The Management and Outcomes of *Staphylococcus aureus* Bacteraemia at a South African Referral Hospital: A Prospective Observational Study

Nicola Steinhaus

STNNIC017

Supervisors:

Associate Professor M Davies
School of Public Health and Family Medicine

Dr S Wasserman
Department of Medicine

A dissertation submitted to the University of Cape Town for the partial fulfilment of the requirements for the degree of

Master of Public Health (Epidemiology and Biostatistics)

Faculty of Health Sciences
University of Cape Town
June 2018
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.
Preamble
Declaration

I, Nicola Steinhaus, hereby declare that the work on which this dissertation/thesis is based is my original work (except where acknowledgements indicate otherwise) and that neither the whole work nor any part of it has been, is being, or is to be submitted for another degree in this or any other university.

I empower the university to reproduce for the purpose of research either the whole or any portion of the contents in any manner whatsoever.

Signature: [Signed by candidate]

Date: 7 June 2018
Abstract

Staphylococcus aureus is a major human pathogen found worldwide, causing a wide variety of clinical infections. This ranges from skin and soft tissue infections to life-threatening invasive disease, such as *S. aureus* bacteraemia (SAB). Despite being a common cause of both community-acquired and hospital-acquired infections, limited evidence exists on the management and outcomes of *Staphylococcus aureus* bacteraemia (SAB) in resource-limited settings. The aim of this study was to describe a cohort of South African patients with SAB, and explore the factors associated with complicated infection and death. A prospective observational study was performed of patients over the age of 13 years admitted to a South African referral hospital with SAB. Data were analysed using Kaplan Meier survival models and linear regression models.

One hundred consecutive SAB infection episodes in 98 patients were included. SAB was healthcare-associated in 68.4%, with 57.6% of these linked to drip site infection; 24.0% of all cases were caused by methicillin-resistant *S. aureus* (MRSA). Ninety-day mortality was 47.0%, with 83.3% of deaths attributable to SAB. Predictors of 90-day mortality were MRSA (odds ratio (OR) 1.28; 95% confidence interval (CI) 1.0 to 15.1) and the presence of co-morbidities (OR 4.1; 95% CI 1.0 to 21.6). The risk of complicated infection was higher with suboptimal antibiotic therapy (OR 8.5; 95% CI 1.8 to 52.4), female sex (OR 3.8; 95% CI 1.1 to 16.3) and community-acquired infection (OR 7.4; 95% CI 2.0 to 33.1). Definitive antibiotic therapy was suboptimal in 22.6% of all cases. Overall, SAB-related mortality was high. A large proportion of SAB episodes may be preventable, and there is a need for improved antibiotic management in this setting.

Part A. The study protocol, as submitted for departmental and ethical approval, is presented here. It includes the background, rationale and methodology of the research done for this mini-dissertation.

Part B. A structured literature review is presented of articles pertaining to SAB epidemiology and treatment, with the aim to place this research study in context and identify gaps in research.
Part C. A journal-ready manuscript according to the requirements of the International Journal of Infectious Diseases.

Appendix. All additional documentation necessary as addendums in the presentation of this mini-dissertation.
Acknowledgements

Firstly, I would like to express my gratitude to my supervisor, Dr Sean Wasserman, for giving me the opportunity to work on this project. His guidance and encouragement has contributed immensely to my MPH experience, and has challenged me and allowed me to develop professionally. Thank you for your support throughout the process of writing this dissertation.

I would also like to thank my other supervisor, Associate Professor Mary-Ann Davies. Thank you for helping me navigate through my MPH journey and guiding me throughout the dissertation process.

I would also like to thank Mohammed Al-talib, Prudence Ive, Tom Boyles, Colleen Bamford, and Marc Mendelson for their roles in the study design, data collection process and review of the article for publication.

Lastly, I would like to thank my friends and family for standing by me during my MPH journey, and supporting me through thick and thin.
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIDS</td>
<td>Acquired Immune Deficiency Syndrome</td>
</tr>
<tr>
<td>BSI</td>
<td>Bloodstream infection</td>
</tr>
<tr>
<td>CA</td>
<td>Community-acquired</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval</td>
</tr>
<tr>
<td>CO</td>
<td>Community onset</td>
</tr>
<tr>
<td>GSH</td>
<td>Groote Schuur Hospital</td>
</tr>
<tr>
<td>HCA</td>
<td>Healthcare-acquired</td>
</tr>
<tr>
<td>HIV</td>
<td>Human Immunodeficiency Virus</td>
</tr>
<tr>
<td>HO</td>
<td>Hospital onset</td>
</tr>
<tr>
<td>ID</td>
<td>Infectious diseases</td>
</tr>
<tr>
<td>IE</td>
<td>Infective endocarditis</td>
</tr>
<tr>
<td>LMIC</td>
<td>Low and middle income countries</td>
</tr>
<tr>
<td>MIC</td>
<td>Minimum inhibitory concentration</td>
</tr>
<tr>
<td>MRSA</td>
<td>Methicillin-resistant Staphylococcus aureus</td>
</tr>
<tr>
<td>MRSA-B</td>
<td>Methicillin-resistant Staphylococcus aureus bacteraemia</td>
</tr>
<tr>
<td>MSM</td>
<td>Men who have sex with men</td>
</tr>
<tr>
<td>MSSA</td>
<td>Methicillin-sensitive Staphylococcus aureus</td>
</tr>
<tr>
<td>OR</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>PLWH</td>
<td>People living with HIV</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomised control trial</td>
</tr>
<tr>
<td>SAASP</td>
<td>South African Antibiotic Stewardship Programme</td>
</tr>
<tr>
<td>SAB</td>
<td>Staphylococcus aureus bacteraemia</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SSTI</td>
<td>Skin and soft tissue infection</td>
</tr>
<tr>
<td>TOE</td>
<td>Transoesophageal echocardiography</td>
</tr>
<tr>
<td>TTE</td>
<td>Transthoracic echocardiography</td>
</tr>
<tr>
<td>UCT</td>
<td>University of Cape Town</td>
</tr>
<tr>
<td>UTI</td>
<td>Urinary tract infection</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>US</td>
<td>United States</td>
</tr>
</tbody>
</table>
Table of Contents

Declaration... i
Abstract.. ii
Acknowledgements... iv
List of abbreviations... v

Part A. Research Protocol

1. Introduction and statement of purpose... 1
2. Background to the study.. 2
 2.1 Introduction ... 2
 2.2 Clinical Burden ... 2
 2.3 Risk factors .. 3
 2.4 Methicillin-resistant S. aureus (MRSA) .. 3
 2.5 Clinical manifestations .. 4
 2.6 Management ... 5
 2.7 Studies from South Africa ... 6
3. Aims and objectives ... 7
 3.1 Aim .. 7
 3.2 Objectives ... 7
4. Methodology .. 8
 4.1 Definition of terms ... 8
 4.2 Study design .. 10
 4.3 Setting .. 10
 4.4 Population and sampling ... 10
 4.5 Research procedures and data collection methods .. 11
 4.6 Statistical analysis .. 13
 4.7 Statistical power ... 13
5. Ethical considerations ... 20
6. Study limitations .. 22
7. Study significance ... 23
8. References .. 24
Part B. Literature Review

1. Introduction.. 1
2. Aims and Objectives.. 1
3. Search Strategy.. 1
 3.1 Inclusion criteria... 3
 3.2 Exclusion criteria ... 3
4. Epidemiology .. 4
5. Risk factors ... 5
6. Methicillin-resistant S. aureus ... 7
7. Clinical manifestations and outcomes .. 9
8. Management ... 13
9. Studies from South Africa ... 18
10. Conclusion .. 19
11. References .. 21

Part C. Journal Manuscript

The Management and Outcomes of Staphylococcus aureus Bacteraemia at a South African Referral Hospital: A Prospective Observational Study ... 1

 ABSTRACT ... 1
 INTRODUCTION .. 2
 PATIENTS AND METHODS ... 2
 RESULTS .. 5
 DISCUSSION ... 11
 CONCLUSIONS ... 15

Acknowledgements.. 15
References .. 17

Part D. Appendix

A. SAB Database Clinical Capture Form V7 ... 1
B. Letter of Approval from Human Research Ethics Committee .. 4
C. Instructions for Authors from International Journal of Infectious Disease 6
List of tables

Part A. Research Protocol

Table 1: Statistical analysis of objectives...14
Table 2: Data table for objective 1. a) General patient characteristics.......................16
Table 3: Data table for objective 2. a) Inpatient outcomes, and b) 90-day outcomes17
Table 4: Data tables for objective 3. a) Adequacy of antibiotic therapy, b) Time to definitive antibiotic therapy, and c) Echocardiography patient characteristics and findings18
Table 5: Data table for objective 4. a) Univariate logistic regression model output, and b) Multivariate logistic regression model output. ...19

Part B. Literature Review

Table 1. Summary of search strategy employed for this literature review....................2
Table 2 Summary of key studies included on epidemiology of SAB..............................5
Table 3 Summary of key studies included on risk factors for SAB.8
Table 4 Summary of key studies included on MRSA. ..9
Table 5 Summary of key studies included on SAB outcomes....................................12
Table 6 Summary of key studies on management of SAB...16
Table 7 Summary of studies on SAB from South Africa ...19

Part C. Journal Manuscript

Table 1 Patient and infection characteristics. ...6
Table 2 Echocardiograph testing ...7
Table 3 Univariate and multivariate logistic regression analysis for a) 90-day mortality, and b) complicated infection; ..10
List of figures

Part C. Journal Manuscript

Figure 1 Antibiotic susceptibility profiles of S. aureus isolates ..5

Figure 2 Kaplan Meyer (KM) plot for time to definitive antibiotic therapy, stratified by MRSA and MSSA ..8

Figure 3 Kaplan Meier (KM) survival plot for inpatient mortality ...9
Part A. Research Protocol
1. Introduction and statement of purpose

Staphylococcus aureus bacteraemia (SAB) is an important cause of mortality and morbidity globally; outcomes are even worse with methicillin-resistant *Staphylococcus aureus* (MRSA), which is becoming a more frequent cause of SAB. While recommendations for the management of *Staphylococcus aureus* bacteraemia exist and are widely distributed, this disease is notoriously poorly managed. Much research has been done into the risk factors and outcomes of SAB, however very little quality evidence has been generated in a South African setting, which may have different outcomes compared with high income countries because of high rates of HIV and other infectious comorbidities.

The purpose of this observational study is to describe the clinical characteristics, management, and outcomes of patients presenting with *Staphylococcus aureus* bacteraemia in a referral hospital in Cape Town, South Africa, over the period of November 2013 to January 2015.
2. Background to the study

2.1 Introduction

Staphylococcus aureus is a major human pathogen found worldwide, causing a wide range of clinical infections from skin and soft tissue infections to life-threatening invasive disease. *S. aureus* bacteraemia (SAB) is associated with a high mortality and is a common infection in both community and health care settings. Multiple studies have documented the prevalence and outcome of SAB in high income countries, however there remains a paucity of knowledge regarding SAB in low and middle-income countries (LMIC). A global concern is also the lack of high-quality evidence to guide the management of SAB.

2.2 Clinical Burden

In higher income regions, the population incidence of SAB ranges from 10 to 30 per 100 000 person-years, with *S. aureus* being the second most common cause of nosocomial bloodstream infections in the United States (US) (Laupland et al. 2013). Large geographical discrepancies in SAB incidence likely reflect differences in health care systems, infection control practices, and the completeness of surveillance data (Van Hal et al. 2012). Healthcare-associated SAB (HCA-SAB) is associated with higher mortality, longer length of stay, and greater total hospital costs compared to bacteraemia of any other cause in the US (Shorr et al. 2006).

Less is known about the incidence and impact of SAB in relatively lower income regions such as Sub-Saharan African. It is likely comparable to high income nations, and may be higher due to the influence of HIV (Larsen et al. 2012). A systematic review of 22 studies reporting causes of bloodstream infections on the continent found the overall prevalence of SAB amongst adult patients admitted with bloodstream infections to be 5.4% (111 of 2078 isolates) (Reddy et al. 2010). At Groote Schuur Hospital (GSH), an informal review of blood cultures performed in 2012 showed that *S. aureus* was the second most common pathogen recovered after coagulase-negative staphylococci (Tina Wojno, personal communication).
2.3 Risk factors

Various patient factors affect the risk of developing SAB, with the most important of these being the presence of intravascular foreign material, such as peripheral or central intravenous catheters (Jensen et al. 1999), as well as the presence of other prosthetic material, such as joints or heart valves. Patients receiving haemodialysis are thus at a greatly increased risk of SAB (Kallen et al. 2010; Fitzgerald et al. 2017).

Extremes in age have been shown to be associated with increased SAB incidence (Laupland & Church 2014; Allard et al. 2008; Asgeirsson et al. 2011; Huggan et al. 2010). SAB is also more commonly found amongst males, with a male to female ratio of 3:2 (Allard et al. 2008; Klevens et al. 2007; Asgeirsson et al. 2011; Huggan et al. 2010), however a cohort study in Denmark showed that female patients with community-acquired SAB (CA-SAB) experienced increased 30-day mortality compared with male patients (Smit et al. 2017), suggesting gender should be considered in the triage and risk stratification of community-acquired (CA)-SAB patients.

Ethnicity is also associated with different incidences of SAB, with higher incidences on non-white populations (Klevens et al. 2007; Johnson et al. 2005; Cookson et al. 2012). Analysis of socioeconomic disparities between ethnic groups has not been shown fully to account for these differences in incidences (Tong SY, van Hal SJ, Einsiedel L, Currie BJ 2012). The contribution of host genetic susceptibility to these ethnic differences has not yet been investigated.

The HIV-infected population has a significantly increased incidence of SAB (Larsen et al. 2012; Wilson et al. 2008), irrespective of the use of intravenous drugs (Wilson et al. 2008). A lower CD4 count has been independently associated with SAB. Intravenous drug use is a risk factor for higher rates of SAB incidence in all groups, independent of HIV status (Spijkerman et al. 1996; Palepu et al. 2001; Tuazon & Sheagren 1974).

2.4 Methicillin-resistant S. aureus (MRSA)

The development of methicillin resistance in S. aureus is associated with increases in mortality, morbidity, length of hospitalisation and cost of health care (Cosgrove 2006). The contribution of MRSA to SAB has varied globally, with recent reductions shown in some industrialised nations
(Johnson et al. 2012; Cookson et al. 2012; Kallen et al. 2010; Jarvie et al. 2008; Jarlier et al. 2010), likely linked to improvements in infection control procedures. In South Africa, the prevalence of *S. aureus* infections that showed MRSA was 24% between 2007 and 2011 in state sector hospitals (Naidoo et al. 2013), and over 30% in private institutions (Brink et al. 2007).

2.5 Clinical manifestations

The presence of various primary clinical foci for SAB may be identified, with common sources being peripheral vascular catheter-related infections, skin and soft tissue infections, pleuropulmonary infections, osteoarticular infections and infective endocarditis (IE) (Tong SY, van Hal SJ, Einsiedel L, Currie BJ 2012; Laupland et al. 2008; Nickerson et al. 2009; Bishara et al. 2012; Bassetti et al. 2011; Turnidge et al. 2009; Kaasch et al. 2014). However, a focus of infection is not found in approximately 25% of cases, and is associated with worse outcomes than lower risk sites, such as intravenous and urinary tract catheters (Van Hal et al. 2012).

SAB can be classified as “complicated” or “uncomplicated”. This designation has important implications for investigations, duration of antibiotic treatment, and overall prognosis. The following criteria are used to define uncomplicated SAB: (i) exclusion of IE by echocardiography, (ii) no implanted prostheses, (iii) negative results of follow-up blood cultures drawn 2 to 4 days after the initial set, (iv) defervescence within 72 h after the initiation of effective antibiotic therapy, and (v) no evidence of metastatic infection (Fowler et al. 2003). Any other patient should be considered to have complicated SAB. Complicated SAB has been shown to occur in over 40% of cases (Fowler et al. 2003). Establishing the status of individual patients with regard to each of these criteria allows appropriate decisions to be made about subsequent treatment duration, which is longer in complicated infections.

The 12-week all-cause mortality ranges between 18 and 30% (Forsblom et al. 2011; Kaasch et al. 2014), varying according to organism-related factors, such as the presence of cloxacillin resistance (Fowler et al. 2003; Wyllie et al. 2006). A lack of improvement in patient outcomes could reflect both a relative decrease in antibiotic efficacy and larger numbers of older, “sicker” patients that now acquire SAB (Tong et al. 2015). Infection-related mortality is estimated at 13% in high income countries (Van Hal et al. 2012).
Predictors of mortality from SAB include increasing age, the presence of co-morbid conditions, the absence of an identifiable source, extent, and persistence of infection, initial inadequate antibiotic treatment, and failure to achieve source control (Turnidge et al. 2009; Bassetti et al. 2011). Several studies have also shown infection with MRSA to be an independent risk factor for mortality in SAB (Cosgrove 2006; Naidoo et al. 2013). Delayed initiation of optimal antibiotic therapy by 2 days has been shown to more than double the risk of mortality (Marchaim et al. 2010; Lodise et al. 2003).

2.6 Management

Both US and UK guidelines for the management of MRSA-bacteraemia (MRSA-B) are available, and recommend a minimum of 2 weeks intravenous therapy for patients with uncomplicated SAB, and longer (4–6 weeks) intravenous antibiotic therapy for those with complicated infections (Liu et al. 2011; Gemmell et al. 2006). Evidence to support various recommendations has been comprehensively reviewed, and is however largely considered to be of a poor quality. Only a single small randomised control trial (RCT) has been performed to examine the optimal duration of antibiotic therapy for any form of SAB (Rahal 1986).

The South African Antibiotic Stewardship Programme (SAASP) has developed an evidence-based antibiotic prescribing guideline, including an algorithm for the treatment of SAB (Wasserman et al. 2014). A minimum of 4 weeks’ antibiotic therapy is advised for patients with prosthetic heart valves or endocarditis, persistent bacteraemia or fever after 72 hours of antibiotic therapy, or a non-removable or deep-seated site of infection, such as bone.

