \).

Testing these CMPs for the selected OMs of the Reference Set yields the results shown in Tables 2a to 2d. Results for the performance statistics are shown calculated for each individual OM. Figure 1 compares the performance of these four CMPs, each under OM01, OM10, OM17 and OM18.

Tables 3a to 3d report various catch statistics, while Tables 4a to 4d give results based on CPUE statistics. Median projections for some performance statistics under each individual OM are shown in Figures 2a to 2d.

Under OM01 and OM10, the performances of the four simple empirical CMPs seem to be broadly satisfactory in that median catches increase (after an initial drop, though CMP(dep t) shows the opposite behaviour) while catch rates keep increasing and the median final depletion remains above the specified target value under OM10. CMP(slope), which is based on the trend of recent CPUE indices, has the lowest AAV value under all the selected OMs. Under OM17, in which a better fit to the observed lower trotline CPUE indices in the last two years is achieved by increasing the tag loss rate, CMP(dep t) (based on the average of recent CPUE indices and allowing for a time-dependent target value) performs the best of all the CMPs in so far as the median final spawning biomass remains near the current (2017) level and at about \(B_{\text{MSY}} \). However, all CMPs still fall well below the target value of median final depletion under OM17. The worst performing CMP under OM17 in terms of maintaining either the CPUE or the resource status at their
current levels is CMP(mean+tag) which is based on the average of recent CPUE indices and trends in the cumulative number of recaptured tags.

If no bias is incorporated in the projections of CPUE (OM18), CMP(slope) is the only CMP to perform satisfactorily in that it reacts appropriately by not sharply increasing catches and consequently maintains the resource biomass above the target value of median final depletion and current (2017) value.

Attempts to incorporate the cumulative numbers of tag returns in the CMP have not been successful to date in improving its performance for OMs which show problematic resource trends such as OM17 and OM18. However, this might mean that further adjustment of the control parameter values of this CMP is needed rather than that the tag information is not useful in discriminating amongst the various scenarios covered by the OMs. For the present form of CMP(mean+tag), it may be that the information from the average of recent CPUE indices is overriding the signal from the number of recaptured tags. Furthermore, as CPUE(slope) seems to outperform CMP(mean), a CMP which incorporates the trend in recent CPUE and number of recaptured tags might outperform CMP(mean+tag), or even the incorporation of the tag recapture information in CMP(dep t) as this is the only CMP to show improvement in some respects under OM17. CMP(mean) and CMP(mean+tag) have the added unsatisfactory behaviour under most OMs in that there is a drop in TACs for about the first ten years. Further investigation/adjustment of these CMPs is needed; unfortunately, due to lack of time, investigation of these alternatives has not yet been possible.

REFERENCES

Table 1. A list of the Reference Set OMs with details of the differences between the Base case OM (OM01) and each alternative OM.

<table>
<thead>
<tr>
<th>Operating Model</th>
<th>Description</th>
<th>Base case values</th>
</tr>
</thead>
<tbody>
<tr>
<td>OM01</td>
<td>Base case</td>
<td></td>
</tr>
<tr>
<td>OM02</td>
<td>Natural mortality = 0.10</td>
<td>0.13</td>
</tr>
<tr>
<td>OM03</td>
<td>Natural mortality = 0.16</td>
<td>0.13</td>
</tr>
<tr>
<td>OM04</td>
<td>Steepness parameter h = 0.6</td>
<td>0.75</td>
</tr>
<tr>
<td>OM05</td>
<td>Steepness parameter h = 0.9</td>
<td>0.75</td>
</tr>
<tr>
<td>OM06</td>
<td>Cetacean predation (longlines) = +30%</td>
<td>+10%</td>
</tr>
<tr>
<td>OM07</td>
<td>Cetacean predation (trotlines) = 0%</td>
<td>+5%</td>
</tr>
<tr>
<td>OM08</td>
<td>Cetacean predation (trotlines) = +10%</td>
<td>+5%</td>
</tr>
<tr>
<td>OM09</td>
<td>Weight applied to all CPUE = 5</td>
<td>1</td>
</tr>
<tr>
<td>OM10</td>
<td>Weight applied to all CPUE = 10</td>
<td>1</td>
</tr>
<tr>
<td>OM12</td>
<td>$\ell_\infty = 174.5$</td>
<td>$\ell_\infty = 152.0$</td>
</tr>
<tr>
<td></td>
<td>$\kappa = 0.0425$</td>
<td>$\kappa = 0.067$</td>
</tr>
<tr>
<td></td>
<td>$t_0 = -1.4575$</td>
<td>$t_0 = -1.49$</td>
</tr>
<tr>
<td>OM13†</td>
<td>$c = 4.09 \times 10^{-9}$</td>
<td>$c = 2.54 \times 10^{-8}$</td>
</tr>
<tr>
<td></td>
<td>$d = 3.196$</td>
<td>$d = 2.8$</td>
</tr>
<tr>
<td>OM14†</td>
<td>$c = 4.17 \times 10^{-9}$</td>
<td>$c = 2.54 \times 10^{-8}$</td>
</tr>
<tr>
<td></td>
<td>$d = 3.206$</td>
<td>$d = 2.8$</td>
</tr>
<tr>
<td>OM15</td>
<td>Tag reporting rate = 0.8</td>
<td>1</td>
</tr>
<tr>
<td>OM17</td>
<td>Annual tag loss/mortality rate = 0.5</td>
<td>0</td>
</tr>
<tr>
<td>OM18*</td>
<td>Basecase (no bias in projections of CPUE, i.e. $\vartheta = 1$)</td>
<td>(bias in projections of CPUE)</td>
</tr>
</tbody>
</table>

† The weight at length conversion is given in terms of cm to tonnes.
* OM18 is a robustness test and is not part of the Reference Set of OMs.
Table 2a. Medians of several performance statistics under the simple CMP considered for the selected Reference Set OMs, together with their 90% probability intervals. Results shown are for CMP(mean) which is based on the recent mean of the trotline CPUE.

