Peri-extubation practices and extubation failure in a South African tertiary paediatric intensive care unit

Marie-Charlyne Fatima Kilba

Student number: KLBMAR004

Submitted to the University of Cape Town
In partial fulfillment of the requirements for the Master of Philosophy (MPhil) in Paediatric Critical Care

Faculty of Health Sciences
University of Cape Town

Date of Submission: January 2019

Supervisors:

1. Dr. Shamiel Salie
 Department of Paediatrics and Child Health, University of Cape Town
 Red Cross Children’s Hospital, Paediatric Intensive Care Unit

2. Prof. Brenda Morrow
 Department of Paediatrics and Child Health, University of Cape Town
 Red Cross Children’s Hospital, Paediatric Intensive Care Unit
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
Table of Contents

THESIS ABSTRACT .. 4

LIST OF TABLES AND FIGURES .. 7

ABBREVIATIONS .. 8

CHAPTER 1: INTRODUCTION .. 9
 1.1 CONTEXT .. 9
 1.1.1 References: .. 14
 1.2 ETHICAL CONSIDERATIONS .. 19
 1.3 INSTRUCTIONS TO AUTHORS FOR PUBLICATION- READY MANUSCRIPT 19

CHAPTER 2 – PUBLICATION-READY MANUSCRIPT .. 20

TITLE PAGE ... 20

ABSTRACT ... 21

INTRODUCTION ... 22
 1.1 MATERIALS AND METHODS ... 23
 1.1.1 Population .. 23
 1.1.2 Study site ... 24
 1.1.3 Methods .. 24
 1.1.4 Data management and Analysis ... 25

RESULTS .. 26

DISCUSSION ... 37

CONCLUSIONS ... 40

REFERENCES .. 40

APPENDICES .. 41
 1.1 APPENDIX 1: DATA COLLECTION FORM .. 46
 1.2 APPENDIX 2: REPORT ON ENDOTRACHEAL INTUBATION 50
 1.3 APPENDIX 3: HUMAN RESEARCH ETHICS COMMITTEE, UNIVERSITY OF CAPE TOWN .. 52
 1.4 APPENDIX 4: APPROVAL FROM RED CROSS WAR MEMORIAL CHILDREN’S HOSPITAL FOR THE STUDY ... 54
 1.5 APPENDIX 5: PEDIATRIC CRITICAL CARE MEDICINE JOURNAL AUTHOR GUIDELINES 55
DECLARATION

I, Marie-Charlyne Fatima Kilba, hereby declare that the work on which this dissertation/thesis is based is my original work (except where acknowledgements indicate otherwise) and that neither the whole work nor any part of it has been, is being, or is to be submitted for another degree in this or any other university.

I empower the university to reproduce for the purpose of research either the whole or any portion of the contents in any manner whatsoever.

Signature: [Signed by candidate]

Date: 27/01/2019
Thesis abstract

Objectives
To describe the peri-extubation practices in a South African paediatric intensive care unit and to determine the prevalence, risk factors and outcomes of extubation failure.

Design
Prospective observational study.

Setting
A multi-disciplinary paediatric intensive care unit in Cape Town, South Africa.

Patients
All intubated and ventilated patients between May and September 2017.

Interventions
There were no research-related interventions

Measurements and Main Results
Extubation failure was defined as requiring re-intubation within 48 hours of planned extubation. Two hundred and sixteen intubations in 204 children, with a median age of 8 months (IQR 1.6 – 44.4) and median PIM3 risk of mortality score 0.03 (IQR 0.01 – 0.07) were included. There were 184 planned extubations; 21 (10.3%) patients died before extubation; two (1%) had tracheostomies; two (1%) were transferred intubated and seven (3.4%) had ventilation withdrawn. Non-invasive ventilation was implemented in 97 cases (52.7%) after planned extubation.

There were 21 (11.4%) failed extubations. Indications for re-intubation were: upper airway obstruction (n=7; 33.3%); respiratory failure (n=4; 19.0%); heart failure (n=3; 14.3%); diaphragm paralysis, hypoventilation and cardiac arrest (n=2; 9.5% each); and reduced level of consciousness (n=1; 4.8%). Prematurity (adjusted OR 1.8 (95% CI 0.05 – 0.6); p =0.004), dysmorphology (OR 1.8 (95% CI 0.05 – 0.6); p=0.022), decreased level of consciousness (OR 4.8 (95% CI 1.96 – 11.7); p=0.001) and ventilation ≥48 hours (OR 0.2 (95% CI 0.05 – 0.7); p = 0.003) were independently associated with extubation failure on multivariate analysis.
Children who failed extubation had longer duration of ventilation (median 231 versus 53 hours; p < 0.0001), PICU length of stay (median 15 versus 5 days; p < 0.0001) and hospital length of stay (32 versus 15 days; p=0.009); and higher mortality (28.6% versus 6.7%; p = 0.001) compared to those successfully extubated.

Conclusion
Extubation failure is associated with significant morbidity and mortality. Independent risk factors of extubation failure identified in our context were prematurity, dysmorphology, impaired consciousness and ventilation for more than 48 hours.
Acknowledgements

1. Professor Brenda Morrow for her immense support and tutelage in scientific writing and data analysis and editing of this write up.

2. Dr. Shamiel Salie for assisting with study design and editing of this write up.

3. Dr. Coretta Jonah for assisting me with the data analysis

4. All the PICU doctors for assisting with data collection
List of tables and Figures

Table 1 Patients’ characteristics
Table 2 Peri-intubation factors assessed
Table 3 Peri-extubation factors assessed
Table 4 Pre-extubation assessments
Table 5 Non-invasive ventilation post extubation
Table 6 Outcomes of failed extubation

Figure 1 Complications associated with invasive mechanical ventilation
<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BiPAP</td>
<td>bi-level positive airway pressure</td>
</tr>
<tr>
<td>CPAP</td>
<td>continuous positive airway pressure</td>
</tr>
<tr>
<td>CPIS</td>
<td>clinical pulmonary infection score</td>
</tr>
<tr>
<td>ETT</td>
<td>endotracheal tube</td>
</tr>
<tr>
<td>FiO₂</td>
<td>fraction of inspired oxygen</td>
</tr>
<tr>
<td>HFNC</td>
<td>high flow nasal cannula</td>
</tr>
<tr>
<td>IQR</td>
<td>interquartile range</td>
</tr>
<tr>
<td>NIV</td>
<td>non-invasive ventilation</td>
</tr>
<tr>
<td>OR</td>
<td>odds ratio</td>
</tr>
<tr>
<td>pCO₂</td>
<td>partial pressure of carbon dioxide</td>
</tr>
<tr>
<td>PICU</td>
<td>paediatric intensive care unit</td>
</tr>
<tr>
<td>PIM3</td>
<td>paediatric index of mortality 3</td>
</tr>
<tr>
<td>pO₂</td>
<td>partial pressure of oxygen</td>
</tr>
<tr>
<td>SBT</td>
<td>spontaneous breathing trial</td>
</tr>
<tr>
<td>VAP</td>
<td>ventilator associated pneumonia</td>
</tr>
<tr>
<td>WHO</td>
<td>world health organization</td>
</tr>
</tbody>
</table>
Chapter 1: Introduction

1.1 Context
Mechanical ventilation is a life-saving intervention that has evolved greatly since the first negative pressure ventilation tanks used in the 1920’s polio epidemic (1). Mechanical ventilation can be delivered invasively through an endotracheal tube (ETT) or a tracheostomy tube, or noninvasively through an interface such as nasal prongs or mask, facemask, or a helmet. Various modes of ventilation have been developed and the choice of which mode to use depends, amongst others, on the patient’s disease and comorbid factors, (2) and the clinicians preference.

Indications for mechanical ventilation
The proportion of children mechanically ventilated in paediatric intensive care units (PICUs) ranges from 20% to over 60% in different settings (3-6). The primary indication for assisted ventilation is respiratory failure (2). This may be a result of primary airway or lung disease, or secondary to other organ or system failures, example cardiovascular disease, neurologic and neuromuscular disorders (7). Pneumonia accounts for one in six deaths in children under 5 years of age world wide with most of the deaths occurring in low and middle income countries (9). Despite the decreasing overall under 5 mortality rates, the decrease in pneumonia-related deaths lags behind (9). The situation in South Africa is similar to the global picture and pneumonia remains a major cause of morbidity and mortality (10)

In a secondary analysis of a multicentre study carried out across 16 PICUs in the United States to screen for acute lung injury, the characteristics of intubated and ventilated children were analysed. Thirty percent of all PICU admissions were intubated and ventilated with individual centre ranges between 20-64%. Of these, 46% were ventilated for respiratory disease; 30% for cardiac disease; 9% for spinal and neuromuscular disease and 2.4% for cerebral hypertension (4). A similar single site two-year retrospective study at the Aga Khan University Hospital’s PICU in Pakistan reported that 50.7% of admissions required
mechanical ventilation. Of these, 35.8% were for neurological illnesses; 20.8% for respiratory disease and 13% for cardiac disease (5). At the Red Cross War Memorial Children’s Hospital in Cape Town, approximately 50% of children admitted to the PICU were invasively mechanically ventilated in 2009 (11). Over the past few years the use of non-invasive ventilatory support has increased and as such, may have led to a decrease in the need for invasive ventilation.

Adverse events associated with invasive mechanical ventilation
Mechanical ventilation is not without risks and could result in added morbidity and mortality. Adverse events include:

- Injury to the airway from the ETT and associated endotracheal suction manoeuvres and devices (12, 13)
- Volume and pressure-related lung injury (volutrauma/barotrauma) that also causes release of inflammatory mediators which worsen lung injury and cause additional distant organ injury (14)
- Atelectasis (15)
- Diaphragmatic dysfunction (16)
- Impaired cardiac output secondary to heart-lung interaction (17)
- Ventilator associated infections (18)
- Invasive ventilation may also require increased levels of analgesia and sedation to prevent ventilator-patient dyssynchrony, minimize self-injury and prevent unplanned extubation (2, 19). Sedatives however, may also increase the risk of extubation failure or result in delirium and withdrawal symptoms (20).

The risk of complications increases with duration of ventilation. It is therefore important to wean ventilation as the child improves and extubate once the child is able to sustain adequate spontaneous respiration. Extubation failure and reintubation is associated with increased morbidity, length of PICU stay and cost, and mortality (21-23). As such it is important that extubation is neither rushed nor prolonged unnecessarily.
Weaning and assessment of extubation readiness in children

Institutional weaning protocols have been shown to help shorten the duration of weaning and ventilation in some adult studies (24) but have not been documented to significantly change outcomes such as length of PICU stay or mortality in children. A multicentre randomised controlled trial on the effect of mechanical ventilation weaning protocols on respiratory outcomes in infants and children found weaning periods generally to be short, with no significant difference in weaning duration and extubation failure between those in the weaning protocol group and those in the non-protocol group (25).