The involvement of infectious diseases specialists is an important aspect of management. Recommended management strategies are carried out significantly more frequently among patients seen by an infectious diseases specialist, contributing to the survival benefit (Paulsen et al. 2015; Liu 2013; Vogel et al. 2017).

Administration of appropriate antibiotic therapy has an important influence on the outcomes of both methicillin-sensitive S. aureus (MSSA) and MRSA (Van Hal et al. 2012). A meta-analysis of 6 studies demonstrated an almost 2-fold survival benefit (OR, 1.84; 95% CI 1.25 to 2.71) for patients who received appropriate empiric therapy for MRSA-B (Paul et al. 2010).
The treatment of choice for SAB remains cloxacillin or cefazolin (or penicillin if susceptible) for MSSA and vancomycin for MRSA.

One intervention in SAB management that is supported by high quality evidence is early source control, with surgical drainage of collections and removal of intravascular catheters (Thwaites et al. 2017).

Imaging of the cardiac valves is performed in cases of SAB to determine if there is underlying IE present, however it is unresolved whether transoesophageal echocardiography (TOE) is required in all such patients. The SAASP guidelines for SAB recommend echocardiography for the following patients: implanted prosthetic heart valves; clinical evidence of endocarditis; and community-acquired infection, which is associated with an increased risk of complicated SAB. The absence of clinical and microbiological features of complicated SAB have a good negative predictive value (93 to 100%) for endocarditis, and may be used in these settings to identify low risk patients who do not require echocardiography (Holland et al. 2014).

2.7 Studies from South Africa

Only four clinical studies of SAB have been conducted in South Africa, two of which were retrospective in design (Smidt et al. 2015; Naidoo et al. 2013; Perovic et al. 2006; Willcox et al. 1998). A prospective study of 113 consecutive episodes of CA-SAB was conducted at GSH over the years 1986 to 1991 (Willcox et al. 1998). The overall mortality was 35% at 3 months, and complications occurred in 90% of patients, including endocarditis in 17%. A recent prospective study was conducted across three Johannesburg public sector hospitals to describe the epidemiology of MRSA-B and factors associated with poor outcomes (Smidt et al. 2015). The overall proportion of MRSA-B was 36%. The number of patients with complicated SAB was not reported, nor were the overall outcomes and choice and timing of antibiotic therapy.

Because of the paucity of good quality data, the contemporary management and outcomes of SAB in South Africa is not well understood. The proposed study aims to address this knowledge gap by analysing prospectively collected clinical data of consecutive patients with SAB at a referral hospital in Cape Town.
3. Aims and objectives

3.1 Aim

This study aims to improve the recognition and management of SAB by characterising the clinical phenotype in a South African population, as well as exploring the factors associated with poor outcomes.

3.2 Objectives

1. To describe the demographics and clinical characteristics of South African patients with SAB, as well as the microbiological profile of *S. aureus* isolates.
2. To determine the outcomes of patients with SAB at 90 days after the initial blood culture, stratified by CA and HCA, and MRSA and MSSA.
3. To describe the management of SAB, including timing and choice of antibiotic therapy.
4. To explore clinical and microbiological factors associated with complicated SAB and mortality.
4. Methodology

4.1 Definition of terms

Classification of bacteraemia (Friedman et al. 2002):

- Community-acquired: positive blood culture obtained at the time of admission or ≤ 48 hours after admission.
- HCA – hospital onset (HCA-HO): positive blood culture first obtained ≥ 48 hours after admission.
- HCA – community onset (HCA-CO): positive blood culture obtained ≤ 48 hours after admission if the patient (a) had intravenous therapy in the previous 30 days; (b) attended a hospital or received dialysis in the previous 30 days; or (c) resided in a nursing home or long-term care facility.

Source of infection:

- Localising symptoms or signs of infection likely to have preceded bacteraemia.
- Drip site definite: active drip site inflammation in previous 30 days.
- Drip site probable: HCA SAB in a patient with a current or recent (within 30 days) intravenous line and no other clinical focus of infection.

Complicated SAB:

- The presence of 1 or more of the following:
 - Persistent bacteraemia ≥ 72 hours after therapy with an antibiotic to which the isolate has *in vitro* susceptibility
 - Metastatic infection or deep-seated abscess
 - Endocarditis

Cause of death:

- Death was considered to be infection-related if there were persistent signs and symptoms of SAB or if bacteraemia was present at the time of death.
Antibiotic therapy (Asgeirsson et al. 2011; Chang et al. 2003):

- **Definitive**: antibiotic started after the results of a positive blood culture with *S. aureus* are called out by the microbiology laboratory.
 - Appropriate: use of cloxacillin (at 2 g 6-hourly for uncomplicated infection or 3 g 6-hourly if complicated infection) or penicillin if susceptible for MSSA; or vancomycin (with a loading dose of 25–30 mg/kg followed by 15–20 mg/kg 12-hourly) for MRSA.
 - Semi-appropriate: use of cloxacillin < 12 g/day for complicated SAB.
 - Inappropriate: use of cloxacillin or vancomycin at less than half of standard doses for SAB (or without a loading dose of vancomycin).

- **Empiric**: antibiotic started at the time of the index blood culture.
 - Adequate: use of optimal therapy or another antibiotic to which the isolate has *in vitro* susceptibility.
 - Inadequate: use of an antibiotic to which the isolate is not susceptible; use of cloxacillin or vancomycin at less than half of standard doses for SAB (or without a loading dose of vancomycin).

- **Duration of definitive therapy according to SAASP guidelines**
 - Appropriate: ≥ 14 days if no endovascular prosthetic material or endocarditis; resolution of fever and bacteraemia within 72 hours of adequate therapy; and no deep-seated infection (uncomplicated SAB). ≥ 28 days for all other patients (complicated SAB).
 - Semi-appropriate: 10–13 days for uncomplicated SAB; 24-27 days for complicated SAB.
 - Inappropriate: < 10 days for uncomplicated SAB; < 24 days for complicated SAB.

- **Overall definitive antibiotic management**
 - Optimal: both choice and duration appropriate
 - Suboptimal: either choice or duration semi-appropriate
 - Inadequate: either choice or duration inappropriate
Relapse: A new positive blood culture for *S. aureus* ≥ 30 days after a previously sterile blood culture, in a patient who had previously received therapy (any antibiotic or duration) for confirmed SAB.

4.2 Study design

This study is an analysis of a prospective observational study nested within an existing clinical registry in the Division of Infectious Diseases and HIV Medicine (the Division) at Groote Schuur Hospital. The registry and the nested study have prior ethics approval (HREC R004/2012 and HREC 643/2015).

4.3 Setting

The data used for this analysis are from inpatients at GSH, a tertiary referral hospital in the Western Cape province. This hospital serves the Cape metropolitan area, and is the primary teaching hospital associated with the University of Cape Town. GSH also receives direct referrals from clinics within its designated drainage area, and for these patients the hospital serves as a secondary level centre. The hospital includes all major medical and surgical divisions with a total of 893 beds, and has over 40 000 admissions and 21 000 operations per annum. GSH has an on-site diagnostic microbiology laboratory with 3 full-time clinical microbiologists on staff. Results of all significant blood culture isolates (including *S. aureus*) and antibiotic susceptibility data are communicated directly to the requesting physician by phone. All results are also immediately available on the online hospital laboratory results system. However, the finding of gram positive cocci in a positive blood culture is not routinely called out because of high contamination rates with coagulase negative staphylococci.

4.4 Population and sampling

The patient population of GSH is mainly from urban and peri-urban areas, including townships, with a low to middle socio-economic status, and a high burden of HIV and related infections, largely tuberculosis. The clinical details of all inpatient consultations performed by the Division at GSH are recorded in a registry which was set up in 2009, and which currently contains almost 4 000 individual patient records. In November 2013, the Division established a policy that all
patients at GSH with an episode of SAB would be seen by either an infectious diseases specialist or senior registrar. An electronic notification system was set up to facilitate this, whereby the results of all blood cultures positive for *S. aureus* at GSH are automatically sent via email to a member of the Division. The patient is then seen within 36 hours of notification. In addition to this notification, a comment was placed beneath all electronic laboratory reports of SAB episodes detailing the recommended therapy and encouraging referral to Infectious Diseases. This analysis will include the first 100 consecutive distinct SAB infection episodes since the start of the new Divisional policy (November 2013).

Inclusion criteria

- Age > 13 years
- Isolation of *S. aureus* from ≥ 1 blood culture, regardless of clinical evidence of systemic infection (ie. All positive cultures are considered to represent true bacteraemia)
- Single isolate (not mixed with another organism)
- Inpatient at GSH (even if the culture was performed elsewhere)
- A new infection episode is defined as a positive blood culture for *S. aureus* ≥ 30 days after a previously sterile blood culture

4.5 Research procedures and data collection methods

A separate clinical data collection form (in addition to the entry in the general registry) was designed for the purpose of this study (appendix A). Patients with SAB were followed by a member of the Division after the initial consult for the duration of the admission, routinely collected clinical information was entered onto hardcopy data collection forms. 90-day outcome data was obtained using Clinicom, the Provincial digital clinical record system.

The following variables were collected for each patient with SAB and captured on a specifically designed digital spread sheet (Microsoft Excel); the same details are captured in the existing registry:

- **Demographics**
 - Age
 - Sex
• Medical comorbidities
 o Including specific risk factors for SAB: diabetes, renal disease, alcoholism, HIV infection, presence of active drip-site infection, presence of an endovascular or intra-articular prosthetic material
 o Presenting clinical problem
 o Clinical evidence of endocarditis: presence of new murmur with or without peripheral immunological or embolic signs

• Microbiological factors
 o Incubation time
 o MSSA or MRSA
 o Vancomycin minimum inhibitory concentration (MIC) (for MRSA isolates)
 o Antibiogram of the isolate
 o Time to notification of the clinician by the laboratory (time between initial blood culture and notification)

• Management
 o Timing of initial blood culture after admission
 o Timing and number of repeat blood cultures performed (after empiric and definitive therapy)
 o Timing and choice of empiric and definitive therapy
 o Dose of vancomycin: use of loading dose; timing and value of trough concentration
 o Use of source control (if indicated)
 o Use of echocardiography: modality, timing and findings

• Outcomes
 o Complications of therapy and hospital stay
 o Duration of hospital stay
 o Relapse
 o Mortality: inpatients and 90 days
 o Primary cause of death: infection-related or other
4.6 Statistical analysis

Anonymised data captured in Microsoft Excel (2013) spreadsheets will be cleaned and analysed using R (R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.). Descriptive statistics will be used to describe and summarise the data obtained from the study. Normality of data will be assessed using histograms and the Shapiro Wilk test. Kaplan-Meier estimates will be used to describe inpatient survival and time to initiation of antibiotics. Multivariable logistic regression with *a priori* variables identified from the literature will be used to identify factors associated with complicated infection and 90-day mortality. Decisions regarding inclusion of variables in the final model will be based on their effect size on the outcomes of interest. Pictures, graphs, or charts will be used to visually display data. For all statistical tests, a *p*-value ≤ 0.05 will be considered significant. The specific statistical tests used to address each objective are displayed in Table 1. The data tables used to organise and categorise data are displayed in Tables 2-5.

4.7 Statistical power

From the literature 90-day mortality is hypothesised to be approximately 25% or higher, as a result of the relatively higher HIV prevalence in our sample. With a study population of 100 patients, we will have over 85% power to detect mortality with 95% confidence that is up to 15% higher.
Table 1: Statistical analysis of objectives

<table>
<thead>
<tr>
<th>Question</th>
<th>Null hypothesis</th>
<th>Statistical test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>What are the demographics, clinical characteristics and microbiological profile of South African patients with SAB?</td>
<td>NA</td>
<td>Descriptive statistics: Categorical variables will be summarized using proportions. If the expected frequencies of all cells in the table are 1 or greater, and no more than 20% of the cells have an expected frequency less than 5, the chi-squared tests will be used to compare proportions. If the assumptions for expected frequencies are not met, the Fischer’s exact test will be used. Continuous variables (age) will be assessed for normality using histograms and the Shapiro-Wilk test, and groups compared using t-test if the data are normally distributed, and a paired Wilcoxon signed rank test if not.</td>
</tr>
<tr>
<td>Objective 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>What clinical profile and risk factors of SAB patients are associated with the individual outcomes of both inpatient and 90-day mortality, complicated infection and relapse?</td>
<td>There is no association between HCA vs CA SAB and the resistance pattern of the infecting organism and the individual outcomes of both inpatient and 90-day mortality, complicated infection and relapse.</td>
<td>Descriptive statistics as described above. Survival analysis: Kaplan-Meier estimate and Cox proportional hazards model</td>
</tr>
<tr>
<td>Objective 3</td>
<td>What proportion of SAB patients receive adequate antibiotic therapy, including choice of agent and duration of therapy, comparing MSSA-B and MRSA-B?</td>
<td>There is no association between the resistance profile of the infecting organism and antibiotic management.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>What is the probability of receiving definitive antibiotic therapy by a certain point in time, comparing MSSA-B and MRSA-B?</td>
<td>There is no association between MRSA-B and the time to definitive antibiotic therapy.</td>
<td>Survival analysis: Kaplan-Meier estimate and Cox proportional hazards model</td>
</tr>
<tr>
<td>What are the characteristics of patients who underwent echocardiography, and is there a relationship with the diagnostic yield and findings?</td>
<td>There is no association between the presence of clinical endocarditis, prosthetic material and CA-SAB and a positive echocardiography finding.</td>
<td>Descriptive statistics as described above.</td>
</tr>
<tr>
<td>Objective 4</td>
<td>What is the relationship between patient and treatment-related factors and complicated SAB and mortality?</td>
<td>There is no relationship between patient and treatment-related factors and complicated SAB and mortality.</td>
</tr>
</tbody>
</table>
Table 2: Data table for objective 1. a) General patient characteristics.

<table>
<thead>
<tr>
<th>a) General patient characteristics</th>
<th>Healthcare-associated (N, %)</th>
<th>Community-associated (N, %)</th>
<th>OR (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (±SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>60, no. (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male, no. (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co-morbidities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIV positive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal failure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source of infection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drip site definite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drip site probable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSTI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central line</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dialysis catheter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surgical wound</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UTI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drip site sepsis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metastatic foci</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OR = odds ratio; CI = confidence interval; MRSA = methicillin-resistant *staphylococcus aureus*; SSTI = skin and soft-tissue infections; UTI = urinary tract infection.
Table 3: Data table for objective 2. a) Inpatient outcomes, and b) 90-day outcomes.

a) Inpatient Outcomes

<table>
<thead>
<tr>
<th></th>
<th>Mortality</th>
<th>Complicated Infection</th>
<th>Relapse</th>
<th>Uncomplicated</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SAB-related</td>
<td>Overall</td>
<td>Persistent</td>
<td>Met Infec/Abscess</td>
<td>Endocarditis</td>
</tr>
<tr>
<td>Age</td>
<td><60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any comorbidities</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIV+</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal failure</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVS disease</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organism</td>
<td>MSSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MRSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b) 90-day Outcomes

<table>
<thead>
<tr>
<th></th>
<th>Mortality</th>
<th>Complicated Infection</th>
<th>Relapse</th>
<th>Uncomplicated</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SAB-related</td>
<td>Overall</td>
<td>Persistent</td>
<td>Met Infec/Abscess</td>
<td>Endocarditis</td>
</tr>
<tr>
<td>Age</td>
<td><60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any comorbidities</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIV+</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal failure</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVS disease</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organism</td>
<td>MSSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MRSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4: Data tables for objective 3.

a) Antibiotic therapy

<table>
<thead>
<tr>
<th>Choice of empiric AB agent</th>
<th>Organism</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MSSA</td>
<td>MRSA</td>
</tr>
<tr>
<td>Adequate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inadequate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choice of definitive AB agent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appropriate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inappropriate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appropriate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semi-appropriate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inappropriate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall definitive management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suboptimal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inadequate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b) Time to definitive antibiotic therapy

<table>
<thead>
<tr>
<th>Organism</th>
<th>MSSA</th>
<th>MRSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IQR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

c) Echocardiography

<table>
<thead>
<tr>
<th>Result</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical endocarditis</th>
<th>Result</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prosthetic material</th>
<th>Result</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CA vs HCA</th>
<th>Result</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HCA</td>
<td></td>
</tr>
</tbody>
</table>
Table 5: Data table for objective 4. a) Univariate logistic regression model output, and b) Multivariate logistic regression model output.

<table>
<thead>
<tr>
<th>Covariate</th>
<th>a) Univariate model</th>
<th></th>
<th>b) Multivariate model</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P-value</td>
<td>Odds Ratio (CI)</td>
<td>R² (adjusted)</td>
<td>P-value</td>
</tr>
<tr>
<td>Age (ref=<60)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any comorbidities (ref=no)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIV (ref=no)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal failure (ref=no)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female sex (ref=male)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRSA (ref=MSSA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA (ref=HCA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adequacy of definitive AB therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ref=optimal)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suboptimal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inadequate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time to initiation of definitive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timing to notification of results</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vancomycin MIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. Ethical considerations

This study aims to abide by the ethical principles of health research that include justice, beneficence, and autonomy. This study will seek ethical approval from University of Cape Town Human Research Ethics Committee (HREC) before proceeding.

Benefits of study

This study aims to describe the management and outcomes of SAB in a local setting, and the information gained through the study may contribute to improving the care of patients with this condition. Individually, participants may have potentially benefitted from inclusion because of more intensive involvement of infectious diseases physicians in their care.

Risks of study

The data collected for this analysis is part of routine patient management, and will therefore have no impact on the clinical care of included subjects. Patient identifiers will only be accessible to the named investigators and will be removed from data entered into the electronic database. Thus, the potential harm for study subjects will be minimal and not clinical in nature, thus adhering to the ethical principle of non-maleficence.

Informed consent process

The analysis makes uses of data collected for an existing clinical registry which has been exempted from the requirement of informed consent (HREC R004/2012). Additional data collected especially for this study is included in this exemption.