<table>
<thead>
<tr>
<th>RS</th>
<th>$B_{2033}^{t}/K_{2034}^{t}$</th>
<th>$B_{2038}^{t}/B_{2017}^{t}$</th>
<th>B_{2038}^{t}/B_{MSY}^{t}</th>
<th>B_{2022}^{t}/B_{MSY}^{t}</th>
<th>TAC (Av 20 yrs) (tonnes)</th>
<th>TAC (Av 4 yrs) (tonnes)</th>
<th>AAV (20 yrs)</th>
<th>AAV (4 yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OM01 (Basecase)</td>
<td>0.56 (0.41; 0.73)</td>
<td>1.32 (0.97; 1.72)</td>
<td>2.28 (1.68; 2.96)</td>
<td>1.44 (1.42; 1.46)</td>
<td>486 (253; 907)</td>
<td>475 (433; 591)</td>
<td>0.12 (0.09; 0.15)</td>
<td>0.17 (0.13; 0.19)</td>
</tr>
<tr>
<td>OM10 (w_{CPUE} = 10)</td>
<td>0.40 (0.22; 0.58)</td>
<td>0.88 (0.49; 1.28)</td>
<td>1.66 (0.93; 2.41)</td>
<td>1.32 (1.31; 1.34)</td>
<td>670 (339; 1176)</td>
<td>471 (436; 566)</td>
<td>0.13 (0.09; 0.15)</td>
<td>0.16 (0.13; 0.19)</td>
</tr>
<tr>
<td>OM17 (tag loss = 0.5)</td>
<td>0.18 (0.03; 0.34)</td>
<td>0.77 (0.12; 1.44)</td>
<td>0.73 (0.12; 1.38)</td>
<td>0.60 (0.57; 0.63)</td>
<td>530 (307; 786)</td>
<td>475 (439; 568)</td>
<td>0.13 (0.08; 0.15)</td>
<td>0.16 (0.12; 0.19)</td>
</tr>
<tr>
<td>OMP18 (no CPUE bias)</td>
<td>0.13 (0.02; 0.31)</td>
<td>0.30 (0.05; 0.73)</td>
<td>0.51 (0.08; 1.25)</td>
<td>1.43 (1.41; 1.45)</td>
<td>1539 (990; 2023)</td>
<td>610 (520; 678)</td>
<td>0.14 (0.11; 0.16)</td>
<td>0.21 (0.14; 0.25)</td>
</tr>
</tbody>
</table>

Table 2b. Results as in Table 2a for CMP(slope) which is based on the recent trend in the trotline CPUE.

<table>
<thead>
<tr>
<th>RS</th>
<th>$B_{2033}^{t}/K_{2034}^{t}$</th>
<th>$B_{2038}^{t}/B_{2017}^{t}$</th>
<th>B_{2038}^{t}/B_{MSY}^{t}</th>
<th>B_{2022}^{t}/B_{MSY}^{t}</th>
<th>TAC (Av 20 yrs) (tonnes)</th>
<th>TAC (Av 4 yrs) (tonnes)</th>
<th>AAV (20 yrs)</th>
<th>AAV (4 yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OM01 (Basecase)</td>
<td>0.51 (0.42; 0.62)</td>
<td>1.21 (0.99; 1.46)</td>
<td>2.10 (1.70; 2.53)</td>
<td>1.43 (1.42; 1.45)</td>
<td>619 (533; 696)</td>
<td>565 (514; 634)</td>
<td>0.09 (0.07; 0.12)</td>
<td>619 (533; 696)</td>
</tr>
<tr>
<td>OM10 (w_{CPUE} = 10)</td>
<td>0.40 (0.32; 0.49)</td>
<td>0.88 (0.71; 1.07)</td>
<td>1.65 (1.34; 2.01)</td>
<td>1.31 (1.29; 1.33)</td>
<td>683 (583; 779)</td>
<td>566 (515; 622)</td>
<td>0.08 (0.06; 0.10)</td>
<td>683 (583; 779)</td>
</tr>
<tr>
<td>OM17 (tag loss = 0.5)</td>
<td>0.13 (0.10; 0.17)</td>
<td>0.57 (0.41; 0.72)</td>
<td>0.54 (0.39; 0.69)</td>
<td>0.58 (0.55; 0.61)</td>
<td>577 (491; 648)</td>
<td>570 (523; 625)</td>
<td>0.08 (0.06; 0.11)</td>
<td>577 (491; 648)</td>
</tr>
<tr>
<td>OMP18 (no CPUE bias)</td>
<td>0.44 (0.34; 0.53)</td>
<td>1.03 (0.80; 1.24)</td>
<td>1.79 (1.39; 2.15)</td>
<td>1.42 (1.40; 1.44)</td>
<td>791 (672; 901)</td>
<td>645 (602; 678)</td>
<td>0.10 (0.08; 0.13)</td>
<td>791 (672; 901)</td>
</tr>
</tbody>
</table>
Table 2c. Results as in Table 2a for **CMP**(dept) which is based on the recent mean of the trotline CPUE but allows for a time-dependent mean target.

<table>
<thead>
<tr>
<th>RS</th>
<th>(B_{2018}^{sp} / K_{2018}^{sp})</th>
<th>(B_{2017}^{sp} / B_{2017}^{sp})</th>
<th>(B_{2018}^{sp} / B_{MSY}^{sp})</th>
<th>(B_{2022}^{sp} / B_{MSY}^{sp})</th>
<th>TAC (Av 20 yrs) (tonnes)</th>
<th>TAC (Av 4 yrs) (tonnes)</th>
<th>AAV (20 yrs)</th>
<th>AAV (4 yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OM01 (Basecase)</td>
<td>0.53 (0.39; 0.67)</td>
<td>1.26 (0.92; 1.58)</td>
<td>2.17 (1.59; 2.73)</td>
<td>1.42 (1.40; 1.44)</td>
<td>540 (326; 885)</td>
<td>650 (584; 678)</td>
<td>0.14 (0.11; 0.16)</td>
<td>0.23 (0.20; 0.25)</td>
</tr>
<tr>
<td>OM10 (w(\text{CPUE} = 10))</td>
<td>0.40 (0.21; 0.53)</td>
<td>0.88 (0.47; 1.16)</td>
<td>1.65 (0.87; 2.19)</td>
<td>1.30 (1.27; 1.32)</td>
<td>692 (374; 1086)</td>
<td>656 (591; 678)</td>
<td>0.13 (0.10; 0.16)</td>
<td>0.23 (0.21; 0.25)</td>
</tr>
<tr>
<td>OM17 (tag loss = 0.5)</td>
<td>0.23 (0.01; 0.33)</td>
<td>0.99 (0.03; 1.43)</td>
<td>0.95 (0.03; 1.36)</td>
<td>0.56 (0.52; 0.60)</td>
<td>460 (308; 671)</td>
<td>657 (598; 678)</td>
<td>0.15 (0.12; 0.16)</td>
<td>0.23 (0.21; 0.25)</td>
</tr>
<tr>
<td>OMP18 (no CPUE bias)</td>
<td>0.18 (0.08; 0.35)</td>
<td>0.43 (0.18; 0.82)</td>
<td>0.75 (0.31; 1.42)</td>
<td>1.42 (1.40; 1.44)</td>
<td>1286 (870; 1830)</td>
<td>678 (676; 678)</td>
<td>0.15 (0.13; 0.17)</td>
<td>0.25 (0.25; 0.25)</td>
</tr>
</tbody>
</table>

Table 2d. Results as in Table 2a for **CMP**(mean+tag) which is based on the recent mean of the trotline CPUE and the recent trend in the cumulative number of recaptured tags.

