The South-South partnership to provide cardiac surgery: The Namibia Children Heart Project

Fenny Fiindje Shidhika

Student number: SHDFEN001

MBChB, FC Paed (SA), Cert Cardio (SA) Paed

This research is in partial fulfillment of the degree of M.Phil.

Division of Paediatric Cardiology and Critical Care
Department of Paediatrics
School of Child and Adolescent Health
Faculty of Health Sciences
UNIVERSITY OF CAPE TOWN

August 2018
Supervisor:
Prof Liesl Zühlke, PhD
Co-Supervisor:
Dr Christopher Hugo-Hamman, MA (Oxon.)
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
Table of Contents

Declaration .. 3
Abstract .. 4
Acknowledgements 5
List of Tables and Figures 6
Abbreviations 7
Manuscript ... 8
Appendices .. 46
Declaration

I, Fenny Shidhika, hereby declare that the work on which this dissertation/thesis is based is my original work (except where acknowledgements indicate otherwise) and that neither the whole work nor any part of it has been, is being, or is to be submitted for another degree in this or any other university and that this work has not been published prior to the registration for the abovementioned degree.
I empower the university to reproduce for the purpose of research either the whole or any portion of the contents in any manner whatsoever.

Signature: Signed by candidate

Date: 10/08/2018
Abstract

Introduction: Congenital and acquired heart diseases are highly prevalent in developing countries despite limited specialised care. Namibia established a paediatric cardiac service in 2009 with significant human resource and infrastructural constraints. Therefore, patients are referred for cardiac interventions to South Africa.

Objectives: To describe the diagnoses, clinical characteristics, interventions, post-operative morbidity and mortality and follow-up of patients referred for care.

Methods: Demographics, diagnoses, interventions, intra- and postoperative morbidity and mortality as well as longitudinal follow-up data of all patients referred to South Africa were recorded and analysed.

Results: The total cohort constituted 193 patients of which 179 (93%) had congenital and 7% acquired heart disease. The majority of patients (78.8%) travelled more than 400 km to Windhoek prior to transfer. There were 28 percutaneous interventions. Palliative and definitive surgery was performed in 27 and 129 patients respectively. Eighty (80/156, 51.3%) patients had postoperative complications, of which 15 (9.6%) were a direct complication of surgery. Surgical mortality was 8/156 (5.1%, 95% confidence interval 1.2.2-9.8), with a 30-day mortality of 3.2%. Prolonged ICU stay was associated with a 5% increased risk of death (Hazard Ratio 1.05, 95% confidence interval: 1.02-1.08, p=0.001). Follow-up was complete in 151 (78%) patients over seven years.

Conclusions: Despite the challenges associated with a cardiac programme referring patients for intervention to a neighbouring country and the adverse characteristics of multiple lesions and complexity associated with late presentation, we report good surgical and interventional outcomes. Our goal remains to develop a comprehensive sustainable cardiac service in Namibia.
Acknowledgements

I would like to express my sincere thanks to the following:
My supervisors for their guidance and wisdom throughout the study,
My husband for his unending support and mentorship,
Dr Susan Vosloo and Andre Brooks for the comprehensive reports that provided a big base for the study, and from which I drew so much work inspiration,
And above all, the Almighty God for the gifts granted upon me.
List of tables and figures

Figure 1: Geographical distribution of referred patients.

Figure 2. Transcatheter interventions

Figure 3: Cardiac Surgery cases by procedure

Table 1. Primary diagnosis anatomical and physiological classification

Table 2. Surgical risk stratification

Table 3 Patients not offered surgery

Table 4. Postoperative complications

Table 5. Mortality
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARF</td>
<td>Acute rheumatic fever</td>
</tr>
<tr>
<td>ASAP</td>
<td>Awareness Surveillance Advocacy Prevention</td>
</tr>
<tr>
<td>CBMH</td>
<td>Chris Barnard Memorial Hospital</td>
</tr>
<tr>
<td>CCF</td>
<td>Congestive cardiac failure</td>
</tr>
<tr>
<td>CHD</td>
<td>Congenital Heart Disease</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval</td>
</tr>
<tr>
<td>CRF</td>
<td>Case report forms</td>
</tr>
<tr>
<td>GAS</td>
<td>Group A Streptococcus</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
</tr>
<tr>
<td>ICU</td>
<td>Intensive Care Unit</td>
</tr>
<tr>
<td>MDGs</td>
<td>Millennium Development Goals</td>
</tr>
<tr>
<td>MHSS</td>
<td>Ministry of Health and Social Services</td>
</tr>
<tr>
<td>NCHP</td>
<td>Namibia Children Heart Project</td>
</tr>
<tr>
<td>PASCAR</td>
<td>Pan African Society of Cardiology</td>
</tr>
<tr>
<td>PPP</td>
<td>Private Public Partnership</td>
</tr>
<tr>
<td>RCWMCH</td>
<td>Red Cross War Memorial Children’s Hospital</td>
</tr>
<tr>
<td>REMEDY</td>
<td>The Global Rheumatic Heart Disease Registry</td>
</tr>
<tr>
<td>RHD</td>
<td>Rheumatic Heart Disease</td>
</tr>
<tr>
<td>RHDGen</td>
<td>RHD Genetic Consortium</td>
</tr>
<tr>
<td>SACH</td>
<td>Save a Child’s Heart</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
</tr>
<tr>
<td>WHF</td>
<td>World Heart Federation</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
</tbody>
</table>
PART A: Manuscript

South-South partnership to provide cardiac surgery: The Namibia Children Heart Project

Fenny Fiindje Shidhika

University of Cape Town student number: SHDFEN001
Chapter 1

1.1. Context
Namibia is a sparsely populated country. There is currently no quantitative data to ascertain the high prevalence of congenital and acquired heart disease in the paediatric population. Due to the patients being referred with severe disease, Namibia has been funding for some patients to receive care in South Africa. However, sustainability is a major concern with this model in the face of declining governmental capital investment..

1.2. Ethical considerations
The study was performed in accordance with ethical standards described in the Declaration of Helsinki, with ethical approval from institutional review boards at the University of Cape Town (HREC REF: 762/2016) and the Ministry of Health and Social Services in Namibia (REF: 17/3/3). Parental consent had been obtained for surgery. We obtained a waiver of parental consent for this study.

1.3. Author guidelines for the Cardiology in the Young journal
Submission to Cardiology in the Young is exclusively via the web-based peer-review system, CTY Manuscript Central.

Online submission enables rapid review and allows online manuscript tracking. Please use the following URL: http://mc.manuscriptcentral.com/cty

Clinical Trials
As a condition of consideration for publication, registration of clinical trials in a public trials registry is required. A clinical trial is defined by the International Committee of Medical Journal Editors (in accordance with the definition of the World Health Organisation) as any research project that prospectively assigns human participants or groups of humans to one or more health-related interventions to evaluate the effects on health outcomes. Trials must be registered before the start of patient enrolment. The registry must be accessible to the public at no charge. It must be open to all prospective registrants and managed by a not-for-profit organization. There must be a mechanism to ensure the validity of the registration data, and the registry should be electronically searchable. An acceptable registry must include at minimum a unique trial number, trial registration date, secondary identification information if assigned by sponsors or others, funding source(s), primary and secondary sponsor(s), responsible contact person, research contact person, official scientific title of the study, research ethics review, the medical condition being studied, intervention(s), key inclusion
and exclusion criteria, study type, anticipated trial start date, target sample size, recruitment status, primary outcome, and key secondary outcomes. Registration information must be provided at the time of submission. Trial registry name, registration identification number, and the URL for the registry should be included at the end of the abstract.

Manuscripts reporting the results of randomized controlled trials should include a “CONSORT” flow diagram to illustrate the progress of all patients in the study (See: Schulz KF, Altman D, for the CONSORT Group. The CONSORT statement: revised recommendations for improving the quality of reports of parallel group randomized trials. JAMA. 2001; 285(15): 1987–1991.) The flow diagram should be uploaded as a separate file to the manuscript.

Editorial Policies

Cardiology in the Young is devoted to cardiovascular issues affecting the young and the older patient with the sequels of cardiac disease acquired in childhood. Submission of both basic research and clinical papers is encouraged. Articles on fundamental principles will also be considered for publication. Reviews on recent developments are welcome. The Journal serves the interest of all professionals concerned with these topics. By design, the Journal is international and multidisciplinary in its approach, and the members of the Editorial Board take an active role in the Journal's mission. Prospective authors are encouraged to consult with the editors and members of the Editorial Board with any enquiries. The editors encourage the submission of articles from developing countries.

Articles should be concerned with original research not published previously and not being considered for publication elsewhere. Submission of a manuscript to the Journal gives the publisher the right to publish that paper if it is accepted, and the copyright of the manuscript becomes property of the publisher. Manuscripts may be edited to improve clarity and expression.

Authors must ensure that their studies comply with appropriate institutional and national guidelines for ethical matters. Specifically, by submission of a manuscript, the authors are responsible for compliance with guidelines and regulations of the authors' institution and all appropriate governmental agencies.

Articles including human subjects must include a statement that informed consent was obtained and that the study was reviewed and approved by the institution's committee on human experimentation. Articles including animal experimentation must conform to the principles of the American Physiological Society, and a statement acknowledging
conformation to these standards must be included in the *Materials and methods* section of the manuscript. Authors are also requested to identify possible conflicts of interest, especially if they relate to commercial sponsorship or equity holdings.

Use of Abbreviations

Abbreviations are **not** allowed in the text except for the following **only**: NYHA, CHD, MRI, CT, ICU and units of measure such as mmHg or kg, are allowed. However, any abbreviations can be used on tables and figures.

Language

The language of the Journal is English, but acceptance of a manuscript will reflect scientific rather than grammatical content. The editors undertake to facilitate the publication of papers from those authors whose native language is not English.

Cambridge recommends that authors have their manuscripts checked by an English language native speaker before submission; this will ensure that submissions are judged at peer review exclusively on academic merit. We list a number of third-party services specialising in language editing and / or translation, and suggest that authors contact as appropriate. Use of any of these services is voluntary, and at the author's own expense.

http://journals.cambridge.org/action/stream? PageId=8728&level=2&menu=Authors&pageId= 3608

Manuscripts

Manuscripts should be submitted via the web-based peer-review system, *CTY Manuscript Central* and must include a complete set of Figures. Further information regarding Figure formats is outlined below.

Authorship

Authorship should be assumed only by those workers who have contributed materially to the work and its report, and who accept the responsibility for the accuracy of the concepts expressed. Colleagues who have otherwise assisted or collaborated should be recognized in the section for acknowledgements. An excellent guide to authorship is given by the Style Manual Committee of the Council of Biology Editors, and the editors encourage consultation with this source.
The Journal uses the English language and as such does not use Latin terms such as ‘superior vena cava’. Anatomic terms should be given in the English language. Headlines and subheadings should be liberally employed in the methods, results, and discussion sections. Use short paragraphs whenever possible. The authors should strive for clarity of expression, avoiding, in particular, the use of jargon. Authors should also avoid conventions such as Group 1, Group 2, and so on, using descriptive titles rather than alphanumeric codes. Authors should use the definite/indefinite article where required.

Title page

The manuscript should include a title page, and it should follow these rules:

1. Author qualifications (for example MD) must **not** be included on the authors’ list on the title page, except in the address for correspondence.

2. Include the first names of the authors, followed by the initials of any middle names, and finally, the family name.

3. Include the affiliation address(es) for the authors, to include the department, institute, city and country.

4. Include an address for correspondence, with the full postal address, telephone and e-mail address of the author in question.