Privacy and confidentiality

Patient names will not be included in the electronic dataset used for the final analysis. Data from hardcopy extraction sheets will be transferred to and stored in a dedicated, password-protected Excel spreadsheet created specifically for the proposed study. Only the named investigators will have access to this database. Data extraction sheets will be filed and stored in a locked office.
Dissemination of study results

Results of this study will be made available and accessible to researchers in the field of infectious disease by publishing results in the form of a manuscript in a peer-reviewed journal that will be identified. The results of the study will also be made available to the staff at GSH.
6. Study limitations

As the study design is relying on data collected by clinicians during patient care, it relies on the accuracy and completeness of data. The relatively small sample size will limit the statistical power of the study. Additional involvement of ID clinicians in the care of patients with SAB as a part of the study could bias results leading to improved outcomes. This could limit the generalizability of the results to other tertiary hospitals within Sub-Saharan Africa.
7. Study significance

An improved awareness of the management and outcomes of SAB cases in a local South African setting has several potentially significant benefits. The main implication is contributing more knowledge about this disease in our setting, and understanding practice and risk factors that could improve future management. Improved local knowledge about SAB can be useful in predicting prognoses and improving patient outcomes, possibly throughout South Africa.
8. References

Cookson, B. et al., 2012. Evaluation of the national Cleanyourhands campaign to reduce *Staphylococcus aureus* bacteraemia and *Clostridium difficile* infection in hospitals in England and Wales by improved hand hygiene: four year, prospective, ecological, interrupted time series stud. *British Medical Journal*, 344, pp.1–11.

Forsblom, E. et al., 2011. Predisposing factors, disease progression and outcome in 430 prospectively followed patients of healthcare- and community-associated...

Part A. Research Protocol

Nickerson, E.K. et al., 2009. *Staphylococcus aureus* Bacteraemia in a Tropical Setting: Patient

Part B. Literature Review
1. Introduction

Staphylococcus aureus is a major human pathogen found worldwide, causing a wide range of clinical infections from skin and soft tissue infections to life-threatening invasive disease. A severe manifestation is *S. aureus* bacteraemia (SAB), a common cause of both community- and hospital-acquired infections. Multiple studies have documented the prevalence and outcomes of SAB in high income countries (HIC), however there remains a paucity of knowledge regarding SAB in low and middle-income countries (LMIC). This information is needed to inform risk stratification and identify areas for improvement in case management. A global concern is also the lack of high-quality evidence to guide the management of SAB.

2. Aims and Objectives

This literature review aims to synthesise and appraise the current literature regarding SAB epidemiology, treatment and outcomes, with the aim to place this research study within context and identify gaps in research.

The specific review objectives are to report the following items and identify needs for further research:

1. The prevalence and clinical burden of SAB
2. Risk factors for acquiring SAB
3. The role of antibiotic-resistant *S. aureus* in SAB
4. Clinical manifestations and outcomes of SAB
5. Management of SAB
6. SAB in LMIC, particularly Sub-Saharan Africa

3. Search Strategy

Literature was sourced using PubMed (https://www.ncbi.nlm.nih.gov/pubmed/), Google Scholar (https://scholar.google.co.za/) and the Cochrane library (http://www.cochranelibrary.com/). Medical Subject Heading (MeSH) terms were used to
search Pubmed as a primary source of literature. Google Scholar and the Cochrane Library were use as secondary sources to identify and explore any further articles.

The search terms used across all three databases were similar and focussed on the same themes. The first theme was the epidemiology of SAB, both worldwide and in Sub-Saharan Africa. This included specific mentions of prevalence, risk factors and outcomes. The second theme was the management and treatment of SAB, both worldwide and in Sub-Saharan Africa. The third theme was SAB caused specifically by methicillin-resistant \textit{S. aureus} (MRSA). The specific search terms and strategies are shown in Table 1.

Table 6 Summary of search strategy employed for this literature review

<table>
<thead>
<tr>
<th>1. PubMed</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Theme</td>
<td>Search terms</td>
<td>Search Strategy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Google Scholar</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Epidemiology of SAB</td>
<td>\textit{Staphylococcus aureus} bacteraemia, epidemiology, prevalence, mortality, risk factors and Africa</td>
<td>\textit{Staphylococcus aureus} bacteraemia AND (epidemiology OR prevalence OR mortality OR risk factors) AND (South Africa OR Africa OR Sub-Saharan Africa OR low-income countries OR low-middle income countries)</td>
</tr>
</tbody>
</table>
3. Cochrane Library

Management of SAB	*Staphylococcus aureus* bacteraemia and management	*Staphylococcus aureus* bacteraemia AND (management OR treatment OR antibiotics OR vancomycin)
Methicillin-resistant *S. aureus* bacteraemia (MRSA-B) | Methicillin-resistant *Staphylococcus aureus* bacteraemia | Methicillin-resistant *Staphylococcus aureus* bacteraemia

3.1 Inclusion criteria

- All published articles written in English. This review was not limited to studies from LMIC as the amount of research from these areas is limited, however papers from Sub-Saharan Africa and other LMICs were given priority, with key papers cited from other regions.
- The measures reported included prevalence, risk factors, complicated infection and mortality.
- Experimental and observational studies were included in this review. More recent studies (published in the past 10 years [2007 to 2017]) were given priority, as were reviews, very large cohorts and multi-centre studies.
- The bibliographies of all the literature that met the inclusion criteria were further examined based on the inclusion criteria used for the initial literature search from in PubMed and Google Scholar.

3.2 Exclusion criteria

- Studies reporting on outcomes within highly specified patient groups e.g. intravenous drug users.
4. Epidemiology

In higher income regions, defined as having a gross national income of $12,236 or more per capita (World Bank Group 2018), the population incidence of SAB ranges from 10 to 30 per 100,000 person-years, with *S. aureus* being the second most common cause of bloodstream infections (Laupland et al. 2013). Large geographical discrepancies in SAB incidence likely reflect differences in healthcare systems, infection control practices, and the completeness of surveillance data (Van Hal et al. 2012). Healthcare-associated SAB (HCA-SAB) is associated with higher mortality, longer length of stay, and greater total hospital costs compared to bacteraemia of any other cause in the United States (US) (Shorr et al. 2006).

Far less is known about the incidence and impact of SAB in relatively lower income regions such as Sub-Saharan African. It is likely comparable to high income nations, and may be higher due to the influence of HIV (Larsen et al. 2012). In a systematic review of 22 studies reporting causes of bloodstream infections from more than ten countries on the African continent, the overall prevalence of SAB amongst adult patients admitted with bloodstream infections was 5.4% (111 of 2078 isolates) (Reddy et al. 2010). This study was limited in that hospital-based cohorts were used to describe community-acquired infections, which may have restricted inclusion to those with more severe disease or those who had access to healthcare facilities, resulting in falsely lowered estimates of non-malaria bloodstream infections. Included studies spanned a period of more than 20 years, and therefore acted more as a guide of the range of pathogens causing bloodstream infections, rather than as a reference of current prevalence levels.

A recent cross-sectional study using passive laboratory surveillance of routine clinical cultures from three state hospitals in Gauteng Province, South Africa, showed an SAB incidence of 1.9 to 3.7 cases per 1000 admissions (Smidt et al. 2015). The proportions of healthcare-associated and community-associated SAB were not reported. At Groote Schuur Hospital (GSH), a state hospital in Cape Town, South Africa, an informal review of blood cultures in 2014 showed that over 12 months SAB accounted for 232 of 2,222 (10.4%) positive cultures, and was the second most common pathogen recovered after coagulase-negative staphylococci (Tina Wojno, personal communication). Longitudinal population-based studies are needed to more accurately determine the burden of *S. aureus* in lower income nations.
Table 7 Summary of key studies included on epidemiology of SAB.

<table>
<thead>
<tr>
<th>Author</th>
<th>Year of publication</th>
<th>Study period</th>
<th>City and country</th>
<th>Study design</th>
<th>Sample size; Median age (IQR)</th>
<th>Aim</th>
<th>Key findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larsen et al</td>
<td>2012</td>
<td>1995 - 2007</td>
<td>Denmark</td>
<td>Cohort study</td>
<td>4 871 cases; 92 116 controls</td>
<td>To assess incident rates of SAB in HIV-infected population in era of ART</td>
<td>Among HIV-infected individuals, a latest CD4 count less than 100 cells/mL was the strongest independent predictor of SAB.</td>
</tr>
<tr>
<td>Laupland et al</td>
<td>2013</td>
<td>2000 - 2008</td>
<td>Finland, Canberra, Australia, Sweden, Canada, Denmark</td>
<td>Prospective review</td>
<td>18 430; not specified</td>
<td>To define the occurrence of all MSSA and MRSA-bacteraemia within a large multinational population and to evaluate temporal and regional differences</td>
<td>Annual incidence 26.1/100 000 population; incidence rates of hospital-onset MSSA community-onset MRSA and hospital-onset MRSA BSI varied substantially.</td>
</tr>
<tr>
<td>Reddy et al</td>
<td>2010</td>
<td>Not specified</td>
<td>≥10 African countries</td>
<td>Systemic review and meta-analysis</td>
<td>58 296; varied</td>
<td>To study the epidemiology of the leading causes of BSI in Africa</td>
<td>531 (9.5%) of non-malarial BSI were due to Staphylococcus aureus.</td>
</tr>
<tr>
<td>Shorr et al</td>
<td>Not specified</td>
<td>Mostly high-income countries</td>
<td>Systematic review</td>
<td>Not specified</td>
<td>To review the predictors of mortality in SAB</td>
<td>Incidence rates vary from 19 to 50/100 000 population; age most consistent predictor of mortality.</td>
<td></td>
</tr>
<tr>
<td>Van Hal et al</td>
<td>2012</td>
<td>Not specified</td>
<td>Mostly high-income countries</td>
<td>Systematic review</td>
<td>Not specified</td>
<td>To review the predictors of mortality in SAB</td>
<td>Incidence rates vary from 19 to 50/100 000 population; age most consistent predictor of mortality.</td>
</tr>
</tbody>
</table>

Note: Studies from South Africa are included in a separate table. ART = antiretroviral therapy; BSI = bloodstream infection; HCA = healthcare-associated; IQR = inter-quartile range; HIV = human immunodeficiency virus; MSSA = methicillin-sensitive *S. aureus*; MRSA = methicillin-resistant *S. aureus*; SAB = *S. aureus* bacteraemia; SD = standard deviation.
5. Risk factors

Various patient factors affect the risk of developing SAB, with the most important of these being the presence of intravascular foreign material, such as peripheral or central intravenous catheters (Jensen et al. 1999; Bassetti et al. 2011), as well as the presence of other prosthetic material, such as joints or heart valves (Forsblom et al. 2011).

Extremes in age have also been shown to be associated with increased SAB incidence. Various studies have shown high rates in the first few years of life, a low incidence in young adulthood, and a gradual rise in incidence with advancing age (Laupland & Church 2014; Allard et al. 2008; Asgeirsson et al. 2011; Huggan et al. 2010). In a South African study, the greatest proportion of SAB occurred in those aged <5 years (Smidt et al. 2015). SAB is also more commonly found amongst males, with a male to female ratio of 3:2 (Allard et al. 2008; Klevens et al. 2007; Asgeirsson et al. 2011; Huggan et al. 2010). However a cohort study in Denmark showed that female patients with community-acquired SAB (CA-SAB) experienced an increased 30-day mortality compared with male patients (Smit et al. 2017), suggesting that sex should be considered in the triage and risk stratification of CA-SAB patients. Ethnicity is also associated with different incidences of SAB, with higher incidences on non-white populations (Klevens et al. 2007; Johnson et al. 2005; Cookson et al. 2012).

People living with HIV (PLWH) have a significantly increased incidence of SAB (Larsen et al. 2012; Wilson et al. 2008). While some of this increase is related to higher rates of intravenous drug use amongst PLWH, SAB incidence is still increased amongst the non-injection drug-using HIV-infected population (Wilson et al. 2008), in whom lower CD4 cell counts have been independently associated with SAB. Men who have sex with men (MSM) have higher rates of HCA-SAB (Wilson et al. 2008). Intravenous drug use is a major risk factor for SAB in all groups, independent of HIV status (Spijkerman et al. 1996; Palepu et al. 2001; Tuazon & Sheagren 1974). In South Africa, HIV infection is associated with a greater incidence of SAB in children (Groome et al. 2012).

Patients receiving haemodialysis are at greater risk of SAB (Kallen et al. 2010; Fitzgerald et al. 2017). The main factor responsible for this increased risk is the presence of an intravascular access device (Fitzgerald et al. 2017). Other host factors amongst dialysis
patients, such as neutrophil dysfunction, iron overload, diabetes, and increased rates of colonisation (Zimakoff et al. 1996), contribute to an impairment in host immunity and thus increase the likelihood of invasive \textit{S. aureus} infections. Dialysis can also affect plasma concentrations of antibiotics, thus potentially decreasing their efficacy and increasing the risk for relapsing SAB (Jeremiah et al. 2014; Vandecasteele & Vriese 2011).

6. Methicillin-resistant \textit{S. aureus}

The development of methicillin resistance in \textit{S. aureus} is associated with increases in mortality, morbidity, length of hospitalisation and cost of health care (Cosgrove 2006). The contribution of MRSA to SAB has varied globally, with recent reductions shown in some high income nations (Johnson et al. 2012; Cookson et al. 2012; Kallen et al. 2010; Jarvie et al. 2008; Jarlier et al. 2010), likely linked to improvements in infection control procedures. MRSA in the US is largely community-acquired and caused by a single clone, USA300. Molecular epidemiology of South African strains suggests that this clone is largely absent, and most MRSA is HCA (Goering et al. 2008). A long-term study in Malawi showed an increase of methicillin resistance in SAB infections from 7.7\% of infections in 1998 to 18.4\% in 2016 (Musicha et al. 2017). In South Africa, the prevalence of \textit{S. aureus} infections that showed methicillin resistance was approximately 24\% between 2007 and 2011 in state sector hospitals (Naidoo et al. 2013; Perovic et al. 2006), and over 30\% in private institutions (Brink et al. 2007). In 2015, reported MRSA levels had increased to 36\% (Smidt et al. 2015). Approximately 50\% of 63 HCA \textit{S. aureus} bloodstream isolates isolated from patients were resistant to cloxacillin at GSH in Cape Town (Mckay & Bamford 2015).

In a recent local study of 365 SAB cases amongst children, MRSA was responsible for 26\% of community-acquired SAB and 72\% of nosocomial infections (Naidoo et al. 2013). Infants, children with malnutrition, and residents of long-term care facilities were at highest risk for MRSA bacteraemia (Naidoo et al. 2013). The study was retrospective in nature, and may have been biased by non-standardised indications for blood culture, variability in blood culture volumes collected, and the initiation of antibiotics prior to blood culture collection in some cases. One study has shown HIV infection to be a predictor for MRSA infection in the South African setting (Smidt et al. 2015), however 50\% of the isolates from one of the
hospitals in the study were not tested for antibiotic susceptibility, which may have biased the results. There was also a large amount of missing data surrounding HIV status and CD4 count.
Table 3 Summary of key studies included on risk factors for SAB.

<table>
<thead>
<tr>
<th>Author</th>
<th>Year of publication</th>
<th>Study period</th>
<th>City and country</th>
<th>Study design</th>
<th>Sample size; Median age (IQR)</th>
<th>Aim</th>
<th>Key findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allard et al</td>
<td>2008</td>
<td>1991-1993 and 2003-2005</td>
<td>Quebec, Canada</td>
<td>Retrospective cohort</td>
<td>324; 66 years (54-75 years)</td>
<td>To examine changes in the incidence and mortality associated with SAB before and after the emergence of MRSA</td>
<td>Incidence of MSSA-B stable, incidence of MRSA-B increased from 0 to 7.4/100,000 population.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Incidence rose from 22.7 to 28.9 per 100,000 per year during the period.</td>
</tr>
<tr>
<td>Asgeirsson et al</td>
<td>2011</td>
<td>1995-2008</td>
<td>Iceland</td>
<td>Retrospective cohort</td>
<td>692; 63 years</td>
<td>To analyse changes in the incidence and mortality of adult SAB in Iceland</td>
<td>Risk factors for HCA: renal failure, previous hospitalisation or antibiotics. Septic shock, MRSA and inadequate antimicrobial treatment associated with increased mortality.</td>
</tr>
<tr>
<td>Bassetti et al</td>
<td>2011</td>
<td>Jan 2007 – Dec 2007</td>
<td>Italy</td>
<td>Case control + cohort</td>
<td>171; Not specified</td>
<td>To explore epidemiological characteristics and predisposing risk factors associated with HCA and CA SAB, and to evaluate any differences in mortality and efficacy of initial antimicrobial therapy on treatment outcome</td>
<td>Risk factors for HCA: renal failure, previous hospitalisation or antibiotics. Septic shock, MRSA and inadequate antimicrobial treatment associated with increased mortality.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Risk factors for HCA: renal failure, previous hospitalisation or antibiotics. Septic shock, MRSA and inadequate antimicrobial treatment associated with increased mortality.</td>
</tr>
<tr>
<td>Cookson et al</td>
<td>2012</td>
<td>2004 - 2008</td>
<td>England, Wales</td>
<td>Prospective study</td>
<td>Not specified</td>
<td>To evaluate the impact of the Cleanyourhands campaign on SAB incidence</td>
<td>Rates fell for MRSA bacteraemia (1.88 to 0.91 cases per 10,000 bed days).</td>
</tr>
<tr>
<td>Fitzgerald et al</td>
<td>2017</td>
<td>1998 - 2009</td>
<td>Dublin, Ireland</td>
<td>Retrospective analysis</td>
<td>891; Not specified</td>
<td>To review the changing incidence of SAB in haemodialysis patients</td>
<td>Overall rate of SAB was 17.9 per 100 patient-years. The rate of MRSA was 5.6 per 100 patient-years.</td>
</tr>
<tr>
<td>Forsblom et al</td>
<td>2011</td>
<td>1999-2002</td>
<td>Finland</td>
<td>Prospective cohort</td>
<td>430; Not specified</td>
<td>To compare predisposing factors, disease progression and outcome of HCA- and CA-SAB</td>
<td>54% were HCA. HCA associated with permanent foreign body; deep infection, no infection focus.</td>
</tr>
<tr>
<td>Huggan et al</td>
<td>2010</td>
<td>1998-2006</td>
<td>Canterbury, New Zealand</td>
<td>Retrospective analysis</td>
<td>779; 64 years</td>
<td>To describe longitudinal incidence of SAB in a region of New Zealand with low MRSA prevalence</td>
<td>Crude incidence of S. aureus bacteremia varied between 18.5–27.3/100,000 per annum.</td>
</tr>
<tr>
<td>Kallen et al</td>
<td>2010</td>
<td>2005-2008</td>
<td>United States</td>
<td>Prospective surveillance</td>
<td>21 503; not specified</td>
<td>To describe changes in rates of invasive health care–associated MRSA infections from 2005 through 2008 among residents of 9 US metropolitan areas</td>
<td>Incidence of HCA community-onset infections was 2.20 per 10,000 population in 2005 and decreased 5.7% per year.</td>
</tr>
<tr>
<td>Wilson et al</td>
<td>2008</td>
<td>200-2004</td>
<td>United States</td>
<td>Retrospective cohort</td>
<td>4 607; not specified</td>
<td>To define the incidence and risk factors for methicillin-resistant Staphylococcus aureus (MRSA) bacteraemia in an HIV-infected population</td>
<td>Incidence 19.6 cases per 1000 person-years. Risk factors injection-drug use; renal disease and CD4 <200 cells/mL.</td>
</tr>
</tbody>
</table>

Note: studies included in tables from previous sections are not repeated. Studies from South Africa are included in a separate table. HCA = healthcare-associated; IQR = inter-quartile range; HIV = human immunodeficiency virus; MSSA = methicillin-sensitive S. aureus; MRSA = methicillin-resistant S. aureus; SAB = S. aureus bacteraemia.
Table 4 Summary of key studies included on MRSA.