<table>
<thead>
<tr>
<th>RS</th>
<th>(B_{2018}^{sp} / K_{2018}^{sp})</th>
<th>(B_{2017}^{sp} / B_{2017}^{sp})</th>
<th>(B_{2018}^{sp} / B_{MSY}^{sp})</th>
<th>(B_{2022}^{sp} / B_{MSY}^{sp})</th>
<th>TAC (Av 20 yrs) (tonnes)</th>
<th>TAC (Av 4 yrs) (tonnes)</th>
<th>AAV (20 yrs)</th>
<th>AAV (4 yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OM01 (Basecase)</td>
<td>0.54 (0.39; 0.69)</td>
<td>1.27 (0.92; 1.63)</td>
<td>2.19 (1.60; 2.82)</td>
<td>1.45 (1.44; 1.46)</td>
<td>540 (293; 928)</td>
<td>443 (433; 533)</td>
<td>0.13 (0.10; 0.15)</td>
<td>0.18 (0.13; 0.19)</td>
</tr>
<tr>
<td>OM10 (w(\text{CPUE} = 10))</td>
<td>0.40 (0.26; 0.58)</td>
<td>0.88 (0.56; 1.28)</td>
<td>1.66 (1.06; 2.40)</td>
<td>1.33 (1.31; 1.35)</td>
<td>656 (371; 1069)</td>
<td>433 (433; 494)</td>
<td>0.14 (0.11; 0.15)</td>
<td>0.19 (0.13; 0.19)</td>
</tr>
<tr>
<td>OM17 (tag loss = 0.5)</td>
<td>0.11 (0.01; 0.28)</td>
<td>0.49 (0.04; 1.18)</td>
<td>0.46 (0.04; 1.13)</td>
<td>0.60 (0.58; 0.64)</td>
<td>604 (357; 823)</td>
<td>447 (433; 518)</td>
<td>0.13 (0.09; 0.15)</td>
<td>0.17 (0.12; 0.19)</td>
</tr>
<tr>
<td>OMP18 (no CPUE bias)</td>
<td>0.14 (0.04; 0.34)</td>
<td>0.34 (0.11; 0.79)</td>
<td>0.59 (0.18; 1.37)</td>
<td>1.44 (1.42; 1.45)</td>
<td>1469 (1022; 2023)</td>
<td>546 (467; 646)</td>
<td>0.14 (0.12; 0.15)</td>
<td>0.17 (0.12; 0.23)</td>
</tr>
</tbody>
</table>
Table 3a. Projected median average annual legal (trotline) catches of toothfish (in tonnes) over various periods and median catch values after several years of projections under the simple CMP considered for the selected Reference Set OMs, together with their 90% probability intervals. Results shown are for CMP(mean) which is based on the recent mean of the trotline CPUE.

<table>
<thead>
<tr>
<th>RS</th>
<th>(\bar{C}_{2019-2038}) (20 yrs)</th>
<th>(\bar{C}_{2019-2033}) (15 yrs)</th>
<th>(\bar{C}_{2019-2028}) (10 yrs)</th>
<th>(\bar{C}_{2019-2022}) (4 yrs)</th>
<th>(C_{2038}) (20 yrs)</th>
<th>(C_{2033}) (15 yrs)</th>
<th>(C_{2028}) (10 yrs)</th>
<th>(C_{2022}) (4 yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OM01 (Basecase)</td>
<td>507 (262; 950)</td>
<td>440 (274; 775)</td>
<td>414 (316; 646)</td>
<td>482 (438; 605)</td>
<td>808 (198; 2011)</td>
<td>512 (145; 1180)</td>
<td>361 (170; 831)</td>
<td>423 (350; 718)</td>
</tr>
<tr>
<td>OM10 (w(_{CPUE} = 10))</td>
<td>700 (353; 1231)</td>
<td>523 (307; 969)</td>
<td>447 (328; 760)</td>
<td>478 (441; 578)</td>
<td>1344 (467; 3300)</td>
<td>861 (282; 1811)</td>
<td>479 (204; 1078)</td>
<td>420 (356; 673)</td>
</tr>
<tr>
<td>OM17 (tag loss = 0.5)</td>
<td>554 (319; 822)</td>
<td>471 (300; 774)</td>
<td>438 (327; 728)</td>
<td>483 (445; 580)</td>
<td>725 (230; 1592)</td>
<td>569 (179; 1233)</td>
<td>423 (183; 988)</td>
<td>429 (359; 673)</td>
</tr>
<tr>
<td>OMP18 (no CPUE bias)</td>
<td>1613 (1037; 2121)</td>
<td>1338 (873; 1670)</td>
<td>955 (706; 1118)</td>
<td>624 (530; 695)</td>
<td>2012 (801; 4390)</td>
<td>2388 (1296; 3664)</td>
<td>1568 (853; 1945)</td>
<td>751 (534; 867)</td>
</tr>
</tbody>
</table>

Table 3b. Results as in Table 3a for CMP(slope) which is based on the recent trend in the trotline CPUE.

<table>
<thead>
<tr>
<th>RS</th>
<th>(\bar{C}_{2019-2038}) (20 yrs)</th>
<th>(\bar{C}_{2019-2033}) (15 yrs)</th>
<th>(\bar{C}_{2019-2028}) (10 yrs)</th>
<th>(\bar{C}_{2019-2022}) (4 yrs)</th>
<th>(C_{2038}) (20 yrs)</th>
<th>(C_{2033}) (15 yrs)</th>
<th>(C_{2028}) (10 yrs)</th>
<th>(C_{2022}) (4 yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OM01 (Basecase)</td>
<td>646 (557; 727)</td>
<td>626 (530; 706)</td>
<td>603 (516; 687)</td>
<td>577 (523; 649)</td>
<td>725 (523; 950)</td>
<td>689 (497; 919)</td>
<td>635 (473; 774)</td>
<td>614 (499; 778)</td>
</tr>
<tr>
<td>OM10 (w(_{CPUE} = 10))</td>
<td>714 (609; 814)</td>
<td>683 (576; 772)</td>
<td>626 (544; 724)</td>
<td>578 (525; 636)</td>
<td>839 (621; 1089)</td>
<td>804 (581; 1016)</td>
<td>724 (555; 882)</td>
<td>626 (510; 764)</td>
</tr>
<tr>
<td>OM17 (tag loss = 0.5)</td>
<td>602 (512; 677)</td>
<td>608 (513; 692)</td>
<td>598 (520; 694)</td>
<td>583 (532; 640)</td>
<td>587 (411; 788)</td>
<td>577 (416; 798)</td>
<td>613 (444; 776)</td>
<td>633 (516; 762)</td>
</tr>
<tr>
<td>OMP18 (no CPUE bias)</td>
<td>827 (702; 943)</td>
<td>802 (683; 903)</td>
<td>771 (655; 871)</td>
<td>661 (616; 695)</td>
<td>906 (636; 1195)</td>
<td>873 (644; 1166)</td>
<td>870 (609; 1076)</td>
<td>799 (689; 867)</td>
</tr>
</tbody>
</table>
Table 3c. Results as in Table 3a for CMP(dep t) which is based on the recent mean of the trotline CPUE but allows for a time-dependent mean target.