Manuscript types

Allowed manuscript types are Original Article, Article Commentaries, Brief Report, Review Article, Editorial, Image, Letter and Guidelines. Each is described below in detail.

Original Articles

Divide the manuscript into the following sections: o Title Page (see instructions on page 2) o Abstract o Keywords (3-6),

o Headings: Introduction, Materials and methods, Results, Discussion, Acknowledgements, Financial Support, Conflicts of Interest, Ethical Standards, References, Tables, Figure legends and Figures

Abbreviations

Abbreviations are **not** allowed in the text except for the following **only**: NYHA, CHD, MRI, CT, ICU and units of measure such as mmHg or kg, are allowed. However, any abbreviations
can be used on tables and figures.

Abstract

The Abstract should be no more than 250 words and should include statements identifying relevant methods and results justifying publication. Do not use abbreviations or symbols.

Introduction

The Introduction should be brief and set out the purposes for which the study has been performed. It should not include an extensive review of the literature.

Materials and Methods

The Materials and Methods should be sufficiently detailed so that readers and reviewers can understand precisely what has been done without studying the references directly. The description may be abbreviated when well-accepted techniques are used with appropriate reference to previously published methods. Statements confirming conformation to institutional and governmental review of the experimental protocol (see above in the Editorial policies section) should be included here.

Results

The results should be presented precisely. Reference to Tables and Figures, to the extent that they contribute substantively to help the reader understand clearly the relevant positive and negative findings, is encouraged. Keep discussion of their importance to a minimum in this section of the manuscript.

Discussion

The Discussion should relate directly to the study being reported. The Discussion should interpret the results, should describe the relevance of the results, and should include a discussion of the limitations of the study. Do not include a general review of the topic.

Acknowledgements

Acknowledgements should follow the discussion. Here you may acknowledge individuals or organisations that provided advice and/or support (non-financial). Formal financial support and funding should be listed in the following section. The Acknowledgements should be placed after the main body of the text before Financial Support. If there are no Acknowledgements, the title should be inserted followed by “None”. Papers that do not include an Acknowledgements section will not be reviewed.
Financial Support

The Financial Support statement should be placed after the Acknowledgements and before the Conflicts of Interest section. Please provide details of the sources of financial support for all authors, including grant numbers. This is particularly important in the case of research that is supported by industry. Support from industry not only includes direct financial support for the study but also support in kind such as provision of medications, equipment, kits or reagents without charge or at reduced cost and provision of services such as statistical analysis. For example, ‘‘This work was supported by the Medical research Council (grant number XXXXXXX)’’. Multiple grant numbers should be separated by a comma and space, and where research was funded by more than one agency the different agencies should be separated by a semi-colon, with ‘‘and’’ before the final funder. Grants held by different authors should be identified as belonging to individual authors by the authors’ initials. For example, ‘‘This work was supported by the Wellcome Trust (A.B., grant numbers XXXX, YYYY), (C.D., grant number ZZZZ); the Natural Environment Research Council (E.F., grant number FFFF); and the National Institutes of Health (A.B., grant number GGGG), (E.F., grant number HHHH)’’. Where no specific funding has been provided for research, please provide the following statement: ‘‘This research received no specific grant from any funding agency, commercial or not-for-profit sectors.’’ Papers that do not include a Financial Support statement will not be reviewed.

Conflicts of Interest

The Conflicts of Interest section should be placed after Financial Support. Conflict of interest exists when an author has interests that might inappropriately influence his or her judgement, even if that judgement is not influenced. Because of this, authors must disclose potentially conflicting interests so that others can make judgements about such effects. At the time of submission authors should disclose any financial arrangements or connections they may have that are pertinent to the submitted manuscript and that may be perceived as potentially biasing their paper. Non-financial interests that could be relevant in this context should also be disclosed. If no relevant interests exist, this should be stated. This requirement applies to all the authors of a paper and to all categories of papers including letters to the editor. If there are no interests to declare, the title should be inserted followed by ‘‘None’’. Papers that do not include a Conflicts of Interest section will not be reviewed.

Ethical Standards

The Ethical Standards statement, if required, should be placed after the Conflict of Interest section before the References. Where research involves human and/or animal experimentation, the following statements should be included (as applicable): ‘‘The authors
assert that all procedures contributing to this work comply with the ethical standards of the relevant national guidelines on human experimentation (please name) and with the Helsinki Declaration of 1975, as revised in 2008, and has been approved by the institutional committees (please name).” and “The authors assert that all procedures contributing to this work comply with the ethical standards of the relevant national guides on the care and use of laboratory animals (please name) and has been approved by the institutional committee (please name).” If the research does not involve human and/or animal experimentation, this statement should be omitted. Papers reporting the results of human and/or animal experimentation that do not contain an Ethical Standards statement will not be reviewed. For more information on the ethical standards and procedures of Cambridge Journals, please visit Cambridge Journals Online.

Article Commentaries

Article Commentaries are responses to a previously published paper. The previously published paper must form the first reference of the Commentary. The authors of the previously published paper will be invited to respond, but further responses will not be accepted.

Review Articles

Reviews of recent developments are welcome. Authors are encouraged to contact the editor to determine the appropriateness for inclusion. The format is the same as for Original Articles (above). In particular, please see the note on Abbreviations, above.

Case Reports / Brief Reports

Case reports which add important new information will be published as Brief Reports, and must conform to the following requirements:

- Abbreviations are **not** allowed in the text except for the following **only**: NYHA, CHD, MRI, CT, ICU and units of measure such as mmHg or kg, are allowed. However, any abbreviations can be used on tables and figures.

- Headings before the References: Financial Support, Conflicts of Interest, Ethical Standards (Please see under *Original Article* above for the exact wording).

- A title page (see instructions on page 2) A maximum of three authors A abstract (of
Editorials and Letters to the Editor

Readers are encouraged to write about any topic that relates to cardiology in the young. Such letters will appear in *Letters to the Editor*. They should be no longer than 500 words. Please include a title page (see instructions on page 2 above). *Editorials* are written on invitation but unsolicited articles of approximately 1,500 words which may have particular topical interest will be welcomed for consideration. Please include a title page (see instructions on page 2 above). For Editorials and Letters please also see the note on abbreviations under Images, below.

Images in Congenital Cardiac Disease

Definitive, unique, or extraordinary pictures of any aspect of congenital cardiac disease will be presented and must conform to the following requirements:

- Abbreviations are **not** allowed in the text except for the following **only**: NYHA, CHD, MRI, CT, ICU and units of measure such as mmHg or kg, are allowed. However, any abbreviations can be used on tables and figures.

- Headings before the References: Financial Support, Conflicts of Interest, Ethical Standards (Please see under *Original Article* above for the exact wording).

- A title page (see instructions on page 2) A maximum of three authors, An abstract (of about 30 words) A maximum of 250 words 3-6 key words A maximum of 4 images Only 1 reference. Instructional value and artistic merit will be considered in addition to scientific import and clinical relevance.

Guidelines

CTY welcomes papers that consist of clear, concise guidelines in any technique or methodology that relates to the practice of cardiology and cardiac surgery in the young. Guidelines should be evidence based and should reflect professional consensus of best practice. Generally, they will be expected to be endorsed by professional societies and associations. These papers do not follow any specific
References

References should be numbered consecutively (in superscript) as they appear in the text. Type the reference list with double-spacing on a separate page. References (using Index Medicus abbreviations) should appear in the style as demonstrated below. Please note that if more than six authors, the first three authors should be listed and then ‘et al.’. Examples: 1. Redington AN, Rigby ML, Oldershaw P, Gibson DG, Shinebourne EA. Right ventricular function 10 years after the Mustard operation for transposition of the great arteries: analysis of size, shape, and wall motion. Br Heart J 1989; 62: 455-461. 2. Smith VR, Jones AL, Miller W et al. Left ventricular myocardial velocities in children. Eur Heart J 2000; 21: 104-112. 3. Zuberbuhler JR. Clinical Diagnosis in Paediatric Cardiology. Churchill Livingstone, New York, 1981. 4. Frantz EG. Adult respiratory distress syndrome in children. In: Harried HS, Jr (ed.) Paediatric Pulmonary Heart Disease. Little, Brown, Boston, 1990, pp 315-324. Tables Tables should follow the style as demonstrated in issues to date, and be essential to the understanding of the text. Tables should have short descriptive titles and should be numbered (1, 2, 3 etc.) as they appear sequentially in the text. If only one Table is included, it should be referred to as Table. Submit each Table on a separate sheet of paper. All abbreviations and symbols should be defined in a footnote below the Table.

Figures

Please ensure that all graphs are exclusively submitted as 2D images.

To ensure that your figures are reproduced to the highest possible standards, Cambridge Journals recommends the following formats and resolutions for supplying electronic figures.

Please ensure that your figures are saved at final publication size and are in our recommended file formats. Following these guidelines will result in high quality images being reproduced.

Line artwork

Format: tif or eps Colour mode: black and white (also known as 1-bit) Resolution: 1200 dpi

Combination artwork (line/tone)

Format: tif or eps Colour mode: grayscale (also known as 8-bit) Resolution: 800 dpi
Black and white halftone artwork

Format: tif Colour mode: grayscale (also known as 8-bit) Resolution: 300 dpi

Colour halftone artwork

Format: tif Colour mode: CMYK colour Resolution: 300 dpi

If you require any further guidance on creating suitable electronic figures, please visit http://journals.cambridge.org/artworkguide

Supplementary Material

Data that would be impractical to include in an article itself can be added to an article as Supplementary Material. Authors may include tables and figures as well as data such as videos, 3-D structures/images, and extensive datasets. All supplementary material must be submitted with the original manuscript as separate files. Supplementary data should be referred to in the text with the prefix "S" (e.g. Supplementary Table S1, Supplementary Figure S1). Supplementary files will not be copy-edited or typeset, and will be published as supplied.

Reprints

Article reprints (hard copy and ePrints) are available from special_sales@cambridge.org. A minimum reprint order of 100 copies is required.

Permission

Requests for permission to reproduce any material originally published in Cardiology in the Young should be sent to ctyedoffice@cambridge.org

Open Access

Cardiology in the Young offers authors the option to publish their work under a Gold Open Access model. For details of our policy and pricing, please see http://journals.cambridge.org/action/stream?pagId=9128&level=2

Announcements and Advertising

Meetings and courses will be announced in each issue. Please email all details to: ctyedoffice@cambridge.org The Journals homepage, www.journals.cambridge.org/cty,
offers paying advertisers the opportunity to promote conferences / courses and recruitment vacancies (subject to editorial approval). For rate details please email:
ad_sales@cambridge.org

Copyright

The Journal recommends that copyrighted, trademarked, or otherwise registered products be qualified in all instances by the appropriate superscript symbol (i.e. ©, TM or other). In the first instance only of product citation, the name of the product should be followed in parentheses by the name of the manufacturer, city, state, and country.

If you do not yet have the copyright, then please say something along the lines of <copyright> pending, etc.

(Revised 14 Dec 2015)
Chapter 2

2.1. Publication-ready manuscript

A South-South partnership to provide cardiac surgery and interventions: The Namibian Children’s Heart Project.