<table>
<thead>
<tr>
<th>Author</th>
<th>Year of publication</th>
<th>Study period</th>
<th>City and country</th>
<th>Study design</th>
<th>Sample size; Median age (IQR)</th>
<th>Aim</th>
<th>Key findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goering et al</td>
<td>2008</td>
<td>2004-2005</td>
<td>United States, Peru, South Africa, India, Germany, Russia</td>
<td>Prospective molecular analysis</td>
<td>292; not specified</td>
<td>To determine the genetic characteristics of Staphylococcus aureus</td>
<td>The most common MRSA clone had sequence type 8: USA300. This clone was isolated exclusively in the United States and is CA.</td>
</tr>
<tr>
<td>Mckay et al</td>
<td>2015</td>
<td>October 2011-September 2012</td>
<td>Cape Town, South Africa</td>
<td>Retrospective review</td>
<td>740; not specified</td>
<td>To describe the distribution of organisms and of antibiotic susceptibility among isolates from blood cultures at a tertiary academic hospital, stratifying by place of infection acquisition.</td>
<td>Nearly three-quarters of infections were healthcare acquired. All CA SAB isolates v. 52.4% of HCA isolates were susceptible to cloxacillin.</td>
</tr>
<tr>
<td>Jarlier et al</td>
<td>2010</td>
<td>1993-2007</td>
<td>Paris, France</td>
<td>Prospective observational</td>
<td>NA</td>
<td>To determine the effect of a long-term infection prevention initiative on MRSA rates</td>
<td>There was a significant progressive decrease in MRSA burden (~35%) from 1993 to 2007.</td>
</tr>
<tr>
<td>Kallen et al</td>
<td>2010</td>
<td>2005-2008</td>
<td>United States</td>
<td>Prospective observational</td>
<td>21 503, not specified</td>
<td>To describe changes in rates of invasive healthcare-associated MRSA infections from 2005 through 2008 among residents of 9 US metropolitan areas</td>
<td>The incidence rate of hospital-onset invasive MRSA infections was 1.02 per 10 000 population in 2005 and decreased 9.4% per year.</td>
</tr>
<tr>
<td>Musicha et al</td>
<td>2017</td>
<td>1998-2016</td>
<td>Malawi</td>
<td>Surveillance study</td>
<td>29 183</td>
<td>To report long-term trends in bloodstream infection and antimicrobial resistance</td>
<td>MRSA was first reported in 1998 at 7.7% and represented 18.4% of S aureus isolates in 2016.</td>
</tr>
</tbody>
</table>

Note: studies included in tables from previous sections are not repeated. Studies from South Africa are included in a separate table. HCA = healthcare-associated; IQR = inter-quartile range; MSSA = methicillin-sensitive *S. aureus*; MRSA = methicillin-resistant *S. aureus*; SAB = *S. aureus* bacteraemia.
7. Clinical manifestations and outcomes

The presence of various primary clinical foci for SAB may be identified, with common sources being vascular catheter-related infections, skin and soft tissue infections, pleuropulmonary infections, osteoarticular infections and infective endocarditis (IE) (Laupland et al. 2008; Bishara et al. 2012; Bassetti et al. 2011; Turnidge et al. 2009; Kaasch et al. 2014; Van Hal et al. 2012). In many cases a source of infection is not found, and is associated with worse outcomes than infection sources such as intravenous and urinary tract catheters (Van Hal et al. 2012).

SAB can be classified as “complicated” or “uncomplicated”. This designation has important implications for investigations, duration of antibiotic treatment, and overall prognosis. A key The following criteria have been used to define uncomplicated SAB: (i) exclusion of IE by echocardiography, (ii) no implanted prostheses, (iii) negative results of follow-up blood cultures drawn 2 to 4 days after the initial set, (iv) defervescence within 72 hours (h) after the initiation of effective antibiotic therapy, and (v) no evidence of metastatic infection (Fowler et al. 2003). Any other patient should be considered to have complicated SAB. In a prospective, observational cohort study of 724 patients with SAB in the US, complicated infection was present in over 40% of cases (Fowler et al. 2003). Establishing the status of individual patients regarding each of these criteria allows appropriate decisions to be made about subsequent treatment duration. Failure of identification of complications can lead to relapsing bacteraemia and poor outcomes (Fowler et al. 2003).

A pooled analysis of 3,395 adult patients with SAB in centres in Germany, Spain, the UK and the US showed a crude 90-day mortality of 29.2% (Kaasch et al. 2014), increased in cases of HCA and MRSA infection. However only tertiary care patients were included, and limited data were available describing disease comorbidities and disease severity at SAB onset. A UK study of 724 adult patients reported a mortality of 29.0%, varying according to organism-related factors, such as the presence of cloxacillin resistance (Fowler et al. 2003). A lack of improvement in patient outcomes could reflect both a relative decrease in antibiotic efficacy and larger numbers of older, “sicker” patients that now acquire SAB (Tong et al. 2015). Infection-related mortality is estimated at 13% in high income countries (Van Hal et al. 2012).
Predictors of mortality from SAB include increasing age, the presence of co-morbid conditions, the absence of an identifiable source, extent, and persistence of infection, initial inadequate antibiotic treatment, and failure to achieve source control (Bassetti et al., 2011; Braquet et al., 2016; Turnidge et al., 2009). Several studies have also shown infection with MRSA to be an independent risk factor for mortality in SAB (Cosgrove 2006; Naidoo et al. 2013). Delayed initiation of optimal antibiotic therapy by two days has been shown to more than double the risk of mortality (Marchaim et al. 2010; Lodise et al. 2003).

While HIV is associated with an increased risk of HIV acquisition, its effect on mortality remains uncertain. Several studies have reported no increase in mortality (Perovic et al., 2006; Senthilkumar et al., 2001). A more recent case-control study in Denmark showed an increased 30-day mortality rate (OR 11.9; 95% 2.2 to 65.9) in PLWH (Jaliff et al., 2014), however the retrospective design and small sample size of this study may have limited its validity, and HIV-related factors such as CD4 count, antiretroviral therapy and viral load were not associated with increased mortality. This may suggest that it is increased interaction with healthcare services and subsequent exposure to *S. aureus* via venous cannulation, resulting in increased rates of re-infection, which may be contributing more to the increased mortality rather than HIV infection itself.
<table>
<thead>
<tr>
<th>Author</th>
<th>Year of publication</th>
<th>Study period</th>
<th>City and country</th>
<th>Study design</th>
<th>Sample size; Median age (IQR)</th>
<th>Aim</th>
<th>Key findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bishara et al</td>
<td>2012</td>
<td>1988-2007</td>
<td>Petah Tikva, Israel</td>
<td>Retrospective cohort</td>
<td>1347; not specified 2091; 67.8 years (55.5-78.9 years)</td>
<td>To analyse clinical features and outcomes of patients with HCA SAB. To identify prognostic factors in a large prospective cohort of SAB patients and to analyse the impact of first-line anti-biotics on case-fatality.</td>
<td>Mortality at 30 days was 40.2% (507/1261) and at 1 year was 63.4% (800/1261). Week 12 case-fatality rate was 671/1972 (34.0%). Main prognostic factors: age, septic shock, unknown primary focus, metastatic cancer. Initiating empiric antibiotics with antistaphylococcal penicillins or vancomycin may be associated with better outcome in MSSA bacteraemia.</td>
</tr>
<tr>
<td>Braque et al</td>
<td>2016</td>
<td>2009-2011</td>
<td>France</td>
<td>Prospective cohort</td>
<td>724; 58.5 years (SD 16.2)</td>
<td>To define readily available clinical characteristics that could help identify patients at risk for complicated SAB.</td>
<td>Complicated SAB was present in 43% of 724 consecutive adult hospitalized patients. A scoring system based on the presence or absence of 4 risk accurately identified complicated SAB.</td>
</tr>
<tr>
<td>Fowler et al</td>
<td>2003</td>
<td>1994-1999</td>
<td>Durham, England</td>
<td>Prospective cohort</td>
<td>3395; 64 years (50-75 years)</td>
<td>To describe how its clinical presentation varies between populations and to identify common determinants of outcome.</td>
<td>Crude 14 and 90-day mortality was 14.6% and 29.2%, respectively. Age, MRSA bacteraemia, nosocomial acquisition, endocarditis, and pneumonia were independently associated with death, but a strong association was with an unidentified infective focus.</td>
</tr>
<tr>
<td>Kaasch et al</td>
<td>2014</td>
<td>2006-2011</td>
<td>Germany, Spain, United Kingdom, United States</td>
<td>Prospective cohort</td>
<td>1508; not specified 458; 54.2 years (SD 16.6 years)</td>
<td>To describe the epidemiological profile of SAB Case fatality rate higher in MRSA (39%) than MSSA (24%, p<0.0001)</td>
<td>Delayed treatment is independent predictor of infection-related mortality (odds ratio, 3.8; 95% confidence interval, 1.3-11.0; p= 0.01) Delayed appropriate antibiotic therapy was significantly associated with increased mortality (p 0.04)</td>
</tr>
<tr>
<td>Laupland et al</td>
<td>2008</td>
<td>200-2006</td>
<td>Canada</td>
<td>Prospective cohort</td>
<td>388; 69.1 years (SD 17.8 years)</td>
<td>To determine association of risk factors with SAB mortality</td>
<td>Predictors of mortality include: age, co-morbidities, source and extent of infection.</td>
</tr>
<tr>
<td>Lodise et al</td>
<td>2003</td>
<td>1999-2001</td>
<td>Michigan, United States</td>
<td>Retrospective cohort analysis</td>
<td>1994; not specified</td>
<td>To document the types of, and mortality from, SAB in Australia and New Zealand, and determine factors associated with mortality</td>
<td>Independent predictors of mortality were age, sepsis syndrome, pneumonia, a secondary focus, endocarditis.</td>
</tr>
<tr>
<td>Marchaim et al</td>
<td>2010</td>
<td>2001-2005</td>
<td>United States</td>
<td>Case-control</td>
<td>1994; not specified</td>
<td>To define readily available clinical characteristics that could help identify patients at risk for complicated SAB.</td>
<td>Complicated SAB was present in 43% of 724 consecutive adult hospitalized patients. A scoring system based on the presence or absence of 4 risk accurately identified complicated SAB.</td>
</tr>
<tr>
<td>Tong et al</td>
<td>2015</td>
<td>Not specified</td>
<td>High and low income countries</td>
<td>Systematic review</td>
<td>1994; not specified</td>
<td>To describe the epidemiology, pathophysiology, clinical manifestations, and management of S. aureus infections.</td>
<td>Predictors of mortality include: age, co-morbidities, source and extent of infection.</td>
</tr>
<tr>
<td>Turnidge et al</td>
<td>2009</td>
<td>2007-2008</td>
<td>Australia, New Zealand</td>
<td>Prospective cohort</td>
<td>1994; not specified</td>
<td>To document the types of, and mortality from, SAB in Australia and New Zealand, and determine factors associated with mortality</td>
<td>Independent predictors of mortality were age, sepsis syndrome, pneumonia, a secondary focus, endocarditis.</td>
</tr>
</tbody>
</table>

Note: studies included in tables from previous sections are not repeated. Studies from South Africa are included in a separate table. HCA = healthcare-associated; IQR = inter-quartile range; MSSA = methicillin-sensitive S. aureus; MRSA = methicillin-resistant S. aureus; SAB = S. aureus bacteraemia; SD = standard deviation.

Table 5 Summary of key studies included on SAB outcomes.
8. Management

Both US and United Kingdom guidelines for the management of MRSA-bacteraemia (MRSA-B) are available, and recommend a minimum of 2 weeks intravenous therapy for patients with uncomplicated SAB, and longer-term (4–6 weeks) intravenous antibiotic therapy for those with complicated infections (Liu et al. 2011; Gemmell et al. 2006). Evidence to support various recommendations is largely considered to be of a poor quality. Only a single small randomised control trial (RCT) has been performed to examine the optimal duration of antibiotic therapy for any form of SAB, and reported insufficient data to allow conclusions regarding the optimal duration of therapy for patients with or without endocarditis (Rahal 1986).

The South African Antibiotic Stewardship Programme (SAASP) has developed an antibiotic prescribing guideline based on currently available evidence, including an algorithm for the treatment of SAB (Wasserman et al. 2014). A minimum of 4 weeks antibiotic therapy is advised for patients with prosthetic heart valves or endocarditis, persistent bacteraemia or fever after 72 h of antibiotic therapy, or a non-removable or deep-seated site of infection, such as bone.

The involvement of infectious diseases (ID) specialists is an important aspect of management. Recommended management strategies are carried out significantly more frequently among patients seen by an infectious diseases specialist, contributing to the survival benefit (Paulsen et al. 2015; Liu 2013; Vogel et al. 2016). A systematic review and meta-analysis of 18 reports showed a significant reduction in 30-day mortality in SAB patients seen by an ID consultant compared with those who did not have an ID consult (Vogel et al. 2016), with a relative risk of 0.53 (95% CI 0.43-0.65). Follow-up blood cultures and echocardiography were also performed more frequently following ID consultation. Possible selection bias was present, as ID consultation was most likely selected for more severe disease and poorer prognosis, which decreased the likelihood of finding a positive effect. This bias was minimised by adjusting for patient and SAB baseline characteristics using multivariable modelling and propensity score matching. Potential confounding may also have been present in the fact that patients with better resources and those cared for in better resourced health facilities were more likely to see an ID specialist, thus biasing towards better outcomes. This was addressed using case matching within healthcare facilities.
Administration of appropriate antibiotic therapy has an important influence on the outcomes of both methicillin-sensitive S. aureus (MSSA) and MRSA (Van Hal et al. 2012). A meta-analysis of 6 studies demonstrated an almost two-fold survival benefit (OR, 1.84; 95% CI 1.25 to 2.71) for patients who received appropriate empiric therapy for MRSA-B (Paul et al. 2010). In a cohort study of 1 896 patients with MSSA-bacteraemia (MSSA-B), first-line empiric antistaphylococcal penicillins (OR, 0.40; CI, 0.17-0.95) and vancomycin (OR, 0.37; CI, 0.17-0.83), alone or combined with an aminoglycoside, were associated with improved mortality compared to other antibiotics (Braquet et al. 2016). Sterilisation of blood is achieved more rapidly with the use of beta-lactam drugs compared with vancomycin for MSSA-B (Khatib et al. 2009; Siegman-igra et al. 2005). There is also evidence that the use of vancomycin for SAB, regardless of beta lactam susceptibility, is an independent risk factor for recurrence and death (Mcconeghy et al. 2013; Johnson et al. 2003; Chang et al. 2003). Cephalosporins are frequently used for empiric therapy for hospitalised patients, but no comparative RCTs have been performed to evaluate the efficacy of cephalosporins for the treatment of MSSA-B. Limited observational data have shown favourable outcomes for cefazolin, but concerns exist about treatment failure in complicated SAB, particularly with the use of second and third generation cephalosporins (Thwaites et al. 2017). Another agent shown to have similar efficacy to standard therapy for both MSSA and MRSA bacteraemia in an RCT is the lipopeptide daptomycin (Fowler et al. 2006); however this drug is not available in the public sector in South Africa. Thus, the treatment of choice for SAB remains cloxacillin (or penicillin if susceptible) for MSSA and vancomycin for MRSA.

One intervention in SAB management that is supported by high quality evidence is early source control, with surgical drainage of collections and removal of intravascular catheters (Thwaites et al. 2017).

Imaging of the cardiac valves is performed in cases of SAB to determine if there is underlying IE present, however it is unresolved whether transoesophageal echocardiography (TOE) is required in all patients. The SAASP guidelines for SAB recommend echocardiography for the following patients: implanted prosthetic heart valves; clinical evidence of endocarditis; and community-acquired infection, which is associated with an increased risk of complicated SAB. TOE has an increased sensitivity for the detection of IE when compared to transthoracic echocardiography (TTE), however it is more expensive, less widely available, and is an invasive
procedure (Fowler et al. 1997; Hal et al. 2005; Khatib & Sharma 2013). The absence of clinical and microbiological features of complicated SAB have a good negative predictive value (93 to 100%) for endocarditis, and may be used in these settings to identify low risk patients who do not require echocardiography (Holland et al. 2014).
Table 6: Summary of key studies on management of SAB.