Prediction of extubation outcome is difficult because several factors are necessary for effective spontaneous breathing. These include adequate respiratory drive, effective airway reflexes and clearance, respiratory muscle strength and load, effective gas exchange and ventilation-perfusion match (26).

It is estimated that between 25-40% of extubation failures are as a result of upper airway obstruction. The endotracheal cuff leak test was developed to help predict laryngeal oedema. However, this is difficult to reproduce and has a low positive predictive value for post extubation stridor (27, 28).

Objective weaning and extubation readiness tests therefore remain elusive in paediatric practice and depend largely on the clinical judgment of the attending physician (29).

Extubation failure

Extubation is the act of removal of an endotracheal tube. Extubation failure is defined as the need for re-intubation within hours or days of a planned extubation.

Various studies have used different time frames in the definition of extubation failure, ranging from 24 to 72 hours, even up to seven days (30), making comparison of prevalence challenging. For this study, requiring re-intubation
within 48 hours was considered a failed extubation based on the definition used by the Pediatric Cardiac Critical Care Consortium (31). Extubation failure, requiring re-intubation within 48 hours of a planned extubation, has been reported to range between four and 20% (31) (32) (5).

Risk factors for extubation failure

A number of factors have been associated with increased risk of extubation failure. These include; mechanical ventilation for more than 24 hours, age less than 24 months, airway abnormalities, syndromes, chronic neurologic or respiratory disease, cardiac disorders, positive fluid balance and malnutrition (4, 21, 33, 34).

Upper airway obstruction (UAO) accounts for 25-40% of extubation failure (28, 35). It may be as a result of laryngeal, subglottic or supraglottic oedema, granulomas or vocal cord paralysis.

The prophylactic use of corticosteroids for the prevention of post extubation stridor and extubation failure remains controversial. A Cochrane review of studies involving neonates, children and adults showed a general non significant decrease in stridor and extubation failure with administration of steroids, but a significant reduction in the incidence of post extubation stridor and extubation failure in children with underlying airway abnormalities (36). This suggests that targeted use in those at risk of UAO is beneficial.

Non-invasive ventilation (NIV) after extubation

The use of NIV in the management of acute respiratory failure in both children and adults has increased in recent years, reducing the need for invasive mechanical ventilation (37, 38). NIV has also been used to facilitate weaning and prevent re-intubation after invasive mechanical ventilation. Success rates with post extubation NIV use in paediatric studies range between 65-85%. Outcomes
were better in those who received NIV immediately after extubation than in those in whom NIV was started later for post-extubation respiratory failure (38-40).

Rational for study

Extubation failure is associated with significant adverse outcomes including increased mortality, prolonged PICU and hospital stay, higher costs, and greater need for tracheotomy (30) (22) (21). There is a paucity of data on peri-extubation practices and extubation failure in Africa generally and especially among children.

Extubation failure rates and outcomes had not been systematically documented in our PICU, but unpublished data from a study on the outcomes of cardiac patients admitted to the unit showed an extubation failure rate of 5.7% among elective cardiac admissions and 13% among emergency cardiac admissions. The prevalence of extubation failure in other patient groups (e.g. emergency medical admissions, neurosurgery/neurology and general surgery) admitted to this multi-disciplinary PICU was unknown.
1.1.1 References:

1.2 Ethical considerations

Approval for the study was obtained from the following before commencing with data collection:

1. Department of Paediatrics Research Committee (DRC)
2. University of Cape Town’s Faculty of Health Sciences Human Research Ethics Committee (HREC); HREC Ref: 166/2017
3. Medical superintendent of Red Cross War Memorial Children’s Hospital.

A waiver of consent was granted by the HREC.
The study adhered to the requirements laid out in the Declaration of Helsinki 2013.

1.3 Instructions to authors for publication- ready manuscript

Chapter 2 (publication-ready manuscript) conforms to the author guidelines (Appendix 5) for submission to Pediatric Critical Care Medicine, an international peer reviewed and PubMed accredited journal with impact factor 2.326.
CHAPTER 2 – Publication-ready manuscript

Conforms to the author guidelines (Appendix 5) for submission to *Pediatric Critical Care Medicine*, an international peer reviewed and PubMed accredited journal with impact factor 2.326.

Title Page

Title: Peri-extubation practices and extubation failure in a South African tertiary paediatric intensive care unit

Authors: Kilba, MC\(^1,2\); Salie, S\(^1,2\); Morrow, BM\(^1,2\)

1. Department of Paediatrics, University of Cape Town
2. Paediatric intensive care unit, Red Cross War Memorial Children’s Hospital

Corresponding author details:
Marie-Charlyne F. Kilba
Red Cross War Memorial Children’s Hospital
2\(^{nd}\) Floor R00219 ICH Building,
Klipfontein Rd, Rondebosch
7700, Cape Town, South Africa

Charlyne.kilba@gmail.com
+233 206301131

Keywords: intubation; extubation failure; risk factors; paediatric intensive care unit; mechanical ventilation; outcomes
Abstract

Objectives: To describe the peri-extubation practices in a South African paediatric intensive care unit and to determine the prevalence, risk factors and outcomes of extubation failure.

Design: Prospective, observational study

Setting: Multi-disciplinary PICU in Cape Town, South Africa

Patients: All intubated and ventilated patients between May - September 2017.

Interventions: There were no research-related interventions

Measurements and Main Results: Extubation failure was defined as requiring reintubation within 48 hours of planned extubation. Two hundred and sixteen intubations in 204 children with a median age of 8 months (IQR 1.6 – 44.4) and median PIM3 risk of mortality score 0.03 (IQR 0.01 – 0.07) were included. There were 184 planned extubations; 21 (10.3%) patients died before extubation; two (1%) had tracheostomies; two (1%) were transferred intubated and seven (3.4%) had ventilation withdrawn. Non-invasive ventilation (NIV) was implemented in 97 cases (52.7%) after planned extubation.

There were 21 (11.4%) failed extubations. Indications for re-intubation were: upper airway obstruction (n=7; 33.3%); respiratory failure (n=4; 19.0%); heart failure (n=3; 14.3%); diaphragm paralysis, hypoventilation and cardiac arrest (n=2; 9.5% each); and reduced level of consciousness (n=1; 4.8%).

Prematurity (adjusted OR 1.8 (95% CI 0.05 – 0.6); p =0.004), dysmorphology (OR 1.8 (95% CI 0.05 – 0.6); p=0.022), decreased level of consciousness (OR 4.8 (95% CI 1.96 – 11.7); p=0.001) and ventilation ≥48 hours (OR 0.2 (95% CI 0.05 – 0.7); p = 0.003) were independently associated with extubation failure on multivariate analysis.

Children who failed extubation had longer duration of ventilation (median 231 versus 53 hours; p<0.0001), PICU length of stay (median 15 versus 5 days; p <0.0001) and hospital length of stay (32 versus 15 days; p=0.009); and higher mortality (28.57% versus 6.75%; p=0.001) compared to those successfully extubated.

Conclusion: Extubation failure is associated with significant morbidity and mortality. Independent predictors of extubation failure in our context were identified.
Introduction

The proportion of children mechanically ventilated in paediatric intensive care units (PICU’s) ranges from 20% to over 60% in many settings (1-4). The primary indication for assisted ventilation is respiratory failure which may be a result of primary airway or lung disease, or secondary to other organ failures, or for postoperative care (5).

The risk of morbidity and mortality increases with the duration of mechanical ventilation. Extubation failure is also associated with significant adverse outcomes including increased mortality, prolonged PICU and hospital stay, higher costs, and greater need for tracheotomy (6-8) (9). As such it is important that extubation is neither rushed nor unnecessarily prolonged.

Prediction of extubation readiness and outcome is difficult as several factors are necessary for effective spontaneous breathing. These include adequate respiratory drive, patent airways, effective airway reflexes and clearance, adequate respiratory muscle strength, effective gas exchange, ventilation-perfusion matching and haemodynamic stability (10). Weaning protocols have not always been found to shorten duration of ventilation significantly in the paediatric population (4, 11, 12), and are more challenging in young children (12). There are also no reliable methods for assessing readiness for and predicting extubation outcome in children. Indices such as the Rapid Shallow Breathing Index (RSBI), Compliance, Resistance, Oxygenation, Pressure index (CROP index), negative inspiratory pressure, and volumetric capnography are less reliable in children compared to adult studies.(13-16). In addition, the cuff leak test has a low positive predictive value for post extubation upper airway obstruction, which is one of the commonest reasons for re-intubation in children (17-19). Objective weaning and extubation readiness tests therefore remain elusive in paediatric practice and depend largely on the clinical judgment of the attending physician (13).
The use of non-invasive ventilation (NIV) in the management of acute respiratory failure in both children and adults has increased in recent years reducing the need for invasive mechanical ventilation (20, 21). It has also been used to facilitate weaning and prevent re-intubation after invasive mechanical ventilation. Success rates with post extubation NIV use in paediatric studies range between 65-85%. Outcomes were better in those who received NIV immediately after extubation than in those in whom NIV was started later for post-extubation respiratory failure (21-23).

There is a paucity of data on the outcomes of African children requiring mechanical ventilation, the risk factors for extubation failure and extubation failure rates. This study therefore aimed to document the extubation failure rate, the risk factors and outcomes of failed extubation, and the outcome of the use of NIV post extubation in children mechanically ventilated in the PICU of Red Cross War Memorial Children’s Hospital, Cape Town, South Africa.

1.1 Materials and methods

1.1.1 Population
All children intubated during their admission to the PICU from 15th May to 15th September 2017, including those who were intubated outside the PICU. Exclusion criteria

1. Children admitted to the PICU with a tracheostomy or admitted for a planned tracheostomy.
2. Children who were brain dead and were admitted to the PICU for the sole purpose of organ donation.
3. Children extubated as part of a palliative care plan were excluded from the extubation failure analyses.
1.1.2 Study site

The study site was the PICU of Red Cross War Memorial Children’s Hospital; a 22-bedded multidisciplinary unit situated in a tertiary paediatric hospital in Cape Town, South Africa. The PICU admits approximately 1,300 patients per annum with a mortality rate of 6%. Admissions are mainly for the management of infectious diseases such as pneumonia and sepsis, trauma and post cardiac surgery care.

1.1.3 Methods

In our PICU, the decision to extubate, administer steroids prior to extubation and the elective use of NIV after extubation are made by the attending physician, based mainly on clinical parameters. There were no weaning protocols and standardized spontaneous breathing trials (SBT) were not carried out.

The study was a prospective observational study, over a four-month period from 15th May to 15th September 2017.

Participants were recruited into the study at the time of decision to extubate and peri-extubation data filled into a standardized case record form by the doctor who carried out the extubation.