Fenny F Shidhika 1,2, Christopher T Hugo-Hamman 1,2,4, John B Lawrenson2,3 Henning J Du Toit 1, Susan M Vosloo 4, Andre Brooks 4,5 Harold S Pribut 4, Susan R Perkins 2, Liesl J Zühlke 2,6

1. Windhoek Central Hospital, Ministry of Health and Social Services, Namibia
2. Division of Paediatric Cardiology, Department of Paediatrics and Child Health, University of Cape Town, South Africa
3. Department of Paediatrics and Child Health Tygerberg Hospital, Stellenbosch University, Cape Town, South Africa
4. Christiaan Barnard Memorial Hospital, Cape Town, South Africa
5. Chris Barnard Division of Cardiac Surgery, University of Cape Town, South Africa
6. Division of Cardiology, Groote Schuur Hospital, University of Cape Town, South Africa

Keywords: Congenital heart disease, Namibia, Public-private partnerships, surgical outreach, sustainable cardiac service

Corresponding author:
Associate Professor Liesl Zühlke
2.17 Institute of Child Health
Red Cross War Memorial Children’s Hospital
Klipfontein Road
Rondebosch
Cape Town South Africa 7700
Telephone 0027216502373
Email: liesl.zuhlke@uct.ac.za
Abstract

Introduction: Congenital and acquired heart diseases are highly prevalent in developing countries despite limited specialised care. Namibia established a paediatric cardiac service in 2009 with significant human resource and infrastructural constraints. Therefore, patients are referred for cardiac interventions to South Africa.

Objectives: To describe the diagnoses, clinical characteristics, interventions, post-operative morbidity and mortality and follow-up of patients referred for care.

Methods: Demographics, diagnoses, interventions, intra- and postoperative morbidity and mortality as well as longitudinal follow-up data of all patients referred to South Africa were recorded and analysed.

Results: The total cohort constituted 193 patients of which 179 (93%) had congenital and 7% acquired heart disease. The majority of patients (78.8%) travelled more than 400 km to Windhoek prior to transfer. There were 28 percutaneous interventions. Palliative and definitive surgery was performed in 27 and 129 patients respectively. Eighty (80/156, 51.3%) patients had postoperative complications, of which 15 (9.6%) were a direct complication of surgery. Surgical mortality was 8/156 (5.1%, 95% confidence interval 1.2-9.8), with a 30-day mortality of 3.2%. Prolonged ICU stay was associated with a 5% increased risk of death (Hazard Ratio 1.05, 95% confidence interval: 1.02-1.08, p=0.001). Follow-up was complete in 151 (78%) patients over seven years.

Conclusion: Despite the challenges associated with a cardiac programme referring patients for intervention to a neighbouring country and the adverse characteristics of multiple lesions and complexity associated with late presentation, we report good surgical and interventional outcomes. Our goal remains to develop a comprehensive sustainable cardiac service in Namibia.
Introduction

Congenital heart disease (CHD) is defined as the structural abnormalities of the heart or intra-thoracic vessels present at birth that have actual or potential functional significance. CHD are the most common birth defects and are associated with significant morbidity and mortality. Rheumatic heart disease is the sequel to acute rheumatic fever following Group A streptococcus infection and is the most common acquired heart disease in developing countries. This combination results in a high burden of childhood heart diseases in Africa. Namibia gained independence from apartheid South Africa in 1990. It is a vast country (land area 824 268 km²) with a sparse population of 2.3 million people 44% of whom are children. It is classified as an upper middle-income economy however, there is gross income inequality with a Gini co-efficient of 0.57. Before 2007, there was no paediatric cardiac service in Namibia. Outpatient paediatric cardiac clinics were started by a visiting volunteer paediatric cardiologist in Windhoek and with increasing government commitment, a catheterisation laboratory was commissioned in 2010 and a limited local surgical programme (catering mostly for adults and older children), was commenced. With significant human resource constraints - no paediatric intensive care specialists, no paediatric critical care nurses, no paediatric cardiac anaesthetists or paediatric cardiac surgeons and no paediatric intensive care, a centre for cardiac surgery for babies and small children (under 20 kg) has not been established. In response, in 2009 a public private partnership was brokered between the Christian Barnard Memorial Hospital in Cape Town, South Africa and the Namibian Ministry of Health and Social Services. Whilst the goal is to develop a fully functional and sustainable paediatric cardiac service in Namibia, in the interim patients have been referred to South Africa for surgery. This study describes the diagnoses, clinical characteristics, interventions, post-operative morbidity and mortality and the follow-up of patients referred to Cape Town between 2009 and 2015.

Methods

Study design and population

We performed a retrospective data analysis of the 193 patients diagnosed with heart disease at Windhoek Central Hospital by a single paediatric cardiologist and referred to Christian Barnard Memorial Hospital in Cape Town, South Africa from the period between 2009 and 2015. Patient selection for surgery or intervention followed clinical and echocardiographic assessment and when relevant, cardiac catheterisation.
Ethics

The study was performed in accordance with ethical standards described in the Declaration of Helsinki, with ethical approval from institutional review boards at the University of Cape Town and the Ministry of Health and Social Services in Namibia. Parental consent had been obtained for surgery. We obtained a waiver of parental consent for this study.

Data collection

Data were captured from Windhoek Central Hospital and Christian Barnard Memorial Hospital registries using a standardised data collection form (Baseline Case Record Form – Appendix 1) and recorded in Research Electronic Data Capture (REDCap) database. Dependent and independent variables included demographic profile, primary diagnosis co-morbid and pre-operative data, echocardiography findings, cardiac catheterisation, surgery, post-operative morbidity and mortality and longitudinal follow-up outcomes. Patients were categorised using age and/or weight criteria and complexity estimated according to the presence of more than one lesion, associated pulmonary hypertension or complex CHD. The modified version of the hierarchy of heart defects developed by the CONgenital COR Vitia (CONCOR) registry was used for the primary diagnosis \(^7\) and assigned codes according to the International Classification of Diseases and Related Health Problems 10\(^{th}\) revision (ICD 10) coding system \(^8\). The Risk Adjustment for Congenital Heart Surgery (RACHS-1) model \(^9,\ 10\) used here represents surgical complexity. Procedure nomenclature is assigned using the International Paediatric and Congenital Cardiac Code \(^11\).

Statistical analysis

Data were analysed using STATA 14. (StataCorp, 4905 Lakeway Dr, College Station, TX 77845). Continuous variables were expressed as means with standard deviations or medians with interquartile ranges as appropriate. Categorical variables were expressed as absolute number frequencies and percentages. Linear regression models and Cox regression models were used to assess the relationship between and risk of appropriate variables with survival, respectively.

Results

Demographics

One hundred ninety-three patients were referred to the Cape Town centre for cardiac care. Patients originated from all regions of Namibia (Figure 1). Distances to the referral centre
ranged from 200 – 800 km with 107 people (55%) referred from villages over 700 km from Windhoek Central Hospital. The ratio of female to male was 1.3: 1. The median age for presentation with congenital and acquired heart disease categories were 12 months (Interquartile range 5.0–60.0) and 210 months (Interquartile range 180-276 months) respectively. The median age at referral to Christiaan Barnard Memorial Hospital was 32.8 months (Interquartile range 11.1-101.3).

![Geographical Distribution of Referred Patients](image)

Figure 1: Geographical distribution of referred patients.
(Green: referral centre, Orange: between 400-500 km, Red: further than 600 km)

Baseline characteristics

Primary diagnosis

Congenital heart disease accounted for 179 (93%) of patients. “Simple” left to right shunts were the largest group, n=77 (39.9%), 52 of which were ventricular septal defects. Partial and complete atrio-ventricular septal defects were found in 17 (8%) patients. complex cyanotic lesions, excluding tetralogy of Fallot, accounted for 29 (15%) patients. Obstructed left heart lesions were found in seven patients (see Table 1.) Only 14 (7.3%) patients had acquired heart diseases (Rheumatic Heart Disease n=11 and Takayasu arteritis n=3). The predominant lesion in the Rheumatic Heart Disease group was mitral stenosis (n=8, 73%). One patient had isolated mitral regurgitation, one mixed mitral valve disease, one severe mitral and aortic regurgitation.
Table 1. Primary diagnosis anatomical and physiological classification

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>N=193</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left to right shunts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partial AVSD</td>
<td>(7)</td>
<td>3,6%</td>
</tr>
<tr>
<td>Complete AVSD</td>
<td>(6)</td>
<td>3,1%</td>
</tr>
<tr>
<td>VSD</td>
<td>(52)</td>
<td>26,9%</td>
</tr>
<tr>
<td>ASD</td>
<td>(8)</td>
<td>4,1%</td>
</tr>
<tr>
<td>PDA</td>
<td>(15)</td>
<td>7,7%</td>
</tr>
<tr>
<td>Obstructive right heart lesions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetralogy of Fallot spectrum</td>
<td>(33)</td>
<td>17.1%</td>
</tr>
<tr>
<td>Classic 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulmonary atresia 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DORV-Tetralogy 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolated pulmonary valvar stenosis</td>
<td>(9)</td>
<td>4.7%</td>
</tr>
<tr>
<td>Double Chambered RV</td>
<td>(2)</td>
<td>1.0%</td>
</tr>
<tr>
<td>Obstructive left heart lesions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interrupted Aortic Arch</td>
<td>(2)</td>
<td>1.0%</td>
</tr>
<tr>
<td>Coarctation of Aorta</td>
<td>(3)</td>
<td>1.6%</td>
</tr>
<tr>
<td>Aortic stenosis</td>
<td>(4)</td>
<td>2.1%</td>
</tr>
<tr>
<td>Valvar 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub- and supravalvar 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrio-ventricular and ventriculo-arterial discordance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGA (simple)</td>
<td>(2)</td>
<td>1.0%</td>
</tr>
<tr>
<td>ccTGA</td>
<td>(1)</td>
<td>0.5%</td>
</tr>
<tr>
<td>Ventricular inversion</td>
<td>(1)</td>
<td>0.5%</td>
</tr>
<tr>
<td>DORV</td>
<td>(2)</td>
<td>1.0%</td>
</tr>
<tr>
<td>Taussig-Bing 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-committed VSD 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disorder</td>
<td>Count</td>
<td>Percentage</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>Pulmonary atresia/IVS</td>
<td>(1)</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

Pulmonary vein abnormalities

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAPVD</td>
<td>(1)</td>
<td>0.5%</td>
</tr>
<tr>
<td>Isolated pulmonary vein stenosis</td>
<td>(1)</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

Single ventricle physiology

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tricuspid atresia</td>
<td>(9)</td>
<td>4.7%</td>
</tr>
<tr>
<td>Unbalanced AVSD</td>
<td>(3)</td>
<td>1.6%</td>
</tr>
<tr>
<td>Isolated 1 Unbalanced AVSD-Tetralogy 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DILV</td>
<td>(3)</td>
<td>1.6%</td>
</tr>
<tr>
<td>HLH complex</td>
<td>(1)</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

Acquired heart disease

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rheumatic heart disease</td>
<td>(11)</td>
<td>5.7%</td>
</tr>
<tr>
<td>Takayasu arteritis</td>
<td>(3)</td>
<td>1.6%</td>
</tr>
</tbody>
</table>

Abbreviations:

AVSD: Atrio-ventricular Septal Defect, VSD; Ventricular Septa; Defect, ASD; Atrial Septal Defect, PDA; Patent Ductus Arteriosus, TGA; Transposition of the Great Arteries, CCTGA- Congenitally Corrected Transposition of the Great Arteries, DORV; Double Outlet Right Ventricle, RV; Right Ventricle, IVS: Intact Ventricular Septum, TAPVD; Total Anomalous Pulmonary Venous Drainage, DILV; Double Inlet Left Ventricle, HLH; Hypoplastic Left Heart

Comorbidity

The number of patients with Trisomy 21 was 13 (6.7%). The 22q11.3 microdeletion was isolated in five patients (2.6%) but not all patients with CHD were screened for this gene defect. Heterotaxy was discovered in four (2.1%), Noonan’s syndrome was diagnosed in two patients (1.0%); Congenital diaphragmatic hernia in three patients (1.6%) and one patient had the VACTERL (Vertebral defects, Anal atresia, Cardiac defects, Tracheoesophageal fistula, Renal anomalies and Limb abnormalities) association. Significant failure to thrive (poor
somatic growth equal to or greater than three standard deviations below the mean for age and height) was found in 76 patients (39.4%). In our cohort, 80 (41.5%) had clinical features and echocardiographic evidence of pulmonary hypertension. Almost three-quarters of the patients had a delay to surgery due to an existing respiratory infection. Two patients were on respiratory support before surgery. There were two patients in the last trimester of pregnancy referred for percutaneous transcatheter mitral valve commissurotomy for RHD associated mitral valve stenosis.