<table>
<thead>
<tr>
<th>Author et al</th>
<th>Year of publication</th>
<th>Study period</th>
<th>City and country</th>
<th>Study design</th>
<th>Sample size; Median age (IQR)</th>
<th>Aim</th>
<th>Key findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fowler et al</td>
<td>1997</td>
<td>1994-1996</td>
<td>United States</td>
<td>Prospective cohort</td>
<td>103; 56 years (SD 15 years)</td>
<td>To examine the role of echocardiography in patients with SAB.</td>
<td>IE is common among patients admitted to the hospital with SAB and is associated with an increased risk of death due to sepsis.</td>
</tr>
<tr>
<td>Holland et al</td>
<td>2014</td>
<td>1990-2014</td>
<td>Not specified</td>
<td>Systematic review</td>
<td>4050, not specified</td>
<td>To review evidence of management strategies for SAB</td>
<td>All adult patients with SAB should undergo echocardiography, unless identified with low-risk characteristics. Vancomycin and daptomycin are the first-line choices for MRSA-B.</td>
</tr>
<tr>
<td>Paulsen et al</td>
<td>2015</td>
<td>Not specified</td>
<td>22 studies</td>
<td>Systematic review</td>
<td>Not specified</td>
<td>To assess whether consultation with infectious disease specialists decreased all-cause mortality or rate of complications of SAB</td>
<td>Recommended management strategies were carried out significantly more often among patients seen by an infectious disease specialist.</td>
</tr>
<tr>
<td>Rahal</td>
<td>1986</td>
<td>Unable to access</td>
<td>Unable to access</td>
<td>Randomised control trial</td>
<td>84; not specified</td>
<td>To determine the role of antimicrobial therapy on SAB outcome.</td>
<td>Data were insufficient to allow conclusions regarding the optimal duration of therapy for patients with or without endocarditis.</td>
</tr>
<tr>
<td>Thwaites et al</td>
<td>2017</td>
<td>Not specified</td>
<td>High income countries</td>
<td>Systematic review</td>
<td>Not specified</td>
<td>To describe the key principles for SAB management</td>
<td>Early source control and long-term antimicrobial treatment for complicated infection are key.</td>
</tr>
<tr>
<td>Vogel et al</td>
<td>2016</td>
<td>Inception to May 2015</td>
<td>Not specified</td>
<td>Systematic review and meta-analysis</td>
<td>5 377; not specified</td>
<td>To evaluate the impact of infectious disease consultation on the management and outcomes of patients with SAB</td>
<td>The appropriateness of antistaphylococcal agent and treatment duration was improved by infectious disease consultation; mortality was decreased; follow-up blood cultures and echocardiography performed more frequently.</td>
</tr>
</tbody>
</table>

Note: studies included in tables from previous sections are not repeated. Studies from South Africa are included in a separate table. IQR = inter-quartile range; MRSA = methicillin-resistant *S. aureus*; SAB = *S. aureus* bacteraemia; SD = standard deviation.
9. Studies from South Africa

Only five clinical studies of SAB have been conducted in South Africa (Table 2), three of which were retrospective in design and two of which focussed exclusively on children (Smidt et al. 2015; Naidoo et al. 2013; Perovic et al. 2006; Willcox et al. 1998; Groome et al. 2012). A prospective study of 113 consecutive episodes of CA-SAB was conducted at GSH over the years 1986 to 1991 (Willcox et al. 1998). Eleven percent of isolates were resistant to cloxacillin, and none of the patients were HIV-infected. The overall mortality was 35% at 3 months, and complications occurred in 90% of patients, including endocarditis in 17%. Treatment was delayed by 24 h or more in 50% of all patients, and significantly more patients who died had received either inadequate or no antibiotic therapy compared to survivors.

A recent prospective study was conducted across three Johannesburg public sector hospitals to describe the epidemiology of MRSA-B and factors associated with poor outcomes (Smidt et al. 2015). For unreported reasons, only 45% of all SAB episodes in the study period were included in the analysis, with a final study size of 240 isolates. The overall proportion of MRSA-B was 36%. The number of patients with complicated SAB was not reported, nor were the overall outcomes and choice and timing of antibiotic therapy.

A retrospective review of SAB cases at two academic hospitals in Johannesburg, South Africa, reported on 449 episodes of SAB between 1999 and 2002 (Perovic et al. 2006). HCA infection was associated with an increased risk of MRSA-B. Intensive care unit admission and MRSA infection were strongly associated with increased mortality. Only 14-day mortality was studied, and antibiotic management was not assessed.

A retrospective review of 161 cases of SAB in children hospitalised between 2005 and 2006 at a tertiary state hospital in Johannesburg, South Africa (Groome et al. 2012), reported an incidence of 26 per 100 000 population per year, with 63 (39%) isolates identified as methicillin-resistant. Incidence was inversely related to age and greater in PLWH. Overall mortality was not reported. The retrospective design of the study, as well as the fact that children admitted to private hospitals or who had died in the community before seeking healthcare were not included, limited the accuracy of true SAB incidence. If the HIV status of
the child was unknown, they were assumed to be HIV negative, which may have resulted in misclassification bias.

A separate retrospective study in children was carried out between 2007 and 2011 at a children’s hospital in Cape Town, South Africa (Naidoo et al. 2013). Over the study period, 365 cases of SAB were identified, with an annual incidence of 3.28 cases per 1 000 hospital admissions. The overall case fatality rate was 8.8% over five years, with only MRSA infection identified as a significant risk factor for mortality. MRSA was responsible for 26% of SAB and 72% of nosocomial infections. Again, this study is limited by its retrospective nature, resulting in a lack of standardisation of blood culture investigations and treatment protocols.

10. Conclusion

The predisposing factors and patient characteristics of SAB are well-described in HIC, however relatively little is known about SAB in the Southern African setting. Despite being a leading cause of bloodstream infections, there is a lack of quality evidence to guide the management of SAB. Previous studies have lacked standardisation and did not thoroughly evaluate treatment strategies. Because of the paucity of good quality data, the contemporary management and outcomes of SAB in South Africa is not well understood. The proposed study aims to address this knowledge gap by analysing prospectively collected clinical data of consecutive patients with SAB at a referral hospital in Cape Town, with the objectives of describing the South African patient profile of SAB, the antibiotic management, and the clinical and microbiological factors associated with poor outcome.
<table>
<thead>
<tr>
<th>Author</th>
<th>Year of publication</th>
<th>Study period</th>
<th>City and country</th>
<th>Study design</th>
<th>Sample size; Median age (IQR)</th>
<th>Aim</th>
<th>Key findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groom et al</td>
<td>2012</td>
<td>January 2005 - December 2006</td>
<td>Johannesburg, South Africa</td>
<td>Retrospective record review</td>
<td>161; 7.5 months (3 days – 12.5 years)</td>
<td>To describe the burden of community-onset bacteraemic S. aureus infections in children in an area with a high prevalence of paediatric HIV infection, and to describe the antimicrobial resistance patterns.</td>
<td>Incidence 26/100 000; MRSA 39% overall; increased incidence in HIV infection.</td>
</tr>
<tr>
<td>Naidoo et al</td>
<td>2013</td>
<td>2007 - 2011</td>
<td>Cape Town, South Africa</td>
<td>Retrospective analysis</td>
<td>365; 11.3 months (3.8 – 42.3 months)</td>
<td>To investigate the epidemiology of SAB at a single children’s hospital in South Africa over a five-year period, and to describe the incidence, clinical presentation, microbiologic profiles, risk factors, management and outcomes of children with both MSSA and MRSA bacteraemia.</td>
<td>Incidence 3.28/1000 hospital admissions; MRSA 26% overall and 72% of nosocomial infections; overall case fatality rate 8.8% over 5 years, with MRSA being the only significant risk factor for mortality.</td>
</tr>
<tr>
<td>Perovic et al</td>
<td>2006</td>
<td>November 1999 – October 2002</td>
<td>Johannesburg, South Africa</td>
<td>Retrospective analysis</td>
<td>449; 41.6 years (SD 15.8 years)</td>
<td>To determine the number of patients presenting with SAB, to determine the proportion of MRSA versus MSSA infections, to determine the mortality rate of patients with SAB, to compare the mortality rate of MRSA versus MSSA SAB, and to identify risk factors associated with mortality.</td>
<td>14-day mortality rate 23.2%; MRSA 23.4% overall, MRSA infection associated with HCA infection and increased mortality intensive care unit admission associated with increased mortality.</td>
</tr>
<tr>
<td>Smidt et al</td>
<td>2015</td>
<td>September 2012 – September 2013</td>
<td>Johannesburg, South Africa</td>
<td>Prospective review</td>
<td>442; 29 years (0.4 – 45 years)</td>
<td>To describe the epidemiology of S. aureus bacteraemia and to determine factors associated with MRSA infection in South Africa.</td>
<td>MRSA 36% overall; MRSA infection associated with recent hospitalisation, HIV infection and recent antibiotic use; increased age associated with increased mortality.</td>
</tr>
<tr>
<td>Willcox et al</td>
<td>1998</td>
<td>February 1986 - January 1991</td>
<td>Cape Town, South Africa</td>
<td>Prospective review</td>
<td>113; 46 years (IQR not reported)</td>
<td>To describe community-acquired S. aureus bacteraemia in a population where intravenous drug abuse is extremely uncommon.</td>
<td>Mortality 35%; acute renal failure, shock and confusion associated with increased mortality; unknown infection focus in 58%.</td>
</tr>
</tbody>
</table>

HCA = healthcare-associated; IQR = inter-quartile range; MSSA = methicillin-sensitive *S. aureus*; MRSA = methicillin-resistant *S. aureus*; SAB = *S. aureus* bacteraemia; SD = standard deviation.

Table 7 Summary of studies on SAB from South Africa.
11. References

Cookson, B. et al., 2012. Evaluation of the national Cleanyourhands campaign to reduce *Staphylococcus aureus* bacteraemia and *Clostridium difficile* infection in hospitals in England and Wales by improved hand hygiene: four year, prospective, ecological, interrupted time series study. *British Medical Journal*, 344, pp.1–11.

Marchaim, D. et al., 2010. Case–control study to identify factors associated with mortality among patients with methicillin-resistant *Staphylococcus aureus* bacteraemia. *Clinical
Part B. Literature review

Microbiology and Infection, 16, pp.747–752.

Part C. Journal Manuscript

This manuscript follows the author instructions for the *International Journal of Infectious Disease*. These instructions are detailed in the Appendix C. For readability, figures and tables are inserted in the text of the dissertation, rather than appended at the end of the article. The referencing style (used throughout this dissertation) is as required by the *International Journal of Infectious Disease*.
The Management and Outcomes of *Staphylococcus aureus* Bacteraemia at a South African Referral Hospital: A Prospective Observational Study

ABSTRACT

Objectives Limited evidence exists on the management and outcomes of *Staphylococcus aureus* bacteraemia (SAB) in resource-limited settings. The aim of this study was to describe a cohort of South African patients with SAB, and explore the factors associated with complicated infection and death.

Method A prospective observational study of patients over the age of 13 years admitted to a South African referral hospital with SAB.

Results One hundred SAB infection episodes occurring in 98 patients were included. SAB was healthcare-associated in 68.4%; 24.0% of all cases were caused by methicillin-resistant *S. aureus* (MRSA). Ninety-day mortality was 47.0%, with 83.3% of deaths attributable to SAB. There was a trend towards increased 90-day mortality with MRSA infection (OR 1.28; 95% CI 1.0 to 15.1) and the presence of co-morbidities (OR 4.1; 95% CI 1.0 to 21.6). The risk of complicated infection was higher with non-optimal definitive antibiotic therapy (OR 8.5; 95% CI 1.8 to 52.4), female sex (OR 3.8; 95% CI 1.1 to 16.3) and community-acquired infection (OR 7.4; 95% CI 2.0 to 33.1). Definitive antibiotic therapy was non-optimal in 22.6% of all cases.

Conclusions SAB-related mortality was high. A large proportion of cases may be preventable, and there is a need for improved antibiotic management.

[Word count: 200]

Keywords

Staphylococcus aureus bacteraemia; methicillin-resistant *Staphylococcus aureus*; antibiotic stewardship
INTRODUCTION

Staphylococcus aureus is a major human global pathogen, causing a wide range of infections. *S. aureus* bacteraemia (SAB) is an especially severe manifestation, and a common cause of community- and hospital-acquired bacteraemia in high-income countries with a population incidence of 10 to 30 per 100 000 person-years (Laupland et al., 2013). A number of clinical predictors of mortality have been identified in these settings, but there is limited knowledge regarding optimal antibiotic management (Rahal, 1986), and outcomes remain poor (Forsblom et al., 2011; Holland, Arnold, & Fowler, 2014; Kaasch et al., 2014). Less is known about the incidence and impact of SAB in low- and middle-income countries (LMICs). The burden is likely comparable to high income nations (Reddy, Shaw, & Crump, 2010), and may be higher due to the influence of HIV infection (Larsen et al., 2012) and differences in health care systems and infection control practices (Van Hal et al., 2012).

Three previous clinical studies of SAB amongst adult patients have been conducted in South Africa, two of which were retrospective (Perovic et al., 2006; Smidt et al., 2015; Willcox, Rayner, & Whitelaw, 1998). In the most recent study, the number of patients with complicated SAB was not reported, nor were the overall outcomes or choice and timing of antibiotic therapy (Smidt et al., 2015). Because of the paucity of good quality data, the contemporary management and outcomes of SAB in South Africa are not well understood. We conducted a prospective observational study to describe a cohort of patients with SAB, assess outcomes, and explore the factors associated with complications and death at a South African referral hospital.

PATIENTS AND METHODS

Study setting and population

Participants in this study were recruited at Groote Schuur Hospital, a large academic referral center in Cape Town, South Africa. The patient population is mainly from urban and peri-urban areas, including townships, with a low to middle socio-economic status, and a high burden of HIV and related infections, largely tuberculosis.

Inclusion criteria and data collection
In 2013, the Division of Infectious Diseases and HIV Medicine at Groote Schuur Hospital initiated a policy to review all new cases of SAB in the hospital. Cases are identified using an electronic laboratory notification system whereby the results of all blood cultures positive for *S. aureus* are automatically sent via email to a member of the Division of Infectious Diseases and underwent clinical assessment within 36 hours of notification. This analysis includes the first 100 consecutive SAB infection episodes assessed since the start of the policy. Inclusion criteria were inpatients at Groote Schuur Hospital over 13 years of age, with a pure growth of *S. aureus* in one or more blood cultures.

Enrolled participants were followed up for the duration of their admission. Routinely collected clinical information was entered onto hardcopy case report forms. This included data on demographics, medical comorbidities, clinical profile, timing of blood cultures, timing and choice of antibiotic therapy, duration of hospital stay and inpatient mortality. The requirement for informed consent was waived by the ethics review committee as data were collected as part of an ongoing approved clinical registry. Vital status at 90-days was ascertained from Clinicom, the Provincial digital record and appointment system. Microbiological data were obtained from the National Health Laboratory Service (NHLS) data warehouse, and included antibiotic susceptibility profiles, the vancomycin minimum inhibitory concentration (MIC) for MRSA isolates, and time to notification of blood culture results to treating physicians.

Definitions

A new infection episode was defined as a positive blood culture for *S. aureus* ≥ 30 days after a previously sterile blood culture. SAB was classified as community-acquired (CA-SAB) if a positive blood culture for *S. aureus* was first obtained at the time of admission or within 48 hours of admission. Bacteraemia was classified as healthcare-associated (HCA-SAB) if a positive blood culture was first obtained more than 48 hours after admission, or if the first positive blood culture was within 48 hours of admission but the patient had (i) received intravenous therapy in the previous 30 days; (ii) attended a hospital or received dialysis in the previous 30 days; or (iii) resided in a nursing home or long-term care facility.

Complicated SAB was defined by the presence of one or more of the following: (i) persistent bacteraemia ≥ 72 hours after therapy with an antibiotic to which the isolate had *in vitro* susceptibility; (ii) metastatic infection or deep-seated abscess, or (iii) endocarditis.
Death was considered to be infection-related if there were persistent signs and symptoms of SAB or if bacteraemia was present in the last culture prior to death.

Antibiotic prescriptions were designated ‘definitive’ once treating physicians were notified of a positive blood culture for S. aureus. Optimal choice and administration of definitive antibiotic therapy for methicillin-sensitive S. aureus (MSSA) was defined as the use of intravenous cloxacillin 2g 6-hourly in uncomplicated infection, or 3g 6-hourly if complicated infection (or guideline-recommended alternatives). For MRSA, optimal therapy included a loading dose of vancomycin at 25-35mg/kg, followed by 15-20mg/kg 12-hourly. Duration of antibiotic therapy was classified according to local (Wasserman, Boyles, & Mendelson, 2014) and international (Liu et al., 2011) guidelines and best practice (Thwaites et al., 2017). Optimal duration was ≥ 14 days for uncomplicated SAB or ≥ 28 days for complicated SAB (Thwaites et al., 2017). Overall definitive antibiotic management was designated as non-optimal if either administration or duration was outside of these guidelines.

Empiric therapy was defined as an antibiotic administered at the time of the index blood culture, prior to the notification of the presence of SAB. This was classified as inadequate in the following situations: the use of an antibiotic to which the isolate is not susceptible or use of cloxacillin or vancomycin at less than half of standard doses for SAB (or without a loading dose of vancomycin).

Statistical analysis

Data captured in Microsoft Excel (2013) were analysed using R (R Core Team, 2016). Descriptive statistics were used to summarize the data, stratified by HCA/CA. Multivariable logistic regression with a priori variables identified from the literature was used to identify factors associated with complicated infection and 90-day mortality. Variables selected for inclusion in the final model were age (Forsblom et al., 2011), sex (Smit et al., 2017), MRSA (Cosgrove, 2006; Naidoo et al., 2013), healthcare-associated infection (Fowler et al., 2003), presence of comorbidities (Fitzgerald et al., 2017; Larsen et al., 2012), and time to definitive antibiotic therapy (Lodise, Mckinnon, Swiderski, & Rybak, 2003; Marchaim et al., 2010); these were included based on their effect size on the outcomes of interest. Model selection was performed using the Akaike Information Criterion (AIC). We used Kaplan-Meier estimates for inpatient survival and time to initiation of antibiotics. For all statistical tests, a p-value ≤ 0.05 was considered significant.
Ethics approval

This study was approved by the Human Research Ethics Committee at the University of Cape Town (Ref: 643/2015).