Intubation data was captured from the PICU intubation checklist (Appendix 2), which was completed at the time of intubation by the doctor who carried out the procedure. For intubations that occurred outside the PICU, the data was extracted from the clinical notes. The appropriateness of the ETT internal diameter used was assessed with the \((\text{Age}/4) + 4\) formula for children one year and above for uncuffed tubes, and \((\text{Age}/4) + 3.5\) mm for cuffed tubes. For the infants, the weight-based recommendation from the Textbook of Neonatal Resuscitation (7th edition) was used. Mallinckrodt cuffless and Parker ThinCuff
microcuff tubes were used for intubations carried out in the PICU. The bedside nurse routinely checked cuff pressures.

Remaining data were extracted from the patients’ clinical notes, medication and observation charts. If a child needed to be re-intubated, the attending doctor filled in the re-intubation data. Extubation failure was defined as requiring re-intubation within 48 hours of a planned extubation (9). The level of consciousness was scored using the Alert Verbal Painful Unresponsive (AVPU) scale.

Since this study aimed to describe the current practice in the PICU, diagnosis and classifications were recorded as stated in patient notes. The diagnosis of ventilator-associated pneumonia (VAP) was made, as per standard practice, based on the modified clinical pulmonary infection score (CPIS)(24) (25) which were documented daily by the attending doctor. In addition, the infection prevention and control (IPC) surveillance team routinely audited the CPIS forms to diagnose or exclude VAPs using the same criteria. The predicted mortality risk, using the Paediatric Index of Mortality 3 (PIM3) was obtained from the PICU admissions database. Children discharged on NIV were followed up on the ward to document the duration of use and complications.

The outcome at 30 days post PICU discharge was obtained from the hospital database and patient notes.

1.1.4 Data management and Analysis

Data collected using standardized, self-developed case record forms were entered into an SPSS spreadsheet and analysed using SPSS and Statistica version 13 (Statsoft Inc, USA). The data were tested for normality using the Kolmogorov-Smirnov test and presented mainly as median (IQR) as majority of the data were not normally distributed. Comparisons of patient characteristics with and without extubation failure were analysed using Chi² tests for categorical variables and Mann-Whitney U tests for continuous variables. Variables found to
be significantly associated with the primary outcome of extubation failure on univariate analysis, were entered into a backward stepwise regression model, in order to determine independent associations with the primary binary outcome. A significance level of 0.05 was chosen.

Results

There were 446 admissions during the study period and 216 (48.43%) of them were invasively ventilated. Two hundred and sixteen episodes of mechanical ventilation in 204 children were captured. There were 104 (48.1%) males; median age of 8 months (IQR 1.6 – 44.4) and median PIM3 risk of mortality score 0.03 (IQR 0.01 – 0.07). Four children were intubated and ventilated twice during a single admission but did not fail their first extubation. Eight episodes of ventilation were in children who were admitted more than once during the study period.

Four children were excluded, two had tracheostomies, one was admitted intubated for a tracheostomy and one was brain dead at admission.

Twenty-one (10.3%) of the children died during ventilation, two (1%) had a tracheostomy without a prior extubation, and two (1%) were transferred to another hospital prior to extubation. Seven children (3.4%) had ventilation withdrawn as part of a palliative care plan and an additional four had ventilation withdrawn after they had failed extubation at least once. One hundred and eighty four elective extubation episodes were analysed further.

The most common reason for admission to PICU was post cardiac surgical procedures; followed by respiratory disease (Table 1). Trauma constituted 6.5% of admissions, with 11 of 14 being traumatic brain injuries.

Comorbid conditions were common, with dysmorphology and a history of prematurity the most common (Table 1). Of the 34 children with documented
dysmorphology, 14 had Trisomy 21, five had foetal alcohol syndrome, two each had 22q deletion and VACTERL; one case each had CHARGE, VATER, Noonan syndrome, Alagille syndrome and Retts syndrome; and six patients were unclassified.

The median (IQR) duration of ventilation was 69.5 (22 – 149) hours, and the median duration of PICU stay was 6 (3 - 12) days. The mortality rate for all invasively ventilated admissions was 14.62%.

Twenty-one (11.4%) of the 184 elective extubations failed. Thirteen (61.9%) were female, and median age was 3.12 (IQR 0.89 – 11.68) months (table 1). The time to re-intubation was <24 hours in 15 (71.43%) cases, with seven (33.33%) re-intubations occurring <6 hours after extubation.
Table 1: Patient characteristics

<table>
<thead>
<tr>
<th>Variables</th>
<th>All (n=216)</th>
<th>Failed extubation (n=21)</th>
<th>Successful extubation (n=163)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in months, median (IQR)</td>
<td>7.98 (1.58 – 44.39)</td>
<td>3.12 (0.89 – 11.68)</td>
<td>8.54 (2.04 - 40.54)</td>
<td>0.25</td>
</tr>
<tr>
<td>Male gender (percentage)</td>
<td>104 (48.15)</td>
<td>8 (38.1)</td>
<td>81 (49.70)</td>
<td>0.34</td>
</tr>
<tr>
<td>Weight (Kg) median (IQR)</td>
<td>6.7 (3.3 – 13)</td>
<td>3.9 (2.5 – 18.5)</td>
<td>7.0 (3.5 – 13)</td>
<td>0.19</td>
</tr>
<tr>
<td>PIM3 score median (IQR)</td>
<td>0.03 (0.01 – 0.07)</td>
<td>0.04 (0.01 – 0.07)</td>
<td>0.02 (0.01 – 0.06)</td>
<td>0.13</td>
</tr>
<tr>
<td>Primary Diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac surgery</td>
<td>58 (26.9)</td>
<td>4 (19.05)</td>
<td>53 (32.52)</td>
<td></td>
</tr>
<tr>
<td>Respiratory disease</td>
<td>43 (19.9)</td>
<td>4 (19.05)</td>
<td>34 (20.86)</td>
<td></td>
</tr>
<tr>
<td>Other surgery</td>
<td>23 (10.6)</td>
<td>4 (19.05)</td>
<td>18 (11.04)</td>
<td></td>
</tr>
<tr>
<td>Sepsis and Septic shock</td>
<td>22 (10.2)</td>
<td>1 (4.76)</td>
<td>11 (6.75)</td>
<td></td>
</tr>
<tr>
<td>Cardiac disease</td>
<td>20 (9.3)</td>
<td>5 (23.81)</td>
<td>11 (6.75)</td>
<td></td>
</tr>
<tr>
<td>Neurologic disease</td>
<td>14 (6.5)</td>
<td>0</td>
<td>11 (6.75)</td>
<td></td>
</tr>
<tr>
<td>Trauma</td>
<td>14 (6.5)</td>
<td>2 (9.52)</td>
<td>8 (4.91)</td>
<td></td>
</tr>
<tr>
<td>Burns</td>
<td>6 (2.8)</td>
<td>0</td>
<td>6 (3.68)</td>
<td></td>
</tr>
<tr>
<td>Transplant</td>
<td>4 (1.9)</td>
<td>0</td>
<td>4 (2.45)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>12 (5.6)</td>
<td>1 (4.76)</td>
<td>7 (4.29)</td>
<td></td>
</tr>
<tr>
<td>Comorbidities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prematurity</td>
<td>26 (12)</td>
<td>6 (28.57)</td>
<td>14 (8.59)</td>
<td>0.006</td>
</tr>
<tr>
<td>Genetic syndrome or dysmorphology</td>
<td>34 (15.74)</td>
<td>7 (33.33)</td>
<td>23 (14.11)</td>
<td>0.025</td>
</tr>
<tr>
<td>Chronic lung disease</td>
<td>5 (2.31)</td>
<td>2 (9.52)</td>
<td>2 (1.23)</td>
<td>0.047</td>
</tr>
<tr>
<td>HIV infection</td>
<td>7 (3.24)</td>
<td>0</td>
<td>5 (3.07)</td>
<td>0.416</td>
</tr>
<tr>
<td>HIV exposed</td>
<td>30 (13.89)</td>
<td>5 (23.81)</td>
<td>22 (13.50)</td>
<td>0.209</td>
</tr>
</tbody>
</table>

IQR, interquartile range; PIM3, paediatric index of mortality 3; HIV, Human immunodeficiency virus
Table 2: Peri-intubation factors assessed

<table>
<thead>
<tr>
<th>Variables</th>
<th>All (n = 216)</th>
<th>Failed extubations (n = 21)</th>
<th>Successful extubations (n = 163)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIV support prior to intubation</td>
<td>83 (38.4)</td>
<td>13 (61.9)</td>
<td>58 (35.6)</td>
<td>0.06</td>
</tr>
<tr>
<td>Emergency intubation</td>
<td>116 (53.7)</td>
<td>14 (66.7)</td>
<td>74 (45.4)</td>
<td>0.07</td>
</tr>
<tr>
<td>Primary Indication for Intubation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airway protection</td>
<td>6 (2.8)</td>
<td>0</td>
<td>5 (3.1)</td>
<td>0.66</td>
</tr>
<tr>
<td>Respiratory distress/failure</td>
<td>74 (34.3)</td>
<td>7 (33.33)</td>
<td>51 (31.3)</td>
<td>0.04</td>
</tr>
<tr>
<td>Cardiovascular instability</td>
<td>37 (17.1)</td>
<td>5 (23.81)</td>
<td>18 (11.0)</td>
<td>0.10</td>
</tr>
<tr>
<td>Neurology</td>
<td>33 (15.3)</td>
<td>3 (14.29)</td>
<td>20 (12.3)</td>
<td>0.80</td>
</tr>
<tr>
<td>Surgery and postop support</td>
<td>96 (44.4)</td>
<td>7 (33.33)</td>
<td>86 (52.8)</td>
<td>0.09</td>
</tr>
<tr>
<td>Place of intubation</td>
<td></td>
<td></td>
<td></td>
<td>0.31</td>
</tr>
<tr>
<td>Theatre</td>
<td>100 (46.3)</td>
<td>8 (38.1)</td>
<td>89 (54.5)</td>
<td></td>
</tr>
<tr>
<td>PICU</td>
<td>40 (18.5)</td>
<td>5 (23.8)</td>
<td>26 (16.0)</td>
<td></td>
</tr>
<tr>
<td>Another hospital</td>
<td>44 (20.4)</td>
<td>6 (28.6)</td>
<td>30 (18.4)</td>
<td></td>
</tr>
<tr>
<td>Medical ER</td>
<td>17 (7.9)</td>
<td>0</td>
<td>8 (4.9)</td>
<td></td>
</tr>
<tr>
<td>Ward</td>
<td>8 (3.7)</td>
<td>2 (9.5)</td>
<td>4 (2.5)</td>
<td></td>
</tr>
<tr>
<td>Trauma ER</td>
<td>2 (0.9)</td>
<td>0</td>
<td>2 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Out of hospital</td>
<td>5 (2.3)</td>
<td>0</td>
<td>4 (2.5)</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous endotracheal intubation</td>
<td>72 (33.3)</td>
<td>8 (38.1)</td>
<td>56 (34.4)</td>
<td>0.74</td>
</tr>
<tr>
<td>>Two attempts at intubation</td>
<td>22 (10.2)</td>
<td>3 (14.3)</td>
<td>18 (11.0)</td>
<td>0.54</td>
</tr>
<tr>
<td>Nasal intubation route</td>
<td>175 (81.0)</td>
<td>14 (66.7)</td>
<td>137 (84.0)</td>
<td>0.04</td>
</tr>
<tr>
<td>Cuffed ETT</td>
<td>134 (62.0)</td>
<td>11 (52.4)</td>
<td>105 (64.4)</td>
<td>0.27</td>
</tr>
<tr>
<td>Leak around the ETT at intubation</td>
<td>121 (56.0)</td>
<td>10 (47.6)</td>
<td>93 (57.1)</td>
<td>0.05</td>
</tr>
<tr>
<td>Complications during intubation</td>
<td>37 (17.1)</td>
<td>3 (14.3)</td>
<td>26 (16.0)</td>
<td>0.34</td>
</tr>
<tr>
<td>Re-intubation prior to planned extubation</td>
<td>37 (17.1)</td>
<td>4 (19.0)</td>
<td>25 (15.3)</td>
<td>0.69</td>
</tr>
</tbody>
</table>
Uncuffed ETTs were used 58.3% of neonates, 48.8% of all children less than 12 months old, and in 24.2% of those 12 months old and above. The ETT size used correlated with calculated sizes recommended in 53.8% (n=99), was bigger in 23.4% (n=43) and smaller in 22.8% (n=42). In 88.5% of the ETT that were bigger than the recommended size, cuffed tubes that correlated with the formula (age/4) + 4 were used instead of (age/4) + 3.5. This was most prevalent in children under five years of age (33.3%) whereas the use of ETT with smaller diameters than recommended was more prevalent in children above 10 years of age. There was no association between the disparity in size and stridor (p=0.18), extubation failure (p=0.08) or extubation failure secondary to upper airway obstruction (p=0.24). The route of intubation and whether or not the ETT was cuffed was not associated with extubation failure, p = 0.51 and p = 0.22 respectively.
Table 3: Peri-extubation factors assessed