Catheterisation

Diagnostic cardiac catheterisation

Cardiac catheterisation was performed in 89 patients (46.1%). The majority 62 (69.7%) were diagnostic/haemodynamic studies. Median age at catheterisation was 70.1 months (Interquartile range: 17.6 – 155.4). Catheterisation was performed in 30 (33.7%) patients with severe pulmonary hypertension to assess suitability for surgery. Of this group, three patients proved to have irreversible pulmonary hypertension secondary to pulmonary vascular disease and deemed inoperable. Catheterisation was done as routine inter-stage assessment in those undergoing staged single ventricle palliation or to delineate anatomy for biventricular repair in 32 (36.0%).

Transcatheter interventions

There were 28 (30.3%) transcatheter interventions (on 27 patients) including eight percutaneous mitral transcatheter commissurotomies and two radio-frequency ablations (see Figure 2). The remainder were for CHD interventions. There was one complication where an Amplatzer Patent Ductus Arteriosus occluder device (ADO 1) embolised into the left pulmonary artery. The device was removed, and the duct ligated surgically.
Surgery

The median age at presentation to Windhoek Central Hospital was 12 months (Interquartile range 5.0 - 47.5) however, the median age at time of surgery was 28.4 months (Interquartile range: 11.1-78.0). In total, 156 cases were performed; surgery was elective in 142/156 (91.0%) cases. Twenty-seven (17.3%) of all patients who underwent surgery had palliative procedures. Of these, 11 were for single ventricle palliation (10 Glenn shunts and one total cavopulmonary connection). Six patients had a right modified Blalock-Taussig shunt, nine had pulmonary artery bandings and one had a central shunt. One hundred twenty-nine (82.7%) patients had a full repair with 15 of these (11.6%) performed off cardiopulmonary bypass (See Figure 2). Those classified as “other” included three patients with double outlet right ventricle, five patients undergoing right ventricular outflow tract reconstruction and/or pulmonary valve replacement, two patients with divided right ventricle and ventricular septal defect repair and one each of left atrio-ventricular valve repair, tricuspid valve repair, divided right ventricle, ventricular septal defect and Sinus of Valsalva repair and ventricular septal defect /aortic valve repair. Risk stratification for surgical procedures (RACHS-1 categories) is illustrated in Table 2.

There were 11 re-operations (7.0%); four for haemodynamically significant residual defects, two in a child with pulmonary atresia, one with excessive pulmonary blood flow after systemic to pulmonary shunt, one with persistent ascites after right ventricular outflow tract reconstruction in tetralogy of Fallot (with hypoplastic branches) and one for a residual ventricular septal defect after atrio-ventricular septal defect repair. two patients needed
emergency revision; one for refractory bleeding and the other for systemic to pulmonary shunt thrombosis.

Two babies with congenital diaphragmatic hernia and one with tracheoesophageal fistula had those lesions repaired before cardiac surgery. Twelve patients with CHD were not offered surgery (Table 3).

Table 2 Surgical risk classification

<table>
<thead>
<tr>
<th>RACHS-1 Category Score</th>
<th>Absolute frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21</td>
<td>13.6</td>
</tr>
<tr>
<td>2</td>
<td>68</td>
<td>43.6</td>
</tr>
<tr>
<td>3</td>
<td>58</td>
<td>37.1</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>5.7</td>
</tr>
<tr>
<td>Total</td>
<td>156</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Figure 3: Cardiac Surgery cases by procedure

Table. 3 Patients not offered surgery

<table>
<thead>
<tr>
<th>Age</th>
<th>Diagnosis</th>
<th>Investigation</th>
<th>Conclusion</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9y</td>
<td>Left isomerism
Interrupted aortic arch, AVSD (common atrium)
Left AV valve incompetence
LV non-compaction</td>
<td>Cardiac catheterisation: PVRi 10 WU</td>
<td>Anatomy and haemodynamics not suitable for surgery</td>
</tr>
<tr>
<td>2</td>
<td>1m</td>
<td>AVSD
Diaphragmatic hernia
Trisomy 21</td>
<td>Cardiac catheterisation: PVRi 6 WU,</td>
<td>Poor respiratory capacity
Advance pulmonary vascular disease</td>
</tr>
<tr>
<td>4</td>
<td>9m</td>
<td>Transposition of great arteries, Ventricular septal defect</td>
<td>Cardiac catheterisation PVRi > 6 WU</td>
<td>Irreversible pulmonary vascular disease,</td>
</tr>
<tr>
<td>5</td>
<td>10m</td>
<td>Complete AVSD
PDA</td>
<td>Cardiac catheterisation: PVRi 12 WU</td>
<td>Irreversible pulmonary vascular disease,</td>
</tr>
<tr>
<td>6</td>
<td>3m</td>
<td>Shone syndrome
Sub-aortic stenosis
Coarctation of aorta
ASD, VSD</td>
<td>Cardiac catheterisation</td>
<td>Anatomy and haemodynamics not suitable for surgery</td>
</tr>
<tr>
<td>7</td>
<td>11y</td>
<td>Muscular VSD
PDA</td>
<td>Echocardiogram</td>
<td>Haemodynamically insignificant</td>
</tr>
<tr>
<td>8</td>
<td>5m</td>
<td>Situs ambiguous discordant AV connections
Interrupted IVC
VSD</td>
<td>Cardiac catheterisation</td>
<td>Complex and not suitable for surgery</td>
</tr>
<tr>
<td>9</td>
<td>3m</td>
<td>Tetralogy of Fallot with Pulmonary atresia and MAPCAS
Pulmonary artery hypoplasia</td>
<td>Catheterisation</td>
<td>Inadequate pulmonary arteries not suitable for surgery</td>
</tr>
<tr>
<td>10</td>
<td>3d</td>
<td>Shone complex
Interrupted aortic arch
Sub-aortic stenosis</td>
<td>Catheterisation</td>
<td>Anatomy unsuitable for surgery</td>
</tr>
</tbody>
</table>
Aorto-pulmonary window ASD, VSD

| 11 | 15y | Double inlet left ventricle AV valve regurgitation Previous Coarctation repair, Bi-directional Glenn shunt | TOE and catheterisation | Not suitable for univentricular palliation | Unknown* |

| 12 | 1w | Pulmonary vein stenosis Severe pulmonary venous hypertension | Echocardiogram | Anatomy not suitable for correction | Unknown* |

*Lost to follow-up

Outcome

Morbidity

Intra-operative morbidity

One intra-operative complication was documented. This patient sustained left coronary injury during a single ventricle palliation with bilateral pulmonary artery augmentation. The coronary artery was repaired with successful re-vascularisation.

Postoperative morbidity

Eighty (80/156, 51.3%) patients had postoperative complications, of which 15 (9.6%) were a direct complication of cardiac surgery (Table 4). The median post-operative stay in intensive care was 5 days (Inter-quartile range: 3 - 7) with the maximum 106 days. Prolonged ICU stay, defined as 5 days after surgery, occurred in n=81 (51.9%).
Table 4. Postoperative complications

<table>
<thead>
<tr>
<th>Complication</th>
<th>Frequency</th>
<th>% n=156</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia</td>
<td>41</td>
<td>26,28%</td>
</tr>
<tr>
<td>Arrhythmia (tachyarrhythmia, AV dissociation)</td>
<td>9</td>
<td>5,77%</td>
</tr>
<tr>
<td>Pulmonary hypertensive crisis</td>
<td>9</td>
<td>5,77%</td>
</tr>
<tr>
<td>Persistent pleural drainage (transudate)</td>
<td>6</td>
<td>3,85%</td>
</tr>
<tr>
<td>Pericardiotomy syndrome</td>
<td>4</td>
<td>2,56%</td>
</tr>
<tr>
<td>Bleeding</td>
<td>2</td>
<td>1,28%</td>
</tr>
<tr>
<td>Diaphragm paralysis</td>
<td>2</td>
<td>1,28%</td>
</tr>
<tr>
<td>Pulmonary reperfusion injury</td>
<td>2</td>
<td>1,28%</td>
</tr>
<tr>
<td>Wound sepsis</td>
<td>2</td>
<td>1,28%</td>
</tr>
<tr>
<td>Myocardial ischaemia</td>
<td>1</td>
<td>0,64%</td>
</tr>
<tr>
<td>Persistent pulmonary drainage (chylothorax)</td>
<td>1</td>
<td>0,64%</td>
</tr>
<tr>
<td>Systemic to pulmonary shunt thrombosis</td>
<td>1</td>
<td>0,64%</td>
</tr>
<tr>
<td>Total</td>
<td>80</td>
<td>51,28%</td>
</tr>
</tbody>
</table>

Mortality

In total, there were eight surgical deaths with an overall mortality of 4.2%. Five of these were early (< 28 days) and three late deaths (Refer to Table 5). Two deaths occurred within 24-48 hours of surgery, two on day five and one each on days 20, 50 and 90, respectively. The 30-day mortality rate was 3.8 [95% Confidence interval 1.4-8.2]. Median age at death was 7.3 months (Interquartile range: 6.2-22.5).
Table 5: Mortality

<table>
<thead>
<tr>
<th></th>
<th>Age</th>
<th>Diagnoses</th>
<th>RACHS score</th>
<th>IPCCC procedures</th>
<th>Death</th>
<th>Cause of death</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13m</td>
<td>Complete AVSD, PDA Trisomy 21</td>
<td>3</td>
<td>PA Band and PDA ligation</td>
<td>Early</td>
<td>Traumatic pericardiocentesis</td>
</tr>
<tr>
<td>2</td>
<td>6m</td>
<td>Pulmonary infundibular and valvar stenosis Dysplastic tricuspid valve</td>
<td>2</td>
<td>RVOTO relief with creation ASD</td>
<td>Early</td>
<td>Restrictive right ventricle and tachyarrhythmia</td>
</tr>
<tr>
<td>3</td>
<td>20m</td>
<td>Tetralogy of Fallot</td>
<td>2</td>
<td>Tetralogy repair and reoperation</td>
<td>Early</td>
<td>Restrictive right ventricle and tachyarrhythmia</td>
</tr>
<tr>
<td>4</td>
<td>11y</td>
<td>DORV with Tetralogy and MAPCAs</td>
<td>3</td>
<td>Bidirectional Glenn, atrial septectomy, PA Band, repair LAD</td>
<td>Early</td>
<td>Myocardial Infarction</td>
</tr>
<tr>
<td>5</td>
<td>20m</td>
<td>Complete unbalanced AVSD and pulmonary stenosis</td>
<td>3</td>
<td>RMBTS</td>
<td>Early</td>
<td>Unknown</td>
</tr>
<tr>
<td>6</td>
<td>3m</td>
<td>TGA with VSD VACTERL association Tracheoesophageal fistula</td>
<td>3</td>
<td>PA Band, PDA ligation, repair TOF</td>
<td>Late</td>
<td>Respiratory failure chronic lung disease</td>
</tr>
<tr>
<td>7</td>
<td>6m</td>
<td>Severe infundibular and valvar pulmonary stenosis</td>
<td>2</td>
<td>RVOT obstruction patch and creation ASD</td>
<td>Early</td>
<td>Restrictive right ventricle and tachyarrhythmia</td>
</tr>
<tr>
<td>8</td>
<td>8m</td>
<td>Complete unbalanced AVSD Right AV valve atresia, severe Left AV valve regurgitation</td>
<td>3</td>
<td>Left AV valve repair not suitable for bi-ventricular repair</td>
<td>Early</td>
<td>Cardiorespiratory failure</td>
</tr>
</tbody>
</table>

Longitudinal follow-up rates and overall survival

Forty-two patients (21.8%) were lost to follow-up (failed to attend a scheduled visit for 24 months from the last visit) over the period 1 December 2009 to 31 December 2016.