RESULTS

Patient and infection characteristics

One hundred consecutive, distinct SAB infection episodes in 98 patients were identified between November 2013 and January 2015. Baseline characteristics, stratified by place of acquisition of infection are shown in Table 1. Median time to notification to the treating physician of confirmed *S. aureus* blood culture results was 44 hours (interquartile range (IQR) 37 to 53) from the time the blood culture was taken. SAB was healthcare-associated in 67 (68.4%, n = 98) cases of infection, with 57 (85.1%, n = 67) of these linked to intravenous catheter-site infection. MRSA accounted for 23.5% of all infections, of which 82.6% were health-care associated. Minimum inhibitory concentrations of vancomycin for MRSA strains ranged from 0.5 μg/ml to 2 μg/ml, with 4 (19.0%, n = 21) having a MIC > 1 μg/ml. Full antibiotic susceptibility profiles are shown in Figure 1. There were no significant univariate predictors for infection with MRSA (data not shown).

![Antibiotic susceptibility profiles of *S. aureus* isolates.](image)

Figure 1 Antibiotic susceptibility profiles of *S. aureus* isolates.
Table 8 Patient and infection characteristics.

<table>
<thead>
<tr>
<th></th>
<th>Healthcare-associated (N = 67)</th>
<th>Community-acquired (N = 31)</th>
<th>Total (N = 100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age > 60 years</td>
<td>48.3 ± 18.4</td>
<td>49.1 ± 18.6</td>
<td>49.1 ± 18.6</td>
</tr>
<tr>
<td></td>
<td>17 (25)</td>
<td>10 (32)</td>
<td>27 (28)</td>
</tr>
<tr>
<td>Male sex</td>
<td>43 (64)</td>
<td>27 (87)*</td>
<td>70 (71)</td>
</tr>
<tr>
<td>Co-morbidities (any)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIV positive</td>
<td>55 (85)</td>
<td>23 (74)</td>
<td>78 (81)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>14 (26)</td>
<td>3 (12)</td>
<td>17 (22)</td>
</tr>
<tr>
<td>Renal failure</td>
<td>11 (17)</td>
<td>8 (26)</td>
<td>19 (20)</td>
</tr>
<tr>
<td>Cardiac disease</td>
<td>22 (33)</td>
<td>8 (26)</td>
<td>30 (31)</td>
</tr>
<tr>
<td>MRSA</td>
<td>19 (28)</td>
<td>4 (13)</td>
<td>23 (24)</td>
</tr>
<tr>
<td>Source of infection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drip site definite</td>
<td>12 (20)</td>
<td>NA</td>
<td>12 (16)</td>
</tr>
<tr>
<td>Drip site probable</td>
<td>22 (37)</td>
<td>NA</td>
<td>22 (29)</td>
</tr>
<tr>
<td>SSTI</td>
<td>5 (9)</td>
<td>11 (65)</td>
<td>16 (21)</td>
</tr>
<tr>
<td>Central line</td>
<td>4 (7)</td>
<td>NA</td>
<td>4 (5)</td>
</tr>
<tr>
<td>Dialysis catheter</td>
<td>5 (9)</td>
<td>NA</td>
<td>5 (7)</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>3 (5)</td>
<td>2 (12)</td>
<td>5 (7)</td>
</tr>
<tr>
<td>Surgical wound</td>
<td>4 (7)</td>
<td>1 (6)</td>
<td>5 (7)</td>
</tr>
<tr>
<td>UTI</td>
<td>2 (3)</td>
<td>2 (12)</td>
<td>4 (5)</td>
</tr>
<tr>
<td>Other</td>
<td>2 (3)</td>
<td>1 (6)</td>
<td>3 (4)</td>
</tr>
<tr>
<td>Drip site sepsis</td>
<td>19 (29)</td>
<td>NA</td>
<td>19 (20)</td>
</tr>
<tr>
<td>Metastatic foci</td>
<td>12 (19)</td>
<td>15 (50)*</td>
<td>27 (28)</td>
</tr>
</tbody>
</table>

Data are n (%) and mean (SD). Percentages given have a denominator of N as shown in the column heading. *No characteristic differed significantly between the study groups (P ≤ 0.05 at baseline according to Fisher’s exact test for categorical data or the Wilcoxon rank-sum test for continuous data), with the exception of male sex (P = 0.0195) and the presence of metastatic foci (P = 0.0015). MRSA = methicillin-resistant *Staphylococcus aureus*; SSTI = skin and soft-tissue infection; UTI = urinary tract infection.
Endocarditis

Patients underwent echocardiography, according to local guidelines, for the following indications: presence of prosthetic heart valves, clinical evidence of endocarditis, or community-acquired SAB. Of the 22 patients who underwent echocardiography, 7 (31.8%) had evidence of endocarditis; overall prevalence of echocardiograph-confirmed endocarditis was 7.1%. Of the three indications, clinical evidence for endocarditis was the only significant predictor of echocardiograph-confirmed endocarditis, with a sensitivity and specificity of 57.1% (95% confidence interval (CI), 18.4 to 90.1) and 93.3% (95% CI, 86.1 to 99.8) respectively, amongst the study sub-population who had indications for echocardiography (Table 2).

<table>
<thead>
<tr>
<th></th>
<th>Echocardiograph Result</th>
<th>Total</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>Clinical endocarditis</td>
<td>Yes</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>Prosthetic material</td>
<td>Yes</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>CA vs HCA</td>
<td>CA</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HCA</td>
<td>3</td>
<td>11</td>
</tr>
</tbody>
</table>

Antibiotic management

An empiric antibiotic with adequate activity and dose for SAB was prescribed in 45 (47.9%) cases. Empiric antibiotic choices included carbapenems in 24%, third generation cephalosporins in 17%, beta-lactam/beta-lactamase inhibitors in 15%, vancomycin in 20%, cloxacillin in 14%, aminopenicillins in 2%, quinolones in 4%, and aminoglycosides in 5%. Median time to definitive therapy from the initial blood culture was 51.5 hours (IQR 41 to 67; range 4 to 156), with no significant difference between HCA and CA (P = 0.47) or between MSSA and MRSA infections (P = 0.28, Figure 2). Time to definitive therapy was not associated with complicated infection or mortality on multivariate analysis (Table 3). Empiric antibiotic therapy was non-optimal in 52.1% of all cases, and in 90.9% of those with MRSA bacteraemia. Definitive antibiotic therapy was non-optimal in 22.6% of all cases, and in 35.3% of those with MRSA bacteraemia. Median duration of therapy was 14 days for both MSSA and MRSA.
bacteraemia (IQR 5 to 16). Of the MRSA-infected patients, 21 (64.7%, n = 33) received a vancomycin loading dose. Therapeutic drug monitoring of vancomycin was performed on at least one occasion in all but one case, at a median of 48 hours (IQR 24 to 72) after the initial dose. The vancomycin trough concentration ranged from below the lower limit of detection to 48.9 µg/mL, with 8 (47%) cases below the recommended target of 15 µg/mL. Source control was potentially indicated for 36 patients, and was performed in 21 (58.8%).

Outcomes

Inpatient and 90-day mortality was 41.8% (95% CI, 31.9 to 52.2) and 47.0% (95% CI, 36.9 to 57.2), respectively, with 30 (83.3%, n = 36) deaths attributable to SAB. The unadjusted survival estimates are shown in Figure 3; median time to death was 35 days (IQR 17 to 62).

There was a strong trend towards increased 90-day mortality with the presence of comorbidities (OR 4.1; 95% CI 1.0 to 21.6; P = 0.06) and MRSA infection (OR 3.6; 95% confidence interval (CI) 1.0 to 15.1; P = 0.06) on multivariable regression analysis (Table 3).

SAB was complicated by persistent infection (blood culture positive ≥ 72 hours on therapy), deep abscess formation, or endocarditis in 30 (31.6%, n = 95) cases. The odds of

![Figure 2](image-url) **Figure 2** Kaplan Meyer (KM) plot for time to definitive antibiotic therapy, stratified by MRSA and MSSA. 95% CI indicated by shaded region.
complicated infection were higher with non-optimal definitive antibiotic therapy (OR 8.5; 95% CI 1.8 to 52.4), female sex (OR 3.8; 95% CI 1.1 to 16.3) and community-acquired infection (OR 7.4; 95% CI 2.0 to 33.1) (Table 3).

Figure 3 Kaplan Meier (KM) survival plot for inpatient mortality. 95% CI indicated by shaded region.
Table 3. Univariate and multivariate logistic regression analysis for a) 90-day mortality, and b) complicated infection.

a) Mortality

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Univariate analysis</th>
<th>Multivariate analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR</td>
<td>95% CI</td>
</tr>
<tr>
<td>Age > 60 years</td>
<td>3.3</td>
<td>1.3 – 8.7</td>
</tr>
<tr>
<td>Female sex</td>
<td>0.6</td>
<td>0.3 – 1.6</td>
</tr>
<tr>
<td>MRSA</td>
<td>2.3</td>
<td>0.9 – 6.1</td>
</tr>
<tr>
<td>Community-acquired infection</td>
<td>1.6</td>
<td>0.7 – 4.0</td>
</tr>
<tr>
<td>Non-optimal definitive AB therapy</td>
<td>0.7</td>
<td>0.2 – 2.0</td>
</tr>
<tr>
<td>Co-morbidity present</td>
<td>3.9</td>
<td>1.3 – 14.6</td>
</tr>
<tr>
<td>HIV</td>
<td>1.1</td>
<td>0.4 – 3.2</td>
</tr>
<tr>
<td>Renal Failure</td>
<td>2.7</td>
<td>1.1 – 6.8</td>
</tr>
<tr>
<td>Cardiovascular disease</td>
<td>1.1</td>
<td>0.5 – 2.6</td>
</tr>
<tr>
<td>Time to definitive therapy</td>
<td>1.0</td>
<td>0.9 – 1.1</td>
</tr>
<tr>
<td>Time to notification of results</td>
<td>1.0</td>
<td>0.9 – 1.1</td>
</tr>
</tbody>
</table>

b) Complicated infection

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Univariate analysis</th>
<th>Multivariate analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR</td>
<td>95% CI</td>
</tr>
<tr>
<td>Age > 60 years</td>
<td>0.7</td>
<td>0.3 – 1.9</td>
</tr>
<tr>
<td>Female sex</td>
<td>1.8</td>
<td>0.2 – 1.9</td>
</tr>
<tr>
<td>MRSA</td>
<td>1.3</td>
<td>0.5 – 3.6</td>
</tr>
<tr>
<td>Community-acquired infection</td>
<td>2.7</td>
<td>1.1 – 6.8</td>
</tr>
<tr>
<td>Non-optimal definitive AB therapy</td>
<td>1.5</td>
<td>0.5 – 4.3</td>
</tr>
<tr>
<td>Co-morbidity present</td>
<td>0.8</td>
<td>0.3 – 1.9</td>
</tr>
<tr>
<td>HIV</td>
<td>0.6</td>
<td>0.2 – 1.9</td>
</tr>
<tr>
<td>Renal Failure</td>
<td>0.9</td>
<td>0.3 – 2.3</td>
</tr>
<tr>
<td>Cardiovascular disease</td>
<td>1.5</td>
<td>0.6 – 3.8</td>
</tr>
<tr>
<td>Time to definitive therapy</td>
<td>0.97</td>
<td>0.95 – 1.0</td>
</tr>
<tr>
<td>Time to notification of results</td>
<td>1.0</td>
<td>0.9 – 1.1</td>
</tr>
</tbody>
</table>

*p ≤ 0.05
Complicated infection and SAB-related mortality were high in this well-characterized clinical cohort from South Africa. Most infection episodes were health care-associated and related to intravenous peripheral catheter infection, suggesting that many were preventable. Of concern, definitive antibiotic therapy was non-optimal in almost a quarter of cases, and this was strongly associated with complicated infection.

At 47%, all-cause mortality was similar to that found in other studies from South Africa (Perovic et al., 2006; Smidt et al., 2015) and other LMICs (Nickerson et al., 2009), but was substantially worse than in high income countries, where mortality ranges between 20 and 30% (Braquet et al., 2017; Kaasch et al., 2014; Laupland et al., 2008). This may be related to the high prevalence of comorbidities and MRSA infection in our population, both of which have been associated with an increased risk of mortality with SAB (Allard et al., 2008; P Braquet et al., 2016; Cosgrove, 2006; Naidoo et al., 2013). Although the short-term outcomes of medical patients at Groote Schuur Hospital are generally poor, with only 65% surviving to 12 months post-discharge (Stuart-Clark et al., 2012), this does not fully explain the poor early outcomes observed in our study, where the majority of deaths were possibly SAB-related. Over a fifth of our patients had HIV co-infection, but this was not associated with mortality or complicated infection, in contrast to other reports (Jaliff et al., 2014). This suggests that specific host- or pathogen-related factors may account for the worse outcomes observed compared to other settings.

Around a third of our patients were assessed as having complicated infection, which is lower than that described in a large cohort from the US (43%) using similar definitions (Fowler et al., 2003). There are limited data on rates of complicated SAB, likely due to inconsistent definitions and the difficulties in ascertaining this outcome, allowing limited conclusions from direct comparisons. Half of the community-acquired infections in our cohort presented with metastatic foci, supporting previous reports of community-acquired infection as a clinical predictor of complicated infection (Fowler et al., 2003), presumably due to later presentation and treatment. As observed in other settings (Smit et al., 2017), female patients were found to be at increased risk of complicated infection, suggesting that sex may need to be considered when risk-stratifying patients. This association is likely multifactorial, and subject to the confounders present in observational studies. However, it has been speculated...
that distinct sex differences in immune responses to infection may play a role (Humphreys, Fitzpatrick, & Harvey, 2015). The only modifiable factor associated with complicated SAB in our cohort was the administration of non-optimal antibiotic therapy, which is of concern.

Administration of optimal empiric and directed antibiotic therapy has an important influence on the outcomes of both MSSA and MRSA (Van Hal et al., 2012); in one study, administration of adequate initial therapy for MRSA bacteraemia was shown to confer an almost 2-fold survival benefit (OR, 1.84; 95% CI 1.25 to 2.71) (Paul et al., 2010). Definitive antibiotic therapy was non-optimal in almost a quarter of our patients, and in a third of those with MRSA. The inadequacy of both empiric and definitive antibiotic therapy, especially for MRSA infections, possibly contributed to the trend of increased 90-day mortality associated with MRSA bacteraemia. An additional concern is that when indicated, early source control was performed in fewer than 60% of cases. These findings clearly identify a need for improved management of SAB in our setting. Surveys of South African medical students have found a low level of antibiotic knowledge, including for the treatment of SAB (Wasserman et al., 2017), and this should have a greater emphasis in both undergraduate and postgraduate medical training as a measure to improve SAB management. The involvement of Infectious Diseases (ID) specialists and use of bedside management protocols are an important aspect of SAB care: recommended management strategies are carried out significantly more frequently among patients assessed by an ID specialist, contributing to the survival benefit associated with this intervention (Liu, 2013; Paulsen et al., 2015; Vogel et al., 2016). Although all patients in our study were followed up by members of the ID Division, we did not evaluate adherence to management advice. Most South African hospitals do not have access to ID specialists, but should consider implementing evidence-based bundle interventions, including early source control, and early use of intravenous cloxacillin. These are simple and cheap to implement, and result in mortality reduction for SAB (López-Cortés et al., 2013).

In contrast to high-income countries, where the highest case burden of SAB is seen in the elderly (K. Laupland et al., 2013), only 28% of our cohort was over the age of 60 years. This may reflect the higher incidence of comorbidities, such as HIV, in younger members of our population. Similarly to other settings, (Allard et al., 2008; Asgeirsson, Gudlaugsson, Kristinsson, Heiddal, & Kristjansson, 2011; Huggan et al., 2010; Klevens et al., 2007) a high proportion of SAB cases were healthcare-associated. This is related to increased exposure to
intravascular access devices, including short-term peripheral venous catheters, which are an important cause of bloodstream infection (Mermel, 2017). Our finding that the majority of SAB episodes were related to peripheral venous catheter use emphasizes the need for improved infection prevention practices in local healthcare settings, such as the implementation of evidenced-based bundles of care to reduce intravascular line infection (Fitzgerald et al., 2017; Larsen et al., 2012; Wilson, Moore, Lucas, Francis, & Gebo, 2008).

The prevalence of endocarditis in our study was 7%, similar to the proportion of SAB with endocarditis in the United States (Klevens et al., 2007). While some form of echocardiography is generally recommended for all patients with SAB (Holland et al., 2014), this is not always feasible in low resource settings, particularly for transesophageal echocardiography which has a higher yield than transthoracic imaging. Clinical guidelines may be a useful strategy to identify low risk patients not requiring echocardiography. Although our study was not designed to evaluate this, and the denominator was small (n = 22), echocardiography testing according to local guidelines, namely those patients with implanted prosthetic heart valves, clinical evidence of endocarditis, or community-acquired infection, was able to identify endocarditis with an accuracy of 72.7%. Only one case was diagnosed on echocardiography in the absence of these indications, suggesting that these clinical indicators are useful in ruling out endocarditis. However echocardiography was not performed on the entire study population, and the results are therefore not necessarily generalisable to all patients with SAB. Future studies should be undertaken to define better the indications for echocardiography for SAB in LMICs.

The proportion of our patients with MRSA infection, at 24%, was lower than that reported from South African tertiary hospitals in Gauteng from a similar period (36%) (Smidt et al., 2015), but is on par with other results from local state sector hospitals at earlier periods (Naidoo et al., 2013; Perovic et al., 2006), suggesting that the incidence of MRSA bacteraemia is stable. However, local rates of HCA-MRSA are substantially higher than those reported in high-income countries, which are generally under 10% (Forsblom et al., 2011; Tom, Galbraith, Valiquette, & Jacobsson, 2014). This reflects challenges in infection prevention and control (IPC) services in South African public hospitals, many of which do not have antibiotic stewardship programs or dedicated IPC nurses. As expected, almost all MRSA cases were healthcare-associated, reflecting the absence of the ST8:USA300 strain of community-
associated MRSA in South Africa (Goering et al., 2008). However, there were a small number of cases of community-acquired MRSA bacteraemia in our cohort, emphasizing the need for clinician awareness and ongoing microbiological surveillance with accurate ascertainment of site of SAB acquisition (CA versus HCA).