<table>
<thead>
<tr>
<th>Variables</th>
<th>All planned extubations (n = 184)</th>
<th>Failed extubations (n = 21)</th>
<th>Successful extubations (n = 163)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steroid administered prior to extubation n (%)</td>
<td>63 (34.24)</td>
<td>11 (52.38)</td>
<td>52 (31.90)</td>
<td>0.06</td>
</tr>
<tr>
<td>Inotrope/vasopressor support at time of extubation n (%)</td>
<td>40 (21.7)</td>
<td>5 (23.8)</td>
<td>35 (21.5)</td>
<td>0.82</td>
</tr>
<tr>
<td>Neuromuscular blocking agent in preceding 24 hours n (%)</td>
<td>21 (11.4)</td>
<td>0 (0)</td>
<td>21 (12.9)</td>
<td>0.07</td>
</tr>
<tr>
<td>Decreased level of consciousness n (%)</td>
<td>32 (17.4)</td>
<td>9 (42.9)</td>
<td>23 (14.1)</td>
<td>0.001</td>
</tr>
<tr>
<td>Mode of ventilation n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure control ventilation</td>
<td>136 (73.9)</td>
<td>16 (76.2)</td>
<td>120 (73.6)</td>
<td>0.19</td>
</tr>
<tr>
<td>Pressure support CPAP</td>
<td>47 (25.5)</td>
<td>5 (23.8)</td>
<td>42 (25.8)</td>
<td>0.97</td>
</tr>
<tr>
<td>Pressure support</td>
<td>1 (0.5)</td>
<td>0</td>
<td>1 (0.6)</td>
<td>0.17</td>
</tr>
<tr>
<td>Ventilator settings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FiO2</td>
<td>0.3 (0.25 – 0.32)</td>
<td>0.3 (0.21 – 0.33)</td>
<td>0.30 (0.25 – 0.30)</td>
<td>0.63</td>
</tr>
<tr>
<td>Peak inspiratory pressure (cmH2O)</td>
<td>15.0 (14.0 – 16.0)</td>
<td>15.0 (14.0 – 15.0)</td>
<td>15.0 (14.0 – 16.0)</td>
<td>0.80</td>
</tr>
<tr>
<td>Positive end expiratory pressure (cmH2O)</td>
<td>5.0 (5 – 5)</td>
<td>5.0 (5.0 – 5.0)</td>
<td>5.0 (5.0 -5.0)</td>
<td>0.22</td>
</tr>
<tr>
<td>Mean airway pressure (cmH2O)</td>
<td>9.0 (8.0 – 10.0)</td>
<td>8.0 (7.0 – 10.0)</td>
<td>9.0 (8.0 – 10.0)</td>
<td>0.60</td>
</tr>
<tr>
<td>Tidal volume (mls/kg)</td>
<td>6.4 (5.1 – 7.9)</td>
<td>5.7 (5.0 – 7.0)</td>
<td>6.5 (5.2 – 8.0)</td>
<td>0.075</td>
</tr>
<tr>
<td>Duration of ventilation prior to 1st extubation (hrs.)</td>
<td>57.6 (22 – 123)</td>
<td>112 (50 – 174)</td>
<td>49 (21 – 116)</td>
<td>0.012</td>
</tr>
</tbody>
</table>

CPAP, continuous positive airway pressure; IQR, interquartile range
Table 4: Pre-extubation assessment

<table>
<thead>
<tr>
<th>Variables</th>
<th>All planned extubations (n = 184)</th>
<th>Failed extubations (n = 21)</th>
<th>Successful extubations (n = 163)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood gas analysis done n (%)</td>
<td>174 (94.6)</td>
<td>21 (100)</td>
<td>153 (93.9)</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>7.39 (7.34 – 7.43)</td>
<td>7.39 (7.37-7.43)</td>
<td>7.44 (7.38 – 7.45)</td>
<td>0.51</td>
</tr>
<tr>
<td>PCO₂ (kPa)</td>
<td>5.53 (4.88 – 6.28)</td>
<td>6.23 (5.22 – 6.9)</td>
<td>5.5 (5.3 – 5.6)</td>
<td>0.09</td>
</tr>
<tr>
<td>PO₂ (kPa)</td>
<td>13.10 (8.91 – 17.60)</td>
<td>9.23 (6.05 – 11.2)</td>
<td>18.7 (11.0 – 20.6)</td>
<td>0.21</td>
</tr>
<tr>
<td>Base excess</td>
<td>-0.01 (-3.75 – 4.3)</td>
<td>4.4 (2.0 – 6.5)</td>
<td>4.3 (3.7 – 4.8)</td>
<td>0.22</td>
</tr>
<tr>
<td>Bicarbonate (mmol/L)</td>
<td>24.2 (21.2 – 27.7)</td>
<td>27.8 (25.7 – 29.2)</td>
<td>27.9 (27.7 – 29.2)</td>
<td>0.23</td>
</tr>
<tr>
<td>Cumulative fluid balance (% of body weight)</td>
<td>1.87 (0.12 – 7.01)</td>
<td>6.33 (1.12 – 9.12)</td>
<td>1.68 (0.11- 6.32)</td>
<td>0.10</td>
</tr>
<tr>
<td>Haemoglobin level (g/dL)</td>
<td>11.0 (9.4 – 12.7)</td>
<td>11.1 (10.0 – 12.6)</td>
<td>11.0 (9.4 – 12.7)</td>
<td>0.75</td>
</tr>
<tr>
<td>Transfused prior to extubation n (%)</td>
<td>56 (30.4)</td>
<td>5 (23.8)</td>
<td>51 (31.3)</td>
<td>0.45</td>
</tr>
<tr>
<td>Documented leak around ETT at extubation n (%)</td>
<td>123 (66.9)</td>
<td>15 (71.4)</td>
<td>108 (66.3)</td>
<td>0.88</td>
</tr>
<tr>
<td>Impaired level of consciousness</td>
<td>32 (17.4)</td>
<td>9 (42.9)</td>
<td>23 (14.1)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Table 5: Non-invasive ventilation post extubation

<table>
<thead>
<tr>
<th>Ventilatory support post extubation n (%)</th>
<th>All planned extubations (n = 184)</th>
<th>Failed extubations (n = 21)</th>
<th>Successful extubations (n = 163)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number provided NIV post extubation</td>
<td>98 (52.3)</td>
<td>16 (76.2)</td>
<td>82(50.3)</td>
<td>0.025</td>
</tr>
<tr>
<td>NIV started immediately after extubation</td>
<td>57 (40.0)</td>
<td>11 (52.4)</td>
<td>46 (28.2)</td>
<td><0.0001</td>
</tr>
<tr>
<td>HFNC</td>
<td>30 (16.3)</td>
<td>7 (33.3)</td>
<td>23 (14.1)</td>
<td></td>
</tr>
<tr>
<td>CPAP</td>
<td>63 (34.2)</td>
<td>7 (33.3)</td>
<td>56 (3)</td>
<td></td>
</tr>
<tr>
<td>BiPAP</td>
<td>5 (2.7)</td>
<td>2 (9.5)</td>
<td>3 (1.8)</td>
<td></td>
</tr>
</tbody>
</table>
Tables 4 and 5
PCO$_2$, partial pressure of carbon dioxide; PO$_2$, partial pressure of oxygen; NIV, non-invasive ventilation; HFNC, high flow nasal cannula; CPAP, continuous positive airway pressure; BiPAP, bi-level positive airway pressure.

On univariate analysis prematurity, dysmorphology, decreased level of consciousness, ventilation \geq48 Hours, oral intubation route and the use of NIV were associated with extubation failure. On multiple regression analysis, dysmorphology ($p = 0.006$), prematurity ($p = 0.007$), decreased level of consciousness ($p = 0.001$), and ventilation \geq 48 hours ($p = 0.016$) were found to be independent predictors of extubation failure.