DISCUSSION

The major findings of this study from Africa are that despite the distance to the referral centre (more than half of all patients referred for cardiac surgery and intervention reside more than 700 km from the only referral centre in Namibia) and their late presentation and referral, surgical therapy could be offered to the patients with good outcomes with an acceptable overall mortality of 4.2 % despite complex disease, significant co-morbidity and protracted post-operative intensive care. A high number of these patients, 21.8%, are lost to follow-up within 24 months.

Distance to care

In poor countries, long distances to care represent an additional access challenge. The majority of our patients live in the northern regions of Namibia in mostly rural, agrarian communities surviving through subsistence farming. If they are recognised as having cardiac disease, they are sent to the regional centre for paediatric services at the Oshakati Intermediate Hospital. This hospital is located in excess of 700 km from the national referral centre in Windhoek. The Ministry of health and Social Services patient transport between Oshakati and Windhoek takes place by road once a week. Emergencies are transported by an air ambulance after lengthy procedural delays and at substantial extra direct cost. Poverty, distance to care and poor transport infrastructure represent significant barriers to all levels of health care and of course to responsible follow-up. Recognising these barriers to care, regular outreach visits to the north of Namibia were instituted in 2013 to provide patient care and upgrade local knowledge and cardiology skills.

Late diagnosis and referral, complex disease and significant co-morbidity.

The late presentation of patients with CHD to specialist care is primarily a consequence of poor early diagnosis and late recognition. This reflects poor knowledge of CHD in the peripheral referral regions of the country and the low penetrance of specialist paediatric services through the health system. Late detection has two significant results. Firstly, that those patients with
critical congenital heart disease (20% of all CHD)12 who should have early surgery are never detected and die without treatment. The low numbers of babies with, for example, transposition of the great arteries or anomalous pulmonary venous connection in this cohort can be understood in this context. Secondly, by the time patients are diagnosed they have severe complications of their underlying disease. Pulmonary vascular disease secondary to severe pulmonary hypertension is the most common example and despite the pre-selection of patients by the cardiologist in Windhoek, a further three patients with pulmonary hypertension were deemed inoperable in Cape Town. The review does not reflect those many patients denied referral from Windhoek due to established pulmonary vascular disease. The problems posed by pulmonary hypertension are further reflected in the nine patients with post-operative pulmonary hypertensive crises. The higher age at presentation in the CHD group is also the reason for the high number of diagnostic cardiac catheterisations performed to assess the reversibility of pulmonary hypertension prior to surgery. Whilst failure to thrive is often multi-factorial, especially in countries with high levels of unemployment, poverty and malnutrition, the high numbers with failure to thrive in the CHD cohort reflects the severity of their disease and a period of almost 22 months between presentation and referral for assessment. Pre-existing respiratory infection is a known risk factor for cardiac surgery13. A high number of children arrived for surgery with pre-existing respiratory disease, had in-hospital delay to operation and lengthy post-operative recovery.

The case-mix is diverse, predominantly CHD and predictable. The number of patients with Rheumatic Heart Disease (13) was low which does not reflect the high prevalence of this preventable disease in Namibia14,15. Cardiac surgery was started at the Windhoek Central Hospital in October 2010 and through a similar period, most patients with Rheumatic Heart Disease needing valve surgery (200 reported cases)16 had surgery at Windhoek Central Hospital. Those with rheumatic heart disease sent to Cape Town included children with body mass under 20kg and 8 patients needing percutaneous transcatheter mitral valve commissurotomy for mitral stenosis when the technology (Inoue percutaneous transcatheter mitral valve commissurotomy catheter) was not available at Windhoek Central Hospital.

\textit{Surgical mortality and length of Intensive Care}

The low surgical mortality compares favourably with similar programs in developing countries and international standards established by the Society of Cardiothoracic Surgeons17-20. The likely causes of the post-operative deaths are revealing and suggest that in three patients the
risk associated with restrictive right ventricular pathophysiology was not fully appreciated pre-operatively. Two patients with complex atrio-ventricular septal defects also had abnormal right ventricle pathology. Pre-operative pulmonary hypertension was neither associated with mortality or length of time in ICU suggesting appropriate pre-selection. The length of post-operative intensive care correlates with mortality. Preoperative respiratory infection was common (75%) but neither this nor failure to thrive was a risk factor for death even though both factors were associated with the prolonged ICU stay after operation.

Loss to follow-up and after-care

Post-operative care and surveillance is a determinant of long-term outcome. The outreach paediatric cardiology service to the north of the country was started in 2013 partly to address this challenge. Although it has improved, patient “connection” with primary health facilities and with specialist cardiac care is poor. The lengthy distances to the referral centres, poor transport infrastructure and the fact that many of our families live in abject poverty further contribute to the problem. Many families simply cannot afford private transport to the hospitals or primary care services to sustain their follow-up care. There is no electronic medical record and no national database for patients within the system, so case finding and patient tracking remain problematic. Despite the health service challenges, the combination of a patient registry, outreach programme and the continuity of care provided by a single cardiologist have contributed to 80% of patients remaining within follow-up (which compares favourably with reports from elsewhere in Africa)15, 21. However, the loss to follow-up rate of 20% is still high and suggests that our mortality statistics underestimate late post-operative deaths.

Implications for health policy, practice and research

The Namibian Children’s Heart Project is a humanitarian programme aimed to provide cardiac surgery and intervention for indigent Namibians who are unable to access such services in Namibia. It is South-South collaboration and a unique funding model on the African continent with national government purchasing services from private sector providers in a neighbouring country. Although the Namibian Children’s Heart Project has up to December 2015 brought relief to almost 200 patients with satisfactory results, these patients should be able to get the care they require in Namibia. There is an overwhelming general agreement evidence that the birth prevalence of CHD is 8 per 1000 live births2, 22. Applying this to Namibia, with annual births per annum of 60 000,23 there are 480 babies born every year with CHD. Of these 40% will need heart surgery and 20% who have critical CHD, require it in infancy1, 12, 24 Without
addressing the backlog, 200 patients over six years is not enough, and the Ministry of health and Social Services should be planning heart surgery for at least 200 patients per year in the country.

It is our objective to develop a comprehensive, sustainable and self-sufficient paediatric cardiac surgical service in Namibia. The challenges are both human resources based and infrastructural. The minimum specialist requirements are a paediatric cardiac surgeon with sufficient training and recognised expertise in CHD, anaesthetists trained in paediatric cardiac care, a paediatric intensive care specialist and a well-trained cadre of paediatric cardiac intensive care nurses. In a country without a paediatric intensive care, construction of such a facility is a priority. Only with this facility, appropriate financial resources from government for heart surgery in children and a collective and cooperative effort to upgrade nurse ICU skills for babies and children will we be able to offer safe surgery within Namibia. Implementation requires strict adherence to established quality improvement protocols, with proposed participation in the International Quality Improvement Collaborative 9,17.

Recommendations

1. Continuous capacity building at all levels is mandatory.

2. Diagnostic services within the health department need to improve as without this, the sick newborn with critical CHD will remain invisible 25 26.

3. The National Ministerial Outreach programme should be expanded at intermediate hospitals across the country.

4. Pulse oximetry screening should be considered in neonatal units to improve detection yields.

5. We strongly recommend a national database of heart disease in children.

6. Follow-up rates will be improved by calling the patients when they miss their scheduled appointments. Most families own cellular phones however the challenge is that patients are constantly changing their contact numbers and for those residing in remote areas, connectivity might be poor.

Conclusion

We have demonstrated an effective model for humanitarian care through a South-South collaboration, which has achieved satisfactory outcomes for those fortunate to be referred and
funded by government. Despite health services constraints, adverse characteristics of multiple lesions and complexity associated with late presentation, the 30-day mortality rate is only 3.2%. The cohort reports only those who travelled to Cape Town and does not address the challenge of the many patients who were referred but died or became inoperable, whilst waiting. This study highlights health service deficiencies needing improvement and a commitment from the team to achieve safe surgery for babies and children within a sustainable national programme in Namibia.

Acknowledgements
The Harold and Ethel Pupkewitz Heart Foundation has supported this study. Mr. Harold Pupkewitz, through the “Child Survival, Protection and Development Foundation”, provided funding for the first 9 patients. Funding for setting up the database was provided by the Children’s Heart Disease Research Unit at Red Cross War Memorial Children’s Hospital. The authors wish to thank Mr. Wisdom Basera for statistical assistance. The Permanent Secretary of the Ministry of Health has approved this publication.

Financial support
This research received no specific grant from any funding agency, commercial or not-for-profit sectors. LJZ receives funding from the Medtronic Foundation through support to RHD Action. LJZ is also supported by the National Research Foundation of South Africa (NRFSA) and the Medical Research Council of South Africa (MRC).

Conflicts of interest
The authors declare no conflicts of interest.

Ethical standards
The authors assert that all procedures contributing to this work comply with the ethical standards of the relevant national guidelines on human experimentation (Human Research Ethics Committee University of Cape Town) and with the Helsinki Declaration of 1975, as revised in 2008, and has been approved by the institutional committees (Human Research Ethics Committee Reference number 762/2016) and the Ministry of Health and Social Services in Namibia (17/3/3).

This work is in partial submission of the MPhil (Paediatric Cardiology) degree at the University
of Cape Town by Dr Shidhika.

References

8. International Statistical Classification of Diseases and Related Health Problems 10th
Revision. World Health Organization 2016;

11. Franklin RCG, Beland MJ, Colan SD et al. Nomenclature for congenital and
paediatric cardiac disease: The International Paediatric and Congenital Cardiac Code
(IPCCC) and the Eleventh Iteration of the International Classification of Diseases (ICD-11).
Cardiol Young 2017; 27: 1872-1938.

JIE, Benson DW, van Hare GF, Wren C (eds.) Pediatric cardiovascular medicine. Wiley-

outcomes in children presenting for cardiac surgery with upper respiratory tract infections.

evidence-based interventions in rheumatic heart disease: The Global Rheumatic Heart

15. Zühlke L, Karthikeyan G, Engel ME et al. Clinical Outcomes in 3343 Children and
Adults with Rheumatic Heart Disease from 14 Low- and Middle-Income Countries: 2-Year
Follow-up of the Global Rheumatic Heart Disease Registry (the REMEDY study).