<table>
<thead>
<tr>
<th>RS</th>
<th>$\bar{C}_{2019-2038}$ (20 yrs)</th>
<th>$\bar{C}_{2019-2033}$ (15 yrs)</th>
<th>$\bar{C}_{2019-2028}$ (10 yrs)</th>
<th>$\bar{C}_{2019-2022}$ (4 yrs)</th>
<th>C_{2038} (20 yrs)</th>
<th>C_{2033} (15 yrs)</th>
<th>C_{2028} (10 yrs)</th>
<th>C_{2022} (4 yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OM01 (Basecase)</td>
<td>564 (339; 926)</td>
<td>642 (400; 1010)</td>
<td>707 (502; 998)</td>
<td>666 (597; 695)</td>
<td>236 (77; 989)</td>
<td>1512 (162; 1403)</td>
<td>625 (272; 1403)</td>
<td>765 (570; 867)</td>
</tr>
<tr>
<td>OM10 (wCPUE = 10)</td>
<td>724 (390; 1137)</td>
<td>733 (456; 1159)</td>
<td>767 (510; 1112)</td>
<td>672 (604; 695)</td>
<td>371 (132; 1463)</td>
<td>624 (184; 1382)</td>
<td>798 (321; 1750)</td>
<td>780 (578; 867)</td>
</tr>
<tr>
<td>OM17 (tag loss = 0.5)</td>
<td>480 (320; 701)</td>
<td>544 (397; 846)</td>
<td>677 (475; 964)</td>
<td>674 (611; 695)</td>
<td>144 (67; 471)</td>
<td>246 (127; 543)</td>
<td>481 (260; 1015)</td>
<td>783 (603; 867)</td>
</tr>
<tr>
<td>OMP18 (no CPUE bias)</td>
<td>1347 (910; 1919)</td>
<td>1429 (1011; 1738)</td>
<td>1139 (967; 1151)</td>
<td>695 (693; 695)</td>
<td>886 (378; 2328)</td>
<td>1756 (766; 3304)</td>
<td>1951 (1233; 2006)</td>
<td>867 (859; 867)</td>
</tr>
</tbody>
</table>

Table 3d. Results as in Table 3a for CMP(mean+tag) which is based on the recent mean of the trotline CPUE and the recent trend in the cumulative number of recaptured tags.

<table>
<thead>
<tr>
<th>RS</th>
<th>$\bar{C}_{2019-2038}$ (20 yrs)</th>
<th>$\bar{C}_{2019-2033}$ (15 yrs)</th>
<th>$\bar{C}_{2019-2028}$ (10 yrs)</th>
<th>$\bar{C}_{2019-2022}$ (4 yrs)</th>
<th>C_{2038} (20 yrs)</th>
<th>C_{2033} (15 yrs)</th>
<th>C_{2028} (10 yrs)</th>
<th>C_{2022} (4 yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OM01 (Basecase)</td>
<td>563 (304; 971)</td>
<td>435 (284; 723)</td>
<td>395 (311; 607)</td>
<td>448 (438; 543)</td>
<td>1070 (399; 2195)</td>
<td>626 (239; 1329)</td>
<td>377 (202; 755)</td>
<td>368 (350; 602)</td>
</tr>
<tr>
<td>OM10 (wCPUE = 10)</td>
<td>686 (386; 1119)</td>
<td>505 (317; 852)</td>
<td>404 (318; 625)</td>
<td>438 (438; 502)</td>
<td>1554 (752; 2770)</td>
<td>888 (389; 1594)</td>
<td>483 (226; 896)</td>
<td>351 (350; 519)</td>
</tr>
<tr>
<td>OM17 (tag loss = 0.5)</td>
<td>631 (371; 861)</td>
<td>525 (325; 815)</td>
<td>446 (330; 710)</td>
<td>453 (438; 527)</td>
<td>881 (261; 1729)</td>
<td>747 (318; 1422)</td>
<td>518 (238; 1113)</td>
<td>382 (350; 577)</td>
</tr>
<tr>
<td>OMP18 (no CPUE bias)</td>
<td>1539 (1070; 2121)</td>
<td>1182 (772; 1494)</td>
<td>829 (580; 998)</td>
<td>557 (474; 662)</td>
<td>2458 (1035; 4803)</td>
<td>2306 (1308; 3243)</td>
<td>1346 (776; 1695)</td>
<td>640 (459; 817)</td>
</tr>
</tbody>
</table>
Table 4a. Projected median CPUE indices relative to the 2017 CPUE index after several years of projections, and the median CPUE index in 2038 as a proportion of the average of the 2015 to 2017 CPUE indices. The probability of the CPUE index in 2038 being less than this average under the simple CMP considered for the selected Reference Set OMs, together with their 90% probability intervals. Results shown are for CMP(mean) which is based on the recent mean of the trotline CPUE.

<table>
<thead>
<tr>
<th>RS</th>
<th>CPUE(^{2038})/CPUE(^{2017}) (after 20 yrs)</th>
<th>CPUE(^{2033})/CPUE(^{2017}) (after 15 yrs)</th>
<th>CPUE(^{2028})/CPUE(^{2017}) (after 10 yrs)</th>
<th>CPUE(^{2022})/CPUE(^{2017}) (after 4 yrs)</th>
<th>CPUE(^{2038})/CPUE(^{15-17})</th>
<th>Probability CPUE(^{2038})/CPUE(^{15-17}) < 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>OM01 (Basecase)</td>
<td>1.73 (1.08; 2.84)</td>
<td>1.76 (1.12; 2.82)</td>
<td>1.59 (1.04; 2.29)</td>
<td>1.37 (0.87; 1.91)</td>
<td>1.45 (0.90; 2.37)</td>
<td>0.08</td>
</tr>
<tr>
<td>OM10 (w(_{\text{CPUE}}) = 10)</td>
<td>1.69 (0.93; 2.93)</td>
<td>1.94 (1.22; 2.96)</td>
<td>1.83 (1.26; 2.49)</td>
<td>1.44 (1.03; 1.94)</td>
<td>1.42 (0.78; 2.45)</td>
<td>0.15</td>
</tr>
<tr>
<td>OM17 (tag loss = 0.5)</td>
<td>1.51 (0.61; 2.53)</td>
<td>1.66 (0.70; 2.80)</td>
<td>1.72 (1.12; 2.48)</td>
<td>1.41 (1.03; 1.88)</td>
<td>1.26 (0.51; 2.12)</td>
<td>0.32</td>
</tr>
<tr>
<td>OMP18 (no CPUE bias)</td>
<td>0.92 (0.28; 1.83)</td>
<td>1.43 (0.88; 2.70)</td>
<td>1.90 (1.25; 2.86)</td>
<td>1.93 (1.23; 2.69)</td>
<td>0.77 (0.23; 1.53)</td>
<td>0.69</td>
</tr>
</tbody>
</table>

Table 4b. Results as in Table 4a for CMP(slope) which is based on the recent trend in the trotline CPUE.