Table 6: Outcomes of failed extubation

<table>
<thead>
<tr>
<th>Variable</th>
<th>All planned extubations (n = 184)</th>
<th>Failed extubation (n = 21)</th>
<th>Successful extubation (n = 163)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of mechanical ventilation (hours) median (IQR)</td>
<td>69.5 (22 – 149)</td>
<td>231.0 (146.0 – 341.0)</td>
<td>53 (21.67 – 123.0)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Stridor present post extubation n (%)</td>
<td>47(25.5)</td>
<td>8 (38.1)</td>
<td>39 (23.9)</td>
<td>0.358</td>
</tr>
<tr>
<td>Complications of invasive ventilation n (%)</td>
<td>58 (31.5)</td>
<td>12 (57.1)</td>
<td>46 (28.2)</td>
<td>0.027</td>
</tr>
<tr>
<td>PICU LOS Median (IQR)</td>
<td>6 (3 – 12)</td>
<td>15.0 (9.0 – 20.0)</td>
<td>5 (2.0 – 9.0)</td>
<td><0.0001</td>
</tr>
<tr>
<td>PICU mortality; n (%)</td>
<td>4 (2.2)</td>
<td>2 (9.5)</td>
<td>2 (1.2)</td>
<td>0.014</td>
</tr>
<tr>
<td>Mortality 30 days post PICU discharge n (%)</td>
<td>17 (9.2)</td>
<td>6 (28.6)</td>
<td>11 (6.7)</td>
<td>0.001</td>
</tr>
<tr>
<td>Hospital LOS (of survivors) Median (IQR)</td>
<td>16 (8 – 28)</td>
<td>32 (21 – 53)</td>
<td>15 (8 – 27)</td>
<td>0.009</td>
</tr>
</tbody>
</table>

IQR, interquartile range; PICU, paediatric intensive care unit; LOS, length of stay
Complications of invasive mechanical ventilation

There were 89 documented complications in 58 (26.9%) of the children, most commonly sepsis and ventilator associated pneumonia (Figure 1). Twenty-one (9.7%) of the children died prior to extubation.

![Complications associated with invasive mechanical ventilation](image)

Figure 1: Complications associated with invasive mechanical ventilation

At the time of extubation, 41 (22.3%) of the children were on inotropes or vasopressors. Milrinone was predominant, 15.8% at a dose of between 0.5 and 0.75 mcg/kg/min. Adrenaline was the second commonest, 13.6%, running at doses of between 0.02 and 0.06 mcg/kg/min. Fifteen (8.2%) were on both adrenaline and milrinone. None of them were on dopamine or dobutamine. The use of inotropes and vasopressors at the time of extubation did not affect the outcome (p = 0.82).
Eighty-four (45.65%) children were on morphine, 10 (5.4%) on fentanyl, 5 (2.72%) on dexmedetomidine and 1 (0.5%) each on ketamine or midazolam at the time of extubation.

Sixty-four (34.78%) children received steroids prior to extubation, 19 of whom where for indications other than upper airway oedema. These included post-solid organ transplant immunomodulation (n=6), hypotension (n=4) and TB meningitis (n=3). Dexamethasone was used for upper airway oedema, methylprednisolone or prednisolone for transplant immunomodulation and hydrocortisone for hypotension. The median duration from time of the first dose to time of extubation was five and a half hours in the extubation failure group and 23.5 hours in the successful extubation group.

Stridor occurred in 47 (25.54%) children of whom 18 (38.30%) had received at least one dose of a steroid prior to extubation. The use of steroids did not result in decreased stridor (p = 0.6). The use of a cuffed ETT (p = 0.24) and replacement of the ETT prior to planned extubation was not associated with stridor (p = 0.15). However, the use of orally placed ET tubes (p = 0.008) and two or more attempts at intubation (p = 0.001) were associated with stridor. The presence or absence of a leak around the ETT prior to extubation was only documented in 142 (77.17%) of the extubations. Of the 47 children that developed stridor, 25 (53.19%) had a leak, 8 (17.02%) had no leak around the ETT and 14 (29.79%) had no documentation of whether or not there was a leak. Eight (42.11%) of the total of 19 patients that did not have a leak developed stridor when extubated (p = 0.19). Stridor was not associated with extubation failure (p = 0.37).

A cumulative fluid balance ≥ 10% body weight occurred in 14.7% (n=27) at the time of extubation and in 23.8% (n=5) of children who failed extubation (p=0.23). This was however not associated with extubation failure even when those with upper airway obstruction were excluded (p=0.47).
Ninety-eight (52.26%) of the children were placed on NIV after extubation, 57 started electively immediately after extubation and 41 later when it was deemed necessary. Of the 57 children that received NIV immediately after extubation, 11 (19.29%) were re-intubated compared with 5 out of 41 children (12.20%) for those who received NIV non-electively. Complications occurred in three children (3.10%). One developed a pneumothorax and two had pressure ulceration of the nasal septum both of which were mild.

Upper airway obstruction (n=7; 33.33%) was the most common indication for re-intubation within 48 hours of planned extubation, followed by respiratory distress or failure (n=4; 19.05%), heart failure (n=3; 14.29%); hypoventilation, diaphragm paralysis and cardiac arrest (n=2; 9.52% each), and decreased level of consciousness (n=1). The causes of upper airway obstruction were laryngeal oedema (n=4), vocal cord paralysis (n=2), and laryngeal web (n=1).

Of the 21 children who failed extubation, two died and one was transferred to another hospital intubated. An upper airway endoscopy was carried out for three of them. The findings were laryngeal web (congenital), vocal cord paralysis (following severe traumatic brain injury) and laryngeal injury (from intubation). Two got tracheostomies and sixteen were extubated. Eleven out of the 16 (68.8%) received steroids prior to their second extubation. Three (18.8%) of them failed their second extubation and one failed a third extubation. The median duration of re-intubation was 126 hours (IQR 60.5 – 190 hours).

Extubation failure was associated with increased total duration of invasive mechanical ventilation (p < 0.0001), increased PICU length of stay (p < 0.001) and hospital stay (p = 0.009) as well as higher PICU mortality (p = 0.014) and higher mortality at 30 days post PICU discharge (p = 0.001) (Table 6).
Discussion

We report an invasive ventilation rate of 48.4%; median duration of ventilation of 69.5 hours and median PICU stay of six days, which is comparable to data from other PICUs (2, 3, 26).

Our extubation failure rate at 48 hours was 11.4%. Most reports on failure rates in children range between 4 – 20% (8, 9, 14, 17, 27-30). There is no recommended or acceptable extubation failure rate. It is suggested that very low extubation failure rates may indicate overly conservative weaning and extubation practices. Siddhartha et al related ventilator-free days, ICU-free days and mortality to the extubation failure rates in their ICU over a 9-year period and found that periods of extubation failure rate between 7 – 15% had higher ventilator and ICU-free days compared with failure rates of < 7% or >15%, with no significant difference in mortality. This was however a study in adults and may not be generalizable to children.

The factors we found to be associated with extubation failure are similar to those reported in other studies: prematurity or a history of prematurity in infants, dysmorphology, duration of ventilation ≥ 48 hours, and a decreased level of alertness (6, 8, 27, 28, 31). Prematurity was an important risk factor in our PICU because it also serves newborns requiring surgical interventions in our catchment area.

Though some studies have shown increased morbidity with blood transfusion and fluid overload, this was not evident in our results (32-34). This maybe because sub group analysis was not carried out due to the small population size. There is a conscious effort to prevent fluid overload in our ICU, including the use of diuresis. In addition, the fluid balance reported in this study was at the time of extubation and not necessarily during the acute phase of the first 24 - 48 hours described in most of the PICU fluid overload outcome studies, and excluded
those that died prior to extubation (35-39). Randolph et al in a multicenter study of 301 mechanically ventilated children also found that fluid balance at the time of extubation was not a predictor of extubation outcome (40).

Upper airway obstruction was the major reason for re-intubation in a third of failed extubations. This is also consistent with findings from other studies (6, 7). Respiratory distress or failure, heart failure, hypoventilation, and diaphragmatic dysfunction together were the indications for re-intubation in 11 (52.38%) of the children. There may therefore be a role for formal SBT for children at higher risk such as those with cardiac disease, residual neurologic or neuromuscular impairment, infants with a history of prematurity, those ventilated for > 48 hours and those with genetic syndromes or dysmorphology since these were identified as risk factors for extubation failure. It is recommended that point of care ultrasound scans be explored to better assess cardiac and diaphragmatic function in high-risk patients to aid in assessing extubation readiness (41-44).

The prophylactic use of corticosteroids for the prevention of post extubation stridor and extubation failure remains controversial. In a randomized double blinded study by Tellez et al at the Children’s Hospital of Los Angeles, the prophylactic use of corticosteroids did not significantly decrease the incidence of post extubation stridor or re-intubation (45). A meta-analysis by Markovitz et al of six randomised controlled trials examining the use of corticosteroids for the prevention of re-intubation and post-extubation stridor in neonates and paediatric patients also showed a reduction in stridor but no significant trend toward a decreased rate of re-intubation when prophylactic steroids were used (46). Another meta-analysis by Khemani et al of studies involving neonates, children and adults also showed a general nonsignificant decrease in stridor and extubation failure in the study that excluded children with airway abnormalities but a significant reduction in the incidence of post extubation stridor and extubation failure in the study who’s population included children with underlying airway abnormalities (47). This suggests that targeted use in those at risk of UAO
is beneficial. Studies in adults have show decrease in post extubation stridor when steroids are started 12-24 hours prior to extubation compared with a single dose (48, 49).

During our study, dexamethasone was administered at variable times prior to extubation to those assessed to be at high risk of upper airway obstruction. These generally were children who had multiple attempts at intubation, prolonged intubation or pre-existing concerns about upper airway compromise or the absence of a leak around the endotracheal tube. Of the 63 children that received steroids, 18 (28.6%) developed stridor, and 11 (17.5%) failed extubation. The median time from administration of the steroid to extubation was 5.5 hours in the extubation failure group compared to 23.5 hours in those who did not fail. Timing may therefore not have been optimal. More studies will have to be conducted to provide clearer guidelines as to the dose and duration of dexamethasone prior to extubation.

Non-invasive ventilation (NIV) is being increasingly employed to facilitate earlier extubation across different disciplines (9, 22, 50-53). Its use after extubation was therefore not considered as extubation failure. The re-intubation rate was higher among those started on NIV immediately after extubation (19.3% versus 12.2%) compared to those started later in our study. This was the reverse to findings by Mayordomo-Colunga and colleagues study that showed better outcomes in those who received NIV electively (23).

Extubation failure was associated with increased duration of ventilation, increased adverse events during ventilation and longer PICU stay, and higher mortality, which is consistent with many other studies (6-9, 54).

Adverse events occurred in 31.5% of the children who underwent invasive mechanical ventilation, the commonest being infection related complications. There was a high incidence of ETT dislodgement or accidental extubation, 4.6%
n=10. They all occurred in children less than five years, 2 in neonates, 6 in children under one year and 2 in those below five years. Unlike in other reports where re-intubation rates were 16 – 65%, all 10 were re-intubated (1, 55). The adverse event rates are high and present an opportunity for quality improvement programs to reduce the rate of adverse events and optimize patient outcome.