Despite definitive treatment being delayed by 24 hours or more from initial blood culture in most patients, this was not associated with an increased risk of mortality, as has been observed in other studies (Lodise et al., 2003; Marchaim et al., 2010). It is possible that the negative impact of delayed therapy might have been more clearly seen if a higher proportion of cases had received optimal definitive treatment, or if the levels of antibiotic resistance were higher, with decreased adequacy of empiric antibiotic therapy. This delay in definitive treatment reflects a delay in the identification and susceptibility profiling of *S. aureus* from positive blood cultures. The use of novel tools to identify *S. aureus* directly from blood cultures, such as fluorescence in situ hybridization (FISH), polymerase chain reaction (PCR), immunochromatographic assays for PBP2a and other methods have been shown to quickly and reliably identify *S. aureus* (Buchan et al., 2015; Delport et al., 2016; Felsenstein et al., 2016; Oliveira, Procop, Wilson, Coull, & Stender, 2002; Thomas, Gidding, Ginn, Olma, & Iredell, 2007). The use of such tools in our setting could be valuable in encouraging prompt antimicrobial treatment of SAB and an improvement in patient outcomes, although cost may be an important limiting factor.

While the management of SAB in our setting is inevitably affected by organizational level facors, resulting in delays of organism identification and reduced rates of echocardiography, the results of this study can be used to inform management strategies in various ways. On a clinician level, improved knowledge regarding recognition and treatment of SAB, especially infections with MRSA, is key. While infectious disease consultation and guidance is important, so too is ensuring that the advice is followed, and that the patient receives the medication. More regular input is required with drugs such as vancomycin, as it requires a loading dose and additional monitoring. Clinicians should be actively encouraged to seek guidance when prescribing antibiotics. The high proportion of infections related to intravenous cannulas highlights the importance of intravenous cannula care and monitoring, both as a prevention strategy and as a part of source control.
The major strength of this study was our ability to accurately evaluate the setting of infection acquisition, and prospectively capture well-defined clinical outcomes and management practices. There were, however, a number of important limitations. The relatively small sample size resulted in reduced statistical power and generalizability. Because of this, important risk factors in the greater South African population may not have been detected in this cohort. For example, because source control was only indicated in 36 patients, this variable was not included in our prediction models. It is possible that the use of the electronic notification system may have resulted in cases of SAB during the study period being missed, which could have biased our findings if the loss was non-random. SAB incidence has been shown to vary between hospitals within South Africa (Smidt et al., 2015), which may further reduce the external validity of the results of this single-site study. Future studies should attempt standardized collection and analysis of pooled data from various hospitals across South Africa, with a particular focus on SAB management.

CONCLUSIONS

SAB is strongly related to intravenous peripheral catheter infection in our setting, and mortality is notably higher relative to higher-income countries. Non-optimal antibiotic management, especially for MRSA, is a significant problem and may contribute to these poor outcomes. Cost-effective prevention and treatment strategies should be implemented as a priority to reduce the burden of SAB in South African public hospitals.

Acknowledgements

The authors thank Chad Centner and Margaret Khonga of the National Health Laboratory Service for collating the drug susceptibility data of the study isolates, clinical staff, and members of the Division of Infectious Diseases and HIV Medicine at Groote Schuur Hospital at Groote Schuur Hospital for monitoring and recording clinical data.

Conflicts of interest

All authors report that they do not have a commercial or other association that might pose a conflict of interest.

Sources of funding
SW is supported by an EDCTP Career Development Award, and the Wellcome Trust (203135/Z/16/Z).
References

Part D. Appendix
A. SAB Database Clinical Capture Form V7

PATIENT LABEL

<table>
<thead>
<tr>
<th></th>
<th>Tel:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of admission</td>
<td></td>
</tr>
<tr>
<td>Admitting team & ward</td>
<td></td>
</tr>
<tr>
<td>HIV status & CD4</td>
<td></td>
</tr>
<tr>
<td>Co-morbidities</td>
<td></td>
</tr>
<tr>
<td>Active drip site sepsis</td>
<td></td>
</tr>
<tr>
<td>Presenting problem</td>
<td></td>
</tr>
</tbody>
</table>

MICROBIOLOGY

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial blood culture date/time</td>
<td>Incubation time</td>
</tr>
<tr>
<td>MRSA vs MSSA</td>
<td></td>
</tr>
<tr>
<td>Vancomycin MIC</td>
<td></td>
</tr>
<tr>
<td>Antibiogram (circle if resistant)</td>
<td>Penicillin</td>
</tr>
<tr>
<td>Date and time of result notification</td>
<td>Timing after initial BC (hrs):</td>
</tr>
</tbody>
</table>

REPEAT CULTURES AFTER INITIAL CULTURE

<table>
<thead>
<tr>
<th>Date</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Result</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculated time in hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CULTURES AFTER START OF DEFINITIVE TREATMENT

<table>
<thead>
<tr>
<th>Date</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Result</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculated time in hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TIME TO NEGATIVE CULTURE

<table>
<thead>
<tr>
<th>From initial BC</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>From definitive treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RISK FACTORS FOR COMPLICATIONS

<table>
<thead>
<tr>
<th>Source of infection</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA vs HCA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical endocarditis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metastatic foci</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Endocarditis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Pulmonary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Bone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Deep abscess</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Meningitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prosthetic material</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Joint</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Endovascular</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other complications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Other HCAI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- CDI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ECHO AND OTHER TESTS

<table>
<thead>
<tr>
<th>TTE vs TOE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Date performed</td>
<td>Time after initial BC (hrs):</td>
</tr>
<tr>
<td>Findings</td>
<td></td>
</tr>
<tr>
<td>Other tests and findings</td>
<td></td>
</tr>
</tbody>
</table>

THERAPY

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Empiric</td>
<td></td>
</tr>
<tr>
<td>Definitive/appropriate</td>
<td>Date and time started:</td>
</tr>
<tr>
<td>– Cloxacillin 2/3g</td>
<td></td>
</tr>
<tr>
<td>– Vancomycin</td>
<td></td>
</tr>
<tr>
<td>– Other</td>
<td></td>
</tr>
<tr>
<td>Vancomycin LD (yes/no)</td>
<td></td>
</tr>
<tr>
<td>Time to definitive (after initial BC)</td>
<td></td>
</tr>
<tr>
<td>Total duration</td>
<td></td>
</tr>
<tr>
<td>Source control</td>
<td></td>
</tr>
<tr>
<td>Initial vanco trough level</td>
<td>Timing: Value:</td>
</tr>
<tr>
<td>Complications of therapy</td>
<td></td>
</tr>
</tbody>
</table>

OUTCOMES

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alive at discharge</td>
<td></td>
</tr>
<tr>
<td>Date of death/discharge</td>
<td></td>
</tr>
<tr>
<td>Alive at 90 days</td>
<td></td>
</tr>
<tr>
<td>Primary cause of death</td>
<td></td>
</tr>
</tbody>
</table>
B. Letter of Approval from Human Research Ethics Committee

UNIVERSITY OF CAPE TOWN
Faculty of Health Sciences
Human Research Ethics Committee

Room E33-46 Old Main Building
Groote Schuur Hospital
Observatory 7923
Telephone (021) 406 6526
Email: giurella.thomas@uct.ac.za
Website: www.health.uct.ac.za/fhs/research/humanethics/forms

20 July 2017

HREC REF: 517/2017

A/Prof Mary-Ann Davies
Public Health & Family Medicine
CIDER
Felmouth Building
Level 5, Entrance 5, Room 5.39

Dear A/Prof Davies

PROJECT TITLE: THE MANAGEMENT AND OUTCOMES OF STAPHYLOCOCCUS AUREUS BACTERAEMIA AT A SOUTH AFRICAN REFERRAL HOSPITAL: A PROSPECTIVE OBSERVATIONAL STUDY. (Masters candidate- Ms N Steinhaus) SUB-STUDY LINKED TO 643/2015

Thank you for submitting your study to the Faculty of Health Sciences Human Research Ethics Committee.

It is a pleasure to inform you that the HREC has formally approved the above-mentioned study subject to the annual approval of study 643/2015.

Approval is granted for one year until the 30 July 2018.

Please submit a progress form, using the standardised Annual Report Form if the study continues beyond the approval period. Please submit a Standard Closure form if the study is completed within the approval period.
(Forms can be found on our website: www.health.uct.ac.za/fhs/research/humanethics/forms)

Please quote the HREC REF in all your correspondence.

Please note that the ongoing ethical conduct of the study remains the responsibility of the principal investigator.

Please note that for all studies approved by the HREC, the principal investigator must obtain appropriate institutional approval before the research may occur.

The HREC acknowledge that the student, Nicola Steinhaus will also be involved in this study.

Yours sincerely

PROFESSOR M BLOCKMAN
CHAIRPERSON, FHS HUMAN RESEARCH ETHICS COMMITTEE
Federal Wide Assurance Number: PWA00001637.

HREC 517/2017

Part D. Appendix
Institutional Review Board (IRB) number: IRB00001938
This serves to confirm that the University of Cape Town Human Research Ethics Committee complies to the Ethics Standards for Clinical Research with a new drug in patients, based on the Medical Research Council (MRC-SA), Food and Drug Administration (FDA-USA), International Convention on Harmonisation Good Clinical Practice (ICH GCP), South African Good Clinical Practice Guidelines (DoH 2006), based on the Association of the British Pharmaceutical Industry Guidelines (ABPI), and Declaration of Helsinki (2013) guidelines.
The Human Research Ethics Committee granting this approval is in compliance with the ICH Harmonised Tripartite Guidelines E6: Note for Guidance on Good Clinical Practice (CPMP/ICH/135/95) and FDA Code Federal Regulation Part 50, 56 and 312.

HREC 517/2017

Part D. Appendix
C. Instructions for Authors from International Journal of Infectious Disease

Your Paper Your Way

We now differentiate between the requirements for new and revised submissions. You may choose to submit your manuscript as a single Word or PDF file to be used in the refereeing process. Only when your paper is at the revision stage, will you be requested to put your paper in to a 'correct format' for acceptance and provide the items required for the publication of your article.

To find out more, please visit the Preparation section below.

The International Journal of Infectious Diseases (IJID) is an online journal published monthly by the International Society for Infectious Diseases.

Please note as of January 2014 the International Journal of Infectious Diseases will be published as an open access Journal. IJID is now only accepting submissions on an open access basis.

Medical Imagery: We would like to invite submission of high-quality, interesting and instructive images (such as clinical and other photographs, figures or diagrams, photomicrographs, or diagnostic imaging) suitable for the general readership of IJID. These should include no more than 200 words of explanatory text, and under 5 references. It is necessary to have appropriate permissions from subjects for an identifiable clinical image to be published.

Contact details

If you have any problem submitting your paper online please contact Annette Fowler at IJID@elsevier.com

Submission checklist

You can use this list to carry out a final check of your submission before you send it to the journal for review. Please check the relevant section in this Guide for Authors for more details.

Ensure that the following items are present:

One author has been designated as the corresponding author with contact details:
- E-mail address
- Full postal address

All necessary files have been uploaded:

Manuscript:
- Include keywords
- All figures (include relevant captions)
- All tables (including titles, description, footnotes)
- Ensure all figure and table citations in the text match the files provided
• Indicate clearly if color should be used for any figures in print

Graphical Abstracts / Highlights files (where applicable)

Supplemental files (where applicable)

Further considerations

• Manuscript has been 'spell checked' and 'grammar checked'
• All references mentioned in the Reference List are cited in the text, and vice versa
• Permission has been obtained for use of copyrighted material from other sources (including the Internet)
• A competing interests statement is provided, even if the authors have no competing interests to declare
• Journal policies detailed in this guide have been reviewed
• Referee suggestions and contact details provided, based on journal requirements

For further information, visit our Support Center.

Before You Begin

Ethics in publishing

Please see our information pages on [Ethics in publishing](#) and [Ethical guidelines for journal publication](#).

Human and animal rights

If the work involves the use of human subjects, the author should ensure that the work described has been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans; Uniform Requirements for manuscripts submitted to Biomedical journals. Authors should include a statement in the manuscript that informed consent was obtained for experimentation with human subjects. The privacy rights of human subjects must always be observed.

All animal experiments should comply with the A[RRIVE guidelines](#) and should be carried out in accordance with the U.K. Animals (Scientific Procedures) Act, 1986 and associated guidelines, EU Directive 2010/63/EU for animal experiments, or the National Institutes of Health guide for the care and use of Laboratory animals (NIH Publications No. 8023, revised 1978) and the authors should clearly indicate in the manuscript that such guidelines have been followed.

Declaration of interest

All authors must disclose any financial and personal relationships with other people or organizations that could inappropriately influence (bias) their work. Examples of potential competing interests include employment, consultancies, stock ownership, honoraria, paid expert testimony, patent applications/registrations, and grants or other funding. Authors must disclose any interests in two places: 1. A summary declaration of interest statement in the title page file (if double-blind) or the manuscript file (if single-blind). If there are no interests to declare then please state this: 'Declarations of interest: none'. This summary statement will be ultimately published if the article is accepted. 2. Detailed disclosures as part of a separate Declaration of Interest form, which forms part of the journal's official records. It is important for potential interests to be declared in both places and that the information matches. [More information](#).
Submission declaration and verification

Submission of an article implies that the work described has not been published previously (except in the form of an abstract, a published lecture or academic thesis, see ‘Multiple, redundant or concurrent publication’ for more information), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. To verify originality, your article may be checked by the originality detection service Crossref Similarity Check.

Authorship

All authors should have made substantial contributions to all of the following: (1) the conception and design of the study, or acquisition of data, or analysis and interpretation of data, (2) drafting the article or revising it critically for important intellectual content, (3) final approval of the version to be submitted.

Changes to authorship

Authors are expected to consider carefully the list and order of authors before submitting their manuscript and provide the definitive list of authors at the time of the original submission. Any addition, deletion or rearrangement of author names in the authorship list should be made only before the manuscript has been accepted and only if approved by the journal Editor. To request such a change, the Editor must receive the following from the corresponding author: (a) the reason for the change in author list and (b) written confirmation (e-mail, letter) from all authors that they agree with the addition, removal or rearrangement. In the case of addition or removal of authors, this includes confirmation from the author being added or removed.

Only in exceptional circumstances will the Editor consider the addition, deletion or rearrangement of authors after the manuscript has been accepted. While the Editor considers the request, publication of the manuscript will be suspended. If the manuscript has already been published in an online issue, any requests approved by the Editor will result in a corrigendum.

Reporting clinical trials

Randomized controlled trials should be presented according to the CONSORT guidelines. At manuscript submission, authors must provide the CONSORT checklist accompanied by a flow diagram that illustrates the progress of patients through the trial, including recruitment, enrollment, randomization, withdrawal and completion, and a detailed description of the randomization procedure. The CONSORT checklist and template flow diagram are available online.

Registration of clinical trials

Registration in a public trials registry is a condition for publication of clinical trials in this journal in accordance with International Committee of Medical Journal Editors recommendations. Trials must register at or before the onset of patient enrolment. The clinical trial registration number should be included at the end of the abstract of the article. A clinical trial is defined as any research study that prospectively assigns human participants or groups of humans to one or more health-related interventions to evaluate the effects of health outcomes. Health-related interventions include any intervention used to modify a biomedical or health-related outcome (for example drugs, surgical procedures, devices, behavioural treatments, dietary interventions, and process-of-care changes). Health outcomes include any biomedical or health-related measures obtained in patients or participants, including pharmacokinetic
measures and adverse events. Purely observational studies (those in which the assignment of the medical intervention is not at the discretion of the investigator) will not require registration.

Article transfer service

This journal is part of our Article Transfer Service. This means that if the Editor feels your article is more suitable in one of our other participating journals, then you may be asked to consider transferring the article to one of those. If you agree, your article will be transferred automatically on your behalf with no need to reformat. Please note that your article will be reviewed again by the new journal. [More information.]

Copyright

Upon acceptance of an article, authors will be asked to complete an ‘Exclusive License Agreement’ (see [more information on this]. Permitted third party reuse of open access articles is determined by the author’s choice of [user license].

Author rights

As an author you (or your employer or institution) have certain rights to reuse your work. [More information.]

Elsevier supports responsible sharing

Find out how you can [share your research] published in Elsevier journals.

Role of the funding source

You are requested to identify who provided financial support for the conduct of the research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. If the funding source(s) had no such involvement then this should be stated.

Funding body agreements and policies

Elsevier has established a number of agreements with funding bodies which allow authors to comply with their funder’s open access policies. Some funding bodies will reimburse the author for the gold open access publication fee. Details of existing agreements are available online.

After acceptance, open access papers will be published under a noncommercial license. For authors requiring a commercial CC BY license, you can apply after your manuscript is accepted for publication.

Open access

This is an open access journal: all articles will be immediately and permanently free for everyone to read and download. To provide open access, this journal has an open access fee (also known as an article publishing charge APC) which needs to be paid by the authors or on their behalf e.g. by their research funder or institution. Permitted third party (re)use is defined by the following [Creative Commons user licenses]:

Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)
For non-commercial purposes, lets others distribute and copy the article, and to include in a collective work (such as an anthology), as long as they credit the author(s) and provided they do not alter or modify the article.

The open access publication fee for this journal is USD 1750 for original research articles, reviews and perspectives and USD 600 for case reports, short communications and medical imagery, excluding taxes. Learn more about Elsevier’s pricing policy: http://www.elsevier.com/openaccesspricing.

Language (usage and editing services)

Please write your text in good English (American or British usage is accepted, but not a mixture of these). Authors who feel their English language manuscript may require editing to eliminate possible grammatical or spelling errors and to conform to correct scientific English may wish to use the English Language Editing service available from Elsevier’s WebShop.