<table>
<thead>
<tr>
<th>RS</th>
<th>CPUE(^{2038})/CPUE(^{2017}) (after 20 yrs)</th>
<th>CPUE(^{2033})/CPUE(^{2017}) (after 15 yrs)</th>
<th>CPUE(^{2028})/CPUE(^{2017}) (after 10 yrs)</th>
<th>CPUE(^{2022})/CPUE(^{2017}) (after 4 yrs)</th>
<th>CPUE(^{2038})/CPUE(^{15-17})</th>
<th>Probability CPUE(^{2038})/CPUE(^{15-17}) < 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>OM01 (Basecase)</td>
<td>1.72 (1.10; 2.65)</td>
<td>1.62 (1.06; 2.60)</td>
<td>1.49 (0.98; 2.12)</td>
<td>1.35 (0.86; 1.89)</td>
<td>1.44 (0.92; 2.22)</td>
<td>0.10</td>
</tr>
<tr>
<td>OM10 (w(_{\text{CPUE}}) = 10)</td>
<td>1.86 (1.29; 2.68)</td>
<td>1.78 (1.27; 2.69)</td>
<td>1.66 (1.15; 2.38)</td>
<td>1.42 (1.01; 1.92)</td>
<td>1.56 (1.08; 2.24)</td>
<td>0.05</td>
</tr>
<tr>
<td>OM17 (tag loss = 0.5)</td>
<td>1.31 (0.83; 2.06)</td>
<td>1.35 (0.92; 2.04)</td>
<td>1.34 (0.91; 2.03)</td>
<td>1.35 (0.98; 1.82)</td>
<td>1.10 (0.70; 1.72)</td>
<td>0.35</td>
</tr>
<tr>
<td>OMP18 (no CPUE bias)</td>
<td>2.20 (1.39; 3.61)</td>
<td>2.12 (1.36; 3.51)</td>
<td>2.02 (1.29; 2.85)</td>
<td>1.91 (1.22; 2.67)</td>
<td>1.84 (1.16; 3.02)</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Table 4c. Results as in Table 4a for CMP(dep t) which is based on the recent mean of the trotline CPUE but allows for a time-dependent mean target.

<table>
<thead>
<tr>
<th>RS</th>
<th>CPUE_{2038}/CPUE_{2017} (after 20 yrs)</th>
<th>CPUE_{2033}/CPUE_{2017} (after 15 yrs)</th>
<th>CPUE_{2028}/CPUE_{2017} (after 10 yrs)</th>
<th>CPUE_{2021}/CPUE_{2017} (after 4 yrs)</th>
<th>CPUE_{2038}/CPUE_{15-17}</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>OM01 (Basecase)</td>
<td>1.77 (1.13; 2.83)</td>
<td>1.58 (0.98; 2.65)</td>
<td>1.45 (0.98; 2.03)</td>
<td>1.34 (0.85; 1.86)</td>
<td>1.48 (0.95; 2.36)</td>
<td>0.08</td>
</tr>
<tr>
<td>OM10 (w_{CPUE} = 10)</td>
<td>1.85 (1.18; 2.83)</td>
<td>1.67 (1.03; 2.69)</td>
<td>1.54 (1.08; 2.19)</td>
<td>1.39 (0.99; 1.89)</td>
<td>1.55 (0.99; 2.36)</td>
<td>0.06</td>
</tr>
<tr>
<td>OM17 (tag loss = 0.5)</td>
<td>1.70 (0.49; 2.64)</td>
<td>1.45 (0.33; 2.45)</td>
<td>1.10 (0.56; 1.76)</td>
<td>1.30 (0.92; 1.76)</td>
<td>1.43 (0.41; 2.21)</td>
<td>0.25</td>
</tr>
<tr>
<td>OMP18 (no CPUE bias)</td>
<td>1.22 (0.53; 2.34)</td>
<td>1.38 (0.81; 2.50)</td>
<td>1.71 (1.11; 2.62)</td>
<td>1.89 (1.21; 2.65)</td>
<td>1.02 (0.44; 1.95)</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Table 4d. Results as in Table 4a for CMP(mean+tag) which is based on the recent mean of the trotline CPUE and the recent trend in the cumulative number of recaptured tags.

<table>
<thead>
<tr>
<th>RS</th>
<th>CPUE_{2038}/CPUE_{2017} (after 20 yrs)</th>
<th>CPUE_{2033}/CPUE_{2017} (after 15 yrs)</th>
<th>CPUE_{2028}/CPUE_{2017} (after 10 yrs)</th>
<th>CPUE_{2021}/CPUE_{2017} (after 4 yrs)</th>
<th>CPUE_{2038}/CPUE_{15-17}</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>OM01 (Basecase)</td>
<td>1.71 (1.05; 2.72)</td>
<td>1.75 (1.13; 2.81)</td>
<td>1.60 (1.06; 2.28)</td>
<td>1.37 (0.87; 1.91)</td>
<td>1.43 (0.88; 2.27)</td>
<td>0.10</td>
</tr>
<tr>
<td>OM10 (w_{CPUE} = 10)</td>
<td>1.72 (1.02; 2.80)</td>
<td>1.97 (1.29; 2.99)</td>
<td>1.86 (1.31; 2.61)</td>
<td>1.45 (1.03; 1.96)</td>
<td>1.44 (0.85; 2.34)</td>
<td>0.15</td>
</tr>
<tr>
<td>OM17 (tag loss = 0.5)</td>
<td>1.16 (0.31; 2.21)</td>
<td>1.54 (0.61; 2.64)</td>
<td>1.71 (1.15; 2.51)</td>
<td>1.42 (1.05; 1.92)</td>
<td>0.97 (0.26; 1.85)</td>
<td>0.55</td>
</tr>
<tr>
<td>OMP18 (no CPUE bias)</td>
<td>0.97 (0.38; 1.94)</td>
<td>1.59 (1.00; 2.90)</td>
<td>1.98 (1.34; 2.97)</td>
<td>1.94 (1.23; 2.72)</td>
<td>0.81 (0.32; 1.62)</td>
<td>0.67</td>
</tr>
</tbody>
</table>
Figure 1. Zeh plots for some of the performance statistics reported in the Tables for OM01, OM10, OM17 and OM18 for CMP(mean), CMP(slope), CMP(dep t) and CMP(mean+tag), which are each tuned to achieve a median final depletion of 40% under OM10. These are the spawning biomass depletion at the start of 2038 relative to K, to the spawning biomass in 2017 and to the spawning biomass at MSY; the projected median of the average annual legal (trotline) catches of toothfish (in tonnes) for the period 2019 to 2038; the average annual variation in catch; and the CPUE index in 2038 as a proportion of the average of the 2015 to 2017 CPUE indices. The red dashes represents the current (2018) spawning biomass depletion for each OM and the purple dashes represent the final depletion value under OM10 to which each CMP was tuned.
Figure 2a. Median trajectories of TAC (in tonnes), CPUE trends, spawning biomass depletion, spawning biomass relative to the 2017 value and spawning biomass relative to B_{MSY} under CMP(mean) which is based on the recent mean of the trotline CPUE under the selected OMs. Projections commence to the right of the thick vertical lines and the shaded areas represent 90% probability envelopes. For the middle row of plots, the large dash line is the value ($0.4K_{sp}$) to which the CMP was tuned under OM10 and the dotted line is the current (2018) spawning biomass depletion, while the small dash line is the MSYL (relative to K).
Figure 2b. Projection results as for Figure 5a, but for CMP(slope) which is based on the recent trend in the trotline CPUE.
Figure 2c. Projection results as for Figure 5a, but for CMP(dep t) which is based on the recent mean of the trotline CPUE but allows for a time-dependent mean target.
Figure 2d. Projection results as for Figure 5a, but for CMP(mean+tag) which is based on the recent mean of the trotline CPUE and the recent trend in the cumulative number of recaptured tags. Projections for the cumulative number of recaptured tags are shown in the last row of the plots.
APPENDIX 1