Study limitations
This was a study in a single centre that admits children from newborn to 13 years of age, which limits generalizability. In addition, the study was over a 4-month period that included the local winter flu season that may have introduced bias. The number of extubations analysed and the number of failed extubations also limits the power to draw firm conclusions. The use of the AVPU scale to classify the level of consciousness of the patients left room for wide intra group variations.

Conclusions
Dysmorphology, prematurity, decreased level of consciousness, and ventilation for 48 hours or more, are independent predictors of extubation failure in our setting. Extubation failure is associated with longer duration of ventilation, longer PICU and hospital stay and a four-fold increase in mortality. The identification of the major factors associated with extubation failure affords us the opportunity to re-evaluate our extubation readiness assessment criteria in these sub-populations to reduce our failure rate. Although this study does not add new information to what has already been described in other studies over the years, it provides a basis for future more extensive collaborated studies and data for quality improvement.
References

Appendices

Appendix 1: Data collection form

Demography

1. Study number
2. Hospital Number
3. Name
4. Date of birth
5. Date of PICU admission: ...
6. Date of PICU discharge: ...
7. Convalescent Weight: Z score
8. Gender 1. Male ☐ 2. Female ☐
9. Primary discharge diagnosis:..
10. Secondary diagnosis
 1. HIV infection ☐ 2. HIV exposed but PCR neg. ☐ 3. Airway abnormality ☐
 4. Genetic syndrome or Dysmorphic ☐
 5. Prematurity ☐ 6. Neurologic disease ☐
 7. Neuromuscular disease ☐ 8. Congenital Cardiac disease ☐
 9. Heart failure of other cause ☐10. Lower respiratory tract infection ☐
 11. Chronic lung disease ☐12. Other organ impairment ☐
 ..12. Other...
11. PIM III score
12. Previous endotracheal intubation? 1. Yes ☐ 2. No ☐
13. Use of NIV prior to intubation 1. CPAP ☐ 2. HFNC ☐ 3. BIPAP ☐
 4. None ☐

Intubation

14. Date of intubation: ... Time:..............................
15. 1. Elective intubation ☐ 2. Emergency intubation ☐
16. Indication for intubation
 1. Airway protection ☐ 2. Respiratory failure ☐
 3. Cardiovascular instability ☐ 4. Neurological problem ☐
 5. Surgery & Postoperative support ☐
17. Where was the intubation carried out?
 1. PICU ☐ 2. Theatre ☐ 3. ER ☐ 4. Trauma ER ☐
18. Number of attempts at intubation............................ Unknown ☐
19. ETT size
22. Was there a leak around the ETT? 1. Yes □ 2. No □
23. Complications during intubation:
 1. None □ 2. Trauma □ 3. Vomiting or aspiration □
 4. Hypotension □ 5. Desaturation (<85% or < 60% if cyanotic heart dx) □
 9. Other □ ..
24. How many times was the ETT replaced in the PICU prior to planned extubation and why? ..

Ventilation

25. Mode of ventilation prior to extubation
 1. Pressure control (PC) □ 2. Volume control (VC) □
 3. HFOV (oscillation) □ 4. Pressure regulated volume control (PRVC) □
 5. Pressure support CPAP (PSCPAP) □ 6. Pressure support (PS) □
 7. Other □ ...
26. FiO2 prior to extubation
27. PIP prior to extubation cmH2O.
28. PEEP prior to extubation OR Amplitude if on HFOV
29. Mean airway pressure cmH2O.
30. Tidal volume mls/kg
31. A. Set respiratory rate OR Frequency if on HFOVB. Actual rate/min.

Drugs

32. Were steroids administered prior to extubation? 1. Yes □ 2. No □
33. If yes, how long before extubation? hours.
34. Number of doses of administered pre-extubation:
 3. Hydrocortisone □ 4. Methyl prednisone □
36. Was there a reason for steroids besides airway oedema?
37. Was the child on inotropes or vasopressors at the time of extubation?
 1. Yes □ 2. No □
38. If yes, indicate drug and dose: ..
39. Sedatives administered in the preceding 24 hours. Please state dose.
 1. Morphine □ 2. Midazolam
 5. Dexmedetomidine (precedex) □ 6. Ketamine □
 7. Other □ ..
40. Time of last dose of sedatives prior to extubation (hrs.)

41. Sedative infusions running at time of extubation and dose:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3</td>
<td>Nil</td>
</tr>
</tbody>
</table>

42. Were any neuromuscular blockers administered in the preceding 24 hours?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
</tr>
</tbody>
</table>

43. If yes, how many hours prior to extubation was the last dose given?

44. Pre Extubation ABG or VBG result:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ABG</td>
<td>2</td>
<td>VBG</td>
<td>3</td>
<td>No blood gas done</td>
</tr>
</tbody>
</table>

45. Complications of invasive ventilation

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None</td>
<td>2</td>
<td>VAP</td>
<td>3</td>
<td>Nasal necrosis</td>
</tr>
<tr>
<td>5</td>
<td>Accidental extubation</td>
<td>6</td>
<td>Tracheostomy for prolonged ventilation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Other</td>
</tr>
</tbody>
</table>

46. Cumulative fluid balance

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ml/kg</td>
</tr>
</tbody>
</table>

47. Haemoglobin level

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>g/dL</td>
</tr>
</tbody>
</table>

48. Date of Extubation: Time:

49. Coma score at time of extubation (circle appropriate score):

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>V</td>
<td>P</td>
<td>U</td>
<td></td>
</tr>
</tbody>
</table>

50. Was there a leak around the ETT?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Don’t know</td>
</tr>
</tbody>
</table>

51. Extubated to:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Room air</td>
<td>2</td>
<td>NPO2</td>
<td>3</td>
<td>HFNC</td>
</tr>
<tr>
<td>4</td>
<td>CPAP</td>
<td>5</td>
<td>BIPAP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

52. Was there stridor post extubation?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
</tr>
</tbody>
</table>

53. Where steroids administered post extubation?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
</tr>
</tbody>
</table>

54. Were adrenaline nebs administered post extubation?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
</tr>
</tbody>
</table>

55. Was NIV provided post extubation?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
</tr>
</tbody>
</table>

If no NIV used then move to number 62

56. How soon was it started?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Immediately after extubation</td>
</tr>
<tr>
<td>2</td>
<td>.......... hrs. later</td>
</tr>
</tbody>
</table>

57. What NIV support was used?

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CPAP</td>
<td>2</td>
<td>BIPAP</td>
<td>3</td>
<td>HFNC (Airvo)</td>
</tr>
</tbody>
</table>

58. PEEP/CPAP

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>L/min</td>
<td>FiO2</td>
</tr>
</tbody>
</table>

59. Was there a switch from one form of NIV to the other?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Non-invasive ventilation (NIV) use
2. No

60. What was the total duration of NIV? hours

61. Complications of NIV
 1. None 2. Nasal necrosis 3. Failed NIV (intubated)
 4. Other

Reintubation
62. Was he/she re-intubated? 1. Yes 2. No
 If not re-intubated then move on to number 70

63. How long after extubation was he/she re-intubated? hours.

64. What was the indication?
 1. Upper airway obstruction 2. Diaphragm dysfunction
 4. Worsening heart failure 5. Decreased level of consciousness

65. Pre intubation ABG or VBG result: 1. ABG 2. VBG 3. No blood gas done
 pH............. pCO2 pO2 BE HCO3........ Lactate

66. If re-intubated for upper airway obstruction, what was the cause?
 1. Laryngeal oedema 2. Vocal cord paralysis
 4. Not documented 3. Other

67. What was the duration of re-intubation before successful extubation?........... hours

68. Total number of failed extubations?
 1. 1 2. 2 3. >= 3 4. None

69. Complications of invasive ventilation post failed extubation
 1. None 2. VAP 4. Nasal necrosis 5. Pneumothorax
 6. Post extubation stridor 7. Accidental extubation
 8. Tracheostomy for prolonged ventilation 9. Other

70. Total duration of intubation and mechanical ventilation prior to successful extubation hours

71. Ventilatory support at time of PICU discharge:
 1. None 2. NPO2 3. CPAP 4. BiPAP 5. HFNC
 6. Tracheostomy and continued mechanical ventilation
 7. Tracheostomy but not ventilated
 8. Transferred to another hospital still intubated and ventilated

72. PICU death? 1. Yes 2. No

73. Outcome 30 days post PICU discharge
 1. Discharged home 2. Transferred to another hospital
 3. Still on admission on ward 4. Readmitted to PICU 5. Died

74. Date of hospital discharge: ..
1.2 Appendix 2: Report on Endotracheal intubation

1.1 Patient details:
Place patient sticker in this area

1.2 Time and place:

Site of intubation:

1.3 Operator
Name:

1.4 Drugs used:

<table>
<thead>
<tr>
<th>Agent</th>
<th>Dose</th>
<th>Route</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agent</td>
<td>Dose</td>
<td>Route</td>
</tr>
<tr>
<td>Agent</td>
<td>Dose</td>
<td>Route</td>
</tr>
<tr>
<td>Agent</td>
<td>Dose</td>
<td>Route</td>
</tr>
</tbody>
</table>

1.5 Endotracheal tube
Route: oral / nasal / oral then nasal
Cuff? Y / N
Size (mm):
Length at cords (cm):
Length at lips / nose (delete whichever is appropriate):
Is there a leak present? Y / N

1.6 Procedure:

1.6.1 Number of attempts:

View of the larynx: complete (circle appropriate grade)

![Cormack and Lehane classification and new classification of view at laryngoscopy.](image)

Figure 1 Cormack and Lehane classification and new classification of view at laryngoscopy.
1.6.2 Complications (please specify under the following headings)

Trauma: Y/N

Vomiting or aspiration Y/N

Desaturation (saturation <85% at any stage during the procedure) Y/N

Hypotension Y/N

Bradycardia Y/N

Cardiac arrest Y/N

Other (comment on any specific difficulty with the procedure):
1.3 Appendix 3: Human Research Ethics Committee, University of Cape Town

UNIVERSITY OF CAPE TOWN
Faculty of Health Sciences
Human Research Ethics Committee

18 April 2017

HREC REF: 166/2017

Dr Shamiel Saille
Paediatric and Child Health, PICU
Red Cross War Memorial Children’s Hospital

Dear Dr Saille,

PROJECT TITLE: PERIEXTUBATION PRACTICES AND EXTUBATION FAILURE IN CHILDREN ADMITTED TO THE PAEDIATRIC INTENSIVE CARE UNIT OF THE RED CROSS WAR MEMORIAL CHILDREN’S HOSPITAL (MPhil-candidate-M Kilba)

Thank you for submitting your study to the Faculty of Health Sciences Human Research Ethics Committee.

It is a pleasure to inform you that the HREC has formally approved the above-mentioned study.

Approval is granted for one year until the 30 April 2018.