PART B: APPENDICES

Addendum 1: Ethics Approvals
Addendum 2: CRF
Addendum 3: Protocol
Addendum 4: Diagnostic and procedure codes
Ref: 17/3/3
Enquiries: Mr. M. Simasiku
Date: 08 April 2016
Dr. Fenny Fiindje Shidhika
P. O. Box 86629
Eros, Windhoek
Namibia

Re: Saving Children, The Namibian Children’s Heart Project,

1. Reference is made to your application to conduct the above-mentioned study.
2. The proposal has been evaluated and found to have merit.
3. Kindly be informed that permission to conduct the study has been granted under the following conditions:
 3.1 The data to be collected must only be used for academic purpose;
 3.2 No other data should be collected other than the data stated in the proposal;
 3.3 Stipulated ethical considerations in the protocol related to the protection of Human Subjects should be observed and adhered to, any violation thereof will lead to termination of the study at any stage;
24 October 2016

HREC REF: 762/2016

Dr L Zuhlke
Paediatric Cardiology
Room 2.17, ICH Building
Red Cross War Memorial Children’s Hospital
Rondebosch

Dear Dr Zuhlke

PROJECT TITLE: THE NAMIBIA HEART PROJECT: A 6- YEAR RETROSPECTIVE REVIEW
(M.Phil candidate- Dr F Shidhika)

Thank you for submitting your study to the Faculty of Health Sciences Human Research Ethics Committee (HREC) for review.

It is a pleasure to inform you that the HREC has formally approved the above-mentioned study.

Approval is granted for one year until the 30 October 2017.

Please submit a progress form, using the standardised Annual Report Form if the study continues beyond the approval period. Please submit a Standard Closure form if the study is completed within the approval period.

(Forms can be found on our website: www.health.uct.ac.za/fhs/research/humanethics/forms)

Please quote the HREC REF in all your correspondence.

We acknowledge that the student, Dr F Shidhika will also be involved in this study.

Please note that the ongoing ethical conduct of the study remains the responsibility of the principal investigator.

Please note that for all studies approved by the HREC, the principal Investigator must obtain appropriate Institutional approval before the research may occur.

Yours sincerely

Professor M Blockman
Chairperson, FHS Human Research Ethics Committee

Federal Wide Assurance Number: FWA00001637.
Institutional Review Board (IRB) number: IRB00001938

HREC 762/2016
APPENDIX 1
The Namibia children heart project; a 6-year retrospective review
DATA COLLECTION FORM

1. DEMOGRAPHICS
Subject ID Number: (Sequential number plus patient initials):

Geographical Region:
1. Erongo
2. Hardap
3. Kavango
4. Khomas
5. Ohangwena
6. Omaheke
7. Oshana
8. Oshikoto
9. Otjozondjupa
10. Zambezi

Date of birth (DD/MM/YYYY): ________________ (DD/MM/YYYY)

Date of initial presentation at Windhoek facility: ________________ (DD/MM/YYYY)

Age at presentation (auto-calculated): ________________ (MILLISECONDS)

Cape Town facility Admission date: ________________ (DD/MM/YYYY)

Cape Town facility Discharge date: ________________ (DD/MM/YYYY)

Age at admission to Cape Town facility (auto-calculated): ________________ (MILLISECONDS)

Sex:
1. M
2. F
3. Other/Missing
2. DIAGNOSIS (According to the ICD.10 coding system Appendix 2.)

Primary Cardiac Dx Code: _______________ (xxx.xx)

Type of Heart Disease

1. Acquired
 1. Takayasu’s Arteritis
 2. Rheumatic Heart Disease

2. Congenital
 1. Coarctation of Aorta
 2. Interrupted Aortic Arch
 3. Sub-aortic Stenosis
 4. Valvar Aortic stenosis
 5. Tricuspid Atresia
 6. Double Inlet Left Ventricle
 7. Double Outlet Right Ventricle
 8. Mitral Stenosis
 9. Double Orifice Mitral Valve
 10. Mitral Valve Prolapse
 11. Other. Pls describe____________________

Additional lesions:

1. None
2. Total Anomalous Pulmonary Venous Drainage
3. Partial Anomalous Pulmonary Venous Drainage
4. Atrio-ventricular Disconcordance
5. Ventriculo-arterial Disconcordance
6. Isomeric atrial appendages
7. Other: Please describe____________________

Other relevant diagnoses:

Diagnosis 2: _______________ (xxx.xx) Diagnosis 5: _______________ (xxx.xx)
Diagnosis 3: _______________ (xxx.xx) Diagnosis 6: _______________ (xxx.xx)
Diagnosis 4: _______________ (xxx.xx) Other/Missing: _______________ (999)

Co-morbidities /Associations/Syndromes

1. HIV
2. Diaphragmatic hernia
3. Down syndrome
4. Noonan’s syndrome
5. Shone Complex
6. Pulmonary TB
7. Congenital Rubella
8. George’s Syndrome
9. Isolated midline defects
10. Skeletal abnormalities (e.g. kyphosis, scoliosis, radial)
11. VACTERL association
12. Congenital renal abnormalities
13. Other: Please describe____________________

Pregnant at time of intervention?

1. Yes
If yes, gestational age: _______________ (weeks)

2. No
3. Unknown/Missing

RACHS Category score:

☐ 1. ☐ 2. ☐ 3. ☐ 4. ☐ 5. ☐ 6.

Was patient returned to WCH because of contraindications for surgery?
1. Yes
2. No
3. Other

If yes, please describe the nature of the contraindication ___________________________

Outcome:
1. Patient was readmitted for intervention at a later date (within the review period)
2. Patient was deemed as an inappropriate candidate for surgery with no plans for further intervention

3. CATHETERISATION

1. Yes
2. No. If no, please proceed to Section.4 below.

If yes,

Date of catheterization: ________________ (MM/ DD /YYYY)
Age at catheterization: ____________________ (MONTHS)

Primary Indication for catheterization (tick one of the below):
1. Diagnostic
2. Haemodynamic
3. Interventional

If Diagnostic, please complete this section

1. Outcome
 1. Not amenable to surgery or other intervention
 1. Complex and inoperable anatomy
 2. Irreversible PHT
 2. Found to be suitable candidate for surgery
 3. Found to be suitable candidate for interventional catheterization
 4. Other. Please describe. -------------------
2. Catheterization Complications?
 1. Yes
 2. No

3. If yes, (can indicate more than one)
 1. Arrhythmia
 2. Bleeding
 3. Cardiac arrest
 4. Pulmonary hypertensive crisis
 5. Death
 6. Other/Missing

If Haemodynamic, please complete this section
Outcome
 1. Irreversible pulmonary obstructive vascular disease
 2. Reversible pulmonary obstructive vascular disease
 3. Other. Please describe. -----------------------

Baseline Pulmonary vascular resistance index: ____________ (xx.xx)
Post O2 administration pulmonary vascular resistance index: ______ (xx.xx)

Catheterization Complications?
 1. Yes
 2. No
 3. Unknown/Missing
If yes, (can indicate more than one)
 1. Arrhythmia
 2. Bleeding
 3. Cardiac arrest
 4. Death
 5. Pulmonary hypertensive crisis
 6. Other/Missing

If Interventional, please complete this section
Outcome
 1. ASD device closure
 Successful?
 1. Yes 2. No

 2. PDA device closure
 Successful?
 1. Yes 2. No

 3. Aortic stenting
 Successful?
 1. Yes 2. No
 Site of stenting: __________________ (text)

 4. RVOT/branch pulmonary arteries stenting
 Successful?
5. Percutaneous mitral valvuloplasty
 Successful?
 1. Yes 2. No
 3. Initial mean gradient: _____ mmHg
 4. Post valvuloplasty mean gradient: _____ mmHg

6. Percutaneous mitral valvuloplasty
 Successful?
 1. Yes 2. No
 Initial mean gradient: _____ mmHg
 Post valvuloplasty mean gradient: _____ mmHg

7. Radiofrequency ablation
 Successful?
 1. Yes 2. No

8. Other. Pls describe: __
 Successful?
 1. Yes 2. No

Catheterization Complications?
 1. Yes 2. No

If yes, (can indicate more than one)
 1. Arrhythmia
 2. Bleeding
 3. Cardiac arrest
 4. Death
 5. Pulmonary hypertensive crisis
 6. Other/Missing

4. SURGERY
1. Yes
2. No
 If no, why not?
 1. Deemed inoperable
 2. Advanced pulmonary obstructive vascular disease
 3. Complex anatomy
 4. Unknown/Missing

 If no, proceed to next section.

 If yes,
 Date of Surgery: ____________________ (DD/MM/YYYY)

 Type:
 1. Elective
 2. Emergency
 3. Re-operation
If re-operation, date of previous surgery: ____________ (DD/MM/YYYY)

Palliative surgery?
1. Yes
2. No
If yes,
1. Central shunt
2. Glenn shunt
3. PA banding
4. LMBTS
5. RMBTS
6. TCPC
7. Other. Please describe: ________________ (text)

Definitive surgery?
1. Yes
2. No
If yes,
1. Aortic valve replacement
2. Arterial switch procedure
3. ASD repair
4. AVSD repair
5. Coarctation repair
6. Interrupted aortic arch repair
7. Mitral valve replacement
8. PDA ligation
9. Ross- Konno procedure
10. TAPVD Repair
11. Tetralogy of Fallot repair
12. VSD repair
13. Other. Please describe: ________________ (text)

Bypass time: __________ (Minutes)

Cross-clamp time: __________ (Minutes)

Other incidental surgeries?
1. None
2. Cleft palate repair
3. Diaphragmatic hernia repair
4. Diaphragm plication
5. Percutaneous gastrostomy
6. Other. Please describe. ____________________________ (Text)
7. Unknown/Missing

5. COMPLICATIONS
Primary post-operative complications
1. None
2. Arrhythmia
3. Bleeding
4. Cardiac failure
5. Chylothorax
6. Diaphragmatic Paralysis
7. Infection
8. Pleural effusion
9. Pericardial effusion
10. Pulmonary hypertensive crisis
11. Seizures
12. Other: Please describe: ____________________________ (text)
Residual defects
 1. Yes 2. No

If yes
 1. Requiring further intervention
 Describe___ (text)
 2. No further intervention required
 Describe___ (text)

6. DEATH
 1. Yes
 2. No

If yes,
 1. Intraoperative Death
 2. Early postoperative mortality
 3. *Late postoperative mortality
 4. Unknown/Missing

Date of death: _______________ (DD/MM/YYYY)

Cause of Death:
 1. Respiratory failure
 2. Post-operative low cardiac output syndrome
 3. Right heart failure
 4. Myocardial infarction
 5. Refractory ventricular tachyarrhythmia
 6. Traumatic pericardiocentesis
 7. Other: __________________ (text)
 8. Missing/Unknown
7. INPATIENT DAYS
Number of days in PICU/ICU post-surgery: ______________ (0 to XX)
Number of days in hospital: ______________ (0 to XXX)
Date of discharge back to Windhoek: ______________ (DD/MM/YYYY)

8. FOLLOW-UP DETAILS
*Has patient died since returning to Namibia (late mortality)?
 1. Yes
 If yes,
 Date of death: ______________ (DD/MM/YYYY)
 Cause of death if known: ____________________________ (text)
 2. No
 If no,
 Most recent follow up appointment date: ______________ (DD/MM/YYYY)
 Number of kept follow up appointments since intervention: ______________
 Number of expected follow up appointments since intervention: ______________
 3. Unknown, lost to follow up
 Number of attempts to trace patient:
 1. <5
 2. >5
 Details: __ (text)
Addendum 3: Protocol

The Namibia children heart project; a 6-year retrospective review
Research proposal

Dr Fenny Shidhika
MBChB (UCT), FC Paed (SA)

This research is in partial fulfillment of the degree of M.Phil.