THE AGE STRUCTURED PRODUCTION MODEL (ASPM) ASSESSMENT METHODOLOGY

THE BASIC DYNAMICS

The toothfish population dynamics are given by the equations:

\[N_{y+1,0} = R(B_{y+1}^{sp}) \]
(A1.1)

\[N_{y+1,a} = (N_{y,a} - C_{y,a}) e^{-M} \quad 0 \leq a \leq m-2 \]
(A1.2)

\[N_{y+1,m} = (N_{y,m} - C_{y,m}) e^{-M} + (N_{y,m-1} - C_{y,m-1}) e^{-M} \]
(A1.3)

where:

\[N_{y,a} \] is the number of toothfish of age \(a \) at the start of year \(y \),

\[C_{y,a} \] is the number of toothfish of age \(a \) taken by the fishery in year \(y \),

\(R(B^{sp}) \) is the Beverton-Holt stock-recruitment relationship described by equation (A1.10) below,

\(B^{sp} \) is the spawning biomass at the start of year \(y \),

\(M \) is the natural mortality rate of fish (assumed to be independent of age), and

\(m \) is the maximum age considered (i.e. the “plus group”), taken here to be \(m = 35 \).

Note that in the interests of simplicity this approximates the fishery as a pulse fishery at the start of the year. Given that toothfish are relatively long-lived with low natural mortality, such an approximation would seem adequate.

For a three-gear (or “fleet”) fishery, the total predicted number of fish of age \(a \) caught in year \(y \) is given by:

\[C_{y,a} = \sum_{f=1}^{3} C_{y,a}^f, \]
(A1.4)

where:

\[C_{y,a}^f = N_{y,a} S_{y,a}^f F_{y}^f \]
(A1.5)

and:

\[F_{y}^f \] is the proportion of the resource above age \(a \) harvested in year \(y \) by fleet \(f \), and

\[S_{y,a}^f \] is the commercial selectivity at age \(a \) in year \(y \) for fleet \(f \).

The mass-at-age is given by the combination of a von Bertalanffy growth equation \(\ell(a) \) defined by constants \(\ell, \kappa, t_0 \) and a relationship relating length to mass. Note that \(\ell \) refers to standard length.

\[\ell(a) = \ell \left[1 - e^{-\kappa(a-t_0)} \right] \]
(A1.6)

\[w_a = c \left[\ell(a) \right]^d \]
(A1.7)
where:

\(w_a \) is the mass of a fish at age \(a \).

The fleet-specific total catch (given by the sum of the observed legal catch and any assumed illegal component, together with the assumed level of cetacean depredation) by mass in year \(y \) is given by:

\[
C_y^f = \sum_{a=0}^{m} w_a C_{y,a} = \sum_{a=0}^{m} w_a S_{y,a}^f F_y^f N_{y,a}
\]
(A1.8)

which can be re-written as:

\[
F_y^f = \frac{C_y^f}{\sum_{a=0}^{m} w_a S_{y,a}^f N_{y,a}}
\]
(A1.9)

Fishing Selectivity

The fleet-specific commercial fishing selectivity, \(S_{y,a}^f \), is assumed to be described by a logistic curve, modified by a decreasing selectivity for fish older than age \(a_c \). This is given by:

\[
S_{y,a}^f = \begin{cases}
1 + e^{-(a-a_{50,y})/\delta_y^f} & \text{for } a \leq a_c \\
1 + e^{-(a-a_{50,y})/\delta_y^f} e^{-\omega_y^f(a-a_c)} & \text{for } a > a_c
\end{cases}
\]
(A1.10)

where

- \(a_{50,y}^f \) is the age-at-50% selectivity (in years) for year \(y \) for fleet \(f \),
- \(\delta_y^f \) defines the steepness of the ascending section of the selectivity curve (in years\(^{-1}\)) for year \(y \) for fleet \(f \), and
- \(\omega_y^f \) defines the steepness of the descending section of the selectivity curve for fish older than age \(a_c \) for year \(y \) for fleet \(f \) (for all the results reported in this paper, \(a_c \) is fixed at 8 yrs).

In cases where equation (A1.9) yields a value of \(F_y^f > 0.9 \) for a future year, i.e. the available biomass is near to being less than the proposed catch for that year, \(F_y^f \) is restricted to 0.9, and the actual catch considered to be taken will be less than the proposed catch. This procedure makes no adjustment to the exploitation rate (\(S_{y,a}^f F_y^f \)) for other ages. To avoid the unnecessary reduction of catches from ages where the TAC could have been taken if the selectivity for those ages had been increased, the following procedure is adopted (CCSBT, 2003):

The fishing mortality, \(F_y^f \), is computed as usual using equation (A1.9). If \(F_y^f \leq 0.9 \) no change is made to the computation of the total catch, \(C_y^f \), given by equation (A1.8). If \(F_y^f > 0.9 \), compute the total catch from:

\[
C_y^f = \sum_{a=0}^{m} w_a g(S_{y,a}^f F_y^f) N_{y,a}
\]
(A1.11)
Denote the modified selectivity by \(S'_{y, \alpha} \), where:

\[
S'_{y, \alpha} = \frac{g(S'_{y, \alpha} F'_{\alpha})}{F'_{\alpha}} ,
\]

(A1.12)

so that \(C'_{y} = \sum_{\alpha=0}^{m} w_{\alpha} S'_{y, \alpha} F'_{\alpha} N_{y, \alpha} \), where

\[
g(x) = \begin{cases}
 x & x \leq 0.9 \\
 0.9 + 0.1 \left[1 - e^{-10(x-0.9)} \right] & 0.9 < x \leq \infty
\end{cases}
\]

(A1.13)

Now \(F'_{\alpha} \) is not bounded at one, but \(g(S'_{y, \alpha} F'_{\alpha}) \leq 1 \) hence \(C'_{y} = g(S'_{y, \alpha} F'_{\alpha}) N_{y, \alpha} \leq N_{y, \alpha} \) as required.