Please submit a progress form, using the standardised Annual Report Form if the study continues beyond the approval period. Please submit a Standard Closure form if the study is completed within the approval period. (Forms can be found on our website: www.health.uct.ac.za/fhs/research/humanethics/forms)

Please note that the ongoing ethical conduct of the study remains the responsibility of the principal investigator.

Please note that for all studies approved by the HREC, the principal investigator must obtain appropriate institutional approval before the research may occur.

The HREC acknowledge that the student, M Kilba will also be involved in this study.

Please quote the HREC reference number in all your correspondence.

Yours sincerely,

PROFESSOR M BLOMGREN
CHAIRPERSON, FHS HUMAN RESEARCH ETHICS COMMITTEE
Federal Wide Assurance Number: FWA00001637.
Institutional Review Board (IRB) number: IRB00001938
This serves to confirm that the University of Cape Town Human Research Ethics Committee complies to the Ethics Standards for Clinical Research with a new drug in patients, based on the Medical Research Council (MRC-SA), Food and Drug Administration (FDA-USA), International Convention on Harmonisation Good Clinical Practice (ICH GCP), South African Good Clinical Practice Guidelines (DoH 2006), based on the Association of the British Pharmaceutical Industry Guidelines (ABPI), and Declaration of Helsinki (2013) guidelines.

The Human Research Ethics Committee granting this approval is in compliance with the ICH Harmonised Tripartite Guidelines E6: Note for Guidance on Good Clinical Practice (CPMP/ICH/135/95) and FDA Code Federal Regulation Part 50, 56 and 312.
1.4 Appendix 4: Approval from Red Cross War Memorial Children’s Hospital for the study

Dr Jane Kawadza
Manager: Medical Services
Email: Jane.Kawadza@westerncape.gov.za
Tel: +27 21 658 5788 fax: +27 21 658 5166
RXH: RCC71

Dr C Kilba
Red Cross War Memorial Children’s Hospital

Dear Dr C Kilba

APPROVAL OF RESEARCH

PROJECT TITLE: PERIEXTUBATION PRACTICES AND EXUBATION FAILURE IN CHILDREN ADMITTED TO THE PAEDIATRIC INTENSIVE CARE UNIT OF THE RED CROSS WAR MEMORIAL CHILDREN’S HOSPITAL

It is a pleasure to inform you that approval is hereby granted to conduct the above-mentioned study at Red Cross War Memorial Children’s Hospital.

Yours sincerely,

Dr J Kawadza
Manager: Medical Services
Date: 05.05.17

www.westerncape.gov.za
Appendix 5: Pediatric Critical Care Medicine Journal author guidelines

Pediatric Critical Care Medicine is an international, peer-reviewed journal that is interested in publishing the highest quality scientific studies in the field of pediatric critical care medicine.

MANUSCRIPT SUBMISSION

Manuscripts are submitted through Editorial Manager®, a Web-based manuscript tracking system in use by SCCM. This system allows authors to add a new manuscript or check the status of a submitted manuscript, while storing the time needed for processing manuscripts in the Editorial Office and through peer review. To submit manuscripts for consideration, go to www.sccm.org, choose Pediatric Critical Care Medicine under the Publications tab, then select “Submit Manuscripts.” Once you reach the Editorial Manager® home page, log on to the system by creating an account or entering your existing account.

Editorial Manager® will easily guide authors through the manuscript submission process. Required information pertaining to the manuscript includes the name, address, telephone number, and e-mail address for the first author and all contributing authors; affiliated institutions; title of the manuscript; abstract; and key words. If authors wish, they may provide optional information that includes author’s suggested reviewers and author’s nonpreferred reviewers. The Editorial Office will automatically be notified of the submission and will send an e-mail confirming the submission of the manuscript to the author(s). After editorial office review of the submitted documents, a manuscript number will be assigned to each submitted manuscript, which will be used in all correspondence.

Each manuscript submission should designate one corresponding author and all contributing authors. The number of authors should be restricted to only those persons who have truly participated in the conception, design, execution, and writing of the manuscript. Authors must disclose any potential financial or ethical conflicts of interest regarding the contents of the submission.

SCCM accepts no responsibility for manuscripts that are lost or destroyed through electronic or computer problems. Authors are encouraged to keep copies of submitted manuscripts, including figures. If an author does not receive confirmation of submission into Editorial Manager® within two days, he or she should contact the Editorial Office at journals@sccm.org.

Copyright Each author must complete and submit the journal’s copyright transfer agreement, which includes a section on the disclosure of potential conflicts of interest based on the recommendations of the International Committee of Medical Journal Editors, “Uniform Requirements for Manuscripts Submitted to Biomedical Journals” (www.icmje.org/update.html). The form must be completed by each author and must be uploaded with your other manuscript documents at the time of submission. The form is readily available on the manuscript submission page http://www.editorialmanager.com/pccm and must be completed and submitted electronically. Please note that authors may sign the copyright transfer agreement form electronically. For additional information about electronically signing this form, go to http://links.lww.com/2UA/A106.

Compliance With NIH and Other Research Funding Agency Accessibility Requirements. A number of research funding agencies now require or request authors to submit the postprint (the article after peer review and acceptance but not the final published article) to a repository that is accessible online by all without charge. As a service to our authors, LWW will identify to the National Library of Medicine (NLM) articles that require deposit and will transmit the post-print of an article based on research funded in whole or in part by the National Institutes of Health, Wellcome Trust, Howard Hughes Medical Institute, or other funding agencies to PubMed Central. The revised Copyright Transfer Agreement provides the mechanism.

Financial Disclosure and Conflicts of Interest. Authors must state all possible conflicts of interest in the manuscript, including financial, consultant, institutional, and other relationships that might lead to bias or a conflict of interest. If there is no conflict of interest, this should also be explicitly stated as none declared. All sources of funding should be acknowledged in the manuscript. All relevant conflicts of interest and sources of funding should be included on the title page of the manuscript with the heading “Conflicts of Interest and Source of Funding.” For example:

Conflicts of Interest and Source of Funding: “Author A has received honoraria from Company X. Author B is currently receiving a grant (#2346) from Organization Y, and is on the speaker’s bureau for Organization X – the CMF organisations for Company 1. For the remaining authors none were declared.

Human and Animal Subjects. All studies of human subjects must contain a statement within the Materials and Methods section indicating approval of the study by the Institutional Review Board (or institutional review body) that subjects have signed written informed consent, or that the Institutional Review Board waived the need for informed consent. Before your submission can be sent for peer review, it is necessary that you address this issue of institutional review approval. This is in accordance with the International Committee of Journal Editors uniform requirements for manuscripts submitted to biomedical journals. Please see http://www.icmje.org for details. All animal studies must contain a statement within the Materials and Methods section confirming approval by the Institutional Animal Care and Use Committee and that the care and handling of the animals were in accord with National Institutes of Health guidelines or other institutionally recognized guidelines for ethical animal treatment.

Statistical Review. Any study containing quantitative data and statistical inference should be reviewed by a consultant with formal statistical training and experience.

MANUSCRIPT PREPARATION

Manuscripts must conform to Pediatric Critical Care Medicine instructions for Authors and the “Uniform Requirements for Manuscripts Submitted to Biomedical Journals,” which can be found on the International Committee of Medical Journal Editors website, www.icmje.org. Manuscripts must be double-spaced with pages numbered consecutively, beginning with the title page. Each paragraph should be indented with a tab. The text portion of each manuscript should be in Microsoft Word format, including references and figure legends. Figures can be saved in .tif or .eps format in 300 dpi or higher. Tables should be submitted as Microsoft Word files; spreadsheets are not acceptable. Figures should be saved as separate files and uploaded after the text upload is complete. Specific guidelines for figure formatting are found on the editorial Manager® home page. Documents submitted in .pdf format are not acceptable.

When uploading the text, tables, and figures into Editorial Manager®, there is the option of entering files for review and files for production. This is at the discretion of the editorial staff, the editor, and the reviewers. These documents should include all text, tables, and figures, as well as any special referenced material. Files for production are only seen by the editorial staff and will not be seen by reviewers.
MANUSCRIPT CONTENT

Title Page. The title page should contain 1) the title; 2) first name, middle initial and last name of each author; 3) highest academic degree, fellowship designations, and institutional affiliation for each author; 4) name of the institution(s) where the work was performed; 5) the address for reprints and a statement regarding whether reprints will be ordered; and 6) financial support used for the study, including any institutional departmental funds. The authors should also provide six key words for indexing, using terms from the Medical Subject Headings list of Index Medicus. Structured abstracts are required for all manuscripts except editorials, letters, and book reviews submitted to Pediatric Critical Care Medicine.

Editorial Manager® will prompt authors to input the above information into specific fields as they are submitting their manuscript. Authors should also upload their title page and structured abstract with the body of their manuscript. It is also important to note that if there is formatted text or Greek letters or symbols in the title or abstract, special coding is necessary and the Character Palette in Editorial Manager® will need to be used. It is not necessary to code special characters and formats in the actual manuscript.

Abstracts. Abstracts should be no more than 300 words in length and must have the following headings: Objective, Design, Setting, Patients (for Clinical Investigations) or Subjects (for Laboratory Investigations), Interventions, Measurements and Malis Results, and Conclusions. Review papers and special articles should include these headings in the abstract: Objective, Data Sources, Study Selection, Data Extraction, Data Synthesis, and Conclusions. For details regarding the preparation of structured abstracts, refer to the "American Medical Association Manual of Style", Tenth Edition (p. 20-23).

Text Material. The text should be organized into the following sections: Introduction, Materials and Methods, Results, Discussion, and Conclusions followed by Acknowledgments, References, Figure Legends, and Tables. Secular and editorial assistance are not acknowledged. Results may be presented in the text, in the figures, or in the tables. The Discussion section should interpret the results without unnecessary repetition. References to related studies should be included in the text section.

In addition, the following should be observed:

• The full term for which an abbreviation stands should be used at first occurrence in the text unless it is a standard unit of measure. The abbreviation should appear in parentheses after the full term. Abbreviations should not be used in the title, figure legends or table titles.

• For standard American units, do not use values that are more significant than your analysis is capable of accurately measuring (e.g., PaO2, 84 torr [11.2 kPa], not 83.7 torr).

• Hemodynamic measurements for pressure (e.g., MAP) should appear in mm Hg and gas tension measurements (e.g., PaO2) should appear in torr with SI units in parentheses. The units of vascular resistance are dynes sec/cm5.

• Please provide t values for parametric data.

References. All references should be cited in sequential order in the text and typed on a separate sheet of paper. References should be identified in text, tables, and legends by full name of each author. If there is a preprint of the manuscript, it should be included in the reference section. If the preprint has been submitted, it should be included in the reference section. In the reference section, include page numbers (e.g., p. 1-10) should be used for all references. Listed below are samples of standard references:

Equations. Equations should be created as normal text or as images. The use of equation editors or utilities may not convert correctly during the manuscript submission process and their use is discouraged.