Division of Paediatric Cardiology and Critical Care
Department of Paediatrics
School of Child and Adolescent Health
Faculty of Health Sciences
UNIVERSITY OF CAPE TOWN

June 2016
Supervisor:
Dr Liesl Zühlke
Co-Supervisor:
Dr Christopher Hugo-Hamman
Table of Contents

Acronyms and Abbreviations ..57
1 Purpose of this study ...58
2 Literature review ..60
 1.1. Background ...60
 1.2. Initiating the service ..60
 1.3. Capacity building ...63
 1.4. Paediatric Cardiac Services in Africa ...63
3 Aims and objectives ..66
 3.1 Aims ..66
 3.2. Study objectives ..66
4 Methods ..67
 4.1 Study design ..67
 4.2 Inclusion criteria ...67
 4.3 Exclusion criteria ...67
5 Data sources ...67
6 Data management and statistical analysis ...69
7 Ethics ..69
8 Duration of the project ...69
9 Funding budget ...70
10 Outputs/Dissemination of results ..70
11 Proposed graphs/Tables ...71
12 References ...75
Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARF</td>
<td>Acute rheumatic fever</td>
</tr>
<tr>
<td>ASAP</td>
<td>Awareness Surveillance Advocacy Prevention</td>
</tr>
<tr>
<td>CBMH</td>
<td>Chris Barnard Memorial Hospital</td>
</tr>
<tr>
<td>CCF</td>
<td>Congestive cardiac failure</td>
</tr>
<tr>
<td>CHD</td>
<td>Congenital Heart Disease</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval</td>
</tr>
<tr>
<td>CRF</td>
<td>Case report forms</td>
</tr>
<tr>
<td>GAS</td>
<td>Group A Streptococcus</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
</tr>
<tr>
<td>ICU</td>
<td>Intensive Care Unit</td>
</tr>
<tr>
<td>MDGs</td>
<td>Millennium Development Goals</td>
</tr>
<tr>
<td>MHSS</td>
<td>Ministry of Health and Social Services</td>
</tr>
<tr>
<td>NCHP</td>
<td>Namibia Children Heart Project</td>
</tr>
<tr>
<td>PASCAR</td>
<td>Pan African Society of Cardiology</td>
</tr>
<tr>
<td>PPP</td>
<td>Private Public Partnership</td>
</tr>
<tr>
<td>RCWMCH</td>
<td>Red Cross War Memorial Children’s Hospital</td>
</tr>
<tr>
<td>REMEDY</td>
<td>The Global Rheumatic Heart Disease Registry</td>
</tr>
<tr>
<td>RHD</td>
<td>Rheumatic Heart Disease</td>
</tr>
<tr>
<td>RHDGen</td>
<td>RHD Genetic Consortium</td>
</tr>
<tr>
<td>SACH</td>
<td>Save a Child’s Heart</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
</tr>
</tbody>
</table>
1 Purpose of the study

Congenital heart disease (CHD) is the most common birth defect globally and is associated with significant morbidity and mortality1,2. Rheumatic heart disease (RHD), the sequel to acute rheumatic fever (ARF) and Group A streptococcus (GAS), is the most commonly acquired heart disease in developing countries 3. This combination results in a high burden of childhood heart diseases in African countries such as Namibia 4.

Namibia has a vast land area of 820 km2 but a relatively sparse population of just over 2.3 million people. It is categorized as an upper- middle income country with a Gross Domestic Product (GDP) approximated at USD 12,99 billion and a GDP per capita of USD 4677 as reported by the World Bank in 2014. However there is an uneven income distribution as measured by a high Gini co-efficient of 0.67, just below South Africa and Brazil 5. Prior to 2009 there were no dedicated paediatric cardiac services in Namibia and every child with a cardiac condition from an indigent family dependent on state health services suffered the inevitable consequences of their heart disease. The United Nations (UN) millennium development goals (MDGs) did not include heart disease in children. Resources were focused on combating infectious diseases even though CHD is a significant contributor to under-5 mortality globally. Namibia was no exception to this unfortunate reality and children with heart disease continued to suffer neglect. A paediatric cardiac service was thus established in Namibia in 2009 with a step-wise introduction of clinical services, a catheterisation laboratory and finally a limited surgical program. Between 2009 and 2015, over 200 patients were sent to South Africa for cardiac intervention and/or surgery.

This study aims to describe the clinical characteristics of the patients referred to South Africa for further intervention, to quantify morbidity and mortality and to identify
prognostic indicators for perioperative and postoperative morbidity and mortality. Finally, we will document and describe the follow-up patterns of these patients upon return to Namibia.
2.1. Background

Prior to 2010, there was no dedicated cardiac service in Namibia. Without the ability to diagnose or treat heart disease, there was a general lack of awareness about the diseases. Care was provided as part of general paediatric practice with patients (mostly with rheumatic heart disease) occasionally referred for surgery to Kenyatta National Hospital in Kenya. Surgical outcomes of this programme were poor with little effective postoperative care. A visiting cardiothoracic surgeon from South Africa, who mostly catered to the adult population, also provided sporadic services. This was a period of uncertainty for children both with congenital and acquired heart disease.

The Ministry of Health and Social Services (MHSS) inaugurated the cardiac service at Windhoek Central Hospital on 5 August 2008. Professional and technical support was provided by cardiologists and surgeons from the Department of Cardiothoracic Surgery at the University of Cape Town (Red Cross War Memorial Children's Hospital and Groote Schuur Hospital). In one week, operations were performed on nine patients with rheumatic heart disease aged 9-28 years. However, despite considerable media attention, this programme was not sustained and with no resident paediatric or adult cardiologist in the country there followed a return to the status quo of non-delivery.

2.2 Initiating the service

The first paediatric cardiologist started working in Namibia as a visiting specialist with monthly visits to Windhoek Central Hospital from 2007, eventually establishing a regular consultancy service but without any associated surgical services. The Namibia Children Heart Project (NCHP) was a collective effort of a cardio-thoracic surgeon and a paediatric cardiologist to develop a paediatric cardiac service and initiate cardiac surgery. Initially this only entailed a weekly outpatient clinic at Windhoek Central Hospital (WCH) but soon after, a weekly dedicated RHD clinic was introduced. Outreach clinics were introduced at Rundu and Oshakati state hospitals. The first paediatric cardiac catheterization was performed at Windhoek Central Hospital on 18
October 2010. In 2011 limited cardiac surgery was started at the hospital for children over 20 kgs. The NCHP was facilitated by a local paediatrician and supported by local services. A Namibian businessman and philanthropist who funded surgeries for nine children at the Panorama Mediclinic in Cape Town initially provided finance. Thereafter a public-private partnership (PPP) was brokered between MHSS and the Netcare Christiaan Barnard Memorial Hospital (CBMH) in Cape Town where the surgeries were performed.

Currently, patients are screened and on appropriate merits (weight over 20 kg and non-complex disease as defined using risk stratification scores) are referred for surgery in Windhoek. The patients remaining, primarily infants, children and those with complex disease are referred to CBMH for interventions. These patients are carefully selected based on urgency, prognosis and amenability to surgery. To date, more than 200 children have been referred to CBMH in Cape Town. The number of referrals is ultimately dependent on budgetary resources and space within the busy surgical programme at CBMH. Patients are evaluated further at CBMH and a final decision made regarding suitability for surgery or intervention.
Fig 1. Map of Namibia (taken from www.places.co.za.) Windhoek Central Hospital is in the most central region, whereas Rundu and Oshakati Hospitals are situated far north.
2.3. Capacity building

A comprehensive paediatric cardiac service requires a breadth of clinical and nursing skills as well as cardiac anaesthetists, intensivists and technologists. An anaesthetist and a technologist were recruited in 2010. The founding members of the team also conducted teaching modules for the cardiac unit and paediatricians. One nurse received training in paediatric cardiac intensive care at Red Cross War Memorial Children’s Hospital (RCWMCH). Medical officers attached to paediatric cardiology service have been taught fundamentals of RHD and CHD with one attached to RCWMCH as a medical officer for 6 months before returning to the Namibian team in late 2009. Subsequently, this medical officer completed 4 years of paediatric training and obtained a fellowship (FC Paed) from the College of Medicine of South Africa and is now a post-graduate fellow in paediatric cardiology at the RCWMCH.

Continued growth and ensuring sustainability of the service however requires several elements to be in place. These include:

- Human resource development (e.g. there is currently no dedicated paediatric intensivists or paediatric cardiac surgeon in the country)
- Robust research programmes on congenital and acquired heart diseases
- Postgraduate training programme within the country.

Currently Namibia is a key site for several international research collaborations around RHD - the global rheumatic heart disease registry (REMEDY study) 6, the Africa Rheumatic Heart Disease Genetic consortium (RHDGen) and INVICTUS trials.

2.4. Paediatric Cardiac Services in Africa

The prevalence of CHD is 8 - 13 per 1000 live births with Asia reporting the highest prevalence 7. This variability is explained in part by genetic, socio-economic and environmental/epigenetic factors. The high prevalence of ARF/RHD compounds the burden of heart disease in children in developing countries 8. There are little robust data concerning the prevalence of CHD or acquired heart disease in Namibia.

There is increasing realisation that the lack of paediatric cardiac services results in a high number of preventable deaths and significant morbidity. In industrialized
countries, the need to create and fund paediatric units is related to national need. Less well-resourced countries however, struggle to create and fund paediatric units relative and children with heart disease continue to be neglected. A panel convened by the World Health Organisation (WHO) to advise on optimal resources for paediatric cardiac services recommended that a centre should be able to perform 300-500 operations annually for populations of 2 million people. Developing countries need at least one centre per 1 million people \(^9\). Africa faces significant challenges in addressing the needs of children with cardiac lesions amenable to operations or interventions because of the lack of resources in both specialized personnel and funding \(^10\). As a result, there is premature mortality and a higher rate of late presentation, rendering these patients as inoperable or at risk of substantial post-operative morbidity and mortality\(^{11}\).

South Africa, Egypt and Sudan were the first three countries to perform open-heart surgeries in adult and paediatric populations and still have the largest programmes on the continent \(^4\). These are also the only three countries offering paediatric training programmes for both paediatric cardiologists and cardiac surgeons \(^{12}\).

Many African countries have collaborations with centres in the United States, Europe and Asia \(^{11,13,14}\) where visits are facilitated by humanitarian non-governmental organizations. In most cases these have not resulted in the development of local sustainable services. Cardiac operations are often conducted during planned surgical visits; local teams conduct screening operations in advance of the visit\(^{15}\). Capacity building in the form of training is encouraged during these visits to enable the development of local sustainable programmes.

In East Africa, Tanzania has strong collaborations with India and Israel. Recently a specialized cardiac team from Israel (through the Medical Centre’s “Save a Child’s Heart” organization) performed more than 20 operations on children with congenital heart disease in Tanzania. Kenya has a semi-independent service for children. They have facilities with resident cardiac surgeons performing open-heart surgery. Collateral agreements are in place with the UK, India and Israel. The latter have trained the bulk of the workforce in that country. Children’s Heartlink, a non-governmental organization had previously worked with Nairobi Hospital in Nairobi, Kenya \(^{16}\).
In West and Central Africa, Nigeria, Ghana and Ivory Coast are performing limited heart surgery with the help of visiting foreign surgeons too. Sudan has the Salam Centre for Cardiac Surgery run by the Italian humanitarian organisation “Emergency.” Procedures are performed mostly on a pro bono basis. These programmes have largely replaced the previous method of sending individual patients abroad for surgery17,18.