Informed consent and patient details

Patients have a right to privacy. Therefore identifying information, including patients images, names, initials, or hospital numbers, should not be included in videos, recordings, written descriptions, photographs, and pedigrees unless the information is essential for scientific purposes and you have obtained written informed consent for publication in print and electronic form from the patient (or parent, guardian or next of kin where applicable). If such consent is made subject to any conditions, Elsevier must be made aware of all such conditions. Written consents must be provided to Elsevier on request. Even where consent has been given, identifying details should be omitted if they are not essential. If identifying characteristics are altered to protect anonymity, such as in genetic pedigrees, authors should provide assurance that alterations do not distort scientific meaning and editors should so note. If such consent has not been obtained, personal details of patients included in any part of the paper and in any supplementary materials (including all illustrations and videos) must be removed before submission.

Submission

Our online submission system guides you stepwise through the process of entering your article details and uploading your files. The system converts your article files to a single PDF file used in the peer-review process. Editable files (e.g., Word, LaTeX) are required to typeset your article for final publication. All correspondence, including notification of the Editor’s decision and requests for revision, is sent by e-mail.

Submit your article

Please submit your article via http://ees.elsevier.com/ijid.

Referees

Authors must suggest three non-conflicted peer reviewers with expertise as much for content as for methodology of their submission, with contact details including email address. This will significantly help facilitate timely peer review.
Peer review

This journal operates a single blind review process. All contributions will be initially assessed by the editor for suitability for the journal. Papers deemed suitable are then typically sent to a minimum of two independent expert reviewers to assess the scientific quality of the paper. The Editor is responsible for the final decision regarding acceptance or rejection of articles. The Editor’s decision is final. More information on types of peer review.

Use of word processing software

It is important that the file be saved in the native format of the word processor used. The text should be in single-column format. Keep the layout of the text as simple as possible. Most formatting codes will be removed and replaced on processing the article. In particular, do not use the word processor’s options to justify text or to hyphenate words. However, do use bold face, italics, subscripts, superscripts etc. When preparing tables, if you are using a table grid, use only one grid for each individual table and not a grid for each row. If no grid is used, use tabs, not spaces, to align columns. The electronic text should be prepared in a way very similar to that of conventional manuscripts (see also the Guide to Publishing with Elsevier). Note that source files of figures, tables and text graphics will be required whether or not you embed your figures in the text. See also the section on Electronic artwork.

To avoid unnecessary errors you are strongly advised to use the 'spell-check' and 'grammar-check' functions of your word processor.

Essential title page information

• Title. Concise and informative. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible.

• Author names and affiliations. Please clearly indicate the given name(s) and family name(s) of each author and check that all names are accurately spelled. You can add your name between parentheses in your own script behind the English transliteration. Present the authors’ affiliation addresses (where the actual work was done) below the names. Indicate all affiliations with a lower-case superscript letter immediately after the author’s name and in front of the appropriate address. Provide the full postal address of each affiliation, including the country name and, if available, the e-mail address of each author.

• Corresponding author. Clearly indicate who will handle correspondence at all stages of refereeing and publication, also post-publication. This responsibility includes answering any future queries about Methodology and Materials. Ensure that the e-mail address is given and that contact details are kept up to date by the corresponding author.

• Present/permanent address. If an author has moved since the work described in the article was done, or was visiting at the time, a ‘Present address’ (or ‘Permanent address’) may be indicated as a footnote to that author’s name. The address at which the author actually did the work must be retained as the main, affiliation address. Superscript Arabic numerals are used for such footnotes.

Covering letter

Manuscripts must be accompanied by a covering letter stating that the current “Instructions to Authors” have been read by all authors, thereby indicating compliance with those instructions and acceptance of the conditions posed. The letter should state that the authors have seen and agreed to the submitted version of the paper, that all who have been acknowledged as contributors or as providers of personal communications have agreed to their inclusion, that the material is original and that it has been neither published elsewhere nor submitted for publication simultaneously. In addition the letter should state that if accepted, the paper will not be published elsewhere in the same form, in English or in any other language, without written consent of the copyright holder. Please also note that Authors should provide
a list of 3 potential reviewers (e-mail and affiliation) who are knowledgeable in the subject matter, have no conflict of interest, and are likely to agree to review the manuscript. Please ensure that 2 of the potential reviewers are from a different country to the authors.

Abstract

A structured abstract of 150 to 200 words must be provided as part of each manuscript, except correspondence. The abstract should consist of four paragraphs, with the following headings: objectives, design or methods, results, conclusions, or alternative headings appropriate to the format of the paper. The abstract should not refer to footnotes or references.

Graphical abstract

Although a graphical abstract is optional, its use is encouraged as it draws more attention to the online article. The graphical abstract should summarize the contents of the article in a concise, pictorial form designed to capture the attention of a wide readership. Graphical abstracts should be submitted as a separate file in the online submission system. Image size: Please provide an image with a minimum of 531 × 1328 pixels (h × w) or proportionally more. The image should be readable at a size of 5 × 13 cm using a regular screen resolution of 96 dpi. Preferred file types: TIFF, EPS, PDF or MS Office files. You can view Example Graphical Abstracts on our information site. Authors can make use of Elsevier’s Illustration Services to ensure the best presentation of their images and in accordance with all technical requirements.

Highlights

Highlights are mandatory for this journal. They consist of a short collection of bullet points that convey the core findings of the article and should be submitted in a separate editable file in the online submission system. Please use 'Highlights' in the file name and include 3 to 5 bullet points (maximum 85 characters, including spaces, per bullet point). You can view example Highlights on our information site.

Keywords

Immediately after the abstract, provide a maximum of six keywords, avoiding general and plural terms and multiple concepts (avoid, for example, 'and', 'of'). Be sparing with abbreviations: only abbreviations firmly established in the field may be used.

Abbreviations

Abbreviations in the text are discouraged. If a term appears repeatedly, however, an abbreviation may be introduced parenthetically at the initial mention of the term and used thereafter in place of the term. Abbreviations of conventional or SI units of measurement may be used without introduction.

References to drugs

The generic name of a drug should be used as a general rule; however, the full name or the commercial name of the drug, as well as the name and location of the supplier, may be given in addition if appropriate.

Bacterial nomenclature
Microbes should be referred to by their scientific names according to the binomial system used in the latest edition of Bergey’s Manual of Systematic Bacteriology (The Williams and Wilkins Co.). When first mentioned, the name should be in full and written in italics. Thereafter, the genus should be abbreviated to its initial letter, e.g., 'S. aureus' not 'Staph. Aureus'. If abbreviation is likely to cause confusion or render the intended meaning(s) unclear the names of organisms should be given in full. Only those names included in the Approved Lists of Bacterial Names (Int J Syst Bacteriol 1980; 30: 225-420) and/or which have been validly published in the Int J Syst Bacteriol since January 1980 are acceptable. If there is a good reason to use a name that does not have standing in nomenclature, it should be enclosed in quotation marks and an appropriate statement concerning its use made in the text (e.g. Int J Syst Bacteriol 1980; 30: 547-556).

Symbols for units of measurement must accord with the Système International (SI)

However, blood pressure should be expressed in mmHg and haemoglobin as g/dl.

Acknowledgements

Collate acknowledgements in a separate section at the end of the article before the references and do not, therefore, include them on the title page, as a footnote to the title or otherwise. List here those individuals who provided help during the research (e.g., providing language help, writing assistance or proof reading the article, etc.).

Formatting of funding sources

List funding sources in this standard way to facilitate compliance to funder’s requirements:

Funding: This work was supported by the National Institutes of Health [grant numbers xxxx, yyyy]; the Bill & Melinda Gates Foundation, Seattle, WA [grant number zzzz]; and the United States Institutes of Peace [grant number aaaa].

It is not necessary to include detailed descriptions on the program or type of grants and awards. When funding is from a block grant or other resources available to a university, college, or other research institution, submit the name of the institute or organization that provided the funding.

If no funding has been provided for the research, please include the following sentence:

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Artwork

Electronic artwork

General points

• Make sure you use uniform lettering and sizing of your original artwork.
• Embed the used fonts if the application provides that option.
• Aim to use the following fonts in your illustrations: Arial, Courier, Times New Roman, Symbol, or use fonts that look similar.
• Number the illustrations according to their sequence in the text.
• Use a logical naming convention for your artwork files.
• Provide captions to illustrations separately.
• Size the illustrations close to the desired dimensions of the published version.
• Submit each illustration as a separate file.

A detailed guide on electronic artwork is available.

You are urged to visit this site; some excerpts from the detailed information are given here.

Formats

If your electronic artwork is created in a Microsoft Office application (Word, PowerPoint, Excel) then please supply 'as is' in the native document format.

Regardless of the application used other than Microsoft Office, when your electronic artwork is finalized, please 'Save as' or convert the images to one of the following formats (note the resolution requirements for line drawings, halftones, and line/halftone combinations given below):

- **EPS (or PDF):** Vector drawings, embed all used fonts.
- **TIFF (or JPEG):** Color or grayscale photographs (halftones), keep to a minimum of 300 dpi.
- **TIFF (or JPEG):** Bitmapped (pure black & white pixels) line drawings, keep to a minimum of 1000 dpi.
- **TIFF (or JPEG):** Combinations bitmapped line/halftone (color or grayscale), keep to a minimum of 500 dpi.

Please do not:

- Supply files that are optimized for screen use (e.g., GIF, BMP, PICT, WPG); these typically have a low number of pixels and limited set of colors;
- Supply files that are too low in resolution;
- Submit graphics that are disproportionately large for the content.

Color artwork

Please make sure that artwork files are in an acceptable format (TIFF (or JPEG), EPS (or PDF), or MS Office files) and with the correct resolution. If, together with your accepted article, you submit usable color figures then Elsevier will ensure, at no additional charge, that these figures will appear in color online (e.g., ScienceDirect and other sites) regardless of whether or not these illustrations are reproduced in color in the printed version. For color reproduction in print, you will receive information regarding the costs from Elsevier after receipt of your accepted article. Please indicate your preference for color: in print or online only. Further information on the preparation of electronic artwork.

Figure captions

Ensure that each illustration has a caption. Supply captions separately, not attached to the figure. A caption should comprise a brief title (not on the figure itself) and a description of the illustration. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used.

Tables

Each table must be presented at the end of the manuscript on a separate page and numbered in order of appearance in the text. The title of the table must appear after the number. Each table must include appropriate headings. Footnotes, when necessary, must be identified by letters. Units of measurement must be clearly indicated. A table can include references if appropriate.

References

Citation in text
Please ensure that every reference cited in the text is also present in the reference list (and vice versa). Any references cited in the abstract must be given in full. Unpublished results and personal communications are not recommended in the reference list, but may be mentioned in the text. If these references are included in the reference list they should follow the standard reference style of the journal and should include a substitution of the publication date with either ‘Unpublished results’ or ‘Personal communication’. Citation of a reference as ‘in press’ implies that the item has been accepted for publication.

Web references

As a minimum, the full URL should be given and the date when the reference was last accessed. Any further information, if known (DOI, author names, dates, reference to a source publication, etc.), should also be given. Web references can be listed separately (e.g., after the reference list) under a different heading if desired, or can be included in the reference list.

Data references

This journal encourages you to cite underlying or relevant datasets in your manuscript by citing them in your text and including a data reference in your Reference List. Data references should include the following elements: author name(s), dataset title, data repository, version (where available), year, and global persistent identifier. Add [dataset] immediately before the reference so we can properly identify it as a data reference. The [dataset] identifier will not appear in your published article.

Reference management software

Most Elsevier journals have their reference template available in many of the most popular reference management software products. These include all products that support Citation Style Language styles, such as Mendeley and Zotero, as well as EndNote. Using the word processor plug-ins from these products, authors only need to select the appropriate journal template when preparing their article, after which citations and bibliographies will be automatically formatted in the journal’s style. If no template is yet available for this journal, please follow the format of the sample references and citations as shown in this Guide. If you use reference management software, please ensure that you remove all field codes before submitting the electronic manuscript. More information on how to remove field codes.

Users of Mendeley Desktop can easily install the reference style for this journal by clicking the following link: http://open.mendeley.com/use-citation-style/international-journal-of-infectious-diseases

When preparing your manuscript, you will then be able to select this style using the Mendeley plug-ins for Microsoft Word or LibreOffice.

Reference style

Text: All citations in the text should refer to:
1. Single author: the author’s name (without initials, unless there is ambiguity) and the year of publication;
2. Two authors: both authors’ names and the year of publication;
3. Three or more authors: first author’s name followed by ‘et al.’ and the year of publication.

Citations may be made directly (or parenthetically). Groups of references should be listed first alphabetically, then chronologically.

Examples: ‘as demonstrated in wheat (Allan, 2000a, 2000b, 1999; Allan and Jones, 1999). Kramer et al. (2010) have
recently shown."

List: References should be arranged first alphabetically and then further sorted chronologically if necessary. More than one reference from the same author(s) in the same year must be identified by the letters 'a', 'b', 'c', etc., placed after the year of publication.

Examples:

- Reference to a journal publication:

- Reference to a book:

- Reference to a chapter in an edited book:

- Reference to a website:

- Reference to a dataset:

Note shortened form for last page number. e.g., 51–9, and that for more than 6 authors the first 6 should be listed followed by 'et al.' For further details you are referred to 'Uniform Requirements for Manuscripts submitted to Biomedical Journals' (J Am Med Assoc 1997;277:927–34) (see also [Samples of Formatted References](#)).

Video

Elsevier accepts video material and animation sequences to support and enhance your scientific research. Authors who have video or animation files that they wish to submit with their article are strongly encouraged to include links to these within the body of the article. This can be done in the same way as a figure or table by referring to the video or animation content and noting in the body text where it should be placed. All submitted files should be properly labeled so that they directly relate to the video file's content. In order to ensure that your video or animation material is directly usable, please provide the file in one of our recommended file formats with a preferred maximum size of 150 MB per file, 1 GB in total. Video and animation files supplied will be published online in the electronic version of your article in Elsevier Web products, including ScienceDirect. Please supply 'stills' with your files: you can choose any frame from the video or animation or make a separate image. These will be used instead of standard icons and will personalize the link to your video data. For more detailed instructions please visit our [video instruction pages](#). Note: since video and animation cannot be embedded in the print version of the journal, please provide text for both the electronic and the print version for the portions of the article that refer to this content.

Supplementary material

Supplementary material such as applications, images and sound clips, can be published with your article to enhance it. Submitted supplementary items are published exactly as they are received (Excel or PowerPoint files will appear as such online). Please submit your material together with the article and supply a concise, descriptive caption for each supplementary file. If you wish to make changes to supplementary material during any stage of the process, please make sure to provide an updated file. Do not annotate any corrections on a previous version. Please switch off the 'Track Changes' option in Microsoft Office files as these will appear in the published version.

Research data
This journal encourages and enables you to share data that supports your research publication where appropriate, and enables you to interlink the data with your published articles. Research data refers to the results of observations or experimentation that validate research findings. To facilitate reproducibility and data reuse, this journal also encourages you to share your software, code, models, algorithms, protocols, methods and other useful materials related to the project.

Below are a number of ways in which you can associate data with your article or make a statement about the availability of your data when submitting your manuscript. If you are sharing data in one of these ways, you are encouraged to cite the data in your manuscript and reference list. Please refer to the ‘References’ section for more information about data citation. For more information on depositing, sharing and using research data and other relevant research materials, visit the research data page.

Data linking

If you have made your research data available in a data repository, you can link your article directly to the dataset. Elsevier collaborates with a number of repositories to link articles on ScienceDirect with relevant repositories, giving readers access to underlying data that gives them a better understanding of the research described.

There are different ways to link your datasets to your article. When available, you can directly link your dataset to your article by providing the relevant information in the submission system. For more information, visit the database linking page.

For supported data repositories a repository banner will automatically appear next to your published article on ScienceDirect.

In addition, you can link to relevant data or entities through identifiers within the text of your manuscript, using the following format: Database: xxxx (e.g., TAIR: AT1G01020; CCDC: 734053; PDB: 1XFN).

Mendeley Data

This journal supports Mendeley Data, enabling you to deposit any research data (including raw and processed data, video, code, software, algorithms, protocols, and methods) associated with your manuscript in a free-to-use, open access repository. Before submitting your article, you can deposit the relevant datasets to Mendeley Data. Please include the DOI of the deposited dataset(s) in your main manuscript file. The datasets will be listed and directly accessible to readers next to your published article online.

For more information, visit the Mendeley Data for journals page.

Data statement

To foster transparency, we encourage you to state the availability of your data in your submission. This may be a requirement of your funding body or institution. If your data is unavailable to access or unsuitable to post, you will have the opportunity to indicate why during the submission process, for example by stating that the research data is confidential. The statement will appear with your published article on ScienceDirect. For more information, visit the Data Statement page.
After Acceptance

Online proof correction

Corresponding authors will receive an e-mail with a link to our online proofing system, allowing annotation and correction of proofs online. The environment is similar to MS Word: in addition to editing text, you can also comment on figures/tables and answer questions from the Copy Editor. Web-based proofing provides a faster and less error-prone process by allowing you to directly type your corrections, eliminating the potential introduction of errors.

If preferred, you can still choose to annotate and upload your edits on the PDF version. All instructions for proofing will be given in the e-mail we send to authors, including alternative methods to the online version and PDF.

We will do everything possible to get your article published quickly and accurately. Please use this proof only for checking the typesetting, editing, completeness and correctness of the text, tables and figures. Significant changes to the article as accepted for publication will only be considered at this stage with permission from the Editor. It is important to ensure that all corrections are sent back to us in one communication. Please check carefully before replying, as inclusion of any subsequent corrections cannot be guaranteed. Proofreading is solely your responsibility.

Offprints

The corresponding author will be notified and receive a link to the published version of the open access article on ScienceDirect. This link is in the form of an article DOI link which can be shared via email and social networks. For an extra charge, paper offprints can be ordered via the offprint order form which is sent once the article is accepted for publication. Both corresponding and co-authors may order offprints at any time via Elsevier's Webshop. Authors requiring printed copies of multiple articles may use Elsevier Webshop's 'Create Your Own Book' service to collate multiple articles within a single cover.