Tables and Figures. The number of figures and tables should be appropriate for the length of the manuscript. Do not use supernumerary illustrations. Materials reproduced from another published source must be labeled "Reproduced with permission from...". In addition, a letter granting permission to reproduce the materials from the copyright holder must be received by SCGM when the manuscript is submitted for review. If the manuscript is accepted for publication, it will not be able to be printed unless this permission letter has been submitted. Adapted figure or table materials must be labeled "Adapted with permis- sion from...". Letters of permission are also required for adapted materials. A sample of a permission request can be found on editorial Manager® in the instruction section.

Tables. Do not use tabs to create tables and do not use table editors. Table building utilities will convert, providing that no special images were inserted. Do not reiterate tabular data in the text. Do not use abbreviations in table titles. Do not use all capital letters in table headings and test. Do not use center, decimal tab, and justification commands. Do not use spaces to separate columns. Use a single tab, not a space, on either side of the t symbol. Do not underline or draw lines within tables. Footnoted information should be referenced using italicized, superscript, lower case letters (i.e., * in alphabetical order) (start left to right). Avoid lengthy footnotes and insert descriptive narratives in the text.

Figures. AJ Creating Digital Artwork

1. Learn about the publication requirements for Digital Artwork: http://links.lww.com/ES5/A2

2. Create, scan, and save artwork files to compare your final figure to the Digital Artwork Guidelines Checklist (below).

3. Upload each figure to Editorial Manager® in conjunction with your manuscript text and tables.

BJ Digital Artwork Guidelines Checklist (here are the basics to have in place before sub- mission of your digital art.)

• Artwork should be saved as .tif or .eps files.

• Artwork is created at the actual size (or slightly larger) it will appear in the journal. (To get an idea of the size images should be when they print, study a copy of the jour- nal to which you wish to submit. Measure the artwork typically shown and scale your image to match.)

• Crop out any white or black space surrounding the image.

• Diagrams, drawings, graphs, and other lines art must be vector or saved as an resolution of at least 1200 dpi.

• Photographs, radiographs, and other half-tone images must be saved at a resolution of at least 300 dpi.

• Photographs and radiographs with text must be saved as an .eps or at a resolu- tion of at least 600 dpi.
Each figure must be saved and submitted as a separate file. Figures should not be embedded in the manuscript text.

Remember:
• Cite figures consecutively in your manuscript.
• Number figures in the figure legend in the order in which they are discussed.
• Upload figures consecutively to the Editorial Manager® Web site and number figures consecutively in the Description box during upload.

For captions and variables within a figure, use Haberbs (or Arid) feet. If possible, in upper and lower case letters. Radiographic prints must have arrows (if applicable) for clarity. Color photographs will occasionally be published in the journal if use of color is vital to making the point. Authors will be charged the cost of color reproduction. Figures that do not conform to these specifications will be sent back to the corresponding author for correction.

Figure legends should contain enough information for the reader to understand the illustration without referring to the text, but should be concise and should not repeat information already stated in the text. Figure legends should be typed on a separate page. Figures must be referenced sequentially in the text. Authors must assume charges for changes made to figures after manuscripts are accepted.

Units of Measure. Authors should provide units of measurement in SI units. Authors should refer to the American Medical Association Manual of Style, Tenth Edition (p. 787) for details regarding SI units for laboratory data.

Manufacturer. Provide in parentheses the model number, name of manufacturer, their city, and state or country, for all equipment described in the paper.

Drug Names. Only generic drug names should be used. Trademark or brand names should not be used except in specific cases where the brand name is essential to reproduce or interpret the study. These exceptions should be noted in accompanying correspondence. The manufacturer with the city, state, and country must be provided for any brand name drugs.

Permissions. Any submitted materials that are to be reproduced (or adapted) from copyrighted publications must be accompanied by a written letter of permission from the copyright holder. Accepted manuscripts will be delayed if necessary permissions are not on file. A sample of a permission request can be found on Editorial Manager® in the instruction section.

Supplemental Digital Content: Authors may submit supplemental digital content to enhance their article's text and to be considered for online-only posting. Supplemental digital content may include the following types of content: text documents, graphs, tables, figures, graphics, illustrations, audio, and video. Cite all supplemental digital content consecutively in the text. Citations should include the type of material submitted, should be clearly labeled as “Supplemental Digital Content,” should include a sequential number, and should provide a brief description of the supplemental content. Provide a legend of supplemental digital content at the end of the text. List each legend in the order in which the material is cited in the text. The legends must be numbered to match the citations from the text. Include a title and a brief summary of the content. For audio and video files, also include the author name, video/graphic, participants, length (minutes), and size (MB). Authors should mask patient eyes and remove patients' names from supplemental digital content unless they obtain written consent from the patients and submit written consent with the manuscript. Copyright and Permissions forms for article content including supplemental digital content must be completed at the time of submission.

Supplemental Digital Content Size and File Type Requirements: To ensure a quality experience for those viewing supplemental digital content, it is suggested that authors submit supplemental digital files no larger than 10 MB each. Documents, graphs, and tables may be submitted in any format. Figures, graphics, and illustrations should be submitted with the following file extensions: .tif, .eps, .ppt, .jpg, .pdf, .gif, Audio files should be submitted with the following file extensions: .mp3, .wma. Video files should be submitted with the following file extensions: .wmv, .mov, .qt, .mpeg, .mpg, .mp4. Video files should also be formatted with a 320 x 240 pixel minimum screen size. For more information, please review JJW’s requirements for submitting supplemental digital content: http://links.lww.com/A412

MANUSCRIPT CATEGORIES

Guidelines for the most frequent types of articles submitted to the journal are summarized below.

Clinical Investigations: These include randomized controlled trials, case-control series, and retrospective studies, among others. Within this category, we also feature four subspecialty categories including: Cardiac Intensive Care, Neonatal Intensive Care, Neurocritical Care, and Quality and Safety. This category of manuscript has a word limit of 2000 to 4000 words (8-16 typed double-spaced pages) which includes an abstract of no more than 300 words; the Discussion section of the manuscript should be limited to no more than 1500 words; a maximum of 40 references; and no more than 7 Figures and/or Tables.

Laboratory Investigations: These include laboratory and animal research. This category of manuscript has a word limit of 2000 to 4000 words (8-16 typed double-spaced pages) which includes an abstract of no more than 300 words; the Discussion section of the manuscript should be limited to no more than 1500 words; a maximum of 40 references; and no more than 7 Figures and/or Tables.

Review Articles: These consist of critical assessment of literature and data pertaining to clinical topics. In review articles, emphasis should be placed on cause, diagnosis, therapy, prognosis, and prevention. Information concerning the type of study or analysis, population, intervention, and outcome should be included for all data used. The selection process used for all data should be described. Meta-analyses will be considered as review papers. The recommended length of review articles is 2000 to 3000 words (8-12 typed double-spaced pages) which includes an abstract of no more than 300 words; a maximum of 100 references; and no more than 15 Figures and/or Tables.

Brief Reports: These should be short reports of original studies or evaluations. The recommended length of brief reports is no more than 1500 words (6 typed double-spaced pages) which includes an abstract of no more than 300 words; a maximum of 25 references; and no more than 2 Figures and/or Tables.

PCCM Perspectives: These include articles that may fall outside the scope of formal clinical or basic science research, such as policy, professional education, ethical dilemmas, and delivery of compassionate care. The recommended length is no more than 1500 words (6 typed double-spaced pages) which includes an abstract of no more than 300 words; a maximum of 25 references; and no more than 4 Figures and/or Tables.

Evidence-Based Journal Club: These articles provide an evidence-based critique of a recent important paper in the field of pediatric critical care medicine. The recommended length is no more than 1500 words (6 typed double-spaced pages) which includes an abstract of no more than 300 words; a maximum of 25 references; and no more than 4 Figures and/or Tables.

Letters to the Editor: Letters to the Editor are encouraged. Letters must specifically address a recent article published in Pediatric Critical Care Medicine. They should be no more than 500 words (2 typed double-spaced pages) with a maximum of 5 references.

Invited Editorial: These represent commentaries addressing newly published articles in the journal and are by invitation only. Invited editorials should be no more than 1200 words (5 typed double-spaced pages) with a maximum of 15 references.
EDITORIAL REVIEW

All manuscripts will be reviewed by Editorial Board members or consultants selected by the editor-in-chief. Initial editorial reviews usually are completed within 5-10 weeks of manuscript submission. The time required for review of revised manuscripts is variable.

ACCEPTANCE

All information regarding the accepted manuscript and its publication date are confidential. No information regarding the manuscript can appear in print, on the television or radio, or in any electronic form until the day before its publication date. It cannot be released to the media until the day before the publication date.

Manuscripts accepted for publication are copy-edited and returned to the author for approval. Authors are responsible for all statements published in their work, including any changes made by the copyeditor. Authors are encouraged to proofread all edited manuscripts carefully. The journal reserves the right to charge authors for excessive changes made to the text and figures at the page-proof stage.

Permissions

For permission and/or rights to use content for which the copyright holder is the Society of Critical Care Medicine or IWW, please go to the journal’s Web site and after clicking on the relevant article, click on the “Request Permissions” link under the Article Tools” box that appears on the right side of the page. Alternatively, send an e-mail to customerscare@copyright.com.

For Translation Rights & Licensing queries, contact Silvia Serra, Translations Rights, Licensing & Permissions Manager, Wolters Kluwer Health (Medical Research) Ltd, 250 Waterloo Road, London SE1 8RD, UK. Phone: +44 (0) 207 981 0000. Email: silvia.serra@wolterskluwer.com.

For Special Projects and Reprints (U.S./Canada), contact Alan Moore, Director of Sales, Lipincott Williams & Wilkins, Two Commerce Square, 2001 Market Street, Philadelphia, PA 19103. Phone: 215-521-8638. Email: alan.moore@wolterskluwer.com.

For Special Projects and Reprints (non-U.S./Canada), contact Silvia Serra, Translations Rights, Licensing & Permissions Manager, Wolters Kluwer Health (Medical Research) Ltd, 250 Waterloo Road, London SE1 8RD, UK. Phone: +44 (0) 207 981 6600. E-mail: silvia.serra@wolterskluwer.com.

CONTACT

Questions regarding the status of submitted manuscripts are best answered by logging on to the EQS section of Editorial Manager®. The assigned manuscript number will allow authors to view the status of their manuscript. If authors need additional information regarding a manuscript, please send an e-mail to journals@scm.org and include your manuscript number in the request, or call (646) 477-6869 Monday through Friday, from 9:00 to 17:00, Central Standard Time.

Correspondence can also be sent to:
Patrick M. Kochanek, MD MCCM
Editor, Pediatric Critical Care Medicine
Society of Critical Care Medicine
500 Midway Drive
Mt. Prospect, IL 60056