In Southern Africa, Zambia has a similar programme where only complex patients requiring cardiopulmonary bypass are referred to South Africa or India. A local cardiologist provides follow-up. The local Zambian team can provide non-cardiopulmonary bypass surgery and transthoracic echocardiography. South Africa boasts a self-sufficient service in certain centres but still only offers care to 60% of children needing surgery in the public sector. The Walter Sisulu Heart Foundation in South Africa previously contributed to capacity building by training surgeons from other African countries with the intent of establishing centres in their own countries 19. Two Namibian and one Zambian cardiothoracic surgeons successfully completed training through this initiative. Collaborations through the Pan-African Society of Cardiology (PASCAR) are currently underway to ensure that more African surgeons and cardiologists receive training20.

In 2002 Children’s HeartLink briefly supported a programme for training critical care nurses at RCWMCH in Cape Town, South Africa. This non-governmental organization supports partner hospitals with a more sustainable development model in six non-African countries: Brazil, China, India, Malaysia, Ukraine and Vietnam. The main goal of Children’s HeartLink’s program is to build upon the foundation and strengths of any pre-existing paediatric cardiac programmes. By delivering targeted, focused support to an existing program, Children’s HeartLink accelerates the learning and development curve. However, in Sub-Saharan Africa there are very few paediatric cardiac programmes with dedicated paediatric specialists who could benefit from their current delivery model 21. Children’s HeartLink is aware of the tremendous need in Africa and the organisation is currently exploring some collaborative approaches with other organisations, as well as the possibility of developing their own alternative approaches, which may enable additional assistance in this region.
The ASAP (Advocacy, Surveillance, Awareness, Prevention) programme was developed for the prevention and control of rheumatic fever and rheumatic heart disease by African experts at the “All African” meeting on RHD in 2005. RHD is one of the top three aetiological factors of acute heart failure in the younger population of sub-Saharan Africa. As with CHD, there are limited data on mortality related to RHD. In one study conducted in rural Ethiopia, the mortality rate related to untreated rheumatic heart disease reached 12.5%. The Global Registry of Rheumatic Heart Disease (REMEDY) is a collaboration between 12 African countries, India and Yemen including Namibia that used a hospital-based registry aimed to prospectively describe demographic and patient characteristics, prevailing treatment patterns and major outcome patterns in order to provide information to respective governments for formulating policy and guidelines for the control and treatment of RHD.

In general, these curative and preventative efforts for children with heart disease have little governmental commitment in developing countries in Africa. Considering the substantial support from the MHSS, Namibia presents a unique model with a funded national programme and budget to the NCHP.

3 Aims and objectives

3.1 Aims

This study’s four major aims are:

1) To describe the clinical characteristics of the patients referred from Namibia to South Africa for surgery or intervention
2) To quantify morbidity and mortality
3) To identify prognostic indicators for perioperative morbidity and mortality.
4) To document the follow-up patterns of these patients upon return to Namibia.

3.2 Study objectives

- To describe baseline characteristics, diagnoses, interventions and outcomes of the patients who were referred to and received cardiac services at CBMH.
• To quantify morbidity and mortality in this cohort
• To assess how the age at presentation, age at surgery and complexity/high risk stratification scores affect the overall outcome as measured by morbidity and mortality.
• To describe and quantify the number of patients who were deemed inappropriate candidates for surgery at CBMH because of late presentation and/or complexity.
• To document post-intervention, follow up patterns.

4 Methods

4.1 Study design
This is a retrospective study of a cohort of 200 patients with congenital and acquired heart disease recruited in Namibia and referred from WCH to CBMH for surgery and/or intervention between January 2009 and December 2015.

4.2 Inclusion criteria

• All patients sent to CBMH in Cape Town for cardiac interventions between 1 January 2009 and 31 December 2015.

4.3 Exclusion criteria

• Patients outside the said time frame
• Patients whose surgeries were performed at WCH in Windhoek.

5 Data sources
The data sources will be the patients' registries at WCH and CBMH, the cardiologist’s case notes and the cardiothoracic surgeons’ surgical notes. Variables to be analysed include; demographics, diagnosis, catheterization and surgery details, morbidity and mortality as well as follow up details.
A standardised data collection form capturing all relevant demographic, clinical, catheterisation and surgery details, outcomes and follow-up patterns from medical records will be used (Appendix 1).
6 Data management and statistical analysis

The data collected will be captured using Microsoft excel, coded accordingly and analysed using STATA 14.0. Continuous variables will be expressed as means with standard deviations, or medians with interquartile ranges as appropriate. Categorical variables will be expressed as frequencies and percentages. Linear regression models will assess the relationship between the variables. Cox regression models will be used to assess the risk of appropriate variables with survival.

7 Ethics

Ethical approval has been obtained from the Ministry of Health and Social Services (MHSS) in Namibia with a waiver of consent for this study from patients. As this is a retrospective review, we are requesting a waiver of consent from the University of Cape Town Human Ethics Committee. Patients’ identities will be fully protected by assigning a Subject ID number to be used on data collection forms in lieu of the patients’ names. A key linking the names to the Subject IDs will be maintained in a secure manner by the trainee investigator. Raw data will not be shared beyond the research team members.

8 Duration of the project

Data collection, analysis and consolidation will take an estimated 3-6 months. We anticipate completing the project within 6-9 months.
9 Funding budget

An operational budget of R9100 will be required. A cost breakdown is shown in Table 1.

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calls to Namibia to ascertain follow-up status of patients</td>
<td>R1000</td>
</tr>
<tr>
<td>Photocopies of surgical records</td>
<td>R1000</td>
</tr>
<tr>
<td>HDD 2T</td>
<td>R1500</td>
</tr>
<tr>
<td>Printing</td>
<td>R1000</td>
</tr>
<tr>
<td>Stata 14.0 license</td>
<td>R2500 (for student license)</td>
</tr>
<tr>
<td>Open Access Journal Fees (CVJA)</td>
<td>R1500</td>
</tr>
<tr>
<td>Good Clinical Practice Course (Creede)</td>
<td>R600</td>
</tr>
</tbody>
</table>

10 Outputs/Dissemination of results

1. This research is in partial fulfilment of the degree of M.Phil. The final publication will be submitted both for the thesis and for publication in a peer-reviewed journal.

2. Information regarding the outcomes of the study will be shared with the Namibian Ministry of Health and Social Services, Christian Barnard Hospital, Harold and Ethel Pupkewitz Heart Foundation and all local intermediate/secondary hospitals in the referral regions.

3. Outcomes of the study as an abstract will also be presented at national and international cardiology congresses.
11 Proposed graphs/Tables

Table 1. Demographic data

<table>
<thead>
<tr>
<th>Age at presentation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Region in Namibia</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Diagnosis

<table>
<thead>
<tr>
<th>Primary diagnosis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary diagnosis</td>
<td></td>
</tr>
<tr>
<td>Additional associations</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Left to right shunts

<table>
<thead>
<tr>
<th>Atrial septal defect</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrio-ventricular septal defect</td>
<td></td>
</tr>
<tr>
<td>Ventricular septal defect</td>
<td></td>
</tr>
<tr>
<td>Patent ductus arteriosus</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Right ventricular outflow tract obstructions

<table>
<thead>
<tr>
<th>Tetralogy of Fallot</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Double outlet right ventricle- Tetralogy of Fallot type</td>
<td></td>
</tr>
<tr>
<td>Tetralogy of Fallot with pulmonary atresia</td>
<td></td>
</tr>
<tr>
<td>Pulmonary stenosis</td>
<td></td>
</tr>
<tr>
<td>Double chambered right ventricle</td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Left ventricular outflow tract obstructions

<table>
<thead>
<tr>
<th>Coarctation of Aorta</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Interrupted aortic arch</td>
<td></td>
</tr>
<tr>
<td>Subaortic stenosis</td>
<td></td>
</tr>
<tr>
<td>Valvar aortic stenosis</td>
<td></td>
</tr>
</tbody>
</table>
Table 6. Univentricular pathology

<table>
<thead>
<tr>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tricuspid atresia</td>
</tr>
<tr>
<td>Double inlet left ventricle</td>
</tr>
<tr>
<td>Double outlet right ventricle</td>
</tr>
</tbody>
</table>

Table 7. Congenital mitral valve abnormalities

<table>
<thead>
<tr>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitral stenosis</td>
</tr>
<tr>
<td>Double orifice mitral valve</td>
</tr>
<tr>
<td>Mitral valve prolapse</td>
</tr>
</tbody>
</table>

Table 8. Additional lesions

<table>
<thead>
<tr>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total anomalous pulmonary venous drainage</td>
</tr>
<tr>
<td>Partial anomalous pulmonary venous drainage</td>
</tr>
<tr>
<td>Atrio-ventricular disconcordance</td>
</tr>
<tr>
<td>Ventriculo-arterial disconcordance</td>
</tr>
<tr>
<td>Isomeric atrial appendages</td>
</tr>
<tr>
<td>Other</td>
</tr>
</tbody>
</table>

Table 9. Acquired Heart Disease

<table>
<thead>
<tr>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Takayasu arteritis</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
</tr>
</tbody>
</table>

Table 10. Clinical findings

<table>
<thead>
<tr>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulmonary hypertension</td>
</tr>
<tr>
<td>Cardiac failure</td>
</tr>
<tr>
<td>Failure to thrive</td>
</tr>
<tr>
<td>Hypercyanosis</td>
</tr>
</tbody>
</table>
Table 11. Catheterisation

<table>
<thead>
<tr>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic</td>
</tr>
<tr>
<td>Haemodynamic</td>
</tr>
<tr>
<td>Interventional</td>
</tr>
</tbody>
</table>

Table 12. Findings at diagnostic/ haemodynamic catheterisation

<table>
<thead>
<tr>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irreversible PHT</td>
</tr>
<tr>
<td>Complex and inoperable anatomy</td>
</tr>
</tbody>
</table>

Table 13. Interventional catheterisation

<table>
<thead>
<tr>
<th>Interventional Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stent</td>
</tr>
<tr>
<td>Pulmonary balloon valvuloplasty</td>
</tr>
<tr>
<td>Inoue balloon mitral valve commissurotomy</td>
</tr>
<tr>
<td>PDA device closure</td>
</tr>
<tr>
<td>Secundum ASD device closure</td>
</tr>
<tr>
<td>Radio-frequency (RF) ablation</td>
</tr>
</tbody>
</table>

Table 14. Surgical Intervention and details

<table>
<thead>
<tr>
<th>Type of surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palliative</td>
</tr>
<tr>
<td>Full repair</td>
</tr>
</tbody>
</table>

Table 15. Complications

<table>
<thead>
<tr>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrhythmia</td>
</tr>
<tr>
<td>Bleeding</td>
</tr>
<tr>
<td>Low cardiac output syndrome</td>
</tr>
</tbody>
</table>

Table 16. Mortality and details
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intraoperative mortality</td>
<td></td>
</tr>
<tr>
<td>Early postoperative mortality</td>
<td></td>
</tr>
<tr>
<td>Late postoperative mortality</td>
<td></td>
</tr>
</tbody>
</table>

Table 17. Lost to follow-up (n=)

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>Region</td>
<td></td>
</tr>
</tbody>
</table>
12 References

Appendum 4: Diagnosis and procedures codes

Thesis submission\Diagnostic and procedure codes.xlsx