STOCK-RECRUITMENT RELATIONSHIP

The spawning biomass in year \(y \) is given by:

\[
B_{y}^{sp} = \sum_{\alpha=1}^{m} w_{\alpha} f_{\alpha} N_{y, \alpha} = \sum_{\alpha=0}^{m} w_{\alpha} N_{y, \alpha}
\]

(A1.14)

where:

\[
f_{\alpha} = \text{the proportion of fish of age } \alpha \text{ that are mature (assumed to be knife-edge at age } a_{m}).
\]

The number of recruits at the start of year \(y \) is assumed to relate to the spawning biomass at the start of year \(y, B_{y}^{sp} \), by a Beverton-Holt stock-recruitment relationship (assuming deterministic recruitment):

\[
R(B_{y}^{sp}) = \frac{\alpha B_{y}^{sp}}{\beta + B_{y}^{sp}}.
\]

(A1.15)

The values of the parameters \(\alpha \) and \(\beta \) can be calculated given the unexploited equilibrium (pristine) spawning biomass \(K^{sp} \) and the steepness of the curve \(h \), using equations (A1.15)–(A1.19) below. If the pristine recruitment is \(R_{0} = R(K^{sp}) \), then steepness is the recruitment (as a fraction of \(R_{0} \)) that results when spawning biomass is 20% of its pristine level, i.e.:

\[
hR_{0} = R(0.2K^{sp})
\]

(A1.16)

from which it can be shown that:

\[
h = \frac{0.2(\beta + K^{sp})}{\beta + 0.2K^{sp}}.
\]

(A1.17)

Rearranging equation (A1.17) gives:

\[
\beta = \frac{0.2K^{sp}(1-h)}{h-0.2}
\]

(A1.18)

and solving equation (A1.15) for \(\alpha \) gives:
\[\alpha = \frac{0.8hR_0}{h - 0.2}. \]

In the absence of exploitation, the population is assumed to be in equilibrium. Therefore \(R_0 \) is equal to the loss in numbers due to natural mortality when \(B^{\infty} = K^{\infty} \), and hence:

\[\gamma K^{\infty} = R_0 = \frac{\alpha K^{\infty}}{\beta + K^{\infty}} \quad \text{(A1.19)} \]

where:

\[\gamma = \left(\sum_{a=1}^{m-1} w_a f_a e^{-\lambda a} + \frac{w_m f_m e^{-\lambda m}}{1 - e^{-\lambda}} \right)^{-1}. \quad \text{(A1.20)} \]

Past Stock Trajectory and Future Projections

Given a value for the pre-exploitation equilibrium spawning biomass \((K^{\infty}) \) of toothfish, and the assumption that the initial age structure is at equilibrium, it follows that:

\[K^{\infty} = R_0 \left(\sum_{a=1}^{m-1} w_a f_a e^{-\lambda a} + \frac{w_m f_m e^{-\lambda m}}{1 - e^{-\lambda}} \right) \quad \text{(A1.21)} \]

which can be solved for \(R_0 \).

The initial numbers at each age \(a \) for the trajectory calculations, corresponding to the deterministic equilibrium, are given by:

\[N_{0,a} = \begin{cases} R_0 e^{-\lambda a} & 0 \leq a \leq m - 1 \\ R_0 e^{-\lambda a} / (1 - e^{-\lambda}) & a = m \end{cases} \quad \text{(A1.22)} \]

Numbers-at-age for subsequent years are then computed by means of equations (A1.1)-(A1.5) and (A1.8)-(A1.14) under the series of annual catches given.

The model estimate of the fleet-specific exploitable component of the biomass is given by:

\[B_\gamma^{\exp}(f) = \sum_{a=0}^{m} w_a S'_{\gamma,a} N_{\gamma,a} \quad \text{(A1.23)} \]

The Likelihood Function

The age-structured production model (ASPM) is fitted to the fleet-specific GLM standardised CPUE to estimate model parameters. The likelihood is calculated assuming that the observed (standardised) CPUE abundance indices are lognormally distributed about their expected value:

\[f(y, y, f) = \ln \left(\frac{\ln(\hat{I}'_y) - \ln(\hat{I}'_y)}{\phi} \right), \quad \text{(A1.24)} \]

where

\[\hat{I}'_y = \hat{I}'_y e^{\epsilon'_y} \quad \text{or} \quad \epsilon'_y = \ln(\hat{I}'_y) - \ln(\hat{I}'_y), \]

\[\hat{I}'_y \] is the standardised CPUE series index for year \(y \) corresponding to fleet \(f \),

\[\hat{I}'_y = \frac{1}{\phi} \hat{B}_\gamma^{\exp}(f) \] is the corresponding model estimate, where:
\(\hat{B}_{y}^{\exp} (f) \) is the model estimate of exploitable biomass of the resource for year \(y \) corresponding to fleet \(f \),

\(\phi \) is a multiplier to account for the effect of cetacean depredation (e.g. a 5% increase due to cetacean depredation means that \(\phi = 1.05 \)), and

\(q' \) is the catchability coefficient for the standardised commercial CPUE abundance indices for fleet \(f \), whose maximum likelihood estimate is given by:

\[
\ln \hat{q}' = \frac{1}{n'} \sum_{y} \left(\ln l'_{y} - \ln \hat{B}_{y}^{\exp} (f) \right),
\]

where:

\(n' \) is the number of data points in the standardised CPUE abundance series for fleet \(f \), and

\(c'_{y} \) is normally distributed with mean zero and standard deviation \(\sigma' \) (assuming homoscedasticity of residuals), whose maximum likelihood estimate is given by:

\[
\hat{\sigma}' = \sqrt{\frac{1}{n'} \sum_{y} \left(\ln l'_{y} - \ln \hat{q}' \hat{B}_{y}^{\exp} (f) \right)^{2}}.
\]

The negative log likelihood function (ignoring constants) which is minimised in the fitting procedure is thus:

\[
-\ln L = \sum_{f} \left[\sum_{y} \left(\frac{1}{2(\sigma')^{2}} \left(\ln l'_{y} - \ln \left(q' \hat{B}_{y}^{\exp} (f) \right) \right)^{2} + n' \left(\ln \sigma' \right)^{2} \right) \right].
\]

The estimable parameters of this model are \(q' \), \(K'^{\text{exp}} \), and \(\sigma' \), where \(K'^{\text{exp}} \) is the pre-exploitation mature biomass. Note that the summation over \(f \) does not include the pot fishery for which no CPUE data are available.

Extension to Incorporate Catch-at-Length Information

The model above provides estimates of the catch-at-age \((C_{y,a}^{f}) \) by number made by the each fleet in the fishery each year from equation (A1.5). These in turn can be converted into proportions of the catch of age \(a \):

\[
p'_{y,a} = \frac{C_{y,a}^{f}}{\sum_{a} C_{y,a}^{f}}.
\]

Using the von Bertalanffy growth equation (A1.6), these proportions-at-age can be converted to proportions-at-length – here under the assumption that the distribution of length-at-age remains constant over time:

\[
p'_{y,\ell} = \sum_{a} p'_{y,a} A'_{\ell,a},
\]

where \(A'_{\ell,a} \) is the proportion of fish of age \(a \) that fall in length group \(\ell \) for fleet \(f \). Note that therefore:

\[
\sum_{\ell} A'_{\ell,a} = 1 \quad \text{for all ages } a.
\]
The A matrix has been calculated here under the assumption that length-at-age is normally distributed about a mean given by the von Bertalanffy equation, i.e.:

$$\ell(a) - N\left[\ell_\infty \left(1-e^{-k(a-a_0)}\right); \theta'(a)^2\right]$$

(A1.31)

where

N^* is a normal distribution truncated at ±3 standard deviations (to avoid negative values), and

$\theta'(a)$ is the standard deviation of length-at-age a for fleet f, which is modelled here to be proportional to the expected length at age a, i.e.:

$$\theta'(a) = \beta' \ell_\infty \left(1-e^{-k(a-a_0)}\right)$$

(A1.32)

with β' a parameter estimated in the model fitting process.

Note that since the model of the population’s dynamics is based upon a one-year time step, the value of β' and hence the $\theta'(a)$’s estimated will reflect not only the real variability of length-at-age, but also the “spread” that arises from the fact that fish in the same annual cohort are not all spawned at exactly the same time, and that catching takes place throughout the year so that there are differences in the age (in terms of fractions of a year) of fish allocated to the same cohort.

Model fitting is effected by adding the following term to the negative log-likelihood of equation (A1.27):

$$-\ln L_{\text{ken}} = w_{\text{ken}} \sum_{f,y,\ell} \left\{ \ln\left[\frac{\sigma_{\text{ken}}^f}{\sqrt{\sigma_{\text{ken}}^f}}\right] + \left(p_{\text{obs}}^f\left[ln\frac{\sigma_{\text{ken}}^f}{\sqrt{\sigma_{\text{ken}}^f}}\right] + \frac{1}{2} \left(\sigma_{\text{ken}}^f\right)^2\right) \right\}$$

(A1.33)

where

$p_{\text{obs}}^f\left(y,\ell\right)$ is the proportion by number of the catch in year y in length group ℓ for fleet f, and

σ_{ken}^f has a closed form maximum likelihood estimate given by:

$$\left(\hat{\sigma}_{\text{ken}}^f\right)^2 = \sum_{y,\ell} p_{\text{obs}}^f\left[lnp_{\text{obs}}^f\left(y,\ell\right) - ln\frac{\sigma_{\text{ken}}^f}{\sqrt{\sigma_{\text{ken}}^f}}\right]^2/\sum_{y,\ell} 1.$$

(A1.34)

Equation (A1.33) makes the assumption that proportions-at-length data are log-normally distributed about their model-predicted values. The associated variance is taken to be inversely proportional to $p_{\text{obs}}^f\left(y,\ell\right)$ to downweight contributions from expected small proportions which will correspond to small observed sample sizes. This adjustment (known as the Punt-Kennedy approach) is of the form to be expected if a Poisson-like sampling variability component makes a major contribution to the overall variance. Given that overall sample sizes for length distribution data differ quite appreciably from year to year, subsequent refinements of this approach may need to adjust the variance assumed for equation (A1.33) to take this into account.

The w_{ken} weighting factor may be set at a value less than 1 to downweight the contribution of the catch-at-length data to the overall negative log-likelihood compared to that of the CPUE data in equation (A1.27). The reason that this factor is introduced is that the $p_{\text{obs}}^f\left(y,\ell\right)$ data for a given year frequently show evidence of strong positive correlation, and so would not be as informative as the independence assumption underlying the form of equation (A1.33) would otherwise suggest.
In the practical application of equation (A1.33), length observations were grouped by 2 cm intervals, with minus- and plus-groups specified below 54 and above 138 cm respectively for the longline fleet, and plus-groups above 176 cm for the pot fleet, to ensure $p_{y,f}^{\text{obs}}(f)$ values in excess of about 2% for these cells.

Adjustment to Incorporate Recruitment Variability

To allow for stochastic recruitment, the number of recruits at the start of year y given by equation (A1.15) is replaced by:

$$R(B_{y}^{\text{up}}) = \frac{\alpha B_{y}^{\text{up}}}{\beta + B_{y}^{\text{up}}} e^{(-\sigma_{y}^{2})}, \quad \text{(A1.35)}$$

where ζ_{y} reflects fluctuation about the expected recruitment for year y, which is assumed to be normally distributed with standard deviation σ_{y} (which is input). The ζ_{y} are estimable parameters of the model.

The stock-recruitment function residuals are assumed to be log-normally distributed. Thus, the contribution of the recruitment residuals to the negative log-likelihood function is given by:

$$-\ln L_{\text{rec}} = \sum_{y=1961} \left\{ \ln \sigma_{y} + \zeta_{y}^{2}/(2\sigma_{y}^{2}) \right\}, \quad \text{(A1.36)}$$

which is added to the negative log-likelihood of equation (A1.27) as a penalty (the frequentist equivalent of a Bayesian prior for these parameters). In the present application, it is assumed that the resource is not at equilibrium at the start of the fishery, but rather in such equilibrium in 1960 with zero catches taken until the start of the fishery in 1997 (by which time virtually all “memory” of the original equilibrium has been lost because of subsequent recruitment variability). For the computations reported in this paper $\sigma_{y} = 0.5$.

Extension to Include Tag-recapture Data

The approach described by Butterworth et al. (2003) has been implemented in this paper to take into account tag-recapture data. The recaptures follow a Poisson distribution and therefore the following term is added to the negative log-likelihood of equation (A1.27):

$$-\ln L_{\text{tag}} = \sum_{f,y,a} \left\{ r_{y,a}^{f} - r_{y,a}^{*f} \ln \hat{r}_{y,a}^{f} \right\}, \quad \text{(A1.37)}$$

where

- $r_{y,a}^{f}$ is the number of recaptured tags from toothfish of age a in year y by fleet f that have been at large for more than a year, and
- $r_{y,a}^{*f}$ is the expected number of recaptures of age a in year y by fleet f, given by:

$$r_{y,a}^{*f} = \eta_{y,a} \frac{F_{y,a}^{f}}{M_{a} + F_{y,a}^{f} + \xi} \left\{ 1 - e^{-(M_{a} + F_{y,a}^{f} + \xi)} \sum_{k=1}^{a-1} R_{y,k,a-k} \prod_{j=1,k=2}^{k-1} e^{-(M_{a} + F_{y,j,a-j} + \xi)} \right\}, \quad \text{(A1.38)}$$

where

- $R_{y,k,a-k}$ is the number of tags released in year $y-k$ of age $a-k$,
- $F_{y,a}$ is the fishing mortality for toothfish in year y of age a, which is given by the summation of the fleet specific fishing mortalities $F_{y,a}^{f}$.
M_a is the natural mortality rate for toothfish of age a (assumed to be independent of age),

ξ is the tag loss rate,

$\eta_{y,a}$ is the tag-reporting rate for toothfish in year y of age a, and

$F_{y-k,a-k}^*$ is the fishing mortality of tagged toothfish in year $y-k$ of age $a-k$ during the first year at large. This is estimated from the number of tags recaptured by each fleet within the first year that the toothfish are at large. However, in this instance, as there are minimal recaptures for longlines and for trotlines within the first year, these fishing mortalities have been assumed to be the same as $F_{y-k,a-k}$.